

UNIX
IN A NUTSHELL

,TITLE.12845 Page i Tuesday, August 22, 2006 4:51 PM

Other resources from O’Reilly

Related titles Classic Shell Scripting
Effective awk

Programming
Essential CVS
Essential System

Administration
GDB Pocket Reference
Learning GNU Emacs
Learning the bash Shell
Learning the Korn Shell
Learning the vi Editor
Linux in a Nutshell
Mac OS X Tiger for Unix

Geeks

Managing Projects with
GNU Make

Running Linux
sed and awk Pocket

Reference
TCP/IP Network

Administration
The Complete FreeBSD
Unix Power Tools
Using csh & tcsh
Version Control with

Subversion

oreilly.com oreilly.com is more than a complete catalog of O’Reilly
books. You'll also find links to news, events, articles,
weblogs, sample chapters, and code examples.

Conferences O’Reilly brings diverse innovators together to nurture the
ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming
events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you
need. Try it today for free.

,TITLE.12845 Page ii Tuesday, August 22, 2006 4:51 PM

Fourth Edition

UNIX
IN A NUTSHELL

Arnold Robbins

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.12845 Page iii Tuesday, August 22, 2006 4:51 PM

Unix in a Nutshell, Fourth Edition
by Arnold Robbins

Copyright © 2006, 1999, 1992, 1989 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Colleen Gorman

Cover Designer: Edie Freedman

Interior Designer: David Futato

Back Cover Illustration: J.D. “Illiad” Frazer

Printing History:

May 1989: First Edition.

June 1992: Second Edition.

August 1999: Third Edition.

October 2005: Fourth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The In a Nutshell series designations, Unix in a Nutshell,
the image of a tarsier, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps. UNIX is a registered trademark of The Open Group.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 0-596-10029-9

[M] [8/06]

,COPYRIGHT.12974 Page iv Tuesday, August 22, 2006 4:52 PM

To my wife, Miriam. May our dreams continue to come true.

To my children, Chana, Rivka, Nachum, and Malka.

To the memory of Frank Willison.

vii

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1

Table of Contents

Preface . xiii

Part I. Commands and Shells

1. Introduction . 3
Unix in the 21st Century 3
Obtaining Compilers 5
Building Software 6
What’s in the Quick Reference 7
Beginner’s Guide 8
Solaris: Standard Compliant Programs 11

2. Unix Commands . 13
Introduction 13
Alphabetical Summary of Common Commands 15
Alphabetical Summary of Solaris Commands 241
Alphabetical Summary of GNU/Linux Commands 260
Alphabetical Summary of Mac OS X Commands 304
Alphabetical Summary of Java Commands 321

3. The Unix Shell: An Overview . 341
Introduction to the Shell 341
Purpose of the Shell 342
Shell Flavors 343

viii | Table of Contents

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Shell Source Code URLs 344
Common Features 344
Differing Features 345

4. The Bash and Korn Shells . 347
Overview of Features 348
Invoking the Shell 349
Syntax 350
Functions 357
Variables 358
Arithmetic Expressions 366
Command History 368
Job Control 372
Command Execution 372
Restricted Shells 373
Built-in Commands (Bash and Korn Shells) 374

5. tcsh: An Extended C Shell . 417
Overview of Features 417
Invoking the Shell 418
Syntax 419
Variables 423
Expressions 435
Command History 438
Command-Line Manipulation 442
Job Control 445
Built-in Commands 446

6. Package Management . 467
Linux Package Management 467
The Red Hat Package Manager 470
Yum: Yellowdog Updater Modified 484
up2date: Red Hat Update Agent 489
The Debian Package Manager 492
Mac OS X Package Management 520
Solaris Package Management 521

Table of Contents | ix

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Part II. Text Editing and Processing

7. Pattern Matching . 535
Filenames Versus Patterns 535
Metacharacters 536
Metacharacters, Listed by Unix Program 538
Examples of Searching 539

8. The Emacs Editor . 543
Conceptual Overview 543
Command-Line Syntax 545
Summary of Commands by Group 546
Summary of Commands by Key 552
Summary of Commands by Name 555

9. The vi, ex, and vim Editors . 561
Conceptual Overview 561
Command-Line Syntax 562
Review of vi Operations 565
vi Commands 567
vi Configuration 574
ex Basics 579
Alphabetical Summary of ex Commands 580

10. The sed Editor . 595
Conceptual Overview 595
Command-Line Syntax 596
Syntax of sed Commands 598
Group Summary of sed Commands 600
Alphabetical Summary of sed Commands 601

11. The awk Programming Language . 611
Conceptual Overview 611
Command-Line Syntax 613
Patterns and Procedures 614
Built-in Variables 616
Operators 617
Variable and Array Assignment 618
User-Defined Functions 619
Gawk-Specific Features 620

x | Table of Contents

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Implementation Limits 622
Group Listing of awk Functions and Commands 623
Alphabetical Summary of awk Functions and Commands 623
Output Redirections 632
Source Code 634

Part III. Software Development

12. Source Code Management: An Overview . 637
Introduction and Terminology 637
Usage Models 639
Unix Source Code Management Systems 640
Other Source Code Management Systems 641

13. The Revision Control System . 643
Overview of Commands 643
Basic Operation 644
General RCS Specifications 645
Alphabetical Summary of Commands 649

14. The Concurrent Versions System . 659
Conceptual Overview 659
Command-Line Syntax and Options 661
Dot Files 664
Environment Variables 665
Keywords and Keyword Modes 667
Dates 669
CVSROOT Variables 672
Alphabetical Summary of Commands 674

15. The Subversion Version Control System . 697
Conceptual Overview 697
Obtaining Subversion 702
Using Subversion: A Quick Tour 704
The Subversion Command Line Client: svn 706
Repository Administration: svnadmin 733
Examining the Repository: svnlook 737
Providing Remote Access: svnserve 742
Other Subversion Components 743

Table of Contents | xi

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

16. The GNU make Utility . 745
Conceptual Overview 745
Command-Line Syntax 746
Makefile Lines 749
Macros 754
Special Target Names 761
Writing Command Lines 762

17. The GDB Debugger . 765
Conceptual Overview 765
Command-Line Syntax 768
Initialization Files 770
GDB Expressions 771
The GDB Text User Interface 773
Group Listing of GDB Commands 773
Summary of set and show Commands 777
Summary of the info Command 788
Alphabetical Summary of GDB Commands 790

18. Writing Manual Pages . 813
Introduction 813
Overview of nroff/troff 814
Alphabetical Summary of man Macros 819
Predefined Strings 823
Internal Names 823
Sample Document 823

Part IV. References

ISO 8859-1 (Latin-1) Character Set . 829

Bibliography . 837

Index . 849

xiii

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

Preface

The fourth edition of Unix in a Nutshell brings the book into the 21st century.
The term “UNIX” is a registered trademark of The Open Group. It is used for
branding systems as compliant with the various standards that collectively define
the behavior of a modern Unix system. More informally though, many systems in
use today are Unix work-alikes, even though their source code base was devel-
oped independently from the original Unix systems.

Thus, the goal of this edition to present the broader state of Unix in today’s world.
In particular, it’s important to cover both the commercial variants, and those where
source code for the system and the utilities are freely available. To this end, we have
chosen to cover these systems, which are representative of “Unix” today:

Solaris 10
Solaris is the most popular commercial system based on the original Unix
System V code base.

GNU/Linux
GNU/Linux systems have gained a huge foothold in the commercial market-
place. While currently used most heavily for back-end servers, GNU/Linux is
also starting to gain ground in the desktop market.

Mac OS X
Apple’s rewrite of their operating system has a core based on Mach and
various BSD technologies. The command set is derived from FreeBSD. Thus,
besides having an exciting user interface, Mac OS X is representative of the
BSD strain of free Unix-like systems.

The commands covered by the current POSIX standard form the core of our presen-
tation. Each specific system has commands that are unique to it; these are covered
too. Finally, many important and useful utilities are distributed as Free or Open
Source software on the Internet. We have done our best to cover those as well,
including presenting the Internet URL from which you can download the source
code, in case your particular system doesn’t include that utility in its distribution.

xiv | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

This edition has the following new features:

• Covers Solaris 10, the latest version of the SVR4-based operating system from
Sun Microsystems,* GNU/Linux, and Mac OS X.

• Chapter 2, Unix Commands, has been heavily reorganized and revised, in
order to cover the three systems.

• Chapter 3, The Unix Shell: An Overview, has been reworked, now covering
Bash,† ksh93, and tcsh.

• Chapter 4, The Bash and Korn Shells, now covers the popular Bash shell,
along with the 1988 and 1993 versions of ksh. Coverage of the vanilla Bourne
shell has been dropped.

• Chapter 5, tcsh: An Extended C Shell, now covers the widely-used tcsh shell
instead of the original Berkeley csh.

• Chapter 6, Package Management, is new. It covers package management pro-
grams, which are used for program installation on popular GNU/Linux sys-
tems. It also describes similar facilities for Solaris and Mac OS X.

• Chapter 8, The Emacs Editor, now covers GNU Emacs Version 21.

• Chapter 9, The vi, ex, and vim Editors, now contains merged coverage of the
vi and ex text editors. Important commands and features from the popular
vim editor are also included.

• Chapter 10, The sed Editor, now includes coverage of GNU sed.

• The coverage of awk in Chapter 11, The awk Programming Language, has
been updated as well, dropping separate coverage of the original, “old” awk.

• Chapter 12, Source Code Management: An Overview, which provides an
introduction to source code management systems, has been added.

• Chapter 14, The Concurrent Versions System, on CVS, has been added.

• Chapter 15, The Subversion Version Control System, on the Subversion ver-
sion control system, is brand new.

• Chapter 16, The GNU make Utility, has been revised to focus on GNU Make.

• Chapter 17, The GDB Debugger, on the GDB debugger, is brand new.

As time marches on, once-popular or necessary commands fall into disuse. Thus,
with the exception of Chapter 18, which describes how to write a manual page, all
the material on the venerable troff text formatting suite has been removed from
the book. We have also removed the previous edition’s material on SCCS and on
obsolete commands.

Audience
This book should be of interest to Unix users and Unix programmers, as well as to
anyone (such as a system administrator) who might offer direct support to users

* The version used for this book was for Intel x86–based systems.

† Because the Free Software Foundation treats “Bash” and “Emacs” as proper nouns, we do too,
here and throughout the book.

Preface | xv

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

and programmers. The presentation is geared mainly toward people who are
already familiar with the Unix system; that is, you know what you want to do,
and you even have some idea how to do it. You just need a reminder about the
details. For example, if you want to remove the third field from a database, you
might think, “I know I can use the cut command, but what are the options?” In
many cases, specific examples are provided to show how a command is used.

We have purposely chosen to omit system administration commands. System
administration is a complicated topic in its own right, and the Bibliography lists
several good books on this important subject.

This reference might also help people who are familiar with some aspects of Unix
but not with others. Many chapters include an overview of the particular topic.
While this isn’t meant to be comprehensive, it’s usually sufficient to get you
started in unfamiliar territory.

Finally, if you’re new to the Unix operating system, and you’re feeling bold, you
might appreciate this book as a quick tour of what Unix has to offer. The
“Beginner’s Guide” section in Chapter 1 can point you to the most useful
commands, and you’ll find brief examples of how to use them, but take note: this
book should not be used in place of a good beginner’s tutorial on Unix. (You might
try Learning the Unix Operating System for that.) This reference should be a supple-
ment, not a substitute. (There are references throughout the text to other relevant
O’Reilly books that will help you learn the subject matter under discussion; you
may be better off detouring to those books first. Also, see the Bibliography.)

Scope of This Book
Unix in a Nutshell, Fourth Edition, is divided into four parts:

• Part I (Chapters 1 through 6) describes the syntax and options for Unix com-
mands and for the Bash, Korn, and tcsh shells. Part I also covers package
management.

• Part II (Chapters 7 through 11) presents various editing tools and describes
their command sets (alphabetically and by group). Part II begins with a review
of pattern matching, including examples geared toward specific editors.

• Part III (Chapters 12 through 18) summarizes the Unix utilities for software
development—RCS, CVS, Subversion, make and GDB. It also covers, in brief,
what you need to know to write a manual page for your programs.

• Part IV contains a table of ISO Latin-1 characters and equivalent values (ISO
8859-1 (Latin-1) Character Set) and a Bibliography of Unix books.

Conventions
This book follows certain typographic conventions, outlined below:

Constant width
is used for directory names, filenames, commands, program names, func-
tions, and options. All terms shown in constant width are typed literally. It is
also used to show the contents of files or the output from commands.

xvi | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Constant width italic
is used in syntax and command summaries to show generic text; these should
be replaced with user-supplied values.

Constant width bold
is used in examples to show text that should be typed literally by the user.

Italic
is used to show generic arguments and options; these should be replaced with
user-supplied values. Italic is also used to indicate URLs, macro package
names, library names, comments in examples, and the first mention of terms.

%, $, #
are used in some examples as the C shell prompt (%) and as the Bash, Bourne
or Korn shell prompts ($). # is the prompt for the root user.

?, >
are used in some examples as the C shell secondary prompt (?) and as the
Bash, Bourne or Korn shell secondary prompts (>).

❑, ➔
are used in some examples to represent the space and tab characters respec-
tively. This is particularly necessary for the examples in the chapters on text
editing.

program(N)
indicates the “manpage” for program in section N of the online manual. For
example, echo(1) means the entry for the echo command.

[]
surround optional elements in a description of syntax. (The brackets them-
selves should never be typed.) Note that many commands show the argument
[files]. If a filename is omitted, standard input (usually the keyboard) is
assumed. End keyboard input with an end-of-file character.

EOF
indicates the end-of-file character (normally CTRL-D).

^x, CTRL-x
indicates a “control character,” typed by holding down the Control key and
the x key for any key x.

|
is used in syntax descriptions to separate items for which only one alterna-
tive may be chosen at a time.

A final word about syntax. In many cases, the space between an option and its
argument can be omitted. In other cases, the spacing (or lack of spacing) must be
followed strictly. For example, -wn (no intervening space) might be interpreted
differently from -w n. It’s important to notice the spacing used in option syntax.

This icon signifies a tip, suggestion, or general note.

Preface | xvii

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Unix in a Nutshell, Fourth Edition,
by Arnold Robbins. Copyright 2005 O’Reilly Media, Inc., 0-596-10029-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® enabled icon on the cover of your favorite
technology book, that means the book is available online through
the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it free at http://safari.oreilly.com.

How to Contact Us
We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com

xviii | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans
for future editions. You can access this page at:

http://www.oreilly.com/catalog/unixnut4/

Acknowledgments
Thanks again to Yosef Gold for sharing his office with me. Deb Cameron again
revised Chapter 8. Thanks to Mike Loukides at O’Reilly Media for his work as
editor. Chuck Toporek, also of O’Reilly Media, answered numerous Mac OS X
and Macintosh-related questions, for which I’m grateful. J.D. “Illiad” Frazer of
User Friendly (see http://www.userfriendly.org/) provided the great cartoon on the
back cover. It’s a relief to finally know the tarsier’s name.

Thanks to Jennifer Vesperman for permission to adapt material from Essential
CVS for Chapter 14. Similarly, Ben Collins-Sussman, Brian W. Fitzpatrick, and
C. Michael Pilato gave permission for me to adapt material from Version Control
with Subversion for Chapter 15, which I greatly appreciate. And thanks to Andy
Oram, Ellen Siever, Stephen Figgins and Aaron Weber for making available mate-
rial from Linux in a Nutshell for use in parts of the book.

Thanks to David G. Korn (AT&T Research) and Chet Ramey (Case Western
Reserve University) for answering my questions about the Korn shell and Bash.
Keith Bostic of Sleepycat Software answered several questions about Berkeley DB.
Glenn Barry of Sun Microsystems helped out on the Solaris side.

Thanks to the following people, in alphabetical order, for reviewing the book during
its various stages: Nelson H.F. Beebe (University of Utah Mathematics Depart-
ment), Jon Forrest (University of California, Berkeley, Civil and Environmental
Engineering), and Brian Kernighan (Princeton University Computer Science Depart-
ment). Chet Ramey, co-author and maintainer of Bash, reviewed Chapter 4, and
Bram Moolenaar, the author of vim, reviewed Chapter 9, for which I thank them.

A special thanks to Dr. Uri Degen, Lev Orpaz, Julio Kadichevski, and Sid Gordon
of Ness Technologies, and to Mike Hendrickson and Mike Loukides of O’Reilly
Media, for enabling me to finish this edition in a timely fashion.

Once again, thanks to my wife Miriam for her love, patience, and support, and to
my children for not giving Mommy (too much) hassle while I was working.

—Arnold Robbins
Nof Ayalon

ISRAEL

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

I
Commands and Shells

Part I presents a summary of Unix commands of interest to users and
programmers. It also describes the major Unix shells, including special
syntax and built-in commands. It rounds off with an overview of package
management software.

Chapter 1, Introduction

Chapter 2, Unix Commands

Chapter 3, The Unix Shell: An Overview

Chapter 4, The Bash and Korn Shells

Chapter 5, tcsh: An Extended C Shell

Chapter 6, Package Management

3

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Introduction

1
Introduction

The Unix operating system originated at AT&T Bell Labs in the early 1970s. System
V Release 4 (SVR4) came from USL (Unix System Laboratories) in the late 1980s.
Unix source ownership is currently a matter of litigation in U.S. courts. Because
Unix was able to run on different hardware from different vendors, developers were
encouraged to modify Unix and distribute it as their own value-added version. Sepa-
rate Unix traditions evolved as a result: USL’s System V, the Berkeley Software
Distribution (BSD, from the University of California, Berkeley), Xenix, etc.

SVR4, which was developed jointly by USL (then a division of AT&T) and Sun
Microsystems, merged features from BSD and SVR3. This added about two dozen
BSD commands (plus some new SVR4 commands) to the basic Unix command
set. In addition, SVR4 provided a BSD Compatibility Package, a kind of “second
string” command group. This package included some of the most fundamental
BSD commands, and its purpose was to help users of BSD-derived systems make
the transition to SVR4.

Unix in the 21st Century
Today, the specification of what makes a system “Unix” is embodied primarily in
the POSIX standard, an international standard based on System V and BSD.
Commercial Unix systems, such as Solaris from Sun Microsystems, AIX from
IBM, and HP-UX from Hewlett Packard, are standard-adhering direct descen-
dants of the original Unix systems.

A number of other systems are “spiritual” descendents of Unix, even though they
contain none of the original Unix source code. The most notable of these systems
is GNU/Linux, which has seen a meteoric rise in popularity. However, a large
number of systems derived from the 4.4-BSD-Lite distribution are also popular.
All of these systems offer standards compliance and compatibility with SVR4 and
earlier versions of BSD.

4 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

This edition of Unix in a Nutshell attempts to define the cross-section of features
and commands that “make a Unix system Unix.” To that end, it covers three of
the most popular and representative systems now available.

Solaris 10
Solaris 10 is a distributed computing environment from Sun Microsystems.
Solaris includes the SunOS 5.10 operating system, plus additional features
such as the Common Desktop Environment, GNOME, and Java tools. In
addition, the kernel has received significant enhancement to support multi-
processor CPUs, multithreaded processes, kernel-level threads, and dynamic
loading of device drivers and other kernel modules. Most of the user-level
(and system administration) content comes from SVR4. As a result, Solaris 10
is based on SVR4 but contains additional BSD/SunOS features. To help in the
transition from the old (largely BSD-based) SunOS, Solaris provides the BSD/
SunOS Compatibility Package and the Binary Compatibility Package.

Sun has made binary versions of Solaris for the SPARC and Intel architec-
tures available for “free,” for noncommercial use. You pay only for the media,
shipping, and handling, or you may download installation CD images. To
find out more, see http://www.sun.com/developer.

As this book was going to press, Sun announced that it would be making the
source code for Solaris available as Open Source. For more details, see http://
www.opensolaris.org.

Fedora GNU/Linux
There are many distributions of GNU/Linux (the combination of the GNU
utilities with the Linux kernel to make a complete operating environment).
We have chosen the Fedora Core 3 system from Red Hat, Inc.* To find out
more, see http://fedora.redhat.com.

Mac OS X 10.4 (Tiger)
Mac OS X introduced a revolution into the Macintosh world, with a slick
new interface (Aqua) running atop a powerful OS kernel based on Mach and
FreeBSD. The shell level utilities are largely from FreeBSD. The 10.4 (a.k.a.
“Tiger”) release is current as of this writing. To find out more, see http://
www.apple.com/macosx.

One important “quirk” of Mac OS X is worth noting. The default HPFS file-
system stores filenames in their original case, but it ignores case when looking
for files. In practice, this make surprisingly little difference. However, it can
occasionally have weird side effects, since things like command completion in
the Bash shell are still case-sensitive.

* This is undoubtedly cause to receive hate-mail from the advocates of other distributions. In our
defense, we can only claim that it’s impossible to cover every GNU/Linux distribution, and that
for everyday use with a shell prompt, the systems are all extremely similar.

Obtaining Compilers | 5

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Compilers
If you wish to build programs from source code, you need a compiler. Almost all
Unix applications are written in C or C++, with the majority still written in C. This
section describes obtaining compilers for the three systems covered in this book.

Solaris

Solaris 10 includes a Java compiler. Earlier versions of Solaris did not come with C
or C++ compilers. You had to either buy compilers from Sun, from other third
party vendors, or find a binary of some version of GCC for use in bootstrapping
the latest version of GCC.

The final version of Solaris 10 now includes GCC (both C and C++ compilers) in
/usr/sfw/bin. This is true for both the SPARC and Intel x86 versions. You thus
have a choice: you may use the supplied GCC, or buy high-quality C and C++
compilers from Sun.

Besides GCC, a very large number of precompiled packages is available from http://
www.sunfreeware.com/. You should see both the “Download/Install” and “FAQ”
sections of that web site.

All the software from http://www.sunfreeware.com is in pkgadd format and is
installable using that command. (See Chapter 6.) We recommend reading the
details on the web site, which will always be up to date.

Note that many commands discussed in this book won’t be on your system if all
you’ve done is an end user install. If you can afford the disk space, do at least a
developer install. This also installs many of the header files and libraries that you
need in order to compile programs from source code.

For support issues and publicly released patches to Solaris, the web starting point
is http://sunsolve.sun.com.

GNU/Linux

GNU/Linux systems usually install software development tools by default. If your
system does not have compiler tools or make (see Chapter 16), then you will have
to find the appropriate package(s) for your distribution. This is likely to be one or
more .rpm or .deb files on your distribution media (CD or DVD), or you may be
able to install it over the Internet, using a package manager such as apt or yum.

At a minimum, you will need the GNU Compiler Collection (GCC), system
header files and libraries, the GNU Binutils (assembler, loader, ar, etc.), and make.

Mac OS X

Unix-style development tools (compiler, make) are included as part of the larger
Xcode Tools package. Boxed distributions of Mac OS X include an Xcode Tools
CD. The easiest way to install the tools is to insert that CD into your CD drive.

6 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

If your version of Mac OS X is that which came with your hardware, you won’t
have an Xcode Tools CD. Instead, click on Developer.mpkg in /Applications/
Installers/Developer Tools. Doing so installs the development tools.

Building Software
Many of the programs listed in Chapter 2 are available in source code form from
the Internet. For GNU/Linux and Mac OS X, you may be able to use a package
manager to download and install the software (see Chapter 6). Similarly, for
Solaris, you may be able to get a precompiled version of the program from http://
www.sunfreeware.com/.

However, it’s possible, particularly on a commercial Unix system, that you will
want (or need) to download the source and build the program yourself if you
don’t have it, or if you wish to obtain the very latest version. This section outlines
the conventional build process.

Most Internet software is written in C or C++. To compile it you will need a
compiler. See the previous section for a discussion of where to get a compiler if
you don’t have one.

Today’s programs usually use the GNU Project’s Autoconf software suite for
managing portability issues. Autoconf generates a shell script named configure,
which tests various aspects of the target system. The end result of running
configure is a Makefile custom-tuned to the particular system (see Chapter 16),
and a header file describing the features available, or missing, from the system. As
a result, the recipe for building software is usually quite simple, consisting of the
following:

1. Download the software. This can be done with a noninteractive program
such as wget or curl (see their entries in Chapter 2), or interactively using
anonymous FTP for programs distributed that way.

2. Decompress and extract the software.

3. Change directory into the program’s distribution directory.

4. Run configure.

5. Run make.

6. Optionally, run the program’s self-test suite.

7. Run make install, usually as root, to install the software.

The following example uses GNU sed to illustrate the process. The steps are
similar or identical for all GNU software, and for most other freely-available
programs as well.

First, we obtain the program using wget:

$ wget ftp://ftp.gnu.org/gnu/sed/sed-4.1.4.tar.gz Retrieve the latest version
--15:00:04-- ftp://ftp.gnu.org/gnu/sed/sed-4.1.4.tar.gz
 => `sed-4.1.4.tar.gz'
Resolving ftp.gnu.org... 199.232.41.7
Connecting to ftp.gnu.org[199.232.41.7]:21... connected.
Logging in as anonymous ... Logged in!

What’s in the Quick Reference | 7

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

==> SYST ... done. ==> PWD ... done.
==> TYPE I ... done. ==> CWD /gnu/sed ... done.
==> PASV ... done. ==> RETR sed-4.1.4.tar.gz ... done.
Length: 794,257 (unauthoritative)

100%[==================================>] 794,257 60.04K/s ETA 00:00

15:00:29 (38.86 KB/s) - `sed-4.1.4.tar.gz' saved [794257]

The next step is to decompress and extract the software:

$ gzip -d < sed-4.1.4.tar.gz | tar -xpvf - Extract source code
sed-4.1.4/
sed-4.1.4/ABOUT-NLS
sed-4.1.4/AUTHORS
sed-4.1.4/BUGS
...

Next we change into the directory and run configure:

$ cd sed-4.1.4 Change directory
$./configure && make Run configure and make
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
...

The && construct runs make only if configure finishes successfully (see Chapter 4).

Next, we run the test suite, to ensure that there were no problems:

$ make check Test the build
Making check in intl Lots of output omitted
...
PASS: dc
===================
All 71 tests passed
===================

Finally, we install the software. This may require administrative privileges:

$ su root Change to superuser
Password: Password is not echoed
make install Install GNU sed into /usr/local
...

What’s in the Quick Reference
This guide presents the major features of Solaris, GNU/Linux, and Mac OS X. In
addition, this guide presents chapters on Emacs, RCS, CVS, Subversion, GNU Make,
and GDB, the GNU debugger. Although they are not part of commercial Unix
systems, they are found on many Unix systems because they are useful add-ons.

But keep in mind: if your system doesn’t include all the component packages,
there will be commands in this book you won’t find on your system.

8 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The summary of Unix commands in Chapter 2 makes up a large part of this book.
Only user/programmer commands are included; administrative commands are
purposely ignored. Chapter 2 describes the following set:

• Commands and options in Solaris, GNU/Linux, and Mac OS X. This
includes many “essential” tools for which source and/or binaries are avail-
able via the Internet

• Solaris-only tools

• GNU/Linux-only tools

• Mac OS X-only tools

• Java-related tools

Beginner’s Guide
If you’re just beginning to work on a Unix system, the abundance of commands
might prove daunting. To help orient you, the following lists present a small
sampling of commands on various topics.

Communication

Comparisons

File Management

ftp Interactive file transfer program.
login Sign on to Unix.
mailx Read or send mail.
slogin Sign on to remote Unix using secure shell.
ssh Connect to another system, securely.

cmp Compare two files, byte by byte.
comm Compare items in two sorted files.
diff Compare two files, line by line.
diff3 Compare three files.
dircmp Compare directories.
sdiff Compare two files, side by side.

cd Change directory.
chgrp Change file group.
chmod Change access modes on files.
chown Change file owner.
cksum Print a file checksum, POSIX standard algorithm.
cp Copy files.
csplit Break files at specific locations.
file Determine a file’s type.
head Show the first few lines of a file.

Beginner’s Guide | 9

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Miscellaneous

Printing (BSD Commands)

Printing (System V Commands)

less A sophisticated interactive pager program for looking at information on
a terminal, one screenful (or “page”) at a time. The name is a pun on the
more program.

ln Create filename aliases.
locate Find a file somewhere on the system based on its name. The program

uses a database of files that is usually automatically rebuilt, nightly.
ls List files or directories.
md5sum Print a file checksum using the Message Digest 5 (MD5) algorithm.
mkdir Create a directory.
more Display files by screenful.
mv Move or rename files or directories.
pwd Print working directory.
rm Remove files.
rmdir Remove directories.
scp Copy files to remote system securely.
split Split files evenly.
tail Show the last few lines of a file.
wc Count lines, words, and characters.

banner Make posters from words.
bc Arbitrary precision calculator.
cal Display calendar.
calendar Check for reminders.
clear Clear the screen.
info The GNU Info system for online documentation.
man Get information on a command.
nice Reduce a job’s priority.
nohup Preserve a running job after logging out.
passwd Set your login password.
script Produce a transcript of your login session.
spell Report misspelled words.
su Switch to a different user.

lpr Send to the printer.
lpq Get printer status.
lprm Cancel a printer request.
pr Format and paginate for printing.

cancel Cancel a printer request.
lp Send to the printer.
lpstat Get printer status.
pr Format and paginate for printing.

10 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Programming

Searching

Shells
Bourne family shells:

C shell family shells:

Shell Programming

cc C compiler.
ctags C function references (for vi).
ld Loader.
lex Lexical analyzer generator.
make Execute commands in a specified order.
od Dump input in various formats.
splint C program analyzer.
strace Trace signals and system calls.
strip Remove data from an object file.
truss Trace signals and system calls.
yacc Parser generator. Can be used with lex.

egrep Extended version of grep.
fgrep Search files for literal words.
find Search the system for filenames matching patterns or attributes.
grep Search files for text patterns.
strings Display text strings found in binary files.

bash The GNU Project’s Bourne Again Shell.
ksh The Korn shell, either an original or clone, depending upon the

operating system.
pdksh The Public Domain Korn shell.
sh The original Bourne shell, particularly on commercial Unix systems.
zsh The Z-shell.

csh The original BSD C shell.
tcsh The “Tenex” C shell: a much-enhanced version of csh.

basename Print the last component of a pathname, optionally removing a suffix.
dirname Print all but the last component of a pathname.
echo Repeat command-line arguments on the output.
expr Perform arithmetic and comparisons.
id Print user and group ID and name information.
line Read a line of input.
printf Format and print command-line arguments.
sleep Pause during processing.
test Test a condition.

Solaris: Standard Compliant Programs | 11

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Storage

System Status

Text Processing

Solaris: Standard Compliant Programs
Where the behavior specified by the POSIX standard differs from the historical
behavior provided by a command, Solaris provides a different version of the
command in either /usr/xpg6/bin or in /usr/xpg4/bin. On Solaris systems, you

bunzip2 Expand files compressed with bzip2 (.bz2 files).
bzip2 Very high quality file compression program.
cpio Copy archives in or out.
gunzip Expand compressed (.gz and .Z) files.
gzcat Display contents of compressed files (may be linked to zcat).
gzip Compress files to free up space.
tar File tree and tape archiver.
zcat Display contents of compressed files.

at Execute commands later.
crontab Automate commands.
date Display or set date.
df Show free disk space.
du Show disk usage.
env Show environment variables.
finger Display information about users.
kill Terminate a running command.
ps Show processes.
stty Set or display terminal settings.
who Show who is logged on.

awk A pattern-matching programming language for working with text files.
cat Concatenate files or display them.
cut Select columns for display.
ex Line editor underlying vi.
fmt Produce roughly uniform line lengths.
iconv General-purpose character-encoding conversion tool.
join Merge different columns into a database.
paste Merge columns or switch order.
sed Noninteractive text editor.
sort Sort or merge files.
tr Translate (redefine) characters.
uniq Find repeated or unique lines in a file.
vi Visual text editor.
xargs Process many arguments in manageable portions.

12 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

should place these two directories into your search path before the standard /usr/
bin directory. Some of these commands are not covered in this book, since they
are either administrative commands or are obsolete. Also, today, it is unlikely that
the commands in /usr/ucb will be useful; you probably should not have that direc-
tory in your search path.

ar delta file kill nm tail
awk df find link nohup tr
basename du get ln od ulimit
bc ed getconf ls pr vedit
chgrp edit getopts m4 rm vi
chown egrep grep make sccs view
cp env hash more sed wait
ctags ex id mv sh who
date expr ipcs nice sort xargs
dc fgrep jobs nl stty

13

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

2
Unix Commands

Introduction
This chapter presents the Unix commands of interest to users and programmers.
Most of these commands appear in the “Commands” section of the online
manual. With rare exception, this book purposely avoids system administration
commands, because system administration is beyond its scope. The focus instead
is on everyday commands, those used both interactively and for programming.

Summarizing three operating systems that are similar but not identical is a
daunting task. In order to make a coherent presentation, the chapter is organized
as follows:

Common Commands
This section lists commands that should be available on just about any Unix
system. We have included here many commands that are downloadable from
the Internet and that are standard with GNU/Linux, such as autoconf or wget,
even though they may not come “out of the box” on commercial Unix
systems. Wherever possible, we provide a URL from which the source to the
command may be downloaded, so that you can build the program yourself if
you want it. See the section “Obtaining Compilers” in Chapter 1 for what to
do if you don’t have a C compiler for your system.

Additionally, we have made an effort to be as concise as possible. For
example, GNU-style long options are listed side-by-side with their standard
single-letter counterparts. Similarly, several commands have associated with
them additional more specialized commands that are needed only rarely. We
simply list such commands as “related,” without giving them separate entries.
For such commands, you should then see your system’s online manual pages
or other documentation.

Solaris Commands
This section lists the important commands that are available only on Solaris.

14 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

GNU/Linux Commands
This section lists the important commands that are available only on GNU/
Linux.

Mac OS X Commands
This section lists the important commands that are available only on Mac OS X.

Java Commands
The primary commands for doing Java development. These are (essentially)
the same across all systems.

Even commands that appear in the section “Alphabetical Summary of Common
Commands” are not identical on all systems. Thus, here too we’ve made an effort
to describe the common behavior first, with additional subsections on system
specific behavior. This occurs most frequently for the different options that
different versions of the commands accept.

In the command summaries, each entry is labeled with the command name on the
left-hand edge of the page. The syntax line is followed by a brief description and a
list of all available options. Many commands come with examples at the end of
the entry. If you need only a quick reminder or suggestion about a command, you
can skip directly to the examples.

Some options can be invoked only by a user with special system privileges. Such a
person is often called a “superuser.” This book uses the term privileged user instead.

Typographic conventions for describing command syntax are listed in the Preface.
For additional help in locating commands, see the Index.

Finding Commands on Solaris

Solaris systems provide a number of “bin” directories underneath /usr for
different kinds of commands. For example, /usr/bin holds most regular
commands, /usr/java/bin has the Java commands, and so on. The bin directories
are summarized in Table 2-1.

Table 2-1. Solaris bin directories

Directory Purpose

/bin Symbolic link to /usr/bin

/sbin System administration commands

/usr/sbin More system administration commands

/usr/bin Regular commands

/usr/X/bin X Window System utilities

/usr/ccs/bin C Compilation System: compiler-related programs

/usr/dt/bin Common Desktop Environment (CDE) programs

/usr/java/bin Java programs

/usr/openwin/bin OpenWindows programs

/usr/perl5/bin The perl command and its related programs

/usr/sfw/bin Additional software from the Internet

/usr/ucb Berkeley Unix compatibility programs

Alphabetical Summary of Common Commands | 15

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

We strongly recommend placing /usr/xpg6/bin and /usr/xpg4/bin in your shell
search path before the other directories. Solaris is unique among modern Unix
systems in that the versions in /usr/bin continue to be the original System V Release
4 versions of the commands. Today, with just about every other system being
POSIX compliant, you should set up your Solaris account to be POSIX compliant
too! For Bash or the Korn shell, use something like this in your .profile file:

Use multiple lines to fit on the page:
PATH="/usr/xpg6/bin:/usr/xpg4/bin:/usr/ccs/bin:/usr/bin:/usr/java/bin"
PATH="$PATH:/usr/sfw/bin:/usr/perl5/bin"
PATH="$PATH:/usr/dt/bin:/usr/X/bin:/usr/openwin/bin"

The Solaris Software Companion CD contains unsupported copies of many
popular Free Software and Open Source programs from the Internet. They install
under /opt/sfw. If you install this software, you may wish to add /opt/sfw/bin to
your path as well.

Finding Commands on GNU/Linux and Mac OS X

The situation on GNU/Linux and Mac OS X is considerably simpler. For both
systems, a path like the following suffices:

PATH=/bin:/usr/bin:/usr/X11R6/bin

On Mac OS X the default path is /bin:/sbin:/usr/bin:/usr/sbin. You may wish to
add the X11 directory to it:

PATH=$PATH:/usr/X11R6/bin

Essentially every GNU/Linux program accepts long options (such
as --fire-phasers) besides the traditional short ones (-F). In
addition, just about every GNU/Linux program accepts the options
--help and --version, to print a command-line summary and ver-
sion information respectively. In the interests of brevity, the indi-
vidual command descriptions omit the --help and --version
options, and they omit the statement that long options apply only
to GNU/Linux programs.

Alphabetical Summary of Common Commands
This list describes the commands that are common to two or more of Solaris,
GNU/Linux, and Mac OS X. It also includes many programs available from the
Internet that may not come “out of the box” on all the systems.

On Solaris, many of the Free Software and Open Source programs described here
may be found in /usr/sfw/bin or /opt/sfw/bin. Interestingly, the Intel version of

/usr/xpg4/bin Standards-compliant versions of regular utilities

/usr/xpg6/bin More standards compliant versions of regular utilities

Table 2-1. Solaris bin directories (continued)

Directory Purpose

16 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

aclocal

Solaris has more programs in /opt/sfw/bin than does the SPARC version. As
mentioned earlier, on Solaris, we recommend placing /usr/xpg6/bin and /usr/xpg4/
bin in your PATH before /usr/bin.

aclocal aclocal [options]

Part of GNU automake. Place m4 macro definitions needed by
autoconf into a single file. The aclocal command first scans for
macro definitions in m4 files in its default directory (/usr/share/
aclocal on some systems) and in the file acinclude.m4. It next scans
for macros used in the configure.ac file. It generates an aclocal.m4
file that contains definitions of all m4 macros required by autoconf.
See also automake.

Options

--acdir=dir
Look for macro files in directory dir instead of the default
directory.

--force
Always update the output file.

-I dir
Additionally, search directory dir for m4 macro definitions.

--output=file
Save output to file instead of aclocal.m4.

--print-ac-dir
Print the name of the directory to be searched for m4 files, then
exit.

--verbose
Print names of files being processed.

apropos apropos keywords

Look up one or more keywords in the online manpages. Same as
man -k. See also whatis.

ar ar key [args] [posname] [count] archive [files]

Maintain a group of files that are combined into a file archive. Used
most commonly to create and update library files as used by the
loader (ld). Only one key letter can be used, but each may be
combined with additional args (with no separations between).
posname is the name of a file in archive. When moving or replacing
files, you can specify that they be placed before or after posname.

On all three systems, key and args can be preceded with a -, as
though they were regular options.

Solaris: ar is found in /usr/ccs/bin.

Alphabetical Summary of Common Commands | 17

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ar

Key

Common Arguments

Solaris and GNU/Linux Argument

Solaris and Mac OS X Argument

Solaris Argument

GNU/Linux Arguments

Mac OS X Argument

d Delete files from archive.
m Move files to end of archive.
p Print files in archive.
q Append files to archive.
r Replace files in archive.
t List the contents of archive or list the named files.
x Extract contents from archive or only the named files.

a Use with r or m to place files in the archive after posname.
b Same as a but before posname.
c Create archive silently.
i Same as b.
s Force regeneration of archive symbol table (useful after

running strip).
u Use with r to replace only files that have changed since being

put in archive.
v Verbose; print a description.

V Print version number.

T Truncate long filenames when extracting onto filesystems that
don’t support long filenames. Without this operation,
extracting files with long filenames is an error.

C Don’t replace existing files of the same name with the one
extracted from the archive. Useful with T.

f Truncate long filenames.
N Use the count parameter. Where multiple entries with the

same name are found, use the count instance.
o Preserve original timestamps.
P Use full pathname. Useful for non-POSIX-compliant archives.
S Do not regenerate the symbol table.

L Provide support for long filenames. This is the default.

18 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

as

Example

Update the versions of object files in mylib.a with the ones in the
current directory. Only files in the mylib.a that are also in the
current directory are replaced.

ar r mylib.a *.o

as as [options] files

Generate an object file from each specified assembly language
source file. Object files have the same rootname as source files but
replace the .s suffix with .o. as is usually called by compiler driver
programs such as cc or gcc.
Each system has options specific to it, often too many options to
comprehend easily. See your local as(1) manpage.

Solaris: as is found in /usr/ccs/bin.

Common Option

-o objfile
Place output in object file objfile (default is file.o).

at at options1 time [date] [+ increment]
at options2 [jobs]

Execute commands entered on standard input at a specified time
and optional date. (See also batch and crontab.) End input with
EOF. time can be formed either as a numeric hour (with optional
minutes and modifiers) or as a keyword. date can be formed either
as a month and date, as a day of the week, or as a special keyword.
increment is a positive integer followed by a keyword. See the
following lists for details.

Common Options1

-f file
Execute commands listed in file.

-m Send mail to user after job is completed.

Solaris Options1

-c Use the C shell to execute the job.

-k Use the Korn shell to execute the job.

-p project
Schedule the job under project.

-q queuename
Schedule the job in queuename. Values for queuename are the
lowercase letters a through z. Queue a is the default queue for
at jobs. Queue b is the queue for batch jobs. Queue c is the
queue for cron jobs.

-s Use the Bourne shell to execute the job.

-t time
Run the job at time, which is in the same format as allowed
by touch.

Alphabetical Summary of Common Commands | 19

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

at

GNU/Linux Options1

-c Display the specified jobs on the standard output. This option
does not take a time specification.

-V Display the version number.

Common Options2

-l Report all jobs that are scheduled for the invoking user or, if
jobs are specified, report only for those. See also atq.

Solaris and Mac OS X Options2

-r Remove specified jobs that were previously scheduled. To
remove a job, you must be a privileged user or the owner of
the job. Use -l first to see the list of scheduled jobs. See also
atrm.

GNU/Linux Options2

-d Same as Solaris or Mac OS X -r.

Time

hh:mm [modifiers]
Hours can have one or two digits (a 24-hour clock is assumed
by default); optional minutes can be given as one or two
digits; the colon can be omitted if the format is h, hh, or
hhmm; e.g., valid times are 5, 5:30, 0530, 19:45. If modifier am
or pm is added, time is based on a 12-hour clock. If the
keyword zulu is added, times correspond to Greenwich Mean
Time (UTC).

midnight|noon|now
Use any one of these keywords in place of a numeric time. now
must be followed by an increment.

Date

month num[, year]
month is one of the 12 months, spelled out or abbreviated to
their first three letters; num is the calendar day of the month;
year is the four-digit year. If the given month occurs before the
current month, at schedules that month next year.

day One of the seven days of the week, spelled out or abbreviated
to their first three letters.

today|tomorrow
Indicate the current day or the next day. If date is omitted, at
schedules today when the specified time occurs later than the
current time; otherwise, at schedules tomorrow.

Increment

Supply a numeric increment if you want to specify an execution
time or day relative to the current time. The number should
precede any of the keywords minute, hour, day, week, month, or year
(or their plural forms). The keyword next can be used as a synonym
for + 1.

20 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

atq

Examples

In typical usage, you run at and input commands that you want
executed at a particular time, followed by EOF. The GNU/Linux
version prompts for input with at>; the other systems do not.

$ at 1:00 am tomorrow
at> ./total_up > output
at> mail joe < output
at> <EOT> Entered by pressing CTRL-D
job 1 at 2003-03-19 01:00

The two commands could also be placed in a file and submitted as
follows:

$ at 1:00 am tomorrow < scriptfile

More examples of syntax follow. Note that the first two commands
are equivalent.

at 1945 pm December 9
at 7:45pm Dec 9
at 3 am Saturday
at now + 5 hours
at noon next day

atq atq [options] [users]

List jobs created by the at command that are still in the queue.
Normally, jobs are sorted by the order in which they execute.
Specify the users whose jobs you want to check. If no users are
specified, the default is to display all jobs if you’re a privileged user;
otherwise, only your jobs are displayed.

Solaris Options

-c Sort the queue according to the time the at command was
given.

-n Print only the total number of jobs in queue.

GNU/Linux and Mac OS X Option

-q queue
Show the jobs in queue queue.

GNU/Linux Option

-V Print the version number to standard error.

Mac OS X Option

-v Show jobs that are completed but not yet removed from the
queue.

atrm atrm [options] [users | jobIDs]

Remove jobs queued with at that match the specified jobIDs. A
privileged user may also specify the users whose jobs are to be
removed.

Alphabetical Summary of Common Commands | 21

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

autoconf

Solaris Options

-a Remove all jobs belonging to the current user. (A privileged
user can remove all jobs.)

-f Remove jobs unconditionally, suppressing all information
regarding removal.

-i Prompt for y (remove the job) or n (do not remove).

GNU/Linux and Mac OS X Option

-q queue
Remove the jobs in queue queue.

GNU/Linux Option

-V Print the version number to standard error.

autoconf autoconf [options] [template_file]

Generate a configuration script from m4 macros defined in
template_file, if given, or in a configure.ac or configure.in file in
the current working directory. The generated script is almost
invariably called configure.

Other related programs come as part of autoconf. They are usually
invoked automatically by tools in the autoconf suite. They are:

URL: http://www.gnu.org/software/autoconf.

Options

-d, --debug
Don’t remove temporary files.

-f, --force
Replace files generated previously by autoconf.

-i, --initialization
When tracing calls with the -t option, report calls made
during initialization.

-I dir, --include=dir
Search in directory dir for input files.

-o file, --output=file
Save output to file.

-t macro, --trace=macro
Report the list of calls to macro.

autoreconf Update configure scripts by running autoconf,
autoheader, aclocal, automake, and libtoolize as
needed.

autoscan Create or maintain a preliminary configure.ac file
named configure.scan based on source files in
specified directory, or the current directory if none
given.

autoupdate Update the configure template file file, or
configure.ac if no file is specified.

22 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

autoheader

-v, --verbose
Verbosely print information about the progress of autoconf.

-W category, --warnings=category
Print any warnings related to category. Accepted categories are:

autoheader autoheader [options] [template_file]

Part of GNU autoconf. Generate a template file of C #define state-
ments from m4 macros defined in template_file, if given, or in a
configure.ac or configure.in file in the current working directory.
The generated template file is almost invariably called config.h.in
or config.hin.

Options

-B dir, --prepend-include=dir
Prepend directory dir to the search path for input files.

-d, --debug
Don’t remove temporary files.

-f, --force
Replace files generated previously by autoheader.

-I dir, --include=dir
Append directory dir to the search path for input files.

-o file, --output=file
Save output to file.

-v, --verbose
Verbosely print information about the progress of autoheader.

-V, --version
Print version number, then exit.

-W category, --warnings=category
Print any warnings related to category. Accepted categories are:

all All warnings.
cross Cross compilation.
error Treat warnings as errors.
no-category Turn off warnings for category.
none Turn off all warnings.
obsolete Obsolete constructs.
syntax Questionable syntax.

all All warnings.
cross Cross compilation.
error Treat warnings as errors.
gnu GNU coding standards.
no-category Turn off warnings for category.
none Turn off all warnings.
obsolete Obsolete constructs.
override User redefinitions of automake variables or rules.
portability Portability issues.
syntax Questionable syntax.
unsupported Unsupported or incomplete features.

Alphabetical Summary of Common Commands | 23

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

automake

automake automake [options] [template_file]

GNU automake tool. Creates GNU standards-compliant Makefile.in
files from Makefile.am template files and can be used to ensure that
projects contain all the files and installation options required to be
standards-compliant.

URL: http://www.gnu.org/software/automake.

Options

-a, --add-missing
Add any missing files automake requires to the directory by
creating symbolic links to automake’s default versions.

-c, --copy
Used with the -a option. Copy missing files instead of creating
symbolic links.

--cygnus
Specifies that the project has a Cygnus-style source tree.

-f, --force-missing
Used with the -a option. Replace required files even if a local
copy already exists.

--foreign
Treat project as a non-GNU project. Check only for elements
required for proper operation.

--gnits
A stricter version of --gnu, performing more checks to comply
with GNU project structure rules.

--gnu
Treat project as a GNU project with the GNU project
structure.

-i, --ignore-deps
Disable automatic dependency tracking.

--include-deps
Enable automatic dependency tracking.

--libdir=dir
Used with the -a option. Search in directory dir for default
files.

--no-force
Update only Makefile.in files that have updated dependents.

-v, --verbose
List files being read or created by automake.

-W category, --warnings=category
Print any warnings related to category. Accepted categories are:

all All warnings.
error Treat warnings as errors.
gnu GNU coding standards.
no-category Turn off warnings for category.
none Turn off all warnings.

24 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

awk

awk awk [options] [program] [var=value ...] [files]

Use the pattern-matching program to process the specified files.
program instructions have the general form:

pattern { procedure }

pattern and procedure are optional. When specified on the
command line, program must be enclosed in single quotes to
prevent the shell from interpreting its special symbols.

Two versions of awk exist: the original, “old” awk from V7 Unix,
circa 1979, and “new” awk, from System V Release 4. POSIX awk is
based on the new one.

On most systems, awk is a POSIX-compliant version, except on
Solaris, where you must use /usr/xpg4/bin/awk instead of /usr/bin/
awk. Some systems provide oawk and nawk commands as well. See
Chapter 11 for more information (including examples) on awk.

banner banner characters

Print characters as a poster on the standard output. Each word
supplied must contain 10 characters or less.

The figlet program is more useful and flexible (http://www.figlet.org).

basename basename pathname [suffix]
basename [-a] [-s suffix] pathname ...

Given a pathname, strip the path prefix and leave just the filename,
which is printed on standard output. If specified, a filename suffix
(e.g., .c) is removed also. basename is typically invoked via command
substitution (`…`) to generate a filename. See also dirname.

Solaris: The version of basename in /usr/bin allows the suffix to be a
pattern of the form accepted by expr. See the entry for expr for
more details. The version is /usr/xpg4/bin does not treat the suffix
specially.

The second syntax is for Mac OS X.

Mac OS X Options

-a Treat every argument as a pathname, removing the leading
components.

-s suffix
Use suffix as the suffix to remove from each following
pathname.

obsolete Obsolete constructs.
override User redefinitions of automake variables or

rules.
portability Portability issues.
syntax Questionable syntax.
unsupported Unsupported or incomplete features.

Alphabetical Summary of Common Commands | 25

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

batch

Example

Given the following fragment from a Bourne shell script:

ofile=output_file
myname="`basename $0`"
echo "$myname: QUITTING: can't open $ofile" 1>&2
exit 1

If the script is called do_it, the following message would be printed
on standard error:

do_it: QUITTING: can't open output_file

bash bash [options] [file [arguments]]
sh [options] [file [arguments]]

Bash is the GNU Project’s Bourne Again shell. On GNU/Linux
systems and Mac OS X, it is the standard shell, doing double duty
as /bin/sh. It is also supplied with Solaris. For more information,
see Chapter 4.

URL: http://www.gnu.org/software/bash.

batch batch [options] [time]

Execute commands entered on standard input. End with EOF.
Unlike at, which executes commands at a specific time, batch
executes commands one after another (waiting for each one to
complete). This avoids the potentially high system load caused by
running several background jobs at once. The GNU/Linux and
Mac OS X versions allow you to specify time, which is when the job
should run. See also at.

On Solaris, batch is equivalent to at -q b -m now. It takes no argu-
ments, reading commands from standard input. Instead of the
original System V version, Mac OS X uses an earlier version of the
same batch command found on GNU/Linux. The GNU/Linux
version has more options.

On Mac OS X, at, atq, atrm and batch are disabled by
default. See the at(1) manpage for more information.

Solaris Option

-p project
Run the job under project project.

GNU/Linux and Mac OS X Options

-f file
Read the job commands from file instead of from standard
input.

-m Send mail to the user when the job is done.

26 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

bc

GNU/Linux Options

-q queue
Use job queue queue. See the entry for at for more
information.

-v Show the time when the job will run.

-V Print version information to standard error before reading the
job.

Example

$ batch
sort data.raw > data.sorted
troff -Tps -mm thesis.mm > bigfile.ps
EOF

bc bc [options] [files]

Interactively perform arbitrary-precision arithmetic or convert
numbers from one base to another. Input can be taken from files or
read from the standard input. To exit, type quit or EOF.

bc is a language (and compiler) whose syntax resembles that of C,
but with unlimited-precision arithmetic. bc consists of identifiers,
keywords, and symbols. Examples are given at the end. GNU/
Linux and Mac OS X both use GNU bc.

URL: http://www.gnu.org/software/bc/.

Common Option

-l, --mathlib
Make functions from the math library available. This is the
only option required by POSIX.

Solaris Options

-c Do not invoke dc; compile only. (On Solaris, and on most
commercial Unix systems, bc is a preprocessor for dc, so bc
normally invokes dc.)

GNU bc Options

-h, --help
Print help message and exit.

-i, --interactive
Interactive mode.

-q, --quiet
Do not display welcome message.

-s, --standard
Ignore all extensions, and process exactly as in POSIX.

-v, --version
Print version number.

-w, --warn
When extensions to POSIX bc are used, print a warning.

Alphabetical Summary of Common Commands | 27

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

bison

Examples

Note in these examples that when you type some quantity (a
number or expression), it is evaluated and printed, but assignment
statements produce no display:

$ bc Stat the program
ibase = 8 Octal input
20 Evaluate this octal number
16 Terminal displays decimal value
obase = 2 Display output in base 2 instead of base 10
20 Octal input
10000 Terminal now displays binary value
ibase = A Restore base 10 input
scale = 3 Truncate results to three places
8/7 Evaluate a division
1.001001000 Oops! Forgot to reset output base to 10
obase = 10 Input is decimal now, so "A" isn't needed
8/7
1.142 Terminal displays result (truncated)

The following lines show the use of functions:

$ bc Start the program
define p(r,n){ Function p uses two arguments
auto v v is a local variable
v = r^n r raised to the n power
return(v)} Value returned

scale = 5
x = p(2.5,2) x = 2.5 ^ 2
x Print value of x
6.25
length(x) Number of digits
3
scale(x) Number of places to right of decimal point
2

biff biff [y | n]

Turn mail notification on or off. With no arguments, biff indi-
cates the current status.

When mail notification is turned on, each time you get incoming
mail, the bell rings, and the first few lines of each message are
displayed.

Solaris: This command is in /usr/ucb.

bison bison [options] file

Given a file containing a context-free grammar, convert it into
tables for subsequent parsing while sending output to file.c. This
utility is to a large extent compatible with yacc, and in fact is
named for it. All input files should use the suffix .y; output files
will use the original prefix.

URL: http://www.gnu.org/software/bison.

28 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

bzip2

Options

-b prefix, --file-prefix=prefix
Use prefix for all output files.

-d file, --defines=file
Generate file (usually with a .h suffix), producing #define
statements that relate bison’s token codes to the token names
declared by the user.

-h, --help
Print a help message and exit.

-k, --token-table
Include token names and values of YYNTOKENS, YYNNTS,
YYNRULES, and YYNSTATES in file.c.

-l, --no-lines
Exclude #line constructs from code produced in file.c. (Use
after debugging is complete.)

-n, --no-parser
Suppress parser code in output, allowing only declarations.
Assemble all translations into a switch statement body and
print it to file.act.

-o file, --output-file=file
Output to file.

-p prefix, --name-prefix=prefix
Substitute prefix for yy in all external symbols.

-r, --raw
Use bison token numbers, not yacc-compatible translations, in
file.h.

-t, --debug
Compile runtime debugging code.

-v, --verbose
Verbose mode. Print diagnostics and notes about parsing
tables to file.output.

-V, --version
Display version number.

-y, --yacc, --fixed-output-files
Duplicate yacc’s conventions for naming output files.

bzip2 bzip2 [options] filenames
bunzip2 [options] filenames
bzcat [option] filenames
bzip2recover filenames

File compression and decompression utility similar to gzip, but
uses a different algorithm and encoding method to get better
compression. bzip2 replaces each file in filenames with a
compressed version of the file and with a .bz2 extension appended.
bunzip2 decompresses each file compressed by bzip2 (ignoring other
files, except to print a warning). bzcat decompresses all specified

Alphabetical Summary of Common Commands | 29

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

bzip2

files to standard output, and bzip2recover is used to try to recover
data from damaged files.

Additional related commands include bzcmp, which compares the
contents of bzipped files; bzdiff, which creates diff (difference) files
from a pair of bzip files; bzgrep, to search them; and the bzless and
bzmore commands, which apply the more and less commands to
bunzip2 output as bzcat does with the cat command. See cat, cmp,
diff, grep, less, and more for information on how to use those
commands.

URL: http://www.bzip.org.

Options

-- End of options; treat all subsequent arguments as filenames.

-dig
Set block size to dig × 100KB when compressing, where dig is a
single digit from 1 to 9.

--best
Same as -9.

-c, --stdout
Compress or decompress to standard output.

-d, --decompress
Force decompression.

--fast
Same as -1.

-f, --force
Force overwrite of output files. Default is not to overwrite.
Also forces breaking of hard links to files.

-k, --keep
Keep input files; don’t delete them.

-L, --license, -V, --version
Print license and version information and exit.

-q, --quiet
Print only critical messages.

-s, --small
Use less memory, at the expense of speed.

-t, --test
Check the integrity of the files, but don’t actually decompress
them.

-v, --verbose
Verbose mode. Show the compression ratio for each file
processed. Add more -v’s to increase the verbosity.

-z, --compress
Force compression, even if invoked as bunzip2 or bzcat.

30 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cal

cal cal [options] [[month] year]

With no arguments, print a calendar for the current month. Other-
wise, print either a 12-month calendar (beginning with January) for
the given year or a one-month calendar of the given month and
year. month ranges from 1 to 12; year ranges from 1 to 9999.

GNU/Linux and Mac OS X Options
-j Display Julian dates (days numbered 1 to 365, starting from

January 1).

-y Display entire year.

GNU/Linux Options
-1 Print a one-month calendar. This is the default.

-3 Print a three-month calendar: previous month, current month,
and next month.

-m Display Monday as the first day of the week.

-s Display Sunday as the first day of the week. This is the default.

Examples
cal 12 2007
cal 2007 > year_file

calendar calendar [options]

Read your calendar file and display all lines that contain the
current date. The calendar file is like a memo board. You create the
file and add entries like the following:

5/4 meeting with design group at 2 pm
may 6 pick up anniversary card on way home

When you run calendar on May 4, the first line is displayed.
calendar can be automated by using crontab or at, or by including it
in your startup files, .profile or .login.

Solaris Option

– Allow a privileged user to invoke calendar for all users,
searching each user’s login directory for a file named calendar.
Entries that match are sent to a user via mail. This feature is
intended for use via cron. It is not recommended in networked
environments with large user bases.

Mac OS X Options

The Mac OS X version of calendar has a number of additional
features not described here. See calendar(1) for more details.

-a Same as the Solaris - option, above.

-A count
Print lines matching today’s date, and for the next count days
forward.

-B count
Print lines matching today’s date, and for the previous count
days backward.

Alphabetical Summary of Common Commands | 31

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cat

-d MMDD[[YY]YY]
Print entries for the given date. The year may be specified
using either two or four digits.

-f file
Use file instead of $HOME/calendar.

-F daynum
Day number daynum is the “Friday,” i.e., the day before the
weekend starts. The default is 5.

-l count
Look ahead count days and display the entries for that date also.

-t dd[.mm[.yyyy]]
For testing, set the date to the given value.

-w ndays
Add ndays to the number of “lookahead” days if and only if
the originally provided day is a Friday. The default value is 2,
which causes calendars for Fridays to also print entries for the
following weekend.

-W count
Like -A, but do not include weekends in the count of days to
look ahead.

cancel cancel [options] [printer]

Cancel print requests made with lp. The request can be specified
by its ID, by the printer on which it is currently printing, or by the
username associated with the request (only privileged users can
cancel another user’s print requests). Use lpstat to determine
either the id or the printer to cancel.

Common Options

id Cancel print request id.

