Bestseller Since 1986 A
Completely Rewritten for the New C++11 Standard ' '

Stanley B. Lippman
Josée Lajoie
Barbara E. Moo

C++ Primer, Fifth Edition

Stanley B. Lippman
Josée Lajoie
Barbara E. Moo

vvAddison-Wesley
Upper Saddle River, NJ « Boston ¢ Indianapolis ¢ San Francisco
New York « Toronto « Montreal * London * Munich ¢ Paris « Madrid
Capetown ¢ Sidney * Tokyo ¢ Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international @pearsoned.com

Visit us on the Web: informit.convaw

Library of Congress Cataloging-in-Publication Data

Lippman, Stanley B.

C++ primer / Stanley B. Lippman, Josée Lajoie, Barbara E. Moo. — 5th ed.

p. Cm.

Includes index.

ISBN 0-321-71411-3 (pbk. : alk. paper) 1. C++ (Computer program language) I. Lajoie, Josée. II.
Moo, Barbara E. III. Title.
QA76.73.C153L57697 2013
005.13'3—dc23 2012020184

Copyright © 2013 Objectwrite Inc., Josée Lajoie and Barbara E. Moo

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-71411-4
ISBN-10: 0-321-71411-3

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw

First printing, August 2012

To Beth, who makes this, and all things, possible.

To Daniel and Anna, who contain virtually all possibilities.
—SBL

To Mark and Mom, for their unconditional love and support.
—JL

To Andy, who taught me to program and so much more.
—BEM

Contents

Preface

Chapter 1 Getting Started
1.1 Writing a Simple C++ Program

1.1.1 Compiling and Executing Our Program
1.2 A First Look at Input/Output

1.3 A Word about Comments
1.4 Flow of Control
1.4.1 The while Statement

1.4.2 The for Statement

1.4.3 Reading an Unknown Number of Inputs
1.4.4 The i £ Statement

1.5 Introducing Classes

1.5.1 The Sales item Class

1.5.2 A First Look at Member Functions
1.6 The Bookstore Program

Chapter Summary
Defined Terms

Part I The Basics

Chapter 2 Variables and Basic Types

2.1 Primitive Built-in Types

2.1.1 Arithmetic Types
2.1.2 Type Conversions

2.1.3 Literals

2.2 Variables

2.2.1 Variable Definitions

2.2.2 Variable Declarations and Definitions

2.2.3 Identifiers

2.2.4 Scope of a Name

2.3 Compound Types
2.3.1 References

2.3.2 Pointers
2.3.3 Understanding Compound Type Declarations

2.4 const Qualifier

2.4.1 References to const

2.4.2 Pointers and const

2.4.3 Top-Level const

2.4.4 constexpr and Constant Expressions

2.5 Dealing with Types

2.5.1 Type Aliases
2.5.2 The auto Type Specifier

2.5.3 The decltype Type Specifier

2.6 Defining Our Own Data Structures

2.6.1 Defining the Sales data Type

2.6.2 Using the Sales data Class
2.6.3 Writing Our Own Header Files

Chapter Summary
Defined Terms

Chapter 3 Strings, Vectors, and Arrays
3.1 Namespace using Declarations

3.2 Library string Type

3.2.1 Defining and Initializing st rings

3.2.2 Operations on strings

3.2.3 Dealing with the Characters ina string

3.3 Library vector Type

3.3.1 Defining and Initializing vectors
3.3.2 Adding Elements to a vector

3.3.3 Other vector Operations

3.4 Introducing Iterators
3.4.1 Using Iterators

3.4.2 Iterator Arithmetic

3.5 Arrays

3.5.1 Defining and Initializing Built-in Arrays
3.5.2 Accessing the Elements of an Array
3.5.3 Pointers and Arrays

3.5.4 C-Style Character Strings

3.5.5 Interfacing to Older Code

3.6 Multidimensional Arrays

Chapter Summary
Defined Terms

Chapter 4 Expressions

4.1 Fundamentals

4.1.1 Basic Concepts

4.1.2 Precedence and Associativity
4.1.3 Order of Evaluation

4.2 Arithmetic Operators

4.3 Logical and Relational Operators
4.4 Assignment Operators

4.5 Increment and Decrement Operators
4.6 The Member Access Operators

4.7 The Conditional Operator

4.8 The Bitwise Operators

4.9 The sizeof Operator

4.10 Comma Operator
4.11 Type Conversions

4.11.1 The Arithmetic Conversions

4.11.2 Other Implicit Conversions
4.11.3 Explicit Conversions

4.12 Operator Precedence Table

Chapter Summary
Defined Terms

Chapter 5 Statements

5.1 Simple Statements
5.2 Statement Scope

5.3 Conditional Statements

5.3.1 The i f Statement

5.3.2 The switch Statement

5.4 Iterative Statements

5.4.1 The while Statement

5.4.2 Traditional for Statement

5.4.3 Range for Statement

5.4.4 The do while Statement

5.5 Jump Statements
5.5.1 The break Statement

5.5.2 The continue Statement

5.5.3 The goto Statement

5.6 trv Blocks and Exception Handling
5.6.1 A throw Expression

5.6.2 The trv Block

5.6.3 Standard Exceptions

Chapter Summary
Defined Terms

Chapter 6 Functions

6.1 Function Basics
6.1.1 Local Objects

6.1.2 Function Declarations

6.1.3 Separate Compilation

6.2 Argument Passing

6.2.1 Passing Arguments by Value

6.2.2 Passing Arguments by Reference

6.2.3 const Parameters and Arguments

6.2.4 Array Parameters

6.2.5 main: Handling Command-Line Options

6.2.6 Functions with Varying Parameters

6.3 Return Types and the return Statement
6.3.1 Functions with No Return Value

6.3.2 Functions That Return a Value

6.3.3 Returning a Pointer to an Array

6.4 Overloaded Functions

6.4.1 Overloading and Scope

6.5 Features for Specialized Uses

6.5.1 Default Arguments

6.5.2 Inline and constexpr Functions
6.5.3 Aids for Debugging

6.6 Function Matching
6.6.1 Argument Type Conversions

6.7 Pointers to Functions

Chapter Summary
Defined Terms

Chapter 7 Classes

7.1 Defining Abstract Data Types
7.1.1 Designing the Sales data Class

7.1.2 Defining the Revised Sales data Class

7.1.3 Defining Nonmember Class-Related Functions
7.1.4 Constructors
7.1.5 Copy, Assignment, and Destruction

7.2 Access Control and Encapsulation
7.2.1 Friends

7.3 Additional Class Features

7.3.1 Class Members Revisited
7.3.2 Functions That Return *this
7.3.3 Class Types

7.3.4 Friendship Revisited

7.4 Class Scope

7.4.1 Name Lookup and Class Scope

7.5 Constructors Revisited

7.5.1 Constructor Initializer List

7.5.2 Delegating Constructors
7.5.3 The Role of the Default Constructor

7.5.4 Implicit Class-Type Conversions

7.5.5 Aggregate Classes
7.5.6 Literal Classes

7.6 static Class Members

Chapter Summary
Defined Terms

Part Il The C++ Library

Chapter 8 The 10 Library
8.1 The IO Classes

8.1.1 No Copy or Assign for 10 Objects
8.1.2 Condition States

8.1.3 Managing the Output Buffer

8.2 File Input and Output
8.2.1 Using File Stream Objects

8.2.2 File Modes

8.3 string Streams

8.3.1 Usingan istringstream

8.3.2 Using ostringstreams

Chapter Summary
Defined Terms

Chapter 9 Sequential Containers

9.1 Overview of the Sequential Containers
9.2 Container Library Overview
9.2.1 Iterators

9.2.2 Container Type Members
9.2.3 begin and end Members

9.2.4 Defining and Initializing a Container

9.2.5 Assignment and swap

9.2.6 Container Size Operations

9.2.7 Relational Operators

9.3 Sequential Container Operations

9.3.1 Adding Elements to a Sequential Container
9.3.2 Accessing Elements

9.3.3 Erasing Elements

9.3.4 Specialized forward 11st Operations
9.3.5 Resizing a Container

9.3.6 Container Operations May Invalidate Iterators
9.4 How a vector Grows

9.5 Additional string Operations

9.5.1 Other Ways to Construct strings

9.5.2 Other Ways to Change a string

9.5.3 string Search Operations

9.5.4 The compare Functions

9.5.5 Numeric Conversions

9.6 Container Adaptors

Chapter Summary
Defined Terms

Chapter 10 Generic Algorithms

10.1 Overview
10.2 A First Look at the Algorithms
10.2.1 Read-Only Algorithms

10.2.2 Algorithms That Write Container Elements
10.2.3 Algorithms That Reorder Container Elements
10.3 Customizing Operations

10.3.1 Passing a Function to an Algorithm

10.3.2 Lambda Expressions

10.3.3 Lambda Captures and Returns

10.3.4 Binding Arguments
10.4 Revisiting Iterators

10.4.1 Insert Iterators

10.4.2 i ostream lterators

10.4.3 Reverse Iterators

10.5 Structure of Generic Algorithms

10.5.1 The Five Iterator Categories

10.5.2 Algorithm Parameter Patterns
10.5.3 Algorithm Naming Conventions
10.6 Container-Specific Algorithms

Chapter Summary
Defined Terms

Chapter 11 Associative Containers
11.1 Using an Associative Container

11.2 Overview of the Associative Containers
11.2.1 Defining an Associative Container

11.2.2 Requirements on Key Type
11.2.3 The pair Type

11.3 Operations on Associative Containers
11.3.1 Associative Container Iterators

11.3.2 Adding Elements

11.3.3 Erasing Elements

11.3.4 Subscripting a map

11.3.5 Accessing Elements
11.3.6 A Word Transformation Map
11.4 The Unordered Containers

Chapter Summary
Defined Terms

Chapter 12 Dynamic Memory

12.1 Dynamic Memory and Smart Pointers
12.1.1 The shared ptr Class

12.1.2 Managing Memory Directly
12.1.3 Using shared ptrs withnew

12.1.4 Smart Pointers and Exceptions

12.1.5unigque ptr

12.1.6 weak ptr

12.2 Dynamic Arrays
12.2.1 new and Arrays

12.2.2 The allocator Class

12.3 Using the Library: A Text-Query Program

12.3.1 Design of the Query Program

12.3.2 Defining the Query Program Classes

Chapter Summary
Defined Terms

Part III Tools for Class Authors

Chapter 13 Copy Control

13.1 Copy, Assign, and Destroy
13.1.1 The Copy Constructor

13.1.2 The Copy-Assignment Operator
13.1.3 The Destructor

13.1.4 The Rule of Three/Five

13.1.5 Using = default

13.1.6 Preventing Copies

13.2 Copy Control and Resource Management
13.2.1 Classes That Act Like Values

13.2.2 Defining Classes That Act Like Pointers

13.3 Swap

13.4 A Copy-Control Example

13.5 Classes That Manage Dynamic Memory
13.6 Moving Objects

13.6.1 Rvalue References

13.6.2 Move Constructor and Move Assignment
13.6.3 Rvalue References and Member Functions

Chapter Summary
Defined Terms

Chapter 14 Overloaded Operations and Conversions

14.1 Basic Concepts

14.2 Input and Output Operators
14.2.1 Overloading the Output Operator <<

14.2.2 Overloading the Input Operator >>

14.3 Arithmetic and Relational Operators
14.3.1 Equality Operators
14.3.2 Relational Operators

14.4 Assignment Operators
14.5 Subscript Operator

14.6 Increment and Decrement Operators
14.7 Member Access Operators

14.8 Function-Call Operator

14.8.1 Lambdas Are Function Objects
14.8.2 Library-Defined Function Objects

14.8.3 Callable Objects and function

14.9 Overloading, Conversions, and Operators
14.9.1 Conversion Operators

14.9.2 Avoiding Ambiguous Conversions

14.9.3 Function Matching and Overloaded Operators

Chapter Summary
Defined Terms

Chapter 15 Object-Oriented Programming
15.1 OOP: An Overview

15.2 Defining Base and Derived Classes
15.2.1 Defining a Base Class

15.2.2 Defining a Derived Class

15.2.3 Conversions and Inheritance
15.3 Virtual Functions

15.4 Abstract Base Classes

15.5 Access Control and Inheritance

15.6 Class Scope under Inheritance

15.7 Constructors and Copy Control
15.7.1 Virtual Destructors

15.7.2 Synthesized Copy Control and Inheritance
15.7.3 Derived-Class Copy-Control Members

15.7.4 Inherited Constructors

15.8 Containers and Inheritance

15.8.1 Writing a Basket Class

15.9 Text Queries Revisited

15.9.1 An Object-Oriented Solution

15.9.2 The Query base and Query Classes
15.9.3 The Derived Classes

15.9.4 The eval Functions

Chapter Summary
Defined Terms

Chapter 16 Templates and Generic Programming

16.1 Defining a Template
16.1.1 Function Templates

16.1.2 Class Templates

16.1.3 Template Parameters

16.1.4 Member Templates

16.1.5 Controlling Instantiations
16.1.6 Efficiency and Flexibility
16.2 Template Argument Deduction

16.2.1 Conversions and Template Type Parameters
16.2.2 Function-Template Explicit Arguments

16.2.3 Trailing Return Types and Type Transformation
16.2.4 Function Pointers and Argument Deduction
16.2.5 Template Argument Deduction and References

16.2.6 Understanding std: :move
16.2.7 Forwarding

16.3 Overloading and Templates

16.4 Variadic Templates

16.4.1 Writing a Variadic Function Template
16.4.2 Pack Expansion
16.4.3 Forwarding Parameter Packs

16.5 Template Specializations

Chapter Summary
Defined Terms

Part IV Advanced Topics
Chapter 17 Specialized Library Facilities
17.1 The tuple Type

17.1.1 Defining and Initializing tuples
17.1.2 Using a tuple to Return Multiple Values

17.2 The bitset Type

17.2.1 Defining and Initializing bitsets
17.2.2 Operations onbitsets

17.3 Regular Expressions

17.3.1 Using the Regular Expression Library
17.3.2 The Match and Regex Iterator Types
17.3.3 Using Subexpressions

17.3.4 Using regex replace
17.4 Random Numbers

17.4.1 Random-Number Engines and Distribution
17.4.2 Other Kinds of Distributions
17.5 The 10 Library Revisited

17.5.1 Formatted Input and Output
17.5.2 Unformatted Input/Output Operations

17.5.3 Random Access to a Stream

Chapter Summary
Defined Terms

Chapter 18 Tools for I.arge Programs

18.1 Exception Handling
18.1.1 Throwing an Exception

18.1.2 Catching an Exception
18.1.3 Function t rv Blocks and Constructors

18.1.4 The noexcept Exception Specification

18.1.5 Exception Class Hierarchies

18.2 Namespaces

18.2.1 Namespace Definitions

18.2.2 Using Namespace Members
18.2.3 Classes, Namespaces, and Scope
18.2.4 Overloading and Namespaces

18.3 Multiple and Virtual Inheritance
18.3.1 Multiple Inheritance
18.3.2 Conversions and Multiple Base Classes

18.3.3 Class Scope under Multiple Inheritance
18.3.4 Virtual Inheritance

18.3.5 Constructors and Virtual Inheritance

Chapter Summary
Defined Terms

Chapter 19 Specialized Tools and Techniques
19.1 Controlling Memory Allocation

19.1.1 Overloading new and delete

19.1.2 Placement new_Expressions

19.2 Run-Time Type Identification
19.2.1 The dynamic cast Operator

19.2.2 The typeid Operator

19.2.3 Using RTTI
19.2.4 The type info Class

19.3 Enumerations

19.4 Pointer to Class Member

19.4.1 Pointers to Data Members

19.4.2 Pointers to Member Functions

19.4.3 Using Member Functions as Callable Objects
19.5 Nested Classes

19.6 union: A Space-Saving Class
19.7 Local Classes

19.8 Inherently Nonportable Features
19.8.1 Bit-fields

19.8.2 volatile Qualifier

19.8.3 Linkage Directives: extern "C"

Chapter Summary
Defined Terms

Appendix A The Library
A.1 Library Names and Headers
A.2 A Brief Tour of the Algorithms

A.2.1 Algorithms to Find an Object

A.2.2 Other Read-Only Algorithms

A.2.3 Binary Search Algorithms

A.2.4 Algorithms That Write Container Elements
A.2.5 Partitioning and Sorting Algorithms
A.2.6 General Reordering Operations
A.2.7 Permutation Algorithms

A.2.8 Set Algorithms for Sorted Sequences
A.2.9 Minimum and Maximum Values
A.2.10 Numeric Algorithms

A.3 Random Numbers

A.3.1 Random Number Distributions

A.3.2 Random Number Engines

Index

New Features in C++11

2.1.1 long longType

2.2.1 List Initialization
2.3.2 nullptr Literal

2.4.4 constexpr Variables

2.5.1 Type Alias Declarations

2.5.2 The auto Type Specifier

2.5.3 The decltype Type Specifier
2.6.1 In-Class Initializers

3.2.2 Using auto or decltype for Type Abbreviation

3.2.3 Range for Statement

3.3 Defining a vector of vectors

3.3.1 List Initialization for vectors

3.4.1 Container cbegin and cend Functions

3.5.3 Library begin and end Functions

3.6 Using auto or decltype to Simplify Declarations
4.2 Rounding Rules for Division

4.4 Assignment from a Braced List of Values
4.9 sizeof Applied to a Class Member

5.4.3 Range for Statement

6.2.6 Library initializer 1ist Class

6.3.2 List Initializing a Return Value

6.3.3 Declaring a Trailing Return Type
6.3.3 Using dec1type to Simplify Return Type Declarations

6.5.2 constexpr Functions

7.1.4 Using = default to Generate a Default Constructor

7.3.1 In-class Initializers for Members of Class Type
7.5.2 Delegating Constructors

7.5.6 constexpr Constructors

8.2.1 Using strings for File Names
9.1 The array and forward 1ist Containers

9.2.3 Container cbegin and cend Functions
9.2.4 List Initialization for Containers

9.2.5 Container Nonmember swap_Functions

9.3.1 Return Type for Container i nsert Members
9.3.1 Container emplace Members

9.4 shrink to fit

9.5.5 Numeric Conversion Functions for strings

10.3.2 Lambda Expressions

10.3.3 Trailing Return Type in Lambda Expressions
10.3.4 The Library bind Function

11.2.1 List Initialization of an Associative Container

11.2.3 List Initializing pair Return Type

11.3.2 List Initialization of a pair
11.4 The Unordered Containers
12.1 Smart Pointers

12.1.1 The shared ptr Class

12.1.2 List Initialization of Dynamically Allocated Objects
12.1.2 auto and Dynamic Allocation
12.1.5 The unigue ptr Class

12.1.6 The weak ptr Class

12.2.1 Range for Doesn’t Apply to Dynamically Allocated Arrays .

12.2.1 List Initialization of Dynamically Allocated Arrays
12.2.1 auto Can’t Be Used to Allocate an Array

12.2.2 allocator: :construct Can Use any Constructor

13.1.5 Using = default for Copy-Control Members

13.1.6 Using = delete to Prevent Copying Class Objects

13.5 Moving Instead of Copying Class Objects

13.6.1 Rvalue References

13.6.1 The Library move Function

13.6.2 Move Constructor and Move Assignment
13.6.2 Move Constructors Usually Should Be noexcept
13.6.2 Move Iterators

13.6.3 Reference Qualified Member Functions
14.8.3 The function Class Template

14.9.1 explicit Conversion Operators

15.2.2 override Specifier for Virtual Functions

15.2.2 Preventing Inheritance by Defining a Class as final
15.3 override and final Specifiers for Virtual Functions

15.7.2 Deleted Copy Control and Inheritance
15.7.4 Inherited Constructors
16.1.2 Declaring a Template Type Parameter as a Friend

16.1.2 Template Type Aliases
16.1.3 Default Template Arguments for Template Functions

16.1.5 Explicit Control of Instantiation

16.2.3 Template Functions and Trailing Return Types
16.2.5 Reference Collapsing Rules

16.2.6 static cast froman [value to an Rvalue

16.2.7 The Library forward Function

16.4 Variadic Templates

16.4 The sizeof. .. Operator

16.4.3 Variadic Templates and Forwarding
17.1 The Library Tuple Class Template

17.2.2 New bitset Operations

17.3 The Regular Expression Library

17.4 The Random Number Library
17.5.1 Floating-Point Format Control

18.1.4 The noexcept Exception Specifier

18.1.4 The noexcept Operator

18.2.1 Inline Namespaces
18.3.1 Inherited Constructors and Multiple Inheritance

19.3 Scoped enums

19.3 Specifying the Type Used to Hold an enum

19.3 Forward Declarations for enums

19.4.3 The Library mem fn Class Template
19.6 Union Members of Class Types

Preface

Countless programmers have learned C++ from previous editions of C++ Primer. During that time, C++
has matured greatly: Its focus, and that of its programming community, has widened from looking mostly at
machine efficiency to devoting more attention to programmer efficiency.

In 2011, the C++ standards committee issued a major revision to the ISO C++ standard. This revised
standard is latest step in C++’s evolution and continues the emphasis on programmer efficiency. The
primary goals of the new standard are to

» Make the language more uniform and easier to teach and to learn
» Make the standard libraries easier, safer, and more efficient to use
» Make it easier to write efficient abstractions and libraries

In this edition, we have completely revised the C++ Primer to use the latest standard. You can get an
idea of how extensively the new standard has affected C++ by reviewing the New Features Table of
Contents, which lists the sections that cover new material and appears on page xxi.

Some additions in the new standard, such as auto for type inference, are pervasive. These facilities
make the code in this edition easier to read and to understand. Programs (and programmers!) can ignore
type details, which makes it easier to concentrate on what the program is intended to do. Other new
features, such as smart pointers and move-enabled containers, let us write more sophisticated classes
without having to contend with the intricacies of resource management. As a result, we can start to teach
how to write your own classes much earlier in the book than we did in the Fourth Edition. We—and you
—no longer have to worry about many of the details that stood in our way under the previous standard.

We’ve marked those parts of the text that cover features defined by the new standard, with a marginal
icon. We hope that readers who are already familiar with the core of C++ will find these alerts useful in
deciding where to focus their attention. We also expect that these icons will help explain error messages
from compilers that might not yet support every new feature. Although nearly all of the examples in this
book have been compiled under the current release of the GNU compiler, we realize some readers will
not yet have access to completely updated compilers. Even though numerous capabilities have been added

by the latest standard, the core language remains unchanged and forms the bulk of the material that we
cover. Readers can use these icons to note which capabilities may not yet be available in their compiler.

Why Read This Book?

Modern C++ can be thought of as comprising three parts:
* The low-level language, much of which is inherited from C

* More advanced language features that allow us to define our own types and to organize large-scale
programs and systems

* The standard library, which uses these advanced features to provide useful data structures and
algorithms

Most texts present C++ in the order in which it evolved. They teach the C subset of C++ first, and
present the more abstract features of C++ as advanced topics at the end of the book. There are two
problems with this approach: Readers can get bogged down in the details inherent in low-level
programming and give up in frustration. Those who do press on learn bad habits that they must unlearn
later.