-u user
Cancel request associated with user.

GNU/Linux and Mac OS X Options

GNU/Linux and Mac OS X use CUPS, the Common Unix Printing
System. See http://www.cups.org for more information. Besides the
above options, the CUPS cancel command accepts the following:

-a Remove all jobs from the given destination.

-h host
Treat host as the name of the print server. The default is
localhost or the value of the CUPS_SERVER environment
variable.

cat cat [options] [files]

Read one or more files and print them on standard output. Read
standard input if no files are specified or if – is specified as one of

32 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cc

the files; end input with EOF. Use the > shell operator to combine
several files into a new file; >> appends files to an existing file.

Solaris and Mac OS X Options

-b Like -n, but don’t number blank lines.

-e Print a $ to mark the end of each line. Must be used with -v.

-n Number lines.

-s Suppress messages about nonexistent files. (Note: on some
systems, -s squeezes out extra blank lines.)

-t Print each tab as ^I and each form feed as ^L. Must be used
with -v.

-u Print output as unbuffered (default is buffered in blocks or
screen lines).

-v Display control characters and other nonprinting characters.

GNU/Linux Options

-A, --show-all
Same as -vET.

-b, --number-nonblank
Number all nonblank output lines, starting with 1.

-e Same as -vE.

-E, --show-ends
Print $ at the end of each line.

-n, --number
Number all output lines, starting with 1.

-s, --squeeze-blank
Squeeze down multiple blank lines to one blank line.

-t Same as -vT.

-T, --show-tabs
Print TAB characters as ^I.

-u Ignored; retained for Unix compatibility.

-v, --show-nonprinting
Display control and nonprinting characters, with the excep-
tion of LINEFEED and TAB.

Examples

cat ch1 Display a file
cat ch1 ch2 ch3 > all Combine files
cat note5 >> notes Append to a file
cat > temp1 Create file at terminal; end with EOF
cat > temp2 << STOP Create file at terminal; end with STOP

cc cc [options] files

Compile one or more C source files (.c), assembler source files (.s),
or preprocessed C source files (.i). cc automatically invokes the
loader ld (unless -c is supplied). In some cases, cc generates an

Alphabetical Summary of Common Commands | 33

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cc

object file having a .o suffix and a corresponding root name. By
default, output is placed in a.out. cc accepts additional system-
specific options.

General Notes

• On GNU/Linux and Mac OS X, cc is just a frontend for GCC,
the GNU Compiler Collection.

• Options for cc vary wildly across Unix systems. We have
chosen here to document only those options that are
commonly available. You will need to check your local docu-
mentation for complete information.

• Usually, cc passes any unrecognized options to the loader, ld.

Solaris Notes

• Solaris does not come with Sun’s C compiler. If you purchase
Sun’s compiler, it will be installed in /opt/SUNWspro/bin. You
should add that directory to your PATH. Solaris does make
GCC available in /usr/sfw/bin, so if you installed the optional
software, you may choose to use GCC instead.

• The other tools that the C and C++ compilers need (the
assembler and loader) are found in /usr/ccs/bin. You should
add that directory to your PATH also.

Options

-c Suppress loading and keep any object files that were
produced.

-Dname[=def]
Supply a #define directive, defining name to be def or, if no def
is given, the value 1.

-E Run only the macro preprocessor, sending results to standard
output.

-g Generate more symbol-table information needed for debuggers.

-Idir
Search for include files in directory dir (in addition to stan-
dard locations). Supply a -I for each new dir to be searched.

-lname
Link source file with library files libname.so or libname.a.

-Ldir
Like -I, but search dir for library archives.

-o file
Send object output to file instead of to a.out.

-O Optimize object code (produced from .c or .i files). Some
compilers accept an additional argument to -O specifying the
optimization level.

-p Generate benchmark code to count the times each routine is
called. File mon.out is created, so prof can be used later to
produce an execution profile.

-pg Provide profile information for use with gprof.

34 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cd

-P Run only the preprocessor and place the result in file.i.

-S Compile (and optimize, if -O is supplied), but don’t assemble
or load; assembler output is placed in file.s.

-Uname
Remove definition of name, as if through an #undef directive.

Example

Compile xpop.c and load it with the X libraries:

cc -o xpop xpop.c -lXaw -lXmu -lXt -lX11

cd cd [dir]

Change directory. cd is a built-in shell command. See Chapters 4
and 5.

chgrp chgrp [options] newgroup files

Change the group of one or more files to newgroup. newgroup is
either a group ID number or a group name located in /etc/group.
You must own the file or be a privileged user to succeed with this
command.

Common Options

-f, --quiet, --silent
Do not print error messages about files that can’t be changed.

-h, --no-dereference
Change the group on symbolic links. Normally, chgrp acts on
the file referenced by a symbolic link, not on the link itself.

-R, --recursive
Recursively descend through the directory, including subdirecto-
ries and symbolic links, setting the specified group ID as it
proceeds. The last of -H, -L, and -P take effect when used with -R.

GNU/Linux and Mac OS X Options
-H When used with -R, if a command-line argument is a symbolic

link to a directory, recursively traverse the directory. In other
words, follow the link.

-L When used with -R, if any symbolic link points to a directory,
recursively traverse the directory.

-P When used with -R, do not follow any symbolic links. This is
the default.

-v, --verbose
Verbosely describe ownership changes.

GNU/Linux Options

-c, --changes
Print information about files that are changed.

--dereference
Change the group of the file pointed to by a symbolic link, not
the group of the symbolic link itself. This is the default.

Alphabetical Summary of Common Commands | 35

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

chmod

--no-preserve-root
Do not treat the root directory, /, specially (the default).

--preserve-root
Do not operate recursively on /, the root directory.

--reference=filename
Change the group to that associated with filename. In this
case, newgroup is not specified.

chmod chmod [options] mode files

Change the access mode of one or more files. Only the owner of a
file or a privileged user may change its mode. Create mode by
concatenating the characters from who, opcode, and permission.
who is optional (if omitted, default is a); choose only one opcode.

Common Options

-f, --quiet, --silent
Do not print error messages about files that cannot be
changed.

-R, --recursive
Recursively descend through the directory, including subdirec-
tories and symbolic links, setting the specified group ID as it
proceeds. The last of -H, -L, and -P takes effect when used
with -R.

GNU/Linux and Mac OS X Option

-v, --verbose
Verbosely describe ownership changes.

GNU/Linux Options

-c, --changes
Print information about files that are changed.

--no-preserve-root
Do not treat the root directory, /, specially (the default).

--preserve-root
Do not operate recursively on /, the root directory.

--reference=filename
Change the group to that associated with filename. In this
case, newgroup is not specified.

Mac OS X Options

+a, +a#, -a, =a#
Parse, order, remove or rewrite ACL entries. See the chmod(1)
manpage for more information.

-C Exit nonzero if any files have ACLs in noncanonical order.

-E Read new ACL information from standard input. If it parses
correctly, use it to replace the existing ACL information.

-H When used with -R, if a command-line argument is a symbolic
link to a directory, recursively traverse the directory.

36 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

chmod

-i Remove the “inherited” bit from all entries in the ACLs of the
given files.

-I Remove all “inherited” entries in the ACLs of the given files.

-L When used with -R, if any symbolic link points to a directory,
recursively traverse the directory.

-P When used with -R, do not follow any symbolic links. This is
the default.

Who

Opcode

Permission

Alternatively, specify permissions by a three-digit sequence. The
first digit designates owner permission; the second, group permis-
sion; and the third, others permission. Permissions are calculated
by adding the following octal values:

Note: a fourth digit may precede this sequence. This digit assigns
the following modes:

u User
g Group
o Other
a All (default)

+ Add permission
- Remove permission
= Assign permission (and remove permission of the unspecified

fields)

r Read
w Write
x Execute
s Set user (or group) ID
t Sticky bit; save text mode (file) or prevent removal of files by

nonowners (directory)
u User’s present permission
g Group’s present permission
o Other’s present permission
l Mandatory locking

4 Read
2 Write
1 Execute

4 Set user ID on execution
2 Set group ID on execution or set mandatory locking
1 Sticky bit

Alphabetical Summary of Common Commands | 37

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

chown

Examples

Add execute-by-user permission to file:

chmod u+x file

Either of the following assigns read-write-execute permission by
owner (7), read-execute permission by group (5), and execute-only
permission by others (1) to file

chmod 751 file
chmod u=rwx,g=rx,o=x file

Any one of the following assigns read-only permission to file for
everyone:

chmod =r file
chmod 444 file
chmod a-wx,a+r file

Set the user ID, assign read-write-execute permission by owner,
and assign read-execute permission by group and others:

chmod 4755 file

chown chown [options] newowner[:newgroup] files

Change the ownership of one or more files to newowner. newowner
is either a user ID number or a login name located in /etc/passwd.
The optional newgroup is either a group ID number (GID) or a
group name located in the /etc/group file. When newgroup is
supplied, the behavior is to change the ownership of one or more
files to newowner and make it belong to newgroup.

Note: some systems accept a period as well as the colon for sepa-
rating newowner and newgroup. The colon is mandated by POSIX;
the period is accepted for compatibility with older BSD systems.

Common Options

-f, --quiet, --silent
Do not print error messages about files that cannot be
changed.

-h, --no-dereference
Change the owner on symbolic links. Normally, chown acts on
the file referenced by a symbolic link, not on the link itself.

-R, --recursive
Recursively descend through the directory, including subdirec-
tories and symbolic links, setting the specified group ID as it
proceeds. The last of -H, -L, and -P takes effect when used
with -R.

GNU/Linux and Mac OS X Options

-H When used with -R, if a command-line argument is a symbolic
link to a directory, recursively traverse the directory. In other
words, follow the link.

-L When used with -R, if any symbolic link points to a directory,
recursively traverse the directory.

38 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cksum

-P When used with -R, do not follow any symbolic links. This is
the default.

-v, --verbose
Verbosely describe ownership changes.

GNU/Linux Options

-c, --changes
Print information about files that are changed.

--dereference
Change the group of the file pointed to by a symbolic link, not
the group of the symbolic link itself. This is the default.

--from=old-owner:old-group
Change the owner/group of the file to the new values only if
the original values of the owner/group match old-owner and
old-group. Either one may be omitted.

--no-preserve-root
Do not treat the root directory, /, specially (the default).

--preserve-root
Do not operate recursively on /, the root directory.

--reference=filename
Change the owner to that associated with filename. In this
case, newowner is not specified.

cksum cksum [files]

Calculate and print a cyclic redundancy check (CRC) sum for each
file. The CRC algorithm is based on the polynomial used for
Ethernet packets. For each file, cksum prints a line of the form:

sum count filename

Here, sum is the CRC, count is the number of bytes in the file, and
filename is the file’s name. The name is omitted if standard input is
used.

Mac OS X Option

-o algorithm
Use a historical algorithm for computing the checksum. Valid
values are 1, for the historic BSD 16-bit sum checksum, 2, for
the historic System V 32-bit sum checksum, and 3 for a 32-bit
CRC that is different from the default algorithm.

clear clear [term]

Clear the terminal display. The Solaris version allows an optional
terminal name indicating the terminal’s type. Normally this value is
taken from the TERM environment variable.

Alphabetical Summary of Common Commands | 39

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

comm

cmp cmp [options] file1 file2 [skip1 [skip2]]

Compare file1 with file2. Use standard input if file1 or file2 is -.
(See also comm and diff.) skip1 and skip2 are optional offsets in the
files at which the comparison is to start. The exit codes are as
follows:

Common Options

-l, --verbose
Print offsets and codes of all differing bytes.

-s, --quiet, --silent
Work silently; print nothing, but return exit codes.

GNU/Linux and Mac OS X Options

-b, --print-bytes
Print differing bytes.

-i num1[:num2], --ignore-initial=num1[:num2]
Ignore the first num1 bytes of input. With num2, skip num1
bytes from the first file and num2 bytes from the second file.

-n max, --bytes=max
Read and compare no more than max bytes.

Example

Print a message if two files are the same (exit code is 0):

cmp -s old new && echo 'no changes'

comm comm [options] file1 file2

Compare lines common to the sorted files file1 and file2. Three-
column output is produced: lines unique to file1, lines unique to
file2, and lines common to both files. comm is similar to diff in that
both commands compare two files. In addition, comm can be used
like uniq; that is, comm selects duplicate or unique lines between two
sorted files, whereas uniq selects duplicate or unique lines within
the same sorted file.

Options

– Read the standard input.

-1 Suppress printing of Column 1.

-2 Suppress printing of Column 2.

-3 Suppress printing of Column 3.

-12 Print only lines in Column 3 (lines common to file1 and file2).

-13 Print only lines in Column 2 (lines unique to file2).

-23 Print only lines in Column 1 (lines unique to file1).

0 Files are identical.
1 Files are different.
2 Files are inaccessible.

40 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cp

Example

Compare two lists of top-10 movies and display items that appear
in both lists:

comm -12 shalit_top10 maltin_top10

cp cp [options] file1 file2
cp [options] files directory

Copy file1 to file2, or copy one or more files to the same names
under directory. If the destination is an existing file, the file is over-
written; if the destination is an existing directory, the file is copied
into the directory (the directory is not overwritten). If one of the
inputs is a directory, use the -r option.

Common Options

-f, --force
Remove existing files in the destination.

-i, --interactive
Prompt for confirmation (y for yes) before overwriting an
existing file.

-p Preserve the original file’s permissions, ownership, and time-
stamps in the new file.

-r, -R, --recursive
Copy directories recursively. Solaris -R replicates named pipes,
instead of reading from them.

GNU/Linux and Mac OS X Options

-H When used with -R, if a command-line argument is a symbolic
link to a directory, recursively traverse the directory.

-L, --dereference
When used with -R, if any symbolic link points to a directory,
recursively traverse the directory.

-P When used with -R, do not follow any symbolic links. This is
the default.

-v, --verbose
Before copying, print the name of each file.

Solaris Option

-@ Copy extended attributes (ACLs, etc.) along with normal
attributes.

GNU/Linux Options

-a, --archive
Preserve attributes of original files where possible. The same
as -dpR.

-b Back up files that would otherwise be overwritten.

Alphabetical Summary of Common Commands | 41

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cp

--backup[=backup-method]
Like -b, but accepts an additional specification controlling
how the backup copy should be made. Valid arguments are:

--copy-contents
Copy the contents of special files when doing a recursive copy.

-d Same as --no-dereference --preserve=links.

-l, --link
Make hard links, not copies, of nondirectories.

--no-dereference
Do not dereference symbolic links; preserve hard link relation-
ships between source and copy.

--no-preserve[=items]
Do not preserve the given items when copying. See --preserve
for more information.

--parents
Preserve intermediate directories in source. The last argument
must be the name of an existing directory. For example, the
command:

cp --parents jphekman/book/ch1 newdir

copies the file jphekman/book/ch1 to the file newdir/jphekman/
book/ch1, creating intermediate directories as necessary.

--preserve[=items]
Preserve the given items when copying. Possible items are all,
link, mode, mode, ownership, and timestamps. Default is same as
-p.

--remove-destination
Remove each destination file before trying to open it.

--reply=how
Control handling of queries about removing existing files.
Valid values for how are yes, no, and query.

-s, --symbolic-link
Make symbolic links instead of copying. Source filenames
must be absolute.

--sparse=when
Control handling of copying of sparse files. Valid values for
when are auto, always, and never.

--strip-trailing-slashes
Remove trailing slashes from source file names.

-S backup-suffix, --suffix=backup-suffix
Set suffix to be appended to backup files. This may also be set
with the SIMPLE_BACKUP_SUFFIX environment variable.

none, off Never make numbered backups.
t, numbered Always make numbered backups.
nil, existing Make numbered backups of files that already

have them; otherwise, make simple backups.
never, simple Always make simple backups.

42 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cpio

The default is ~. You need to explicitly include a period if you
want one before the suffix (for example, specify .bak, not bak).

--target-directory=dir
Copy all files into the directory dir.

-u, --update
Do not copy a file to an existing destination with the same or
newer modification time.

-x, --one-file-system
Ignore subdirectories on other filesystems.

-Z context, --context=context
Set the security context of the file to context. SELinux only.

Mac OS X Options

-n Do not overwrite an existing file.

Example

Copy two files to their parent directory (keep the same names):

cp outline memo ..

cpio cpio control_options [options]

Copy file archives in from, or out to, tape or disk, or to another
location on the local machine. Each of the three control options,
-i, -o, or -p accepts different options. (See also pax and tar.)

cpio -i [options] [patterns]
cpio --extract [options] [patterns]

Copy in (extract) files whose names match selected patterns.
Each pattern can include filename metacharacters from the
Bourne shell. (Patterns should be quoted or escaped so that they
are interpreted by cpio, not by the shell.) If no pattern is used, all
files are copied in. During extraction, existing files are not over-
written by older versions in the archive (unless -u is specified).

cpio -o [options]
cpio --create [options]

Copy out a list of files whose names are given on the standard
input.

cpio -p [options] directory
cpio --create [options] directory

Copy (pass) files to another directory on the same system.
Destination pathnames are interpreted relative to the named
directory.

Comparison of Valid Options

Options available to the -i, -o, and -p options are shown respec-
tively in the first, second, and third row below. (The - is omitted
for clarity.)

-i: 6 b B c C d E f H I k m M n r R s S t u v V z Z
-o: 0 a A B c C F H L M O v V z Z
-p: 0 a d l L m P R u v V

Alphabetical Summary of Common Commands | 43

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cpio

Common Options

-a, --reset-access-time
Reset access times of input files.

-A, --append
Append files to an archive (must use with -O or -F).

-b, --swap
Swap bytes and half-words to convert between big-endian and
little-endian 32-bit integers. Words are four bytes.

-B Block input or output using 5120 bytes per record (default is
512 bytes per record).

-c Read or write header information as ASCII characters; useful
when source and destination machines are different types.

-C n, --io-size=n
Like -B, but block size can be any positive integer n.

-d, --make-directories
Create directories as needed.

-E file, --pattern-file=file
Extract filenames listed in file from the archive.

-f, --nonmatching
Reverse the sense of copying; copy all files except those that
match patterns.

-H type, --format=type
Read or write header information according to format. Values
for format are bar (bar format header and file, read-only,
Solaris only), crc (ASCII header containing expanded device
numbers), odc (ASCII header containing small device
numbers), ustar (IEEE/P1003 Data Interchange Standard
header), or tar (tar header). Solaris also allows CRC, TAR, and
USTAR.

Mac OS X allows tar and ustar, as well as bcpio for the orig-
inal binary cpio format, cpio for the original octal character
(ASCII) cpio format, and sv4cpio for the System V Release 4
hexadecimal character format.

GNU/Linux allows tar and ustar, as well as bin for the orig-
inal binary format, crc for the System V Release 4 format with
an additional checksum, hpbin for the obsolete binary format
used by the HP-UX cpio, hpodc for HP-UX’s portable format,
newc for the System V Release 4 portable (ASCII) format, and
odc for the old POSIX.1 portable (ASCII) format.

-I file
Read file as an input archive. As with -F, GNU/Linux allows
file to specify a remote archive.

-l, --link
Link files instead of copying. Can be used only with -p.

-L, --dereference
Follow symbolic links.

44 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cpio

-m, --preserve-modification-time
Retain previous file-modification time.

-O file
Direct the output to file. As with -F, GNU/Linux allows file to
specify a remote archive.

-r, --rename
Rename files interactively.

-R ID, -owner ID
Reassign file ownership and group information of extracted
files to the user whose login ID is ID (privileged users only).
GNU/Linux allows ID to be of the form [user][sep group], i.e.,
a user or group name or ID or both. If both, sep may be a
colon or period. Use a leading separator for just a group. For
example: arnold:users, arnold, or :users.

-s, --swap-bytes
Swap bytes of each two-byte half-word.

-S, --swap-half-words
Swap half-words of each four-byte word.

--sparse
For -o and -p, write files that have large blocks of zeros as
sparse files.

-t, --list
Print a table of contents of the input (create no files). When
used with the -v option, resembles output of ls -l.

-u, --unconditional
Unconditional copy; old files can overwrite new ones.

-v, --verbose
Print a list of filenames processed.

-V, --dot
Print a dot for each file read or written (this shows cpio at
work without cluttering the screen).

Solaris and GNU/Linux Option

-M msg, --message=msg
Print msg when switching media. Use variable %d in the
message as a numeric ID for the next medium. -M is valid only
with -I or -O.

Solaris and Mac OS X Option

-6 Process a PWB Unix Sixth Edition archive format file. Useful
only with the -i option, mutually exclusive with -c and -H.
Solaris and Mac OS X only.

GNU/Linux and Mac OS X Option

-F file, --file=file
Same as -O. The GNU/Linux version allows file to be of the
form user@host:file for accessing a remote archive. The user@
part is optional.

Alphabetical Summary of Common Commands | 45

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cpio

Solaris Options

-k Skip corrupted file headers and I/O errors.

-P Preserve ACLs. Can be used only with -p.

-@ With -o, include extended attributes in the archive. These
attributes are stored as special files in the archive. These
attributes may be restored upon extraction by using -@ with -i.

GNU/Linux Options

--blocksize=size
Set input or output blocksize to size × 512 bytes.

--force-local
Assume that file (provided by -F, -I, or -O) is a local file, even
if it contains a colon (:) indicating a remote file.

-n, --numeric-uid-gid
When verbosely listing contents, show user ID and group ID
numerically.

--no-absolute-filenames
Create all copied-in files relative to the current directory.

--no-preserve-owner
Make all copied files owned by yourself, instead of the owner
of the original. Can be used only if you are a privileged user.

--only-verify-crc
For a CRC-format archive, verify the CRC of each file; don’t
actually copy the files in.

--quiet
Don’t print the number of blocks copied.

--rsh-command=command
Tell mt to use command for accessing remote archives instead
of rsh or ssh.

-0, --null
(Digit zero.) With -o or -p, read a list of filenames terminated
with a NUL byte (all zeros) instead of a newline. This allows
archiving files whose names contain newlines. GNU find can
produce such a list of names.

Mac OS X Options

-z Compress the archive using gzip.

-Z Compress the archive using the old compress command.

Examples

Generate a list of old files using find; use list as input to cpio:

find . -name "*.old" -print | cpio -ocBv > /dev/rmt/0

Restore from a tape drive all files whose name contains save (subdi-
rectories are created if needed):

cpio -icdv "*save*" < /dev/rmt/0

To move a directory tree:

find . -depth -print | cpio -padml /mydir

46 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

crontab

crontab crontab [file]
crontab options [user]

View, install, or uninstall your current crontab file. On Mac OS X
and GNU/Linux, a privileged user can run crontab for another user
by supplying -u user. On Solaris, supply user following one of -e,
-l, or -r.

A crontab file is a list of commands, one per line, that executes
automatically at a given time. Numbers are supplied before each
command to specify the execution time. The numbers appear in
five fields, as follows:

Minute 0-59
Hour 0-23
Day of month 1-31
Month 1-12
Day of week 0-6, with 0 = Sunday

Use a comma between multiple values, a hyphen to indicate a
range, and an asterisk to indicate all possible values. For example,
assuming the crontab entries below:

59 3 * * 5 find / -print | backup_program
0 0 1,15 * * echo "Timesheets due" | mail user

The first command backs up the system files every Friday at 3:59
a.m., and the second command mails a reminder on the 1st and
15th of each month.

Common Options

-e Edit the user’s current crontab file (or create one).

-l List the user’s file in the crontab directory.

-r Delete the user’s file in the crontab directory.

GNU/Linux and Mac OS X Option

-u user
Indicate which user’s crontab file will be acted upon.

csh csh [options] [file] [arguments]

Command interpreter that uses syntax resembling C. csh (the C
shell) executes commands from a terminal or a file. On Mac OS X
and most GNU/Linux systems, /bin/csh is a link to tcsh, an
enhanced version of the shell. Solaris supplies tcsh as a separate
program. See also tcsh. See Chapter 5 for information on tcsh,
including command-line options.

csplit csplit [options] file arguments

Separate file into sections and place sections in files named xx00
through xxn (n < 100), breaking file at each pattern specified in argu-
ments. A filename of - reads from standard input. See also split.

Alphabetical Summary of Common Commands | 47

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

csplit

Common Options

-f prefix, --prefix=prefix
Name new files prefix00 through prefixN (default is xx00
through xxn).

-k, --keep-files
Keep newly created files, even when an error occurs (which
would normally remove these files). This is useful when you
need to specify an arbitrarily large repeat argument, {n}, and
you don’t want the “out of range” error to remove the new files.

-n num, --digits=num
Use output filenames with numbers num digits long. The
default is 2.

-s, --quiet, --silent
Suppress all character counts.

GNU/Lnux Options

-b suffix, --suffix-format=suffix
Append suffix to output filename. This option causes -n to be
ignored. suffix must specify how to convert the binary integer
to readable form by including one of the following: %d, %i, %u,
%o, %x, or %X. The value of suffix determines the format for
numbers as follows:

-q Same as -s.

-z, --elide-empty-files
Do not create empty output files. However, number as if those
files had been created.

Arguments

Any one or a combination of the following expressions. Arguments
containing blanks or other special characters should be surrounded
by single quotes.

/expr/
Create file from the current line up to the line containing the
regular expression expr. This argument takes an optional
suffix of the form +n or -n, where n is the number of lines
below or above expr.

%expr%
Same as /expr/, except that no file is created for lines previous
to the line containing expr.

num Create file from current line up to line number num.

{n} Repeat argument n times. May follow any of the above argu-
ments. Files will split at instances of expr or in blocks of num
lines. On GNU/Linux, if * is given instead of n, repeat argu-
ment until input is exhausted.

%d, %i Signed decimal.
%u Unsigned decimal.
%o Octal.
%x, %X Hexadecimal.

48 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ctags

Examples

Create up to 20 chapter files from the file novel:

csplit -k -f chap. novel '%CHAPTER%' '{20}'

Create up to 100 address files (xx00 through xx99), each four lines
long, from a database named address_list:

csplit -k address_list 4 {99}

ctags ctags [options] files

Create a list of function and macro names that are defined in the
specified C, Pascal, FORTRAN, yacc, or lex source files. Solaris
ctags can also process C++ source files. The output list (named
tags by default) contains lines of the form:

name file context

where name is the function or macro name, file is the source file in
which name is defined, and context is a search pattern that shows
the line of code containing name. After the list of tags is created,
you can invoke vi on any file and type:

:set tags=tagsfile
:tag name

This switches the vi editor to the source file associated with the
name listed in tagsfile (which you specify with -f).

GNU/Linux systems often ship with the Exuberant ctags (see http://
ctags.sourceforge.net). That version also understands C++, Java, Perl,
Python, flex, and bison. The Exuberant ctags accepts many more
options not listed here, see ctags(1) for more information. Of partic-
ular note is the -e option, which creates tag files usable with Emacs.

Options

-a Append tag output to existing list of tags.

-B context uses backward search patterns.

-d Create tags for #define macros that don’t take arguments
(symbolic constants). Mac OS X only.

-f tagsfile
Place output in tagsfile (default is tags).

-F context uses forward search patterns (default).

-t Include C typedefs as tags.

-u Update tags file to reflect new locations of functions (e.g.,
when functions are moved to a different source file). Old tags
are deleted; new tags are appended.

-v Produce a listing (index) of each function, source file, and
page number (1 page = 64 lines). -v is intended to create a file
for use with vgrind (a troff preprocessor for pretty-printing
source code).

-w Suppress warning messages.

-x Produce a listing of each function, its line number, source file,
and context.

Alphabetical Summary of Common Commands | 49

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

curl

Examples

Store tags in Taglist for all C programs:

ctags -f Taglist *.c

Update tags and store in Newlist:

ctags -u -f Newlist *.c

curl curl [options] [URL ...]

curl retrieves files from the Internet, most often using FTP or
HTTP. It has a plethora of options, making it difficult to use easily.
One of curl’s main strengths is that it may be used to automate file
uploading. See also wget.

URLs: http://curl.haxx.se and ftp://ftp.sunet.se/pub/www/utilities/curl/.

Primary Options

For many of the options, using them multiple times toggles the
behavior, turning a particular mode off if it was on or vice versa.

--connect-timeout seconds
Limit the connection phase to seconds seconds.

-C offset, --continue-at offset
Continue a previous file transfer at offset bytes. May be used
with both downloads and uploads. Use -C - to have curl auto-
matically determine the offset.

--create-dirs
When used with -o, create local directories as needed.

--disable-epsv
Do not use the EPSV FTP command for passive FTP transfers.
Normally, curl tries the EPSV command before the PASV
command.

-f, --fail
Fail silently upon HTTP server errors. Mainly useful for
scripts.

--ftp-pasv
Use the FTP PASV command. This is the default.

-h, --help
Print a (relatively) brief help message.

-K configfile, --config configfile
Use configfile as the configuration file, instead of the default
$HOME/.curlrc. Use - to read configuration information from
standard input.

--limit-rate speed
Limit transfers to speed. The default units is bytes per second,
but you may use a trailing k or K for kilobytes, m or M for mega-
bytes, or g or G for gigabytes. The -Y option overrides this option.

--max-filesize bytes
If curl can tell that a file exceeds bytes size, it will not down-
load the file. Otherwise, this option has no effect.

50 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cut

-m seconds, --max-time seconds
Do not exceed seconds for the entire operation. This prevents
batch jobs from hanging due to slow networks or dead links.

-M, --manual
Display the full help text (over 2400 lines!), in the form of a
manpage.

-o file, --output file
Write the output to file instead of to standard output. See the
manpage for more details. See also --create-dirs.

-q When used as the first parameter, do not read $HOME/.curlrc.

-s, --silent
Silent mode; do not print a progress meter or any error
messages.

-S, --show-error
With -s, do display error messages.

-T file, --upload-file file
Upload file to the URL named on the command line. Use - to
read standard input. The URL must end with a / if it’s a direc-
tory, in which case curl will use file as the name of the file to
create in the remote directory.

-u user:password, --user user:password
Supply user and password to the server for authentication.

-U user:password, --proxy-user user:password
Supply user and password for proxy authentication.

--url URL
Retrieve URL. This option is mainly for use in a configuration
file.

-v, --verbose
Be verbose during file retrieval. Mainly for debugging.

-V, --version
Print version and supported-feature information.

-x proxyhost[:port], --proxy proxyhost[:port]
Use the given host and optional port as the HTTP proxy. The
default port is 1080.

-#, --progress-bar
Print progress information as a progress bar instead of as
statistics.

See the manpage for a description of the other options.

cut cut options [files]

Select a list of columns or fields from one or more files. Either -c
or -f must be specified. list is a sequence of integers. Use a
comma between separate values and a hyphen to specify a range
(e.g., 1-10,15,20 or 50-). See also paste and join.

Alphabetical Summary of Common Commands | 51

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

date

Common Options

-b list, --bytes list
This list specifies byte positions, not character positions. This
is important when multibyte characters are used. With this
option, lines should be 1023 bytes or less in size.

-c list, --characters list
Cut the character positions identified in list.

-d c, --delimiter c
Use with -f to specify field delimiter as character c (default is
tab); special characters (e.g., a space) must be quoted.

-f list, --fields list
Cut the fields identified in list.

-n Do not split characters. When used with -b, cut doesn’t split
multibyte characters.

-s, --only-delimited
Use with -f to suppress lines without delimiters.

GNU/Linux Option

--output-delimiter=string
Use string as the output delimiter. By default, the output
delimiter is the same as the input delimiter.

Examples

Extract usernames and real names from /etc/passwd:

cut -d: -f1,5 /etc/passwd

Find out who is logged on, but list only login names:

who | cut -d" " -f1

Cut characters in the fourth column of file, and paste them back as
the first column in the same file. Send the results to standard
output:

cut -c4 file | paste - file

date date [option] [+format]
date [options] [string]

In the first form, print the current date and time, specifying an
optional display format. In the second form, a privileged user can
set the current date by supplying a numeric string. format can
consist of literal text strings (blanks must be quoted) as well as field
descriptors, whose values will appear as described below (the
listing shows some logical groupings).

Format

%n Insert a newline.
%t Insert a tab.

%m Month of year (01–12).
%d Day of month (01–31).

52 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

date

The actual formatting is done by the strftime(3) library routine. The
country-specific formats depend on the setting of the LC_CTYPE,

%y Last two digits of year (00–99).
%D Date in %m/%d/%y format.

%b Abbreviated month name.
%e Day of month (1–31); pad single digits with a space.
%Y Four-digit year (e.g., 1996).
%g Week-based year within century (00–99).
%G Week-based year, including the century (0000–9999).

%h Same as %b.
%B Full month name.

%H Hour in 24-hour format (00–23).
%M Minute (00–59).
%S Second (00–61); 61 permits leap seconds and double leap

seconds.
%R Time in %H:%M format.
%T Time in %H:%M:%S format.
%k Hour (24-hour clock, 0–23); single digits are preceded by a

space.
%l Hour (12-hour clock, 1–12); single digits are preceded by a

space.

%I Hour in 12-hour format (01–12).
%p String to indicate a.m. or p.m. (default is AM or PM).
%r Time in %I:%M:%S %p format.

%a Abbreviated weekday.
%A Full weekday.
%w Day of week (Sunday = 0).
%u Weekday as a decimal number (1–7), Sunday = 1.
%U Week number in year (00–53); start week on Sunday.
%W Week number in year (00–53); start week on Monday.
%V The ISO-8601 week number (01–53). In ISO-8601, weeks

begin on a Monday, and week 1 of the year is the one that
includes both January 4th and the first Thursday of the year. If
the first Monday of January is the 2nd, 3rd, or 4th, the
preceding days are part of the last week of the previous year.

%j Julian day of year (001–366).
%Z Time-zone name.

%x Country-specific date format.
%X Country-specific time format.
%c Country-specific date and time format (default is %a %b %e %T

%Z %Y; e.g., Sun Jul 10 06:00:59 EDT 2005).
%F ISO 8601 date format, equivalent to %Y-%m-%d. Not on Solaris.

%N The number of nanonseconds within the current second.
GNU/Linux only.

%s The date and time as seconds since the Epoch. Not on Solaris.

Alphabetical Summary of Common Commands | 53

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

date

LC_TIME, and LC_MESSAGES (and on Solaris, NLSPATH) envi-
ronment variables.

Common Option

-u, --utc, --universal
Display or set the time using Greenwich Mean Time (UTC).

Solaris Option

-a s.f
(Privileged user only.) Gradually adjust the system clock until
it drifts s seconds away from what it thinks is the “current”
time. (This allows continuous micro-adjustment of the clock
while the system is running.) f is the fraction of seconds by
which time drifts. By default, the clock speeds up; precede s by
a — to slow down.

GNU/Linux Options

-d date, --date date
Display date, which should be in quotes and may be in the
format d days or m months d days to print a date in the future.
Specify ago to print a date in the past. You may include
formatting (see the previous section).

-f datefile, --file=datefile
Like -d, but printed once for each line of datefile.

-I [timespec], --iso-8601[=timespec]
Display in ISO-8601 format. If specified, timespec can have
one of the values date (for date only), hours, minutes, or seconds
to get the indicated precision.

-r file, --reference=file
Display the time file was last modified.

-R, --rfc-822
Display the date in RFC 822 format.

-s date, --set date
Set the date to date.

Mac OS X Options

-n (Privileged user only.) Set the date on the local machine only;
do not use timed(8) to set the time on all the machines in the
local network.

-r seconds
Display the time represents by seconds seconds since the Epoch.

Strings for Setting the Date

A privileged user can set the date by supplying a numeric string. string
consists of time, day, and year concatenated in one of three ways:
time or [day]time or [day]time[year]. Note: don’t type the brackets.

time
A two-digit hour and two-digit minute (HHMM); HH uses 24-
hour format.

54 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dc

day A two-digit month and two-digit day of month (mmdd);
default is current day and month.

year
The year specified as either the full four digits or just the last
two digits; default is current year.

Examples

Set the date to July 1 (0701), 4 a.m. (0400), 1999 (99):

date 0701040099

Demonstrate the formatting capabilities:

$ date +"Hello%t Date is %D %n%t Time is %T"
Hello Date is 06/26/05
 Time is 11:23:21

dc dc [file]

An interactive desk calculator program that performs arbitrary-
precision integer arithmetic (input may be taken from a file).
Normally you don’t run dc directly, since it’s invoked by bc (see
bc). dc provides a variety of one-character commands and opera-
tors that perform arithmetic; dc works like a Reverse Polish
calculator; therefore, operators and commands follow the numbers
they affect. Operators include + - / * % ^ (as in C, although ^
means exponentiation).

GNU/Linux and Mac OS X use the GNU version of dc that accepts
a number of options and has additional commands; see dc(1) for
the details. Some simple commands follow.

Examples
$ dc
3 2 ^ p Evaluate 3 squared, then print result
9
8 * p Current value (9) times 8, then print result
72
47 - p Subtract 47 from 72, then print result
25
v p Square root of 25, then print result
5
2 o p Display current result in base 2
101

Note: spaces are not needed except between numbers.

p Print current result.
q Quit dc.
c Clear all values on the stack.
v Take square root.
i Change input base; similar to bc’s ibase.
o Change output base; similar to bc’s obase.
k Set scale factor (number of digits after decimal); similar to bc’s

scale.
! Remainder of line is a Unix command.

Alphabetical Summary of Common Commands | 55

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dd

dd dd [option=value]

Make a copy of an input file (if=), or standard input if no named
input file, using the specified conditions, and send the results to the
output file (or standard output if of is not specified). Any number of
options can be supplied, although if and of are the most common
and are usually specified first. Because dd can handle arbitrary block
sizes, it is useful when converting between raw physical devices.

Although dd provides options for ASCII/EBCDIC conver-
sions, iconv is better suited to that task.

Options

bs=n
Set input and output block size to n bytes; this option super-
sedes ibs and obs.

cbs=n
Set the size of the conversion buffer (logical record length) to n
bytes. Use only if the conversion flag is block or unblock, or
one of the ASCII/EBCDIC conversions.

conv=flags
Convert the input according to one or more (comma-
separated) flags listed below. The first nine flags are mutually
exclusive. The next two are mutually exclusive with each
other, as are the following two.

ascii EBCDIC to ASCII.
asciib EBCDIC to ASCII, using BSD-compatible

conversions. Solaris only.
oldascii EBCDIC to ASCII, using BSD-compatible

conversions. Mac OS X only.
ebcdic ASCII to EBCDIC.
ebcdicb ASCII to EBCDIC, using BSD-compatible

conversions. Solaris only.
oldebcdic ASCII to EBCDIC, using BSD-compatible

conversions. Mac OS X only.
ibm ASCII to EBCDIC with IBM conventions.
ibmb ASCII to EBCDIC with IBM conventions, using

BSD-compatible conversions. Solaris only.
oldibm ASCII to EBCDIC with IBM conventions, using

BSD-compatible conversions. Mac OS X only.

block Variable-length records (i.e., those terminated
by a newline) to fixed-length records.

unblock Fixed-length records to variable-length.

lcase Uppercase to lowercase.
ucase Lowercase to uppercase.

56 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

df

count=n
Copy only n input blocks.

files=n
Copy n input files (e.g., from magnetic tape), then quit.

ibs=n
Set input block size to n bytes (default is 512).

if=file
Read input from file (default is standard input).

obs=n
Set output block size to n bytes (default is 512).

of=file
Write output to file (default is standard output).

iseek=n
Seek n blocks from start of input file (like skip but more effi-
cient for disk file input). Solaris and Mac OS X only.

oseek=n
Same as seek. Solaris and Mac OS X only.

seek=n
Seek n blocks from start of output file.

skip=n
Skip n input blocks; useful with magnetic tape.

You can multiply size values (n) by a factor of 1024, 512, or 2 by
appending the letters k, b, or w, respectively. You can use the letter
x as a multiplication operator between two numbers.

Examples
Convert an input file to all lowercase:

dd if=caps_file of=small_file conv=lcase

Retrieve variable-length data; write it as fixed-length to out:
data_retrieval_cmd | dd of=out conv=sync,block

df df [options] [name]

Report the number of free disk blocks and inodes available on all
mounted filesystems or on the given name. (On Solaris unmounted
filesystems are checked with -F.) name can be a device name (e.g.,
/dev/dsk/0s9), the directory name of a mount point (e.g., /usr), a
directory name, or a remote filesystem name (e.g., an NFS file-
system). Besides the options listed, there are additional options
specific to different filesystem types or df modules.

noerror Continue processing when errors occur (up to
five in a row).

notrunc Do not truncate the output file. This preserves
blocks in the output file that this invocation of
dd did not write. Solaris only.

sparse When input blocks consist only of zero bytes,
try to seek on the output file, creating a sparse
file. Mac OS X only.

swab Swap all pairs of bytes.
sync Pad input blocks to ibs.

Alphabetical Summary of Common Commands | 57

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

df

On Solaris and Mac OS X, the default block size is the
historic 512 bytes. On GNU/Linux it’s 1024 bytes. Fur-
thermore, the output format and option availability both
vary wildly among the different systems, as well as between
/usr/bin/df and /usr/xpg4/bin/df on Solaris. The end
result is that it’s hard to use df portably in shell scripts.

Common Options

-a, --all
Provide information about all filesystems, even ones usually
marked in /etc/mnttab to be ignored.

-h, --human-readable
Like -k, but in a more “human readable” format, with one line
per filesystem.

-i, --inodes
Solaris /usr/ucb/df, Mac OS X, GNU/Linux. Show the number
of used and available inodes in a format similar to df -k.

-k, --kilobytes
Print allocation in kilobytes (typically used without other
options). This option produces output in the format tradition-
ally used by the BSD version of df.

-l, --local
Report only on local filesystems.

-o suboptions
Supply a comma-separated list of type-specific suboptions.

-P, --portability
Solaris /usr/xpg4/bin/df and Mac OS X: like -k, but use units
of 512-byte blocks. On GNU/Linux, this still uses 1024-byte
blocks, but the output format conforms to POSIX. (Set
POSIXLY_CORRECT in the environment to force GNU df to
use 512-byte blocks.)

GNU/Linux and Mac OS X Options

-H, --si
Like -h, but use base 10 for sizes, not base 2.

-m, --megabytes
Use 1048576-byte (1-Mbyte) blocks instead of the default. On
Mac OS X, overrides the BLOCKSIZE environment variable.

-t type, --type=type
Show only type filesystems. (Mac OS X in legacy mode.)

Solaris Options
-b Print only the number of free kilobytes.

-e Print only the number of free files.

-F type
Report on an unmounted filesystem specified by type. Avail-
able types can be seen in the file /etc/vfstab.

-g Print the whole statvfs structure, overriding other print options.

58 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

diff

-n Print only the filesystem type name; with no other arguments,
-n lists the types for all mounted filesystems.

-t Report total allocated space as well as free space.

-v /usr/bin/df only. Like -k, but the size unit is the smallest
block size supported by each filesystem.

-V Echo command line but do not execute command.

-Z Display mounts in all visible zones. The default is to provide
information only about filesystems mounted in the local zone.

GNU/Linux Options

-B n, --block-size=n
Show space as n-byte blocks.

--no-sync
Show results without invoking sync first (i.e., without flushing
the buffers). This is the default.

--sync
Invoke sync (flush buffers) before getting and showing sizes.

-T, --print-type
Print the type of each filesystem in addition to the sizes.

-x type, --exclude-type=type
Show only filesystems that are not of type type.

Mac OS X Options

-b Use 512-byte blocks instead of the default. Overrides the
BLOCKSIZE environment variable.

-g Use 1073741824-byte (1-Gigabyte) blocks instead of the
default. Overrides the BLOCKSIZE environment variable.

-n Print out saved information about each filesystem instead of
requesting the information anew.

-T type
Prints statistics only for the given filesystem types.

diff diff [options] [diroptions] file1 file2

diff reports lines that differ between file1 and file2. Output
consists of lines of context from each file, with file1 text flagged by
a < symbol and file2 text by a > symbol. Context lines are preceded
by the ed command (a, c, or d) that converts file1 to file2. If one of
the files is –, standard input is read. If one of the files is a directory,
diff locates the filename in that directory corresponding to the
other argument (e.g., diff my_dir junk is the same as diff my_dir/
junk junk). If both arguments are directories, diff reports lines that
differ between all pairs of files having equivalent names (e.g.,
olddir/program and newdir/program); in addition, diff lists file-
names unique to one directory, as well as subdirectories common
to both. See also cmp, comm, diff3, dircmp, and sdiff.

GNU/Linux and Mac OS X use GNU diff. See http://www.gnu.org/
software/diffutils.

Alphabetical Summary of Common Commands | 59

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

diff

Common Options

Options -c, -C, -D, -e, -f, -h, -n, -u cannot be combined with each
other (they are mutually exclusive).

-b, --ignore-space-change
Ignore repeating blanks and end-of-line blanks; treat succes-
sive blanks as one.

-c Produce output in “context diff” format, with three lines of
context.

-C n, --context=n
Like -c, but produce n lines of context.

-D symbol, --ifdef=symbol
Merge file1 and file2 into a single file containing conditional C
preprocessor directives (#ifdef). Defining symbol and then
compiling yields file2; compiling without defining symbol
yields file1.

-e, --ed
Produce a script of commands (a, c, d) to re-create file2 from
file1 using the ed editor.

-f, --forward-ed
Produce a script to re-create file1 from file2; the script is in the
opposite order, so it isn’t useful to ed.

-h Do a half-hearted (but hopefully faster) comparison; complex
differences (e.g., long stretches of many changes) may not show
up; -e and -f are disabled. GNU diff ignores this option.

-i, --ignore-case
Ignore uppercase and lowercase distinctions.

-n, --rcs
Like -f, but counts changed lines. rcsdiff works this way.

-t, --expand-tabs
Expand tabs in output lines; useful for preserving indentation
changed by -c format.

-u Produce output in “unified diff” format, with three lines of
context.

-U n, --unified=n
Like -u, but produce n lines of context.

-w, --ignore-all-space
Like -b, but ignores all spaces and tabs; e.g., a + b is the same
as a+b.

Diroptions (Common)

The diroptions are valid only when both file arguments are
directories.

-l, --paginate
Long format; output is paginated by pr so that diff listings for
each file begin on a new page; other comparisons are listed
afterward.

-r, --recursive
Run diff recursively for files in common subdirectories.

60 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

diff

-s, --report-identical-files
Report files that are identical.

-S filename, --starting-file=filename
Begin directory comparisons with file, skipping files whose
names alphabetically precede file.

Options for GNU diff

-a, --text
Treat all files as text files. Useful for checking to see if binary
files are identical.

--binary
Read and write data in binary mode.

-B, --ignore-blank-lines
Ignore blank lines in files.

-d, --minimal
To speed up comparison, ignore segments of numerous
changes and output a smaller set of changes.

-E, --ignore-tab-expansion
Ignore differences due to expanding tabs.

--from-file=file
Compare file to each operand. file may be a directory.

-F regexp, --show-function-line=regexp
For context and unified diffs, show the most recent line
containing regexp before each block of changed lines.

--horizon-lines=n
In an attempt to find a more compact listing, keep n lines on
both sides of the changed lines when performing the
comparison.

-H, --speed-large-files
Speed output of large files by scanning for scattered small
changes; long stretches with many changes may not show up.

--ignore-file-name-case
Ignore case in filenames during a recursive directory
comparison.

-I regexp, --ignore-matching-lines=regexp
Ignore lines in files that match the regular expression regexp.

-L label, --label label, --label=label
For context and unified diffs, print label in place of the file-
name being compared. The first such option applies to the
first filename and the second option to the second filename.

--left-column
For two-column output (-y), show only the left column of
common lines.

--no-ignore-file-name-case
Cancel the effect of a previous --ignore-file-name-case
option.

-n, --normal
Produce a normal (default style) diff.

Alphabetical Summary of Common Commands | 61

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

diff

-N, --new-file
Treat nonexistent files as empty.

-p, --show-c-function
When handling files in C or C-like languages such as Java,
show the function containing each block of changed lines.
Assumes -c, but can also be used with a unified diff.

-q, --brief
Output only whether files differ.

--sdiff-merge-assist
Produce sdiff-style output. Used by GNU sdiff when
invoking diff.

--strip-trailing-cr
Remove carriage return characters at the end of input lines.

--to-file=file
Compare each operand to file. file may be a directory.

--suppress-common-lines
For two-column output (-y), do not show common lines.

-T, --initial-tab
Insert initial tabs into output to line up tabs properly.

--unidirectional-new-file
When doing directory comparisons, if a file is found only in the
second directory, pretend it is present but empty in the first one.

-v, --version
Print version number of diff.

-W n, --width=n
For two-column output (-y), produce columns with a
maximum width of n characters. Default is 130.

-x regexp, --exclude=regexp
Do not compare files in a directory whose names match regexp.

-X filename, --exclude-from=filename
Do not compare files in a directory whose names match
patterns described in the file filename.

-y, --side-by-side
Produce two-column output.

GNU diff Group Format Options

When merging files, you may wish to have an if-then-else pattern of
lines in the result: i.e., one group of lines used in one case, and
another group in another case. The options below give you control
over the format of such groups.

--changed-group-format=format
Use format for changed lines in if-then-else format.

--new-group-format=format
Use format for lines from the second file in if-then-else format.

--old-group-format=format
Use format for lines from the first file in if-then-else format.

--unchanged-group-format=format
Use format for lines common to both files in if-then-else format.

62 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

diff

Within the format strings, special conversion specifiers give you
control over the placement of the input text lines in the output.

%< Lines from the first file, including the final newline. Each line
is formatted according to the old line format.

%> Lines from the second file, including the final newline. Each
line is formatted according to the new line format.

%= Lines common to both files, including the final newline. Each
line is formatted according to the unchanged line format.

%% A literal % character.

%c'C'
A literal character C. Useful for characters special to diff.

%c'\O'
The character represented by O, which is a string of 1–3 octal
digits.

printf-specline-spec
A printf(3) format specification followed by a letter indicating
a number to be printed. Valid specifications are %d, %o, %x, and
%X. A field width and precision are allowed, as are the -, 0, and
' flags. The line-spec is one of the letters in the following list.
Lowercase letters are used for lines in the first file; uppercase
letters represent lines in the second file.

%(A=B?T:E)
Conditional substitution. A and B are either numbers or letters
as just shown. If they are equal, the result is T, otherwise the
result is E. See the Info documentation for GNU diff for more
information.

GNU diff Line Format Options

Line format options give you control over the output of individual
lines within line groups as specified by the line group options. The
options are:

--line-format=format
Apply format to all input lines in if-then-else format.

--new-line-format=format
Apply format to input lines from the second file in if-then-else
format.

--old-line-format=format
Apply format to input lines from the first file in if-then-else
format.

--unchanged-line-format=format
Apply format to lines common to both files in if-then-else format.

e, E The number of the line just before the group.
f, F The number of the first line in the group (same as e + 1).
l, L The number of the last line of the group.
m, M The number of the line just after the group

(same as l + 1).
n, N The number of lines in the group (L –F + 1).

Alphabetical Summary of Common Commands | 63

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

diff3

Within the format strings, special conversion specifiers give you
control over the placement of the input text lines in the output.
The default line format is %l followed by a newline.

%l The input line’s contents, not including the newline.

%L The input line’s contents, including the trailing newline. If the
input line did not have a newline, this format preserves that
fact.

%% A literal % character.

%c'C'
A literal character C. Useful for characters special to diff.

%c'\O'
The character represented by O, which is a string of 1–3 octal
digits.

printf-specline-spec
The same as described earlier in this entry.

diff3 diff3 [options] file1 file2 file3

Compare three files and report the differences. No more than one
of the files may be given as - (indicating that it is to be read from
standard input). The output is displayed with the following codes:

diff3 is also designed to merge changes in two differing files based
on a common ancestor file (i.e., when two people have made their
own set of changes to the same file). diff3 can find changes
between the ancestor and one of the newer files and generate
output that adds those differences to the other new file. Unmerged
changes occur where both of the newer files differ from each other
and at least one of them differs from the ancestor. Changes from
the ancestor that are the same in both of the newer files are called
merged changes. If all three files differ in the same place, it is called
an overlapping change.

This scheme is used on the command line with the ancestor being
file2, the second filename. Comparison is made between file2 and
file3, with those differences then applied to file1.

Common Options

-e, --ed
Create an ed script to incorporate into file1 all differences
between file2 and file3.

-E, --show-overlap
Same as -e, but mark with angle brackets any lines that differ
between all three files.

= == = All three files differ.
= == =1 file1 is different.
= == =2 file2 is different.
= == =3 file3 is different.

64 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dig

-x, --overlap-only
Create an ed script to incorporate into file1 all differences
between all three files.

-X Same as -x, but mark with angle brackets any lines that differ
between all three files.

-3, --easy-only
Create an ed script to incorporate into file1 differences
between file1 and file3.

GNU/Linux and Mac OS X Options

-a, --text
Treat files as text.

-A, --show-all
Create an ed script to incorporate all changes, showing
conflicts in bracketed format.

--diff-program=prog
Use prog to compare files instead of diff.

-i Append the w (save) and q (quit) commands to ed script output.

-L label, --label=label
Use label to replace filename in output.

-m, --merge
Create file with changes merged (not an ed script).

-T, --initial-tab
To line tabs up properly in output, begin lines with a tab
instead of two spaces.

-v, --version
Print version information and then exit.

dig dig [@server] [options] [name] [type] [class] [query-options]
dig @server name type
dig -h

The dig command queries DNS servers; it is more flexible than
the deprecated nslookup command. If you use it without any
options or arguments, it searches for the root server. This entry
documents the GNU/Linux and Mac OS X version of dig; the
Solaris version is slightly different and resides in /usr/sbin. The
standard arguments are:

server
The server to query. If no server is supplied, dig checks the
name servers listed in /etc/resolv.conf. The address may be
an IPv4 dotted address or an IPv6 colon-delimited address. It
may also be a hostname, which dig will resolve (through the
name servers in /etc/resolv.conf).

name
The domain name to look up.

type
The type of query to perform, such as A, ANY, MX, SIG, and so on.
The default is A, but you may use any valid BIND9 query type.

Alphabetical Summary of Common Commands | 65

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dig

Options

-b address
Set the source IP address for the query.

-c class
Set the class of query. The default value is IN (Internet), but
you can choose HS for Hesiod or CH for CHAOSNET.

-f filename
Operate in batch mode, performing the queries in the file you
specify.

-h Print a command-line option summary and exit.

-k filename
Specify a TSIG key file; used for signed transactions. You can
also use the -y key, although this is less secure.

-p portnumber
Choose the port number for the query. The default value is the
standard DNS port, 53.

-t type
Set the type of query, as with the query argument. The default
value is A, but you may use any valid BIND9 query.

-x addr
Perform a reverse lookup, specifying an IPv4 or IPv6 address.
You don’t need the name, class, or type arguments if you use -x.

-y keyname:keyvalue
Enter the actual key name and value when conducting a
signed transaction. Because the key and value can be seen in
the output of ps, this is not recommended for use on multiuser
systems; use -k instead.

Query Options

There are a large number of query options for dig. Each query
option is preceded by +, and many have an opposite version begin-
ning with no. For example, the tcp flag is passed as +tcp, and
negated with +notcp. Because there are so many options, only a few
are discussed here. For greater detail, see the dig(1) manpage.

+tcp, +notcp
Use (or do not use) the TCP protocol instead of the default
UDP.

+domain=searchdomain
Perform a search in the domain specified; this is equivalent to
using the +search option and having searchdomain as the sole
entry in the search list or domain directive of /etc/resolv.conf.

+search, +nosearch
Use (or don’t use) the search list provided in /etc/resolv.conf.
The default is not to use the search list.

+time=T
Timeout for queries, in seconds. The default is five, and the
minimum is one.

66 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dirname

+tries=N
The number of times to retry UDP queries. The default is
three, and the minimum is one.

dirname dirname pathname

Print pathname, excluding last level. Useful for stripping the actual
filename from a pathname. See also basename.

dos2unix dos2unix [options] dosfile unixfile

Solaris and GNU/Linux only. Convert files using the DOS
extended character set to their ISO standard counterparts. If dosfile
and unixfile are the same, the file is overwritten after the conver-
sion is done. See also unix2dos.

Solaris Options

-ascii
Remove extra carriage returns and convert (remove) DOS end-
of-file characters for use under Unix.

-iso Same as the default action.

-7 Convert 8-bit DOS graphics characters to space characters.

GNU/Linux Options

-c mode, --convmode mode
Set the conversion mode to mode. Possible values are ASCII,
7bit, ISO, and Mac. The default is ASCII. This emulates the
Solaris version of dos2unix.

-h, --help
Print a command-line summary and exit.

-k, --keepdate
Make the modification date of the output file be the same as
that of the input file.

-n infile outfile …, --newfile infile outfile …
New file mode. Filenames must be provided in pairs: the first
one is the input file, the second is the output file.

-o file …, --oldfile file …
Old file mode. Each input file in converted in place. This is the
default.

-q, --quiet
Do not print any warnings or messages.

-V, --version
Print version information and exit.

du du [options] [directories]

Print disk usage, i.e., the number of blocks used by each named
directory and its subdirectories (default is current directory).

Alphabetical Summary of Common Commands | 67

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

du

On Solaris and Mac OS X, the default block size is the
historic 512 bytes. On GNU/Linux it’s 1024 bytes. Fur-
thermore, the option availability and meanings vary
wildly among the different systems, as well as between
/usr/bin/du and /usr/xpg4/bin/du on Solaris. The end
result is that it’s hard to use du portably in shell scripts,
although du -k seems to be a universal least common
denominator.

Common Options

-a, --all
Print usage for all files, not just subdirectories.

-h, --human-readable
Print sizes in human-readable format.

-k, --kilobytes
Print information in units of kilobytes.

-L, --dereference
For symbolic links, process the file or directory to which the
link refers, not the link itself.

-s, --summarize
Print only the grand total for each named directory.

-x, --one-file-system
Restrict file size evaluations to files on the same filesystem
as the command-line file parameter. Not available for Solaris
/usr/bin/du.

Solaris Options

-d Do not cross filesystem boundaries. /usr/bin/du only.

-H When a symbolic link named on the command line refers to a
directory, process the linked-to directory instead of the link
itself.

-o Do not add child-directory statistics to the parent directory’s
total. No effect if -s is also used. /usr/bin/du only.

-r Print a “cannot open” message if a file or directory is
inaccessible.

GNU/Linux Options

--apparent-size
Print the apparent size, not actual disk usage. This may be
larger than actual disk usage due to holes in sparse files, as
well as other factors.

-b, --bytes
Print sizes in bytes.

-B, --block-size=size
Use a block size of size bytes.

68 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

du

-c, --total
In addition to normal output, print grand total of all
arguments.

-D, --dereference-args
Follow symbolic links, but only if they are command-line
arguments.

--exclude=pattern
Exclude files that match pattern.

-H Like --si, but also evokes a warning. For standards-compli-
ance, this option will eventually become the same as -D.

-l, --count-links
Count the size of all files, whether or not they have already
appeared (i.e., via a hard link).

-P, --no-dereference
Do not follow any symbolic links. This is the default.

--max-depth=num
Report sizes for directories only down to num levels below the
starting point (which is level 0).

-m, --megabytes
Print sizes in megabytes.

--si
Like -h, but show as power of 1000 rather than 1024.

-S, --separate-dirs
Do not include the sizes of subdirectories when totaling the
size of parent directories.

-X, --exclude-from=file
Exclude files that match any pattern in file.

-0, --null
End each output line with a binary zero (NUL) character,
instead of a newline.

Mac OS X Options

-c Print a grand total.

-d depth
Descend only depth directories deep.

-H When a symbolic link named on the command line refers to a
directory, process the linked-to directory instead of the link
itself.

-I mask
Ignore files and directories that match mask.

-P Do not follow any symbolic links. This is the default.

-r Print a “cannot open” message if a file or directory is
inaccessible.

Alphabetical Summary of Common Commands | 69

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

echo

echo echo [option] [string]

Echo arguments to standard output. Often used for producing
prompts from shell scripts. This is the echo command in the file-
system, not the one built into the shells (see Chapters 4 and 5).

Although echo is conceptually the simplest of all Unix commands,
using it in practice is complicated, because of portability and
version differences. (Consider using printf instead.) The following
sections summarize the differences.

Options

-e Always interpret escape sequences in argument strings.

-E Never interpret escape sequences in argument strings.

-n Do not print the final terminating newline.

Version Differences

Solaris /usr/bin/echo
Does not accept any options. Interprets the escape sequences
described next.