We take the opposite approach: Right from the start, we use the features that let programmers ignore the
details inherent in low-level programming. For example, we introduce and use the library st ring and
vector types along with the built-in arithmetic and array types. Programs that use these library types are
easier to write, easier to understand, and much less error-prone.

Too often, the library is taught as an “advanced” topic. Instead of using the library, many books use
low-level programming techniques based on pointers to character arrays and dynamic memory
management. Getting programs that use these low-level techniques to work correctly is much harder than
writing the corresponding C++ code using the library.

Throughout C++ Primer, we emphasize good style: We want to help you, the reader, develop good
habits immediately and avoid needing to unlearn bad habits as you gain more sophisticated knowledge.
We highlight particularly tricky matters and warn about common misconceptions and pitfalls.

We also explain the rationale behind the rules—explaining the why not just the what. We believe that by
understanding why things work as they do, readers can more quickly cement their grasp of the language.

Although you do not need to know C in order to understand this book, we assume you know enough
about programming to write, compile, and run a program in at least one modern block-structured
language. In particular, we assume you have used variables, written and called functions, and used a
compiler.

Changes to the Fifth Edition

New to this edition of C++ Primer are icons in the margins to help guide the reader. C++ is a large
language that offers capabilities tailored to particular kinds of programming problems. Some of these
capabilities are of great import for large project teams but might not be necessary for smaller efforts. As a
result, not every programmer needs to know every detail of every feature. We’ve added these marginal
icons to help the reader know which parts can be learned later and which topics are more essential.

o

We’ve marked sections that cover the fundamentals of the language with an image of a person studying
a book. The topics covered in sections marked this way form the core part of the language. Everyone
should read and understand these sections.

We’ve also indicated those sections that cover advanced or special-purpose topics. These sections can
be skipped or skimmed on a first reading. We’ve marked such sections with a stack of books to indicate
that you can safely put down the book at that point. It is probably a good idea to skim such sections so you
know that the capability exists. However, there is no reason to spend time studying these topics until you
actually need to use the feature in your own programs.

=

To help readers guide their attention further, we’ve noted particularly tricky concepts with a

magnifying-glass icon. We hope that readers will take the time to understand thoroughly the material
presented in the sections so marked. In at least some of these sections, the import of the topic may not be
readily apparent; but we think you’ll find that these sections cover topics that turn out to be essential to
understanding the language.

G

Another aid to reading this book, is our extensive use of cross-references. We hope these references
will make it easier for readers to dip into the middle of the book, yet easily jump back to the earlier
material on which later examples rely.

What remains unchanged is that C++ Primer is a clear, correct, and thorough tutorial guide to C++. We
teach the language by presenting a series of increasingly sophisticated examples, which explain language
features and show how to make the best use of C++.

Structure of This Book

We start by covering the basics of the language and the library together in Parts I and II. These parts cover
enough material to let you, the reader, write significant programs. Most C++ programmers need to know
essentially everything covered in this portion of the book.

In addition to teaching the basics of C++, the material in Parts I and II serves another important
purpose: By using the abstract facilities defined by the library, you will become more comfortable with
using high-level programming techniques. The library facilities are themselves abstract data types that are
usually written in C++. The library can be defined using the same class-construction features that are
available to any C++ programmer. Our experience in teaching C++ is that by first using well-designed
abstract types, readers find it easier to understand how to build their own types.

Only after a thorough grounding in using the library—and writing the kinds of abstract programs that the
library allows—do we move on to those C++ features that will enable you to write your own
abstractions. Parts IIT and IV focus on writing abstractions in the form of classes. Part III covers the
fundamentals; Part IV covers more specialized facilities.

In Part II1, we cover issues of copy control, along with other techniques to make classes that are as easy
to use as the built-in types. Classes are the foundation for object-oriented and generic programming,
which we also cover in Part III. C++ Primer concludes with Part IV, which covers features that are of
most use in structuring large, complicated systems. We also summarize the library algorithms in Appendix
A.

Aids to the Reader

Each chapter concludes with a summary, followed by a glossary of defined terms, which together recap
the chapter’s most important points. Readers should use these sections as a personal checklist: If you do
not understand a term, restudy the corresponding part of the chapter.

We’ve also incorporated a number of other learning aids in the body of the text:

« Important terms are indicated in bold; important terms that we assume are already familiar to the
reader are indicated in bold italics. Each term appears in the chapter’s Defined Terms section.

* Throughout the book, we highlight parts of the text to call attention to important aspects of the
language, warn about common pitfalls, suggest good programming practices, and provide general
usage tips.

 To make it easier to follow the relationships among features and concepts, we provide extensive
forward and backward cross-references.

» We provide sidebar discussions on important concepts and for topics that new C++ programmers
often find most difficult.

* Learning any programming language requires writing programs. To that end, the Primer provides
extensive examples throughout the text. Source code for the extended examples is available on the
Web at the following URL:

http://www.informit.com/title/032174113

A Note about Compilers

As of this writing (July, 2012), compiler vendors are hard at work updating their compilers to match the
latest ISO standard. The compiler we use most frequently is the GNU compiler, version 4.7.0. There are
only a few features used in this book that this compiler does not yet implement: inheriting constructors,
reference qualifiers for member functions, and the regular-expression library.

Acknowledgments

In preparing this edition we are very grateful for the help of several current and former members of the
standardization committee: Dave Abrahams, Andy Koenig, Stephan T. Lavavej, Jason Merrill, John
Spicer, and Herb Sutter. They provided invaluable assistance to us in understanding some of the more
subtle parts of the new standard. We’d also like to thank the many folks who worked on updating the GNU
compiler making the standard a reality.

As in previous editions of C++ Primer, we’d like to extend our thanks to Bjarne Stroustrup for his
tireless work on C++ and for his friendship to the authors during most of that time. We’d also like to thank
Alex Stepanov for his original insights that led to the containers and algorithms at the core of the standard
library. Finally, our thanks go to all the C++ Standards committee members for their hard work in
clarifying, refining, and improving C++ over many years.

We extend our deep-felt thanks to our reviewers, whose helpful comments led us to make improvements
great and small throughout the book: Marshall Clow, Jon Kalb, Nevin Liber, Dr. C. L. Tondo, Daveed
Vandevoorde, and Steve Vinoski.

This book was typeset using LATEX and the many packages that accompany the LATEX distribution.
Our well-justified thanks go to the members of the LATEX community, who have made available such
powerful typesetting tools.

Finally, we thank the fine folks at Addison-Wesley who have shepherded this edition through the
publishing process: Peter Gordon, our editor, who provided the impetus for us to revise C++ Primer
once again; Kim Boedigheimer, who keeps us all on schedule; Barbara Wood, who found lots of editing
errors for us during the copy-edit phase, and Elizabeth Ryan, who was again a delight to work with as she
guided us through the design and production process.

Chapter 1. Getting Started

Contents

Section 1.1 Writing a Simple C++ Program

Section 1.2 A First Look at Input/Output

Section 1.3 A Word about Comments

Section 1.4 Flow of Control

Section 1.5 Introducing Classes

Section 1.6 The Bookstore Program

Chapter Summary
Defined Terms

This chapter introduces most of the basic elements of C++: types, variables, expressions, statements, and
functions. Along the way, we’ll briefly explain how to compile and execute a program.

After having read this chapter and worked through the exercises, you should be able to write, compile,
and execute simple programs. Later chapters will assume that you can use the features introduced in this
chapter, and will explain these features in more detail.

The way to learn a new programming language is to write programs. In this chapter, we’ll write a
program to solve a simple problem for a bookstore.

Our store keeps a file of transactions, each of which records the sale of one or more copies of a single
book. Each transaction contains three data elements:

0-201-70353-X 4 24.99

The first element is an ISBN (International Standard Book Number, a unique book identifier), the second
is the number of copies sold, and the last is the price at which each of these copies was sold. From time
to time, the bookstore owner reads this file and for each book computes the number of copies sold, the
total revenue from that book, and the average sales price.

To be able to write this program, we need to cover a few basic C++ features. In addition, we’ll need to
know how to compile and execute a program.

Although we haven’t yet designed our program, it’s easy to see that it must
* Define variables
* Do input and output
* Use a data structure to hold the data
* Test whether two records have the same ISBN
* Contain a loop that will process every record in the transaction file

We’ll start by reviewing how to solve these subproblems in C++ and then write our bookstore program.

1.1. Writing a Simple C++ Program

Every C++ program contains one or more functions, one of which must be named main. The operating
system runs a C++ program by calling ma in. Here is a simple version of main that does nothing but
return a value to the operating system:

int main ()

{

return 0;

}

A function definition has four elements: a return type, a function name, a (possibly empty) parameter
list enclosed in parentheses, and a function body. Although main is special in some ways, we define
main the same way we define any other function.

In this example, ma in has an empty list of parameters (shown by the () with nothing inside). § 6.2.5
(p. 218) will discuss the other parameter types that we can define for main.

The main function is required to have a return type of int, whichis a type that represents integers.
The int type is a built-in type, which means that it is one of the types the language defines.

The final part of a function definition, the function body, is a block of statements starting with an open
curly brace and ending with a close curly:

{

return 0;

}

The only statement in this block is a return, which is a statement that terminates a function. As is the
case here, a return can also send a value back to the function’s caller. When a return statement

includes a value, the value returned must have a type that is compatible with the return type of the
function. In this case, the return type of main is int and the return value is 0, whichis an int.

—~
) Note
Note the semicolon at the end of the return statement. Semicolons mark the end of most

statements in C++. They are easy to overlook but, when forgotten, can lead to mysterious
compiler error messages.

On most systems, the value returned frommain is a status indicator. A return value of 0 indicates

success. A nonzero return has a meaning that is defined by the system. Ordinarily a nonzero return
indicates what kind of error occurred.

Key Concept: Types

Types are one of the most fundamental concepts in programming and a concept that we will

come back to over and over in this Primer. A type defines both the contents of a data element
and the operations that are possible on those data.

The data our programs manipulate are stored in variables and every variable has a type.
When the type of a variable named v is T, we often say that “v has type T” or, interchangeably,
that “visa T.”

1.1.1. Compiling and Executing Our Program

Having written the program, we need to compile it. How you compile a program depends on your
operating system and compiler. For details on how your particular compiler works, check the reference
manual or ask a knowledgeable colleague.

Many PC-based compilers are run from an integrated development environment (IDE) that bundles the
compiler with build and analysis tools. These environments can be a great asset in developing large
programs but require a fair bit of time to learn how to use effectively. Learning how to use such
environments is well beyond the scope of this book.

Most compilers, including those that come with an IDE, provide a command-line interface. Unless you
already know the IDE, you may find it easier to start with the command-line interface. Doing so will let
you concentrate on learning C++ first. Moreover, once you understand the language, the IDE is likely to be
easier to learn.

Program Source File Naming Convention

Whether you use a command-line interface or an IDE, most compilers expect program source code to be
stored in one or more files. Program files are normally referred to as a source files. On most systems, the
name of a source file ends with a suffix, which is a period followed by one or more characters. The suffix
tells the system that the file is a C++ program. Different compilers use different suffix conventions; the
most common include . cc, .cxx, .cpp, .cp, and .C.

Running the Compiler from the Command Line

If we are using a command-line interface, we will typically compile a program in a console window
(such as a shell window on a UNIX system or a Command Prompt window on Windows). Assuming that
our main programis in a file named progl . cc, we might compile it by using a command such as

$ CC progl.cc

where CC names the compiler and $ is the system prompt. The compiler generates an executable file. On
a Windows system, that executable file is named progl . exe. UNIX compilers tend to put their
executables in files named a . out.

To run an executable on Windows, we supply the executable file name and can omit the . exe file
extension:

$ progl

On some systems you must specify the file’s location explicitly, even if the file is in the current directory
or folder. In such cases, we would write

$.\progl
The “.” followed by a backslash indicates that the file is in the current directory.

To run an executable on UNIX, we use the full file name, including the file extension:

$ a.out

If we need to specify the file’s location, we’d use a “.” followed by a forward slash to indicate that our
executable is in the current directory:

$./a.out

The value returned frommain is accessed in a system-dependent manner. On both UNIX and Windows
systems, after executing the program, you must issue an appropriate echo command.

On UNIX systems, we obtain the status by writing
$ echo $?
To see the status on a Windows system, we write

$ echo %ERRORLEVEL %

Running the GNU or Microsoft Compilers

The command used to run the C++ compiler varies across compilers and operating systems.
The most common compilers are the GNU compiler and the Microsoft Visual Studio compilers.
By default, the command to run the GNU compiler is g++:

Click here to view code image
S g++ -o progl progl.cc

Here $ is the system prompt. The —~0 progl is an argument to the compiler and names the file
in which to put the executable file. This command generates an executable file named progl
or progl .exe, depending on the operating system. On UNIX, executable files have no suffix;
on Windows, the suffix is .exe. If the —o progl is omitted, the compiler generates an
executable named a . out on UNIX systems and a . exe on Windows. (Note: Depending on the
release of the GNU compiler you are using, you may need to specify —std=c++0x to turn on
C++ 11 support.)

The command to run the Microsoft Visual Studio 2010 compiler is c1:

Click here to view code image
C:\Users\me\Programs> cl /EHsc progl.cpp

Here C: \Users\me\Programs> is the system prompt and \Users\me\Programs is
the name of the current directory (aka the current folder). The c1 command invokes the

compiler, and /EHsc is the compiler option that turns on standard exception handling. The
Microsoft compiler automatically generates an executable with a name that corresponds to the
first source file name. The executable has the suffix . exe and the same name as the source file

name. In this case, the executable is named progl . exe.

Compilers usually include options to generate warnings about problematic constructs. It is
usually a good idea to use these options. Our preference is to use —Wa 11 with the GNU

compiler, and to use /W4 with the Microsoft compilers.

For further information consult your compiler’s user’s guide.

Exercises Section 1.1.1

Exercise 1.1: Review the documentation for your compiler and determine what file naming
convention it uses. Compile and run the ma in program from page 2.

Exercise 1.2: Change the program to return —1. A return value of -1 is often treated as an
indicator that the program failed. Recompile and rerun your program to see how your system
treats a failure indicator frommain.

1.2. A First Look at Input/Output

The C++ language does not define any statements to do input or output (IO). Instead, C++ includes an
extensive standard library that provides IO (and many other facilities). For many purposes, including the
examples in this book, one needs to know only a few basic concepts and operations from the IO library.

Most of the examples in this book use the iostream library. Fundamental to the i ostream library are
two types named istream and ostream, which represent input and output streams, respectively. A stream
is a sequence of characters read from or written to an IO device. The term stream is intended to suggest
that the characters are generated, or consumed, sequentially over time.

Standard Input and Output Objects

The library defines four IO objects. To handle input, we use an object of type istream named cin
(pronounced see-in). This object is also referred to as the standard input. For output, we use an
ostream object named cout (pronounced see-out). This object is also known as the standard output.
The library also defines two other ost ream objects, named cerr and clog (pronounced see-err and see-
log, respectively). We typically use cerr, referred to as the standard error, for warning and error
messages and c1og for general information about the execution of the program.

Ordinarily, the system associates each of these objects with the window in which the program is
executed. So, when we read from cin, data are read from the window in which the program is executing,

and when we write to cout, cerr, or clog, the output is written to the same window.

A Program That Uses the 10 Library

In our bookstore problem, we’ll have several records that we’ll want to combine into a single total. As a
simpler, related problem, let’s look first at how we might add two numbers. Using the IO library, we can
extend our ma in program to prompt the user to give us two numbers and then print their sum:

Click here to view code image

#include <iostream>

int main ()

{
std::cout << "Enter two numbers:" << std::endl;
int vl = 0, v2 = 0;
std::cin >> vl >> v2;
std::cout << "The sum of " << vl << " and " << v2

<< " is " << vl 4+ v2 << std::endl;

return O;

}

This program starts by printing
Enter two numbers:

on the user’s screen and then waits for input from the user. If the user enters
37

followed by a newline, then the program produces the following output:
The sum of 3 and 7 is 10

The first line of our program

#include <iostream>

tells the compiler that we want to use the i ost ream library. The name inside angle brackets
(iostream inthis case) refers to a header. Every program that uses a library facility must include its
associated header. The #include directive must be written on a single line—the name of the header
and the # include must appear on the same line. In general, # include directives must appear outside
any function. Typically, we put all the #1include directives for a program at the beginning of the source
file.

Writing to a Stream

The first statement in the body of main executes an expression. In C++ an expression yields a result and

is composed of one or more operands and (usually) an operator. The expressions in this statement use the
output operator (the « operator) to print a message on the standard output:

Click here to view code image

std: :cout << "Enter two numbers:" << std::endl;

The << operator takes two operands: The left-hand operand must be an ost ream object; the right-hand
operand is a value to print. The operator writes the given value on the given ost ream. The result of the
output operator is its left-hand operand. That is, the result is the ost ream on which we wrote the given
value.

Our output statement uses the << operator twice. Because the operator returns its left-hand operand, the

result of the first operator becomes the left-hand operand of the second. As a result, we can chain together
output requests. Thus, our expression is equivalent to

Click here to view code image

(std::cout << "Enter two numbers:") << std::endl;

Each operator in the chain has the same object as its left-hand operand, in this case std: : cout.
Alternatively, we can generate the same output using two statements:

Click here to view code image

std: :cout << "Enter two numbers:";
std::cout << std::endl;

The first output operator prints a message to the user. That message is a string literal, which is a
sequence of characters enclosed in double quotation marks. The text between the quotation marks is
printed to the standard output.

The second operator prints end1, which is a special value called a manipulator. Writing end1 has
the effect of ending the current line and flushing the buffer associated with that device. Flushing the buffer
ensures that all the output the program has generated so far is actually written to the output stream, rather
than sitting in memory waiting to be written.

M,

i bY .
AAN Warning

Programmers often add print statements during debugging. Such statements should always flush
the stream. Otherwise, if the program crashes, output may be left in the buffer, leading to
incorrect inferences about where the program crashed.

Using Names from the Standard Library

Careful readers will note that this program uses std: : cout and std: : end1l rather than just cout
and endl. The prefix std: : indicates that the names cout and end1l are defined inside the

namespace named std. Namespaces allow us to avoid inadvertent collisions between the names we
define and uses of those same names inside a library. All the names defined by the standard library are in
the std namespace.

One side effect of the library’s use of a namespace is that when we use a name from the library, we
must say explicitly that we want to use the name from the std namespace. Writing std: : cout uses the

scope operator (the :: operator) to say that we want to use the name cout that is defined in the

namespace std. § 3.1 (p. 82) will show a simpler way to access names from the library.

Reading from a Stream

Having asked the user for input, we next want to read that input. We start by defining two variables named
v1 and v2 to hold the input:

int vl = 0, v2 = 0;

We define these variables as type int, which is a built-in type representing integers. We also initialize
them to 0. When we initialize a variable, we give it the indicated value at the same time as the variable is
created.

The next statement
std::cin >> vl >> v2;

reads the input. The input operator (the » operator) behaves analogously to the output operator. It takes an
istream as its left-hand operand and an object as its right-hand operand. It reads data from the given

istream and stores what was read in the given object. Like the output operator, the input operator
returns its left-hand operand as its result. Hence, this expression is equivalent to

(std::cin >> vl1) >> v2;

Because the operator returns its left-hand operand, we can combine a sequence of input requests into a
single statement. Our input operation reads two values from std: : cin, storing the firstin v1 and the
second in v2. In other words, our input operation executes as

std::cin >> vl;
std::cin >> v2;

Completing the Program

What remains is to print our result:

Click here to view code image

std::cout << "The sum of " << vl << " and " << v2
<< " is " << vl 4+ v2 << std::endl;

This statement, although longer than the one that prompted the user for input, is conceptually similar. It
prints each of its operands on the standard output. What is interesting in this example is that the operands
are not all the same kinds of values. Some operands are string literals, such as "The sum of ".
Others are int values, such as v1, v2, and the result of evaluating the arithmetic expression vl + v2.
The library defines versions of the input and output operators that handle operands of each of these
differing types.

Exercises Section 1.2
Exercise 1.3: Write a program to print He11o, Wor1ld on the standard output.

Exercise 1.4: Our program used the addition operator, +, to add two numbers. Write a program
that uses the multiplication operator, *, to print the product instead.

Exercise 1.5: We wrote the output in one large statement. Rewrite the program to use a
separate statement to print each operand.

Exercise 1.6: Explain whether the following program fragment is legal.

Click here to view code image

std::cout << "The sum of " << vl;
<< " and " << v2;
<< " is " << vl 4+ v2 << std::endl;

If the program is legal, what does it do? If the program is not legal, why not? How would you
fix it?

1.3. A Word about Comments

Before our programs get much more complicated, we should see how C++ handles comments. Comments
help the human readers of our programs. They are typically used to summarize an algorithm, identify the
purpose of a variable, or clarify an otherwise obscure segment of code. The compiler ignores comments,
so they have no effect on the program’s behavior or performance.

Although the compiler ignores comments, readers of our code do not. Programmers tend to believe
comments even when other parts of the system documentation are out of date. An incorrect comment is
worse than no comment at all because it may mislead the reader. When you change your code, be sure to
update the comments, too!

Kinds of Comments in C++

There are two kinds of comments in C++: single-line and paired. A single-line comment starts with a
double slash (/ /) and ends with a newline. Everything to the right of the slashes on the current line is
ignored by the compiler. A comment of this kind can contain any text, including additional double slashes.

The other kind of comment uses two delimiters (/* and * /) that are inherited from C. Such comments
begin with a /* and end with the next * /. These comments can include anything that is nota * /,
including newlines. The compiler treats everything that falls between the /* and * / as part of the
comment.

A comment pair can be placed anywhere a tab, space, or newline is permitted. Comment pairs can span
multiple lines of a program but are not required to do so. When a comment pair does span multiple lines,
it is often a good idea to indicate visually that the inner lines are part of a multiline comment. Our style is
to begin each line in the comment with an asterisk, thus indicating that the entire range is part of a
multiline comment.

Programs typically contain a mixture of both comment forms. Comment pairs generally are used for
multiline explanations, whereas double-slash comments tend to be used for half-line and single-line

remarks:

Click here to view code image

#include <iostream>
/~k
* Simple main function:
* Read two numbers and write their sum
*/
int main ()
{
// prompt user to enter two numbers
std::cout << "Enter two numbers:" << std::endl;
int vl = 0, v2 = 0; // variables to hold the input we read
std::cin >> v1 >> v2; // readinput
std::cout << "The sum of " << vl << " and " << v2
<< " is " << vl 4+ v2 << std::endl;
return O;

L) Note

In this book, we italicize comments to make them stand out from the normal program text. In
actual programs, whether comment text is distinguished from the text used for program code
depends on the sophistication of the programming environment you are using.

Comment Pairs Do Not Nest

A comment that begins with /* ends with the next * /. As a result, one comment pair cannot appear inside
another. The compiler error messages that result from this kind of mistake can be mysterious and
confusing. As an example, compile the following program on your system:

Click here to view code image

/~k
* comment pairs /* */ cannot nest .
* "'cannot nest'' is considered source code,
* as is the rest of the program
*/

int main ()

{

return 0;

}

We often need to comment out a block of code during debugging. Because that code might contain

nested comment pairs, the best way to comment a block of code is to insert single-line comments at the
beginning of each line in the section we want to ignore:

Click here to view code image

/]
// *everything inside a single-line comment is ignored
// *including nested comment pairs

/] */

Exercises Section 1.3
Exercise 1.7: Compile a program that has incorrectly nested comments.
Exercise 1.8: Indicate which, if any, of the following output statements are legal:

Click here to view code image

std::cout << "/*";

std::cout << "*/";

std::cout << /* "x/" o *x /.

std::cout << /* "k /m Jxom/kn ok /.