Solaris /usr/ucb/echo
Accepts the -n option if it’s first. Does not interpret escape
sequences.

Mac OS X /bin/echo
Accepts the -n option if it’s first, and interprets only the \c
escape sequence.

GNU/Linux /bin/echo
Accepts the -e, -E, and -n options, and the options --help and
--version.

Bourne shell echo
Does not accept the -n option. Interprets the escape sequences
described next, except \a.

C shell echo
Accepts the -n option if it’s first. Does not interpret escape
sequences. In tcsh, the echo_style shell variable controls
emulation of BSD and/or System V echo options and escape
sequences.

Korn shell echo
Searches $PATH and behaves like the first version of echo that
it finds.

Bash echo
Accepts the -e, -E, and -n options.

Escape Sequences

\a Alert (ASCII BEL). (Not in /bin/sh’s echo.)
\b Backspace.
\c Suppress the terminating newline (same as -n).
\E The ASCII ESCAPE character. Bash built-in echo only.
\f Formfeed.

70 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ed

Examples

echo "testing printer" | lp
echo "TITLE\nTITLE" > file ; cat doc1 doc2 >> file
echo "Warning: ringing bell \07"

ed ed [options] [file]

ed is the standard text editor. If the named file does not exist, ed
creates it; otherwise, the existing file is opened for editing. As a line
editor, ed is generally no longer used because vi and ex have super-
seded it. However, it can be useful from a slow dial-in connection
or over an intercontinental ssh session when using a screen editor is
painful. Some utilities, such as diff, continue to make use of ed
command syntax.

URL: http://www.gnu.org/fun/jokes/ed.msg.html.

Common Options

-p string
Set string as the prompt for commands (default is *). The P
command turns the prompt display on and off.

-s Suppress character counts, diagnostics, and the ! prompt for
shell commands. Earlier versions of ed used plain -; this is still
accepted.

System Specific Options

-C Same as -x, but assume file began in encrypted form. Solaris
only.

-G Forces backwards compatibility. This affects the commands G,
V, f, l, m, t, and !!. GNU/Linux only.

-x Supply a key to encrypt or decrypt file using crypt. Solaris and
Mac OS X only.

egrep egrep [options] [regexp] [files]

Search one or more files for lines that match a regular expression
regexp. egrep doesn’t support the metacharacters \(, \), \n, \<, \>,
but does support the other metacharacters, as well as the extended
set +, ?, |, and (). Remember to enclose these characters in quotes.
Regular expressions are described in Chapter 6. Exit status is 0 if
any lines match, 1 if not, and 2 for errors. See also grep and fgrep.

\n Newline.
\r Carriage return.
\t Tab character.
\v Vertical-tab character.
\\ Backslash.
\0nnn ASCII character represented by octal number nnn, where

nnn is 1, 2, or 3 digits and is preceded by a 0.

Alphabetical Summary of Common Commands | 71

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

egrep

Solaris /usr/bin/egrep does not support \{, or \}. Mac OS X and
GNU/Linux use GNU egrep.

Common Options

-c, --count
Print only a count of matched lines.

-e regexp, --regexp=regexp
Use this if regexp begins with -.

-f file, --file=file
Take expression from file. Multiple expressions may be
provided, one per line, in which case any of them may match.

-i, --ignore-case
Ignore uppercase and lowercase distinctions.

-h, --no-filename
Do not print the names of matching files, just the matched
lines.

-l, --files-with-matches
List filenames but not matched lines.

-n, --line-number
Print lines and their line numbers.

-s, --no-messages
Silent mode: print only error messages, and return the exit
status.

-v --invert-match
Print all lines that don’t match regexp.

-x, --line-regexp
Select only those matches that exactly match the whole line.
(Only /usr/xpg4/bin/egrep on Solaris, not /usr/bin/egrep.)

GNU grep, egrep, and fgrep Options

-a, --text
Treat a binary file as text. Same as --binary-files=text.

-A count, --after-context=count
Print count lines of trailing context. This places a -- between
contiguous groups of matches.

-b, --byte-offset
Before each output line, print the byte offset within the file.

--binary-files=type
egrep examines the first few bytes of a file. If this examination
indicates that the file is binary, this option tells egrep what to
do. Values for type are: binary, which gives the default behavior
of printing a message that the file does (or does not) match;
without-match to indicate that the file does not match, or text,
which causes egrep to attempt to print the matching line.

-B count, --before-context=count
Print count lines of leading context. This places a -- between
contiguous groups of matches.

72 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

egrep

--color[=when], --colour[=when]
Highlight matching text with color as provided by the GREP_
COLOR environment variable. when may be always, auto, or
never.

-C count, --context=count
Print count lines of output context. This places a -- between
contiguous groups of matches.

-d action, --directories=action
Use action to process directories. Possible values are: read,
which means to read the directory as if it was a file; skip, to
skip processing the directory; or recurse, to enter it and
process its files recursively (equivalent to -r).

-D action, --devices=action
Use action to process device, FIFO, or socket special files.
Possible values are: read, which means to read the file; and
skip, to skip processing the file.

--exclude=pattern
During recursive directory processing, skip files whose names
match pattern.

-E, --extended-regexp
Treat the search pattern as an Extended Regular Expression
(ERE). See Chapter 7. This is the default for egrep.

-F, --fixed-strings
Treat the regexp argument as a list of fixed strings, separated
by newlines. Any of the strings may match. This is the default
for fgrep.

-G, --basic-regexp
Treat the search pattern as an Basic Regular Expression (BRE).
See Chapter 7. This is the default for grep.

-H, --with-filename
Always print the name of matching files. (Normally, grep,
egrep, and fgrep print the name of the matching file only if
more than one filename is listed on the command line.)

--include=pattern
During recursive directory processing, only process files whose
names match pattern.

-I Same as --binary-files=without-match.

-L, --files-without-match
The inverse of -l: print just the names of files that do not
match regexp.

-m count, --max-count=count
Stop reading each input file after matching count lines. With
-v, stop after count nonmatching lines.

--mmap
Use the mmap(2) system call for reading input, if possible.
This can provide a performance improvement.

Alphabetical Summary of Common Commands | 73

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

egrep

--label=label
Use label for the name of standard input instead of (standard
input).

--line-buffered
Use line buffering. This may decrease performance.

-o, --only-matching
Display only the part of the line that matches regexp.

-P, --perl-regexp
Treat regexp as a Perl regular expression. This option is experi-
mental, don’t use it for production shell scripts.

-q, --quiet, --silent
Be quiet; do not produce any output. egrep exits immediately
with a zero status if any match is found, even if there were
previous errors. See also the -s option.

-r, -R, --recursive
When given a directory, process it recursively, searching the
contained files and directories for matches.

-u, --unix-byte-offsets
For MS-DOS and MS-Windows platforms, report byte offsets
as if reading a Unix text file. In other words, ignore the
carriage return characters. Must be used together with -b.

-U, --binary
For MS-DOS and MS-Windows platforms, force egrep to treat
the file as binary data. This prevents the default automatic
removal of carriage return characters on that platform.

-V, --version
Print version information to standard output and exit.

-w, --word-regexp
Perform a word match on regexp. The match must be at the
beginning of a line or preceded by a non-word-constituent
character. The matching text must also be either at the end of
the line or be followed by a non-word–constituent character.
Word-constituent characters are letters, digits, and the
underscore.

-y An obsolete synonym for -i.

-Z, --null
Use a zero byte (ASCII NUL) instead of the colon that usually
follows a filename. Intended for use with -l to produce an
unambiguous list of filenames that can be processed by
programs like xargs -0 or sort -z. This allows easy processing
of filenames that contain unusual characters, such as newlines.

Examples

Search for occurrences of Victor or Victoria in file:

egrep 'Victor(ia)?' file
egrep '(Victor|Victoria)' file

Find and print strings such as old.doc1 or new.doc2 in files, and
include their line numbers:

egrep -n '(old|new)\.doc?' files

74 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

eject

eject eject [options] [media]

Solaris and GNU/Linux only. Eject removable media, such as a
floppy disk or CD-ROM. On Solaris, necessary for media being
managed by vold, or for media without an eject button, such as the
floppy drives on some Sun SPARC systems. media is either a device
name or a nickname, such as floppy or cdrom.

With volume management available, eject unmounts any filesys-
tems mounted on the named media. In this case, it also displays a
pop-up dialog if a window system is running. Without volume
management, it simply sends an “eject” command to the given
device.

On GNU/Linux, the default device is cdrom. A device name or
mount point may be supplied.

Solaris Options

-d Print the name of the default device to be ejected.

-f When volume management is not in effect, force the eject,
even if the device is busy.

-n Display the list of nicknames and their corresponding real
devices.

-p Do not use a windowing pop-up dialog.

-q Query to see if the device has media. Use the exit status to
determine the answer.

GNU/Linux Options

-a on|1|off|0, --auto on|1|off|0
Set the auto-eject mode to on or off (equivalent to 1 or 0). If
auto-eject mode is on, the device is ejected when closed or
unmounted.

-c slotnumber, --changerslot slotnumber
If using a CD-ROM changer, select a CD from one of the slots.
Slots are enumerated starting with 0, and the CD-ROM drive
must not be playing music or mounted to read data.

-d, --default
List the default device name rather than doing anything.

-f, --floppy
Use floppy commands to eject the drive. Normally, the system
will try all methods (CD-ROM, SCSI, floppy, tape) to eject.

-h, --help
Display help information.

-n, --noop
Do not perform any actions; merely display the actions that
would be performed.

-p, --proc
Use the mounted files listed in /proc/mounts rather than the
ones in /etc/mtab.

Alphabetical Summary of Common Commands | 75

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

etags

-q, --tape
Use tape commands to eject the drive. Normally, the system
will try all methods (CD-ROM, SCSI, floppy, tape) to eject.

-r, --cdrom
Use CD-ROM commands to eject the drive. Normally, the
system will try all methods (CD-ROM, SCSI, floppy, tape) to
eject.

-s, --scsi
Use SCSI commands to eject the drive. Normally, the system
will try all methods (CD-ROM, SCSI, floppy, tape) to eject.

-t, --trayclose
Close the CD-ROM drive. Not all drives will respond to this
command.

-v, --verbose
Verbose mode: display additional information about actions.

-V, --version
Display version information, then quit.

-x speed, --cdspeed speed
Set the speed multiplier for the CD-ROM to an integer,
usually a power of 2. Not all devices support this command.
Setting the speed to 0 indicates that the drive should operate
at its maximum speed.

emacs emacs [options] [files]

A text editor and all-purpose work environment. For more infor-
mation, see Chapter 8.

env env [options] [variable=value ...] [command]

Display the current environment or, if environment variables are
specified, set them to a new value and display the modified envi-
ronment. If command is specified, execute it under the modified
environment.

Options

-, -i, --ignore-environment
Ignore current environment entirely.

-u name, --unset name
Unset the specified variable.

etags etags [options] files

Create a list of function and macro names defined in a program-
ming source file. etags generates tags for use by emacs. (ctags
produces an equivalent tags file for use with vi.) More than one file
may be specified. etags understands many programming languages,
including Ada, bison, C++, C, Cobol, Emacs Lisp/Common Lisp,

76 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

etags

Erlang, flex, Fortran, Java, Perl, Python, Scheme, TeX, and yacc.
The output list (named TAGS by default) contains lines of the form:

name file context

where name is the function or macro name, file is the source file in
which name is defined, and context is a search pattern that shows
the line of code containing name. After the list of tags is created,
you can invoke Emacs on any file and type:

M-x visit-tags-table

You will be prompted for the name of the tag table; the default is
TAGS. To switch to the source file associated with the name listed in
tagsfile, type:

M-x find-tag

You will be prompted for the tag you would like Emacs to search
for.

This entry documents the etags program shipped with GNU
Emacs. A related ctags program is also included for generating a
tags file for vi. Some of the options below only work with GNU
ctags. The ctags entry in this chapter documents a different version
of ctags, the Exuberant ctags.

Options

-a, --append
Append tag output to existing list of tags.

-C, --c++
Expect .c and .h files to contain C++, not C, code.

-d, --defines
Include tag entries for C preprocessor definitions.

--declarations
Create tags for function declarations and extern variables for
C and similar languages.

-D, --no-defines
Do not include tag entries for C preprocessor definitions.

-g, --globals
In C, C++, Objective C, Java, and Perl, create tags for global
variables. This is the default for etags.

-G, --no-globals
In C, C++, Objective C, Java, and Perl, do not create tags for
global variables. This is the default for ctags.

-h, -H, --help
Print usage information.

-i file, --include=file
Add a note to the tags file that file should be consulted in
addition to the normal input file.

--ignore-case-regex=regexp
Similar to --regex, except that case is not significant.

Alphabetical Summary of Common Commands | 77

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

etags

-I, --ignore-indentation
Do not assume that a closing brace in the first column ends a
function or structure definition for C and C++.

-l language, --language=language
Consider the files that follow this option to be written in
language. Use the -h option for a list of languages and their
default filename extensions.

-m, --members
Create tags for members of structs and similar constructs in
C++, Objective C and Java.

-M, --no-members
Do not create tags for members of structs and similar
constructs in C++, Objective C and Java. This is the default.

-o file, --output=file
Write to file.

-r regexp, --regex=regexp
Include a tag for each line that matches regexp in the files
following this option.

-R, --noregex
Don’t include tags based on regular-expression matching for
the files that follow this option.

-V, --version
Print the version number.

GNU ctags Options

-B, --backward-search
Create tags files using the ? backward search character,
instead of the default / forward search character.

-t, --typedefs
Include typedefs in C. etags does this by default.

-T, --typedefs-and-c++
Include tags for typedefs, struct, enum, and union tags, and
C++ member functions. etags does this by default.

-u, --update
Update the entries just for the named files, leaving other
entries in place. It is likely to be faster to simply rebuild the
entire tags file.

-v, --vgrind
Do not create a tags file. Instead, write the index in vgrind
format. This is a rather obsolete option.

-w, --no-warn
Do not warn about duplicate entries.

-x, --cxref
Do not create a tags file. Instead, write a cross reference in cxref
format to standard output. This option is also of only marginal
use, as there is no standard cross-platform cxref program.

78 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

evim

evim evim [options] [file ...]
eview [options] [file ...]

evim starts the graphical version of vim in “easy mode,” whereby
editing uses point-and-click. This makes vim feel like the very
simple text editor found on some non-Unix operating systems. It
should be used only by people who can’t handle regular vim. eview
is the same as evim but it starts up in read-only mode (equivalent to
the -R option). See also vim and Chapter 9.

Solaris supplies evim in /opt/sfw/bin, and evim is installed by
default if you build vim from source. On GNU/Linux, you can
make a symbolic link named evim to gvim and it will work. On Mac
OS X, you can link regular vim to evim, and it will work inside a
terminal window. To access the ex prompt (so that you can exit, for
example), type CTRL-O :.

URL: http://www.vim.org.

ex ex [options] files

A line-oriented text editor; a superset of ed and the root of vi. See
Chapter 9 for more information.

expand expand [options] [files]

Expand tab characters into appropriate number of spaces. expand
reads the named files or standard input if no files are provided. See
also unexpand.

Options

-n Set the tabstops every n characters. The default is 8.

-tablist
Interpret tabs according to tablist, a space- or comma-sepa-
rated list of numbers in ascending order, that describe the
“tabstops” for the input data.

-i, --initial
Convert tabs only at the beginning of lines.

-t tablist, --tabs tablist
Interpret tabs according to tablist, a space- or comma-sepa-
rated list of numbers in ascending order, that describe the
“tabstops” for the input data.

Example

Cut columns 10–12 of the input data, even when tabs are used:

expand data | cut -c 10-12 > data.col2

Alphabetical Summary of Common Commands | 79

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

expr

expr expr arg1 operator arg2 [operator arg3 ...]

Evaluate arguments as expressions and print the result. Strings can
be compared and searched. Arguments and operators must be
separated by spaces. In most cases, an argument is an integer,
typed literally or represented by a shell variable. There are three
types of operators: arithmetic, relational, and logical. Exit status for
expr is 0 (expression is nonzero and nonnull), 1 (expression is 0 or
null), or 2 (expression is invalid).

expr is typically used in shell scripts to perform simple arithmetic,
such as addition or subtraction. It is made obsolete in modern
shells that have built-in arithmetic capabilities.

Arithmetic Operators

Use the following operators to produce mathematical expressions
whose results are printed:

Addition and subtraction are evaluated last, unless they are
grouped inside parentheses. The symbols *, (, and) have meaning
to the shell, so they must be escaped (preceded by a backslash or
enclosed in single or double quotes).

Relational Operators

Use relational operators to compare two arguments. Arguments
can also be words, in which case comparisons assume a < z and
A < Z. If the comparison statement is true, the result is 1; if false,
the result is 0. Symbols < and > must be escaped.

Logical Operators

Use logical operators to compare two arguments. Depending on
the values, the result can be arg1 (or some portion of it), arg2, or 0.
Symbols | and & must be escaped.

| Logical OR; if arg1 has a nonzero (and nonnull) value, the
result is arg1; otherwise, the result is arg2.

& Logical AND; if both arg1 and arg2 have a nonzero (and
nonnull) value, the result is arg1; otherwise, the result is 0.

+ Add arg2 to arg1.
- Subtract arg2 from arg1.
* Multiply the arguments.
/ Divide arg1 by arg2.
% Take the remainder when arg1 is divided by arg2.

= Are the arguments equal?
!= Are the arguments different?
> Is arg1 greater than arg2?
>= Is arg1 greater than or equal to arg2?
< Is arg1 less than arg2?
<= Is arg1 less than or equal to arg2?

80 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

expr

: Similar to grep; arg2 is a pattern to search for in arg1. arg2
must be a regular expression in this case. If the arg2 pattern is
enclosed in \(\), the result is the portion of arg1 that
matches; otherwise, the result is simply the number of charac-
ters that match. By default, a pattern match always applies to
the beginning of the first argument (the search string implic-
itly begins with a ^). To match other parts of the string, start
the search string with .*.

Keywords

The GNU/Linux version accepts additional keyword commands.
Some Unix versions of expr also accept the index, length, and
substr keywords.

+ token
Treat token as a string, even if it would normally be a keyword
or an operator.

index string character-list
Return the first position in string that matches the first
possible character in character-list. Continue through char-
acter-list until a match is found, or return 0.

length string
Return the length of string.

match string regex
Same as string : regex.

substr string start length
Return a section of string, beginning with start, with a
maximum length of length characters. Return null when given
a negative or nonnumeric start or length.

Examples

Division happens first; result is 10:

expr 5 + 10 / 2

Addition happens first; result is 7 (truncated from 7.5):

expr \(5 + 10 \) / 2

Add 1 to variable i; this is how variables are incremented in shell
scripts:

i=`expr $i + 1`

Print 1 (true) if variable a is the string “hello”:

expr $a = hello

Print 1 (true) if variable b plus 5 equals 10 or more:

expr $b + 5 \>= 10

In the following examples, variable p is the string "version.100".
This command prints the number of characters in p:

expr $p : '.*' Result is 11

Match all characters and print them:

expr $p : '\(.*\)' Result is “version.100”

Alphabetical Summary of Common Commands | 81

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

fdformat

Print the number of lowercase letters at the beginning of p:

expr $p : '[a-z]*' Result is 7

Match the lowercase letters at the beginning of p:

expr $p : '\([a-z]*\)' Result is “version”

Truncate $x if it contains five or more characters; if not, just print
$x. (Logical OR uses the second argument when the first one is 0 or
null; i.e., when the match fails.) Double-quoting is a good idea, in
case $x contains whitespace characters:

expr "$x" : '\(.....\)' \| "$x"

In a shell script, rename files to their first five letters:

mv "$x" `expr "$x" : '\(.....\)' \| "$x"`

(To avoid overwriting files with similar names, use mv -i.)

factor factor [num]

Solaris and GNU/Linux only. Produce the prime factors of num or
read numbers from input.

false false

A do-nothing command that returns an unsuccessful (nonzero) exit
status. Normally used in Bourne shell scripts. See also true.

false is built into most modern shells.

Examples

This loop never executes
while false
do

commands
done

This loop executes forever
until false
do

commands
done

fdformat fdformat [options] [device]

Solaris and GNU/Linux only.* Format floppy disks and PCMCIA
memory cards. device is the name of the appropriate device to
format, and varies considerably based on the density of the media,
the capability of the disk drive, and—on Solaris—whether or not
volume management is in effect.

* As Macintosh systems don’t have floppy disk drives, this command would be of no use, anyway.

82 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

fgrep

Solaris Options

-b label
Apply the label to the media. SunOS labels may be up to 8
characters; DOS labels may be up to 11 uppercase characters.

-B file
Install bootloader in file on an MS-DOS diskette. Can only be
used with -d or -t dos.

-D Format a 720KB (3.5 inch) or 360KB (5.25 inch) double-
density diskette. Use on high- or extended-density drives.

-e Eject floppy disk when done.

-E Format a 2.88MB (3.5 inch) extended-density diskette.

-f Force. Do not prompt for confirmation before formatting.

-H Format a 1.44MB (3.5 inch) or 1.2MB (5.25 inch) high-density
diskette. Use on extended-density drive.

-M Use a 1.2MB (3.5 inch) medium-density format on a high-
density diskette. Use only with the -t nec option.

-q Quiet mode. Don’t print status messages.

-t dos
Install an MS-DOS filesystem and boot sector formatting.

-t nec
Install an NEC-DOS filesystem and boot sector after format-
ting. Use only with -M.

-U Unmount any filesystems on the media, and then format.

-v Verify each block on the media after formatting.

-x Don’t format, just write a SunOS label or MS-DOS filesystem.

Solaris Compatibility Options

These options are for compatibility with previous versions of
fdformat. Their use is discouraged.

-d Same as -t dos.

-l Same as -D.

-L Same as -D.

-m Same as -M.

GNU/Linux Option

-n Do not verify format after completion.

fgrep fgrep [options] [pattern] [files]

Search one or more files for lines that match a literal, text-string
pattern. Because fgrep does not support regular expressions, it is
potentially faster than grep (hence fgrep, for fast grep). Exit status is
0 if any lines match, 1 if not, and 2 for errors. See also egrep and
grep.

The options for fgrep are the same as for egrep, including the Solaris
versus GNU differences. See egrep for the full list.

Alphabetical Summary of Common Commands | 83

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

file

Examples

Print lines in file that don’t contain any spaces:

fgrep -v ' ' file

Print lines in file that contain the words in spell_list:

fgrep -f spell_list file

file file [options] files

Classify the named files according to the type of data they contain.
file checks the magic file (usually /etc/magic) to identify many
common file types.

Many file types are understood. Output lists each filename,
followed by a brief classification such as:

ascii text
c program text
c shell commands
data
empty
iAPX 386 executable
directory
[nt]roff, tbl, or eqn input text
shell commands
symbolic link to ../usr/etc/arp

Mac OS X and GNU/Linux use the freely-available version of file
from ftp://ftp.astron.com/pub/file/.

Solaris Options
-c Check the format of the magic file (files argument is invalid

with -c).

-d Apply any default system tests that are position-dependent or
context-dependent to the file.

-f listfile
Run file on the filenames in listfile.

-h Do not follow symbolic links.

-i For regular files, do not attempt to classify the file further.
Instead, just print the message “regular file.”

-m file
/usr/xpg4/bin/magic: same as -M.

/usr/bin/magic: use file as the magic file instead of /etc/magic.

-M file
file contains position-dependent or context-sensitive tests to
apply.

Astron.com file Options

-b, --brief
Brief mode; do not prepend filenames to output lines.

-c, --checking-printout
Check the format of the magic file (files argument is invalid
with -c). Usually used with -m.

84 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

find

-C, --compile
Create a magic.mgc file, which is a preparsed version of the
magic file.

-f file, --files-from file
Read the names of files to be checked from file.

-F sep, --separator sep
Use sep as the separator between the filename and the type.
The default is :.

-i, --mime
Produce MIME type strings instead of the traditional output.

-k, --keep-going
Keep going after the first match.

-L, --dereference
Follow symbolic links. By default, symbolic links are not
followed.

-m filelist, --magic-file filelist
Search for file types in filelist instead of /usr/share/magic.
filelist may be a single filename or a colon-separated list of
files. If a compiled magic file is found, it is used. With -i, file
appends .mime to each filename.

-n, --no-buffer
Flush standard output after checking a file.

-N, --no-pad
Do not pad filenames to make them align in the output.

-p, --preserve-date
Attempt to preserve the access times of read files so that it
looks as if file never read them.

-r, --raw
Do not translate unprintable characters into their octal
equivalents.

-s, --special-files
Read the contents of block or character device special files,
instead of being merely content to display their type.

-v, --version
Print the version and exit.

-z, --uncompress
Attempt checking of compressed files.

Example

List all files that are deemed to be HTML input:

file * | grep -i HTML

find find [options] pathname(s) condition(s)

An extremely useful command for finding particular groups of files
(numerous examples follow this description). find descends the
directory tree beginning at each pathname and locates files that

Alphabetical Summary of Common Commands | 85

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

find

meet the specified conditions. At least one pathname must be speci-
fied. The most useful conditions include -print, -name, and -type
(for general use), -exec and -size (for advanced users), and -mtime
and -user (for administrators).

On very old systems, you must supply at least one condition. If you
don’t, find traverses the pathnames but doesn’t produce any
output. Therefore, for highest portability, always provide -print.

Conditions may be grouped by enclosing them in \(\) (escaped
parentheses), negated with ! (use \! in the C shell), given as alter-
natives by separating them with -o, or repeated (adding restrictions
to the match; usually only for -name, -type, and -perm).

The find command can often be combined with the xargs
command when there are too many files for naming on the
command line. (See xargs.)

find is yet another example of a Unix command that has
a core set of common abilities, with many system-specific
extensions. Take careful note of which systems support
which conditions.

Solaris and Mac OS X Options

-H Only for files named on the command line, follow symbolic
links, working with the information about the linked-to file,
instead of the symbolic link itself.

-L For all symbolic links, follow the link, working with the informa-
tion about the linked-to file, instead of the symbolic link itself.

GNU/Linux Option

-daystart
Calculate times from the start of the day today, not 24 hours
ago.

Mac OS X Options

-d Do a depth-first traversal, directories being visited after their
children (postorder). The default is a preorder traversal, with
directories being visited before their children.

-E Interpret regular expressions for -regex and -iregex as
Extended Regular Expressions. (See Chapter 7.)

-f pathname
Descend pathname.

-P For symbolic links, use information about the link itself, not
the linked-to file. This is the default.

-s Traverse file hierarchies in lexicographical order.

-x Do not descend into directories on different devices (filesys-
tems) from the one where the descent began.

-X For use with xargs, complain if the filename contains an xargs
delimiter character (any of single quote, double quote, back-
slash, space, tab, or newline). Such files are skipped.

86 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

find

Common Conditions

-atime +n | -n | n
Find files that were last accessed more than n (+n), less than n
(-n), or exactly n days ago. Note that find will change the
access time of directories supplied as pathnames.

-ctime +n | -n | n
Find files that were changed more than n (+n), less than n (-n),
or exactly n days ago. Change refers to modification, permis-
sion or ownership changes, etc.; therefore, -ctime is more
inclusive than -atime or -mtime.

-depth
Descend the directory tree, skipping directories and working
on actual files first (and then the parent directories). Useful
when files reside in unwritable directories (e.g., when using
find with cpio).

-exec command { } \;
Run the Unix command on each file matched by find,
provided command executes successfully on that file; i.e.,
returns a 0 exit status. When command runs, the argument { }
is replaced with the name of the current file. Follow the entire
sequence with an escaped semicolon (\;).

-follow
Follow symbolic links and track the directories visited (don’t
use this with -type l).

-fstype type
Find files that reside on filesystems of type type.

-group gname
Find files belonging to group gname, which can be a group
name or a group ID number.

-inum n
Find files whose inode number is n.

-links n
Find files having n links.

-ls Display matching files with associated statistics (as if run
through ls -lids).

-mount
Search for files that reside only on the same filesystem as path-
name. Solaris and GNU/Linux only. (On Mac OS X, use -xdev
instead.)

-mtime +n | -n | n
Find files that were last modified more than n (+n), less than n
(-n), or exactly n days ago.

-name pattern
Find files whose names match pattern. Filename metacharac-
ters may be used, but should be escaped or quoted.

-newer file
Find files that have been modified more recently than file;
similar to -mtime.

Alphabetical Summary of Common Commands | 87

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

find

-nogroup
Find files belonging to a group not in /etc/group.

-nouser
Find files owned by a user not in /etc/passwd.

-ok command { } \;
Same as -exec, but user must respond (with a y) before
command is executed.

-perm nnn
Find files whose permission settings (e.g., rwx) match octal
number nnn exactly (e.g., 664 matches -rw-rw-r--). Use a
minus sign to make a wildcard match of any specified bit (e.g.,
-perm -600 matches -rw*******, where * can be any mode).
Some systems also allow +nnn for this purpose.

Solaris allows nnn to be a symbolic mode in the same form as
allowed by chmod.

-print
Print the matching files and directories, using their full path-
names. On modern systems, this is the default action.

-prune
“Prune” the directory tree of unwanted directory searches;
that is, skip the directory most recently matched.

-size n[c]
Find files containing n blocks, or, if c is specified, files that are
n characters (bytes) long. (One block = 512 bytes). Some
systems allow nk to specify the size in kilobytes.

-type c
Find files whose type is c. c can be:

-user user
Find files belonging to a user name or ID.

-xdev
Same as -mount.

GNU/Linux and Mac OS X Conditions

-amin +n | -n | n
Find files last accessed more than n (+n), less than n (-n), or
exactly n minutes ago.

-anewer file
Find files that were accessed after file was last modified.
Affected by -follow when after -follow on the command line.

b Block special file
c Character special file
d Directory
D Door special file, Solaris and GNU version only
f Plain file
l Symbolic link
p Fifo or named pipe
s Socket

88 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

find

-cmin +n | -n | n
Find files last changed more than n (+n), less than n (-n), or
exactly n minutes ago.

-cnewer file
Find files that were changed after they were last modified.
Affected by -follow when after -follow on the command line.

-empty
Continue if file is empty. Applies to regular files and
directories.

-false
Return false value for each file encountered.

-iname pattern
A case-insensitive version of -name.

-ipath pattern
A case-insensitive version of -path.

-iregex pattern
A case-insensitive version of -regex.

-maxdepth num
Do not descend more than num levels of directories.

-mindepth num
Begin applying tests and actions only at levels deeper than
num levels.

-mmin +n | -n | n
Find files last modified more than n (+n), less than n (-n), or
exactly n minutes ago.

-not expr
Same as ! expr.

-path pattern
Find files whose names match pattern. Expect full pathnames
relative to the starting pathname (i.e., do not treat / or .
specially).

-print0
Like -print, but terminate the pathname with a zero byte.
This allows programs that read filenames to interpret them
unambiguously. See also xargs.

-regex pattern
Like -path, but uses grep-style regular expressions instead of
the shell-like globbing used in -name and -path.

Solaris Conditions

-acl True if the file has ACLs (Access Control Lists) defined.

-cpio dev
Take matching files and write them on device dev, using cpio.
Obsolete.

-local
Find files that physically reside on the local system.

Alphabetical Summary of Common Commands | 89

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

find

-ncpio dev
Take matching files and write them on device dev, using cpio -c.
Obsolete.

-xattr
True if the file has extended attributes.

GNU/Linux Conditions
-context scontext, --context scontext

File has security context scontext. SELinux only.
-fls file

Like -ls, but send output to file.
-fprint file

Like -print, but send output to file.

-fprint0 file
Like -print0, but send output to file.

-fprintf file format
Like -printf, but send output to file.

-gid num
Find files with numeric group ID of num.

-ilname pattern
A case-insensitive version of -lname.

-lname pattern
Search for files that are symbolic links, pointing to files named
pattern. pattern can include shell metacharacters and does not
treat / or . specially. The match is case-insensitive.

-noleaf
Normally, find assumes that each directory has at least two
hard links that should be ignored (a hard link for its name and
one for “.”; i.e., two fewer “real” directories than its hard link
count indicates). -noleaf turns off this assumption, a useful
practice when find runs on non-Unix-style filesystems. This
forces find to examine all entries, assuming that some might
prove to be directories into which it must descend (a time-
waster on Unix).

-printf format
Print using format to standard output. Interpret escape
sequences and special formatting control sequences that begin
with %. See the manpage for the full details.

-true
Return true value for each file encountered.

-uid num
Find files with numeric user ID of num.

-used num
File was accessed num days after it was modified.

-xtype c
Like -type except for symbolic links. For symbolic links, this
checks the type of the linked-to file. However, with -follow,
find checks the link itself, and this condition will be true only
if c is l.

90 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

find

Mac OS X Conditions

-delete
Delete found files or directories. Always returns true. Use with
extreme caution.

-execdir command { } \;
Like -exec, but execute the command from within the direc-
tory holding the current file. The filename substituted for { } is
not fully qualified.

-flags [+|-]flags,notflags
Check that the given flags are set and that the notflags (flag
names prefixed with no) are not set. The flags are those
managed by chflags. With a leading -, the condition evaluates
to true if at least all the bits in flags must be set and all the bits
in notflags must be clear. With a leading +, the condition eval-
uates to true if any of the bits in flags are set and any of the
bits in notflags are clear. Otherwise, the file’s flags must
exactly match the combination of flags and notflags.

-mnewer file
Same as -newer.

-newerXY file
Compare the attribute X of the current file against the attribute
Y of file. Values for X and Y may be a for the access time, c for
the inode change time, or m for the modification time. Addition-
ally, Y may be t, in which case file is expected to be a date
specification as understood by CVS. (See Chapter 14.)

-okdir command { } \;
Like -ok, but execute the command from within the directory
holding the current file. The filename substituted for { } is not
fully qualified.

Examples

List all files (and subdirectories) in your home directory:

find $HOME -print

List all files named chapter1 underneath the /work directory:

find /work -name chapter1 -print

List “memo” files owned by ann (note the use of multiple starting
paths):

find /work /usr -name 'memo*' -user ann -print

Search the filesystem (begin at root) for manpage directories:

find / -type d -name 'man*' -print

Search the current directory, look for filenames that don’t begin
with a capital letter, and send them to the printer:

find . \! -name '[A-Z]*' -exec lp { } \;

Find and compress files whose names don’t end with .gz:

gzip `find . -type f \! -name '*.gz' -print`

Remove all empty files on the system (prompting first):

find / -size 0 -ok rm { } \;

Alphabetical Summary of Common Commands | 91

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

finger

Skip RCS directories, but list remaining read-only files:

find . -name RCS -prune -o -perm 444 -print

Search the system for files that were modified within the last two
days (good candidates for backing up):

find / -mtime -2 -print

Recursively grep for a pattern down a directory tree:

find /book -print | xargs grep '[Nn]utshell'

finger finger [options] users

Display data about one or more users, including information listed
in the files .plan and .project in user’s home directory. You can
specify each user either as a login name (exact match) or as a first
or last name (display information on all matching names).
Networked environments recognize arguments of the form
user@host and @host. (Today, many systems on the Internet disallow
connections from finger requests.)

Common Options

-l Force long format (default).

-m users must match usernames exactly, instead of also searching
for a match of first or last names.

-p Omit .plan file from display. On Mac OS X, this also omits
the .forward, .project, and .pubkey files.

-s Show short format.

Solaris Options

-b Omit user’s home directory and shell from display.

-f Used with -s to omit heading that normally displays in short
format.

-h Omit .project file from display.

-i Show “idle” format, a terse format (like -s).

-q Show “quick” format, the tersest of all (requires an exact
match of username).

-w Use with -s to omit user’s full name that normally displays in
short format.

Mac OS X Options

-4 Use only IPv4 addresses.

-6 Use only IPv6 addresses.

-g Display only the user’s real name from the gecos information.

-h Together with -s, display the remote host information instead
of the office information.

-o Together with -s, display only the office information.

-T Don’t piggyback data with the initial connection request.
Needed for some servers with broken TCP/IP implementations.

92 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

flex

flex flex [options] [file]

flex (Fast Lexical Analyzer Generator) is a faster variant of lex. It
generates a lexical analysis program (named lex.yy.c) based on the
regular expressions and C statements contained in one or more
input files. See also lex, bison, yacc, and lex & yacc, cited in the
Bibliography.

URL: http://www.gnu.org/software/flex.

Options

-b Generate backup information to lex.backup.

-B Generate a batch (noninteractive) scanner.

-c Ignored; for POSIX compliance only.

-C Compress scanner tables but do not use equivalence classes or
metaequivalence classes.

-Ca Align tables for memory access and computation. This creates
larger tables but gives faster performance.

-Ce Construct equivalence classes. This creates smaller tables and
sacrifices little performance (default).

-Cf Generate full scanner tables, not compressed.

-CF Generate faster scanner tables, like -F.

-Cm Construct metaequivalence classes (default).

-Cr Bypass use of the standard I/O library; use read(2) system calls
instead.

-d Debug mode.

-f Create a faster but larger scanner.

-F Use the fast scanner table representation.

-h, -?, --help
Help summary.

-i Create a case-insensitive scanner.

-I Generate an interactive scanner (default).

-l Maximum lex compatibility.

-L Suppress #line directives in lex.yy.c.

-n Ignored; for POSIX compliance only.

-o file
Write output to file instead of lex.yy.c.

-p Print performance report to standard error.

-P prefix
Change default yy prefix to prefix for all globally visible vari-
able and function names.

-s Create a scanner that exits if it encounters input that does not
match any of its rules.

-S skeleton_file
Use skeleton_file for the code skeleton, instead of the default
file. This option is mainly for use by the flex maintainers.

Alphabetical Summary of Common Commands | 93

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

fmt

-t Print to standard output. (By default, flex prints to lex.yy.c.)

-T Run in trace mode. This produces considerable output, which
is mainly of use to the flex maintainers.

-v Print a summary of statistics to standard error.

-V, --version
Print version information and exit.

-w Suppress warning messages.

-7 Generate a seven-bit scanner.

-8 Generate an eight-bit scanner (default).

-+ Generate a C++ scanner class.

fmt fmt [options] [files]

Fill and join text, producing lines of roughly the same length.
(Unlike nroff, the lines are not justified.) fmt ignores blank lines
and lines beginning with a dot (.) or with “From:”. The emacs
editor uses ESC-q to join paragraphs, so fmt is useful for other
editors, such as vi. The following vi command fills and joins the
remainder of the current paragraph:

!}fmt

Solaris Options

-c Don’t adjust the first two lines; align subsequent lines with the
second line. Useful for paragraphs that begin with a hanging tag.

-s Split long lines but leave short lines alone. Useful for
preserving partial lines of code.

-w n Create lines no longer than n columns wide. Default is 72.
(Can also be invoked as -n for compatibility with BSD.)

GNU/Linux Options

-c, --crown-margin
Crown margin mode. Do not change indentation of each para-
graph’s first two lines. Use the second line’s indentation as the
default for subsequent lines.

-p prefix, --prefix=prefix
Format only lines beginning with prefix.

-s, --split-only
Suppress line-joining.

-t, --tagged-paragraph
Tagged paragraph mode. Same as crown mode when the inden-
tations of the first and second lines differ. If the indentation is
the same, treat the first line as its own separate paragraph.

-u, --uniform-spacing
Reduce spacing to a maximum of one space between words
and two between sentences.

-w width, --width=width
Set output width to width. The default is 75.

94 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ftp

Mac OS X Options

-c Center each line of text. Most other options are ignored, and
no splitting or joining of lines is done.

-d charlist
Treat the characters in charlist as sentence-ending characters.
The default list is .?! (period, question mark, and exclama-
tion mark).

-l count
Replace each count spaces at the beginning of a line with a tab
character. The default is eight. If count is zero, spaces are
preserved.

-m Attempt to sensibly format mail header lines.

-n Format lines that begin with . (dot). Normally, for nroff
compatibility, fmt leaves such lines alone.

-p Allow indented paragraphs. Normally changes in leading
whitespace start a new output paragraph. This option disables
that behavior.

-s Condense multiple whitespace characters inside lines into
single spaces.

-t count
Assume that input files use count spaces per tab stop. The
default is eight.

ftp ftp [options] [hostname]

Transfer files to and from remote network site hostname. ftp
prompts the user for a command. Type help to see a list of known
commands.

Common Options

-d Enable debugging.

-e Disable command-line editing and history. GNU/Linux and
Mac OS X only.

-g Disable filename expansion (globbing).

-i Turn off interactive prompting.

-n No auto-login upon initial connection.

-p Use passive mode for transfering data.

-v Verbose on. Show all responses from remote server.

Solaris Options

-a Use GSSAPI authentication. If authentication fails, close the
connection.

-v Forward local security credentials to the server.

-m GSSAPI-mech
Use the provided GSSASPI mechanism. For details see
mech(4).

-t Enable packet tracing. This option is not yet implemented.

Alphabetical Summary of Common Commands | 95

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gcc

-T timeout
Use timeout in seconds for the global connection timer.

-x Use GSSAPI for authentication and encryption.

Mac OS X Options

-4 Use only IPv4 addresses.

-6 Use only IPv6 addresses.

-a Use anonymous login instead of the normal login procedure.

-A Force active mode FTP. The default is passive mode.

-f Force a cache reload when a transfer goes through an FTP or
HTTP proxy.

-N netrc-file
Use the given file instead of $HOME/.netrc.

-o file
Save the first automatically retrieved file to file, unless file is
- or starts with |. See the manpage for more details.

-P port
Use port number port.

-r count
When a connection attempt fails, wait count seconds and then
retry.

-R Restart all nonproxied auto-fetches.

-t Enable packet tracing.

-T direction,max[,incr]
Set the maximum transfer rate in direction to max bytes/
second. If given, set the increment to incr. See the manpage for
more information.

-u url file …
Upload one or more files to url.

-v Enable the verbose and progress commands. This is the
default when output is to a terminal.

-V Disable the verbose and progress commands.

g++ g++ [options] files

Invoke gcc with the options necessary to make it recognize C++.
g++ recognizes all the file extensions gcc does, in addition to C++
source files (.C, .cc, .cpp, or .cxx files) and C++ preprocessed files
(.ii files). See also gcc.

gcc gcc [options] files

GNU Compiler Collection. gcc, formerly known as the GNU C
Compiler, compiles multiple languages (C, C++, Objective-C, Ada,
Fortran, and Java) to machine code. Here we document its use to
compile C, C++, or Objective-C code. gcc compiles one or more
program source files; for example, C source files (file.c), assembler

96 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gcc

source files (file.s), or preprocessed C source files (file.i). If the
file suffix is not recognizable, assume that the file is an object file or
library. gcc normally invokes the C preprocessor, compiles the
preprocessed code to assembly language code, assembles it, and
then links it with the linker. This process can be stopped at one of
these stages using the -c, -S, or -E option. The steps may also differ
depending on the language being compiled. By default, output is
placed in a.out. In some cases, gcc generates an object file having a
.o suffix and a corresponding root name.

Preprocessor and linker options given on the gcc command line are
passed on to these tools when they are run. These options are
briefly described here, but some are more fully described under the
entry for ld. The options that follow are divided into general,
preprocessor and linker options. We have included only the most
generally useful options. gcc accepts many, many more options not
covered here.

gcc is the GNU form of cc; on most Linux systems, the
command cc invokes gcc. The command g++ invokes gcc
with the appropriate options for interpreting C++; see g++.

URL: http://gcc.gnu.org.

General options

-a Provide profile information for basic blocks.

-ansi
Enforce full ANSI conformance.

-c Create linkable object file for each source file, but do not call
the linker.

-E Preprocess the source files, but do not compile. Print result to
standard output. This option is useful to meaningfully pass
some cpp options that would otherwise break gcc, such as -C,
-M, or -P.

-foption
Set the specified compiler option. Many of these control
debugging, optimization of code, and special language
options. Use the --help -v options for a full listing.

-g Include debugging information for use with gdb.

-glevel
Provide level amount of debugging information. level must be
1, 2, or 3, with 1 providing the least amount of information.
The default is 2.

--help
Print most common basic options, then exit. When used with
option -v, print options for all of gcc’s subprocesses. For
options specific to a target, use --target-help.

-moption
Set the specified machine specific option. Use the --target-help
option for a full listing.

Alphabetical Summary of Common Commands | 97

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gcc

-o file
Specify output file as file. Default is a.out.

-O[level]
Optimize. level should be 1, 2, 3, or 0 (the default is 1). 0 turns
off optimization; 3 optimizes the most.

-p Provide profile information for use with prof.

-pedantic
Warn verbosely.

-pg Provide profile information for use with gprof.

-std=standard
Specify C standard of input file. Accepted values are:

-S Compile source files into assembler code, but do not
assemble.

-v Print version information.

-V version
Attempt to run gcc version version.

-w Suppress warnings.

-W Warn more verbosely than normal.

-Wall
Enable almost all possible warnings. See the manpage for a
detailed list of available warnings.

-x language
Expect input file to be written in language, which may be c,
objective-c, c-header, c++, ada, f77, ratfor, assembler, java,
cpp-output, c++-cpp-output, objc-cpp-output, f77-cpp-output,
assembler-with-cpp, or ada. If none is specified as language,
guess the language by filename extension.

Preprocessor options

gcc passes the following options to the preprocessor:

-Dname[=def]
Define name with value def as if by #define. If no =def is given,
name is defined with value 1. -D has lower precedence than -U.

-Idir
Include dir in list of directories to search for include files. If dir
is -, search those directories specified by -I before the -I- only
when #include "file" is specified, not #include <file>.

iso9899:1990, c89 1990 ISO C standard.
iso9899:199409 1994 amendment to the 1990 ISO C

standard.
iso9899:1999, c99,
iso9899:199x, c9x

1999 revised ISO C standard.

gnu89 1990 C Standard with GNU extensions
(the default value).

gnu99, gnu9x 1999 revised ISO C standard with
GNU extensions.

98 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gcore

-M, -MG, -MF, -MD, -MMD, -MQ, -MT
Suppress normal output and print Makefile rules describing file
dependencies. Print a rule for make that describes the main source
file’s dependencies. If -MG is specified, assume that missing
header files are actually generated files, and look for them in the
source file’s directory. Most of these options imply -E.

-trigraphs
Convert special three-letter sequences, meant to represent
missing characters on some systems, into the single character
they represent.

-Uname
Remove definition of symbol name.

Linker options

gcc passes the following options to the linker:

-llib
Link to lib.

-Ldir
Search dir in addition to standard directories for libraries.

-s Remove all symbol table and relocation information from the
executable.

-u symbol
Force the linker to search libraries for a definition of symbol,
and to link to the libraries found.

gcore gcore [option] process_ids

Solaris and GNU/Linux only. Create (“get”) a core image of each
running process specified. The core image can be used with a
debugger. You must own the running process or be a privileged
user to use this command.

Common Option

-o file
Place the output in a file named file.process_id (default is
core.process_id).

Solaris Options

-c content
Place content in the core file. See coreadm(1M) for details on
the values of content.

-F Force; take control of pid even if another process had control
of it.

-g Produce a core file in the global repository with global content
as configured via coreadm(1M). You must have permission to
create files in the global core repository.

-p Produce a core file in the process-specific repository with
process-specific content as configured via coreadm(1M). You
must have permission to create files in the process-specific
core repository.

Alphabetical Summary of Common Commands | 99

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gettext

gdb gdb [options] [program [core | pid]]

GDB (the GNU DeBugger) allows you to step through the execu-
tion of a program in order to find the point at which it breaks. It
supports a number of languages. The program to be debugged is
normally specified on the command line; you can also specify a
core file or, if you want to investigate a running program, a process
ID. For more information, see Chapter 17.

getconf getconf [-v spec] system_var
getconf [-v spec] path_var path
getconf -a

This command is specified by POSIX as a portable way of deter-
mining system limits. In the first form, print the value of system
configuration variables. In the second, print the value of filesystem-
related parameters. In the third, print the values of all system
configuration variables.

Options

-a Print the names and values of all system configuration vari-
ables. Solaris only.

-v spec
Use spec to govern the selection of values for configuration
variables.

getopts getopts string name [arg]

Same as built-in Bash and ksh shell command getopts. See
Chapter 4.

gettext gettext [options] [domain] string

Solaris and GNU/Linux only. Retrieve and print the translated
version of string. This provides shell-level access to the facilities of
gettext(3C). Translations are looked up in the file lang/LC_
MESSAGES/domain.mo in the system’s translation directory. lang is
the current locale (e.g., en_US). If domain is not supplied, the value
of $TEXTDOMAIN is used instead. Without a domain, or if no
translation can be found, gettext simply prints string. If $TEXT-
DOMAINDIR exists, its value is used instead of the system default.

The GNU version of gettext and the accompanying com-
mands and library functions are an extension of the origi-
nal Solaris design from the early 1990s. Modern Solaris
versions of the commands have picked up some of the
features first developed for the GNU version. Thus, for
example, even the Solaris version of this command
accepts long options.

100 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ghostscript

URL: http://www.gnu.org/software/gettext.

Options

-d domain, --domain=domain
Retrieve messages from the domain text domain.

-e Enable expansion of some escape sequences. Use with -s.

-h, --help
Print a command-line summary and exit. GNU/Linux only.

-n Don’t print the trailing newline. Use with -s.

-s Enable echo-like features (-e and -n).

-V, --version
Print version information and exit. GNU/Linux only.

ghostscript ghostscript [options] files

GhostScript, an interpreter for Adobe Systems’ PostScript and PDF
(Portable Document Format) languages. Used for document
processing. With - in place of files, standard input is used. The
usual name is gs; see gs.

gprof gprof [options] [objfile [pfile]]

Display call-graph profile data of C programs. Programs compiled
with the -xpg option of Sun’s cc (-pg on other compilers) produce a
call-graph profile file pfile, whose default name is gmon.out. The
specified object file objfile (a.out by default) contains a symbol
table that is read and correlated with pfile.

URL: http://www.gnu.org/software/binutils for the GNU version of
gprof.

Common Options

-a, --no-static
Don’t print statically declared functions.

-b, --brief
Brief; don’t print field descriptions in the profile.

-c, --static-call-graph
Find the program’s static call-graph. Call counts of 0 indicate
static-only parents or children.

-e name
Don’t print the graph profile entry for the routine name. -e
may be repeated.

-E name
Like -e. In addition, during time computations, omit the time
spent in name.

-f name
Print the graph profile entry only for routine name. -f may
be repeated.

Alphabetical Summary of Common Commands | 101

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gprof

-F name
Like -f. In addition, during time computations, use only the
times of the printed routines. -F may be repeated, and it over-
rides -E.

-s, --sum
With this option, you supply one or more existing pfiles. Sum
the information in all specified profile files and send it to a
profile file called gmon.sum. Useful for accumulating data
across several runs.

-z, --display-unused-functions
Show routines that have zero usage. Useful with -c to find out
which routines were never called.

Solaris Options

-n Only print the top n functions.

-C Demangle C++ symbol names before printing them out.

-D With this option, you supply one or more existing pfiles.
Process the information in all specified profile files and
produce a profile file called gmon.sum that shows the difference
between the runs. See also the -s option.

-l Don’t print entries for local symbols.

GNU/Linux Options

-A[symspec], --annotated-source[=symspec]
Print annotated source code.

-C[symspec], --exec-counts[=symspec]
Print statistics on the number of times each function is called.
When used with option -l, count basic-block execution.

-d [num], --debug[=num]
Turn on debugging. Use num to specify specific debugging
features; otherwise enable all debugging. See the gprof Info file
for more information.

-D, --ignore-non-functions
Ignore symbols that are not known functions. This produces
more accurate profiles.

--demangle[=style], --no-demangle
Specify whether C++ symbols should be demangled or not.
They are demangled by default. If profiling a program built by a
different compiler, you may need to specify the mangling style.

--file-ordering file
Print suggested link line order for .o files based on profiling
data. Read function name to object file mappings from file.
This file can be created using the nm command.

--function-ordering
Print suggested function order based on profiling data.

-i, --file-info
Print summary information on data files, then exit.

102 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gprof

-I dirs, --directory-path=dirs
Set directory path to search for source files. The dirs argument
may be given as a colon-separated list of directories.

-J[symspec], --no-annotated-source[=symspec]
Don’t print annotated source code.

-k from/to
Remove arcs between the routines from and to.

-l, --line
Generate line-by-line profiles. This can increase gprof’s
running time and may be less statistically accurate.

-L, --print-path
Print the path information when printing filenames.

-m n, --min-count[=n]
Don’t print count statistics for symbols executed less than n
times.

-n[symspec], --time[=symspec]
Propagate time statistics in call graph analysis.

-N[symspec], --no-time[=symspec]
Don’t propagate time statistics in call graph analysis.

-O format, --file-format[=format]
Use format for the output file format. Acceptable values are
auto (the default), bsd, 4.4bsd, magic, and prof (not yet
implemented).

-p[symspec], --flat-profile[=symspec]
Print profile statistics.

-P[symspec], --no-flat-profile[=symspec]
Don’t print profile statistics.

-q[symspec], --graph[=symspec]
Print call graph analysis.

-Q[symspec], --no-graph[=symspec]
Don’t print call graph analysis.

-T, --traditional
Print output in BSD style.

-v, --version
Print version and exit.

-w n, --width=n
Print function index formatted to width n.

-x, --all-lines
When printing annotated source, annotate every line in a basic
block, not just the beginning.

-y, --separate-files
Print annotated-source output to separate files instead of stan-
dard output. The annotated source for each source file is
printed to filename-ann.

-Z[symspec], --no-exec-counts[=symspec]
Don’t print statistics on the number of times each function
is called.

Alphabetical Summary of Common Commands | 103

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gs

Mac OS X Options

-S Create the “order” files gmon.order, callf.order, callo.order,
and time.order, for use with ld. To include library functions in
the files, you must have a whatsloaded file from ld in the
current directory. For more details see ld(1).

grep grep [options] regexp [files]

Search one or more files for lines that match a regular expression
regexp. Regular expressions are described in Chapter 7. Exit status
is 0 if any lines match, 1 if not, and 2 for errors. See also egrep and
fgrep.

Options

The options for grep are the same as for egrep, including the Solaris
versus GNU differences. For Solaris, there is an exception: /usr/
xpg4/bin/grep also accepts the -q option. See egrep for the full list.

Examples

List the number of users who use the C shell:

grep -c /bin/csh /etc/passwd

List header files that have at least one #include directive:

grep -l '^#include' /usr/include/*

List files that don’t contain pattern:

grep -c pattern files | grep :0

groff groff [options] [files]

The GNU version of troff. Formats documents to screen or for
laser printing. See Chapter 18.

groups groups [options] [user]

Show the groups that user belongs to (default is your groups).
Groups are listed in /etc/passwd and /etc/group.

gs gs [options] [files]

Solaris (in /usr/sfw/bin), and GNU/Linux only. GhostScript, an
interpreter for Adobe Systems’ PostScript and PDF (Portable Docu-
ment Format) languages. Used for document processing. With - in
place of files, standard input is used.

URLs: http://www.gnu.org/software/ghostscript and http://www.cs.
wisc.edu/~ghost/.

104 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gs

Options

-- filename arg1 ...
Take the next argument as a filename, but use all remaining
arguments to define ARGUMENTS in userdict (not systemdict) as
an array of those strings before running the file.

-Dname=token, -dname=token
Define a name in systemdict with the given definition. The
token must be exactly one token (as defined by the token
operator) and must not contain any whitespace.

-Dname, -dname
Define a name in systemdict with a null value.

-gnumber1xnumber2
Specify width and height of device; intended for systems like
the X Window System.

-Idirectories
Add the designated list of directories at the head of the search
path for library files.

-q Quiet startup.

-rnumber, -rnumber1xnumber2
Specify X and Y resolutions (for the benefit of devices, such as
printers, that support multiple X and Y resolutions). If only
one number is given, it is used for both X and Y resolutions.

-Sname=string, -sname=string
Define a name in systemdict with a given string as value.

Special names

-dDISKFONTS
Causes individual character outlines to be loaded from the
disk the first time they are encountered.

-dNOBIND
Disables the bind operator. Useful only for debugging.

-dNOCACHE
Disables character caching. Useful only for debugging.

-dNODISPLAY
Suppresses the normal initialization of the output device. May
be useful when debugging.

-dNOPAUSE
Disables the prompt and pause at the end of each page.

-dNOPLATFONTS
Disables the use of fonts supplied by the underlying platform
(e.g., the X Window System).

-dSAFER
Disables the deletefile and renamefile operators and the
ability to open files in any mode other than read-only.

-dWRITESYSTEMDICT
Leaves systemdict writable.

Alphabetical Summary of Common Commands | 105

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gzip

-sDEVICE=device
Selects an alternate initial output device.

-sOUTPUTFILE=filename
Selects an alternate output file (or pipe) for the initial output
device.

gunzip gunzip [gzip options] [files]

Identical to gzip -d. Typically provided as a hard link to gzip. The
-1 … -9 and corresponding long-form options are not available with
gunzip; all other gzip options are accepted. See gzip for more
information.

gzcat gzcat [gzip options] [files]

A link to gzip instead of using the name zcat, which preserves
zcat’s original link to the old compress command. Its action is iden-
tical to gunzip -c. May be installed as zcat on some systems. See
gzip for more information.

gzip gzip [options] [files]

GNU Zip. Reduce the size of one or more files using Lempel-Ziv
(LZ77) coding, and move to file.gz. Restore with gunzip. With a
filename of -, or with no files, gzip reads standard input. Usually,
compression is considerably better than that provided by the old
compress command. Furthermore, the algorithm is patent-free.
Today, gzip is the de-facto compression software used throughout
the Internet. (Although bzip2 is also popular, see bzip2.)

gzip ignores symbolic links. The original file’s name, permissions,
and modification time are stored in the compressed file, and
restored when the file is uncompressed. gzip is capable of uncom-
pressing files that were compressed with compress, pack, or the BSD
compact. Default options may be placed in the environment vari-
able GZIP.

gunzip is equivalent to gzip -d. It is typically a hard link to the gzip
command. gzcat and zcat are equivalent to gunzip -c, and are also
often hard links to gzip.

Additional related commands include gzcmp, which compares the
contents of gzipped files; gzdiff, which creates diff (difference) files
from a pair of gzip files; gzgrep, to search them; and the gzless and
gzmore commands, which apply the more and less commands to
gzip output as gzcat does with the cat command. See cat, cmp,
diff, grep, less, and more for information on how to use those
commands.

URL: http://www.gzip.org.

106 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gzip

Options

-a, --ascii
ASCII text mode: convert end-of-lines using local conven-
tions. Not supported on all systems.

-c, --stdout, --to-stdout
Write output on standard output; keep original files
unchanged. Individual input files are compressed separately;
for better compression, concatenate all the input files first.

-d, --decompress, --uncompress
Decompress.

-f, --force
Force. The file is compressed or decompressed, even if the
target file exists or if the file has multiple links.

-h, --help
Display a help screen and exit.

-l, --list
List the compressed and uncompressed sizes, the compres-
sion ratio, and the original name of the file for each
compressed file. With --verbose, also list the compression
method, the 32-bit CRC, and the original file’s last-modifica-
tion time. With --quiet, the title and totals lines are not
displayed.

-L, --license
Display the gzip license and quit.

-n, --no-name
For gzip, do not save the original filename and modification
time in the compressed file. For gunzip, do not restore the orig-
inal name and modification time; use those of the compressed
file (this is the default).

-N, --name
For gzip, save the original filename and modification time in
the compressed file (this is the default). For gunzip, restore the
original filename and modification time based on the informa-
tion in the compressed file.

-q, --quiet
Suppress all warnings.

-r, --recursive
Recursively walk the current directory tree and compress (for
gunzip, uncompress) all files found.

--rsyncable
Make an archive that is “friendly” to rsync. Not supported on
all systems.

-S .suf, --suffix .suf
Use .suf as the suffix instead of .gz. A null suffix makes gunzip
attempt decompression on all named files, no matter what
their suffix.

Alphabetical Summary of Common Commands | 107

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

head

-t, --test
Check the compressed file integrity.

-v, --verbose
Display the name and percentage reduction for each file
compressed or decompressed.

-V, --version
Display the version number and compilation options, and
then quit.

-n, --fast, --best
Control the compression method. n is a number between 1
and 9. -1 (same as --fast) gives the fastest, but least
compressed method. -9 (same as --best) gives the best
compression, but is slower. Values between 1 and 9 vary the
tradeoff in compression method. The default compression
level is -6, which gives better compression at some expense in
speed. In practice, the default is excellent, and you should not
need to use these options.

head head [options] [files]

Print the first few lines of one or more files (default is 10).

Common Options

-n Print the first n lines of the file. This is traditional head
behavior, although it is not blessed by all versions of the
POSIX standard.

-n n Print the first n lines of the file.

GNU/Linux Options

-c num[b|k|m], --bytes num[b|k|m]
Print first num bytes or, if num is followed by b, k, or m, first
num 512-byte blocks, 1-kilobyte blocks, or 1-megabyte blocks.

--lines num
Same as -n.

-q, --quiet, --silent
Quiet mode; never print headers giving filenames.

-v, --verbose
Print filename headers, even for only one file.

Examples

Display the first 20 lines of phone_list:

head -n 20 phone_list

Display the first 10 phone numbers having a 202 area code:

grep '(202)' phone_list | head

108 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

hexdump

hexdump hexdump [options] file

GNU/Linux and Mac OS X only. Display specified file or input in
hexadecimal, octal, decimal, or ASCII format. Option flags specify
the display format.

Options

-b Use a one-byte octal display, meaning the input offset is in
hexadecimal and followed by sixteen three-column octal data
bytes, filled in with zeroes and separated by spaces.

-c Use a one-byte character display, meaning the input offset is in
hexadecimal and followed by sixteen three-column entries,
filled in with zeroes and separated with spaces.

-C Canonical mode. Display hexadecimal offset, two sets of eight
columns of hexadecimal bytes, then a | followed by the ASCII
representation of those same bytes.

-d Use a two-byte decimal display. The input offset is again in
hexadecimal, but the display has only eight entries per line, of
five columns each, containing two bytes of unsigned decimal
format.

-e format_string
Choose a format string to be used to transform the output
data. Format strings consist of:

Iteration count
The iteration count is optional. It determines the number
of times to use the transformation string. The number
should be followed by a slash character (/) to distinguish
it from the byte count.

Byte count
The number of bytes to be interpreted by the conversion
string. It should be preceded by a slash character to
distinguish it from the iteration count.

Format characters
The actual format characters should be surrounded by
quotation marks and are interpreted as printf(3) format-
ting strings (see also printf), although the *, h, l, n, p, and
q options will not work as expected. Format string usage
is discussed at greater length in the hexdump manpage.

-f filename
Choose a file that contains several format strings. The strings
should be separated by newlines; the # character marks a line
as a comment.

-n length
Limit the number of bytes of input to be interpreted.

-o Two-byte octal display, meaning a hexadecimal offset
followed by eight five-column data entries of two bytes each,
in octal format.

Alphabetical Summary of Common Commands | 109

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

iconv

-s offset
Skip to specified offset. The offset number is assumed to be
decimal unless it starts with 0x or 0X (hexadecimal), or O
(octal). Numbers may also be designated in megabytes, kilo-
bytes, or half-kilobytes with the addition of m, k, or b at the end
of the number.

-v Display all input data, even if it is the same as the previous
line. Normally, a duplicate line is replaced by an asterisk (*).

-x Display data in a two-byte hexadecimal format. The offset is,
as usual, in hexadecimal, and is followed by eight space-sepa-
rated entries, each of which contains four-column, two-byte
chunks of data in hexadecimal format.

hostname hostname [option] [nameofhost]

Set or print name of current host system. A privileged user can set
the hostname with the nameofhost argument.

Mac OS X accepts the -s option.

GNU/Linux Options

-a, --alias
Display the alias name of the host (if used).

-d, --domain
Print DNS domain name.

-f, --fqdn, --long
Print fully qualified domain name.

-F file, --file file
Consult file for hostname.

-i, --ip-address
Display the IP address(es) of the host.

-n, --node
Display or set the DECnet node name. Not available on all
systems. (And not terribly useful even on those systems that
have it.)

-s, --short
Trim domain information from the printed name.

-v, --verbose
Verbose mode.

-y, --yp, --nis
Display the NIS domain name. A privileged user can set a new
NIS domain name with nameofhost.

iconv iconv [options] -f from_encoding -t to_encoding [file]

Convert the contents of file from one character set to another.

110 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

id

Common Options

-c Omit invalid output characters.

-f code1, --from-code=code1
Convert input characters from the code1 encoding.

-l, --list
Print a list of valid encodings to standard output.

-s, --silent
Operate silently; don’t print warning messages.

-t code2, --to-code=code2
Convert input characters to the code2 encoding.

GNU/Linux Options

-o file, --output=file
Write the converted output to file instead of standard output.

--usage
Print a brief usage message showing only the command syntax
and then exit.

-V, --version
Print version information and exit.

--verbose
Operate verbosely; print progress messages.

-?, --help
Print a help message and exit.

id id [options] [username]

Display information about yourself or another user: user ID,
group ID, effective user ID and group ID if relevant, and addi-
tional group IDs.

Common Options

-g, --group
Print group ID only.

-G, --groups
Print supplementary groups only.

-n, --name
With -u, -g, or -G, print user or group name, not number.

-r, --real
With -u, -g, or -G, print real, not effective, user ID or group ID.

-u, --user
Print user ID only.

Solaris Option
-a /usr/bin/id: list all groups.

GNU/Linux Options
-a Ignored; for compatibility with other systems.

-Z, --context
Print the security context. SELinux only.

Alphabetical Summary of Common Commands | 111

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

info

Mac OS X Option

-P Print information as an /etc/passwd entry.

info info [options] [topics]

GNU hypertext documentation reader. Display online documenta-
tion previously built from Texinfo input. Info files are arranged in a
hierarchy and can contain menus for subtopics. When entered
without options, the command displays the top-level Info file
(usually /usr/local/info/dir). When topics are specified, find a
subtopic by choosing the first topic from the menu in the top-level
Info file, the next topic from the new menu specified by the first
topic, and so on. The initial display can also be controlled by the -f
and -n options. If a specified topic has no Info file but does have a
manpage, info displays the manpage; if there is neither, the top-
level Info file is displayed.

URL: http://www.gnu.org/software/texinfo.

Options

--apropos string
Find string in the indexes of all manuals.

-d directories, --directory directories
Search directories, a colon-separated list, for info files. If this
option is not specified, use the INFOPATH environment vari-
able or the default directory (usually /usr/share/info or /usr/
local/info).

--dribble file
Store each keystroke in file, which can be used in a future
session with the --restore option to return to this place in info.

-f file, --file file
Display specified Info file.

--index-search string
Find the index entry string and go to the node it points to.

-n node, --node node
Display specified node in the Info file.

-o file, --output file
Copy output to file instead of displaying it at the screen.

-O, --show-options, --usage
Go to the node for command-line options.

--restore file
When starting, execute keystrokes in file.

-R, --raw-escapes
Do not remove formatting escape sequences from manpages.

--subnodes
Display subtopics.

--vi-keys
Use vi-like key bindings.

112 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

join

join join [options] file1 file2

Join the common lines of sorted file1 and sorted file2. Read stan-
dard input if file1 is -. The output contains the common field and
the remainder of each line from file1 and file2. In the options
below, n can be 1 or 2, referring to file1 or file2.

Common Options

-a filenum
List unpairable lines in file filenum. Use -a 1 -a 2 to list
unpairable lines from both files.

-e string
Replace any empty output field with the string string.

-o n.m
Each output line contains fields specified by file number n and
field number m. The common field is suppressed unless
requested.

-tc Use character c as field separator for input and output.

-v n
Print only the unpairable lines in file n. With both -v 1 and -v 2,
all unpairable lines are printed.

-1 m
Join on field m of file 1. Fields start with 1.

-2 m
Join on field m of file 2. Fields start with 1.

Solaris and GNU/Linux Option

-j fieldnum
Equivalent to -1fieldnum -2fieldnum.

Solaris Options

-j1 fieldnum
Equivalent to -1fieldnum.

-j2 fieldnum
Equivalent to -2fieldnum.

GNU/Linux Option

-i, --ignore-case
Ignore case differences when comparing keys.

Examples

Assuming the following input files:

$ cat score
olga 81 91
rene 82 92
zack 83 93
$ cat grade
olga B A
rene B A

Alphabetical Summary of Common Commands | 113

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

kill

List scores followed by grades, including unmatched lines:

$ join -a1 score grade
olga 81 91 B A
rene 82 92 B A
zack 83 93

Pair each score with its grade:

$ join -o 1.1 1.2 2.2 1.3 2.3 score grade
olga 81 B 91 A
rene 82 B 92 A

kill kill [options] IDs

Terminate one or more process IDs. You must own the process or
be a privileged user. This command is similar to the kill command
that is built in to the Bash, Korn, and C shells. A minus sign before
an ID specifies a process group ID. (The built-in version doesn’t
allow process group IDs, but it does allow job IDs.)

The command kill -l prints a list of the available signal names.
The list varies by system architecture; for a PC-based system, it
looks like this:

$ kill -l From Bash on GNU/Linux
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 33) SIGRTMIN 34) SIGRTMIN+1
35) SIGRTMIN+2 36) SIGRTMIN+3 37) SIGRTMIN+4 38) SIGRTMIN+5
39) SIGRTMIN+6 40) SIGRTMIN+7 41) SIGRTMIN+8 42) SIGRTMIN+9
43) SIGRTMIN+10 44) SIGRTMIN+11 45) SIGRTMIN+12 46) SIGRTMIN+13
47) SIGRTMIN+14 48) SIGRTMIN+15 49) SIGRTMAX-15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

The signals and their numbers are defined in the C <signal.h>
header file. This file may include others, thus the actual location
varies across systems. They are shown in the following table.
(Note: you should not include these files directly; rather, always
use <signal.h> in your C or C++ programs.) Look in your system’s
file to find the signals that apply to your system.

System File

Solaris /usr/include/sys/iso/signal_iso.h

GNU/Linux /usr/include/bits/signum.h

Mac OS X /usr/include/sys/signal.h

114 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ksh

Common Options

-l [status]
List the signal names. (Used by itself.) The optional status is a
numeric exit value from a process killed by a signal; kill will
indicate which signal it was.

-s signal
Send signal signal to the given process or process group. The
signal number (from <signal.h>) or name (from kill -l). With
a signal number of 9, the kill is absolute.

-signal
Send signal signal to the given process or process group. signal
may be either a signal name or a signal number.

GNU/Linux Options

-a Kill all processes of the given name (if privileges allow), not
just processes with the same UID. To use this option, specify
the full path (e.g., /bin/kill -a gcc).

-p Print the process ID of the named process, but do not send it a
signal. In order to use this option, specify the full path (e.g.,
/bin/kill -p).

ksh ksh [options] [arguments]

Korn shell command interpreter. See Chapter 4 for more informa-
tion, including command-line options.

ld ld [options] objfiles

Combine several objfiles, in the specified order, into a single
executable object module (a.out by default). ld is the loader and is
usually invoked automatically by compiler commands such as cc.

Solaris: ld is in /usr/ccs/bin.

Options for ld vary wildly across systems. Furthermore,
in the 21st century, no matter what system you work on,
the loader is one of the most complicated commands. We
have chosen here to document only those options that are
commonly available. You will need to check your local
documentation for complete information.

Options

-e symbol
Set symbol as the address of the output file’s entry point.

-lx Search a library named libx.so or libx.a (the placement of
this option on the line affects when the library is searched).

-L dir
Search directory dir before standard search directories (this
option must precede -l).

Alphabetical Summary of Common Commands | 115

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ldd

-o file
Send the output to file (default is a.out).

-r Allow output to be subject to another ld. (Retain relocation
information.)

-R path
Record the colon-separated list of directories in path in the
object file for use by the runtime loader. Multiple instances
may be supplied; the values are concatenated together.

-s Remove (strip) symbol table and relocation entries.

-u symbol
Enter symbol in symbol table; useful when loading from an
archive library. symbol must precede the library that defines it
(so -u must precede -l).

ldd ldd [options] file

Solaris and GNU/Linux only. List dynamic dependencies: that is,
list shared objects that would be loaded if file were executed. (If a
valid file needs no shared objects, ldd succeeds but produces no
output.) In addition, ldd’s options can show unresolved symbol
references that result from running file.

Options

Specify only one of these options:

-d, --data-relocs
Check references to data objects only.

-r, --function-relocs
Check references to data objects and to functions.

Solaris Options

-c Disables the use of configuration files; see crle(1).

-e envar
Set the environment variable envar. Useful for experimenting
with environment variables that affect ldd without having to
change the global environment.

-f Force checking of nonsecure executables. This option is
dangerous if running as a privileged user.

-i Print the execution order of initialization sections.

-l Do immediate processing of any filters, to list all “filtees” and
their dependencies.

-L Enable lazy loading.

-s Display the search path for shared object dependencies.

-u Display unused objects. Mutually exclusive with -U.

-U Display unused objects and dependencies. This is a superset of
-u and is mutually exclusive with it.

-v Display all dependency relationships and version
requirements.

116 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

less

GNU/Linux Options

-v, --verbose
Print all information.

-V, --version
Display ldd’s version.

less less [options] [filename]

less is a program for paging through files or other output. It was
written in reaction to the perceived primitiveness of more (hence its
name). Some commands may be preceded by a number.

URL: http://www.greenwoodsoftware.com/less.

The lesskey command configures keybindings for less. See
lesskey(1) for more information on it.

Options

-[z]num, --window=num
Set number of lines to scroll to num. Default is one screenful.
A negative num sets the number to num lines less than the
current number.

+[+]command
Run command on startup. If command is a number, jump to
that line. The option ++ applies this command to each file in
the command-line list.

-?, --help
Print help screen. Ignore all other options; do not page
through file.

-a, --search-screen
When searching, begin after last line displayed. (Default is to
search from second line displayed.)

-bbuffers, -buffers=buffers
Use buffers buffers for each file (default is 10). Buffers are 1 KB
in size.

-B, --auto-buffers
Do not automatically allocate buffers for data read from a
pipe. If -b specifies a number of buffers, allocate that many. If
necessary, allow information from previous screens to be lost.

-c, --clear-screen
Redraw screen from top, not bottom.

-C, -CLEAR-SCREEN
Redraw screen by clearing it and then redrawing from top.

-d, --dumb
Suppress dumb-terminal error messages.

-e, --quit-at-eof
Automatically exit after reaching EOF twice.

-E, --QUIT-AT-EOF
Automatically exit after reaching EOF once.

Alphabetical Summary of Common Commands | 117

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

less

-f, --force
Force opening of directories and devices; do not print warning
when opening binaries.

-F, --quit-if-one-screen
Exit without displaying anything if first file can fit on a single
screen.

-g, --hilite-search
Highlight only string found by past search command, not all
matching strings.

-G, --HILITE-SEARCH
Never highlight matching search strings.

-hnum, --max-back-scroll=num
Never scroll backward more than num lines at once.

-i, --ignore-case
Make searches case-insensitive, unless the search string
contains uppercase letters.

-I, --IGNORE-CASE
Make searches case-insensitive, even when the search string
contains uppercase letters.

-jnum, --jump-target=num
Position target line on line num of screen. Target line can be
the result of a search or a jump. Count lines beginning from 1
(top line). A negative num is counted backward from bottom
of screen.

-J, --status-column
Used with -w or -W, highlight a single column on the left edge
of the screen instead of the whole text of an unread line.

-kfile, --lesskey-file=file
Read file to define special key bindings.

-Kcharset
Use the specified charset.

-m, --long-prompt
Display more-like prompt, including percent of file read.

-M Prompt more verbosely than with -m, including percentage,
line number, and total lines.

-n, --line-numbers
Do not calculate line numbers. Affects -m and -M options and =
and v commands (disables passing of line number to editor).

-N, --LINE-NUMBERS
Print line number before each line.

-ofile, --log-file=file
When input is from a pipe, copy output to file as well as to
screen. (Prompt for overwrite authority if file exists.)

-Ofile, --LOG-FILE=file
Similar to -o, but do not prompt when overwriting file.

118 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

less

-ppattern, --pattern=pattern
At startup, search for first occurrence of pattern.

-P[mM=]prompt
Set the prompt displayed by less at the bottom of each screen
to prompt. The m sets the prompt invoked by the -m option, the
M sets the prompt invoked by the -M option, and the = sets the
prompt invoked by the = command. Special characters
(described in the manpage for less), can be used to print
statistics and other information in these prompts.

-q, --quiet, --silent
Disable ringing of bell on attempts to scroll past EOF or
before beginning of file. Attempt to use visual bell instead.

-Q, --QUIET, --SILENT
Never ring terminal bell.

-r, --raw-control-chars
Display “raw” control characters instead of using ^x nota-
tion. This sometimes leads to display problems, which might
be fixed by using -R instead.

-R, --RAW-CONTROL-CHARS
Like -r, but adjust screen to account for presence of control
characters.

-s, --squeeze-blank-lines
Print successive blank lines as one line.

-S, --chop-long-lines
Cut, do not fold, long lines.

-ttag, --tag=tag
Edit file containing tag. Consult ./tags (constructed by ctags).

-Tfile, --tag-file=file
With the -t option or :t command, read file instead of ./tags.

-u, --underline-special
Treat backspaces and carriage returns as printable input.

-U, --UNDERLINE-SPECIAL
Treat backspaces and carriage returns as control characters.

-V, --version
Display version and exit.

-w, --hilite-unread
Show the line to which a movement command has skipped,
phrases displayed by a search command, or the first unread
line during a normal scroll by highlighting text in reverse
video.

-W, --HILITE-UNREAD
Show phrases displayed by a search command, or the first
unread line of any forward movement that is more than one
line, by highlighting text in reverse video.

-xn, --tabs=n
Set tab stops to every n characters. Default is 8.

Alphabetical Summary of Common Commands | 119

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

link

-X, --no-init
Do not send initialization and deinitialization strings from
termcap to terminal.

-yn, --max-forw-scroll=n
Never scroll forward more than n lines at once.

Prompts

The prompt interprets certain sequences specially. Those begin-
ning with % are always evaluated. Those beginning with ? are
evaluated if certain conditions are true. Some prompts determine
the position of particular lines on the screen. These sequences
require that a method of determining that line be specified. See the
-P option and the manpage for more information.

lex lex [options] [files]

Generate a lexical analysis program (named lex.yy.c) based on the
regular expressions and C statements contained in one or more
input files. On GNU/Linux and Mac OS X, lex is actually flex. See
also yacc, bison, flex, and lex & yacc, which is listed in the
Bibliography.

Options

The -e and -w options may not be available on other Unix systems
where lex is the original Unix version.

-c file’s program statements are in C (default).

-e Handle EUC (Extended Unix Code, i.e., eight-bit) characters.
Mutually exclusive with -w. This gives yytext[] type unsigned
char.

-n Suppress the output summary.

-Qc Print version information in lex.yy.c (if c = y) or suppress
information (if c = n, the default).

-t Write program to standard output, not lex.yy.c.

-v Print a summary of machine-generated statistics.

-V Print version information on standard error.

-w Handle EUC (eight-bit or wider) characters. Mutually exclu-
sive with -e. This gives yytext[] type wchar_t.

link link file1 file2

Create a link between two files. This is the same as the ln
command, but it has no error checking because it uses the link(2)
system call directly.

120 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ln

ln ln [options] existing new
ln [options] files directory

Create pseudonyms (links) for files, allowing them to be accessed
by different names. In the first form, link existing to new, where
new is usually a new filename. If new is an existing file, it is
removed first; if new is an existing directory, a link named existing
is created in that directory. In the second form, create links in direc-
tory, each link having the same name as the file specified.

Common Options

-f, --force
Force the link to occur (don’t prompt for overwrite permission).

-s, --symbolic
Create a symbolic link. This lets you link across filesystems
and also see the name of the link when you run ls -l. (Other-
wise, you have to use find -inum to find any other names a file
is linked to.)

Solaris Option
-n /usr/bin/ln: Do not overwrite existing files.

GNU/Linux and Mac OS X Options

-i, --interactive
Prompt for permission before removing files.

-v, --verbose
Verbose mode. List files as they are processed.

GNU/Linux Options

-b, --backup[=control]
Back up any existing files. When using the long version of the
option, the optional control parameter controls the kind of
backup. When no control is specified, ln attempts to read the
control value from the VERSION_CONTROL environment
variable. Accepted values are:

-d, -F, --directory
Allow hard links to directories. Available to privileged users.

-n, --no-dereference
Replace symbolic links to directories instead of dereferencing
them. --force is useful with this option.

-S suffix, --suffix=suffix
Append suffix to files when making backups, instead of the
default ~.

--target-directory=directory
Create links in the specified directory.

none, off Never make backups.
numbered, t Make numbered backups.
existing, nil Match existing backups, numbered or simple.
simple, never Always make simple backups.

Alphabetical Summary of Common Commands | 121

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

locale

Mac OS X Options

-h Do not follow symbolic links for the target file or directory.
Useful with -f to replace a symbolic link that may point to a
directory.

-n Same as -h.

locale locale [options] [name ...]

Print locale-specific information. With no arguments, locale
summarizes the current locale. Depending on the arguments,
locale prints information about entire locale categories or the value
of specific items within a locale. A public locale is one an applica-
tion can access.

Options

-a, --all-locales
Print information about all available public locales. The POSIX
locale should always be available.

-c, --category-name
Provide information about the locale category name. Useful
with or without -k.

-k, --keyword-name
Print the names and values of the given locale keywords.

-m, --charmaps
Print the names of the available charmaps.

Environment variables

LANG
The default value for unset internationalization variables. If
not set, the system’s default value is used.

LC_ADDRESS
Postal settings, country, and language names and
abbreviation.

LC_ALL
When set, overrides the values of all other internationaliza-
tion variables.

LC_COLLATE
String and character sorting and comparison settings.

LC_CTYPE
Character attributes, including case conversion mappings, and
categories of characters (whitespace, digit, lower, upper, punc-
tuation, etc.).

LC_IDENTIFICATION
Information related to the current locale definition, including
its title, source, revision, and contact information for its
author.

LC_MEASUREMENT
Measurement units, metric or other.

122 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

locate

LC_MESSAGES
Settings for yes/no prompts and other informative and diag-
nostic messages.

LC_MONETARY
Currency formats and symbols.

LC_NAME
Formats for names and honorifics.

LC_NUMERIC
Nonmonetary number formats.

LC_PAPER
Default paper sizes for printing and pagination.

LC_TELEPHONE
Telephone number formats.

LC_TIME
Date and time formats.

NLSPATH
The path for finding message catalogues used in processing
messages.

Examples

Print the category name and all keywords for date and time
settings:

locale -ck LC_TIME

Print the strings used for days of the week and months of the year:

locale day mon

locate locate [options] [pattern]

Search database(s) of filenames and print matches. *, ?, [, and] are
treated specially; / and . are not. Matches include all files that
contain pattern unless pattern includes metacharacters, in which
case locate requires an exact match.

Solaris does not provide this command. Mac OS X uses the orig-
inal BSD version of this command that takes no options. For details
on the GNU/Linux version of this command, see the slocate entry
in the later section “Alphabetical Summary of GNU/Linux
Commands.”

logger logger [options] [messages]

Log messages to the system log. Command-line messages are
logged if provided. Otherwise, messages are read and logged, line-
by-line, from the file provided via -f. If no such file is given, logger
reads messages from standard input.

Alphabetical Summary of Common Commands | 123

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

login

Common Options

-f file
Read and log messages from file.

-i Log the process ID of the logger process with each message.

-p priority
Log each message with the given priority. Priorities have the
form facility.level. The default is user.notice. See syslog(3) for
more information.

-t tag
Add tag to each message line.

Mac OS X and GNU/Linux Option

-s Send the message to standard error, in addition to sending it
to the system log.

GNU/Linux Options

-d When using a specified socket with -u, use a datagram socket
instead of stream socket.

-u socket
Write to socket instead of to the system log.

Example

Warn about upcoming trouble:

logger -p user.emerg 'Incoming Klingon battleship!'

login login [options] [user]

Sign on and identify yourself to the system. At the beginning of
each terminal session, the system prompts you for your username
and, if relevant, a password. The options aren’t normally used.

Bash, the Korn shell, and the C shell have their own, built-in
versions of login. See Chapters 4 and 5 for more information.

Common Options

-h host [term]
Used for remote logins via telnet to indicate the login is from
host host and that the user’s terminal type is term.

-p Pass the current environment to the new login session.

Solaris Options

user
Sign on as user (instead of being prompted).

-d tty
Specify the pathname of the tty that serves as the login port.

-r host
Used for remote logins via rlogin to indicate the login is from
host host.

124 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

logname

-R repository
Use the PAM repository repository for the identity provided
with -u.

-s service
Use the PAM service service. Usually not needed, but is useful,
for example, with Kerberized logins.

-u identity
Provides the identity string for the user; this is usually different
from the login name. In Kerberos it’s the user’s principal
name.

-U ruser
The name of the remote person attempting a remote login.
Used by in.rlogind in Kerberized mode.

var=value
When specified after the username, assign a value to one or
more environment variables. PATH and SHELL can’t be
changed.

value
Pass values into the environment. Each value that does not
contain an = is assigned to a variable of the form Ln, where n
starts at 0 and increments by one.

Mac OS X and GNU/Linux Option

-f Assume authentication has already been done. May be used only
by a privileged user. The GNU/Linux login(1) manpage indi-
cates that this option does not work well under GNU/Linux.

logname logname

Display your login name. The command looks the user up in the
system’s database of currently logged in users. It ignores both the
LOGNAME and USER environment variables. See also whoami.

look look [options] string [file]

Look through a sorted file and print all lines that begin with string.
string may be up to 256 characters long. This program is poten-
tially faster than fgrep because it relies on the file being already
sorted, and can thus do a binary search through the file, instead of
reading it sequentially from beginning to end.

With no file, look searches /usr/share/lib/dict/words (the spelling
dictionary) with options -df.

Common Options

-d Use dictionary order. Only letters, digits, space, and tab are
used in comparisons.

-f Fold case; ignore case distinctions in comparisons.

Alphabetical Summary of Common Commands | 125

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

lp

-t char
Use char as the termination character, i.e., ignore all charac-
ters to the right of char.

GNU/Linux Option

-a Use alternate dictionary /usr/share/dict/web2.

lp lp [options] [files]

Send files to the printer. With no arguments, prints standard input.
To print standard input along with other files, specify – as one of
the files.

Common Options

-c Copy files to print spooler; if changes are made to file while it
is still queued for printing, the printout is unaffected.

-d dest
Send output to destination printer named dest.

-d any
Used after -f or -S to print the request on any printer that
supports the given form or character set.

-H action
Print according to the named action: hold (notify before
printing), resume (resume a held request), immediate (print
next; privileged users only). Mac OS X and GNU/Linux also
allow restart with -i to restart a completed job.

-i IDs
Override lp options used for request IDs currently in the
queue; specify new lp options after -i. For example, change
the number of copies sent.

-m Send mail after files are printed.

-n number
Specify the number of copies to print.

-o options
Set one or more printer-specific options. Standard options
include:

cpi=n Print n characters per inch. n can also be
pica, elite, or compressed.

lpi=n Print n lines per inch.
length=n Print pages n units long; e.g., 11i (inches), 66

(lines).
nobanner Omit banner page (separator) from request.
nofilebreak Suppress formfeeds between files.
width=n Print pages n units wide; e.g., 8.5i (inches),

72 (columns).
stty=list Specify a quoted list of stty options.

126 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

lpq

-P list
Print only the page numbers specified in list.

-q n Print request with priority level n (39 = lowest).

-s Suppress messages.

-t title
Use title on the printout’s banner page.

-w Write a message on the user’s terminal after files are printed
(same as -m if user isn’t logged on).

Solaris Options

-f name
Print request on preprinted form name. name references
printer attributes set by the administrative command lpforms.

-p Enable notification of completion of the print job.

-r Don’t adapt request if content isn’t suitable; reject instead.
(Obscure; used only with -T.)

-S name
Use the named print wheel or character set for printing.

-T content
Send request to a printer that supports content (default is
simple; an administrator sets content via lpadmin -I).

-y modes
Print according to locally defined modes.

GNU/Linux and Mac OS X Options

GNU/Linux and Mac OS X use CUPS, the Common Unix Printing
System. See http://www.cups.org for more information. Besides the
common options, the CUPS lp accepts the following:

-E Use encryption when connecting to the server.

-h host
Provide the print server hostname. The default is localhost or
the value of $CUPS_SERVER.

Examples

Send mail after printing five copies of report:

lp -n 5 -m report

Format and print thesis; print title too:

nroff -ms thesis | lp - title

lpq lpq [options] [jobid]

Check the print spool queue for status of print jobs. For each job,
display username, rank in the queue, filenames, job number, and
total file size (in bytes).

On Solaris, this is the original BSD interface, in /usr/ucb/lpq; see
lpq(1B) for more information. This entry documents the CUPS
version, which is used on GNU/Linux and Mac OS X. See also lpr.

Alphabetical Summary of Common Commands | 127

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

lpr

Options

-a Report on all printers.

-E Encrypt the connection to the server.

-l Verbose mode. Print information about each file comprising a
job. Use -l multiple times to increase the information
provided.

-P printer
Specify which printer to query. Without this option, lpq uses
the printer set in the PRINTER or other printer-related envi-
ronment variables or the default system printer.

+interval
Print the status every interval seconds until the queue is
empty.

lpr lpr [options] [files]

Send files to the printer. On Solaris, this is the original BSD inter-
face, in /usr/ucb/lpr; see lpr(1B) for more information. This entry
documents the CUPS version, which is used on GNU/Linux and
Mac OS X.

URL: http://www.cups.org. By default, CUPS makes its online docu-
mentation available via web browser at http://localhost:631/
documentation.html.

Options

-# count
Print count copies (100 maximum).

-C name
Set the job name.

-E Encrypt the connection to the server.

-J name
Same as -C.

-l The print file is in binary form, ready to be printed. Do not
apply any filtering. Equivalent to -oraw.

-o option
Set a job option. See the online documentation for more
details.

-p Supply a shaded header with the date, time, job name, and
page number. Equivalent to -oprettyprint.

-P destination
Print files to the named printer.

-r Remove the files after printing them.

-T name
Same as -C.

The original BSD and LPRng lpr options -c, -d, -f, -g, -i, -m, -n,
-t, -v, and -w are not supported and produce a warning message
if used.

128 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

lprm

lprm lprm [options] [jobid]

Remove a print job from the print spool queue. You must specify a
job number or numbers, which can be obtained from lpq. Only a
privileged user may remove files belonging to another user.

On Solaris, this is the original BSD interface, in /usr/ucb/lprm; see
lprm(1B) for more information. This entry documents the CUPS
version, which is used on GNU/Linux and Mac OS X. See also lpr.

Options
-E Encrypt the connection to the server.

-P printer
Specify printer queue. Normally, the default printer or printer
specified in the PRINTER environment variable is used.

- Cancel all jobs.

lpstat lpstat [options]

Print the lp print queue status. With options that take a list argument,
omitting the list produces all information for that option. list can be
separated by commas or, if enclosed in double quotes, by spaces.

Common Options
-a [list]

Show if the list of printer or class names is accepting requests.
-c [list]

Show information about printer classes named in list.
-d Show the default printer destination.

-l Use after -f to describe available forms, after -p to show printer
configurations, or, on Solaris, after -S to describe printers
appropriate for the specified character set or print wheel.

-o [list]
Show the status of output requests. list contains printer
names, class names, or request IDs.

-p [list]
Show the status of printers named in list.

-r Show whether the print scheduler is on or off.

-R Show the job’s position in the print queue.

-s Summarize the print status (shows almost everything).

-t Show all status information (reports everything).

-u [list]
Show request status for users on list. list can be:

user user on local machine
all All users on all systems
host!user user on machine host
host!all All users on host
all!user user on all systems
all!all All users on all systems

Alphabetical Summary of Common Commands | 129

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ls

-v [list]
Show device associated with each printer named in list.

Solaris Options
-D Use after -p to show a brief printer description.

-f [list]
Verify that the list of forms is known to lp.

-S [list]
Verify the list of character sets or print wheels is known to lp.

GNU/Linux and Mac OS X Options

GNU/Linux and Mac OS X use CUPS, the Common Unix Printing
System. See http://www.cups.org for more information. Besides the
common options, the CUPS lpstat accepts the following:

-E Use encryption when connecting to the server.

-h host
Provide the print server hostname. The default is localhost or
the value of $CUPS_SERVER.

-W which
Show which jobs. The valid values include completed and
not-completed. Use before -o and/or any printer names.

ls ls [options] [names]

If no names are given, list the files in the current directory. With one
or more names, list files contained in a directory name or that match
a file name. The options let you display a variety of information in
different formats. The most useful options include -F, -R, -a, -l, and
-s. Some options don’t make sense together; e.g., -u and -c.

Modern versions of ls pay attention to the LC_COLLATE
environment variable. Its default value, en_US, (in the
United States) causes ls to sort in dictionary order (i.e.,
ignoring case). You may prefer to set LC_COLLATE to C
to restore the traditional Unix behavior of sorting in ASCII
order.

Common Options
-a, --all

List all files, including the normally hidden . files.
-A, --almost-all

Like -a, but exclude . and .. (the current and parent
directories).

-b, --escape
Show nonprinting characters in octal.

-c, --time-ctime, --time=status
List files by inode modification time.

-C, --format=vertical
List files in columns (the default format, when displaying to a
terminal device).

130 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ls

-d, --directory
List only the directory’s information, not its contents. (Most
useful with -l and -i.)

-f Interpret each name as a directory (files are ignored).

-F, --classify, --indicator-style=classify
Flag filenames by appending / to directories, > to doors
(Solaris only), * to executable files, | to FIFOs, @ to symbolic
links, and = to sockets.

-g Like -l, but omit owner name (show group).

-h Produce “human-readable” output, using abbreviations for
kilobyte, megabyte, and so on.

-H, --dereference-command-line
If an argument on the command line is a symbolic link, list the
file or directory referenced by a symbolic link rather than the
link itself.

-i, --inode
List the inode number for each file.

-l, --format=long, --format=verbose
Long format listing (includes permissions, owner, size, modifi-
cation time, etc.).

-L List the file or directory referenced by a symbolic link rather
than the link itself.

-m, --format=commas
Merge the list into a comma-separated series of names.

-n, --numeric-uid-gid
Like -l, but use user ID and group ID numbers instead of
owner and group names.

-p, --filetype, --indicator-style=file-type
Mark directories by appending / to them. GNU/Linux also
appends | to FIFOs, @ to symbolic links, and = to sockets.
(Almost, but not quite, the same as -F.)

-q, --hide-control-chars
Show nonprinting characters as ?.

-r, --reverse
List files in reverse order (by name or by time).

-R, --recursive
Recursively list subdirectories as well as current directory.

-s, --size
Print sizes of the files in blocks.

-t, --sort=time
List files according to modification time (newest first).

-u, --time=atime, --time=access, --time=use
List files according to the file access time.

-x, --format=across, --format=horizontal
List files in rows going across the screen.

-1, --format=single-column
Print one entry per line of output.

Alphabetical Summary of Common Commands | 131

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ls

Solaris and GNU/Linux Option

-o Like -l, but omit group name (show owner).

Solaris Options

-e Like -l, but use the same format for times regardless of age:
mmm dd hhh:mm:ss yyyy.

-E Like -l, but use the ISO 8601 format for times regardless of
age: yyyy-mm-dd hh:mm:ss.nnnnnnnnn.

-@ Like -l, but extended attribute information supersedes ACL
information. ls places an @ after the permission bits for files
with extended attributes.

GNU/Linux Options

--author
Print the author of each file. On GNU/Hurd systems, the
author is different than the owner. On all other systems, this
prints the file’s owner.

--block-size=size
Use blocks of size bytes.

-B, --ignore-backups
Do not list files ending in ~ unless given as arguments.

--color[=when]
Colorize the names of files depending on the type of file.
Accepted values for when are never, always, or auto.

--dereference-command-line-symlink-to-dir
Follow command-line argument symbolic links that point to
directories.

-D, --dired
List in a format suitable for Emacs dired mode.

--full-time
List times in full, rather than using the standard abbreviations.

-G, --no-group
In long format, do not display group name.

--indicator-style=style
Add trailing indicators to filenames according to style. Possible
values are none, classify (same as -F), and file-type (same as
-p). Default is none.

-I pattern, --ignore pattern
Do not list files whose names match the shell pattern pattern
unless they are given on the command line.

-k, --kilobytes
If file sizes are being listed, print them in kilobytes. This
option overrides the environment variable POSIXLY_CORRECT.

--lcontext
Display the full security context. Implies -l. SELinux only.

-N, --literal
Display special graphic characters that appear in filenames.

132 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ls

--quoting-style=style
Use the style quoting style. Possible values are: c, escape,
literal, locale, shell, and shell-always.

-Q, --quote-name
Quote filenames with "; quote nongraphic characters.

--scontext
Display only the filename and the security context. SELinux
only.

--show-control-chars
Show nonprinting characters verbatim (default for printing to
a file).

--si Similar to -h, but uses powers of 1000 instead of 1024.

--sort=criteria
Sort by the given criteria. Possible values and their corre-
sponding options are: access (-u), atime (-u), extension (-X),
none (-U), size (-S), status (-c), time (-t), use (-u), and version
(-v).

-S, --sort=size
Sort by file size, largest to smallest.

--time=filetime
Show the given time attribute of the file instead of the modifi-
cation time. Allowed values are: atime, access, use, ctime, and
status. The time attribute is used for sorting with --sort=time.

--time-style=style
Format times according to the given style. If style is preceded
by posix-, then the style is used only if not in the POSIX locale.
Allowed values are: full-iso, iso, locale, long-iso, and
+format.

For +format, the format is interpreted as for date (see date).
Two formats may be provided separated by a newline. In this
case, the first one applies to nonrecent files, and the second
one applies to recent files.

-T ncols, --tabsize=ncols
Set tab stops at ncols columns.

-U, --sort=none
Do not sort files.

-v, --sort=version
Interpret the digits in names such as file.6 and file.6.1 as
versions, and order filenames by version.

-w n, --width=n
Format output to fit n columns.

-X, --sort=extension
Sort by file extension, then by filename.

-Z, --context
Display the security context so that it will fit on the screen.
The information given is the mode, user, group, security
context, and filename. SELinux only.

Alphabetical Summary of Common Commands | 133

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

m4

Mac OS X Options

-B Print nonprintable characters as an octal escape: \nnn.

-e Print the Access Control List (ACL) of the file, if any.

-G Enable colorized output.

-k For use with -s; print file sizes in kilobytes, not blocks. Over-
rides the BLOCKSIZE environment variable.

-o Include the file flags in the long format listing (-l).

-P Cancel the -H and -L options, causing ls to list information
about symbolic links, not the files they point to.

-S Sort files by their size.

-T Use with -l. Print complete time information, including
month, day, hour, minute, second, and year.

-w Print nonprintable characters verbatim. This is the default if
the output is not a terminal.

-W Display whiteout entries when scanning directories.

-v Print nongraphic characters verbatim. This is the default if the
output is not a terminal.

Examples

List all files in the current directory and their sizes; use multiple
columns and mark special files:

ls -asCF

List the status of directories /bin and /etc:

ls -ld /bin /etc

List C source files in the current directory, the oldest first:

ls -rt *.c

Count the files in the current directory:

ls | wc -l

m4 m4 [options] [files]

General purpose macro processor. On Solaris, m4 is found in /usr/
ccs/bin and is the original Unix version. GNU/Linux and Mac OS
X use the GNU version of m4. (On Solaris, GNU m4 is in /usr/sfw/
bin/gm4.)

URL: http://www.gnu.org/software/m4.

Common Options

-Bn Set push-back and argument collection buffers to n (default is
4096). Ignored by GNU m4.

-Dname[=value], --define=name[=value]
Define name as value or, if value is not specified, define name
as null.

-e, --interactive
Operate interactively, ignoring interrupts.

134 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mail

-Hn, --hashsize=n
Set symbol table hash array size to n (default is 199 on Solaris,
509 for GNU m4).

-s, --synclines
Enable line-sync output (#line directives) for the C
preprocessor.

-Sn Set call stack size to n (default is 100 slots). Ignored by GNU
m4.

-Tn Set token buffer size to n (default is 512 bytes). Ignored by
GNU m4.

-Uname, --undefine=name
Undefine name.

GNU m4 Options

-d [flags], --debug[=flags]
Specify flag-level debugging. Default is flags aeq.

-E, --fatal-warnings
Consider all warnings to be fatal, and exit after the first of
them.

-F file, --freeze-state=file
Record m4’s frozen state in file for later reloading.

-G, --traditional
Behave like traditional m4, ignoring GNU extensions.

-I directory, --include=directory
Search directory for include files.

-l n, --arglength=n
Specify the length of debugging output.

-L n, --nesting-limit=n
Limit the textual nesting of macros calls to n. The default is
250. Useful for some machine-generated input.

-o file, --error-output=file
Place output in file. Despite the option’s name, print error
messages on standard error.

-P, --prefix-built-ins
Prepend m4_ to all built-in macro names.

-Q, --quiet, --silent
Suppress warning messages.

-R file, --reload-state=file
Load state from file before starting execution.

-t name, --trace=name
Insert name into symbol table as undefined. Trace macro from
the point it is defined.

mail mail [options] [users]

Read mail (if no users listed), or send mail to other users. Type ? for
a summary of commands. Esoteric debugging options exist (not

Alphabetical Summary of Common Commands | 135

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mailx

listed) for system administrators. See also mailx, and vacation in
the later section “Alphabetical Summary of Solaris Commands.”

This is the original V7 Unix mail program. On Mac OS X
and GNU/Linux, mail is really mailx. See mailx.

Options for Sending Mail

-m type
Print a “Message-type:” line at the heading of the letter,
followed by type of message.

-t Print a “To:” line at the heading of the letter, showing the
names of the recipients.

-w Force mail to be sent to remote users without waiting for
remote transfer program to complete.

Options for Reading Mail

-e Test for the existence of mail without printing it. Exit status is
0 if mail exists; otherwise 1.

-f file
Read mail from alternate mailbox file.

-h Display a window of messages rather than the latest message.

-p Print all messages without pausing.

-P Print messages with all header lines displayed.

-q Terminate on an interrupt.

-r Print oldest messages first.

mailx mailx [options] [users]
Mail [options] [users]

Read mail, or send mail to other users. For a summary of commands,
type ? in command mode (e.g., when reading mail) or ~? in input
mode (e.g., when sending mail). The start-up file .mailrc in the
user’s home directory is useful for setting display variables and for
defining alias lists.

Version Names

The original V7 Unix mail program provided a very spartan interac-
tive user interface.* This inspired the creation of Berkeley Mail, a
more capable mail-reading program for BSD Unix. Not surprisingly,
and because Unix systems distinguish between uppercase and lower-
case, the program was named Mail, and it lived in the /usr/ucb
directory. When the System V developers imported Berkeley Mail,

* This program survives on commercial Unix systems as /bin/mail; its primary use these days is by
Mail Transport Agents, such as Sendmail, for physical delivery of mail into a user’s mailbox. Even
long-time Unix veterans do not use it interactively.

136 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mailx

they renamed it mailx, to avoid the case-distinction problem. By
that name the command was standardized in POSIX. Today, just to
keep life interesting, different systems offer the program under
multiple names and locations, as follows:

Solaris
The program is in /usr/bin/mailx. /usr/ucb/mail and /usr/
ucb/Mail are symbolic links to it.

GNU/Linux
The program is in /bin/mail. /usr/bin/Mail is a symbolic link
to it. There is no mailx command.

Mac OS X
The program is in /usr/bin/mailx. /usr/bin/mail is a hard link
to it. Because the Mac OS X HFS filesystem ignores case, /usr/
bin/Mail is the same as /usr/bin/mail (i.e., typing Mail at a
shell prompt runs /usr/bin/mail).

Common Options

-b address
Send blind carbon copies to address. Quote the list if there are
multiple recipients.

-c address
Send carbon copies to address. Quote the list if there are
multiple recipients.

-d Set debugging.

-f [file]
Read mail in alternate file (default is mbox).

-i Ignore interrupts (useful on modems); same as mailx option
ignore.

-I Use with -f when displaying saved news articles; newsgroup
and article ID headers are included.

-n Do not read the system startup mailx.rc or Mail.rc file(s).

-N Don’t print mail header summary.

-s sub
Place string sub in the Subject: header field. sub must be
quoted if it contains whitespace.

-u user
Read user’s mail.

-v Verbose mode; displays delivery details.

Solaris and Mac OS X Options

-e Test for the existence of mail without printing it. Exit status is
0 if mail exists; otherwise 1.

-F Store message in a file named after the first recipient.

-H Print mail header summary only.

Solaris Options

-B Do not buffer standard input or standard output.

-H Print mail header summary only.

Alphabetical Summary of Common Commands | 137

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

man

-r address
Specify a return address for mail you send.

-t Use To:, Cc:, and Bcc: headers in the input to specify recipi-
ents instead of command-line arguments.

-T file
Record message IDs and article IDs (of news articles) in file.

-U Convert uucp-type addresses to Internet format.

-V Print version number of mailx and exit.

-~ Process tilde escapes, even if not reading from a terminal.

Mac OS X Option

-E Do not send messages with an empty body. Useful for
receiving output from cron scripts.

make make [options] [targets]

Update one or more targets according to dependency instructions
in a description file in the current directory. By default, this file is
called makefile or Makefile.

On Solaris make is found in /usr/ccs/bin, and GNU make is in /usr/
sfw/bin/gmake. GNU/Linux and Mac OS X use GNU make. See
Chapter 16 for more information on GNU make, including Internet
download information. See also Managing Projects with GNU
make, listed in the Bibliography.

man man [options] [[section] subjects]

Display information from the online reference manual. Each subject
is usually the name of a command from Section 1 of the online
manual, unless you specify an optional section from 1 to 8. If you
don’t specify a subject, you must supply either a keyword (for -k) or
a file (for -f). No options except -M can be used with -k or -f. The
MANPATH environment variable defines the directories in which
man searches for information (default is /usr/share/man). PAGER
defines how output is sent to the screen. Note: in Solaris, section
must be preceded by -s. GNU/Linux and Mac OS X use the same
man program.

Options

-a Show all pages matching subject.

-d Debug; evaluate the man command and print debugging infor-
mation, but don’t execute.

-f files
Display a one-line summary of one or more reference files.
Same as whatis.

-k keywords
Display any header line that contains one of the specified
keywords. Same as apropos.

138 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

man

-M path
Search for online descriptions in directory path instead of
default directory. -M overrides MANPATH.

-t Format the manpages with troff.

Solaris Options

- Pipe output through cat instead of more -s.

-F Search MANPATH directories, not windex database.

-l Like -a, but list only the pages.

-r Reformat but don’t display manpage. Same as man - -t.

-s section
Specify the section of the manpage to search in. Required for
anything that isn’t a command.

-T mac
Display information using macro package mac instead of tmac.an
(the man macros).

GNU/Linux and Mac OS X Options

-c Reformat the source file, even if a preformatted manual page
exists.

-C file
Use an alternate configuration file.

-D Like -d, but also print the manual page.

-F Format only, do not display the formatted pages.

-h, --help
Print a command-line summary and exit.

-K Search for a string in all manpages.

-m system
Search an alternate set of manpages based on the system name.

-p letters
Specify the order in which to run various troff preprocessors
based on letters. The letters and their program are:

-P program
Use program as the pager.

-w, --path
Print the location of the manpage that would be displayed.
With no argument, print the list of directories to be searched.

-W Like -w, but print names one per line.

Examples

Save documentation on the mv command (strip overstruck
characters):

man mv | sed 's/.^H//g' > mv.txt

e: eqn or neqn p: pic t: tbl
g: grap r: refer v: vgrind

Alphabetical Summary of Common Commands | 139

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkdir

Display commands related to linking and compiling:

man -k link compile | more

Display a summary of all intro files:

man -f intro

Look up the intro page from Section 3M (the math library):

man 3m intro In most systems
man -s 3m intro In Solaris

mesg mesg [options]

Change the ability of other users to use talk, or to send write
messages to your terminal. With no options, display the permis-
sion status.

Options

n Forbid write messages.

y Allow write messages (the default).

Solaris allows you to supply a leading – (i.e., -n, -y).

mkdir mkdir [options] directories

Create one or more directories. You must have write permission in
the parent directory in order to create a directory. See also rmdir.

Common Options

-m, --mode mode
Set the access mode for new directories.

-p, --parents
Create intervening parent directories if they don’t exist.

GNU/Linux Options

-v, --verbose
Print directory names as they are created.

-Z context, --context context
Set the security context. SELinux only.

Mac OS X Option
-v Print directory names as they are created.

Examples

Create a read/execute-only directory named personal:

mkdir -m 555 personal

The following sequence:

mkdir work; cd work
mkdir junk; cd junk
mkdir questions; cd ../..

could be accomplished by typing this:

mkdir -p work/junk/questions

140 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

mkisofs mkisofs [options] -o file pathspecs

Solaris and GNU/Linux only. Generate an ISO9660/Joliet/HFS file-
system for writing to a CD with a utility such as cdrecord. (HFS is the
native Macintosh Hierarchical File System.) mkisofs takes a snap-
shot of a directory tree and generates a binary image that
corresponds to an ISO9660 or HFS filesystem when it is written to a
block device. Each specified pathspec describes the path of a direc-
tory tree to be copied into the ISO9660 filesystem; if multiple paths
are specified, the files in all the paths are merged to form the image.

Options

-abstract file
Specify the abstract filename. Overrides an ABST=file entry in
.mkisofsrc.

-allow-leading-dots, -ldots
Allow ISO9660 filenames to begin with a period.

-allow-lowercase
Allow ISO9660 filenames to be lowercase. Violates the
ISO9660 standard.

-allow-multidot
Allow more than one dot in ISO9660 filenames. Violates the
ISO9660 standard.

-A id, -appid id
Specify a text string id that describes the application to be
written into the volume header.

-b image, -eltorito-boot image
Specify the path and filename of the boot image to be used for
making a bootable CD based on the El Torito specification.

-B sun-images, -sparc-boot sun-images
Specify a comma-separated list of boot images needed to make
a bootable CD for a Sun Sparc system.

-biblio file
Specify bibliographic filename. Overrides a BIBLIO=file entry
in .mkisofsrc.

-boot-info-table
Specify that a 56-byte table with information on the CD layout
is to be patched in at offset 8 of the boot file. If specified, the
table is patched into the source boot file, so make a copy if the
file isn’t recreatable.

-boot-load-seg addr
Specify the load segment address of the boot image for a no-
emulation El Torito CD.

-boot-load-size size
Specify the number of virtual 512-byte sectors to load in no-
emulation mode. The default is to load the entire boot file.
The number may need to be a multiple of four to prevent
problems with some BIOSes.

Alphabetical Summary of Common Commands | 141

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

-c catalog, --eltorito-catalog catalog
Specify the path, relative to the source pathspec, and the file-
name of the boot catalog for an El Torito bootable CD.
Required for making a bootable CD.

-cache-inodes, -no-cache-inodes
Cache [do not cache] inode and device numbers to find hard
links to files. The default on Linux is to cache. Use -no-cache-
inodes for filesystems that do not have unique inode numbers.

-check-oldnames
Check all filenames imported from old sessions for mkisofs
compliance with ISO9660 file-naming rules. If not specified,
check only those files with names longer than 31 characters.

-check-session file
Check all old sessions for mkisofs compliance with ISO9660
file-naming rules. This option is the equivalent of:

-M file -C 0,0 -check-oldnames

where file is the pathname or SCSI device specifier that would
be specified with -M.

-chrp-boot
Add a CHRP boot header.

-copyright file
Specify the name of the file that contains the copyright infor-
mation. Overrides a COPY=file entry in .mkisofsrc.

-C last-start,next-start
-cdrecord-params last-start,next-start

Required for creating a CDExtra or a second or higher-level
session for a multisession CD. last-start is the first sector
number in the last session on the disk, and next-start is the
first sector number for the new session. Use the command:

cdrecord -msinfo

to get the values. Use -C with -M to create an image that is a
continuation of the previous session; without -M, create an
image for a second session on a CDExtra (a multisession CD
with audio data in the first session and an ISO9660 filesystem
image in the second).

-d, -omit-period
Omit trailing period from files that do not have one. Violates
the ISO9660 standard, but works on many systems.

-debug
Enable debugging.

-dev device
For use with -C and -M, device is the device name from which
to read the previous session of a multisession CD.

-D, -disable-deep-relocation
Do not use deep directory relocation. Violates the ISO9660
standard, but works on many systems.

142 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

-dir-mode mode
Specify the mode for directories used to create the image.
Automatically enables the Rock Ridge extensions.

-dvd-video
Generate a UDF filesystem compliant with DVD videos.

-eltorito-alt-boot
Start with a new set of El Torito boot parameters. Allows
putting more than one El Torito boot image on a CD
(maximum is 63).

-exclude-list file
Check filenames against the globs contained in the specified
file and exclude any that match.

-f, -follow-links
Follow symbolic links when generating the filesystem.

-file-mode mode
Specify the mode for files used to create the image. Automati-
cally enables the Rock Ridge extensions.

-force-rr
Do not use automatic Rock Ridge detection for the previous
session.

-G image, --generic-boot image
Specify the path and filename of the generic boot image for
making a generic bootable CD.

-gid gid
Set the group ID to gid for the source files. Automatically
enables the Rock Ridge extensions.

-graft-points
Allow the use of graft points for filenames, which permits
paths to be grafted at locations other than the root directory.
-graft-points checks all filenames for graft points and divides
the filename at the first unescaped equals sign (=).

-gui Switch the behavior for a GUI. Currently, the only effect is to
make the output more verbose.

-hard-disk-boot
Specify that the boot image to be used to create an El Torito
bootable CD is a hard disk image and must begin with a
master boot record containing a single partition.

-help
Print a help message.

-hidden glob
Set the hidden (existence) ISO9660 directory attribute for
paths or filenames matching the shell-style pattern glob. To
match a directory, the path must not end with a trailing /.

-hidden-list file
Specify a file containing a list of globs that are to be hidden
with -hidden.

Alphabetical Summary of Common Commands | 143

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

-hide glob
Find paths or files that match the shell-style pattern glob and
hide them from being seen on the ISO9660 or Rock Ridge
directory. The files are still included in the image file. If the
pattern matches a directory, the contents of the directory are
hidden. To match a directory, the path must not end with a
trailing /. Use with the -hide-joliet option.

-hide-joliet glob
Hide paths or files that match the shell-style pattern glob so
they will not be seen in the Joliet directory. If the pattern
matches a directory, the contents of the directory are hidden.
To match a directory, the path must not end with a trailing /.
Should be used with -hide.

-hide-joliet-list file
Specify a file with a list of globs to be hidden with -hide-joliet.

-hide-joliet-trans-tbl
Hide the TRANS.TBL files from the Joliet tree.

-hide-list file
Specify a file containing a list of globs to be hidden with -hide.

-hide-rr-moved
Rename the directory RR_MOVED to .rr_moved to hide it as much
as possible from the Rock Ridge directory tree. Use the -D
option to omit the file entirely.

-input-charset charset
Specify the character set for characters used in local filenames.
Specify help in place of a charset for a list of valid character
sets.

-iso-level level
Set the ISO9660 conformance level. Possible values are:

-jcharset charset
The equivalent of -input-charset -J.

-J, -joliet
Generate Joliet directory records in addition to regular
ISO9660 filenames.

-joliet-long
Allow Joliet filenames to be up to 103 Unicode characters.
This breaks the Joliet specification but apparently works.

-l, -full-iso9660-filenames
Allow full 31-character filenames instead of restricting them to
the MS-DOS-compatible 8.3 format.

-log-file file
Send all messages to the specified log file.

1 Filenames are restricted to 8.3 characters and files may
have only one section.

2 Files may have only one section.
3 No restrictions.

144 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

-m glob, -exclude glob
Exclude files matching the shell-style pattern glob.

-max-iso9660-filenames
Allow up to 37 characters in ISO9660 filenames. Forces -N.
Violates the ISO9660 standard.

-M path, -prev-session path
Specify the path to an existing ISO9660 image to be merged.
path can also be a SCSI device specified in the same syntax as
cdrecord’s dev= parameter. May be used only with -C.

-new-dir-mode mode
Specify the mode to use for new directories in the image. The
default is 0555.

-nobak, -no-bak
Do not include backup files on the ISO9660 filesystem.

-no-boot
Mark the El Torito CD to be created as not bootable.

-no-emul-boot
Specify that the boot image for creating an El Torito bootable
CD is a no-emulation image.

-no-iso-translate
Do not translate the # and ~ characters. Violates the ISO9660
standard.

-no-rr
Do not use Rock Ridge attributes from previous sessions.

-no-split-symlink-components
Do not split symlink components.

-no-split-symlink-fields
Do not split symlink fields.

-N, -omit-version-number
Omit version numbers from ISO9660 filenames. Violates the
ISO9660 standard. Use with caution.

-old-root dir
Specify dir as the root used with -root for a previous session.
Used for doing incremental backups.

-output-charset charset
Specify the output character set for Rock Ridge filenames. The
default is the input character set.

-p prepid, -preparer prepid
Specify a text string of up to 128 characters describing the
preparer of the CD. Overrides a PREP= parameter set in the file
.mkisofsrc.

-publisher pubid
Specify a text string of up to 128 characters describing the
publisher of the CD to be written to the volume header. Over-
rides a PUBL= parameter set in .mkisofsrc.

Alphabetical Summary of Common Commands | 145

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

-pad, -no-pad
Pad [do not pad] the ISO9660 filesystem by 16 sectors
(32KB). If the resulting size is not a multiple of 16 sectors, add
sectors until it is. The default is -pad.

-path-list file
Specify a file that contains a list of pathspec directories and
filenames to add to the ISO9660 filesystem. Note that at least
one pathspec must be given on the command line.

-print-size
Print estimated filesystem size and exit.

-quiet
Run in quiet mode; do not display progress output.

-r, -rational-rock
Like -R, but set UID and GID to zero, set all file read bits to
on, and turn off all file write bits. If any execute bit is set for a
file, set all execute bits; if any search bit is set for a directory,
set all search bits; if any special mode bits are set, clear them.

-relaxed-filenames
Allow ISO9660 filenames to include seven-digit ASCII charac-
ters except lowercase characters. Violates the ISO9660
standard.

-root dir
Makes dir be the root of the filesystem on the image. Similar to
-graft-points.

-R, -rock
Generate SUSP (System Use Sharing Protocol) and Rock Ridge
records using the Rock Ridge protocol.

-sort file
Sort file locations according to the rules in the specified file,
which contains pairs of filenames and weights, with one space
or tab between them. A higher weight puts the file closer to
the beginning of the media.

-sparc-label text
Set the Sun disk label to text.

-split-output
Split the output into files approximately one gigabyte in size.
Useful for creating DVDs on operating systems that don’t
support large files.

-stream-file-name name
Reserved for future use.

-stream-media-size size
Operate in streaming mode, with size as the media size in
sectors. This creates a simple ISO9660 archive named
STREAM.IMG. See the manpage for details.

-sunx86-boot files
Use files to create a Solaris x86 bootable CD.

-sunx86-label text
Set the System V Release 4 disk label on a Sun x86 CD to text.

146 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

-sysid id
Specify the system ID. Overrides a SYSI= parameter set in the
file .mkisofsrc.

-table-name table
Use table as the translation table name instead of TRANS.TBL.
Implies -T. For a multisession image, the table name must be
the same as the previous session.

-T, -translation-table
Generate the file TRANS.TBL in each directory for establishing
the correct filenames on non-Rock Ridge-capable systems.

-ucs-level num
Set the Unicode conformance level to the specified number,
which can be between 1 and 3 (default is 3).

-udf
Produce a UDF filesystem.

-uid uid
Set the user ID to uid for the source files. Automatically
enables the Rock Ridge extensions.

-use-fileversion level
Use file version numbers from the filesystem. The version
number is a string from 1 to 32767. The default is to set a
version of 1.

-U, -untranslated-filenames
Allow untranslated filenames. Violates the ISO9660 standard.
Forces the options -d, -l, -N, -relaxed-filenames, -allow-
lowercase, -allow-multidot, and -allow-leading-dots. Use
with extreme caution.

-v, -verbose
Run in verbose mode. Specify twice to run even more
verbosely.

-version
Print version information.

-volset id
Specify the volume set ID. Overrides a VOLS= parameter speci-
fied in .mkisofsrc.

-volset-seqno num
Set the volume set sequence number to num. Must be speci-
fied after -volset-size.