After you’ve predicted what will happen, test your answers by compiling a program with each
of these statements. Correct any errors you encounter.

1.4. Flow of Control

Statements normally execute sequentially: The first statement in a block is executed first, followed by the
second, and so on. Of course, few programs—including the one to solve our bookstore problem—can be
written using only sequential execution. Instead, programming languages provide various flow-of-control
statements that allow for more complicated execution paths.

1.4.1. The while Statement

A while statement repeatedly executes a section of code so long as a given condition is true. We can use
a while to write a program to sum the numbers from 1 through 10 inclusive as follows:

Click here to view code image

#include <iostream>
int main ()
{
int sum = 0, val = 1;
// keep executing the while as long as val is less than or equal to 10
while (val <= 10) {
sum += val; // assigns sum + val to sum

++val; // add 1 to val
}

std::cout << "Sum of 1 to 10 inclusive is "
<< sum << std::endl;
return 0;

}

When we compile and execute this program, it prints
Sum of 1 to 10 inclusive is 55

As before, we start by including the 1 ost ream header and defining main. Inside main we define
two int variables: sum, which will hold our summation, and val, which will represent each of the
values from 1 through 10. We give sum an initial value of 0 and start val off with the value 1.

The new part of this program is the while statement. A while has the form

while (condition)
statement

A while executes by (alternately) testing the condition and executing the associated statement until the
condition is false. A condition is an expression that yields a result that is either true or false. So long as
condition is true, statement is executed. After executing statement, condition is tested again. If condition
is again true, then statement is again executed. The whi 1e continues, alternately testing the condition
and executing statement until the condition is false.

In this program, the while statement is

Click here to view code image

// keep executing the while as long as val is less than or equal to 10
while (val <= 10) {

sum += val; // assigns sum + val to sum
++val; // add 1 to val
}

The condition uses the less-than-or-equal operator (the <=_operator) to compare the current value of val
and 10. As long as val is less than or equal to 10, the condition is true. If the condition is true, we
execute the body of the while. In this case, that body is a block with two statements:

Click here to view code image

{

sum += val; // assigns sum + val to sum
++val; // add 1 to val
}

A block is a sequence of zero or more statements enclosed by curly braces. A block is a statement and
may be used wherever a statement is required. The first statement in this block uses the compound
assignment operator (the +=_operator). This operator adds its right-hand operand to its left-hand operand
and stores the result in the left-hand operand. It has essentially the same effect as writing an addition and

n assignment:

Click here to view code image

sum = sum + val; // assign sum + val to sum

Thus, the first statement in the block adds the value of val to the current value of sum and stores the
result back into sum.

The next statement
++val; // add 1 to val

uses the prefix increment operator (the ++ operator). The increment operator adds 1 to its operand.
Writing ++val is the same as writing val = val + 1.

After executing the while body, the loop evaluates the condition again. If the (now incremented) value
of val is still less than or equal to 10, then the body of the while is executed again. The loop continues,
testing the condition and executing the body, until val is no longer less than or equal to 10.

Once val is greater than 10, the program falls out of the whi 1e loop and continues execution with the
statement following the whi1e. In this case, that statement prints our output, followed by the return,
which completes our main program.

Exercises Section 1.4.1
Exercise 1.9: Write a program that uses a while to sum the numbers from 50 to 100.
Exercise 1.10: In addition to the ++ operator that adds 1 to its operand, there is a decrement

operator (—-) that subtracts 1. Use the decrement operator to write a while that prints the
numbers from ten down to zero.

Exercise 1.11: Write a program that prompts the user for two integers. Print each number in the
range specified by those two integers.

1.4.2. The for Statement

In our while loop we used the variable val to control how many times we executed the loop. We tested
the value of val in the condition and incremented val inthe while body.

This pattern—using a variable in a condition and incrementing that variable in the body—happens so
often that the language defines a second statement, the for statement, that abbreviates code that follows
this pattern. We can rewrite this program using a for loop to sum the numbers from 1 through 10 as

follows:

Click here to view code image

#include <iostream>
int main ()

{

int sum = O;
// sumvalues from 1 through 10 inclusive
for (int val = 1; val <= 10; ++val)
sum += val; // equivalentto sum = sum + val
std::cout << "Sum of 1 to 10 inclusive is "
<< sum << std::endl;
return O;

}

As before, we define sum and initialize it to zero. In this version, we define val as part of the for
statement itself:

Click here to view code image

for (int val = 1; wval <= 10; ++val)
sum += val;

Each for statement has two parts: a header and a body. The header controls how often the body is

executed. The header itself consists of three parts: an init-statement, a condition, and an expression. In
this case, the init-statement

int val = 1;
defines an int object named val and gives it an initial value of 1. The variable val exists only inside

the for; itis not possible to use val after this loop terminates. The init-statement is executed only once,
on entry to the for. The condition

val <= 10

compares the current value in val to 10. The condition is tested each time through the loop. As long as
val is less than or equal to 10, we execute the for body. The expression is executed after the for
body. Here, the expression

++val

uses the prefix increment operator, which adds 1 to the value of val. After executing the expression, the
for retests the condition. If the new value of val is still less than or equal to 10, then the for loop
body is executed again. After executing the body, val is incremented again. The loop continues until the
condition fails.

In this loop, the for body performs the summation

Click here to view code image

sum += val; // equivalentto sum = sum + val
To recap, the overall execution flow of this for is:
1. Create val and initialize it to 1.

2. Test whether val is less than or equal to 10. If the test succeeds, execute the for body. If the test
fails, exit the loop and continue execution with the first statement following the for body.

3. Increment val.

4. Repeat the test in step 2, continuing with the remaining steps as long as the condition is true.

Exercises Section 1.4.2
Exercise 1.12: What does the following for loop do? What is the final value of sum?

Click here to view code image

int sum = 0O;
for (int i =
sum += 1i;

-100; 1 <= 100; ++1)

Exercise 1.13: Rewrite the exercises from § 1.4.1 (p. 13) using for loops.
Exercise 1.14: Compare and contrast the loops that used a for with those using a while. Are
there advantages or disadvantages to using either form?

Exercise 1.15: Write programs that contain the common errors discussed in the box on page 16.
Familiarize yourself with the messages the compiler generates.

1.4.3. Reading an Unknown Number of Inputs

In the preceding sections, we wrote programs that summed the numbers from 1 through 10. A logical
extension of this program would be to ask the user to input a set of numbers to sum. In this case, we won’t
know how many numbers to add. Instead, we’ll keep reading numbers until there are no more numbers to

read:

Click here to view code image

#include <iostream>
int main ()

{

}

int sum = 0, value = 0;
// read until end-of-file, calculating a running total of all values read
while (std::cin >> wvalue)

sum += value; // equivalentto sum = sum + value
std::cout << "Sum is: " << sum << std::endl;

return 0;

If we give this program the input
3456

then our output will be

Sumis: 18

The first line inside main defines two int variables, named sum and value, which we initialize to

0. We’ll use value to hold each number as we read it from the input. We read the data inside the
condition of the while:

while (std::cin >> wvalue)
Evaluating the while condition executes the expression
std::cin >> value

That expression reads the next number from the standard input and stores that number in value. The
input operator (8§ 1.2, p. 8) returns its left operand, which in this case is std: : cin. This condition,
therefore, tests std: : cin.

When we use an 1 st ream as a condition, the effect is to test the state of the stream. If the stream is
valid—that is, if the stream hasn’t encountered an error—then the test succeeds. An i st ream becomes
invalid when we hit end-of-file or encounter an invalid input, such as reading a value that is not an
integer. An istream thatis in aninvalid state will cause the condition to yield false.

Thus, our while executes until we encounter end-of-file (or an input error). The whi1e body uses the
compound assignment operator to add the current value to the evolving sum. Once the condition fails, the
while ends. We fall through and execute the next statement, which prints the sum followed by end1.

Entering an End-of-File from the Keyboard

When we enter input to a program from the keyboard, different operating systems use different
conventions to allow us to indicate end-of-file. On Windows systems we enter an end-of-file by
typing a control-z—hold down the Ctrl key and press z—followed by hitting either the Enter or
Return key. On UNIX systems, including on Mac OS X machines, end-of-file is usually control-
d.

Compilation Revisited

Part of the compiler’s job is to look for errors in the program text. A compiler cannot detect
whether a program does what its author intends, but it can detect errors in the form of the
program. The following are the most common kinds of errors a compiler will detect.

Syntax errors: The programmer has made a grammatical error in the C++ language. The
following program illustrates common syntax errors; each comment describes the error on the
following line:

Click here to view code image

// error: missing) in parameter list for main
int main ({
// error: used colon, not a semicolon, after endl
std::cout << "Read each file." << std::endl:
// error: missing quotes around string literal
std::cout << Update master. << std::endl;

// error: second output operator is missing
std::cout << "Write new master." std::endl;

// error: missing ; on return statement
return O

}

Type errors: Each item of data in C++ has an associated type. The value 10, for example, has a
type of int (or, more colloquially, “is an int”). The word "hel1lo", including the double

quotation marks, is a string literal. One example of a type error is passing a string literal to a
function that expects an int argument.

Declaration errors: Every name used in a C++ program must be declared before it is used.
Failure to declare a name usually results in an error message. The two most common
declaration errors are forgetting to use std: : for a name from the library and misspelling the

name of an identifier:

Click here to view code image

#include <iostream>
int main ()
{
int vl = 0, v2 = 0;
std::cin >> v >> v2; // error:uses "v" not "vl"
// error: cout not defined; should be std::cout
cout << vl + v2 << std::endl;
return O;

Error messages usually contain a line number and a brief description of what the compiler
believes we have done wrong. It is a good practice to correct errors in the sequence they are
reported. Often a single error can have a cascading effect and cause a compiler to report more
errors than actually are present. It is also a good idea to recompile the code after each fix—or
after making at most a small number of obvious fixes. This cycle is known as edit-compile-

debug.

Exercises Section 1.4.3

Exercise 1.16: Write your own version of a program that prints the sum of a set of integers read
from cin.

1.4.4. The if Statement

Like most languages, C++ provides an if statement that supports conditional execution. We can use an
if to write a program to count how many consecutive times each distinct value appears in the input:

Click here to view code image

#include <iostream>
int main ()
{
// currVal is the number we're counting; we'll read new values into val
int currval = 0, wval = 0;
// read first number and ensure that we have data to process
if (std::cin >> currVal) {
int cnt = 1; // storethe count for the current value we're processing
while (std::cin >> val) { // read the remaining numbers

if (val == currVval) // if the values are the same
++cnt; // add 1 to cnt
else { // otherwise, print the count for the previous value
std::cout << currVal << " occurs "
<< cnt << " times" << std::endl;
currVal = val; // remember the new value
cnt = 1; // reset the counter

}
} // while loop ends here
// remember to print the count for the last value in the file
std::cout << currVal << " occurs "
<< cnt << " times" << std::endl;

} // outermost if statement ends here
return O;

}
If we give this program the following input:

Click here to view code image

42 42 42 42 42 55 55 62 100 100 100
then the output should be

42 occurs 5 times
55 occurs 2 times
62 occurs 1 times
100 occurs 3 times

Much of the code in this program should be familiar from our earlier programs. We start by defining
val and currVal: currVal will keep track of which number we are counting; val will hold each

number as we read it from the input. What’s new are the two i f statements. The first 1 £

Click here to view code image

if (std::cin >> currVal) {
//

} // outermost if statement ends here

ensures that the input is not empty. Like a while, an 1 f evaluates a condition. The condition in the first
if reads a value into currval. If the read succeeds, then the condition is true and we execute the block

that starts with the open curly following the condition. That block ends with the close curly just before the
return statement.

Once we know there are numbers to count, we define cnt, which will count how often each distinct
number occurs. We use a while loop similar to the one in the previous section to (repeatedly) read
numbers from the standard input.

The body of the while is a block that contains the second i f statement:

Click here to view code image

if (val == currVval) // if the values are the same
++cnt; // add 1 to cnt
else { // otherwise, print the count for the previous value
std::cout << currVal << " occurs "
<< cnt << " times" << std::endl;
currVal = val; // remember the new value
cnt = 1; // reset the counter

}

The condition in this i f uses the equality operator (the == operator) to test whether val is equal to
currVal. If so, we execute the statement that immediately follows the condition. That statement
increments cnt, indicating that we have seen currval once more.

If the condition is false—that is, if val is not equal to currval—then we execute the statement
following the e 1 se. This statement is a block consisting of an output statement and two assignments. The
output statement prints the count for the value we just finished processing. The assignments reset cnt to 1
and currVal to val, which is the number we just read.

Fay

/!\ Warning

C++ uses = for assignment and == for equality. Both operators can appear inside a condition. It
is a common mistake to write = when you mean == inside a condition.

Exercises Section 1.4.4

Exercise 1.17: What happens in the program presented in this section if the input values are all
equal? What if there are no duplicated values?

Exercise 1.18: Compile and run the program from this section giving it only equal values as
input. Run it again giving it values in which no number is repeated.

Exercise 1.19: Revise the program you wrote for the exercises in § 1.4.1 (p. 13) that printed a
range of numbers so that it handles input in which the first number is smaller than the second.

Key Concept: Indentation and Formatting of C++ Programs

C++ programs are largely free-format, meaning that where we put curly braces, indentation,
comments, and newlines usually has no effect on what our programs mean. For example, the
curly brace that denotes the beginning of the body of main could be on the same line as main;
positioned as we have done, at the beginning of the next line; or placed anywhere else we’d
like. The only requirement is that the open curly must be the first nonblank, noncomment
character following main’s parameter list.

Although we are largely free to format programs as we wish, the choices we make affect the
readability of our programs. We could, for example, have written main on a single long line.
Such a definition, although legal, would be hard to read.

Endless debates occur as to the right way to format C or C++ programs. Our belief is that
there is no single correct style but that there is value in consistency. Most programmers indent
subsidiary parts of their programs, as we’ve done with the statements inside main and the
bodies of our loops. We tend to put the curly braces that delimit functions on their own lines.
We also indent compound IO expressions so that the operators line up. Other indentation
conventions will become clear as our programs become more sophisticated.

The important thing to keep in mind is that other ways to format programs are possible. When
you choose a formatting style, think about how it affects readability and comprehension. Once
you’ve chosen a style, use it consistently.

1.5. Introducing Classes

The only remaining feature we need to understand before solving our bookstore problem is how to define
a data structure to represent our transaction data. In C++ we define our own data structures by defining a
class. A class defines a type along with a collection of operations that are related to that type. The class
mechanism is one of the most important features in C++. In fact, a primary focus of the design of C++ is to
make it possible to define class types that behave as naturally as the built-in types.

In this section, we’ll describe a simple class that we can use in writing our bookstore program. We’ll
implement this class in later chapters as we learn more about types, expressions, statements, and
functions.

To use a class we need to know three things:
* What is its name?
* Where is it defined?
» What operations does it support?

For our bookstore problem, we’ll assume that the class is named Sales item and thatitis already
defined in a header named Sales item.h.

As we’ve seen, to use a library facility, we must include the associated header. Similarly, we use

headers to access classes defined for our own applications. Conventionally, header file names are
derived from the name of a class defined in that header. Header files that we write usually have a suffix of
. h, but some programmers use . H, . hpp, or . hxx. The standard library headers typically have no

suffix at all. Compilers usually don’t care about the form of header file names, but IDEs sometimes do.

1.5.1. The Sales_item Class

The purpose of the Sales item class is to represent the total revenue, number of copies sold, and

average sales price for a book. How these data are stored or computed is not our concern. To use a class,
we need not care about how it is implemented. Instead, what we need to know is what operations objects
of that type can perform.

Every class defines a type. The type name is the same as the name of the class. Hence, our
Sales item class defines a type named Sales item. As with the built-in types, we can define a
variable of a class type. When we write

Sales item item;

we are saying that i tem is an object of type Sales item. We often contract the phrase “an object of
type Sales item”to “a Sales item object” or even more simply to “a Sales item.”

In addition to being able to define variables of type Sales item, we can:
+ Call a function named i sbn to fetch the 1SBN froma Sales item object
» Use the input (>>) and output (<<) operators to read and write objects of type Sales item.
» Use the assignment operator (=) to assignone Sales 1item object to another.

» Use the addition operator (+) to add two Sales item objects. The two objects must refer to the
same ISBN. The resultis a new Sales item object whose ISBN is that of its operands and whose
number sold and revenue are the sum of the corresponding values in its operands.

* Use the compound assignment operator (+=) to add one Sales item objectinto another.

Key Concept: Classes Define Behavior

The important thing to keep in mind when you read these programs is that the author of the
Sales item class defines all the actions that can be performed by objects of this class. That
is, the Sales item class defines what happens whena Sales item objectis created and

what happens when the assignment, addition, or the input and output operators are applied to
Sales items.

In general, the class author determines all the operations that can be used on objects of the
class type. For now, the only operations we know we can performon Sales item objects
are the ones listed in this section.

Reading and Writing Sales_items

Now that we know what operations we can use with Sales item objects, we can write programs that

use the class. For example, the following program reads data from the standard input into a
Sales item objectand writes that Sales item back onto the standard output:

Click here to view code image

#include <iostream>
#include "Sales item.h"
int main ()

{

Sales item book;

// read ISBN, number of copies sold, and sales price
std::cin >> book;

// write ISBN, number of copies sold, total revenue, and average price
std::cout << book << std::endl;
return O;

}

If the input to this program is
0-201-70353-X 4 24.99

then the output will be
0-201-70353-X 4 99.96 24.99

Our input says that we sold four copies of the book at $24.99 each, and the output indicates that the total
sold was four, the total revenue was $99.96, and the average price per book was $24.99.

This program starts with two #1include directives, one of which uses a new form. Headers from the
standard library are enclosed in angle brackets (< >). Those that are not part of the library are enclosed
in double quotes (" ").

Inside main we define an object, named book, that we’ll use to hold the data that we read from the

standard input. The next statement reads into that object, and the third statement prints it to the standard
output followed by printing end1.

Adding Sales_items

A more interesting example adds two Sales item objects:

Click here to view code image

#include <iostream>

#include "Sales item.h"

int main () B

{
Sales item iteml, item2;
std::cin >> iteml >> item2; // read a pair of transactions
std::cout << iteml + item2 << std::endl; // printtheir sum

return 0;

}
If we give this program the following input

0-201-78345-X 3 20.00
0-201-78345-X 2 25.00

our output is
0-201-78345-X 5 110 22

This program starts by including the Sales itemand iostream headers. Next we define two
Sales item objects to hold the transactions. We read data into these objects from the standard input.
The output expression does the addition and prints the result.

It’s worth noting how similar this program looks to the one on page 6: We read two inputs and write
their sum. What makes this similarity noteworthy is that instead of reading and printing the sum of two
integers, we’re reading and printing the sum of two Sales item objects. Moreover, the whole idea of
“sum” is different. In the case of ints we are generating a conventional sum—the result of adding two
numeric values. In the case of Sales item objects we use a conceptually new meaning for sum—the
result of adding the components of two Sales item objects.

Using File Redirection

It can be tedious to repeatedly type these transactions as input to the programs you are testing.
Most operating systems support file redirection, which lets us associate a named file with the
standard input and the standard output:

S addItems <infile >outfile

Assuming $ is the system prompt and our addition program has been compiled into an
executable file named addItems.exe (or addItems on UNIX systems), this command will
read transactions from a file named infile and write its output to a file named outfile in
the current directory.

Exercises Section 1.5.1

Exercise 1.20: http://www.informit.convtitle/032174113 contains a copy of Sales item.h

in the Chapter 1 code directory. Copy that file to your working directory. Use it to write a
program that reads a set of book sales transactions, writing each transaction to the standard
output.

Exercise 1.21: Write a program that reads two Sales item objects that have the same 1SBN
and produces their sum.

Exercise 1.22: Write a program that reads several transactions for the same 1SBN. Write the sum
of all the transactions that were read.

http://www.informit.com/title/032174113

1.5.2. A First Look at Member Functions

Our program that adds two Sales 1items should check whether the objects have the same 1SBN. We’ll
do so as follows:

Click here to view code image

#include <iostream>

#include "Sales item.h"

int main ()

{
Sales item iteml, item2;
std::cin >> iteml >> item?2;

// first check that iteml and item2 represent the same book

if (iteml.isbn() == item2.isbn()) {
std::cout << iteml + item2 << std::endl;
return 0; // indicate success

} else {

std::cerr << "Data must refer to same ISBN"
<< std::endl;
return -1; // indicate failure

}

The difference between this program and the previous version is the i f and its associated el se
branch. Even without understanding the i f condition, we know what this program does. If the condition
succeeds, then we write the same output as before and return 0, indicating success. If the condition fails,
we execute the block following the e1se, which prints a message and returns an error indicator.

What Is a Member Function?

The i £ condition

iteml.isbn() == item2.isbn{()

calls a member function named i slbn. A member function is a function that is defined as part of a class.
Member functions are sometimes referred to as methods.

Ordinarily, we call a member function on behalf of an object. For example, the first part of the left-hand
operand of the equality expression

iteml.isbn

uses the dot operator (the “.” operator) to say that we want “the 1 slbn member of the object named
iteml.” The dot operator applies only to objects of class type. The left-hand operand must be an object

of class type, and the right-hand operand must name a member of that type. The result of the dot operator
is the member named by the right-hand operand.

When we use the dot operator to access a member function, we usually do so to call that function. We

call a function using the call operator (the ()_operator). The call operator is a pair of parentheses that
enclose a (possibly empty) list of arguments. The i sbn member function does not take an argument.

Thus,
iteml.isbn ()

calls the i sbn function that is a member of the object named i tem1. This function returns the 1SBN
stored in i teml.

The right-hand operand of the equality operator executes in the same way—it returns the 1SBN stored in
item?. If the 1sBNs are the same, the condition is true; otherwise it is false.

Exercises Section 1.5.2

Exercise 1.23: Write a program that reads several transactions and counts how many
transactions occur for each ISBN.

Exercise 1.24: Test the previous program by giving multiple transactions representing multiple
1sBNs. The records for each 1sBN should be grouped together.

1.6. The Bookstore Program

We are now ready to solve our original bookstore problem. We need to read a file of sales transactions
and produce a report that shows, for each book, the total number of copies sold, the total revenue, and the
average sales price. We’ll assume that all the transactions for each 1SBN are grouped together in the input.