-volset-size num
Set the volume set size (the number of CDs in a set) to num.
Must be specified before -volset-seqno.

-V volid, -volid volid
Specify the volume ID (volume name or label) to be written to
the master block. Overrides a VOLI= parameter specified in the
file .mkisofsrc.

Alphabetical Summary of Common Commands | 147

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

-x path, -old-exclude path
Exclude path from being written to the CD, where path is the
complete pathname derived from the concatenation of the
pathname from the command line and the path relative to this
directory. May be specified more than once to exclude
multiple paths.

-z, -transparent-compression
Generate RRIP records for transparent compression. Violates
the ISO9660 standard. Must be used with -r or -R. Such CDs
are only transparently readable under GNU/Linux.

HFS options

-auto file
Set file as the Autostart file to make the HFS CD use the
QuickTime 2.0 Autostart feature. file must be the name of an
application or document at the top level of the CD and must
be less than 12 characters long.

-boot-hfs-file file
Install file as the driver file that may make the CD bootable on
a Macintosh.

-cluster-size size
Specify the size in bytes of a cluster or allocation units of PC
Exchange files. Implies the use of --exchange.

-g, -apple
Create an ISO9660 CD with Apple’s extensions.

-h, -hfs
Create a hybrid ISO9660/HFS CD. Use with -map, -magic,
and/or the various HFS options.

-hfs-bless folder
“Bless” the specified directory (folder), specified as the full
pathname to mkisofs. This is usually the System Folder and is
used in creating HFS bootable CDs. The pathname must be in
quotes if it contains spaces.

-hfs-creator creator
Set the four-character default creator for all files.

-hfs-parms parameters
Override certain HFS filesystem parameters. The manpage
points you to a file in the source code for more details.

-hfs-type type
Set the four-character default type for all files.

-hfs-unlock
Leave the HFS volume unlocked so other applications can
modify it. The default is to lock the volume.

-hfs-volid id
Specify the volume name for the HFS partition. This name is
assigned to the CD on a Macintosh and replaces the ID set
with the -V option.

148 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mkisofs

-hide-hfs glob
Hide files or directories matching the shell-style pattern glob
from the HFS volume, although they still exist in the ISO9660
and/or Joliet directory. May be specified multiple times.

-hide-hfs-list file
The specified file contains a list of globs to be hidden.

-icon-position
Use the icon position from the HFS file. This is an experi-
mental option.

-input-hfs-charset charset
Specify the input character set used for HFS filenames when
used with the -mac-name option. The default is cp10000 (Mac
Roman).

-mac-name
Use the HFS filename as the starting point for the ISO9660,
Joliet, and Rock Ridge filenames.

-magic file
Use the specified magic file to set a file’s creator and type
information based on the file’s magic number, which is usually
the first few bytes of the file. The magic file contains entries
consisting of four tab-separated columns specifying the byte
offset, type, test, and a message.

-map file
Use the specified mapping file to set a file’s creator and type
information based on the filename extension. Only files that
are not known Apple or Unix file types need to be mapped.
The mapping file consists of five-column entries specifying the
extension, file translation, creator, type, and a comment.
Creator and type are both four-letter strings.

-no-desktop
Do not create empty Desktop files. The default is to create
such files.

-output-hfs-charset charset
Specify the output character set used for HFS filenames.
Defaults to the input character set.

-part
Generate an HFS partition table. The default is not to generate
the table.

-prep-boot file
PReP boot file. Up to four may be provided. Experimental
option.

-probe
Search the contents of files for known Apple or Unix file types.

-root-info file
Set the information for the root folder from file. Experi-
mental option.

Alphabetical Summary of Common Commands | 149

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

more

--format
Look for Macintosh files of the specified file format type. The
valid formats are cap (Apple/Unix File System (AUFS) CAP
files), dave, double, ethershare, exchange, macbin, netatalk,
osx-double, osx-hfs, sfm, sgi, single, ushare, and xinet.

mktemp mktemp [options] template

Generate a unique temporary filename for use in a script. The file-
name is based on the specified template, which may be any
filename with at least six Xs appended (e.g., /tmp/mytemp.XXXXXX).
mktemp replaces the Xs with the current process number and/or a
unique letter combination. The file is created with mode 0600
(unless -u is specified) and the filename is written to standard
output.

Common Options

-d Make a directory, not a file.

-q Fail silently in case of error. Useful to prevent error output
from being sent to standard error.

-u Operate in “unsafe” mode and unlink the temporary file
before mktemp exits. Use of this option is not recommended.

Solaris and GNU/Linux Options

-p prefix
Use prefix as the directory for the temporary filename. The
TMPDIR environment variable overrides this option. Implies -t.

-t Create a path in a temporary directory. The directory name is
the first of: the TMPDIR environment variable; the value of
prefix given to -p; or /tmp.

GNU/Linux Option

-V Print version information and exit.

Mac OS X Option

-t [prefix]
Like Solaris -p, except that the prefix is optional.

more more [options] [files]

Display the named files on a terminal, one screenful at a time. After
each screen is displayed, press the ENTER key to display the next
line or press the spacebar to display the next screenful. Press h for
help with additional commands, q to quit, / to search, or :n to go
to the next file. more can also be invoked using the name page.

The Mac OS X more is a hard link to less; see less for
more information.

150 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mount

Common Options

-c Page through the file by clearing the screen instead of
scrolling. This is often faster and is much easier to read.

-d Display the prompt Press space to continue, 'q' to quit.

-f Count logical rather than screen lines. Useful when long lines
wrap past the width of the screen.

-l Ignore formfeed (^L) characters.

-s Squeeze; display multiple blank lines as one.

-u Suppress underline characters and backspace (^H).

-n Use n lines for each “window” (default is a full screen).

+num
Begin displaying at line number num.

+/pattern
Begin displaying two lines before pattern.

Solaris /usr/xpg4/bin/more Options

-e Exit after writing the last line of the last file, instead of
prompting.

-i Ignore case when searching.

-n n Use n lines for each “window” (default is a full screen).

-p command, +command
Execute more command command before showing each file.

-t tagstring
Display the screenful of the file containing the tag tagstring as
defined by ctags. Processed before -p if both are given.

Solaris /usr/bin/more Options

-r Force display of control characters, in the form ^x.

-w Wait for a user keystroke before exiting.

GNU/Linux Option

-p Do not scroll; clear the screen and then show the text.

Examples

Page through file in “clear” mode, and display prompts:

more -cd file

Format doc to the screen, removing underlines:

nroff doc | more -u

View the manpage for the grep command; begin near the word
“BUGS” and compress extra whitespace:

man grep | more +/BUGS -s

mount mount [options] [arguments]

Mount a filesystem. This command is very system-specific. See the
mount entries in the sections for each operating system.

Alphabetical Summary of Common Commands | 151

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

msgfmt

msgfmt msgfmt [options] pofiles

Solaris and GNU/Linux only. msgfmt translates “portable object
files” (.po files) into loadable message files that can be used by a
running application via the gettext(3C) and dgettext(3C) library
functions.

Portable object files are created using xgettext from the original C
source code files. A translator then edits the .po file, providing
translations of each string (or “message”) in the source program.
The format is described in the msgfmt(1) manpage.

Once compiled by msgfmt, the running program uses the transla-
tions for its output when the locale is set up appropriately.

The Solaris version of this command has picked up some features
from the GNU version; see gettext for more discussion of this fact
and for a URL reference. The Solaris version can create both Solaris
format output files and GNU format output files.

Common Options

-D dir, --directory=dir
Add dir to the list of directories searched for input files.

-f, --use-fuzzy
Place fuzzy entries in the output.

-o file, --output=file
Place the output in file. This option ignores domain directives
and duplicate msgids.

--strict
Enable strict Uniforum compliance: append the .mo suffix if
not already present. The Solaris version ignores this option for
Solaris output format files.

-v, --verbose
Be verbose. Duplicate message identifiers are listed, but
message strings are not redefined.

Solaris Options

-g Generate GNU format output files. Mutually exclusive with -s.

-s Generate Solaris format output files. Mutually exclusive with -g.

GNU/Linux Options

The GNU gettext package continues to acquire features over time.
The following list may thus be incomplete; check msgfmt(1) for the
full story.

-a count, --alignment=count
Align strings to count bytes (default is one).

-c, --check
Do all of --check-domain, --check-format, and --check-header.

--check-accelerators[=char]
Verify translation of menu-item keyboard-accelerator strings.
Such strings are assumed to use & as the “marker” for

152 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mv

accelerator keys; this option verifies that the translation only
has one & character. With char, use that character instead of &.

--check-domain
Check for conflicts between the -o option and domain
directives.

--check-format
Check language-dependent format strings.

--check-header
Check for the presence of the header entry, and verify its
contents.

--csharp
C# mode: Create a .NET .dll file.

--csharp-resources
Create a .NET .resources file.

--C, --check-compatibility
Be compatible with the X/Open msgfmt. This produces errors if
any GNU extensions are used.

-d dir
Place generated files for C#, Java and Tcl underneath dir.

-h, --help
Print a command-line summary and exit.

-j, --java
Java mode: create a Java ResourceBundle class.

--java2
Like -j, but assume JDK 1.2 or higher.

-l locale, --locale=locale
Specify the locale for C#, Java and Tcl modes.

--no-hash
Do not include the hash table in the binary file.

-P, --properties-input
The input files use Java .properties syntax.

--qt Qt mode: create a Qt .qm file.

-r resource, --resource=resource
Specify the resource name for C# and Java modes.

--statistics
Print translation statistics.

--stringtable-input
The input files use NeXTstep/GNUstep .strings syntax.

--tcl
Tcl mode: create a tcl/msgcat .msg file.

-V, --version
Print version information and exit.

mv mv [options] sources target

Basic command to move files and directories around on the system
or to rename them. mv works as the following table shows.

Alphabetical Summary of Common Commands | 153

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mv

Common Options

-- Use this when one of the names begins with a –. For compati-
bility with old programs, a plain – also works.

-f, --force
Force the move, even if target file exists; suppress messages
about restricted access modes.

-i, --interactive
Inquire; prompt for a y (yes) response before overwriting an
existing target.

GNU/Linux Options

-b, --backup[=control]
Back up any existing files. When using the long version of the
option, the optional control parameter controls the kind of
backup. When no control is specified, mv attempts to read the
control value from the VERSION_CONTROL environment
variable. Accepted values are:

--reply=type
Set the default behavior that is used for overwriting existing
files. --replay=yes is the same as --force. --replay=query is the
same as --interactive. --replay=no skips existing files.

--strip-trailing-slashes
Removes trailing slashes from each source argument. This is
needed on many systems for symbolic links that point to direc-
tories; on POSIX systems, running mv on such a link
terminated with a trailing slash moves the pointed-to directory
and not the link itself.

-S suffix, --suffix=suffix
Override the SIMPLE_BACKUP_SUFFIX environment vari-
able, which determines the suffix used for making simple
backup files. If the suffix is not set either way, the default is a
tilde (~).

Source Target Result

File name Rename file as name.

File Existing file Overwrite existing file
with source file.

Directory name Rename directory as
name.

Directory Existing directory Move directory to be a
subdirectory of existing
directory.

One or more files Existing directory Move files to directory.

none, off Never make backups.
numbered, t Make numbered backups.
existing, nil Match existing backups, numbered or simple.
simple, never Always make simple backups.

154 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nawk

--target-directory=dir
Move all sources into dir. This allows you to use mv together
with xargs, which otherwise does not work, since the final
argument would be the target.

-u, --update
Do not remove a file or link if its modification date is the same
as or newer than that of its replacement.

-v, --verbose
Print the name of each file before moving it.

Mac OS X Options

-n Do not overwrite an existing file. Overrides a previous -f or -i.

-v Verbose; print filenames as they are moved.

nawk nawk [options] [program] [var=value ...] [files]

New version of the awk programming language. For more informa-
tion see awk and Chapter 11.

nice nice [options] command [arguments]

Execute a command and arguments with lower priority (i.e., be
“nice” to other users). Also built-in to the C shell, with a different
command syntax (see Chapter 5).

Options

-n Run command with a niceness of n (1–19); default is 10.
Higher n means lower priority. A privileged user can raise
priority by specifying a negative n (e.g., –5). nice works differ-
ently in the C shell (see Chapter 5). +n raises priority, -n
lowers it, and 4 is the default.

-n n, --adjustment=n
Same as –n.

nl nl [options] [file]

Number the lines of file in logical page segments. Numbering resets
to 1 at the start of each logical page. Pages consist of a header,
body, and footer; each section may be empty. It is the body that
gets numbered. The sections are delimited by special standalone
lines as indicated next; the delimiter lines are copied to the output
as empty lines.

Section Delimiters

\:\:\: Start of header
\:\: Start of body
\: Start of footer

Alphabetical Summary of Common Commands | 155

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nl

Common Options

-b type, --body-numbering=type
Number lines according to type. Values are:

-d xy, --section-delimiter=xy
Use characters xy to delimit logical pages (default is \:).

-f type, --footer-numbering=type
Like -b, but number footer (default type is n).

-h type, --header-numbering=type
Like -b, but number header (default type is n).

-i n, --page-increment=n
Increment each line number by n (default is 1).

-l n, --join-blank-lines=n
Count n consecutive blank lines as one line.

-n format, --number-format=format
Set line number format. Values are:

-p, --no-renumber
Do not reset numbering at start of pages.

-s c, --number-separator=string
Separate text from line number with character(s) c (default is a
tab).

-v n, --first-page=n
Number each page starting at n (default is 1).

-w n, --number-width=n
Use n columns to show line number (default is 6).

Examples

List the current directory, numbering files as 1), 2), etc.:

ls | nl -w3 -s') '

Number C source code and save it:

nl prog.c > print_prog

Number only lines that begin with #include:

nl -bp"^#include" prog.c

a All lines.
n No lines.
t Text lines only (the default).
p"exp" Lines matching the regular expression exp only.

ln Left-justify, omit leading zeros.
rn Right-justify, omit leading zeros (default).
rz Right-justify.

156 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nm

nm nm [options] objfiles

Print the symbol table (name list) in alphabetical order for one or
more object files (usually ELF or COFF files), shared or static
libraries, or binary executable programs. Output includes each
symbol’s value, type, size, name, etc. A key letter categorizing the
symbol can also be displayed. You must supply at least one object file.

On Solaris, nm is in /usr/ccs/bin and /usr/xpg4/bin.

Common Options

-A, --print-file-name
Write the full pathname or library name on each line.

-g, --extern-only
Write only external (global) symbol information.

-P, --portability
Print output in the POSIX portable format.

-t radix, --radix=radix
Write numeric values in the specified radix: d for decimal, o
for octal, and x for hexadecimal.

-u, --undefined-only
Report only the undefined symbols.

Solaris and GNU/Linux Options

-C, --demangle[=style]
Print demangled C++ symbol names. GNU/Linux lets you
supply the appropriate demangling style.

-D, --dynamic
Print dynamic, not normal, symbols. Useful only when
working with dynamic objects (some kinds of shared libraries,
for example).

-V, --version
Print nm’s version number on standard error.

GNU/Linux and Mac OS X Options

-a, --debug-syms
Print debugger symbols.

-n, --numeric-sort
Sort the external symbols numerically, not by name.

-p, --no-sort
Don’t sort the symbols; print them in the order they are found
in the object file.

-r, --reverse-sort
Sort in reverse order.

Solaris Options

-e Report only external and static symbols; obsolete.

-f Report all information; obsolete.

-h Suppress the header.

Alphabetical Summary of Common Commands | 157

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nm

-l Use with -p; indicate WEAK symbols by appending an asterisk
(*) to key letters.

-n Sort the external symbols by name.

-o Report values in octal.

-p Precede each symbol with its key letter (used for parsing).

-r Report the object file’s name on each line.

-R Print the archive name (if present), followed by the object file
and symbol name. -r overrides this option.

-s Print section name instead of section index.

-T Truncate the symbol name in the display; obsolete.

Solaris /usr/xpg4/bin/nm Options

-u Print output in long format.

-v Sort the external symbols by value.

-x Report values in hexadecimal.

GNU/Linux Options

-B Same as --format=bsd (for compatibility with MIPS).

--defined-only
Display only defined symbols.

-f format, --format=format
Specify output format (bsd, sysv, or posix). Default is bsd.

-l, --line-numbers
Use debugging information to try to find line numbers for
each symbol.

--no-demangle
Do not demangle C++ symbols.

-o Same as -a.

-s, --print-armap
Print the index of files and symbols in ar archives.

--size-sort
Sort by size.

-S, --print-size
Print the size of defined symbols.

--target=bfdname
Use object code format bfdname, not the system default.

-v Same as -n.

-X 32_64
For compatibility with AIX nm. Ignored.

Mac OS X Options

--arch type
Display information about only architecture type when
running nm on a “fat” binary. Use all to see information about
all architectures.

-f Display the symbol table of a shared library as if it were a
flat file.

158 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nohup

-j Display just the symbol names.

-l Show a pseudo-symbol .section_start if no such symbol
exists. Use together with -s.

-m Display N_SECT (Mach-O) symbols with segment and section
names and their status as external, nonexternal, undefined,
common, absolute, or indirect.

-o Include the filename or archive element name on each output
line.

-s segname sectname
List only the symbols in (segname, sectname).

-x Print entries in hexadecimal, with the name as a string.

Solaris Key Letters

Uppercase letters are used for GLOBAL and WEAK symbols.
Lowercase letters are used for LOCAL symbols.

nohup nohup command [arguments] &

Continue to execute the named command and optional command
arguments after you log out (make command immune to hangups;
i.e., no hangup). In the C shell, nohup is built in. In the Korn and
Bash shells, nohup allows output redirection; output goes to
nohup.out by default. In the Korn shell, nohup is an alias that allows
the command it runs to also be aliased. (See Chapters 4 and 5.)

The Solaris /usr/bin/nohup accepts some rather specialized options;
see the manpage for details.

nroff nroff [options] [files]

Format documents to line printer or to screen. See Chapter 18.

od od [options] [file] [[+] offset[. | b]]

Octal dump; produce a dump (normally octal) of the named file.
file is displayed from its beginning, unless you specify an offset
(normally in octal bytes). In the following options, a “word” is a
16-bit unit.

A Absolute symbol.
B BSS (uninitialized data space).
C Common symbol.
D Data object symbol.
F File symbol.
L Thread local storage.
N Symbol with no type.
S Section symbol.
T Text symbol.
U Undefined symbol.

Alphabetical Summary of Common Commands | 159

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

od

Common Options

-A base, --address-radix=base
Indicate how the offset should be written. Values for base are d
for decimal, o for octal, x for hexadecimal, or n for no offset.

-b Display bytes as octal.

-c Display bytes as ASCII.

-d Display words as unsigned decimal.

-f Display 32-bit words as floating point.

-j skip, --skip-bytes=skip
Jump over skip bytes from the beginning of the input. skip can
have a leading 0 or 0x for it to be treated as an octal or hexa-
decimal value. It can have a trailing b, k, or m to be treated as a
multiple of 512, 1024, or 1,048,576 bytes.

-N count, --read-bytes=count
Process up to count input bytes.

-o Display words as unsigned octal (the default).

-t type_string, --format=type_string
Specify one or more output types. See the “Common Type
Strings” section later in this entry.

-v, --output-duplicates
Verbose; show all data. Without this, duplicate lines print as *.

-x Display words as hexadecimal.*

+ Required before offset if file isn’t specified.

Solaris and Mac OS X Options

-D Display 32-bit words as unsigned decimal.

-F Display 64-bit words as extended precision.

-O Display 32-bit words as unsigned octal.

-s Display words as signed decimal.

-X Display 32-bit words as hexadecimal.

GNU/Linux and Mac OS X Options

-a Same as -t a.

-h Same as -t x2.

Solaris Options

-C Interpret bytes as characters based on the setting of LC_
CTYPE.

-S Display 32-bit words as signed decimal.

GNU/Linux Options

-i Same as -t d2.

-l Same as -t d4.

* od -x is the canonical Unix oxymoron.

160 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

passwd

-s bytes, --strings[=bytes]
Output strings that are at least bytes ASCII graphic characters
long (default is 3 if bytes is not specified for --strings).

--traditional
Accept arguments in the traditional form, which takes a single
file specification with an optional offset and label. offset is an
octal number indicating how many input bytes to skip over.
label specifies an initial pseudo-address, which is printed in
parentheses after any normal address. Both the offset and the
label can begin with an optional plus sign (+), and can have a
trailing decimal point (.) to force the offset to be interpreted as
a decimal number and/or a trailing b to multiply the number
of bytes skipped by offset by 512.

-w [bytes], --width[=bytes]
Dump bytes input bytes to each output line. Defaults to 16 if
this option is omitted. If --width is specified but bytes is
omitted, the default is 32.

Mac OS X Options

-B Same as -o.

-e Same as -F.

-H Same as -X.

-i Same as -t dI.

-I, -l, -L
Same as -t dL.

Modifiers for offset

. offset value is decimal.

b offset value is 512-byte blocks. Solaris and Mac OS X also
allow B.

Common Type Strings

Type strings can be followed by a decimal number indicating how
many bytes to process.

passwd passwd [options] [user]

Create or change a password associated with a user name. Only the
owner or a privileged user may change a password. Owners need
not specify their user name.

a ASCII named characters (e.g., BEL for \007)
c Single- or multibyte characters
d, o, u, x Signed decimal, unsigned octal, decimal, and

hexadecimal
f Floating point

Alphabetical Summary of Common Commands | 161

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

passwd

Solaris and GNU/Linux Privileged User Options

-d, --delete
Delete password; user is no longer prompted for one.

-f, --force
Force expiration of user’s password; user must change pass-
word at next login.

-l, --lock
Lock user’s password; mutually exclusive with -d and -u.

-n days, --minimum=days
Set the minimum number of days that must pass before user
can change his password.

-u, --unlock
Unlock user’s password; mutually exclusive with -l.

-w days, --warning=days
Give user a warning beginning days days before his password
is due to expire.

-x days, --maximum=days
Set the number of days before the password expires. Use a
value of –1 (minus one) to disable password aging, 0 to force
expiration like -f.

Solaris Options

Normal users may change the so-called gecos information (user’s
full name, office, etc.) and login shell when using NIS or NIS+;
otherwise only privileged users may change the following:

-D domain
Use the passwd.org_dir database in the NIS+ domain domain,
instead of in the local domain.

-e Change the login shell.

-g Change the gecos information.

-r db
Change the password in password database db, which is one
of files, ldap, nis, or nisplus. Only a privileged user may use
files.

-s Display password information:

1. user name.

2. Password status (NP for no password, PS for password, LK
for locked).

3. The last time the password was changed (in mm/dd/yy
format).

4. Number of days that must pass before user can rechange
the password.

5. Number of days before the password expires.

6. Number of days prior to expiration that user is warned of
impending expiration.

162 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

paste

The following may be used only by privileged users.

-a Use with -s to display password information for all users. user
should not be supplied.

-h Change the home (login) directory.

-N Disable user’s password without locking it; mutually exclu-
sive with -d.

GNU/Linux Options

-k, --keep-tokens
Keep authentication tokens that have not expired.

-i days, --inactive=days
After days days, disable inactive accounts.

--stdin
Read new password information from standard input.

-S, --status
Print a short status about user’s password entry.

-?, --help, --usage
Print a command-line summary and exit.

Mac OS X Options

-i db
Change the password in db, which may be one of file,
netinfo, nis, or opendirectory.

-l location
Change the password in location. Valid values vary based on
the argument to -i:

paste paste [options] files

Merge corresponding lines of one or more files into vertical
columns, separated by a tab. See also cut, join, and pr.

Options

- Replace a filename with the standard input.

-d char, --delimiters=char
Separate columns with char instead of a tab. char can be any
regular character or the following escape sequences:

file A filename. Default is /etc/master.passwd.
netinfo A domain name or server/tag pair.
nis An NIS domain name.
opendirectory A directory node name.

\n Newline
\t Tab
\\ Backslash
\0 Empty string

Alphabetical Summary of Common Commands | 163

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

patch

Note: you can separate columns with different characters by
supplying more than one char.

-s, --serial
Merge subsequent lines from one file.

Examples

Create a three-column result file results from the files in1.data,
in2.data, and in3.data:

paste in1.data in2.data in3.data > results

List users in two columns:

who | paste - -

Merge each pair of lines into one line:

paste -s -d"\t\n" list

patch patch [options] [original [patchfile]]

Apply the patches specified in patchfile to original. Replace the
original with the new, patched version; move the original to
original.orig or original~. The patch file is a difference listing
produced by the diff command. On Solaris, this command is
named gpatch.

URL: http://www.gnu.org/software/patch.

Options

-b, --backup
Back up the original file.

--backup-if-mismatch, --no-backup-if-mismatch
When not backing up all original files, these options control
whether a backup should be made when a patch does not
match the original file. The default is to make backups unless
--posix is specified.

--binary
Read and write files as binary. Has no effect on a Unix system.

-B prefix, --prefix=prefix
Prepend prefix to the backup filename.

-c, --context
Interpret patchfile as a context diff.

-d dir, --directory=dir
cd to directory before beginning patch operations.

--dry-run
Print the results of applying a patch, but don’t change any
files.

-D string, --ifdef=string
Mark all changes with:

#ifdef string
 ...
#endif

164 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

patch

-e, --ed
Treat the contents of patchfile as ed commands.

-E, --remove-empty-files
If patch creates any empty files, delete them.

-f, --force
Force all changes, even those that look incorrect. Skip patches if
the original file does not exist; force patches for files with the
wrong version specified; assume patches are never reversed.

-F num, --fuzz=num
Specify the maximum number of lines that may be ignored
(fuzzed over) when deciding where to install a hunk of code.
The default is 2. Meaningful only with context diffs.

-g num, --get num
Specify whether to check the original file out of source control
if it is missing or read-only. If num is a positive number, get
the file. If it is negative, prompt the user. If it is 0, do not
check files out of source control. The default is negative or the
value of the PATCH_GET environment variable when set,
unless the --posix option is given. Then the default is 0.

-i file, --input=file
Read patch from file instead of standard input.

-l, --ignore-whitespace
Ignore whitespace while pattern matching.

-n, --normal
Interpret patch file as a normal diff.

-N, --forward
Ignore patches that appear to be reversed or to have already
been applied.

-o file, --output=file
Print output to file.

-p[num], --strip[=num]
Specify how much of preceding pathname to strip. A num of 0
strips everything, leaving just the filename. 1 strips the leading
/. Each higher number after that strips another directory from
the left.

--posix
Conform more strictly to the POSIX standard.

--quoting-style=style
Set the quoting style used when printing names. The default
style is shell unless set by the environment variable
QUOTING_STYLE. style may be one of the following:

c Quote as a C language string.
escape Like c, but without surrounding double-

quote characters.
literal Print without quoting.
shell Quote for use in shell when needed.
shell-always Quote for use in shell even if not needed.

Alphabetical Summary of Common Commands | 165

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

patch

-r file, --reject-file=file
Place rejects (hunks of the patch file that patch fails to place
within the original file) in file. Default is original.rej.

-R, --reverse
Do a reverse patch: attempt to undo the damage done by
patching with the old and new files reversed.

-s, --silent, --quiet
Suppress commentary.

-t, --batch
Skip patches if the original file does not exist.

-T, --set-time
When original file timestamps match the times given in the
patch header, set timestamps for patched files according to the
context diff headers. Use option -f to force date changes.
Assume timestamps are in local time.

-u, --unified
Interpret patch file as a unified context diff.

-v, --version
Print version number and exit.

--verbose
Verbose mode.

-V method, --version-control=method
Specify method for creating backup files (overridden by -B):

-Y prefix, --basename-prefix=prefix
Use the specified prefix with a file’s basename to create
backup filenames. Useful for specifying a directory.

-z suffix, --suffix=suffix
Back up the original file in original.suffix.

-Z, --set-utc
When original file timestamps match the times given in the
patch header, set timestamps for patched files according to the
context diff headers. Use option -f to force date changes.
Assume timestamps are in Coordinated Universal Time (UTC).

Example

Update a software distribution:

$ cd whizprog-1.1
$ patch --verbose --backup -p1 < whizprog-1.1-1.2.diff
Lots of messages here as patch works
$ find . -name '*.orig' -print | xargs rm
$ cd ..
$ mv whizprog-1.1 whizprog-1.2

t, numbered Make numbered backups.
nil, existing Back up files according to preexisting

backup schemes, with simple backups as the
default. This is patch’s default behavior.

never, simple Make simple backups.

166 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pathchk

pathchk pathchk [-p] pathnames

Check pathnames. This command verifies that the file(s) named by
pathnames do not violate any constraints of the underlying
filesystem (such as a name that might be too long), and that the
files could be accessed (e.g., if an intermediate directory lacks
search permission, it is a problem). The -p option provides
additional portability checks for the pathnames. GNU/Linux
provides --portability as another name for -p.

pax pax [options] [patterns]

Portable Archive Exchange program. When members of the first
POSIX 1003.2 working group could not standardize on either tar
or cpio, they invented this program.* (See also cpio and tar.)

GNU/Linux and Mac OS X use almost identical versions of pax,
developed by the OpenBSD team, based on the original freely avail-
able version by Keith Muller.

pax operates in four modes, depending on the combinations of -r
and -w:

List mode
No -r and no -w. List the contents of a pax archive. Option-
ally, restrict the output to filenames and/or directories that
match a given pattern.

Extract mode
-r only. Extract files from a pax archive. Intermediate directo-
ries are created as needed.

Archive mode
-w only. Archive files to a new or existing pax archive. The
archive is written to standard output; it may be redirected to
an appropriate tape device if needed for backups.

Pass-through mode
-r and -w. Copy a directory tree from one location to another,
analogous to cpio -p.

Common Options

Here are the options available in the four modes:

None: c d f n s v
-r: c d f i k n o p s u v
-w: a b d f H i L o s t u v x X
-rw: d H i k l n p s t u v X

-a Append files to the archive. This may not work on some tape
devices.

* This period in Unix history is known as the “tar wars.” :-)

Alphabetical Summary of Common Commands | 167

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pax

-b size
Use size as the blocksize, in bytes, of blocks to be written to
the archive.

-c Complement. Match all file or archive members that do not
match the patterns.

-d For files or archive members that are directories, extract or
archive only the directory itself, not the tree it contains.

-f archive
Use archive instead of standard input or standard output.

-H Follow symbolic links named on the command line, archiving
the pointed-to file or directory.

-i Interactively rename files. For each file, pax writes a prompt to
/dev/tty and reads a one-line response from /dev/tty. The
responses are as follows:

-k Do not overwrite existing files.

-l Make hard links. When copying a directory tree (-rw), make
hard links between the source and destination hierarchies
wherever possible.

-L Follow all symbolic links, archiving the pointed-to file or
directory.

-n Choose the first archive member that matches each pattern.
No more than one archive member will match for each
pattern.

-o options
Reserved for format-specific options.

-p privs
Specify one or more privileges for the extracted file. privs
specify permissions or other characteristics to be preserved or
ignored, as follows:

-r Read an archive and extract files.

-s replacement
Use replacement to modify file or archive member names. This
is a string of the form -s/old/new/[gp]. This is similar to the
substitution commands in ed, ex, and sed. old is a regular

ENTER Skip the file.
A period Take the file as is.
new name Anything else is taken as the new name to use

for the file.
EOF Exit immediately with a nonzero exit status.

a Do not preserve file access times.
e Retain the user and group IDs, permissions (mode), and

access and modification time.
m Do not preserve the file modification time.
o Retain the user and group ID.
p Keep the permissions (mode).

168 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pax

expression, and new may contain & to mean the matched text
and \n for subpatterns. The trailing g indicates the substitution
should be applied globally. A trailing p causes pax to print the
resulting new filename. Multiple -s options may be supplied.
The first one that works is applied. Any delimiter may be used,
not just /, but in all cases it is wise to quote the argument to
prevent the shell from expanding wildcard characters.

-t Reset the access time of archived files to what they were before
being archived by pax.

-u Ignore files older than preexisting files or archive members.
The behavior varies based on the current mode.

Extract mode
Extract the archive file if it is newer than an existing file
with the same name.

Archive mode
If an existing file with the same name as an archive
member is newer than the archive member, supersede the
archive member.

Pass-through mode
Replace the file in the destination hierarchy with the file
in the source hierarchy (or a link to it) if the source hier-
archy’s file is newer.

-v In list mode, print a verbose table of contents. Otherwise,
print archive member names on standard error.

-w Write files to standard output in the given archive format.

-x format
Use the given format for the archive. The value of format is
one of cpio, pax, or ustar. The details of the formats are
provided in the IEEE 1003.1 (2004) POSIX standard. The
formats are mutually incompatible; attempting to append
using one format to an archive using another is an error.

Solaris provides the xustar format, which allows archiving files
over 8GB in size.

Mac OS X and GNU/Linux provide the bcpio, sv4cpio, sv4crc,
and tar formats, which provide compatibility with various
historical versions of tar and cpio.

-X When traversing directory trees, do not cross into a directory
on a different device (the st_dev field in the stat structure, see
stat(2); similar to the -mount option of find).

Solaris Options

-@ Archive or extract extended attributes.

GNU/Linux and Mac OS X Options

-B bytes
Write no more than bytes bytes for each volume. Intended for
use on tape media, not recommended for floppies or hard
disks. bytes may be suffixed with m, k, or b to specify units of
megabytes, kilobytes, or 512-byte blocks, respectively.

Alphabetical Summary of Common Commands | 169

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pax

-D Like -u, but check the file’s inode-change time instead of the
modification time.

-E count
Retry failed reads no more than count times. A limit of 0
causes pax to stop after the first read failure. A limit of NONE
causes pax to retry forever, which could cause an infinite loop
when reading from very poor media.

-G group
Select files based on the group ownership. Use #number to
supply a numeric GID. Use \# if the group name contains a
literal # character. Multiple -G options may be supplied.

-P Do not follow any symbolic links. This is the default.

-T [from_date][,to_date][/[c][m]]
Choose files based on modification time or inode change time
whose times fall within a specified range. With just from_date,
select files of same age or younger. With just to_date, select
files of same age or older. With both, choose files falling
within the given dates. If the two dates are equal, the file’s
time must exactly match the given date. The trailing c and m let
you specify which timestamp to compare against: inode
change time or modification time, respectively. If both are
used, both times are compared. The default is the modifica-
tion time. Multiple -T options may be provided; the first one
that matches a given file is used.

The time is specified as [yy[mm[dd[hh]]]]mm[.ss]. Only the
minutes (mm) field is required. Other fields may be added, but
no intervening fields may be omitted (e.g., you can’t provide
the day of the month without also providing the hour). Times
are relative to the current time; thus an hhmm specification is
relative to today.

-U user
Select files based on the user. Use #number to supply a numeric
UID. Use \# if the username contains a literal # character.
Multiple -U options may be supplied.

-Y Like -D, but check the inode change time of the pathname
created after all filename substitutions have occurred.

-z Use gzip to compress/decompress the archive when writing/
reading. Mutually exclusive with -a.

-Z Like -u, but check the modification time of the pathname
created after all filename substitutions have occurred.

Examples

Copy the current directory to tape:

pax -x ustar -w -f /dev/rmt/0m .

Copy a home directory to a different directory (presumably on a
bigger disk).

cd /home
pax -r -w arnold /newhome

170 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

perl

perl perl [options] [programfile] [files]

perl is the interpreter for the Perl programming language (the Swiss
Army knife of Unix programming tools). The Perl program is
provided via one or more -e options. If no -e options are used, the
first file named on the command line is used for the program. See
perlrun(1) for the full list of options.

For more information about Perl, see Learning Perl, Programming
Perl, and Advanced Perl Programming, all listed in the
Bibliography.

URLs: http://www.perl.org and http://www.perl.com.

pr pr [options] [files]

Format one or more files according to options to standard output.
Each page includes a heading that consists of the page number, file-
name, date, and time. When files are named directly, the date and
time are those of the file’s modification time. Otherwise, the
current date and time are used.

Common Options

-a, --across
Multicolumn format; list items in rows going across.

-d, --double-space
Double-spaced format.

-e[tab-char[width]], --expand-tabs=[tab-char[width]]
Convert tabs (or tab-chars) to spaces. If width is specified,
convert tabs to width characters (default is 8).

-F, --form-feed
Separate pages with form feeds, not newlines. (Solaris /usr/
bin/pr folds input lines, avoiding truncation by -a or -m.)

-h str, --header=str
Replace default header with string str.

-i[out-tab-char[out-tab-width]]
--output-tabs[=out-tab-char[out-tab-width]]

Replace spaces with tabs on output. Can specify alternative
tab character (default is tab) and width (default is 8).

-l n, --length=n
Set page length to n lines (default is 66).

-m, --merge
Merge files, printing one in each column (can’t be used with -n
and -a). Text is chopped to fit. See also paste.

-n[delimiter[digits]], --number-lines[=delimiter[digits]]
Number columns, or, with the -m option, number lines.
Append delimiter to each number (default is a tab) and limit
the size of numbers to digits (default is 5).

Alphabetical Summary of Common Commands | 171

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pr

-o n, --indent=n
Offset each line n spaces (default is 0).

-r, --no-file-warnings
Suppress messages for files that can’t be found.

-s[delimiter], --separator[=delimiter]
Separate columns with delimiter (default is a tab).

-t, --omit-header
Omit the page header and trailing blank lines.

-w n, --width=n
Set line width to n (default is 72).

+beg_page[:end-page], --pages=[beg_page[:end-page]
Begin printing at page beg_page (default is 1). The GNU/Linux
version supports supplying an end page end_page also.

-n, --columns=n
Produce output having n columns (default is 1); tabs are
expanded as with -i.

Solaris Options
-f Separate pages using a formfeed character (^L) instead of a

series of blank lines.

-p Pause before each page.

GNU/Linux Options

-c, --show-control-chars
Convert control characters to hat notation (such as ^C), and
other unprintable characters to octal backslash format.

-D format, --date-format=format
Format the header date using format. See the date command
for the possible formats.

-f Same as -F.

-J, --join-lines
Merge full lines; ignore -W if set.

-N num, --first-line-number=num
Start counting with num at the first line of the first page
printed. Also see +beg_page.

-S[string], --sep-string[=string]
Separate columns with string. Default is a tab with -J and a
space otherwise.

-T, --omit-pagination
Like -t but also suppress form feeds.

-v, --show-non-printing
Convert unprintable characters to octal backslash format.

Mac OS X Options
-f Like -F, but pause before printing the first page.

-L locale
Use locale for the locale, instead of what’s in the environment.

-p Pause before each page.

172 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

printenv

Examples

Print a side-by-side list, omitting heading and extra lines:

pr -m -t list.1 list.2 list.3

Alphabetize a list of states; number the lines in five columns:

sort states_50 | pr -n -5

printenv printenv [variable]

Print values of all environment variables or, optionally, only the
specified variable. The more standard alternative, env, doesn’t let
you view just one variable, but it lets you redefine them. On
Solaris, printenv is in /usr/ucb.

printf printf formats [strings]

Print strings using the specified formats. formats can be ordinary
text characters, C-language escape characters, printf(3S) format
conversion specifiers, or, more commonly, a set of conversion argu-
ments listed next.

printf is built into Bash and ksh93 (see Chapter 4); this
entry describes the external version in /usr/bin/printf.

Common Arguments

%b Process a string argument for backslash escapes (not in
printf (3S)). See the description of allowed escapes under echo.

%s Print the next string.

%[-]m[.n]s
Print the next string, using a field that is m characters wide.
Optionally limit the field to print only the first n characters of
string. Strings are right-adjusted unless the left-adjustment flag
– is specified.

Solaris Argument

%n$s Print the nth string.

Examples

$ printf '%s %s\n' "My files are in" $HOME
My files are in /home/arnold
$ printf '%-25.15s %s\n' "My files are in" $HOME
My files are in /home/arnold

ps ps [options] [arguments]

Process status. This command is very system-specific. See the ps
entries in the sections for each operating system.

Alphabetical Summary of Common Commands | 173

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

reset

pwd pwd

Print the full pathname of the current directory. (Command name
stands for “print working directory.”) Note: the built-in versions,
pwd (Bash and Korn shells) and dirs (C shell), are faster, so you
might want to define the following C shell alias:

alias pwd dirs -l

python python

A powerful object-oriented scripting language often compared to
Perl or Java. python drives many of the configuration scripts used in
Red Hat and other Linux distributions. For more information, see
Learning Python and Programming Python.

URL: http://www.python.org.

r Commands rcp [options] file1 file2
rcp [options] file ... directory
rlogin [options] rhost
rsh [options] host [command]

The BSD “r” commands provide remote file copy, remote login,
and remote command execution across a TCP/IP network. In the
21st century these commands are considered to be terribly inse-
cure, and you should never use them. Instead, consider the secure
versions that come as part of the Secure Shell: scp, slogin, and ssh
(see ssh).

rcs rcs [options] files

The Revision Control System (RCS) keeps track of multiple
versions of files, letting you store and retrieve revisions and track
the history of the files. The rcs command creates new RCS files and
modifies attributes of existing files. See Chapter 13 for more infor-
mation on RCS and its commands.

reset reset [options] [terminal]

Clear screen (reset terminal). If terminal is specified on the
command line, the value is used as the terminal type. reset is a
symbolic link to the tset command. Invoking the command as
reset is useful for clearing your terminal when a program dies and
leaves the terminal in an abnormal state. You may have to run the
command with a linefeed character (usually CTRL-J) before and
after it:

CTRL-JresetCTRL-J

On Solaris, this command is found is /usr/ucb. See the tset entry
for the available options.

174 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rm

rm rm [options] files

Delete one or more files. To remove a file, you must have write
permission on the directory that contains the file, but you need not
have permission on the file itself. If you do not have write permis-
sion on the file, you are prompted (y or n) to override.

Common Options

-f, --force
Force. Remove write-protected files without prompting.

-i, --interactive
Prompt for y (remove the file) or n (do not remove the file).
Overrides -f.

-r, -R, --recursive
If file is a directory, remove the entire directory and all its
contents, including subdirectories. Be forewarned: use of this
option can be dangerous.

-- Mark the end of options (rm still accepts -, the old form). Use
this when supplying a filename beginning with –.

GNU/Linux and Mac OS X Options

-d, --directory
Remove directories, even if they are not empty. Available only
to a privileged user.

-v, --verbose
Verbose mode (print the name of each file before removing it).

GNU/Linux Options

--no-preserve-root
Do not treat the root directory, /, specially.

--preserve-root
Do not operate recursively on the root directory, /.

Mac OS X Options

-P Overwrite the contents of the to-be-removed files before
deleting them. Each file is written with three different bit
patterns: 0xff, 0x00, and then 0xff again.

-W Undelete the named files. Only works for files covered by
whiteouts.

rmdir rmdir [options] directories

Delete the named directories (the directory itself, not the contents).
directories are deleted from the parent directory and must be empty
(if not, rm -r can be used instead). See also mkdir.

Alphabetical Summary of Common Commands | 175

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rsync

Common Option

-p, --parents
Remove directories and any intervening parent directories that
become empty as a result; useful for removing subdirectory
trees.

Solaris Option

-s Suppress standard error messages caused by -p.

GNU/Linux Options

--ignore-fail-on-non-empty
Ignore failure to remove directories that are not empty.

-v, --verbose
Verbose mode; print a message for each directory as it is
processed.

rsync rsync [options] source ... dest

rsync synchronizes files across a network connection. It is particu-
larly good for high-latency connections, and for synchronizing
entire directory trees across machines. On Solaris, rsync is in /opt/
sfw/bin; it may not be installed on your system. However, you can
download it and compile and install it. This entry documents rsync
2.6.5, which is the most recent as of the time of this writing.

URL: http://rsync.samba.org/.

Source and destination specifications take three forms:

Pathname
A regular Unix pathname, representing a local file.

[user@]host:[path]
The file or directory path on remote host host as remote user
user. With a single colon, rsync uses a remote shell such as ssh
or rsh for its transfer mechanism. The remote username is
optional, and the remote path defaults to the current users’s
home directory on the remote system. A relative path (one that
does not start with /) is relative to the home directory on the
remote system.

[user@]host::[path]
The file or directory path on remote host host as remote user
user. With a double colon, rsync makes a direct TCP connec-
tion to port 873 on the remote machine, and expects to talk to
another copy of rsync running in daemon mode.

If both source and destination are local pathnames, rsync synchro-
nizes the two local files or directory trees. You may not specify a
remote source together with a remote destination.

Using a trailing / on a directory name causes rsync to work on the
contents of that directory, instead of starting with and copying the
directory itself.

176 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rsync

Primary Options

rsync has a large number of options. We document the most useful
ones here; see the manpage for more information.

-a, --archive
Same as -rlptgoD. This provides recursion and synchronizes
almost everything. Add -H to preserve hard links.

-b, --backup
Backup preexisting files before copying them.

--backup-dir=dir
With -b, indicates that backup copies should be stored in dir.

-c, --checksum
Use 128-bit MD4 checksums during the transfer. This increases
reliability but severely slows down the synchronization.

-C, --cvs-exclude
Ignore the same files that CVS would. rsync starts with this
list:

RCS SCCS CVS CVS.adm RCSLOG cvslog.* tags TAGS .make.
state .nse_depinfo *~ #* .#* ,* _$* *$ *.old *.bak .BAK
*.orig *.rej .del-* *.a *.olb *.o *.obj *.so *.exe *.Z
*.elc *.ln core .svn/

It then adds files listed $HOME/.cvsignore and those in the
CVSIGNORE environment variable. As it traverse directories,
when it finds a .cvsignore file, rsync also ignores files listed
therein. These rules are applied after --filter rules you
supply.

--delete
Delete files on the receiving side that are not on the sending
side. This applies only for recursive directory copies, not for
individual files. Use with caution. You may wish to use -n first.
See the manpage for details on this and other related options.

-e program, --rsh=program
Use program as the remote shell for communication with the
remote system. By default, modern versions of rsync use ssh,
the Secure Shell, but it’s possible that rsync was configured
differently. If you provide program as a quoted argument, you
can include command-line arguments for it.

--exclude=pattern
Exclude files matching pattern. You can usually think of
pattern as a shell-style wildcard; however, much more powerful
patterns are possible; see the manpage for more information.

-g, --group
Make the group of the destination file be the same as the
group of the source file. Only groups in the remote user’s
group set may be used. The default is to use group names, but
sometimes numeric GID values are used; see the manpage for
the details.

-h, --help
Print a command-line summary and exit.

Alphabetical Summary of Common Commands | 177

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rsync

-H, --hard-links
Preserve hard link information when copying files. This only
works if both links are in the files being copied. This option
can be slow, since rsync must keep track of more information.

--include=pattern
Include only files matching pattern. You can usually think of
pattern as a shell-style wildcard; however, much more powerful
patterns are possible; see the manpage for more information.

-l, --links
Re-create source symbolic links as symbolic links on the desti-
nation system.

-L, --copy-links
Follow symbolic links, copying the files they point to, not the
symbolic links themselves.

-n, --dry-run
Do not actually transfer any files, just report what would
happen.

-o, --owner
Make the owner of the destination file be the same as the
owner of the source file. Often, changing ownership is a privi-
leged operation, so this may not always work. The default is to
use usernames, but sometimes numeric UID values are used;
see the manpage for the details.

-p, --perms
Make the destination permissions be the same as the source
permissions. Normally permissions on existing files are not
changed.

--progress
Print running progress information during the transfer.

-q, --quiet
Decrease information during a transfer. Useful if invoking
rsync from cron.

-r, --recursive
Copy directories recursively.

--rsync-path=program
Specify the path to the remote copy of rsync. Use this when
rsync is not included in the PATH of the remote shell. The
program is run on the remote system by a real shell, so it can
be a (small) shell script; just be careful that it does not
produce any output or read any input, so that rsync’s commu-
nications are not affected.

-S, --sparse
Attempt to be efficient when transfering sparse files (those
with holes in them) so that they take up less space on the
destination system. Note: the manpage warns against using
this option for destinations on Solaris tmpfs filesystems.

178 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

samba

-t, --times
Make the modification time of the destination file be the same
as that of the source file. You should always do this; it enables
optimizations within rsync that make subsequent updates go
faster.

-u, --update
Skip any destination files that have a newer modification time
than the source file. Note, however, that the modification time
doesn’t matter if the files have a different type, for example a
symbolic link source and a regular file destination; in such a
case the update is always done.

-v, --verbose
Increase information during a transfer. Repeating the option
increases verbosity; however, more than two -v options is
useful only for debugging.

-x, --one-file-system
Do not cross filesystem boundaries when recursively copying
directory trees.

-z, --compress
Compress file data as it’s sent. Due to the way rsync works,
this can achieve better performance than just using a remote
shell that compresses data.

-0, --from0
Filenames read from a file are terminated with the zero byte,
instead of a newline. This provides unambiguous interpreta-
tion of filenames. It does not apply to .cvsignore files.

See the manpage for a description of the other options.

Examples

Mirror a directory tree from an rsync server:

rsync -avz archive.example.com::Cool_Stuff .

Synchronize the home directory on your laptop with that of your
desktop system. Assume that the full path to your home directory
is the same on both, and that you’re using Bash or the Korn shell:

laptop$ cd $HOME
laptop$ rsync -aHzv --delete desktop.example.com:$PWD/ ./

samba Samba Tools For Working With SMB Filesystems

The Samba suite allows you to serve Unix filesystems to MS-
Windows clients. It also allows you to make Unix printers avail-
able to MS-Windows systems. It provides considerable
interoperability with those systems. Samba comes with GNU/
Linux, and GNU/Linux systems can also mount SMB fileshares.

URL: http://www.samba.org.

Alphabetical Summary of Common Commands | 179

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

scp

scp scp [options] file1 [...] file2

Securely copy files between hosts on a network, using ssh. Part of
the OpenSSH suite of network tools. (See also ssh and sftp.) scp
requests a password or passphrase if required. The transfer can be
between two remote hosts. If more than one file is specified for
file1, file2 should be a directory; otherwise, only the last file in the
list is copied. file1 and file2 can be specified in any of the following
ways:

file
host:file
user@host:file

Common Options

-4 Use IPv4 addresses.

-6 Use IPv6 addresses.

-B Run in batch mode. Don’t ask for passwords or passphrases.

-c cipher
Specify the cipher to be used for encrypting the data.

-C Enable ssh compression.

-F file
Use file as the per-user configuration file.

-i file
Specify the file that contains the identity (private key) for RSA
authentication.

-o option
Specify an option to pass to ssh.

-p Preserve modification time, access time, and mode.

-P port
Connect to port on the remote host.

-q Don’t display the progress meter.

-r Copy directories recursively.

-S program
Specify the program to use for the encrypted connection. The
program must understand ssh options.

-v Verbose mode.

GNU/Linux and Mac OS X Options

-1 Force use of the SSH1 protocol.

-2 Force use of the SSH2 protocol.

-l count
Limit the bandwidth used to count Kbits per second.

Mac OS X Option

-E Preserve extended attributes, such as resource forks. Both ends
of the connection must be running Mac OS X 10.4 or later.

180 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

screen

screen screen [options] [command [args]]

Provide ANSI/VT100 terminal emulation, making it possible to run
multiple full-screen pseudo-terminals from one real terminal, and
letting you manipulate and save your screen input and output,
copy and paste between windows, etc. Solaris does not have screen,
but you can download and build it.

URL: http://www.gnu.org/software/screen.

Options

-a Include all capabilities in each window’s termcap.

-A Adapt all windows to the size of the current terminal. Default
is to try to use the previous window size.

-c file
Use file as the configuration file instead of the default $HOME/
.screenrc.

-d Detach session running elsewhere. With -r, reattach to this
terminal. With -R, reattach to this terminal or create it if it
doesn’t already exist. With -RR, use the first session when reat-
taching if more than one session is available. With -m, start in
detached mode.

-D Detach session running elsewhere, logging out before
detaching. With -r, reattach to this terminal. With -R, reat-
tach to this terminal or create it if it doesn’t already exist.
With -RR, do whatever is necessary to create a new session.
With -m, start in detached mode, but don’t fork a new process.

-e xy
Change command characters. Specify x as the command char-
acter (default CTRL-A) and y as the character that generates a
literal command character (default a). Specify in caret nota-
tion (e.g., ^A for CTRL-A).

-f, -fn, -fa
Turn flow control on, off, or to automatic switching mode.

-h num
Specify the size of the history scrollback buffer.

-i Cause the interrupt key (usually CTRL-C) to interrupt the
display immediately when flow control is on. Use of this
option is discouraged.

-l, -ln
Turn login mode on or off for /var/adm/utmp updating. (The
actual filename varies from system to system.)

-ls, -list
Print list of pid.tty.host strings identifying screen sessions.

-L Tell screen that automargin terminal has a writable last
position.

-m Ignore the $STY environment variable and create a new
session. With -d, start session in detached mode; useful for

Alphabetical Summary of Common Commands | 181

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

script

scripts. With -D, start session in detached mode but don’t fork
a new process; the command exits if the session terminates.

-O Use optimal output mode for terminal rather than true VT100
emulation.

-p window
Preselect the specified window if it exists.

-q Suppress error message printing on startup. Exit with nonzero
return code if unsuccessful.

-r [pid.tty.host]
-r sessionowner/[pid.tty.host]

Resume detached session. No other options except -d or -D
can be specified. With sessionowner, resume another user’s
detached session; requires setuid root.

-R Attempt to resume the first session found, or start a new
session with the specified options. Set by default if screen is
run as a login shell.

-s shell
Set the default shell, overriding the $SHELL environment
variable.

-S name
Specify a name for the session being started.

-t name
Set the window’s title.

-T term
Set $TERM to term instead of screen.

-U Run in UTF-8 mode.

-v Print version information and exit.

-wipe [match]
Like -ls, but remove destroyed sessions instead of marking
them dead. If a match is specified, it should be in the same
form as the argument to the -r option.

-x Attach to a session that is not detached. Requires multi-
display mode.

-X Run specified command in specified session. Requires multi-
display mode, and session must not be password-protected.

script script [options] [file]

Create a record of your login session, storing in file everything that
displays on your screen. The default file is called typescript. script
records nonprinting characters as control characters and includes
prompts. This command is useful for beginners or for saving
output from a time-consuming command.

Common Option

-a Append the script record to file.

182 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

sdiff

GNU/Linux Options

-c command
Run command instead of creating an interactive shell. Useful
for capturing the output of a command that acts differently
when it’s connected to a terminal.

-f Flush output after each write. Useful if another person is
monitoring the output file.

-q Operate in quiet mode.

-t Write timing data to standard error. Each entry has two fields:
the first is the elapsed time since the last output, and the
second is the number of characters in the current output.

sdiff sdiff [options] file1 file2

Produce a side-by-side comparison of file1 with file2. Output is:

text text
Identical lines.

text <
Line that exists only in file1.

> text
Line that exists only in file2.

text | text
Lines that are different.

GNU/Linux and Mac OS X both use the GNU version of sdiff.

Common Options

-l, --left-column
List only lines of file1 that are identical.

-o outfile, --output=outfile
Send identical lines of file1 and file2 to outfile; print line differ-
ences and edit outfile by entering, when prompted, the
following commands:

-s, --suppress-common-lines
Do not print identical lines.

-w cols, --width=cols
Set line length to cols (default is 130).

e Edit an empty file.
e b Edit both left and right columns.
e l Edit left column.
e r Edit right column.
l Append left column to outfile.
q Exit the editor.
r Append right column to outfile.
s Silent mode; do not print identical lines.
v Turn off “silent mode.”

Alphabetical Summary of Common Commands | 183

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

sed

GNU sdiff Options

-a, --text
Treat all files as text and compare line-by-line.

-b, --ignore-space-change
Ignore differences in whitespace.

-B, --ignore-blank-lines
Ignore added or missing blank lines.

-d, --minimal
Use a different algorithm to find fewer changes. This option
causes sdiff to run more slowly.

--diff-program=program
Use program in place of the standard version of diff.

-E, --ignore-tab-expansion
Ignore changes occurring because of tab expansion.

-H, --speed-large-files
Heuristically speed comparison of large files with many small
scattered changes.

-i, --ignore-case
Ignore case changes.

--ignore-all-space
Ignore whitespace when comparing lines.

-I regexp, --ignore-matching-lines=regexp
Ignore any changes that insert or delete lines matching the
regular expression regexp.

--strip-trailing-cr
Ignore Carriage Return characters at the end of input lines.

-t, --expand-tabs
Convert tabs to spaces in the output to preserve alignment.

-v, --version
Print version information and exit.

-W, --ignore-all-space
Ignore horizontal whitespace when comparing lines.

Example

Show differences using 80 columns and ignore identical lines:

sdiff -s -w80 list.1 list.2

sed sed [options] [files]

Stream editor. Edit one or more files without user interaction. See
Chapter 10 for more information on sed. The -e and -f options
may be provided multiple times, and they may be used with each
other. See also sed & awk, cited in the Bibliography.

Common Options

-e 'instruction', --expression='instruction'
Apply the editing instruction to the files.

184 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

sftp

-f script, --file=script
Apply the set of instructions from the editing script.

-n, --quiet, --silent
Suppress default output.

GNU/Linux and Mac OS X Option

-i [suffix], --in-place=[suffix]
Edit files in place, saving each original in a file created by
concatenating suffix to the filename. A zero length suffix does
not save a backup copy; this is not recommended.

GNU/Linux Options

-l count, --line-length=count
Wrap lines at column count for the l command.

--posix
Disable all GNU extensions.

-r, --regex-extended
Use Extended Regular Expressions instead of Basic Regular
Expressions (see Chapter 7).

-s, --separate
Process each file separately instead of treating them all as one
long input stream.

-u, --unbuffered
Do not keep as much data in memory as sed would normally;
flush output buffers more often.

Mac OS X Option

-E Use Extended Regular Expressions instead of Basic Regular
Expressions (see Chapter 7).

sftp sftp [options] host

An interactive file transfer program, similar to ftp except that it
uses ssh to perform file transfers securely. sftp connects to host and
logs in, prompting for a password if required. The host can be
specified in the following ways:

host
[user@]host[:file [file] ...]
[user@]host[:dir[/]]

If user is specified, that username is used for the login. If any files
are specified, the sftp client automatically retrieves them after the
user has been authenticated and then exits. If a directory dir is
specified, the client starts in that directory on the remote host. sftp
is part of the OpenSSH suite of network tools. See also ssh and scp.

Options

-1 Use SSH1. The default is to use SSH2.

-b file
Run in batch mode, taking commands from the specified file.
Requires a noninteractive authentication mechanism.

Alphabetical Summary of Common Commands | 185

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

size

-B bytes
Specify the size of the buffer sftp uses for file transfers. Default
is 32768 bytes.

-C Enable compression (uses ssh -C).

-F file
Use file as the ssh configuration file instead of the default
system configuration file. The system-wide file is usually /etc/
ssh/ssh_config and per-user files are $HOME/.ssh/config.

-ooption
Pass an option to ssh. The passed option is in the format used
by ssh_config(5) (e.g., -oPORT=nn, where nn is the port
number). -o can appear more than once to pass multiple
options to ssh. This option is useful for passing options that
don’t have an equivalent sftp command-line option.

-P server_path
Connect directly to the local sftp server specified in server_
path. Useful for debugging.

-R num
Specify the number of requests that may be outstanding at any
time (default is 16).

-s subsys|server_path
Specify the SSH2 subsystem or path to the sftp server on the
remote system. Specifying the path is useful for using sftp via
SSH1 or if the remote sshd does not have an sftp subsystem
configured.

-S program
Specify the name of a program that understands ssh options
and that you want to use for the encrypted connection.

-v Raise the logging level.

sh sh [options] [arguments]

The standard command interpreter that executes commands from
a terminal or a file. On commercial Unix systems, /bin/sh is often
the original Bourne shell, which lacks features found in Bash and
the Korn shell.

On some systems, /bin/sh may be a version of ksh88. (This is true
of Solaris’s /usr/xpg4/bin/sh.) On GNU/Linux, /bin/sh is a
symbolic link to Bash, while on Mac OS X /bin/sh is a separate
copy of Bash. See Chapter 4 for more information on Bash, ksh88,
and ksh93, including command-line options.

size size [options] [objfile ...]

Print the (decimal) number of bytes of each section of objfile. On
many systems, if objfile is not specified, a.out is used. Solaris
requires the objfile name. On Solaris, this program resides in /usr/
ccs/bin.

186 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

sleep

Like the loader ld, this program has diverged across time and plat-
forms, to the point where it’s not worthwhile to provide an option
list. The output format is also not the same across systems. See the
manpage for your local system.

sleep sleep seconds

Wait a specified number of seconds before executing another
command. Often used in shell scripts. sleep is built in to ksh93.

The GNU/Linux version allows the number to have a suffix: s for
seconds (the default), m for minutes, h for hours, and d for days.
The value may also be real number, specifying fractional units as
well.

soelim soelim [files]

A preprocessor that reads nroff/troff input files, resolving and then
eliminating .so requests. That is, input lines such as:

.so header

are replaced by the contents of the file header. Normally, .so requests
are resolved by nroff or troff. Use soelim whenever you are prepro-
cessing the input (e.g., passing it through tbl or sed), and the
complete text is needed prior to formatting. See also Chapter 18.

Example

Run a sed script on (all) input before formatting:

soelim file | sed -e 's/--/\\(em/g' | nroff -mm - | lp

sort sort [options] [files]

Sort the lines of the named files, typically in alphabetical order. See
also uniq, comm, and join.

Mac OS X uses an early version of GNU sort that lacks long
options as well as some of the features of the current GNU sort.

Common Options

-b, --ignore-leading-blanks
Ignore leading spaces and tabs.

-c, --check
Check whether files are already sorted, and if so, produce no
output.

-d, --dictionary-order
Sort in dictionary order (ignore punctuation).

-f, --ignore-case
“Fold”; ignore uppercase/lowercase differences.

Alphabetical Summary of Common Commands | 187

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

sort

-i, --ignore-nonprinting
Ignore nonprinting characters (those outside ASCII range
040-176).

-k fieldspec, --key=fieldspec
Specify significance of input fields for sorting. See the fuller
description below.

-m, --merge
Merge sorted input files.

-M, --month-sort
Compare first three characters as abbreviations for month
names (Jan < Feb, etc.).

-n, --numeric-sort
Sort in arithmetic (numerical) order.

-o file, --output=file
Put output in file.

-r, --reverse
Reverse the order of the sort.

-tc, --field-separator=c
Fields are separated with c (default is any whitespace).

-T dir, --temporary-directory=dir
Use dir for temporary files.

-u, --unique
Identical lines in input file appear only one (unique) time in
output.

+n [-m]
Skip n fields before sorting, and sort up to field position m. If
m is missing, sort to end of line. Positions take the form a.b,
which means character b of field a. If .b is missing, sort at the
first character of the field. Counting starts at zero. Fields may
have optional trailing modifiers, as in the -k option. Note:
This method of describing fields is considered obsolete. Use -k
instead.

Solaris Options

-S kmem
Adjust the amount of swap-based memory (in kilobytes) sort
uses. Trailing suffixes of b, k, m, g, t, and %, allow specification
of memory in bytes, kilobytes, megabytes, gigabytes and
terabytes, or as a percentage of physical memory, respectively.

-y [kmem]
Adjust the amount of memory (in kilobytes) sort uses. If
kmem is not specified, allocate the maximum memory. Obso-
lete: use -S instead.

-z recsz
Provide the maximum number of bytes for any one line in the
file. This option prevents abnormal termination of sort in certain
cases. Solaris sort accepts but otherwise ignores this option.

188 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

sort

Gnu/Linux and Mac OS X Option

-s, --stable
Provide a stable sort, which preserves the order of input
records that otherwise compare equal.

Gnu/Linux Options

-g, --general-numeric-sort
Sort in general numeric order.

-S size, --buffer-size=size
Like the Solaris -S option. Besides the suffixes listed there,
GNU sort allows P, E, Z, and Y, each of which increases the
possible amount by even more orders of magnitude.

-z, --zero-terminated
End lines with a zero byte, not with a newline.

Field Specifications for -k

A fieldspec has the form fieldstart[type][,fieldend[type]].

fieldstart
A field number and optional starting character of the form
fnum[.schar]. fnum is the field number, starting from 1. schar,
if present, is the starting character within the field, also
counting from 1.

fieldend
A field number and optional ending character of the form
fnum[.echar]. fnum is the field number, starting from 1.
echar, if present, is the last significant character within the
field, also counting from 1.

type
A modifier, one of the letters b, d, f, i, M, n, or r. The effect is
the same as the corresponding option, except that the b modi-
fier only applies to the fields, not the whole line.

Examples

List files by decreasing number of lines:

wc -l * | sort -rn

Alphabetize a list of words, remove duplicates, and print the
frequency of each word:

sort -fd wordlist | uniq -c

Sort the password file numerically by the third field (user ID):

sort -k 3n -t: /etc/passwd

Find the top 20 disk hogs on a system:

cd /home; du -sk * | sort -nr | head -n 20

Alphabetical Summary of Common Commands | 189

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

spell

spell spell [options] [files]

Compare the words of one or more named files with the system
dictionary and report all misspelled words. System files for spell
reside in /usr/lib/spell.

Solaris and commercial Unix systems supply the original Unix
version of spell. Mac OS X does not have spell; however, you can
download either ispell or aspell and use them instead. GNU/
Linux supplies both aspell and ispell, but not necessarily a spell
command.

At least one major GNU/Linux system uses the following shell
script to emulate spell:

#!/bin/sh

aspell -l mimicks the standard unix spell program, roughly.

cat "$@" | aspell -l --mode=none | sort -u

See also Classic Shell Scripting, cited in the Bibliography, which
devotes an entire chapter to the topic of spell checking, including
improvements to the previously shown script.

Solaris Options

-b Check for British spelling.

-i Ignore files included with the nroff or troff .so request. No
effect if deroff is unavailable.

-l Follow all included files (files named in .so or .nx requests);
default is to ignore filenames that begin with /usr/lib.

-v Include words that are derived from the dictionary list but are
not literal entries.

-x Show every possible word stem (on standard error).

+wordlist
Use the sorted wordlist file as a local dictionary to add to the
system dictionary; words in wordlist are not treated as
misspelled.

Example

Run the first pass of spell:

spell file1 file2 > jargon

After editing the jargon file, use it as a list of special terms. The
second pass of spell produces genuine misspellings:

spell +jargon file[12] > typos Solaris spell

Program URL(s)

aspell http://aspell.net/
http://www.gnu.org/software/aspell

ispell http://www.gnu.org/software/ispell

190 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

split

split split [options] [infile] [outfile]

Split infile into several files of equal length. infile remains
unchanged, and the results are written to outfileaa, outfileab, etc.
(default is xaa, xab, etc.). If infile is – (or missing), standard input is
read. See also csplit.

Common Options

-n, -l n, --lines=n
Split infile into files, each n lines long (default is 1000).

-a slen, --suffix-length=slen
Use slen characters for the filename suffix. Default is 2.

-b n[m], --bytes=n[m]
Split into pieces of size n bytes. An optional multiplier m may
be supplied: k for kilobytes and m for megabytes. GNU/Linux
allows b for 512-byte blocks. Mutually exclusive with -l.

GNU/Linux Options

-C bytes[m], --line-bytes=bytes[m]
Put a maximum of bytes into file; insist on adding complete
lines. m is a multiplier: b for 512, k for 1024, and m for one
megabyte.

-d, --numeric-suffixes
Use numeric file suffixes instead of alphabetic ones.

--verbose
Print a message for each output file.

Examples

Break bigfile into 1000-line segments:

split bigfile

Join four files, then split them into ten-line files named new.aa,
new.ab, etc. Note that without the -, new. would be treated as a
nonexistent input file:

cat list[1-4] | split -l 10 - new.

ssh ssh [options] hostname [command]
slogin [options] hostname [command]

Securely log a user into a remote system and run commands on
that system. The version of ssh described here is the OpenSSH
client. ssh can use either Version 1 (SSH1) or Version 2 (SSH2) of
the SSH protocol. SSH2 is preferable, as it provides better encryp-
tion methods and greater connection integrity. The hostname can
be specified either as hostname or as user@hostname. If a command
is specified, the user is authenticated, the command is executed,
and the connection is closed. Otherwise, a terminal session is
opened on the remote system. See the “Escape characters” section
later in this entry for functions that can be supported through an
escape character. The default escape character is a tilde (~). The

Alphabetical Summary of Common Commands | 191

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ssh

exit status returned from ssh is the exit status from the remote
system or 255 if there was an error. Interestingly enough, Solaris,
GNU/Linux, and Mac OS X all use OpenSSH. See also scp, sftp,
and SSH, The Secure Shell, cited in the Bibliography.

On GNU/Linux and Mac OS X, slogin is a symbolic link to ssh. It
is meant to replace the original BSD rlogin command.

URL: http://www.openssh.org.

Options

-1 Try only SSH1.

-2 Try only SSH2.

-4 Use only IPv4 addresses.

-6 Use only IPv6 addresses.

-a Disable forwarding of the authentication agent connection.

-A Allow forwarding of the authentication agent connection. Can
also be specified on a per-host basis in a configuration file.

-b bind_address
Specify the interface to transmit from when there are multiple
available interfaces or aliased addresses.

-c blowfish|3des|des|ciphers
Select the cipher for encrypting the session. The default is
3des. For SSH2, a comma-separated list of ciphers can also be
specified, with the ciphers listed in order of preference. des is
supported only for legacy SSH1 compatibility and otherwise
should not be used.

-C Enable compression. Useful mainly for slow connections. The
default compression level can be set on a per-host basis in the
configuration file with the CompressionLevel option.

-D port
Enable dynamic application-level port forwarding using port
on the local side. Can be specified in the configuration file.
Only a privileged user can forward privileged ports.

-e char|^char|none
Set the escape character (default ~). The escape character must
be the first character on a line. If none is specified, disable the
use of an escape character.

-f Run interactively for user authentication, then go into back-
ground mode for command execution. Implies -n.

-F configfile
Specify a per-user configuration file (default is $HOME/.ssh/
config).

-g Allow remote hosts to connect to local forwarded ports.

-i idfile
Use idfile to read identity (private key) for RSA or DSA
authentication. Default is $HOME/.ssh/id_rsa or $HOME/.ssh/id_
dsa for SSH2, or $HOME/.ssh/identity for SSH1. You can
specify more than one -i option on the command line or in
the configuration file.

192 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ssh

-I device
Specify a smartcard device from which to get the user’s private
RSA key.

-k Disable Kerberos ticket and AFS token forwarding. Can be set
on a per-host basis in the configuration file.

-l user
Log in as user on the remote system. Can be specified on a
per-host basis in the configuration file.

-L port:host:hostport
Forward port on the local host to the specified remote host
and port. Can be specified in the configuration file. Only a
privileged user can forward privileged ports. For IPv6, an alter-
native syntax is port/host/hostport.

-m macspec
For SSH2, the contents of macspec specify message authentica-
tion code (MAC) algorithms to use. macspec is a comma-
separated list of algorithms in order of preference.

-n Get standard input as a redirection from /dev/null. Used to
prevent reading from standard input, which is required when
running ssh in the background. Useful for running X programs
on a remote host.

-N Do not execute a remote command. Useful with SSH2 for port
forwarding.

-o option
Specify options in configuration-file format. Useful for speci-
fying options that have no command-line equivalent.

-p port
Specify the port on the remote host to which ssh is to connect.
Can be specified on a per-host basis in the configuration file.

-q Run quietly, suppressing warnings and error messages.
-R port:host:hostport

Forward port on the remote host to the local host:hostport.
Can be specified in the configuration file. You can forward
privileged ports only if you are logged in as root on the remote
host. For IPv6, an alternative syntax is port/host/hostport.

-s For SSH2, request invocation of a subsystem on the remote
host to be used for another application such as sftp. The
desired subsystem is specified as the remote command.

-t Force pseudo-tty allocation. Multiple -t options can be speci-
fied to force tty allocation even when ssh has no local tty.

-T Disable pseudo-tty allocation.

-v Verbose mode. Useful for debugging. Specify multiple -v
options to increase verbosity.

-V Display just the version number. GNU/Linux and Mac OS X
only.

-x Disable X11 forwarding.
-X Enable X11 forwarding. Can be specified on a per-host basis in

the configuration file.

Alphabetical Summary of Common Commands | 193

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ssh-agent

Escape characters

~. Disconnect.

~~ Send a single ~.

~# List forwarded connections.

~& Run ssh in the background at logout, while waiting for a
forwarded connection or X11 sessions to terminate.

~? Display the available escape characters.

~C Open a command line. Useful for adding port forwardings
when using the -L and -R options.

~R Request rekeying of the connection. Useful only for SSH2 and
if the peer supports it.

~^Z Suspend the connection.

ssh-add ssh-add [options] [files]
ssh-add -e|-s reader

Add RSA or DSA identities to the authentication agent (see ssh-
agent), which must be running. With no arguments specified, add
the files $HOME/.ssh/id_rsa, $HOME/.ssh/id_dsa, and $HOME/.ssh/
identity. If any files are specified, add those instead, prompting for
a passphrase if required.

Options

-c Confirm that an added identity should be used for authentica-
tion. The confirmation is done by the program named in the
SSH_ASKPASS environment variable. GNU/Linux and Mac
OS X only.

-d Remove an identity from the agent instead of adding one.

-D Delete all identities from the agent.

-e reader
Remove key in specified smartcard reader.

-l List fingerprints of all identities known to the agent.

-L List public key parameters of all identities known to the agent.

-s Add key in smartcard reader.

-t life
Set maximum lifetime when adding identities to an agent. The
value of life can be in seconds or another time format speci-
fied in sshd.

-x Lock the agent with a password.

-X Unlock the agent.

ssh-agent ssh-agent [options] [command [arguments]]

Hold private keys used for public key authentication. ssh-agent is
usually executed at the beginning of an X or login session; then all
other windows or programs given as command are run as clients of

194 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ssh-keygen

ssh-agent. When a command is specified, the command and any
arguments are executed. The agent dies when the command
completes. Use ssh-add to add keys to the agent. Operations that
require a private key are performed by the agent, which returns the
results to the requestor.

Options

-a bind_addr
Bind the agent to the socket bind_addr (default is /tmp/ssh-
nnnnnnnn/agent, where nnnnnnnn is a generated number).

-c Write csh commands to standard output. This is the default if
the environment variable SHELL looks like a csh-type shell.

-d Debug mode.

-k Kill the current agent.

-s Write Bourne shell commands to standard output. This is the
default if the environment variable SHELL does not look like a
csh-type command.

-t life
Set maximum lifetime when adding identities to an agent. The
value of life can be in seconds or another time format speci-
fied in sshd. GNU/Linux and Mac OS X only.

ssh-keygen ssh-keygen [options]

Generate, manage, and convert authentication keys for ssh.

Common Options

-b bits
Specify the number of bits in the key. The minimum is 512
and the default is 1024.

-B Show the bubblebabble digest (a digest represented as a string
that looks like real words) for the private or public key file
specified with -f.

-c Change the comment in the private and public key files (for
RSA1 keys only).

-C comment
Specify the new comment.

-e Read an OpenSSH private or public key file and write it in
SECSH Public Key File Format to standard output for
exporting to a commercial SSH.

-f file
Specify the filename of the key file.

-i Read an SSH2-compatible unencrypted private or public key
file and write an OpenSSH-compatible key to standard output.
Used to import keys from a commercial SSH.

-l Show fingerprint of public or private RSA1 key file specified
with -f.

Alphabetical Summary of Common Commands | 195

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

strings

-N passphrase
Specify the new passphrase.

-p Change the passphrase for a private key file. Prompt for the
file, the old passphrase, and twice for the new passphrase.

-P passphrase
Specify the old passphrase.

-q Operate in quiet mode.

-t type
Specify the type of key to create. Possible values of type are
rsa1 for SSH1, and rsa or dsa for SSH2.

-y Read a private OpenSSH-format file and print a public key to
standard output.

GNU/Linux and Mac OS X Options

-D reader
Download the RSA public key from the smartcard in reader.

-U reader
Upload an existing RSA private key to the smartcard in reader.

Mac OS X Options

-a trials
Make trials primatlity tests for DH-GEX candidates with -T.

-g Use generic DNS record format.

-G file
Produce candidate primes for DH-GEX to file.

-M mem
Use mem megabytes when generating candidate moduli for
DH-GEX.

-r hostname
Print DNS resource records using hostname.

-S start
Start at start (in hexadecimal) when generating candidate
moduli for DH-GEX.

-T file
Test DH group exchange candidate primes for safety. Such
primes are generated with -G.

-v Be verbose. Helpful for debugging moduli generation. May be
repeated up to three times to increase verbosity.

-W generator
Use generator when testing candidate moduli for DH-GEX.

strings strings [options] files

Search object or binary files for sequences of four or more print-
able characters that end with a newline or null. See also od.

196 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

strip

Common Options

-n, -n n, --bytes=n
Minimum string length is n (default is 4).

-, -a, --all
Search entire file, not just the initialized data portion of object
files.

-o Display the string’s offset position before the string. Solaris
and Mac OS X: same as -t d. GNU/Linux: same as -t o.

-t format, --radix=format
Specify how to print string offsets. format is one of d, o, or x
for decimal, octal, or hexadecimal, respectively.

GNU/Linux Options

-e encoding, --encoding=encoding
Specify the character encoding of the strings to be found.
Possible values are:

--target=format
Specify an alternative object code format to the system default.
Any valid BFD target name may be used for format.

strip strip [options] files

Remove information from ELF object files or archive files, thereby
reducing file sizes and freeing disk space. On Solaris, strip is in /usr/
ccs/bin.

Like the loader ld, this program has diverged across time and plat-
forms, to the point where it’s not worthwhile to provide an option
list. See the manpage for your local system.

stty stty [options] [modes]

Set terminal I/O options for the current device. Without options,
stty reports the terminal settings, where a ^ indicates the Control
key, and ^` indicates a null value. Most modes can be switched
using an optional preceding – (shown in brackets). The corre-
sponding description is also shown in brackets. As a privileged
user, you can set or read settings from another device using the
syntax:

stty [options] [modes] < device

stty is one of the most complicated Unix commands. The
complexity stems from the need to deal with a large range of

b 16-bit big-endian
B 32-bit big-endian
l 16-bit little-endian
L 32-bit little-endian
s Single-byte character, such as ASCII, ISO-8859, etc. (the

default)

Alphabetical Summary of Common Commands | 197

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

stty

conflicting, incompatible, and nonstandardized terminal devices—
everything from printing teletypes to CRTs to pseudo-terminals for
windowing systems. Only a few of the options are really needed for
day-to-day use. stty sane is a particularly valuable one to
remember.

Solaris provides additional hardware flow control modes and clock
modes; see the stty(1) manpage should you find that you need
these features.

Common Options

-a, --all
Report all option settings.

-g, --save
Report current settings.

GNU/Linux Options

-F device, --file=device
Read or change setting of device instead of the current
terminal.

Mac OS X Options

-e Print information in BSD stty everything format.

-f device
Read or change setting of device instead of the current
terminal.

Many but not all of the following features are shared among all the
systems. For brevity, Solaris-only features are marked with an S,
GNU/Linux-only features are marked with an L, and Mac OS X–only
features are marked with an M. Items without any mark work on
all the systems.

Control Modes

0 Hang up connection (set the baud rate to zero).

n Set terminal baud rate to n (e.g., 19200).

[-]clocal
[Enable] disable modem control.

[-]cread
[Disable] enable the receiver.

[-]crtscts
[Disable] enable output hardware flow control using RTS/
CTS.

[-]crtsxoff
[Disable] enable input hardware flow control using RTS. S.

csn Select character size in bits (5 ≤ n ≤ 8).

[-]cstopb
[One] two stop bits per character.

defeucw
Set the width in bytes per character and screen display columns
per character, for EUC (Extended Unix Code) characters. S.

198 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

stty

[-]hup
[Do not] hang up connection on last close.

[-]hupcl
Same as [-]hup.

ispeed n
Set terminal input baud rate to n.

ospeed n
Set terminal output baud rate to n.

[-]parenb
[Disable] enable parity generation and detection.

[-]parext
[Disable] enable extended parity generation and detection for
mark and space parity. S.

[-]parodd
Use [even] odd parity.

Input Modes

[-]brkint
[Do not] signal INTR on break.

[-]icrnl
[Do not] map carriage return (^M) to newline (^J) on input.

[-]ignbrk
[Do not] ignore break on input.

[-]igncr
[Do not] ignore carriage return on input.

[-]ignpar
[Do not] ignore parity errors.

[-]imaxbel
[Do not] echo BEL when input line is too long.

[-]inlcr
[Do not] map newline to carriage return on input.

[-]inpck
[Disable] enable input parity checking.

[-]istrip
[Do not] strip input characters to 7 bits.

[-]iuclc
[Do not] map uppercase to lowercase on input. S, L.

[-]ixany
Allow [only XON] any character to restart output.

[-]ixoff
[Do not] send START/STOP characters when the queue is
nearly empty/full.

[-]ixon
[Disable] enable START/STOP output control.

[-]parmrk
[Do not] mark parity errors.

[-]tandem
Same as [-]ixoff. L, M.

Alphabetical Summary of Common Commands | 199

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

stty

Output Modes

bsn Select style of delay for backspaces (n = 0 or 1). S, L.

crn Select style of delay for carriage returns (0 ≤ n ≤ 3). S, L.

ffn Select style of delay for formfeeds (n = 0 or 1). S, L.

nln Select style of delay for linefeeds (n = 0 or 1). S, L.

[-]ocrnl
[Do not] map carriage return to newline on output.

[-]ofdel
Set fill character to [NULL] DEL. S, L.

[-]ofill
Delay output with [timing] fill characters. S, L.

[-]olcuc
[Do not] map lowercase to uppercase on output. S, L.

[-]onlcr
[Do not] map newline to carriage return-newline on output.

[-]onlret
[Do not] perform carriage return after newline.

[-]onocr
[Do not] output carriage returns at column zero.

[-]opost
[Do not] postprocess output; ignore all other output modes.

[-]oxtabs
[Do not] expand tabs to spaces. M.

tabn
Select style of delay for horizontal tabs (0 ≤ n ≤ 3). S, L.

vtn Select style of delay for vertical tabs (n = 0 or 1). S, L.

Local Modes

[-]altwerase
[Do not] Use an alternate algorithm for processing the “word
erase” character. M.

[-]cbreak
Opposite of [-]icanon. L, M.

[-]ctlecho
Same as [-]echoctl. L, M.

[-]crterase
Same as [-]echoe. L, M.

[-]crtkill
Same as [-]echoke. L, M.

[-]echo
[Do not] echo every character typed.

[-]echoctl
[Do not] echo control characters as ^char, DEL as ^?.

[-]echoe
[Do not] echo ERASE character as BS-space-BS string.

[-]echok
[Do not] echo newline after KILL character.

200 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

stty

[-]echoke
[Do not] BS-SP-BS erase entire line on line kill.

[-]echonl
[Do not] echo newline (^J).

[-]echoprt
[Do not] echo erase character as character is “erased.”

[-]flusho
Output is [not] being flushed. S, M.

[-]icanon
[Disable] enable canonical input (ERASE and KILL
processing).

[-]iexten
[Disable] enable extended functions for input data.

[-]isig
[Disable] enable checking of characters against INTR, QUIT,
and SWITCH.

[-]lfkc
Same as [-]echok. Obsolete. S.

[-]mdmbuf
[Do not] flow control output based on the state of Carrier
Detect. M.

[-]noflsh
[Enable] disable flush after INTR, QUIT, or SWITCH.

[-]pendin
[Do not] retype pending input at next read or input char-
acter. S, M.

[-]prterase
Same as [-]echoprt. L, M.

[-]stappl
[Line] application mode on a synchronous line. S.

[-]stflush
[Disable] enable flush on synchronous line. S.

[-]stwrap
[Enable] disable truncation on synchronous line. S.

[-]tostop
[Do not] send SIGTTOU when background processes write to
the terminal.

[-]xcase
[Do not] change case on local output. S, L.

Control Assignments

ctrl-char c
Set control character to c. ctrl-char is:

Common dsusp, eof, eol, eol2, erase, intr, kill, lnext,
quit, rprnt, start, stop, susp, werase

Solaris ctab, discard, reprint
GNU/Linux swtch
Mac OS X brk (same as eol), erase2, flush (same as

discard), reprint, status

Alphabetical Summary of Common Commands | 201

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

stty

line i
Set line discipline to i (1 ≤ i ≤ 126). S, L.

min n
With -icanon, n is the minimum number of characters that
will satisfy the read system call until the timeout set with time
expires.

time n
With -icanon, n is the number of tenths of seconds to wait
before a read system call times out. If the minimum number of
characters set with min has been read, the read can return
before the timeout expires.

Combination Modes

all Like stty -a, but print information in the traditional BSD
columnar format. M.

async
Set normal asynchronous communications. S.

cooked
Same as -raw.

[-]crt
[Disable] Enable echoe echok echoke. L, M.

[-]crtbs
Same as [-]echoe. M.

dec Same as echoe echoctl echoke -ixany intr ^C erase 0177
kill ^U. L, M.

[-]decctlq
Converse of [-]ixany. L, M.

ek Reset ERASE and KILL characters to system defaults.

[-]evenp
Same as [-]parenb and cs7[8].

everything
Same as stty all. M.

[-]extproc
Indicate that the terminal hardware or the remote side of a pty
is [not] doing some of the terminal processing. M.

[-]kerninfo
[Disable] Enable the system’s response to the status char-
acter, usually CTRL-T. M.

[-]lcase
[Un] set xcase, iuclc, and olcuc. S, L.

[-]litout
Converse of [-]opost. L, M.

[-]LCASE
Same as [-]lcase. S, L.

[-]markp
[Disable] enable parenb, parodd, and parext, and set cs7[8]. S.

new Same as stty tty. M.

202 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

su

[-]newcrt
Same as [-]crt. M.

[-]nl
[Un] set icrnl and onlcr. -nl also unsets inlcr, igncr, ocrnl,
and onlret.

[-]oddp
Same as [-]parenb, [-]parodd, and cs7[8].

old Same as stty tty. M.

[-]parity
Same as [-]parenb and cs7[8].

[-]pass8
Converse of [-]parity. L, M.

[-]raw
[Disable] enable raw input and output (no ERASE, KILL,
INTR, QUIT, EOT, SWITCH, or output postprocessing).

sane
Reset all modes to reasonable values.

size
Print the terminal’s size in rows and columns. L, M.

speed
Print the terminal’s speed (baud rate). L, M.

[-]spacep
[Disable] enable parenb and parext, and set cs7[8]. S.

[-]tabs
[Expand to spaces] preserve output tabs.

term
Set all modes suitable for terminal type term (tty33, tty37,
vt05, tn300, ti700, or tek). (These predefined names are all so
obsolete as to be useless.) S.

tty Use the standard line discipline. M.

Window size

columns n
Set size to n columns. Can also be given as cols.

rows n
Set size to n rows.

xpixels n
Set size to n pixels across. S.

ypixels n
Set size to n pixels up and down. S.

su su [option] [user] [shell_args]

Create a shell with the effective user ID of another user (that is, login
as user). If no user is specified, create a shell for a privileged user
(that is, become a superuser). Enter EOF to terminate. You can run
the shell with particular options by passing them as shell_args (e.g.,

Alphabetical Summary of Common Commands | 203

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tail

if the shell runs sh, you can specify -c command to execute command
via sh, or -r to create a restricted shell).

su will inherit your environment settings. Administrators wishing
to switch to a user’s setup (perhaps to help them solve a problem)
may wish to consider using this sequence:

me$ su Switch to root
Password: Enter root password
su - user Switch to other user
user$

The sudo program is worth installing if your system doesn’t have it.
See http://www.sudo.ws/ and/or http://www.courtesan.com/sudo.

Common Option

- Go through the entire login sequence (i.e., change to user’s
environment).

GNU/Linux and Mac OS X Options

-c command, --command=command
Run a single command (by way of sh -c).

-f, --fast
Pass -f on to csh or tcsh.

-l, --login
Same as su -.

-m, --preserve-environment
Preserve the environment.

GNU/Linux Options

-p Same as -m.

-s shell, --shell=shell
Use shell if shell is listed in /etc/shells.

tail tail [options] [file]

Print the last 10 lines of the named file. Use only one of -f or -r.

The GNU/Linux and Mac OS X versions can process multiple files.
In that case, the output includes a header at the beginning of each
file:

= =>filename<= =

Historic Options

The syntaxes shown here are the historic usage. Currently all
systems continue to accept them, but the -c and -n options are
preferred.

-n[k]
Begin printing at nth item from end of file. k specifies the item
to count: l (lines, the default), b (blocks), or c (characters, i.e.,
bytes).

-k Same as previous, but use the default count of 10.

204 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tail

+n[k]
Like -n, but start at nth item from beginning of file.

+k Like -k, but count from beginning of file.

Common Options

-c count, --bytes=count
With a leading + on count, start count bytes from the front of
the file. With a leading - or no sign, start from the end of the
file.

-f [follow_spec], --follow[=follow_spec]
Don’t quit at the end of file; “follow” file as it grows. End with
an INTR (usually ^C).

Only GNU/Linux allows a follow_spec. If the follow_spec is
descriptor, tail follows the open file descriptor. This shows
the original file, even if it is renamed or removed, and is the
command’s original, default behavior. If follow_spec is name,
then tail periodically reopens the file by name. This is useful
in cases where filenames change, such as rotated log files.

-n count, --lines=count
With a leading + on count, start count lines from the front of
the file. With a leading - or no sign, start from the end of the
file.

Solaris and Mac OS X Option

-r Copy lines in reverse order.

GNU/Linux Options

-F Identical to --follow=name --retry.

--max-unchanged-stats=num
Used with --follow=name to reopen a file whose size hasn’t
changed after num iterations (default 5), to see if it has been
unlinked or renamed (as with rotated log files).

--pid=pid
Used with -f to end when process ID pid dies.

-q, --quiet, --silent
Suppress filename headers.

--retry
With -f, keep trying to open a file even if it isn’t accessible
when tail starts or if it becomes inaccessible later.

-s sec, --sleep-interval=sec
With -f, sleep approximately sec seconds between iterations.
Default is 1 second.

-v, --verbose
With multiple files, always output the filename headers.

Alphabetical Summary of Common Commands | 205

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

Mac OS X Options

-b count
With a leading + on count, start count blocks (512-byte units)
from the front of the file. With a leading - or no sign, start
from the end of the file.

-F Like the GNU/Linux --follow=name.

Examples

Show the last 20 lines containing instances of <title>:

grep '<title>' file | tail -n 20

Continually track the latest system messages (under GNU/Linux):

tail -f /var/log/messages

Show the last 10 characters of variable name:

echo "$name" | tail -c

Reverse all lines in list:

tail -r list

talk talk user [@hostname] [tty]

Exchange typed communication with another user who is on the
local machine or on machine hostname. talk might be useful when
you’re logged in via modem and need something quickly, making it
inconvenient to telephone or send email. talk splits your screen
into two windows. When connection is established, you type in the
top half while user’s typing appears in the bottom half. Type ^L to
redraw the screen and ^C (or interrupt) to exit. If user is logged in
more than once, use tty to specify the terminal line. The user needs
to have used mesg y.

Notes

• There are different versions of talk that use different proto-
cols; interoperability across different Unix systems is very
limited.

• talk is also not very useful if the remote user you are “calling”
is using a windowing environment, since there is no way for
you to know which tty to use to get their attention. The
connection request could easily show up in an iconified
window! Even if you know the remote tty, the called party
must have done a mesg y to accept the request, and the called
system must allow incoming talk connections. All in all, this
command is not as useful as it once was.

tar tar [options] [files]

Copy files to or restore files from tape (tape archive). If any files are
directories, tar acts on the entire subtree. (See also cpio and pax.)

206 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

Options are supplied as one group, with any arguments placed
afterward in corresponding order. Originally, tar did not even
accept a leading – on its options. Although the Solaris version
allows one, it does not require it. On many other Unix systems,
you may use conventional option notation, with each option
preceded by a dash and separated from the other options with
whitespace. Some systems actually require the use of separate
options. Check your local documentation for the final word.

GNU/Linux and Mac OS X both use the GNU version of tar which
accepts all the common options, and also has many options of its
own.

Notes

For the following reasons, tar is best used as a way to exchange file
or source code archives over a network. A system administrator
performing system backups is advised to use the vendor-supplied
backup program (typically called dump or backup; see your local
documentation) for backups instead of tar. (Many of these same
points apply to cpio and to pax as well.)

• Most Unix versions of tar preserve the leading / from an abso-
lute filename in the archive. This makes it difficult or
impossible to extract the files on a different system.

• The tar archive format was designed when Unix file and direc-
tory names were short (14 characters maximum). Modern
Unix systems allow individual filenames to be up to 255 char-
acters in length, but the tar archive header has a limit of 100
characters for the entire pathname. This makes it difficult or
impossible in practice to archive a typical Unix filesystem.

• In general, Unix versions of tar cannot recover from data
errors, which are particularly common with tapes. An early
tape error can render an entire tar tape useless.

• While tar does checksum the header information describing
each archived file, it does not checksum the actual data
blocks. Thus, if a data block becomes corrupted on a tape, tar
will never notice.

The GNU version of tar has extensions to get around many of
these problems, at the cost of portability of the archive format to
non-GNU versions. Source code can be obtained from the Free
Software Foundation (see http://www.gnu.org/software/tar).

Common Control Option

-C dir files, --directory=dir files
Change directory to dir before adding files to the archive. Use
relative pathnames. This option makes it possible to archive
files that don’t share a common ancestor directory.

Alphabetical Summary of Common Commands | 207

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

Solaris Control Options

-I file
Read a list of filenames to be archived, one filename per line,
from file. Useful when there are too many files to name on the
command line.

-X file
Exclude files. The corresponding file argument is read for a list
of relative pathnames, one per line, of files that should not be
archived. This option may be provided multiple times with
multiple files. Filenames that appear here are excluded even if
the same name was provided in a file used with -I.

GNU tar Control Options

-T file, --files-from=file
Read a list of filenames to be archived, one filename per line,
from file. Useful when there are too many files to name on the
command line.

-X file, --exclude-from=file
Exclude files. The corresponding file argument is read for a list
of relative pathnames, one per line, of files that should not be
archived. Each line may be a shell wildcard pattern. This
option may be provided multiple times with multiple files.

Common Function Options (Choose One)

-c, --create
Create a new archive.

-r, --append
Append files to archive.

-t, --list
Table of contents. Print the names of files if they are stored on
the archive (if files not specified, print names of all files).

-u, --update
Update. Add files if not in archive or if modified.

-x, --extract, --get
Extract files from archive (if files not specified, extract all files).

GNU tar Function Options (Choose One)

-A, --catenate, --concatenate
Concatenate a second tar file to the end of the first.

-d, --diff, --compare
Compare the files stored in tarfile with other-files. Report any
differences: missing files, different sizes, different file
attributes (such as permissions or modification time).

--delete
Delete from the archive. This option cannot be used with
magnetic tape.

208 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

Common Options

n[c] Select tape drive n and use speed c. n is 0–7 (default is 0); c is l
(low), h (high), or m (medium, the default). Used to modify
arch. (These are highly system-specific and nonportable: it is
much better to always just specify the arch explicitly with -f.)

-b n, --blocking-factor=n
Use blocking factor n (default is 1; maximum is 20). Different
Unix systems often allow larger blocking factors.

-B, --read-full-records
Continue reading until logical blocks are full. For use across
Ethernet connections with rsh or ssh. On some systems,
enabled by default when reading standard input.

-f arch, --file=arch
Store files in or extract files from archive arch; arch is usually a
device name (default varies from system to system). If arch is -,
standard input or output is used as appropriate (e.g., when
piping a tar archive to a remote host). GNU tar allows remote
tape drives, of the form host:device.

-h, --dereference
Follow symbolic links, archiving the files they point to, not the
links themselves.

-m, --touch
Do not restore file modification times; update them to the
time of extraction.

-p, --same-permissions, --preserve-permissions
Preserve permissions of extracted files. On Solaris, ACLs are
restored if recorded in the archive and are added to the archive
when used with -c.

-v, --verbose
Print function letter (x for extraction or a for archive) and
name of files. With -t, print a listing similar to that of ls -l.

-w, --interactive, --confirmation
Wait for user confirmation (y) before taking any actions.

Solaris Options

-D Warn about changes in data files instead of treating them as
fatal errors; for example, if a file’s size changes while it’s being
archived.

-e Exit immediately upon unexpected errors.

-E Use an extended header that allows longer filenames, larger
files, and other extensions. Not portable.

-F, -FF
With F, do not archive SCCS and RCS directories. With FF, also
exclude files named a.out, core, errs, and all .o files.

-i Ignore directory checksum errors.

Alphabetical Summary of Common Commands | 209

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

-k size
Specify the archive size in kilobytes. Archives that are larger
than size are split across volumes. Useful for fixed-size media,
such as floppy disks.

-l Print error messages about links that can’t be found.

-n Archive is not a tape device. This allows tar to seek, instead of
doing sequential reads, which is faster.

-o Change ownership of extracted files to that of user running
program. This is the default for nonprivileged users.

-P Do not add a trailing / to directory names in the archive.

-q Quit after extracting the first occurrence of the named file.
Normally tar continues reading the archive.

-@ Add Solaris extended file attributes to the archive upon
archive creation, or extract them from the archive if extracting.
They may only be extracted as part of extracting a file; it is not
possible to extract just the extended attributes.

GNU tar Options

--anchored
Exclude patterns must match the start of the filename (the
default).

--atime-preserve
Preserve original access time on extracted files.

--backup[=type]
Instead of overwriting files upon extraction, back them up. If
no backup type is specified, a simple backup is made with ~ as
the suffix. (See also --suffix.) The possible values of type are:

--check-links
When creating an archive, if a file has multiple hard links, and
not all the file’s links were written to the archive, output a
warning message.

--checkpoint
List directory names encountered.

--exclude=pattern
Remove files matching pattern from any list of files.

--force-local
Interpret filenames in the form hostname:filename as local
files.

--format=type
Create a type format archive. Valid values are gnu, oldgnu,
posix, ustar, and v7.

t, numbered Make numbered backups.
nil, existing Make numbered backups if there are already

numbered backups, otherwise make simple
backups.

never, simple Always make simple backups.

210 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

-F script, --info-script=script
--new-volume-script=script

Implies -M (multiple archive files). Run script at the end of each
file.

-g file, --listed-incremental=file
Create new-style incremental backup.

--group=group
Use group as the group for files added to the archive.

-G, --incremental
Create old-style incremental backup.

-i, --ignore-zeros
Ignore zero-sized blocks (i.e., EOFs).

--ignore-case
Ignore case when excluding files.

--ignore-failed-read
Ignore unreadable files to be archived. Default behavior is to
exit when encountering these.

--index-file=file
Send verbose output to file instead of to standard output.

-j, --bzip2
Compress files with bzip2 before archiving them, or uncom-
press them with bunzip2 before extracting them.

-k, --keep-old-files
When extracting files, do not overwrite files with identical
names. Instead, print an error message.

-K file, --starting-file=file
Begin tar operation at file in archive.

--keep-newer-files
If a file being extracted is newer than the one in archive, do
not replace it.

-l, --one-file-system
Do not archive files from other filesystems. Note: in the
future, the meaning of -l will change to --check-links.

-L length, --tape-length=length
Write a maximum of length × 1024 bytes to each tape.

--mode=permissions
Use permissions when adding files to an archive. The permis-
sions are specified the same way as for the chmod command.

-M, --multivolume
Expect archive to be multivolume. With -c, create such an
archive.

--newer-mtime=date
Add only files whose contents have changed since date to the
archive.

--no-anchored
Exclude patterns may match after any slash.

Alphabetical Summary of Common Commands | 211

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

--no-ignore-case
Do not ignore case when excluding files.

--no-recursion
Do not move recursively through directories.

--no-same-owner
When extracting, create files with yourself as owner.

--no-same-permissions
Do not extract permissions information when extracting files
from the archive. This is the default for users, and therefore
affects only the superuser.

--no-wildcards
Don’t use wildcards when excluding files; treat patterns as
strings.

--no-wildcards-match-slash
Wildcards do not match / when excluding files.

--null
Allow filenames to be null-terminated with -T. Override -C.

--numeric-owner
Use the numeric owner and group IDs rather than the names.

-N date, --newer=date, --after-date=date
Ignore files older than date.

-o If creating an archive, same as --old-archive. If extracting,
same as --no-same-owner.

--occurrence[=num]
Process only the numth occurrence of each named file. For use
with --delete, --diff, --extract, or --list.

--old-archive, --portability
Create old-style archive in Unix V7 rather than POSIX format.

--overwrite
Overwrite existing files and directory metadata when
extracting from archive.

--overwrite-dir
Overwrite existing directory metadata when extracting from
archive.

--owner=owner
Set owner as the owner of extracted files instead of the orig-
inal owner. owner is first assumed to be a username, then, if
there is no match, a numeric user ID.

-O, --to-stdout
Print extracted files to standard output.

--pax-option=keywords
For use with posix format archives, process the keywords
appropriately. See the online Info manual for the (compli-
cated) details.

--posix
Create a POSIX-compliant archive.

--preserve
Equivalent to invoking both the -p and -s options.

212 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

-P, --absolute-names
Do not remove initial slashes (/) from input filenames.

--record-size=size
Treat each record as having size bytes, where size is a multiple
of 512.

--recursion
Move recursively through directories.

--recursive-unlink
Remove existing directory hierarchies before extracting direc-
tories with the same name.

--remove-files
Remove originals after inclusion in archive.

--rmt-command=command
Use command on a remote host to perform remote file opera-
tions instead of /usr/local/libexec/rmt (or whatever was
configured into tar when it was built).

--rsh-command=command
Do not connect to remote host with rsh; instead, use
command.

-R, --block-number
Display archive’s block number in messages.

-s, --same-order, --preserve-order
When extracting, sort filenames to correspond to the order in
the archive.

--same-owner
When extracting, create files with the same ownership as the
originals.

--show-defaults
Show the default options and exit successfully. For use in shell
scripts.

--show-omitted-dirs
List directories being omitted when operating on an archive.

--strip-path=count
Strip count leading components off of archived pathnames
before extraction.

--suffix=suffix
Use suffix instead of the default ~ when creating a backup file.

-S, --sparse
Treat sparse files more efficiently when adding to archive.

--totals
Print byte totals.

--use-compress-program=program
Compress archived files with program, or uncompress
extracted files with program.

--utc
Display file modification times in UTC instead of in local time.

Alphabetical Summary of Common Commands | 213

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tar

-U, --unlink-first
Remove each existing file from the filesystem before extracting
from the archive.

-v, --verbose
Verbose. Print filenames as they are added or extracted.

--volno-file=file
Use/update the volume number in file.

-V name, --label=name
Name this volume name.

--wildcards
Use wildcards when excluding files.

--wildcards-match-slash
Wildcards match / when excluding files.

-W, --verify
Check archive for corruption after creation.

-z, --gzip, --gunzip, --ungzip
Compress files with gzip before archiving them, or uncom-
press them with gunzip before extracting them.

-Z, --compress, --uncompress
Compress files with the old compress command before
archiving them, or uncompress them with uncompress before
extracting them.

Examples

Create an archive of /bin and /usr/bin (c), show the command
working (v), and write on the tape in /dev/rmt/0:

tar -cvf /dev/rmt/0 /bin /usr/bin

List the archive’s contents in a format like ls -l:

tar -tvf /dev/rmt/0

Extract the /bin directory:

tar -xvf /dev/rmt/0 /bin

Create an archive of the current directory, and store it in a file /tmp/
backup.tar on the system. (Backing up a directory into a file in that
directory almost never works.)

tar -cvf /tmp/backup.tar .

Similar, but compress the archive file:

tar -cvf - . | gzip > /tmp/backup.tar.gz

(The - tells tar to store the directory on standard output, which is
then redirected through the pipe.)

Do the same, but using GNU tar:

tar -cvzf /tmp/backup.tar.gz .

Copy a directory tree from one location to another:

cd olddir; tar -cf - . | (cd newdir; tar -xvpf -)

214 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tcsh

tcsh tcsh [options] [file [arguments]]

An extended version of the C shell, a command interpreter into
which all other commands are entered. For more information, see
Chapter 5.

tee tee [options] [files]

Duplicate the standard input; send one copy to standard output
and another copy to files.

Options

-a, --append
Append output to files.

-i, --ignore-interrupts
Ignore all interrupts.

Examples

Display a who listing on the screen and store it in two files:

who | tee userlist ttylist

Display misspelled words and add them to existing typos:

spell ch02 | tee -a typos

telnet telnet [options] [host [port]]

Communicate with another host using the Telnet protocol. host
may be either a name or a numeric Internet address (dot format).
telnet has a command mode (indicated by the telnet> prompt)
and an input mode (usually a login session on the host system). If
no host is given, telnet defaults to command mode. You can also
enter command mode from input mode by typing the escape char-
acter ^]. In command mode, type ? or help to list the available
commands.

In days of yore, telnet used a direct, clear, unencrypted
data stream for all information, including login names
and passwords. Doing so today is terribly insecure, and
you should not use telnet if you cannot use the encryp-
tion facility. (See ssh for an alternative.) Nevertheless,
telnet remains useful for network debugging; for exam-
ple, connecting directly to SMTP, POP3, or IMAP servers
for testing.

Common Options

-8 Use an eight-bit data path. This negotiates the BINARY option
for input and output.

-a Attempt an automatic login. This is the default on Mac OS X.

-c Don’t read $HOME/.telnetrc at startup.

Alphabetical Summary of Common Commands | 215

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

telnet

-d Set the debug option to true.

-e c Use c as the escape character. The default is ^]. A null value
disables the escape character mechanism.

-E Don’t have an escape character.

-f If using Kerberos, forward the local credentials to the remote
system.

-F Like -f, but includes credentials that were already forwarded
to the local system too.

-k realm
For Kerberos, obtain a ticket for the remote host from the
realm realm, instead of the remote host’s default realm.

-K Do not allow automatic login to the remote system.

-l user
Use the ENVIRON option to pass the value of the USER environ-
ment variable.

-L Use an eight-bit data path on output. This negotiates the
BINARY option only for output.

-n file
Record trace information in file.

-r Provide an rlogin-style interface, in which the escape char-
acter is ~ and is only recognized after a carriage return. The
regular telnet escape character must still be used before a
telnet command. “~. ENTER” and “~ ^Z” terminates or stops
a session, respectively.

-x Enable encryption if possible. This is the default on Mac OS X.

-X atype
Disable authentication type atype.

Solaris Host Specification

[[!]@host1[@host2 …]] desthost
Uses loose source routing to desthost, sending the connection
through host1, host2, …. With a leading !, uses strict source
routing. IPv6 connections may use only loose source routing.

GNU/Linux Options

-7 Strip the eighth bit on input and output.

-b hostalias
Use bind(2) to bind the local socket to an aliased address or
the address of an interface other than the one that would be
chosen by connect(2).

Mac OS X Options

-4 Use IPv4.

-6 Use IPv6.

-N Do not do IP address to name lookup if the remote host is
provided as an IP address.

216 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

test

-s source_address
Set the source IP address of the connection to source_address.
Both IP addresses and hostnames may be used.

-S tosval
Set the IP type-of-service option to tosval, which may be
numeric, or a symbolic name from /etc/iptos, if that file
exists.

-u Use a Unix Domain socket, i.e., one accessed as a file
pathname.

-y Do not encrypt the data stream.

test test expression

 or
[expression]

Evaluate an expression and, if its value is true, return a zero exit
status; otherwise, return a nonzero exit status. In shell scripts, you
can use the alternate form [expression]. The brackets are typed
literally and must be separated from expression. Generally, this
command is used with conditional constructs in shell programs.
See Chapter 4 for more information on test.

time time [option] command [arguments]

Execute a command with optional arguments and print the total
elapsed time, execution time, process execution time, and system
time of the process (all in seconds). Times are printed on standard
error. time is a built-in command in all of the Bash, Korn, and C
shells. This entry describes the external command that lives in the
filesystem.

Common Option

-p, --portability
Print the real, user, and system times with a single space sepa-
rating the title and the value, instead of a tab. (Mac OS X uses
a tab.)

GNU/Linux Options

-a, --append
Used with -o to append the output to file instead of over-
writing it.

-f format, --format=format
Specify the output format. Overrides any format specified in
the TIME environment variable.

-o file, --output=file
Send the output from time to the specified file instead of to
standard error. If file exists, it is overwritten.

Alphabetical Summary of Common Commands | 217

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tr

-v, --verbose
Give verbose output, providing all available information.

-V, --version
Print version information and exit.

Mac OS X Option

-l Print the contents of the process’s struct rusage structure. See
getrusage(2).

touch touch [options] [date] files

For one or more files, update the access time and modification
timestamp to the current time and date, or update to the optional
date. date is a date and time in the format mmddhhmm[yy]. touch
creates the files if they don’t exist. touch is useful in forcing other
commands to handle files a certain way; e.g., the operation of make,
and sometimes find, relies on a file’s access and modification times.

Common Options

-a, --time=access, --time=atime, --time=use
Update only the access time.

-c, --no-create
Do not create nonexistent files.

-m, --time=modify, --time=mtime
Update only the modification time.

-r file, --reference=file
Use the access and/or modification times of file instead of the
current time.

-t time
Use the time as it is provided by time, which has the form
[[cc]yy]mmddhhmm[.ss].

GNU/Linux Options

-d time, --date=time
Change the time value to the specified time instead of the
current time. time can use several formats and may contain
month names, time zones, a.m. and p.m. strings, etc.

-f Accepted but ignored.

Mac OS X Option

-f Force; attempt to update the times, even if the file permis-
sions do not allow it.

tr tr [options] [string1 [string2]]

Copy standard input to standard output, performing substitution of
characters from string1 to string2 or deletion of characters in string1.
Some older System V systems require that string1 and string2 be
enclosed in square brackets. (This is true of Solaris’s /usr/bin/tr, for

218 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

troff

example.) Most other versions do not have this requirement. POSIX-
compliant versions do not have this requirement either.

Common Options

-c, --complement
Complement characters in string1 with characters in the
current character set. The complement is the set of all charac-
ters not in string1. This option works in terms of byte values.

-d, --delete
Delete characters in string1 from output.

-s, --squeeze-repeats
Squeeze out repeated output characters in string2.

Solaris and Mac OS X Option

-C Like -c, but work in terms of characters, which may be multi-
byte values, depending upon the local character set.

GNU/Linux Option

-t, --truncate-set1
Truncate string1 to the length of string2 before processing the
input.

Mac OS X Option

-u Force output to be unbuffered.

Examples

Change uppercase to lowercase in a file:

tr 'A-Z' 'a-z' < file Modern systems, traditional BSD
tr '[A-Z]' '[a-z]' < file Old System V systems

Modern systems allow the use of character classes:

tr '[:upper:]' '[:lower:]' < file

Turn spaces into newlines (ASCII code 012):

tr ' ' '\012' < file

Strip blank lines from file and save in new.file (or use \011 to
change successive tabs into one tab):

tr -s "" "\012" < file > new.file

Delete colons from file; save result in new.file:

tr -d : < file > new.file

 Make long search path more readable:

echo $PATH | tr ':' '\n'

troff troff [options] [files]

Document formatter for laser printer or typesetter. See Chapter 18.

Alphabetical Summary of Common Commands | 219

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tset

true true

A do-nothing command that returns a successful (zero) exit status.
Normally used in Bourne shell scripts. See also true.

true is built into most modern shells.

tset tset [options] [type]

Set terminal modes. Without arguments, the terminal is reinitial-
ized according to the TERM environment variable. tset is typically
used in startup scripts (.profile or .login). type is the terminal
type; if preceded by a ?, tset prompts the user to enter a different
type, if needed. Press the ENTER key to use the default value, type.
On Solaris, this command is found is /usr/ucb. See also reset.

Common Options

- Print terminal name on standard output; useful for passing
this value to TERM.

-e c Set erase character to c; default is ^H (backspace).

-i c Set interrupt character to c (default is ^C).

-I Do not output terminal initialization setting.

-k c Set line-kill character to c (default is ^U).

-m[port[baudrate]:type]
Declare terminal specifications. port is the port type (usually
dialup or plugboard). tty is the terminal type; it can be
preceded by ? as above. baudrate checks the port speed and
can be preceded by any of these characters:

-Q Do not print “Erase set to” and “Kill set to” messages.

-r Report the terminal type.

-s Return the values of TERM assignments to shell environment.
This is a commonly done via eval 'tset -s' (in the C shell,
you would surround this with the commands set noglob and
unset noglob).

Solaris Option

-n Initialize “new” tty driver modes. Useless because of redun-
dancy with the default stty settings that incorporate the
functionality of the BSD “new” tty driver.

> Port must be greater than baudrate.
< Port must be less than baudrate.
@ Port must transmit at baudrate.
! Negate a subsequent >, <, or @ character.
? Prompt for the terminal type. With no response, use the

given type.

220 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tty

GNU/Linux and Mac OS X Options

-q Print the terminal type on standard output but do not initialize
the terminal.

-V Print the version of ncurses used for this program and exit.

Examples

Set TERM to wy50:

eval `tset -s wy50`

Prompt user for terminal type (default is vt100):

eval `tset -Qs -m '?vt100'`

Similar to above, but the baudrate must exceed 1200:

eval `tset -Qs -m '>1200:?xterm'`

Set terminal via modem. If not on a dial-in line, the ?$TERM causes
tset to prompt with the value of $TERM as the default terminal
type:

eval `tset -s -m dialup:'?vt100' "?$TERM"`

tty tty [options]

Print the device name of your terminal. This is useful for shell
scripts and often for commands that need device information.

Common Option

-s, --quiet, --silent
Return only the codes: 0 (a terminal), 1 (not a terminal), 2
(invalid options used).

Solaris Option

-l Print the synchronous line number, if on an active synchro-
nous line.

type type program ...

Print a description of program, i.e., whether it is a shell built-in, a
function, or an external command. type is built into the Bash and
Korn shells. See Chapter 4 and also see which.

Example

Describe cd and ls:

$ type cd ls From Bash
cd is a shell builtin
ls is hashed (/bin/ls)

umask umask [value]

Print the current value of the file creation mode mask, or set it to
value, a three-digit octal code specifying the read-write-execute
permissions to be turned off when new files are created. Normally

Alphabetical Summary of Common Commands | 221

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

uname

used in .login or .profile. umask is a built-in command in the Bash,
Korn, and C shells (see Chapters 4 and 5).

Examples

Turn off write permission for others:

umask 002 Produces file permission -rw-rw-r--

Turn off all permissions for group and others:

umask 077 Produces file permission -rw-------

Note that you can omit leading zeroes.

uname uname [options]

Print the current Unix system name.

Common Options

-a, --all
Report the information supplied by all the other options.

-m, --machine
The hardware name.

-n, --nodename
The node name.

-p, --processor
The host’s processor type.

-r, --kernel-release
The operating system release.

-s, --kernel-name
The system name. This is the default action when no options
are provided.

-v, --kernel-version
The operating system version.

Solaris and GNU/Linux Option

-i, --hardware-platform
The hardware platform name. (For example on Solaris,
SUNW,Ultra-4; compare to sparc from -p.)

umask number File permission Directory permission

0 rw- rwx

1 rw- rw-

2 r-- r-x

3 r-- r--

4 -w- -wx

5 -w- -w-

6 --- --x

7 --- ---

222 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

umount

Solaris Options

-S name
Change the nodename to name. Privileged users only.

-X Print expanded information as expected by SCO Unix
systems.

GNU/Linux Option

-o, --operating-system
Print the operating system name.

umount umount [options] [arguments]

Unmount a filesystem. This command is very system-specific. See
the umount entries in the sections for each operating system.

unexpand unexpand [options] [files]

Convert spaces back into an appropriate number of tab characters.
unexpand reads the named files, or standard input if no files are
provided. See also expand.

Common Options

-a, --all
Replace spaces with tabs everywhere possible, not just leading
spaces and tabs.

-t tablist, --tabs=tablist
Interpret tabs according to tablist, a space- or comma-sepa-
rated list of numbers in ascending order that describes the
“tabstops” for the input data.

GNU/Linux Option

--first-only
Convert only leading whitespace into tabs. Overrides -a.

uniq uniq [options] [file1 [file2]]

Remove duplicate adjacent lines from sorted file1, sending one
copy of each line to file2 (or to standard output). Often used as a
filter. Specify only one of -c, -d, or -u. See also comm and sort.

Common Options

-c, --count
Print each line once, counting instances of each.

-d, --repeated
Print duplicate lines once, but no unique lines.

-f n, --skip-fields=n
Ignore first n fields of a line. Fields are separated by spaces or
by tabs.

Alphabetical Summary of Common Commands | 223

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

units

-s n, --skip-chars=n
Ignore first n characters of a field.

-u, --unique
Print only unique lines (no copy of duplicate entries is kept).

-n Like -f. This original, pre-POSIX syntax is deprecated; use -f
instead.

+n Like -s. This original, pre-POSIX syntax is deprecated; use -s
instead.

GNU/Linux Options

-D, --all-repeated[=method]
Print all duplicate lines. -D takes no delimiter method. The
delimiter method method describes how uniq should delimit
groups of repeated lines in the output. It takes one of the
values none (default), prepend (output a newline before each
group), or separate (output a newline after each group).

-i, --ignore-case
Ignore case differences when checking for duplicates.

-w n, --check-chars=n
Compare only first n characters per line (beginning after
skipped fields and characters).

Examples

Send one copy of each line from list to output file list.new (list
must be sorted):

uniq list list.new

Show which names appear more than once:

sort names | uniq -d

Show which lines appear exactly three times:

sort names | uniq -c | awk '$1 = = 3'

units units
units [options] [from-unit to-unit]

Interactively supply a formula to convert a number from one unit
to another. Use EOF to exit. Known units are maintained in a
system table, and the GNU/Linux and Mac OS X versions let you
supply your own units file. They also allow you to supply units on
the command line, so that the program can be used in a batch
fashion.

GNU/Linux and Mac OS X Common Options

-f file, --file=file
Read units from file.

-q, --quiet, --silent
Do not prompt, and do not display statistics.

224 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

unix2dos

GNU/Linux Options

-c, --check
Verify that all units reduce to primitive units.

--check-verbose
Like -c, but list the units as they’re checked, for finding infi-
nite loops.

-e, --exponential
Use exponential format output.

-h, --help
Print a command-line summary and exit.

-o format, --output-format=format
Use printf(3)-style format format for formatting values. format
should be appropriate for a floating-point value.

-s, --strict
Do not do the reciprocal unit conversion.

-v, --verbose
Be more verbose.

-V, --version
Print version information and exit.

Mac OS X Option

-v Print the version number.

unix2dos unix2dos [options] unixfile dosfile

Solaris and GNU/Linux only. Convert files using the ISO standard
characters to their DOS counterparts. If unixfile and dosfile are the
same, the file is overwritten after the conversion is done. See also
dos2unix.

For the GNU/Linux version, the options are the same as for
dos2unix; see the dos2unix entry for the list.

Solaris Options

-ascii
Add extra carriage returns for use under DOS.

-iso Same as the default action.

-437 Use the US code page.

-7 Convert 8-bit Solaris characters to 7-bit DOS characters.

-850 Use the multilingual code page.

-860 Use the Portugese code page.

-863 Use the French Canadian code page.

-865 Use the Danish code page.

Alphabetical Summary of Common Commands | 225

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

unzip

unzip unzip [options[modifiers]] zipfile ... [extraction options]
unzip -Z [zipinfo options] zipfile ...

unzip prints information about or extracts files from ZIP format
archives. The zipfile is a ZIP archive whose filename ends in .zip.
The .zip can be omitted from the command line; unzip supplies it.
zipfile may also be a shell-style wildcard pattern (which should be
quoted); all matching files in the ZIP archive will be acted upon.
The behavior of options is affected by the various modifiers.

In the second form, the options are taken to be zipinfo options, and
unzip performs like that command. See zipinfo for more
information.

Options may also be included in the UNZIP environment variable,
to set a default behavior. Options on the command line can over-
ride settings in $UNZIP by preceding them with an extra minus.

When extracting files, if a file exists already, unzip prompts for an
action. You may to choose to overwrite or skip the existing file,
overwrite or skip all files, or rename the current file.

Notes

• unzip and its companion program zip are part of the InfoZIP
project. InfoZIP is an open collaborative compressed archive
format, and implementations exist for Unix, Amiga, Atari,
VMS and OpenVMS, MS-DOS, Macintosh, Minix, OS/2,
Windows NT, and many others. It is the only similar format
you can expect to port to all of these systems without diffi-
culty. The web home page is http://www.info-zip.org/.