Our program will combine the data for each 1sBN in a variable named total. We’ll use a second
variable named trans to hold each transaction we read. If t rans and total refer to the same ISBN,
we’ll update total. Otherwise we’ll print total and reset it using the transaction we just read:

Click here to view code image

#include <iostream>
#include "Sales item.h"
int main () B
{
Sales item total; // variable to hold data for the next transaction
// read the first transaction and ensure that there are data to process
if (std::cin >> total) {
Sales item trans; // variable to hold the running sum
// read and process the remaining transactions
while (std::cin >> trans) {
// if we're still processing the same book

if (total.isbn() == trans.isbn())
total += trans; // update the running total
else {

// print results for the previous book

std::cout << total << std::endl;
total = trans; // total now refers to the next book

}

std::cout << total << std::endl; // printthe last transaction
} else {

// no input! warn the user

std::cerr << "No data?!" << std::endl;

return -1; // indicate failure
}

return 0;

}

This program is the most complicated one we’ve seen so far, but it uses only facilities that we have
already seen.

As usual, we begin by including the headers that we use, 1 ostream from the library and our own
Sales item.h. Inside main we define an object named total, which we’ll use to sum the data for
a given ISBN. We start by reading the first transaction into total and testing whether the read was
successful. If the read fails, then there are no records and we fall through to the outermost e 1 se branch,
which tells the user that there was no input.

Assuming we have successfully read a record, we execute the block following the outermost i f. That
block starts by defining the object named t rans, which will hold our transactions as we read them. The
while statement will read all the remaining records. As in our earlier programs, the while condition
reads a value from the standard input. In this case, we read a Sales item objectinto trans. As long
as the read succeeds, we execute the body of the while.

The body of the while is a single if statement. The i f checks whether the 1SBNs are equal. If so, we
use the compound assignment operator to add trans to total. If the ISBNs are not equal, we print the
value stored in total and reset total by assigning t rans to it. After executing the i £, we return to
the condition in the whi 1e, reading the next transaction, and so on until we run out of records.

When the while terminates, total contains the data for the last 1SBN in the file. We write the data for
the last 1SBN in the last statement of the block that concludes the outermost i £ statement.

Exercises Section 1.6

Exercise 1.25: Using the Sales item.h header from the Web site, compile and execute the
bookstore program presented in this section.

Chapter Summary

This chapter introduced enough of C++ to let you compile and execute simple C++ programs. We saw
how to define a main function, which is the function that the operating system calls to execute our

program. We also saw how to define variables, how to do input and output, and how to write i f, for,
and whi le statements. The chapter closed by introducing the most fundamental facility in C++: the class.

In this chapter, we saw how to create and use objects of a class that someone else has defined. Later
chapters will show how to define our own classes.

Defined Terms

argument Value passed to a function.
assignment Obliterates an object’s current value and replaces that value by a new one.
block Sequence of zero or more statements enclosed in curly braces.

buffer A region of storage used to hold data. IO facilities often store input (or output) in a buffer and
read or write the buffer independently from actions in the program. Output buffers can be explicitly
flushed to force the buffer to be written. By default, reading cin flushes cout; cout is also

flushed when the program ends normally.
built-in type Type, such as int, defined by the language.

cerr ostream object tied to the standard error, which often writes to the same device as the
standard output. By default, writes to cerr are not buffered. Usually used for error messages or
other output that is not part of the normal logic of the program.

character string literal Another term for string literal.

cin 1 st ream object used to read from the standard input.

class Facility for defining our own data structures together with associated operations. The class is
one of the most fundamental features in C++. Library types, such as i stream and ostream, are

classes.

class type A type defined by a class. The name of the type is the class name.

clog ostream object tied to the standard error. By default, writes to c1og are buffered. Usually
used to report information about program execution to a log file.

comments Program text that is ignored by the compiler. C++ has two kinds of comments: single-line
and paired. Single-line comments start witha / /. Everything from the / / to the end of the line is a
comment. Paired comments begin witha /* and include all text up to the next * /.

condition An expression that is evaluated as true or false. A value of zero is false; any other value
yields true.

cout ostream object used to write to the standard output. Ordinarily used to write the output of a
program.

curly brace Curly braces delimit blocks. An open curly ({) starts a block; a close curly (}) ends
one.

data structure A logical grouping of data and operations on that data.

edit-compile-debug The process of getting a program to execute properly.

end-of-file System-specific marker that indicates that there is no more input in a file.

expression The smallest unit of computation. An expression consists of one or more operands and
usually one or more operators. Expressions are evaluated to produce a result. For example, assuming
iand jare ints,theni + 7 is anexpression and yields the sum of the two int values.

for statement Iteration statement that provides iterative execution. Often used to repeat a calculation
a fixed number of times.

function Named unit of computation.

function body Block that defines the actions performed by a function.

function name Name by which a function is known and can be called.

header Mechanism whereby the definitions of a class or other names are made available to multiple
programs. A program uses a header through a # include directive.

if statement Conditional execution based on the value of a specified condition. If the condition is
true, the i f body is executed. If not, the e1 se body is executed if there is one.

initialize Give an object a value at the same time that it is created.

iostream Header that provides the library types for stream-oriented input and output.
istream Library type providing stream-oriented input.

library type Type, such as istream, defined by the standard library.

main Function called by the operating system to execute a C++ program. Each program must have
one and only one function named main.

manipulator Object, such as std: : endl, that when read or written “manipulates” the stream
itself.

member function Operation defined by a class. Member functions ordinarily are called to operate
on a specific object.

method Synonym for member function.

namespace Mechanism for putting names defined by a library into a single place. Namespaces help
avoid inadvertent name clashes. The names defined by the C++ library are in the namespace std.

ostream Library type providing stream-oriented output.

parameter list Part of the definition of a function. Possibly empty list that specifies what arguments
can be used to call the function.

return type Type of the value returned by a function.
source file Term used to describe a file that contains a C++ program.

standard error Output stream used for error reporting. Ordinarily, the standard output and the
standard error are tied to the window in which the program is executed.

standard input Input stream usually associated with the window in which the program executes.

standard library Collection of types and functions that every C++ compiler must support. The
library provides the types that support I0. C++ programmers tend to talk about “the library,”
meaning the entire standard library. They also tend to refer to particular parts of the library by
referring to a library type, such as the “i ostream library,” meaning the part of the standard library
that defines the IO classes.

standard output Output stream usually associated with the window in which the program executes.

statement A part of a program that specifies an action to take place when the program is executed.
An expression followed by a semicolon is a statement; other kinds of statements include blocks and
if, for, and while statements, all of which contain other statements within themselves.

std Name of the namespace used by the standard library. std: : cout indicates that we’re using the
name cout defined in the std namespace.

string literal Sequence of zero or more characters enclosed in double quotes ("a string
literal™).

uninitialized variable Variable that is not given an initial value. Variables of class type for which no
initial value is specified are initialized as specified by the class definition. Variables of built-in type
defined inside a function are uninitialized unless explicitly initialized. It is an error to try to use the
value of an uninitialized variable. Uninitialized variables are a rich source of bugs.

variable A named object.

while statement Iteration statement that provides iterative execution so long as a specified condition
is true. The body is executed zero or more times, depending on the truth value of the condition.

() operator Call operator. A pair of parentheses “ () ” following a function name. The operator
causes a function to be invoked. Arguments to the function may be passed inside the parentheses.

++ operator Increment operator. Adds 1 to the operand; ++1 is equivalentto i = 1 + 1.

+=_operator Compound assignment operator that adds the right-hand operand to the left and stores
the result in the left-hand operand; a += b isequivalenttoa = a + b.

. operator Dot operator. Left-hand operand must be an object of class type and the right-hand
operand must be the name of a member of that object. The operator yields the named member of the
given object.

::_operator Scope operator. Among other uses, the scope operator is used to access names in a
namespace. For example, std: : cout denotes the name cout from the namespace std.

= operator Assigns the value of the right-hand operand to the object denoted by the left-hand
operand.

-- operator Decrement operator. Subtracts 1 from the operand; —-1 is equivalentto i = 1 - 1.

<< operator Output operator. Writes the right-hand operand to the output stream indicated by the
left-hand operand: cout << "hi" writes hi to the standard output. Output operations can be

chained together: cout << "hi" << "bye" writes hibye.

>> operator Input operator. Reads from the input stream specified by the left-hand operand into the
right-hand operand: cin >> i reads the next value on the standard input into i. Input operations
can be chained together: cin >> i >> 7 reads firstinto i and then into 7.

include Directive that makes code in a header available to a program.

== operator The equality operator. Tests whether the left-hand operand is equal to the right-hand
operand.

!= operator The inequality operator. Tests whether the left-hand operand is not equal to the right-
hand operand.

<= operator The less-than-or-equal operator. Tests whether the left-hand operand is less than or
equal to the right-hand operand.

< operator The less-than operator. Tests whether the left-hand operand is less than the right-hand
operand.

>= operator Greater-than-or-equal operator. Tests whether the left-hand operand is greater than or
equal to the right-hand operand.

> operator Greater-than operator. Tests whether the left-hand operand is greater than the right-hand
operand.

Part I: The Basics

Contents

Chapter 2 Variables and Basic Types
Chapter 3 Strings, Vectors, and Arrays

Chapter 4 Expressions
Chapter 5 Statements

Chapter 6 Functions
Chapter 7 Classes

Every widely used programming language provides a common set of features, which differ in detail from
one language to another. Understanding the details of how a language provides these features is the first
step toward understanding the language. Among the most fundamental of these common features are

* Built-in types such as integers, characters, and so forth
* Variables, which let us give names to the objects we use
* Expressions and statements to manipulate values of these types

« Control structures, such as i f or while, that allow us to conditionally or repeatedly execute a set
of actions

* Functions that let us define callable units of computation

Most programming languages supplement these basic features in two ways: They let programmers
extend the language by defining their own types, and they provide library routines that define useful
functions and types not otherwise built into the language.

In C++, as in most programming languages, the type of an object determines what operations can be
performed on it. Whether a particular expression is legal depends on the type of the objects in that
expression. Some languages, such as Smalltalk and Python, check types at run time. In contrast, C++ is a
statically typed language; type checking is done at compile time. As a consequence, the compiler must
know the type of every name used in the program.

C++ provides a set of built-in types, operators to manipulate those types, and a small set of statements
for program flow control. These elements form an alphabet from which we can write large, complicated,
real-world systems. At this basic level, C++ is a simple language. Its expressive power arises from its
support for mechanisms that allow the programmer to define new data structures. Using these facilities,
programmers can shape the language to their own purposes without the language designers having to
anticipate the programmers’ needs.

Perhaps the most important feature in C++ is the class, which lets programmers define their own types.
In C++ such types are sometimes called “class types” to distinguish them from the types that are built into
the language. Some languages let programmers define types that specify only what data make up the type.
Others, like C++, allow programmers to define types that include operations as well as data. A major

design goal of C++ is to let programmers define their own types that are as easy to use as the built-in
types. The Standard C++ library uses these features to implement a rich library of class types and
associated functions.

The first step in mastering C++—Ilearning the basics of the language and library—is the topic of Part I.
Chapter 2 covers the built-in types and looks briefly at the mechanisms for defining our own new types.
Chapter 3 introduces two of the most fundamental library types: string and vector. That chapter also
covers arrays, which are a lower-level data structure built into C++ and many other languages. Chapters 4
through 6 cover expressions, statements, and functions. This part concludes in Chapter 7, which describes
the basics of building our own class types. As we’ll see, defining our own types brings together all that
we’ve learned before, because writing a class entails using the facilities covered in Part I.

Chapter 2. Variables and Basic Types

Contents

Section 2.1 Primitive Built-in Types

Section 2.2 Variables

Section 2.3 Compound Types

Section 2.4 const Qualifier

Section 2.5 Dealing with Types
Section 2.6 Defining Our Own Data Structures

Chapter Summary
Defined Terms

Types are fundamental to any program: They tell us what our data mean and what operations we can
perform on those data.

C++ has extensive support for types. The language defines several primitive types (characters, integers,
floating-point numbers, etc.) and provides mechanisms that let us define our own data types. The library
uses these mechanisms to define more complicated types such as variable-length character strings,
vectors, and so on. This chapter covers the built-in types and begins our coverage of how C++ supports
more complicated types.