• Unlike most Unix tar implementations, zip removes leading
slashes when it creates a ZIP archive, so there is never any
problem unbundling it at another site.

• The Java Archive format (.jar) is based on ZIP; zip and unzip
can process .jar files with no trouble.

• The jar tool may be easier to use for working with .zip files,
especially since its options are similar to those of tar.

The following lists intentionally omit obsolete options and those
that are specific to non-Unix platforms.

Extraction Options

-d dir
Extract files in dir instead of in the current directory. This
option need not appear at the end of the command line.

-x files
Exclude. Do not extract archive members that match files.

Options

-A Print help for the shared library programming interface (API).

-c Print files to standard output (the CRT). Similar to -p, but a
header line is printed for each file, it allows -a, and

226 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

unzip

automatically does ASCII to EBCDIC conversion. Not in the
unzip usage message.

-f Freshen existing files. Only files in the archive that are newer
than existing disk files are extracted. unzip queries before over-
writing, unless -o is used.

-l List archived files, in short format (name, full size, modifica-
tion time, and totals).

-p Extract files to standard output (for piping). Only the file data
is printed. No conversions are done.

-q[q]
Be quiet; suppress most of the informative messages provided
during processing. Use -qq to suppress all messages.

-t Test the archived files. Each file is extracted in memory, and
the extracted file’s CRC is compared to the stored CRC.

-T Set the timestamp on the archive itself to be that of the newest
file in the archive.

-u Same as -f, but also extract any files that don’t exist on disk
yet.

-v Be verbose or print diagnostic information. -v is both an
option and a modifier, depending upon the other options. By
itself, it prints the unzip ftp site information, information
about how it was compiled, and what environment variable
settings are in effect. With a zipfile, it adds compression infor-
mation to that provided by -l.

-X Restore the owner and group (UID and GID) recorded in the
archive. The default is to use the UID and GID of the
extracting user.

-z Only print the archive comment.

-Z Run as zipinfo. Remaining options are zipinfo options. See
zipinfo for more information.

Modifiers

-: Allow writing of files outside the directory in which extraction
is taking place, via ../ in pathname components. Older
versions of unzip allowed this by default; current versions
disallow it for safety. This option reenables the original
behavior. GNU/Linux and Mac OS X only.

-a[a]
Convert text files. Normally, files are extracted as binary files.
This option causes text files to be converted to the native
format (e.g., adding or removing CR characters in front of LF
characters). EBCDIC-to-ASCII conversion is also done as
needed. Use -aa to force all files to be extracted as text.

-b Treat all files as binary.

-B Save a backup copy of each overwritten file in file~. Only avail-
able if compiled with UNIXBACKUP defined.

-C Ignore case when matching filenames. Useful on non-Unix
systems where filesystems are not case-sensitive.

Alphabetical Summary of Common Commands | 227

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

uudecode

-j “Junk” paths. Extract all files in the current extraction direc-
tory, instead of reproducing the directory tree structure stored
in the archive.

-L Convert filenames to lowercase from archives created on
uppercase-only systems. By default, filenames are extracted
exactly as stored in the archive.

-M Pipe output through the internal pager, which is similar to
more. Press the ENTER key or spacebar at the --More-- prompt
to see the next screenful.

-n Never overwrite existing files. If a file already exists, don’t
extract it, just continue on without prompting. Normally,
unzip prompts for an action.

-o Overwrite existing files without prompting. Often used
together with -f. Use with care.

Examples

List the contents of a ZIP archive:

unzip -lv whizprog.zip

Extract C source files in the main directory, but not in
subdirectories:

unzip whizprog.zip '*.[ch]' -x '*/*'

uptime uptime

Print the current time, amount of time the system has been up,
number of users logged in, and the system-load averages. This
output is also produced by the first line of the w command. GNU/
Linux accepts -V to print the program’s version information.

users users [file]

Display the currently logged-in users as a space-separated list.
Information is read from a system file such as /var/adm/utmp,
although the location may vary from system to system. On Solaris,
this program is in /usr/ucb.

uudecode uudecode [options] [file]

Read a uuencoded file and re-create the original file with the same
mode and name.

Common Option

-o file
Write output to file instead of to the filename recorded in the
input. On GNU/Linux, use -o /dev/stdout to use uudecode in a
pipeline.

228 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

vi

Solaris and Mac OS X Option

-p Write the decoded file to standard output, making it possible
to use uudecode in a pipeline.

Mac OS X Options

-c Continue; attempt to decode more than one output file from
the same input.

-i Do not overwrite files.

-s Do not strip the final pathname to just the basename.
Normally, uudecode removes leading directory components
from the output filename for security.

vi vi [options] [files]

A screen-oriented text editor based on ex. See Chapter 9 for more
information on vi and ex.

view view [options] [files]

Same as vi -R. See Chapter 9.

vim vim [options] [files ...]

An enhanced version of the vi screen editor. Both vi and vim are
covered in Chapter 9.

vimdiff vimdiff [options] file1 file2 [file3]
gvimdiff [options] file1 file2 [file3]

Edit two or three files with vim, highlighting the differences. If
invoked as gvimdiff, the GUI is used instead. This sets the diff,
wrap, and scrollbind options. It also sets foldmethod=diff and
foldcolumn=2, which puts ranges of lines that aren’t changed into a
fold and makes folds easy to spot.

By default, the screen is split vertically, as if with -O. Use -o to get a
horizontal split.

For more information about vim, see Chapter 9.

w w [options] [user]

Print summaries of system usage, currently logged-in users, and
what they are doing. w is essentially a combination of uptime, who,
and ps -a. Display output for one user by specifying user.

Common Option

-h Suppress headings and uptime information.

Alphabetical Summary of Common Commands | 229

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

wc

Solaris and GNU/Linux Option

-s Display in short format.

Solaris Options

-l Display in long format (the default).

-u Print just the heading line. Equivalent to uptime.

-w Same as -l.

GNU/Linux Options

-f Toggle printing the from (remote hostname) field.

-u Ignore the username while figuring out the current process
and CPU times.

-V Display version information.

Mac OS X Options

-d Dump the entire process list per controlling tty, not just the
top level process.

-i Sort the output by idle time.

-M corefile
Use corefile for the name list of the running system instead of
/dev/kmem.

-n Don’t resolve network addresses to turn them back into
hostnames.

-N system_image
Use system_image for the name list instead of /mach.

wait wait [n]

Wait for all background processes to complete and report their
termination status. Used in shell scripts. If n is specified, wait only
for the process with process ID n. wait is a built-in command in the
Bash, Korn, and C shells. See Chapters 4 and 5 for more information.

wc wc [options] [files]

Word count. Print a character, word, and line count for files. If
multiple files, print totals as well. If no files are given, read stan-
dard input. See other examples under ls and sort.

Common Options

-c, --bytes
Print byte count only.

-l, --lines
Print line count only.

-m, --chars
Print character count only. This will be different than -c in a
multibyte character environment.

-w, --words
Print word count only.

230 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

whatis

Solaris Option

-C Same as -m.

GNU/Linux Option

-L, --max-line-length
Print length of longest line.

Examples

Count the number of users logged in:

who | wc -l

Count the words in three essay files:

wc -w essay.[123]

Count lines in file named by $file (don’t display filename):

wc -l < $file

whatis whatis commands

Look up one or more commands in the online manpages, and
display a brief description. Same as man -f. The MANPATH envi-
ronment variable can affect the results obtained with this
command. See also apropos.

which which [options] [commands]

List which files are executed if the named commands are run as a
command. which reads the user’s .cshrc file (using the source built-
in command), checking aliases and searching the path variable.
Users of the Bourne or Korn shells can use the built-in type
command as an alternative. (See type, Chapters 4 and 5.)

GNU/Linux Options

-a, --all
Print all matches, not just the first.

-i, --read-alias
Read aliases from standard input and write matches to stan-
dard output. Useful for using an alias for which.

--read-functions
Read shell functions from standard input and report matches
to standard output. Useful for also using a shell function for
which itself.

--show-dot
If a matching command is found in a directory that starts with
a dot, print ./cmdname instead of the full pathname.

--show-tilde
Print a tilde (~) to indicate the user’s home directory. Ignored
if the user is root.

Alphabetical Summary of Common Commands | 231

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

who

--skip-alias
Ignore --read-alias if present. Useful for finding normal bina-
ries while using --read-alias in an alias for which.

--skip-dot
Skip directories that start with a dot.

--skip-functions
Ignore --read-functions if present. Useful when searching for
normal binaries while using --read-functions in an alias or
function for which.

--skip-tilde
Skip directories that start with a tilde (~) and executables in
$HOME.

--tty-only
Stop processing options on the right if not on a terminal.

-v, -V, --version
Print version information and then exit.

Example

$ which file ls
/usr/bin/file
ls: aliased to ls -sFC

who who [options] [file]

Display information about the current status of the system. With
no options, list the names of users currently logged in to the
system. An optional system file (the default varies per system) can
be supplied to give additional information. who is usually invoked
without options, but useful options include am i and -u. For more
examples, see cut, line, paste, tee, and wc.

Common Options

-H, --heading
Print headings.

-m Report only about the current terminal.

-q, --count
“Quick.” Display only the usernames.

-s, --short
List the name, line, and time fields (the default behavior).

-T, --mesg, --message, --writable
Report whether terminals are writable (+), not writable (-), or
unknown (?).

-u, --users
Report terminal usage (idle time). A dot (.) means less than
one minute idle; old means more than 24 hours idle.

am i
Print the username of the invoking user. (Similar to results
from id.)

232 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

whoami

Solaris and GNU/Linux Options

-a, --all
Use the -b, -d, -l, -p, -r, -t, -T, and -u options.

-b, --boot
Report information about the last reboot.

-d, --dead
Report expired processes.

-l, --login
Report inactive terminal lines.

-p, --process
Report previously spawned processes.

-r, --runlevel
Report the run level.

-t, --time
Report the last change of the system clock (via date).

Solaris Option

-n x Display x users per line (works only with -q).

GNU/Linux Options

-i, --idle
Present idle time as HOURS:MINUTES, . (dot), or old. (Depre-
cated; use -u.)

--lookup
Use DNS to canonicalize hostnames for people logged in
remotely.

-w Same as -T.

Example

This sample output was produced at 8 a.m. on April 17:

$ who -uH
NAME LINE TIME IDLE PID COMMENTS
martha ttyp3 Apr 16 08:14 16:25 2240
george ttyp0 Apr 17 07:33 . 15182

Since martha has been idle since yesterday afternoon (16 hours), it
appears that Martha isn’t at work yet. She simply left herself logged
in. George’s terminal is currently in use. (He likes to beat the
traffic.)

whoami whoami

Print the username based on effective user ID. On Solaris, this
command is in /usr/ucb. On GNU/Linux and Mac OS X, it’s equiv-
alent to id -un.

Alphabetical Summary of Common Commands | 233

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xargs

xargs xargs [options] [command]

Execute command (with any initial arguments), but read remaining
arguments from standard input instead of specifying them directly.
xargs passes these arguments in several bundles to command,
allowing command to process more arguments than it could
normally handle at once. The arguments are typically a long list of
filenames (generated by ls or find, for example) that get passed to
xargs via a pipe.

Without a command, xargs behaves similarly to echo, simply
bundling the input lines into output lines and printing them to
standard output.

Common Options

-E string
Stop passing arguments when argument string is encountered.

-I string
Pass arguments to command, replacing instances of string on
the command line with the current line of input.

-L n Execute command for n lines of arguments.

-n count, --max-args=count
Execute command with up to count arguments.

-p, --interactive
Prompt for a y to confirm each execution of command. Implies
-t.

-s max, --max-chars=max
Each argument list can contain up to max characters. (Older
systems limited n to 470. The default is system-dependent.)

-t, --verbose
Echo each command before executing.

-x, --exit
Exit if argument list exceeds n characters (from -s); -x takes
effect automatically with -i and -l.

Solaris and GNU/Linux Options

-e[string], --eof[=string]
Use string as the default logical EOF string (default is under-
score). An omitted string disables the logical EOF capability.

-i[string], --replace[=string]
Like -I but default string is { }.

-l[n], --max-lines[=n]
Same as -L, but default n is 1.

GNU/Linux and Mac OS X Option

-0, --null
Filenames are separated with zero bytes (ASCII NUL) instead
of spaces and newlines. For use with find -print0.

234 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xgettext

GNU/Linux Options

-P max, --max-procs=max
Allow no more than max processes to run at once. The default
is 1. A maximum of 0 allows as many as possible to run at
once.

-r, --no-run-if-empty
Do not run command if standard input contains only blanks.

Mac OS X Options

-J string
When string is found among the arguments on the command
line, replace its first occurrence with the current input list.
This happens instead of appending the list to the given
arguments.

-R count
Use count as the maximum number of arguments in which -I
will do replacements.

Examples

grep for pattern in all files on the system:

find / -print | xargs grep pattern > out &

Run diff on file pairs (e.g., f1.a and f1.b, f2.a and f2.b …):

echo "$@" | xargs -n2 diff

The previous line could be invoked as a shell script, specifying file-
names as arguments.

Display file, one word per line:

cat file | xargs -n1

Move files in olddir to newdir, showing each command:

ls olddir | xargs -i -t mv olddir/{ } newdir/{ }

xgettext xgettext [options] files
xgettext -h

Solaris and GNU/Linux only. Extract messages (specially marked
strings) from C and C++ source files. Place them in a “portable
object” file (.po) for translation and compilation by msgfmt. By
default, xgettext extracts strings only inside calls to the gettext(3C)
and dgettext(3C) functions. Source files are named on the
command line. A filename of – indicates the standard input. See
also gettext and msgfmt.

GNU gettext extends the original Solaris gettext design and is able
to extract strings from source files for a large number of languages.
The URL for it is http://www.gnu.org/software/gettext.

Common Options

-a, --extract-all
Extract all strings, not just those in calls to gettext or
dgettext. (GNU/Linux: applies to languages C, C++,

Alphabetical Summary of Common Commands | 235

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xgettext

ObjectiveC, Shell, Python, Lisp, EmacsLisp, librep, Scheme,
Java, C#, awk, Tcl, Perl, PHP, GCC-source, and Glade.)

-c tag, --add-comments[=tag]
Copy source file comments marked with tag into the .po file as
#-delimited comments.

-d domain, --default-domain=domain
Use domain.po as the output file instead of messages.po.

-h, --help
Print a help message on the standard output.

-j, --join-existing
Join (merge) extracted messages with those in the current .po
file. Domain directives in the existing .po file are ignored.

-m prefix, --msgstrr-prefix=prefix
Fill in each msgstr with prefix. Intended for debugging. The
GNU version allows prefix to be optional.

-M suffix, --msgstr-suffix=suffix
Fill in each msgstr with suffix. Intended for debugging. The
GNU version allows suffix to be optional.

-n, --add-location
Add comments to the .po file indicating the source filename
and line number where each string is used.

-p path, --output-dir=path
Place output files in the directory path.

-s, --sort-output
Sort the output by msgid (original string), with all duplicates
removed.

-x exfile, --exclude-file=exfile
exfile is a .po file with msgids that are not to be extracted (i.e.,
to be excluded).

GNU/Linux Options

--copyright-holder=string
Set the copyright holder in the output file.

-C, --c++
Short for --language=C++.

--debug
Produce more detailed output, intended for debugging
xgettext.

-D dir, --directory=dir
Add dir to the list of directories searched for input.

-e, --no-escape
Do not use C escapes in the output (the default).

-E, --escape
Do use C escapes in the output.

-f file, --files-from=exfile
Read list of input files from file.

236 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xgettext

--force-po
Write the .po file even if it will be empty.

--foreign-user
Do not place the FSF copyright information into the file.

--flag=funcname:argnum:flag
Apply flag to the argnumth argument to function funcname.
This is a specialized option, see the online Info manual for
details. For languages: C, C++, ObjectiveC, Shell, Python, Lisp,
EmacsLisp, librep, Scheme, Smalltalk, Java, C#, awk, YCP, Tcl,
Perl, PHP, and GCC-source.

--from-code=encoding
Input files use encoding. Not valid for languages Python, Tcl, or
Glade.

-F, --sort-by-file
Sort the output by input file location.

-i, --indent
Use an indented style when writing the .po file.

-k [word], --keyword[=word]
Additional keyword to search for. Without word, do not
recognize the default keywords. Valid for languages C, C++,
ObjectiveC, Shell, Python, Lisp, EmacsLisp, librep, Scheme,
Java, C#, awk, Tcl, Perl, PHP, GCC-source, and Glade.

-L lang, --language=name
Source files are in language lang. Known languages are C, C++,
ObjectiveC, PO, Shell, Python, Lisp, EmacsLisp, librep, Scheme,
Smalltalk, Java, JavaProperties, C#, awk, YCP, Tcl, Perl, PHP,
GCC-source, NXStringTable, RST, and Glade.

--msgid-bugs-address=user@domain
Supply the bug-reporting address for problems with the orig-
inal msgid strings.

--no-location
Do not write #: filename:line lines.

--no-wrap
Do not break long lines.

-o file, --output=exfile
Write the output to file. Use - for standard output.

--omit-header
Do not write a header with a msgid "" entry.

--properties-input
Create a .properties file.

--qt Extract Qt format strings. Valid only for C++.

--strict
Use the Uniforum format for the .po file. Avoid this if
possible, it doesn’t allow for GNU extensions.

--stringtable-input
Create a NeXTstep/GNUstep .strings file.

-T, --trigraphs
Interpret ANSI C trigraphs. Only for C, C++, and ObjectiveC.

Alphabetical Summary of Common Commands | 237

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

yacc

-v, --version
Print version information and exit.

-w count, --width=count
Set the output line width to count.

yacc yacc [options] file
byacc [options] filename

Given a file containing a context-free LALR(1) grammar, convert it
to tables for subsequent parsing and send output to y.tab.c. This
command name stands for yet another compiler-compiler. On
Solaris yacc is found in /usr/ccs/bin. See also lex, flex, and bison,
and lex & yacc, which is listed in the Bibliography.

Mac OS X uses Berkeley Yacc for yacc, which accepts the tradi-
tional options as well as -o. GNU/Linux provides Berkeley Yacc
under the name byacc.

Common Options

-d Generate y.tab.h, producing #define statements that relate
yacc’s token codes to the token names declared by the user.

-l Exclude #line constructs from code produced in y.tab.c. (Use
after debugging is complete.)

-t Compile runtime debugging code by default.

-v Generate y.output, a file containing diagnostics and notes
about the parsing tables.

-V Print the version of yacc on standard error. (May not be in all
versions.)

GNU/Linux and Mac OS X Option

-r Produce separate files for code and tables named y.code.c and
y.tab.c, respectively.

Solaris Options

-b prefix
Use prefix instead of y for the generated filenames.

-p prefix
Use prefix instead of yy for all external names in the generated
parser.

-P parser
Use parser instead of /usr/ccs/bin/yaccpar.

-Qc Place version information about yacc in y.tab.c (if c = y) or
suppress information (if c = n, the default).

Berkeley Yacc Option

-o filename
Write the generated parser to filename instead of to y.tab.c.

238 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

zcat

zcat zcat [files]

Uncompress one or more compressed files to the standard output,
leaving files unchanged. See bzip2 and gzip.

On Solaris, zcat is the original version related to compress. GNU/
Linux and Mac OS X use the version related to gzip, which can
decompress .Z and .gz files.

zip zip [options] zipfile [files]

Archive files in InfoZIP format. These files can be retrieved using
unzip. The files are compressed as they are added to the archive.
Compression ratios of 2:1 to 3:1 are common for text files. zip may
also replace files in an existing archive. With no arguments, display
the help information. See also zipinfo and unzip.

Default options may be placed in the ZIPOPT environment vari-
able, with the exceptions of -i and -x. Multiple options may be
included in ZIPOPT.

The zip source code is readily available from http://www.info-zip.org/.
There are a number of important notes in the unzip entry. Go there
for more information.

The following list intentionally omits obsolete options and those
that are specific to non-Unix platforms.

Options

-b path
Use path as the location to store the temporary ZIP archive
while updating an existing one. When done, copy the tempo-
rary archive over the new one. Useful primarily when there’s
not enough disk space on the filesystem containing the orig-
inal archive.

-c Add one-line comments for each file. zip first performs any file
operations and then prompts you for a comment describing
each file.

-d Delete entries from a ZIP archive. Filenames to be deleted
must be entered in uppercase if the archive was created by
PKZIP on an MS-DOS system.

-D Don’t create entries in the archive for directories. Usually
entries are created, so that attributes for directories may be
restored upon extraction.

-e Encrypt the archive. zip prompts on the terminal for a pass-
word and prompts twice, to avoid typing errors. If standard
error is not a terminal, zip exits with an error.

-f Freshen (replace) an existing entry in the ZIP archive if the file
has a more recent modification time than the one in the
archive. This doesn’t add files that are not already in the
archive: use -u for that. Run this command from the same
directory where the ZIP archive was created, since the archive
stores relative pathnames.

Alphabetical Summary of Common Commands | 239

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

zip

-F, -FF
Fix the ZIP archive. This option should be used with care; make
a backup copy of the archive first. The -FF version does not
trust the compressed sizes in the archive, and instead scans it for
special “signatures” that identify the boundaries of different
archive members. See the manpage for more information.

-g Grow the archive (append files to it).

-h Display the zip help information.

-i files
Include only the specified files, typically specified as a quoted
shell wildcard-style pattern.

-j “Junk” the path; i.e., store just the name of the saved file, not
any directory names. The default is to store complete paths,
although paths are always relative.

-J Strip any prepended data (e.g., an SFX stub, for self-extracting
executables) from the archive.

-k Create an archive that (attempts to) conform to the conven-
tions used under MS-DOS. This makes it easier for PKUNZIP
to extract the archive.

-l For text files only, translate the Unix newline into a CR-LF
pair. Primarily for archives extracted under MS-DOS.

-ll For text files only, translate CR-LF into a Unix newline.

-L Display the zip license.

-m “Move” the files into the ZIP archive. This actually deletes the
original files and/or directories after the archive has been
created successfully. This is somewhat dangerous; use -T in
conjunction with this option.

-n suffixlist
Do not compress files with suffixes in colon-separated suffix-
list. Useful for sound or image files that often have their own,
specialized compression method.

-o Set the modified time of the ZIP archive to be that of the
youngest file (most recently modified) in the archive.

-q Quiet mode. Don’t print informational messages and
comment prompts. Most useful in shell scripts.

-r Recursively archive all files and subdirectories of the named
files. The -i option is also useful in combination with this one.

-t mmddyy
Ignore files modified prior to the date given by mmddyy.

-T Test the new ZIP archive’s integrity. If the test fails, an existing
ZIP archive is not changed, and with -m, no files are removed.

-u Update existing entries in the ZIP archive if the named files
have modification dates that are newer than those in the
archive. Similar to -f, except that this option adds files to the
archive if they aren’t already there.

-v As the only argument, print help and version information, a
pointer to the home and distribution Internet sites, and

240 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

zipinfo

information about how zip was compiled. When used with
other options, cause those options to print progress informa-
tion and provide other diagnostic information.

-x files
Exclude the specified files, typically specified as a quoted shell
wildcard-style pattern.

-X Do not save extra file attributes (extended attributes on OS/2,
user ID/group ID, and file times on Unix).

-y Preserve symbolic links in the ZIP archive, instead of archiving
the file the link points to.

-z Prompt for a (possibly multiline) comment describing the
entire ZIP archive. End the comment with a line containing
just a period, or EOF.

-n Specify compression speed: n is a digit between 0 and 9. 0 indi-
cates no compression, 1 indicates fast but minimal compression,
9 indicates slowest but maximal compression. Default is -6.

-@ Read standard input for names of files to be archived. File-
names containing spaces must be quoted using single quotes.

Examples

Archive the current directory into source.zip, including only C
source files:

zip source -i '*.[ch]'

Archive the current directory into source.zip, excluding the object
files:

zip source -x '*.o'

Archive files in the current directory into source.zip, but don’t
compress .tiff and .snd files:

zip source -n '.tiff:.snd' *

Recursively archive the entire directory tree into one archive:

zip -r /tmp/dist.zip .

zipinfo zipinfo [options] zipfile ... [exclusion option]

zipinfo prints information about ZIP format archives. The zipfile is
a ZIP archive whose filename ends in .zip. The .zip can be omitted
from the command line; zipinfo supplies it. zipfile may also be a
shell-style wildcard pattern (which should be quoted to protect it
from the shell); all matching files in the ZIP archive will be acted
upon. See also zip and unzip.

Exclusion Option

-x files
Exclude. Do not extract archive members that match files.

Alphabetical Summary of Solaris Commands | 241

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cde

Options

-1 Only list filenames, one per line. Nothing else is printed. For
use in shell scripts.

-2 Like -1, but also permit headers, trailers, and ZIP archive
comments (-h, -t, -z).

-h Print a header line with the archive name, size in bytes, and
total number of files.

-l Use “long” format. Like -m, but also print the compressed size
in bytes, instead of the compression ratio.

-m Use “medium” format. Like -s, but also include the compres-
sion factor (as a percentage).

-M Pipe output through the internal pager, which is similar to
more. Press the ENTER key or spacebar at the --More-- prompt
to see the next screenful.

-s Use “short” format, similar to ls -l. This is the default.

-t Print totals for all files (number of files, compressed and
uncompressed sizes, overall compression factor).

-T Print times and dates in a decimal format (yymmdd.hhmmss)
that can be sorted.

-v Use verbose, multipage format.

-z Print the archive comment.

Alphabetical Summary of Solaris Commands

cde Common Desktop Environment
The Common Desktop Environment (CDE) is one of the graphical
user interfaces (GUI) on Solaris systems. Solaris users may choose
between CDE and GNOME.

Documenting CDE would require its own book and is beyond the
scope of this one. Instead, listed here are some of the more useful
individual CDE commands, which are kept in /usr/dt/bin.
(Commands for the Desktop.) In addition, a number of Open-
Windows commands are still useful. See the listing under openwin.

Useful CDE Programs

The following CDE and Sun Desktop commands may be of
interest. Check the manpages for more information.

answerbook2 Sun hypertext documentation viewer.
dtaction Invoke CDE actions from within shell scripts.
dtbuilder CDE applications builder.
dtcalc Onscreen scientific, logical, and financial

calculator.
dtcm Calendar manager.

242 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrw

cdrw cdrw [options] commands | files

Read and write CDs and DVDs. cdrw can write CD-RW, DVD-RW,
and DVD+RW media for data, and read and write audio data for
music CDs. Options let you specify devices and control the way in
which data are written to writable media. Images for data CDs and
DVDs are usually prepared using mkisofs.

Without -C, the default capacities for writable CD media are
assumed to be 74 minutes for an audio CD, 681,984,000 bytes for a
data CD, and 4.7 Gbytes for a DVD.

Options

-a Create an audio CD. Audio CDs are limited to 99 tracks, so no
more than 99 files may be provided. Audio files should be in
one of the following formats:

-b blanktype
Blank (erase) CD-RW and DVD-RW media. The blanktype
should be one of all, fast, or session. DVD+RW media does
not support blanking but can be rewritten without it.

-c Copy a CD. By default cdrw uses the CD writer as the CD
reader, and stores the data temporarily on the local hard disk.
Use -s to specify a different source device.

-C Use the amount of space reported by the drive as the capacity
of the media. Useful when appending to a multisession CD.

-d device
Use device as the CD or DVD writer.

dterror.ds dtksh script for error notices and dialogues.
dtfile_error dtksh script for error dialogues.
dticon Icon editor.
dtksh The “Desktop Korn shell,” an early version of

ksh93.
dtmail Mail reader.
dtpad Simple text editor.
dtprintinfo Print job manager.
dtscreen Screen savers.
dtterm Terminal emulator.
fdl Font downloader utility for PostScript printers.
sdtconvtool GUI for iconv.
sdtfind File finder.
sdtimage Image viewer (PostScript, GIF, JPEG, etc.).
sdtperfmeter System performance meter.
sdtprocess Process manager.

AUR .aur files with raw audio data in big-endian format
CDA .cda files with raw audio data (16 bit PCM stereo at

44.1 KHz sample rate, in little-endian format)
RIFF .wav files with data in Red Book CDDA format
Sun .au files with data in Red Book CDDA format

Alphabetical Summary of Solaris Commands | 243

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

chkey

-h Print a usage message.

-i file
Use file as the image to write to the media. For best results, the
file should be available on a local hard disk, not mounted via
NFS.

-l List all CD or DVD writers available on the system.

-L Close the disk. This prevents any further writing. Applies only
to CD-RW media.

-m dir
Use dir for storing temporary files while copying a CD or
DVD, instead of the default temporary directory.

-M Report the media status: blank or not, table of contents, last
session start address, and next writable address if the disk is
open.

-O Keep the disk open. The session is closed but the disk is left
open for addition of another session later, creating a multi-
session disk.

-p speed
Set the writing speed of the drive. Usually cdrw uses the drive’s
default speed. With this option, cdrw attempts to change the
speed, but there is no guarantee as to the actual speed used.

-s device
Use device as the source for data when copying a CD or DVD.

-S Simulate writing. The drive’s laser is turned off; use this option
to verify that the system can move data quickly enough.

-T type
Specify the type of audio data. It should be one of aur, cda,
wav, or sun. (See the -a option.)

-v Be verbose.

-x Extract audio data from an audio track.

Examples

Extract the second song from an audio CD:

cdrw -x 2 three_blind_mice.cda

Create a data CD, at speed 40X:

cdrw -i -p 40 /bigdisk/tmp/whizprog-dist.iso

chkey chkey [options]

Prompt for login password and use it to encrypt a new key. See also
keylogin and keylogout.

Options

-m mechanism
Change or reencrypt the secret key for the specified mecha-
nism. (Mechanisms are those allowed by nisauthconf(1).)

244 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

decrypt

-p Reencrypt the existing secret key with the user’s login
password.

-s database
Update the given database, which is one of files, ldap, nis, or
nisplus.

decrypt decrypt [options] [-i infile] [-o outfile]

Decrypt files encrypted with encrypt. encrypt and decrypt are hard
links to each other and accept the same options. See encrypt for a
full description.

digest digest [-v] -a algorithm [file ...]
digest -l

Compute a PKCS#11 message digest of the given files. The second
form lists the available digest algorithms. See also decrypt, encrypt,
and mac.

Options

-a algorithm
Use algorithm to compute the digest. This option is required.
Values for algorithm are sha1 and md5.

-l Used by itself to list available digest computation algorithms.

-v Verbose; include algorithm name in the output.

Examples

Calculate MD5 checksums on some start-up files:

$ digest -a md5 .profile .login Regular results
(.profile) = 74c0f9c28d37f985c3f160efe992e078
(.login) = 05d1f072534b75188bdaba2747d8edaa

$ digest -v -a md5 .profile .login Verbose
md5 (.profile) = 74c0f9c28d37f985c3f160efe992e078
md5 (.login) = 05d1f072534b75188bdaba2747d8edaa

dircmp dircmp [options] dir1 dir2

Compare the contents of dir1 and dir2. See also diff and cmp.

Options

-d Execute diff on files that differ.

-s Don’t report files that are identical.

-w n Change the output line length to n (default is 72).

dis dis [options] files

Disassemble the object or archive files. See also as.

Alphabetical Summary of Solaris Commands | 245

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

encrypt

Options

-C Display demangled C++ symbol names.

-d section
Disassemble only the specified section of data, printing its
offset.

-D section
Same as -d, but print the data’s actual address.

-F func
Disassemble only the specified function; reuse -F for addi-
tional functions.

-l string
Disassemble only the library file string (e.g., string would be
malloc for libmalloc.a).

-L Look for C source labels in files containing debug information
(e.g., files compiled with cc -g).

-o Print octal output (default is hexadecimal).

-t section
Same as -d, but print text output.

-V Print version information on standard error.

encrypt encrypt [options] [-i infile] [-o outfile]

Encrypt files using a PKCS#11 algorithm. Files are decrypted with
decrypt. encrypt and decrypt are hard links to each other and accept
the same options. Both programs read and write standard input
and standard output by default. See also decrypt, digest, and mac.

These programs are not related to the original Unix crypt
command. That program’s encryption algorithm is con-
sidered weak by today’s standards, and it should not be
used.

Options

-a algorithm
Use algorithm to encrypt the file. Possible values for algorithm
are aes, arcfour, des, and 3des.

-i file
Read input data from file, instead of from standard input.

-k keyfile
Read the encryption/decryption key from keyfile, instead of
prompting for it.

-l List available encryption algorithms. This option should be
used by itself.

-o file
Write output data to file, instead of to standard output.

-v Be verbose. This prints a progress bar.

246 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

enhance

Examples

Display available algorithms:

$ encrypt -l
Algorithm Keysize: Min Max (bits)
--
aes 128 128
arcfour 8 128
des 64 64
3des 192 192

Encrypt a trade secret document, then decrypt it and compare the
result to the original:

$ encrypt -a aes -i designdoc.txt -o designdoc.txt.aes Encrypt
Enter key: Key is not echoed
$ file design* Check results
designdoc.txt: ASCII text
designdoc.txt.aes: data
$ decrypt -a aes -i designdoc.txt.aes -o designdoc.txt.out Decrypt
Enter key: Enter same key
$ cmp designdoc.txt designdoc.txt.out Results are identical
$

enhance enhance command [argument ...]

Provide command-line editing facilities for programs that don’t
have it, such as ftp. enhance runs the given command and argu-
ments behind a pseudo-terminal, reading user input, performing
editing, and sending final input lines to command. enhance uses the
tecla library; see tecla(5) for the details.

filesync filesync [options] [-r dir ...]
filesync [options] -s srcdir -d dstdir filename ...

Synchronize files and directories (including symbolic links and
device files) between two different computer systems. This
command is intended for keeping nomadic computers, such as
laptops or notebook systems, synchronized with server systems. By
default, changes are propagated two ways: from both the source
system to the destination system, and vice versa. (Typically the
server is the source system and the nomadic system is the destina-
tion.) Access to the server file tree is via NFS mount on the client,
typically managed via the automounter. (Contrast this to the rsync
command [see rsync in the earlier section “Alphabetical Summary
of Common Commands”], where the name of the remote host is
provided explicitly.)

filesync synchronizes only the files listed in the $HOME/.packingrules
file. See packingrules(4) for a description of the file format. The file
allows specification of files to be ignored, wildcard patterns, and
more. It lists the files and directories that are to be synchronized.
Users may edit this file with any text editor in order to adjust
filesync’s operation. The file $HOME/.filesync-base keeps track of

Alphabetical Summary of Solaris Commands | 247

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

filesync

which files are subject to synchronization, and their states when
last synchronized. Users should not edit this file. Both files should
be kept on the nomadic system, which should also be the one
where filesync is run, in order to avoid problems with multiple
nomadic systems synchronizing from a single server.

The first command-line syntax synchronizes files as described by
the .filesync-base and .packingrules files. The -r option may be
used to restrict synchronization to just the given directory. The
second syntax adds new directories to the list of files to be synchro-
nized. This syntax is cumulative; once added, files and directories
stay in the synchronization list until explicitly removed (by editing
the .packingrules file). Specifying a directory copies the directory
and the entire file hierarchy under it.

By default filesync reports its actions in the form of Unix
commands: mv, cp, etc.

Options

-a Check, and if possible, reconcile Access Control Lists (ACLs)
for files being synchronized.

-d dstdir
Use dstdir as the destination directory into which new files
should be synchronized. Use together with -s and a filename
operand.

-e Report all differences, such as ownership and permissions.
filesync normally ignores differences it cannot synchronize,
such as changing ownership to the original file’s owner if not
run as a privileged user.

-f favorite
Favor the system specified by favorite when reconciling
conflicts between the source and the destination system.
Possible values for favorite are:

You can use -f and -o together if they both specify the same
preference (src or dst). If they conflict, -f is ignored.

-h Quit (halt) upon encountering an error. Normally filesync
continues after errors and attempts to synchronize as many
files as possible.

-m Make sure that both copies of the file have the same modifica-
tion time.

-n Dry run option. Do not change any files and do not update the
.packingrules file.

src Favor the source system.
dst Favor the destination system.
old Favor the older version of the file.
new Favor the newer version of the file.

248 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gpatch

-o origin
One way change. Changes are propagated only from the
system specified by origin, which is either src or dst, to the
other system.

You can use -n and -o together on a disconnected nomadic
system to see what changes have been made since the last time
files were synchronized.

-q Quiet operation. Suppress the normal report of actions that
are being taken.

-r dir
Synchronize only the files in directory dir. Repeat this option
to synchronize multiple directories.

-s srcdir
Use srcdir as the source directory from which new files should
be synchronized. Use together with -d and a filename operand.

-v Verbose; display additional information about each file
comparison.

-y Assume a “yes” answer to any safety checks, effectively
bypassing the checks. Useful if the server has changed to a
different mount point and you’re sure you know what you’re
doing when you synchronize; see the filesync(1) manpage for
more information.

gpatch gpatch [options] [original [patchfile]]

This is Sun’s version of GNU patch. On Solaris, /usr/bin/patch is a
much older version of Larry Wall’s original patch program. The
GNU version is more functional and is generally recommended.
For backwards compatibility, the original patch is left in place, and
this version is provided for those who want it. For more informa-
tion, see patch in the earlier section “Alphabetical Summary of
Common Commands.”

keylogin keylogin [-r]

Prompt user for a password, then use it to decrypt the person’s
secret key. This key is used by secure network services (e.g., Secure
NFS, NIS+). keylogin is needed only if the user isn’t prompted for a
password when logging in. The -r option updates /etc/.rootkey.
Only a privileged user may use this option. See also chkey and
keylogout.

keylogout keylogout [-f]

Revoke access to (delete) the secret key used by secure network
services (e.g., Secure NFS, NIS+). See also chkey and keylogin.

Alphabetical Summary of Solaris Commands | 249

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mac

Option

-f Forget the root key. If specified on a server, NFS security is
broken. Use with care.

line line

Read the next line from standard input and write it to standard
output. Exit status is 1 upon EOF. Typically used in csh scripts to
read from the terminal.

Example

Print the first two lines of output from who:

who | (line ; line)

listusers listusers [options]

List all users, optionally just by group, or by specific users.

Options

-g grouplist
List all users in the comma-separated list of groups grouplist.

-l users
List just the named users, sorted by login. A comma-separated
list may also be provided.

mac mac [-v] -a algorithm [file ...]
mac -l

Compute a PKCS#11 message authentication code (MAC) of the
given files. The second form lists the available MAC algorithms. See
also decrypt, digest, and encrypt.

Options

-a algorithm
Use algorithm to compute the MAC. This option is required.
Values for algorithm are des_mac, sha1_hmac, and md5_hmac.

-k keyfile
Read the encryption key from keyfile, instead of prompting for
it.

-l Used by itself to list available MAC computation algorithms.

-v Be verbose.

Examples

Show available MAC algorithms:

$ mac -l
Algorithm Keysize: Min Max (bits)
--
des_mac 64 64
sha1_hmac 8 512
md5_hmac 8 512

250 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mount

Generate a MAC for an encrypted version of a trade-secret
document:

$ mac -a md5_hmac designdoc.txt.aes
Enter key:
277f71848afe07ccbd78bee3bfdf11b8

mount mount [options] mount_spec ...

System administration command. Mount a filesystem on a direc-
tory. Solaris understands several different kinds of local (hard disk)
filesystem structures, as well as supporting network mounts of NFS
filesystems and SMB shares. Filesystems and the directories on
which to mount them are listed in /etc/vfstab, along with options
for each mount. The file /etc/mnttab records which filesystems are
actually mounted.

Along with general options, each filesystem may have options
specific to it. When run with no options, mount prints the list of
currently mounted filesystems.

The mount_spec may be either a special file (block device) or
mount point listed in /etc/vfstab, in which case it’s mounted.
Otherwise, you must supply both the device name and the direc-
tory on which to mount it. See the Examples.

Options

-a Mount all filesystems of the given type. With no type or
mount points, attempt to mount every filesystem in /etc/
vfstab with yes in the “mount at boot” field.

-F type
The filesystem is of type type. Useful types are ufs for the
native Unix filesystem format, pcfs for FAT-32 filesystems,
cifs for SMB shares, hsfs (High Sierra filesystem) for ISO
9660 CD-ROMs, and nfs for Sun’s Network Filesystem.

-g Mount the filesystem globally, across all clusters. No effect on
nonclustered systems.

-m Mount the filesystem without making an entry in /etc/mnttab.

-o options
Supply options for the mount. Multiple options should be
comma separated. Following is a list of options supported
directly by mount. Each filesystem may have additional options.

devices, nodevices
Allow (disallow) the use of device special files on this
filesystem.

exec, noexec
Allow (disallow) the execution of programs on the file-
system. The default is exec.

nbmand, nonmbmand
Allow (disallow) nonblocking mandatory locking. The
default is to disallow it. Enabling this option may cause

Alphabetical Summary of Solaris Commands | 251

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nawk

surprising behavior from applications not expecting non-
blocking semantics. Do not use for /, /usr, and /var.
Mutually exclusive with -g.

ro, rw
Mount the filesystem read-only (read-write). The default
is read-write. Use ro for read-only media such as CD-
ROMs or DVD-ROMs.

setuid, nosetuid
Allow (disallow) execution of setuid and setgid
executables.

suid, nosuid
The nosuid option is equivalent to nosetuid,nodevices,
and is highly recommended for NFS filesystems mounted
with the root= option. suid is thus equivalent to
setuid,devices.

-O Overlay mount. This allows mounting one filesystem on the
pre-existing mount point of another filesystem. The pre-
existing mount point’s files then become inaccessable.
Without -O, such a mount is an error.

-p Print the list of mounted filesystems in the same format as /etc/
vfstab. Must be used by itself.

-r Mount the filesystem read-only.

-v Print the list of mounted filesystems in verbose format. Must
be used by itself.

-V Verify. mount prints out what it would do, without actually
attempting the mount. This may include the invocation of
subsidiary, filesystem-specific mount commands.

Examples

Mounting is usually restricted to privileged users. Here, # is the
prompt for the root, the superuser.

Mount a local filesystem. The type is assumed to be ufs:

mount /dev/dsk/c0d0s4 /opt

Mount a FAT-32 filesystem:

mount -F pcfs /dev/dsk/c0d1s2 /pcfs

Mount a remote NFS filesystem. The host:file format of the
device indicates that the filesystem is of type NFS:

mount server.example.com:/bigdisk /bigdisk

nawk nawk [options] ['program'] [files] [variable=value]

New version of awk, with additional capabilities. nawk is a pattern-
matching language useful for manipulating data. /usr/xpg4/bin/awk
should be used in preference to /usr/bin/nawk. See Chapter 11 for
more information on the awk language.

252 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

openwin

openwin /usr/openwin/bin/*

Programs from the OpenWindows graphical user interface environ-
ment. This environment is obsolete; the preferred environments are
CDE (the Common Desktop Environment) and GNOME, and you
can no longer run OpenWindows directly. However, for compati-
bility, many OpenWindows programs continue to be shipped with
Solaris. The user level programs such as cmdtool and shelltool are
no longer present, although a number of standard X11 programs
are to be found in this directory. See also cde.

Useful OpenWindows Commands

The following OpenWindows commands may be of interest. Look
at the manpages for more information:

page page [options] [files]

Same as more.

ps ps [options]

Report on active processes. In options, list arguments should either
be separated by commas or put in double quotes. In comparing the
amount of output produced, note that -e > -d > -a and -l > -f. In
the BSD version (/usr/ucb/ps), options work much differently; you
can also display data for a single process.

Options

-a List all processes except group leaders and processes not asso-
ciated with a terminal.

-A Same as -e.

-c List scheduler data set by priocntl (an administrative
command).

-d List all processes except session leaders.

-e List all processes.

-f Produce a full listing.

oclock A round clock
xbiff Graphical mail arrival watchdog program
xcalc Simple on-screen calculator
xditview Device-independent troff output viewer
xedit Simple text editor
xhost Controls permissions for who can connect to display
xload System load monitor
xlock Screen saver/locker
xmag Magnifies portions of the display
xman Viewer for manpages
xterm Standard X Window system terminal emulator

Alphabetical Summary of Solaris Commands | 253

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rksh

-g list
List data only for specified list of group leader ID numbers (i.e.,
processes with same ID and group ID).

-G list
Show information for processes whose real group ID is found
in list.

-j Print the process group ID and session ID.

-l Produce a long listing.

-L Print information about lightweight processes.

-n file
Use the alternate file for the list of function names in the
running kernel (default is /unix). Accepted for compatibility,
but ignored.

-o format
Customize information according to format. Rarely used.

-p list
List data only for process IDs in list.

-P Print the processor number on which the process or light-
weight process is bound.

-s list
List data only for session leader IDs in list.

-t list
List data only for terminals in list (e.g., tty1).

-u list
List data only for usernames in list.

-U uidlist
Show information for processes whose real user ID is found in
list.

-y With -l, omit the F and ADDR columns and use kilobytes
instead of pages for the RSS and SZ columns.

-z zonelist
List only processes in the zones in zonelist. Zones may be
given using either the zone name or the zone ID. This option is
useful only if ps is run in the global zone.

-Z Add an additional ZONE output column showing the zone for
each process.

rksh rksh [options] [arguments]

Restricted version of ksh (the Korn shell), used in secure environ-
ments. rksh prevents you from changing out of the directory or
from redirecting output. See Chapter 4.

254 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

setpgrp

setpgrp setpgrp command [argument ...]

Become a session leader by setting the process group ID and the
session ID to the current process ID, and then using exec(2) to run
the named command and arguments.

sotruss sotruss [options] program [args ...]

Shared object library version of truss. sotruss executes program,
passing it args, if any. It then traces calls into and/or out of shared
object libraries that are loaded dynamically. See also truss and
whocalls.

Options
-f Follow children created by fork(2) and print output for each

child. Each output line contains the process’s process ID.

-F fromlist
Only trace calls from the libraries named in fromlist, which is a
colon-separated list of libraries. The default is to trace only
calls from the main executable.

-o file
Send output to file. If used with -f, the process ID of the
running program is appended to the filename.

-T tolist
Only trace calls to routines in the libraries named in tolist,
which is a colon-separated list of libraries. The default is to
trace all calls.

timex timex [options] command [arguments]

Execute a command with optional arguments and print information
similar to the time command. Report process data with various
options.

Options
-o Show total number of blocks and characters used.

-p suboptions
Show process accounting data with possible suboptions.

-s Show total system activity.

Suboptions for –p

-f Include fork/exec flag and system exit status.

-h Show “hog” factor (fraction of CPU time used) instead of
mean memory size.

-k Show total kcore-minutes instead of memory size.

-m Show mean core size (this is the default behavior).

-r Show CPU use percentage (user time / (system time + user
time)).

-t Show user and system CPU times.

Alphabetical Summary of Solaris Commands | 255

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

truss

truss truss [options] arguments

Trace system calls, signals, and machine faults while executing
arguments. arguments is either a Unix command to run or, if -p is
specified, a list of process IDs representing the already running
processes to trace. The options -m, -r, -s, -t, -v, -w, and -x accept a
comma-separated list of arguments. A ! reverses the sense of the
list, telling truss to ignore those elements of the list during the
trace. (In the C shell, use a backslash before !.) The keyword all
can include/exclude all possible elements for the list. The optional
! and corresponding description are shown in brackets. truss also
provides tracing of user-level function calls in dynamically loaded
shared libraries. See also sotruss and whocalls.

This command is particularly useful for finding missing files when
a third-party application fails. By watching the access and open
system calls, you can find where, and which, files the application
program expected to find, but did not.

Many systems have similar programs named trace or strace. These
programs are worth learning how to use.

Options

-a Display parameters passed by each exec(2) call.

-c Count the traced items and print a summary rather than
listing them as they happen.

-d Print a timestamp in the output, of the form seconds.fraction,
indicating the time relative to the start of the trace. Times are
when the system call completes, not starts.

-D Print a delta timestamp in the output, of the form seconds.frac-
tion, indicating the time between events (i.e., the time not
inside system calls).

-e Display values of environment variables passed by each exec(2)
call.

-E Print a delta timestamp in the output, of the form seconds.frac-
tion, indicating the time between the beginning and end of a
system call. This is the opposite of the -D option.

-f Follow child processes. Useful for tracing shell scripts.

-i List sleeping system calls only once, upon completion.

-l Show the lightweight process ID for a multithreaded process.

-m[!]faults
Trace [exclude from trace] the list of machine faults. faults are
names or numbers, as listed in <sys/fault.h> (default is -mall
-m!fltpage).

-M[!]faults
When the traced process receives one of the named faults,
truss leaves the process in a stopped state and detaches from it
(default is -M!all). The process can subsequently be attached
to with a debugger, or with another invocation of truss using
different options.

256 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

truss

-o outfile
Send trace output to outfile, not standard error.

-p pidlist
Trace one or more running processes instead of a command.
Use pid/lwp to trace a lightweight process (thread).

-r[!]file_descriptors
Display [don’t display] the full I/O buffer of read system calls
for file_descriptors (default is -r!all).

-s[!]signals
Trace [exclude from trace] the list of signals. signals are names
or numbers, as listed in <sys/signal.h> (default is -sall).

-S[!]signals
When the traced process receives one of the named signals,
truss leaves the process in a stopped state and detaches from it
(see -M; default is -S!all).

-t[!]system_calls
Trace [exclude from trace] the list of system_calls. system_
calls are names or numbers, as listed in Section 2, “System
Calls,” of the UNIX Programmer’s Reference Manual (see
intro(2)); default is -tall.

-T[!]system_calls
When the traced process executes one of the named system
calls, truss leaves the process in a stopped state and detaches
from it (see -M; default is -T!all).

-u[!]lib,...:[:][!]func,...
Trace user-level function calls, not just system calls. lib is a
comma-separated list of dynamic library names, without the
.so.n suffix. func is a comma-separated list of names. Shell
wildcard syntax may be used to specify many names. (Such
use should be quoted to protect it from expansion by the shell.)
The leading ! indicates libraries and/or functions to exclude.
With :, only calls into the library from outside it are traced;
with ::, all calls are traced.

-U[!]lib,...:[:][!]func,...
When the traced process executes one of the named user-level
functions, truss leaves the process in a stopped state and
detaches from it (see -M).

-v[!]system_calls
Verbose mode. Same as -t, but also list the contents of any
structures passed to system_calls (default is -v!all).

-w[!]file_descriptors
Display [don’t display] the full I/O buffer of write system calls
for file_descriptors (default is -w!all).

-x[!]system_calls
Same as -t, but display the system call arguments as raw code
(hexadecimal; default is -x!all).

Alphabetical Summary of Solaris Commands | 257

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

vacation

Examples

Trace system calls access(), open(), and close() for the lp
command:

truss -t access,open,close lp files 2> truss.out

Trace the make command, including its child processes, and store
the output in make.trace:

truss -f -o make.trace make target

umount umount [options] device | mount_point

System administration command. Unmount a mounted filesystem.
device is a device name or other string indicating what is mounted.
A mount_point is the name of a directory on which a device or
other special object is mounted. See also mount.

Options

-a May be used with multiple arguments to cause umount to
attempt to do the unmounts in parallel.

-f Force the unmounting of the filesystem. This option can be
dangerous, use with caution.

-o options
Provide filesystem-specific options in options. This is unusual
when unmounting a filesystem. See mount for a list of
options.

-V Verify. umount prints out what it would do, without actually
attempting the unmount. This may include the invocation of
subsidiary, filesystem-specific unmount commands.

vacation vacation
vacation [options] [user]

Automatically return a mail message to the sender announcing that
you are on vacation.

Use vacation with no options to initialize the vacation mechanism.
The process entails several steps.

1. Create a .forward file in your home directory. The .forward file
contains:

\user, "|/usr/bin/vacation user"

user is your login name. The action of this file is to actually
deliver the mail to user (i.e., you), and to run the incoming
mail through vacation. Add any appropriate options to the
vacation command line.

2. Create the .vacation.pag and .vacation.dir files. These files
keep track of who has sent you messages, so that they only
receive one “I’m on vacation” message from you per week.

3. Start an editor to edit the contents of .vacation.msg. The
contents of this file are mailed back to whoever sends you

258 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

vacation

mail. Within its body, $SUBJECT is replaced with the contents
of the incoming message’s Subject: line. You should include
at least a Subject: header line of your own, such as:

Subject: I am out of the office until next Wednesday

Remove or rename the .forward file to disable vacation processing.

You may also create a .vacation.filter file that specifies email
addresses and/or domains to which vacation will send messages.
Addresses that don’t match will not receive a vacation message.
Case is ignored in the .vacation.filter file, as are empty lines and
lines beginning with #.

Options

The -a, -e, -f, -j, -m, -s, and -t options are used within a .forward
file; see the Example.

-a alias
Mail addressed to alias is actually mail for the user and should
produce an automatic reply.

-e file
Use file as the filter file, instead of .vacation.filter.

-f file
Use file as the base name for the database files (.pag and .dir)
instead of .vacation.

-I Reinitialize the .vacation.pag and .vacation.dir files. Use this
right before leaving for your next vacation.

-j Do not verify that user appears in the To: or Cc: headers.

-m file
Use file in $HOME as the text of the automatic reply, instead
of ~/.vacation.msg.

-s sender
Send replies to sender instead of to the address listed in the
Unix “From ” line of the incoming mail.

-t interval
By default, no more than one message per week is sent to any
sender. This option changes that interval. interval is a number
with a trailing s, m, h, d, or w indicating seconds, minutes,
hours, days, or weeks, respectively.

Example

Send no more than one reply every three weeks to any given
sender:

$ cd
$ vacation -I
$ cat .forward
\jp, "|/usr/bin/vacation -t3w jp"
$ cat .vacation.msg
From: jp@wizard-corp.com (J. Programmer, via vacation)
Subject: I'm out of the office ...

Alphabetical Summary of Solaris Commands | 259

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

whocalls

Hi. I'm off on a well-deserved vacation after finishing
up whizprog 2.0. I will read and reply to your mail
regarding "$SUBJECT" when I return.

Have a nice day,

JP

volcheck volcheck [options] [pathnames]

Check one or more devices named by pathnames to see if remov-
able media has been inserted. The default is to check every device
being managed by volume management. Most often used with flop-
pies; volume management usually notices when CD-ROMs or
DVD-ROMs have been inserted.

Note: use of the -i and -t options, particularly with short inter-
vals, is not recommended for floppy-disk drives.

Options

-i nsec
Check the device(s) every nsec seconds. The default is every
two seconds.

-t nsecs
Keep checking over the next nsecs seconds. Maximum nsecs is
28,800 (eight hours).

-v Be verbose.

whocalls whocalls [options] function program [arguments ...]

Run program with the given arguments. Using facilities of the
dynamic loader show which functions call the named function. See
also sotruss and truss.

Options

-l wholib
Use wholib instead of the standard who.so Link-Auditing
library.

-s Use the .symtab symbol table in the ELF file for local symbol
tables instead of the default .dynsym symbol table. This is more
expensive but can provide more detailed stack tracing
information.

Example

Show use of write(2) system call:

$ cat dontpanic.c Show program code
#include <unistd.h>

int main(void)
{
 (void) write(1, "Don't panic!\n", 13);
 return 0;

260 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

aspell

}
$ cc dontpanic.c -O -o dontpanic Compile program
$ whocalls write dontpanic Run with whocalls
write(0x1, 0x80506cc, 0xd) Output from whocalls
 /export/u/guest/arnold/dontpanic:main+0x14
 /export/u/guest/arnold/dontpanic:_start+0x7a
Don't panic! Output from dontpanic

Alphabetical Summary of GNU/Linux Commands

GNU/Linux programs generally accept --help and --version
options. In the interest of brevity, the individual command descrip-
tions omit listing those options.

aspell aspell [options] [files]

aspell is intended to be a drop-in replacement for ispell, but with
more functionality. It thus accepts the same options; see ispell for
more information. See also spell in the earlier section “Alphabet-
ical Summary of Common Commands.”

URL: http://aspell.net/ and http://www.gnu.org/software/aspell/.

cdda2wav cdda2wav [options] [output.wav]

Convert Compact Disc Digital Audio (CDDA) to the WAV format.
This process is often called “ripping” a CD-ROM, and is generally
performed before using an encoder to convert the file to a
compressed music format such as OGG or MP3. By default,
cdda2wav reads data from the /dev/cdrom device and outputs one
WAV file per track.

Options

Some of the following options use sectors as a unit of measure-
ment. Each sector of data on a CD represents approximately 1/75
second of play time.

-a divider, --divider divider
Set rate to 44,100 Hz/divider. To get a list of possible values,
use the -R option.

-A drivename, --auxdevice drivename
Specify a different drive for ioctl purposes.

-b n, --bits-per-sample n
Set the quality of samples to n bits per sample per channel.
Possible values are 8, 12, and 16.

Alphabetical Summary of GNU/Linux Commands | 261

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdda2wav

-B, --bulk, --alltracks
Copy each track into its own file.

-c channels, --channels channels
Set recording channels. Use 1 for mono, 2 for stereo, or s for
stereo with both channels stopped.

-C endianess, --cdrom-endianess endianess
Set the endianess of the input samples to endianess. Possible
values are little, big, or guess.

-d amount, --duration amount
Set to a number followed by f for frames (sectors) or s for
seconds. Set time to zero to record an entire track. For
example, to copy two minutes, use 120s.

-D devicename, --device devicename, dev=devicename
Specify the device. The device must be able to work with the
-I (--interface) setting.

-e, --echo
Copy audio data to a sound device rather than to a file.

-E endianess, --output-endianess endianess
Set the endianess of the output samples to endianess. Possible
values are little or big.

-F, --find-extremes
Find extreme amplitudes in samples.

-g, --gui
Format the output for parsing by GUI frontend programs.

-G, --find-mono
Determine if input samples are in mono.

-h, --help
Display version and option summary, and quit.

-H, --no-infofile
Do not write an info file or a CDDB file.

-i n, --index n
Set the start index to n when recording.

-I ifname, --interface ifname
Specify the type of interface. For Linux systems, the most
appropriate value is usually cooked_ioctl.

-J, --info-only
Do not write data to a file; instead just write information
about the disc.

-L mode, --cddb mode
Use the CDDB ID to do a cddbp album and track title lookup.
The mode parameter directs handling of multiple entries. Use 0
for interactive choice, or 1 which always takes the first entry.
Additional variables may be provided for CDDB server name
and port number:

cddbp-port=portnum Contact the CDDB server on port
number portnum.

cddbp-server=server Use CDDB server server.

262 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdda2wav

-m, --mono
Record in mono. Use -s to record in stereo.

-M count, --md5 count
Calculate MD5 checksum for count bytes from the beginning
of a track.

-n count, --sectors-per-request count
Read count sectors in each request.

-N, --no-write
Do not write data to a file, just read the tracks. For debugging.

-o n, --offset n
Start recording n sectors before the beginning of the first track.

-O, --output-format
Choose the output file format. Normal file options are wav,
aiff, aifc, au, and sun. You can also use cdr and raw for head-
erless files dumped into recording devices.

-p n, --set-pitch n
Adjust the pitch by n percent when copying data to an audio
device.

-paranoia
Use the paranoia library instead of cdda2wav’s built-in routines
for reading.

-P n, --set-overlap n
Use n sectors of overlap for jitter correction.

-q, --quiet
Quiet mode; the program will not send any data to the screen.

-Q, --silent-SCSI
Do not print SCSI command errors. Mainly for use by GUI
frontends.

-r n, --rate n
Set the sample rate in samples per second. To get a list of
possible values, use the -R option.

-R, --dump-rates
Output a list of possible sample rates and dividers. This
option is typically used alone.

-s, --stereo
Record in stereo. Use -m to record in mono.

-scanbus
Scan all SCSI busses for all SCSI devices and print the inquiry
strings. Use dev=device to specify devices to scan. For
example, dev=ATA: for IDE CD Writers using Linux IDE to
SCSI emulation.

-S n, --speed-select n
Specify the speed at which your system will read the CD-
ROM. Set the value to the multiple of normal playback speed
given as your CD-ROM drive speed (4, 16, 32, and so forth).
Setting the speed lower than the maximum can prevent errors
in some cases.

Alphabetical Summary of GNU/Linux Commands | 263

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdparanoia

-t tracknumber, --track tracknumber
Set start track and, optionally, end track. Separate the track
numbers with the + character.

-T, --deemphasize
Undo pre-emphasis in the input samples.