Types determine the meaning of the data and operations in our programs. The meaning of even as simple a
statement as

i=1+ 73
depends on the types of 1 and j. If 1 and j are integers, this statement has the ordinary, arithmetic

meaning of +. However, if 1 and j are Sales item objects (§ 1.5.1, p. 20), this statement adds the
components of these two objects.

2.1. Primitive Built-in Types

C++ defines a set of primitive types that include the arithmetic types and a special type named void. The
arithmetic types represent characters, integers, boolean values, and floating-point numbers. The void
type has no associated values and can be used in only a few circumstances, most commonly as the return
type for functions that do not return a value.

2.1.1. Arithmetic Types

o

The arithmetic types are divided into two categories: integral types (which include character and
boolean types) and floating-point types.

The size of—that is, the number of bits in—the arithmetic types varies across machines. The standard
guarantees minimum sizes as listed in Table 2.1. However, compilers are allowed to use larger sizes for
these types. Because the number of bits varies, the largest (or smallest) value that a type can represent
also varies.

Table 2.1. C++: Arithmetic Types

Type Meaning Minimum Size
bool boolean NA

char character 8 bits

wchar t wide character 16 bits

charlé t Unicode character 16 bits

char32 t Unicode character 32 bits

short short integer 16 bits

int integer 16 bits

long long integer 32 bits

long long long integer 64 bits

float single-precision floating-point 6 significant digits
double double-precision floating-point 10 significant digits
long double extended-precision floating-point 10 significant digits

The bool type represents the truth values t rue and false.

There are several character types, most of which exist to support internationalization. The basic
character type is char. A char is guaranteed to be big enough to hold numeric values corresponding to

the characters in the machine’s basic character set. That is, a char is the same size as a single machine
byte.

The remaining character types—wchar t, charl6 t,and char32 t—are used for extended
character sets. The wchar t type is guaranteed to be large enough to hold any character in the machine’s

largest extended character set. The types char16 t and char32 t are intended for Unicode
characters. (Unicode is a standard for representing characters used in essentially any natural language.)

The remaining integral types represent integer values of (potentially) different sizes. The language
guarantees that an int will be at least as large as short, a 1ong at least as large as an int, and 1ong
long at least as large as 1ong. The type 1ong long was introduced by the new standard.

1

Machine-Level Representation of the Built-in Types

Computers store data as a sequence of bits, each holding a 0 or 1, such as

Click here to view code image

00011011011100010110010000111011

Most computers deal with memory as chunks of bits of sizes that are powers of 2. The smallest
chunk of addressable memory is referred to as a “byte.” The basic unit of storage, usually a
small number of bytes, is referred to as a “word.” In C++ a byte has at least as many bits as are

needed to hold a character in the machine’s basic character set. On most machines a byte
contains 8 bits and a word is either 32 or 64 bits, that is, 4 or 8 bytes.

Most computers associate a number (called an “address”) with each byte in memory. On a
machine with 8-bit bytes and 32-bit words, we might view a word of memory as follows

736424 1O 0 1 1 1 0 1 1
736425 |0 0 0 1 1 0 1 1
736426 | 0 1 1 1 0 0 0 1
736427 |0 1 1 0 0 1 0 0

Here, the byte’s address is on the left, with the 8 bits of the byte following the address.

We can use an address to refer to any of several variously sized collections of bits starting at
that address. It is possible to speak of the word at address 736424 or the byte at address
736427. To give meaning to memory at a given address, we must know the type of the value
stored there. The type determines how many bits are used and how to interpret those bits.

If the object at location 736424 has type f1oat and if f1oats on this machine are stored in
32 bits, then we know that the object at that address spans the entire word. The value of that
float depends on the details of how the machine stores floating-point numbers. Alternatively,
if the object at location 736424 is an unsigned char ona machine using the ISO-Latin-1
character set, then the byte at that address represents a semicolon.

The floating-point types represent single-, double-, and extended-precision values. The standard
specifies a minimum number of significant digits. Most compilers provide more precision than the
specified minimum. Typically, f1oats are represented in one word (32 bits), doubles in two words
(64 bits), and 1ong doubles in either three or four words (96 or 128 bits). The f1oat and double
types typically yield about 7 and 16 significant digits, respectively. The type 1ong double is often

used as a way to accommodate special-purpose floating-point hardware; its precision is more likely to
vary from one implementation to another.

Signed and Unsigned Types

Except for bool and the extended character types, the integral types may be signed or unsigned. A

signed type represents negative or positive numbers (including zero); an unsigned type represents only
values greater than or equal to zero.

The types int, short, long, and long long are all signed. We obtain the corresponding
unsigned type by adding unsigned to the type, such as unsigned long. The type unsigned int
may be abbreviated as unsigned.

Unlike the other integer types, there are three distinct basic character types: char, signed char,
and unsigned char. Inparticular, char is not the same type as signed char. Although there are
three character types, there are only two representations: signed and unsigned. The (plain) char type
uses one of these representations. Which of the other two character representations is equivalent to char
depends on the compiler.

In an unsigned type, all the bits represent the value. For example, an 8-bit unsigned char can hold
the values from 0 through 255 inclusive.

The standard does not define how signed types are represented, but does specify that the range should
be evenly divided between positive and negative values. Hence, an 8-bit signed char is guaranteed

to be able to hold values from —127 through 127; most modern machines use representations that allow
values from —128 through 127.

Advice: Deciding which Type to Use

C++, like C, is designed to let programs get close to the hardware when necessary. The
arithmetic types are defined to cater to the peculiarities of various kinds of hardware.
Accordingly, the number of arithmetic types in C++ can be bewildering. Most programmers can
(and should) ignore these complexities by restricting the types they use. A few rules of thumb
can be useful in deciding which type to use:

* Use an unsigned type when you know that the values cannot be negative.

» Use int for integer arithmetic. short is usually too small and, in practice, 1 ong often has
the same size as int. If your data values are larger than the minimum guaranteed size of an
int, thenuse long long.

* Do not use plain char or bool in arithmetic expressions. Use them only to hold characters
or truth values. Computations using char are especially problematic because char is
signed on some machines and unsigned on others. If you need a tiny integer, explicitly
specify either signed char or unsigned char.

» Use double for floating-point computations; £ 1oat usually does not have enough precision,
and the cost of double-precision calculations versus single-precision is negligible. In fact, on
some machines, double-precision operations are faster than single. The precision offered by
long double usually is unnecessary and often entails considerable run-time cost.

Exercises Section 2.1.1
Exercise 2.1: What are the differences between int, long, long long, and short?
Between an unsigned and a signed type? Betweena f1oat and a double?

Exercise 2.2: To calculate a mortgage payment, what types would you use for the rate,
principal, and payment? Explain why you selected each type.

2.1.2. Type Conversions

o

The type of an object defines the data that an object might contain and what operations that object can
perform. Among the operations that many types support is the ability to convert objects of the given type

to other, related types.

Type conversions happen automatically when we use an object of one type where an object of another
type is expected. We’ll have more to say about conversions in § 4.11 (p. 159), but for now it is useful to
understand what happens when we assign a value of one type to an object of another type.

When we assign one arithmetic type to another:

Click here to view code image

bool b = 42; // b is true

int 1 = b; // 1 hasvalue 1

i = 3.14; // 1 hasvalue 3

double pi = 1i; // pi has value 3.0

unsigned char ¢ = -1; // assuming 8-bit chars, c has value 255

signed char c2 = 256; // assuming 8-bit chars, the value of c2 is undefined

what happens depends on the range of the values that the types permit:

* When we assign one of the nonboo1 arithmetic types to a bool object, the result is false if the
value is 0 and t rue otherwise.

» When we assign a bool to one of the other arithmetic types, the resulting value is 1 if the bool is
true and O if the bool is false.

» When we assign a floating-point value to an object of integral type, the value is truncated. The
value that is stored is the part before the decimal point.

* When we assign an integral value to an object of floating-point type, the fractional part is zero.
Precision may be lost if the integer has more bits than the floating-point object can accommodate.

« If we assign an out-of-range value to an object of unsigned type, the result is the remainder of the
value modulo the number of values the target type can hold. For example, an 8-bit unsigned

char can hold values from 0 through 255, inclusive. If we assign a value outside this range, the

compiler assigns the remainder of that value modulo 256. Therefore, assigning —1 to an 8-bit
unsigned char gives that object the value 255.

« If we assign an out-of-range value to an object of signed type, the result is undefined. The program
might appear to work, it might crash, or it might produce garbage values.

Advice: Avoid Undefined and Implementation-Defined Behavior

Undefined behavior results from errors that the compiler is not required (and sometimes is not
able) to detect. Even if the code compiles, a program that executes an undefined expression is
in error.

Unfortunately, programs that contain undefined behavior can appear to execute correctly in
some circumstances and/or on some compilers. There is no guarantee that the same program,
compiled under a different compiler or even a subsequent release of the same compiler, will
continue to run correctly. Nor is there any guarantee that what works with one set of inputs will
work with another.

Similarly, programs usually should avoid implementation-defined behavior, such as assuming

that the size of an int is a fixed and known value. Such programs are said to be nonportable.
When the program is moved to another machine, code that relied on implementation-defined
behavior may fail. Tracking down these sorts of problems in previously working programs is,
mildly put, unpleasant.

The compiler applies these same type conversions when we use a value of one arithmetic type where a
value of another arithmetic type is expected. For example, when we use a nonbool value as a condition

(8§ 1.4.1, p. 12), the arithmetic value is converted to boo1 in the same way that it would be converted if
we had assigned that arithmetic value to a boo1 variable:

Click here to view code image

int 1 = 42;
if (1) // condition will evaluate as true
i=0;
If the value is O, then the condition is false; all other (nonzero) values yield true.

By the same token, when we use a boo1 in an arithmetic expression, its value always converts to
either O or 1. As a result, using a bool in an arithmetic expression is almost surely incorrect.

Expressions Involving Unsigned Types

G

Although we are unlikely to intentionally assign a negative value to an object of unsigned type, we can
(all too easily) write code that does so implicitly. For example, if we use both unsigned and int
values in an arithmetic expression, the int value ordinarily is converted to unsigned. Converting an
int to unsigned executes the same way as if we assigned the int to an unsigned:

Click here to view code image

unsigned u = 10;

int 1 = -42;

std::cout << i + 1 << std::endl; // prints -84

std::cout << u + 1 << std::endl; // if32-bit ints, prints 4294967264

In the first expression, we add two (negative) int values and obtain the expected result. In the second
expression, the int value —42 is converted to unsigned before the addition is done. Converting a
negative number to unsigned behaves exactly as if we had attempted to assign that negative value to an
unsigned object. The value “wraps around” as described above.

Regardless of whether one or both operands are unsigned, if we subtract a value from an unsigned, we
must be sure that the result cannot be negative:

Click here to view code image

unsigned ul = 42, u2 = 10;
std::cout << ul - u2 << std::endl; // ok:resultis 32

std::cout << u2 - ul << std::endl; // ok: butthe result will wrap around

The fact that an unsigned cannot be less than zero also affects how we write loops. For example, in the
exercises to § 1.4.1 (p. 13), you were to write a loop that used the decrement operator to print the
numbers from 10 down to 0. The loop you wrote probably looked something like

Click here to view code image

for (int 1 = 10; 1 >= 0; --1)
std::cout << 1 << std::endl;

We might think we could rewrite this loop using an unsigned. After all, we don’t plan to print negative
numbers. However, this simple change in type means that our loop will never terminate:

Click here to view code image

// WRONG: u can never be less than 0; the condition will always succeed
for (unsigned u = 10; u >