-v list, --verbose-level list
Print information about the CD. list is a comma-separated list
of one or more of the following options:

-V, --verbose-SCSI
Log SCSI commands to the output. Mainly for debugging.

-w, --wait
Wait for a signal before recording anything.

-x, --max
Set recording quality (and amount of hard disk usage) to
maximum.

Examples

For most systems, you should be able to copy a complete CD to a
single WAV file with the following command:

cdda2wav

To copy a complete CD to a set of WAV files, one per track:

cdda2wav -B

Scan for IDE CD Writers:

$ cdda2wav -scanbus dev=ATA:
scsibus1:
 1,0,0 100) 'ASUS ' 'CRW-5224A ' '1.20' Removable CD-ROM
 1,1,0 101) *
...

cdparanoia cdparanoia [options] span [outfile]

Similar to cdda2wav, cdparanoia reads Compact Disc audio files as
WAV, AIFF, AIFF-C, or raw format files. It uses additional data-
verification and sound-improvement algorithms to make the
process more reliable, and is used by a number of graphical
recording programs as a backend.

all All information
catalog The media catalog number (MCN)
disable No information, but do print warnings
indices Index offsets
sectors Table of contents in start sector notation
summary Summary of the recording parameters
titles Table of contents with track titles (when

available)
toc Table of contents
trackid All International Standard Recording Codes

(ISRC)

264 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdparanoia

Options

-a, --output-aifc
Output in AIFF-C format.

-B, --batch
Split the output into multiple files on track boundaries like
cdda2wav. Filenames are prefixed with track#.

-c, --force-cdrom-little-endian
Force cdparanoia to treat the drive as a little-endian device.

-C, --force-cdrom-big-endian
Force cdparanoia to treat the drive as a big-endian device.

-d devicename, --force-cdrom-device devicename
Specify a device name to use instead of the first readable CD-
ROM available.

-e, --stderr-progress
Send all progress messages to standard error instead of stan-
dard output; used by wrapper scripts.

-f, --output-aiff
Output in AIFF format.

-g device, --force-generic-device device
Use with -g to set the generic device separately from that of
the CD-ROM device. Useful only on nonstandard SCSI setups.

-h, --help
Display options and syntax.

-n count, --force-default-sectors count
Do atomic reads of count sectors per read. Not generally
useful.

-O count, --sample-offset count
Shift sample positions by the given count. This shifts track
boundaries for the whole disc. May cause read errors or even
lockups on buggy hardware.

-p, --output-raw
Output headerless raw data.

-q, --quiet
Quiet mode.

-Q, --query
Display CD-ROM table of contents and quit.

-r, --output-raw-little-endian
Output raw data in little-endian byte order.

-R, --output-raw-big-endian
Output raw data in big-endian byte order.

-s, --search-for-drive
Search for a drive, even if /dev/cdrom exists.

-S n, --force-read-speed n
Set the read speed to n on drives that support it. This is useful
if you have a slow drive or are low on memory.

Alphabetical Summary of GNU/Linux Commands | 265

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdparanoia

-t n, --toc-offset n
Shift the entire disc LBA address by n. The amount is added to
the beginning offsets in the TOC. -T is similar.

-T, --toc-bias
Compensate for the behavior of some drives whereby the
actual track beginning offsets are correctly reported in the
TOC, but the beginning of track 1 index 1 is treated as sector
0 for reads. May cause read errors or even lockups on buggy
hardware.

-v, --verbose
Verbose mode.

-V, --version
Print version information and quit.

-w, --output-wav
Output in WAV format. This is the default.

-X, --abort-on-skip
If a read fails and must be skipped, skip the entire track and
delete any partially completed output file.

-Y, --disable-extra-paranoia
Use data verification and correction only at read boundaries.
Not recommended.

-z [retries], --never-skip[=retries]
If a read fails (for example, due to a scratch in the disc), try
again and again. If you specify a number, cdparanoia will try
that number of times. If you do not, cdparanoia will retry until
it succeeds.

-Z, --disable-paranoia
Disable data verification and correction. Causes cdparanoia to
behave exactly as cdda2wav would.

Progress Symbols

The output during operation includes both smiley faces and more
standard progress symbols. They are:

:-) Operation proceeding normally.
:-| Operation proceeding normally, but with jitter

during reads.
:-/ Read drift.
:-P Unreported loss of streaming in atomic read

operation
8-| Repeated read problems in the same place.
:-0 SCSI/ATAPI transport error (hardware problem not

related to the disc itself).
:-(Scratch detected.
;-(Unable to correct problem.
8-X Unknown and uncorrectable error.
:^D Finished.
Blank space Blank space in the progress indicator means that no

corrections were necessary.
- Jitter correction was required.

266 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrdao

The span Argument

The cdparanoia command takes exactly one argument, which
describes how much of the CD to record. It uses numbers followed
by bracketed times to designate track numbers and time within
them. For example, the string 1[2:23]-2[5] indicates a recording
from the 2-minute and 23-second mark of the first track up to the
fifth second of the second track. The time format is demarcated by
colons, hours:minutes:seconds:.sectors, with the last item, sectors,
preceded by a decimal point (a sector is 1/75 of a second). It’s best
to put this argument within quotes.

If you use the -B option, the span argument is not required.

cdrdao cdrdao command [options] toc-file

Write all content specified in description file toc-file to a CD-R disk
drive in one step. This is called disk-at-once (DAO) mode, as
opposed to the more commonly used track-at-once (TAO) mode.
DAO mode allows you to change the length of gaps between tracks
and define data to be written in these gaps (like hidden bonus
tracks or track intros). The toc-file can be created by hand or gener-
ated from an existing CD using cdrdao’s read-toc command. A cue
file, as generated by other audio programs, can be used instead of a
TOC file. The file format for TOC files is discussed at length in the
cdrdao manpage.

URL: http://cdrdao.sourceforge.net/. (cdrdao doesn’t come with
Fedora Core 3, apparently because cdrecord can also do DAO
recording.)

Commands

The first argument must be a command. Note that not all options
are available for all commands.

blank
Blank a CD-RW disc.

copy
Copy the CD. If you use a single drive, you will be prompted
to insert the CD-R after reading. An image file will be created
unless you use the --on-the-fly flag and two CD drives.

discid
Print out CDDB information for a CD.

disk-info
Display information about the CD-R currently in the drive.

msinfo
Display multisession information. Useful mostly for wrapper
scripts.

+ Read errors.
! Errors even after correction; repeated read errors.
e Corrected transport errors.
V An uncorrected error or a skipped read.

Alphabetical Summary of GNU/Linux Commands | 267

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrdao

read-cd
Create a TOC file and read in the audio data on a CD.

read-cddb
Check a CDDB server for data about the CD represented by a
given TOC file, then write that data to the TOC file as CD-
TEXT data.

read-test
Check the validity of the audio files described in the TOC file.

read-toc
Read from a CD and create a disk image and TOC file that
will allow creation of duplicates.

scanbus
Scan the system bus for devices.

show-data
Print out the data that will be written to the CD-R. Useful for
checking byte order.

show-toc
Print a summary of the CD to be created.

simulate
A dry run: do everything except write the CD.

toc-info
Print a summary of the TOC file.

toc-size
Print the total number of blocks for the TOC.

unlock
Unlock the recorder after a failure. Run this command if you
cannot eject the CD after using cdrdao.

write
Write the CD.

Options

--blank-mode mode
Set the blanking mode for a rewritable disc. The value for
mode is either full or minimal.

--buffer-under-run-protection n
Use 0 to disable buffer underrun protection, or 1 to enable it.
The default is enabled.

--buffers n
Set the number of seconds of data to be buffered. Default is
32; set to a higher number if your read source is unreliable or
is slower than the CD-R.

--capacity minutes
Set the capacity in minutes for --full-burn.

--cddb-directory localpath
CDDB data that is fetched will be saved in the directory
localpath.

268 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrdao

--cddb-servers server,server
Enter hosts for servers. Servers may include ports, paths, and
proxies; you can list multiple servers separated by spaces or
commas.

--cddb-timeout s
Set the timeout for CDDB server connections to s seconds.

--datafile filename
When used with the read-toc command, specifies the data file
placed in the TOC file. When used with read-cd and copy,
specifies the name of the image file created.

--device bus,id,logicalunit
Set the SCSI address of the CD-R using the bus number, ID
number, and logical unit number.

--driver driver-id:option-flags
Force cdrdao to use the driver you choose with the driver
options named, instead of the driver it autodetects.

--eject
Eject the disc when done.

--fast-toc
Do not extract the pre-gaps and the index marks.

--force
Override warnings and perform the action anyway.

--full-burn
Force burning to the outer edge of the disc.

-h Print a help summary for individual commands.

--keepimage
Used only with the copy command. Keeps the image file
created during the copy process.

--multi
Record as a multisession disc.

-n Do not wait 10 seconds before writing the disc.

--on-the-fly
Do not create an image file: pipe data directly from source to
CD-R.

--overburn
If you are using a disc with more storage space than cdrdao
detects, use this option to keep writing even when cdrdao
thinks you’re out of space.

--paranoia-mode n
Specifies n, from 0 to 3, for the amount of error correction in
the CD read. 0 is none, 3 is full (see cdparanoia for informa-
tion about error correction). Set error correction to a lower
number to increase read speed. The default is 3.

--query-string
Just print out the CDDB query.

--read-raw mode
Set sub-channel reading mode. Possible values are rw or rw_raw.

Alphabetical Summary of GNU/Linux Commands | 269

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrecord

--read-subchan
Used only with the read-cd command. Write raw data to the
image file.

--reload
Allow the drive to be opened before writing without inter-
rupting the process. Used with simulation runs.

--save
Save current options to the settings file $HOME/.cdrdao.

--session n
Used only with the read-toc and read-cd commands when
working with multisession CDs. Specifies the number of the
session to be processed.

--simulate
Don’t actually write data.

--source-device bus,id,logicalunit
Used only with the copy command. Set the SCSI address of the
source device.

--source-driver driver-id:option-flags
Used only with the copy command. Set the source device
driver and flags.

--speed value
Set the write speed to value. The default is the highest avail-
able; use a lower value if higher values give poor results.

--swap
Swap byte order for all samples.

--tao-source
For reading or copying, indicates that the source CD was
written in TAO mode.

--tao-source-adjust n
Use n link blocks for TAO source CDs. The default is two.

--with-cddb
Use CDDB to fetch information about the disc and save it as
CD-TEXT data. Used with the copy, read-toc, and read-cd
commands.

-write-speed-control n
If n is 0, disable writing speed control by the drive. The default
is 1, which enables writing speed control.

-v verbose-level
Set the amount of information printed to the screen. 0, 1, and
2 are fine for most users; greater numbers are useful for
debugging.

cdrecord cdrecord [general-options] dev=device [track-options] track1
track2 ...

Record data or audio compact discs or DVDs. This program
normally requires privileged user access, and has a large number of

270 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrecord

options and settings. A number of useful examples can be found in
the manpage, which is quite extensive.

General Options

General options go directly after the cdrecord command name.
Options affecting the track arguments are placed after the device
argument and before the track arguments themselves. Options
have two forms: traditional options that start with a hyphen, and
“variable” assignments, of the form variable=value. Long named
options start with only a single hyphen. The general options are:

-abort
Attempt to send an abort sequence to the drive. May be
needed if other software has left the drive in an unusable state.
cdrecord -reset may be necessary as well.

-atip
Display the ATIP (Absolute Time In Pregroove) information
for a disc. Only some drives allow you to read this
information.

blank=type
Erase data from a CD-RW in one of the following ways:

-checkdrive
Check to see if there are valid drivers for the current drive.
Returns 0 if the drive is valid.

cuefile=file
Obtain all recording information from file, which is a
CDRWIN-compliant CUE sheet file. This option disallows
specifying individual track files, and also requires the use of
-dao.

-dao, -sao
Disk-at-once mode. Works only with MMC drives that
support non-raw session-at-once modes.

debug=n, -d
Set the debug level to an integer (greater numbers are more
verbose), or use multiple -d flags as with the -v and -V flags.

defpregap=n
Set the default pre-gap size for all tracks except the first to n.
Useful only with TEAC drives for creating TAO disks without

all Erase all information on the disc. May take a
long time.

fast Perform a quick erase of the disc, erasing only
the PMA, TOC, and pregap.

help Display a possible list of blanking methods.
session Blank the last session.
track Blank a track.
trtail Blank the tail of a track only.
unclose Unclose the last session.
unreserve Unreserve a track previously marked as

reserved.

Alphabetical Summary of GNU/Linux Commands | 271

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrecord

the two-second silence between tracks. This option may be
removed in future versions.

dev=target
Set the device used for writing CD or DVD media. See the
section “The device Argument” later in this entry.

driver=name
Lets you specify a driver for your system. Suggested for experts
only. The special drivers cdr_simul and dvd_simul are used for
simulation and profiling tests.

driveropts=optlist
Specify a comma-separated list of driver options. To get a list
of valid options, use driveropts=help and -checkdrive.

-dummy
Perform a dry run, doing all the steps of recording with the
laser turned off. This will let you know whether the process is
going to work.

-eject
Eject disc after recording. Some hardware may need to eject a
disc after a dummy recording and before the actual recording.

-fix
Close (“fixate”) the session, preventing future multisession
recordings and allowing the disc to be played in standard
audio CD players (some can also play a disc that has not been
closed).

-force
Override errors if possible. May allow you to blank an other-
wise broken CD-RW.

-format
Format CD-RW/DVD-RW/DVD+RW media. Currently only
implemented for DVD+RW media, which must be formatted
before the first use. However, cdrecord detects such media and
automatically formats it in this case. This option is thus
mainly useful to reformat a DVD+RW disc.

fs=n
Set the FIFO buffer size to n, in bytes. You may use k, m, s, or f
to specify kilobytes, megabytes, or units of 2048 and 2352
bytes, respectively. The default is 4MB.

gracetime=n
Set the grace time before writing to n seconds. A value less
than two seconds is ignored.

-ignsize
Ignores the known size of the medium. Debugging option, use
with extreme care. Implies -overburn.

-immed
Experimental feature that sets the SCSI IMMED flag for certain
commands. Useful on some systems where the CD/DVD writer
and ATAPI hard disc are on the same bus or on SCSI systems
that don’t use disconnect/reconnect. Use with caution.

272 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrecord

-inq
Do a drive inquiry, print the resulting information, and exit.

kdebug=n, kd=n
Set the kernel’s debug notification value to n during SCSI
command execution. Works through the scg-driver.

-load
Load media and exit. Works with tray-loading mechanisms
only.

-lock
Load media, lock door, and exit. Works with tray-loading
mechanisms only. Possibly useful with the Kodak disc
transporter.

mcn=n
Set the Media Catalog Number to n.

minbuf=n
Experimental feature. Sets the minimum drive buffer fill ratio
to n, which is a number between 25 and 95 for 25% to 95%
minimum drive buffer fill ratio.

-msinfo
Get multisession information from the CD. Used only with
multisession discs onto which you can still record more
sessions.

-multi
Set to record in multisession mode. Must be present on all
sessions but the last one for a multisession disc.

-noclose
Experimental feature: do not close the current track. Useful
only in packet-writing mode.

-nofix
Do not close the disc after writing.

-overburn
Allow writing of more data than the official size of a medium.
Not guaranteed to work on any specific drive.

-packet
Experimental feature: use packet-writing mode.

pktsize=n
Experimental feature: set the packet size to n. Forces fixed
packet mode.

-prcap
Print the drive capabilities for SCSI-3/MMC-compliant drives.
Values marked kB use 1000 bytes, while values marked KB use
1024 bytes.

-raw, -raw96r
Use RAW writing mode with 2352 byte sectors plus 96 bytes
of raw P-W subchannel data. This results in a sector size of
2448 bytes. Useful for drives with bad firmware where TAO
and SAO mode don’t work. This option does require more
CPU time, thus it may cause buffer underruns on slow CPUs.

Alphabetical Summary of GNU/Linux Commands | 273

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrecord

Note: for this to work, cdrecord must know the size each track
in advance. See the manpage for more information.

-raw16
Similar to -raw96r, but with a 2352 byte sector and 16 bytes of
P-Q subchannel data. Does not allow writing CD-Text or
CD+Graphics. Don’t use if -raw96r does work on your drive.

-raw96p
Similar to -raw96r but not as widely supported. Don’t use if
-raw96r or -raw16 do work on your drive.

-reset
Attempt to reset the SCSI bus. Does not work on all systems.

-s, -silent
Silent mode. Do not print any SCSI error commands.

-scanbus
Scan for SCSI devices. Use this to find out which drives you
have and to get the correct numbers for the dev= option.

-setdropts
Set the driver options list as provided by driveropts= and the
dummy flag, and then exit. Useful to set parameters without
burning or reading media.

speed=n
Set the speed to n, a multiple of the audio speed. Normally,
cdrecord will get this from the CDR_SPEED environment vari-
able. If your drive has trouble with higher numbers, try 0 as
the value.

-tao
Use Track At Once (TAO) mode. Required for multi-session
recording. This was the default writing mode in previous
versions.

-text
Write CD-Text information. The information comes from
either .inf files or from a CUE sheet file. Use with the -useinfo
or cuefile= options.

textfile=file
Obtain CD-Text information from file, which must be in the
binary file format defined in the Red Book. This is the best
way to copy CD-Text data obtained from existing CDs.

timeout=n
Set the timeout to n seconds. Defaults to 40.

-toc
Display the table of contents for the CD currently in the drive.
Works for CD-ROM as well as CD-R and CD-RW media.

ts=n
Set the maximum transfer size for a single SCSI command to
n. The syntax for n is the same as for the fs= option. The
default transfer size is 63 kB.

-useinfo
Use .inf files to override audio options set elsewhere.

274 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrecord

-v Verbose mode. Use one v for each level of verbosity: -vv would
be very verbose, and -vvv would be even more so.

-V As with the -v, a verbose mode counter. However, this applies
only to SCSI transport messages. This will slow down the
application.

-waiti
Wait for input to become available on standard input before
opening the SCSI driver. This is necessary for multi-session
recording, where mkisofs has to read the old session from the
current disc before writing the new session, and mkisofs won’t
be able to open the device if cdrecord has already opened it.

The device Argument

The device argument is one of the more difficult parts of cdrecord.
It consists of an optional transport specification, followed by a
comma-separated list of integers representing the bus, target, and
logical unit of the drive. The default transport is for a SCSI device.
You can use cdrecord dev=help to see a list of supported transports.
On some systems, you can use a device name followed by :@ to use
that device; for example, on GNU/Linux, dev=/dev/scd0:@ for an
external USB-connected DVD writer. For an IDE-connected CD
writer, on GNU/Linux, you might use ATA:1,0,0.

Track Options and Arguments

Track options may be mixed with track arguments, and normally
apply to the track immediately after them or to all tracks after
them. The track arguments themselves should be the files that you
will be writing to the CD or DVD. Options are:

-audio
Write all tracks after this track in digital audio format (play-
able by standard CD players). If you do not use this flag or the
-data flag, cdrecord assumes that .au and .wav files are to be
recorded as raw audio and that all other files are data.

-cdi
Write subsequent tracks in CDI format.

-copy
For subsequent audio tracks, indicate in the TOC that the
audio data has permission to be copied without limit.

-data
Record subsequent tracks as CD-ROM data. If you do not use
this flag or the -audio flag, all files except for those ending in .wav
or .au are assumed to be data.

index=a,b,c
Set the index list for the next track. The values should be
increasing comma-separated integers, starting with index 1
and counting in sectors (75ths of a second). For example, you
could set three indices in a track with index=0,750,7500 and
they would occur at the beginning of the track, after 10
seconds, and after 100 seconds.

Alphabetical Summary of GNU/Linux Commands | 275

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdrecord

-isosize
The size of the next track should match the size of the ISO-
9660 filesystem. This is used when duplicating CDs or
copying from raw-data filesystems.

isrc=n
Set the International Standard Recording Number for the
track following this argument.

-mode2
Write all subsequent tracks in CD-ROM mode 2 format. Data
size is a multipe of 2336 bytes.

-nocopy
For subsequent audio tracks, indicate in the TOC that the
audio data has permission to be copied only once for personal
use. This is the default.

-nopad
Do not insert blank data between data tracks following this
flag. This is the default behavior.

-nopreemp
For subsequent audio tracks, indicate in the TOC that audio
data was mastered with linear data. This is the default.

-noshorttrack
Require subsequent tracks to be at least four seconds in
length. See -shorttrack.

-pad
Insert 15 sectors of blank data padding between data tracks.
Applies to all subsequent tracks or until you use the -nopad
argument, and is overridden by the padsize=n argument.

padsize=n
Insert n sectors of blank data padding after the next track.
Applies only to the track immediately after it.

-preemp
For subsequent audio tracks, indicate in the TOC that audio
data was sampled with 50/15 microsecond pre-emphasis.

pregap=n
Set the pre-gap size for the next track to n. Useful only with
TEAC drives for creating TAO disks without the two-second
silence between tracks. This option may be removed in future
versions.

-scms
For subsequent audio tracks, indicate in the TOC that the
audio data has no permission to be copied.

-shorttrack
Allow subsequent tracks to be less than four seconds in
length, violating the Red Book standard. Useful only in SAO
or RAW mode. Does not work with all drives.

-swab
Declare that your data is in byte-swapped (little-endian) byte
order. This is not normally necessary.

276 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dir

tsize=n
Set the size of the next track. Useful only if you are recording
from a raw disk for which cdrecord cannot determine the file
size. If you are recording from an ISO 9660 filesystem, use the
-isosize flag instead.

-xa
Write subsequent tracks in CD-ROM XA mode 2 form 1
format, with 2048-byte sectors.

-xa1
Write subsequent tracks in CD-ROM XA mode 2 form 1
format, with 2056-byte sectors.

-xa2
Write subsequent tracks in CD-ROM XA mode 2 form 2
format, with 2324-byte sectors.

-xamix
Write subsequent tracks in a way that allows mixing XA mode
2 forms 1 and 2. See the manpage.

dir dir [options] [file]

List directory contents. dir is equivalent to the command ls -C -b
(list files in columns, sorted vertically, special characters escaped)
and it takes the same arguments as ls. This is an alternate invoca-
tion of the ls command and is provided for the convenience of
those converting from Microsoft Windows and the DOS shell.

dircolors dircolors [options] [file]

Set the color options for ls by changing the LS_COLORS environ-
ment variable. If you specify a file, dircolors reads it to determine
which colors to use. Otherwise, it uses a default set of colors.

Options

-b, --sh, --bourne-shell
Use the Bourne shell syntax when setting the LS_COLORS
variable.

-c, --csh, --c-shell
Use csh (C shell) syntax when setting the LS_COLORS
variable.

-p, --print-database
Display the default colors. You can copy this information into
a file and change it to suit your preferences, and then run the
program with the file as its argument to set the colors to your
new values.

Example

In your .profile, you might have this:

eval `dircolors`

Alphabetical Summary of GNU/Linux Commands | 277

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

igawk

dvdrecord dvdrecord options files ...

Record DVDs. In earlier systems, dvdrecord was a modified version
of cdrecord. In Fedora Core 3, the DVD functionality is part of
cdrecord, and dvdrecord is a shell script that prints an informational
message to this effect and then does an exec of cdrecord. See also
cdrecord.

gawk gawk [options] 'script' [var=value ...] [files ...]
gawk [options] -f scriptfile [var=value ...] [files ...]

The GNU Project’s implementation of the awk programming
language. This is the standard version of awk on GNU/Linux
systems. For more information see awk in the earlier section
“Alphabetical Summary of Common Commands,” and Chapter 11.

gettextize gettextize [options] [directory]

Install GNU gettext infrastructure into a source package. This
command copies files and directories into a source package so that
a program can use GNU gettext for managing translations. The
files are placed in directory if given, otherwise in the current direc-
tory. If the package already uses gettext, the infrastructure is
upgraded to the current version.

Full documentation for GNU gettext is available in its manual. See
http://www.gnu.org/software/gettext/ for more information and a
pointer to the documentation.

Options

-c, --copy
Copy files instead of making symbolic links. (Recommended.)

-f, --force
Force creation of files, even if old ones exist. Useful for
upgrading.

--intl
Create and install the libintl subdirectory, which holds a
private copy of the gettext library.

-n, --dry-run
Print the changes that would be made, but don’t actually do
them.

--no-changelog
Do not create or update ChangeLog files.

igawk igawk gawk-options files ...

A shell script that allows the use of file inclusion with awk
programs. Distributed with GNU Awk (gawk). For more informa-
tion, see Chapter 11.

278 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ispell

ispell ispell [options] [files]

Compare the words of one or more named files with the system
dictionary. Display unrecognized words at the top of the screen,
accompanied by possible correct spellings, and allow editing via a
series of commands. See also aspell and spell in the earlier section
“Alphabetical Summary of Common Commands.”

URL: http://www.gnu.org/software/ispell.

Options

The -c, -D, and -e1, -e2, -e3, and -e4 options are specialized (for
use by the munchlist helper program) and are not covered here.

-a Function in back-end mode, printing a one-line version identi-
fication and then one line of output for each input word. See
the manpage.

-A Like -A, but read files named on lines beginning with
&Include_File&. Includes may be nested up to five levels deep.

-b Back up original file in filename.bak.

-B Search for missing blanks (resulting in concatenated words) in
addition to ordinary misspellings.

-C Do not produce error messages in response to concatenated
words.

-d file
Search file instead of the standard dictionary file.

-f outfile
Write output to outfile instead of to standard output. Must be
used with -a or -A.

-F program
Use program to remove formatting markup.

-H Input is in SGML/HTML format.

-ksetname list
Add the keywords in list to the predefined set of keywords
setname. See the manpage for details.

-l Generate a list of misspelled words (batch mode).

-L number
Show number lines of context.

-m Suggest different root/affix combinations.

-M List interactive commands at bottom of screen.

-n Expect nroff or troff input file.

-N Suppress printing of interactive commands.

-p file
Search file instead of personal dictionary file.

-P Do not attempt to suggest more root/affix combinations.

-S Sort suggested replacements by likelihood that they are
correct.

-t Expect TEX or LATEX input file.

Alphabetical Summary of GNU/Linux Commands | 279

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ltrace

-T type
Expect all files to be formatted by type.

-v, -vv
With plain -v, print version information and exit. With -vv,
also print compilation options.

-V Use hat notation (^L) to display control characters, and M- to
display characters with the high bit set.

-w chars
Consider chars to be legal, in addition to a–z and A–Z.

-W n
Never consider words that are n characters or fewer to be
misspelled.

-x Do not back up the original file.

Interactive commands

? Display help screen.

space
Accept the word in this instance.

number
Replace with suggested word that corresponds to number.

!command
Invoke shell and execute command in it. Prompt before
exiting.

a Accept word as correctly spelled, but do not add it to personal
dictionary.

i Accept word and add it (with any current capitalization) to
personal dictionary.

l Search system dictionary for words.

q Exit without saving.

r Replace word.

u Accept word and add lowercase version of it to personal
dictionary.

x Skip to the next file, saving changes.

^L Redraw screen.

^Z Suspend ispell.

ltrace ltrace [options] command [arguments]

Trace the dynamic library calls for command and arguments. ltrace
can also trace and print the system calls. It is very similar to strace
(see also strace).

Options

-a n Align the return values in column n.

-c Count all calls and signals and create a summary report when
the program has ended.

280 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ltrace

-C, --demangle
Demangle C++ encoded names.

-d, --debug
Debug mode. Print debugging information for ltrace on stan-
dard error.

-e [keyword=][!]values
Pass an expression to ltrace to limit the types of calls or
signals that are traced or to change how they are displayed.
See strace for the full list.

-f Trace forked processes.

-h, --help
Print help and exit.

-i Print instruction pointer with each system call.

-l file, --library file
Print only the symbols from library file. Up to 20 files may be
specified.

-L Do not display library calls. Use together with -S.

-n count, --indent count
Indent trace output by count spaces for each new nested func-
tion call.

-o filename, --output filename
Write output to filename instead of standard error. If filename
starts with the pipe symbol |, treat the rest of the name as a
command to which output should be piped.

-p pid
Attach to the given process ID and begin tracking. ltrace can
track more than one process if more than one -p option is
given. Type CTRL-C to end the trace.

-r Relative timestamp. Print time in microseconds between
system calls.

-s n Print only the first n characters of a string. Default value is 32.

-S Display system calls and library calls.

-t Print time of day on each line of output.

-tt Print time of day with microseconds on each line of output.

-ttt
Print timestamp on each line as number of seconds since the
Epoch.

-T Print time spent in each system call.

-u username
Run command as username. Needed when tracing setuid and
setgid programs.

-V Print version and exit.

Alphabetical Summary of GNU/Linux Commands | 281

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

lynx

lynx lynx [options] [path | URL]

lynx is a “text mode” browser, for use on ASCII terminals or
terminal emulators. It is particularly valuable for taking a quick
look at a web page when you don’t want to wait for a graphical
browser to start up on a heavily loaded system, and for use in
scripts. It has an astonishing number of options.

URL: http://lynx.isc.org/.

Primary Options

- Read arguments from standard input. Useful for long
command lines and to avoid having sensitive arguments being
visible with ps.

-base
For use with -source, prepend a request URL and BASE tag to
text or HTML outputs.

-case
Make string searching case-sensitive.

-color
For use with the slang terminal library. Enable a default set of
color control sequences that work on many terminals if the
terminal description does not provide color control
information.

-crawl
When used with -traversal, output each page to a separate file.
When used with -dump, output is formatted as for -traversal
but sent to standard output.

-dump
Send the formatted output to standard output. Useful for
converting web pages to text files.

-editor=program
Use program as the external editor.

-emacskeys
Enable Emacs-style motion commands.

-ftp Disallow FTP access.

-justify
Do text justification.

-source
Like -dump, but outputs HTML source, not formatted text.

-telnet
Do not allow telnet commands.

-term=termtype
Specify that the terminal is of type termtype. Especially useful
for remote connections.

-traversal
Traverse all the HTTP links derived from the starting file or URL.

282 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mac2unix

-use_mouse
Enable mouse actions if the underlying library supports the
mouse. The left mouse button traverses a link and the right
button pops back. Clicking on the top and bottom lines scroll
up and down. For the ncurses library, the middle button pops
up a simple menu.

-vikeys
Enable vi-style motion commands.

-width=count
Use count columns for formatting dumps. The default is 80.

-with_backspaces
For -dump and -crawl, place backspaces in the output (similar
to the man command).

See the manpage for a description of the other options.

mac2unix mac2unix [options] [-n infile outfile]

Convert files from Macintosh OS 9 format to Unix format. On
GNU/Linux, the dos2unix and unix2dos commands accept the same
options as mac2unix. See dos2unix in the earlier section “Alphabet-
ical Summary of Common Commands” for the option list.

md5sum md5sum [options] [file ...]
md5sum [options] --check [file]

Compute or check the MD5 algorithm checksum for one or more
files. The checksum is computed using the algorithm in RFC 1321.
Use the saved output of the program as input when checking. See
also sha1sum.

Options

-b, --binary
Use binary mode to read files. This is the default on non-Unix
systems.

-c, --check
Check MD5 sums against the given list.

--status
Do not print anything. Instead, use the exit code to indicate
success.

-t, --text
Read files in “text” mode. This is the default on Unix systems.

-w, --warn
Warn about checksum lines that are not formatted correctly.

Examples

$ md5sum bash-3.0.tar.gz > MD5SUM Compute and save checksum
$ cat MD5SUM Show it
26c4d642e29b3533d8d754995bc277b3 bash-3.0.tar.gz
$ md5sum --check < MD5SUM Verify it
bash-3.0.tar.gz: OK

Alphabetical Summary of GNU/Linux Commands | 283

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mount

mount mount [options] [[device] directory]

System administration command. Mount a file structure. The file
structure on device is mounted on directory. If no device is speci-
fied, mount looks for an entry in /etc/fstab to find what device is
associated with the given directory. The directory, which must
already exist and should be empty, becomes the name of the root
of the newly mounted file structure. If mount is invoked with no
arguments, it displays the name of each mounted device, the direc-
tory on which it is mounted, its filesystem type, and any mount
options associated with the device.

Options

-a Mount all filesystems listed in /etc/fstab. Use -t to limit this
to all filesystems of a particular type.

-f Fake mount. Go through the motions of checking the device
and directory, but do not actually mount the filesystem.

-F When used with -a, fork a new process to mount each
filesystem.

-h Print help message, then exit.

-i For a filesystem type fs, don’t run the helper program /sbin/
mount.fs.

-l When reporting on mounted filesystems, show filesystem
labels for filesystems that have them.

-L label
Mount filesystem with the specified label.

-n Do not record the mount in /etc/mtab.

-o option
Qualify the mount with a mount option. Many filesystem
types have their own options. The following are common to
most filesystems:

async
Do input and output to the device asynchronously.

atime, noatime
Update inode access time for each access. This is the
default behavior. noatime does not update the access
time.

auto, noauto
Allow (do not allow) mounting with the -a option.

defaults
Use all options’ default values (async, auto, dev, exec,
nouser, rw, suid).

dev, nodev
The dev option allows the system to interpret any special
devices that exist on the filesystem as device files. The
nodev option disallows it; device files are ignored.

284 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mount

dirsync
All directory updates on the filesystem should be done
synchronously.

exec, noexec
The exec option allows the system to execute binary files
on the filesystem. The noexec option disallows it.

_netdev
Filesystem is a network device requiring network access.

remount
Expect the filesystem to have already been mounted, and
remount it.

ro
Allow read-only access to the filesystem.

rw
Allow read/write access to the filesystem.

suid, nosuid
Acknowledge (do not acknowledge) setuid and setgid
bits.

user, nouser
Allow (do not allow) unprivileged users to mount or
unmount the filesystem. The defaults on such a file-
system will be nodev, noexec, and nosuid, unless otherwise
specified.

users
Allow any user to mount or unmount the filesystem. The
defaults on such a filesystem will be nodev, noexec, and
nosuid, unless otherwise specified.

-O option
Limit systems mounted with -a by its filesystem options. (As
used with -o.) Use a comma-separated list to specify more
than one option, and prefix an option with no to exclude file-
systems with that option. Options -t and -O are cumulative.

-p fd
For an encrypted filesystem, read the passphrase from file
descriptor number fd.

-r Mount filesystem read-only.

-s Where possible, ignore mount options specified by -o that are
not supported by the filesystem.

-t type
Specify the filesystem type. Possible values include adfs, affs,
autofs, coda, cramfs, devpts, efs, ext2, ext3, hfs, hpfs, iso9660,
jfs, msdos, ncpfs, nfs, nfs4 ntfs, proc, qnx4, ramfs, reiserfs,
romfs, smbfs, sysv, tmpfs, udf, ufs, umsdos, usbfs, vfat, and xfs.
The default type is iso9660. The type auto may also be used to
have mount autodetect the filesystem. When used with -a, this
option can limit the types mounted. Use a comma-separated
list to specify more than one type to mount, and prefix a type
with no to exclude that type.

Alphabetical Summary of GNU/Linux Commands | 285

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mutt

-U uuid
Mount filesystem with the specified uuid.

-v Display mount information verbosely.

-V Print version, then exit.

-w Mount filesystem read/write. This is the default.

Files

/etc/fstab
List of filesystems to be mounted and options to use when
mounting them.

/etc/mtab
List of filesystems currently mounted and the options with
which they were mounted.

/proc/partitions
Used to find filesystems by label and UUID.

mutt mutt [reading-options]
mutt [sending-options] address ...

mutt is a screen-oriented Mail User Agent (MUA) program, for
reading and sending mail. Its design is derived from that of several
earlier MUA programs, including Berkeley Mail, ELM, and MUSH:
hence the name.

URL: http://www.mutt.org/.

Options

-a file
Attach file to the message using MIME.

-b address
Send a blind carbon copy (BCC) to address.

-c address
Send a carbon copy (CC) to address.

-e command
Run command after reading the configuration files.

-f file
Use file as the mailbox to read messages from.

-F muttrcfile
Read muttrcfile for initialization, instead of $HOME/.muttrc.

-h Print an option summary and exit.

-H draftfile
Read an initial message header and body from draftfile when
sending a message.

-i file
Include the contents of file into a message.

286 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ooffice

-m type
Use mailbox type type. Possible values are mbox, MMDF, MH, and
Maildir.

-n Do not read the sytsem configuration file /etc/Muttrc.

-p Continue a postponed message.

-R Process a mailbox in read-only mode.

-s text
Use text as the subject of the message.

-v Print version and compile-time option information, and exit.

-x Emulate the mailx compose mode.

-y At startup, list all mailboxes specified with the mailboxes
command.

-z When used with -f, do not start if the mailbox is empty.

-Z Process the first mailbox specified with the mailboxes
command that contains new mail. If there are none, exit
immediately.

ooffice ooffice [files]

The Open Office office productivity suite. A set of commands that
provides compatibility with other widely used office productivity
programs.

URL: http://www.openoffice.org/.

Tools

Calc
A “feature-packed” spreadsheet program with built-in
charting tools.

Database tools
Tools for doing database work in spreadsheet-like form. The
tools support dBASE databases for simple applications, or
OODBC or JDBC compliant databases for “industrial
strength” work.

Draw
A program for producing illustrations.

Impress
A program for creating multimedia presentations.

Math
A component for use with Writer in creating equations and
formulae, it may also be used standalone.

Writer
A word processor for documents, reports, newsletters,
brochures, etc.

Alphabetical Summary of GNU/Linux Commands | 287

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ps

pdksh pdksh [options] [arguments ...]

The Public Domain Korn Shell. pdksh is a fairly complete although
not exact clone of the 1988 Korn shell. Full details are available in
the online manpage and at the web site. For more information
about the Korn shell, see Chapter 4.

URL: http://web.cs.mun.ca/~michael/pdksh/.

ps ps [options]

Report on active processes. ps has three types of options. GNU
long options start with two dashes, which are required. BSD
options may be grouped and do not start with a dash, while
Unix98 options may be grouped and require an initial dash. The
meaning of the short options can vary depending on whether or
not there is a dash. In options, list arguments should either be sepa-
rated by commas or put in double quotes. In comparing the
amount of output produced, note that e prints more than a and l
prints more than f for each entry.

Options

nums, p nums, -p nums, --pid=nums
Include only specified processes, which are given in a space-
delimited list.

--nums, --sid=nums
Include only specified session IDs, which are given in a space-
delimited list.

[-]a
As a, list all processes on a terminal. As -a, list all processes on
a terminal except session leaders.

[-]c
As c, show the true command name. As -c, show different
scheduler information with -l.

-C cmds
Select by command name.

--cols=cols, --columns=cols, --width=cols
Set the output width (the number of columns to display).

-d Select all processes except session leaders.

-e, -A
Select all processes.

e Include environment information after the command.

[-]f, -F, --forest
As -f, display full listing. As f or --forest, display “forest”
family tree format, with ASCII art showing the relationships.

-g list, -G list, --group=groups, --Group=groups
For -g, select by session leader if list contains numbers, or by
group if it contains group names. For -G, select by the group
IDs in list. --group selects by effective group and --Group

288 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ps

selects by real group, where groups can be either group names
or group IDs.

h, --no-headers
Suppress header. If you select a BSD personality by setting the
environment variable PS_PERSONALITY to bsd, then h prints
a header on each page.

H, -H
As H, display threads as if they were processes. As -H, display
“forest” family tree format, without ASCII art.

--headers
Repeat headers.

--info
Print debugging information.

[-]j
Jobs format. j prints more information than -j.

[-]l
Produce a long listing. -l prints more information than l.

L, -L
As L, print list of field specifiers that can be used for output
formatting or for sorting. As -L, show threads, possibly with
LWP and NLWP columns.

--lines=num, --rows=num
Set the screen height to num lines. If --headers is also set, the
headers repeat every num lines.

[-]m
Show threads.

-M Add security data for SELinux.

n Print user IDs and WCHAN numerically.

-nfile, Nfile
Specify the system map file for ps to use as a namelist file. The
map file must correspond to the Linux kernel; e.g., /boot/
System.map-2.6.9-1.667.

-N, --deselect
Negate the selection.

[-]o fields, --format=fields
As -o, o, or --format, specify user-defined format with a list of
fields to display.

[-]O fields
As -O, is like -o, but some common fields are predefined. As O,
can be either the same as -O in specifying fields to display, or
can specify single-letter fields for sorting. For sorting, each field
specified as a key can optionally have a leading + (return to
default sort direction on key) or - (reverse the default direction).

--ppid pids
Include only processes whose parent process IDs are in pids.

r Show only processes that are currently running.

s Display signal format.

Alphabetical Summary of GNU/Linux Commands | 289

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ps

-s sessions
Show processes belonging to the specified sessions.

S, --cumulative
As S, sum up certain information, such as CPU usage from
dead children. Otherwise, include some dead child process
data in parent total.

--sort sort-spec
Like O for sorting.

[-]t[ttys], --tty=ttys
Display processes running on the specified terminals. As t, ttys
may be missing, which specifies the current terminal.

T Display all processes on this terminal.

[-]u [users], --user=users
As u with no argument, display user-oriented output . As -u or
--users, display by effective user ID (and also support names),
showing results for users. With no argument, -u displays
results for the current user.

[-]U users, --User=users
As U, display processes for the specified users. As -U or --User,
display processes for users by real user ID (and also support
names).

v Display virtual memory format.

[-]V, --version
Display version information and then exit.

[-]w
Wide format. Don’t truncate long lines.

x Display processes without an associated terminal.

X Use old Linux i386 register format.

-y Do not show flags; show rss instead of addr.

[-]Z, --context
As Z, add security data for SELinux. As -Z, display the security
context format, also for SELinux.

Sort keys

c, cmd Name of executable.
C, pcpu CPU utilization.
f, flags Flags.
g, pgrp Group ID of process.
G, tpgid Group ID of associated tty.
j, cutime Cumulative user time.
J, cstime Cumulative system time.
k, utime User time.
m, min_flt Number of minor page faults.
M, maj_flt Number of major page faults.
n, cmin_flt Total minor page faults.
N, cmaj_flt Total major page faults.
o, session Session ID.

290 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ps

Fields

p, pid Process ID.
P, ppid Parent’s process ID.
r, rss Resident set size.
R, resident Resident pages.
s, size Kilobytes of memory used.
S, share Number of shared pages.
t, tty Terminal.
T, start_time Process’s start time.
u, user User’s name.
U, uid User ID.
v, vsize Bytes of virtual memory used.
y, priority Kernel’s scheduling priority.

%CPU Percent of CPU time used recently.
%MEM Percent of memory used.
ADDR Address of the process.
BLOCKED Mask of blocked signals.
C CPU utilization percentage.
CAUGHT Mask of caught signals.
CLS, POL Process scheduling class.
CMD, COMMAND The command the process is running.
CP Per-mill CPU usage.
EGID, GID Effective group ID as a decimal integer.
EGROUP, GROUP Effective group ID as a name if available,

otherwise as a number.
EIP Instruction pointer.
ELAPSED Elapsed time since the start of the process.
ESP Stack pointer.
EUID, UID Effective user ID as a decimal integer.
EUSER, USER Effective user ID as a name if available, otherwise

as a number.
F Process flags:

 001 Print alignment warning messages.
 002 Being created.
 004 Being shut down.
 010 ptrace(0) has been called.
 020 Tracing system calls.
 040 Forked but didn’t exec.
 100 Used superuser privileges.
 200 Dumped core.
 400 Killed by a signal.

FGID Filesystem access group ID as a decimal integer.
FGROUP Filesystem access group ID as a name if available,

otherwise as a number.
FUID Filesystem access user ID as a decimal integer.
FUSER Filesystem access user ID as a name if available,

otherwise as a number.
IGNORED Mask of ignored signals.
LABEL SELinux security label for Mandatory Access

Control.

Alphabetical Summary of GNU/Linux Commands | 291

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ps

LWP, SPID, TID Lightweight process (thread) ID.
NI The nice value of the process. A higher number

indicates less CPU priority.
NLWP, THCNT Number of lightweight processes (threads) in the

process.
PENDING Mask of pending signals.
PGID, PGRP Process group ID.
PID Process ID.
PPID Parent process ID.
PRI Process’s scheduling priority. A higher number

indicates lower priority.
P, PSR Processor that the process is assigned to.
RGID Real group ID as a decimal integer.
RGROUP Real group ID as a name if available, otherwise as

a number.
RSS, RSZ Resident set size (the amount of physical

memory), in kilobytes.
RTPRIO Realtime priority.
RUID Real user ID as a decimal integer.
RUSER Real user ID as a name if available, otherwise as a

number.
S One-character state display.
SCH Process’s scheduling policy.
SESS, SID Process’s session ID.
SGID, SVGID Saved group ID as a decimal integer.
SGROUP Saved group ID as a name if available, otherwise

as a number.
SHARE Shared memory.
SIZE Size of virtual image.
STACKP Address of the bottom (start) of the process’s

stack.
START Process start time in HH:MM format.
STARTED Process start time in HH:MM:SS format.
STAT Status:

 D Asleep and not interruptible.
 N Positive nice value (third field).
 R Runnable.
 S Asleep.
 T Stopped.
 W No resident pages (second field).
 Z Zombie.

SUID, SVUID Saved user ID as a decimal integer.
SUSER Saved user ID as a name if available, otherwise as

a number.
SWAP Amount of swap used, in kilobytes.
SZ Approximate amount of swap needed to write out

entire process.
TIME Cumulative CPU time.
TPGID Foreground process group ID for terminal.
TRS Size of resident text.
TT, TTY Associated terminal.
VSZ Virtual memory size, in kilobytes.
WCHAN Kernel function in which process resides.

292 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rename

rename rename from to files ...

Rename files by replacing the first occurrence of from in each file-
name with to.

Example

Rename files that start with test so they start with mytest:

rename test mytest test*

seq seq [options] [first [increment]] last

Print the numbers from first through last by increment. The default
is to print one number per line to standard output. Both first and
increment can be omitted and default to 1, but if first is omitted
then increment must also be omitted. In other words, if only two
numbers are specified, they are taken to be the first and last
numbers. The numbers are treated as floating point.

Options

-f format, --format=format
Write the output using the specified printf floating-point
format, which can be one of %e, %f, or %g (the default).

-s string, --separator=string
Use string to separate numbers in the output. Default is
newline.

-w, --equal-width
Equalize the width of the numbers by padding with leading
zeros. (Use -f for other types of padding.)

sha1sum sha1sum [options] [file ...]
sha1sum [options] --check [file]

Compute or check SHA1 160-bit checksums for one or more files.
The checksum is computed using the algorithm in FIPS-180-1. Use
the saved output of the program as input when checking. See also
md5sum.

Options

-b, --binary
Use binary mode to read files. This is the default on non-Unix
systems.

-c, --check
Check SHA1 sums against the given list.

--status
Do not print anything. Instead, use the exit code to indicate
success.

Alphabetical Summary of GNU/Linux Commands | 293

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

skill

-t, --text
Read files in “text” mode. This is the default on Unix systems.

-w, --warn
Warn about checksum lines that are not formatted correctly.

Examples

$ sha1sum bash-3.0.tar.gz > SHA1SUM Compute and save checksum
$ cat SHA1SUM Show it
3acf1ff4910d4bc863620c7533cbf4858370017b bash-3.0.tar.gz
$ sha1sum --check < SHA1SUM Verify it
bash-3.0.tar.gz: OK

shred shred [options] files

Overwrite a file to make the contents unrecoverable, and delete the
file afterwards if requested.

Options

- Shred standard output.

-num, --iterations=num
Overwrite files num times (default is 25).

-f, --force
Force permissions to allow writing to files.

-s num, --size=num
Shred num bytes. num can be expressed with suffixes (e.g., K,
M, or G).

-u, --remove
Remove file after overwriting. shred does not remove the file
unless this option is specified.

-v, --verbose
Verbose mode.

-x, --exact
Shred the exact file size; do not round up to the next full
block.

-z, --zero
On the final pass, overwrite with zeros to hide the shredding.

skill skill [signal] [options] processes
snice [priority] [options] processes

Send a signal to processes or reset the priority. The default signal
for skill is TERM, and the default priority for snice is +4 but can be
in the range +20 (slowest) to –20 (fastest). The selection options -c,
-p, -t, and -u are not required, but can be specified to insure that
processes are interpreted correctly.

294 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

slocate

Options

-c The next argument is a command.

-i Use interactive mode.

-l, -L
List available signals.

-n Display the process ID, but take no other action.

-p The next argument is a process ID.

-t The next argument is a tty or pty.

-u The next argument is a username.

-v Verbose mode.

-w Enable warnings.

slocate slocate [options] [search-string]

Security Enhanced version of GNU locate. This command searches
a database listing every file on the system; it is intended as a faster
replacement for find / -name pattern …. (See locate in the “Alpha-
betical Summary of Common Commands” section earlier in this
chapter). This version stores file permissions and ownership, in
order to prevent unauthorized access to files.
URL: http://www.geekreview.org/slocate/.

Options
-c Read /etc/updatedb.conf when updating the database.
-d file, --database=file

Use file as the database to search.
-e dir1[,dir2…]

Exclude the given directories from the database.

-f fstype1[,fstype2…]
Exclude files on filesystems of the given types (e.g., NFS).

-h, --help
Print an option summary and exit.

-i Ignore case when searching.

-l level
Security level. If level is 0, no security checks are done,
providing faster searches. The default is 1, which turns on
security checking.

-n count
Do not print more than count results.

-o file, --output=file
Use file as the database to create.

-q Do not print error messages (quiet mode).

-r regex, --regexp=regex
Use the Basic Regular Expression regex to search the database.

-u Create the database starting at /.

-U dir
Create the database starting at dir.

Alphabetical Summary of GNU/Linux Commands | 295

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

splint

-v, --verbose
Display filenames when creating the database.

-V, --version
Print version information and exit.

splint splint [options] files ...

Secure Programming Lint. A freely available version of the original
Unix lint command, splint performs static checking of C
programs. By adding annotations in the form of special comments
to your source files, splint can perform many additional, stronger
checks than would otherwise be possible.

splint has a very large number of options. They are broken down
here into separate sections based on task. splint allows the use of a
leading + and a leading minus to indicate an option. In many cases
they do the same thing; in others one enables a feature while the
other disables it.

URL: http://www.splint.org/.

Initialization Options

-f file
Read options from file instead of from $HOME/.splintrc.

-Idir
Add dir to the list of directories searched for C include files. As
with the C compiler, there is no space separating the -I from
the directory name.

-nof
Do not read either of the default option files ./.splintrc and
$HOME/.splintrc.

-S dir
Add dir to the list of directories searched for .lcl specification
files.

-tmpdir directory
Use directory for temporary files. The default is /tmp.

-systemdirs dirlist
Set the list of system directories to search for include files. The
default is /usr/include. To include multiple directories, sepa-
rate them with a colon.

-systemdirerrors
Do not report errors for files in system directories.

Preprocessor Options

-D macro-definition
Define a macro. This option is passed on to the C
preprocessor.

-U macroname
Undefine a macro. This option is passed on to the C
preprocessor.

296 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

splint

Library Options

-1-lib
Use the Unix version of the standard library.

-1-strict-lib
Use the “strict” version of the Unix standard library.

-ansi-lib
Use the ANSI standard library. This is the default.

-dump file
Save splint’s state in file. The default file extension is .lcd.

-load file
Load state from file, created previously with -dump. See the
online documentation for more information.

-nolib
Do not load information about any library. This also prevents
loading information about the standard C library.

-posix-lib
Use the POSIX version of the standard library.

-posix-strict-lib
Use the “strict” version of the POSIX standard library.

-strict-lib
Use the “strict” version of the ANSI standard library.

Output Options

Use a leading minus to disable these options, and a leading + to
enable them. By default they are all disabled.

-limit count
Do not report more than count similar errors consecutively.
Instead, show a count of suppressed errors.

-quiet
Do not print version information or the error count summary.

-showalluses
Print a list of external identifiers and their uses, sorted by the
number of times each one is used.

-showscan
Print each filename as it’s processed.

-showsummary
Print a summary of reported and suppressed errors. The count
of suppressed errors may not be completely correct.

-stats
Print the number of lines processed and the time it took to
check them.

-timedist
Print a distribution showing where the checking time was spent.

-usestderr
Send error messages to standard error instead of to standard
output.

-whichlib
Print the filename and creation info for the standard library.

Alphabetical Summary of GNU/Linux Commands | 297

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

splint

Expected Errors Option

-expect count
Expect count errors. Exit with a failure status if exactly that
number of errors are not detected. Useful for use with make.

Message Format Options

For most of these options, a leading + turns on the behavior,
whereas a leading minus turns it off. You may use either one for the
-limit and -linelen options.

-forcehints
Similar to -hints, but provide hints for all errors in a class, not
just the first one. Default is off.

-hints
Give hints describing the error and how to suppress it for the
first error in each error class. Default is on.

-linelen count
Set the maximum line length for a message line to count.
Default is 80.

-paren-file-format
Use messages of the form file(line).

-showallconj
Print all possible alternate types. See the online documenta-
tion for more information. Default is off.

-showcolumn
Print the column number of the error. Default is on.

-showfunc
Print the name of the macro or function containing the error.
Function names are only printed once. Default is on.

Mode Options

The mode flags enable a coarse-grain grouping of different classes
of checking. For more detail, use splint -help modes. From weakest
to strongest, the options are -weak, -standard, -checks, and -strict.

-checks
Strict checking. It does the same checking as -standard, plus
must modification checking, rep exposure, return alias,
memory management, and complete interfaces.

-standard
This is the default. It does the same checking as -weak, plus
modifies checking, global alias checking, use all parameters,
using released storage, ignored return values of any type,
macro checking, unreachable code, infinite loops, and fall-
through cases. Old style declarations are reported. The types
bool, int, and char are treated as being distinct.

-strict
“Absurdly strict checking.” Does the same checking as -checks,
plus modifications and global variables used in unspecified
functions, strict standard library, and strict typing of C opera-
tors. The manpage states “A special reward will be presented

298 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

strace

to the first person to produce a real program that produces no
errors with strict checking.”

-weak
Checking intended for unannotated C code. In particular,
splint does not do modifies checking, macro checking, rep
exposure, or clean interface checking. It is allowed to ignore
int return values. Old style declarations are not reported. The
types bool, int, char, and enum are treated as being the same.

strace strace [options] command [arguments]

Trace the system calls and signals for command and arguments.
strace shows you how data is passed between the program and the
system kernel. With no options, strace prints a line to standard
error for each system call. It shows the call name, arguments given,
return value, and any error messages generated. A signal is printed
with both its signal symbol and a descriptive string.

Options

-a n Align the return values in column n.

-c Count all calls and signals and create a summary report when
the program has ended.

-d Debug mode. Print debugging information for strace on stan-
dard error.

-e [keyword=][!]values
Pass an expression to strace to limit the types of calls or
signals that are traced or to change how they are displayed. If
no keyword is given, trace is assumed. The values can be given
as a comma-separated list. Preceding the list with an exclama-
tion mark (!) negates the list. The special values all and none
are valid, as are the values listed with the following keywords.

abbrev=names
Abbreviate output from large structures for system calls
listed in names.

read=descriptors
Print all data read from the given file descriptors.

signal=symbols
Trace the listed signal symbols (for example,
signal=SIGIO,SIGHUP).

trace=sets
sets may be a list of system call names or one of the
following:

file Calls that take a filename as an argument
ipc Interprocess communication
network Network-related
process Process management
signal Signal-related

Alphabetical Summary of GNU/Linux Commands | 299

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

strace

raw=names
Print arguments for the given system calls in hexadecimal.

verbose=names
Unabbreviate structures for the given system calls.
Default is none.

write=descriptors
Print all data written to the given file descriptors.

-E var[=val]
With no val, remove var from the environment before running
command. Otherwise, run command with environment vari-
able var defined to val in the environment.

-f Trace forked processes.

-ff Write system calls for forked processes to separate files named
filename.pid when using the -o option.

-h Print help and exit.

-i Print instruction pointer with each system call.

-o filename
Write output to filename instead of standard error. If filename
starts with the pipe symbol |, treat the rest of the name as a
command to which output should be piped.

-O n Override strace’s built-in timing estimates, and just subtract n
microseconds from the timing of each system call to adjust for
the time it takes to measure the call.

-p pid
Attach to the given process ID and begin tracing. strace can
trace more than one process if more than one -p option is
given. Type CTRL-C to end the trace.

-q Quiet mode. Suppress attach and detach messages.

-r Relative timestamp. Print time in microseconds between
system calls.

-s n Print only the first n characters of a string. Default value is 32.

-S value
Sort output of -c option by the given value. value may be
calls, name, time, or nothing. Default is time.

-t Print time of day on each line of output.

-tt Print time of day with microseconds on each line of output.

-ttt
Print timestamp on each line as number of seconds since the
Epoch.

-T Print time spent in each system call.

-u username
Run command as username. Needed when tracing setuid and
setgid programs.

-v Verbose. Do not abbreviate structure information.

-V Print version and exit.

300 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

umount

-x Print all non-ASCII strings in hexadecimal.

-xx Print all strings in hexadecimal.

umount umount [options] [directory | special-device]

System administration command. Unmount a filesystem. umount
announces to the system that the removable file structure previ-
ously mounted on the specified directory is to be removed. umount
also accepts the special-device to indicate the filesystem to be
unmounted; however, this usage is obsolete and will fail if the
device is mounted on more than one directory. Any pending I/O
for the filesystem is completed, and the file structure is flagged as
clean. A busy filesystem (one with open files or with a directory
that is some process’s current directory) cannot be unmounted.

Options

-a Unmount all filesystems that are listed in /etc/mtab.

-d If the unmounted device was a loop device, free the loop
device too. See also losetup(8).

-f Force the unmount.

-h Print help message and exit.

-l Lazy unmount. Detach the filesystem from the hierarchy
immediately, but don’t clean up references until it is no longer
busy. Requires kernel 2.4.11 or later.

-n Unmount, but do not record changes in /etc/mtab.

-O options
Unmount only filesystems with the specified options in /etc/
fstab. Specify multiple options as a comma-separated list. Add
no as a prefix to an option to indicate filesystems that should
not be unmounted.

-r If unmounting fails, try to remount read-only.

-t type
Unmount only filesystems of type type. Multiple types can be
specified as a comma-separated list, and any type can be
prefixed with no to specify that filesystems of that type should
not be unmounted.

-v Verbose mode.

-V Print version information and exit.

watch watch [options] command [cmd_options]

Run the specified command repeatedly (by default, every 2
seconds) and display the output so you can watch it change over
time. The command and any options are passed to sh -c, so you
may need to use quotes to get correct results.

Alphabetical Summary of GNU/Linux Commands | 301

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

wget

Options

-d, --differences[=cumulative]
Highlight changes between iterations. If cumulative is speci-
fied, the highlighting remains on the screen throughout, giving
a cumulative picture of the changes.

-h, --help
Display help message and exit.

-n secs, --interval=secs
Run the command every secs seconds.

-t, --no-title
Do not print a header line.

-v, --version
Print version information and exit.

wget wget [options] [URL ...]

wget retrieves files from the Internet, most often using FTP or
HTTP. It is capable of following links embedded in retrieved files,
making it possible to mirror entire web sites. It has a plethora of
options, making it difficult to use easily. See also curl in the earlier
section “Alphabetical Summary of Common Commands.”

URL: http://www.gnu.org/software/wget/.

Primary Options

-a file, --append-output=file
The same as -o, but output is appended to the file, instead of
overwriting it.

-b, --background
Start off in the background. If no log file is specified with -o,
use wget-log.

-c, --continue
Continue retrieving a file that was partially downloaded. Very
useful if a previous download was interrupted. See the
manpage for some version-dependent caveats.

-d, --debug
Enable debugging output.

-h, --help
Print a help message summarizing the options and exit.

--http-passwd=password
Use password as the password when an HTTP server prompts
for a user and password. See the manpage for a discussion of
security issues.

--http-user=user
Use user as the user when an HTTP server prompts for a
user and password. See the manpage for a discussion of
security issues.

302 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

wget

-I dirlist, --include-directories=dirlist
When downloading, follow the directories in the comma-sepa-
rated list dirlist. Elements in dirlist may contain wildcards.

-l depth, --level=depth
Set the maximum recursion level to depth. The default is five.

-m, --mirror
Enable options needed for mirroring. Equivalent to -r -N -l
inf --no-remove-listing.

--no-glob
Turn off FTP globbing (wildcard expansion). Globbing is
automatically enabled if a URL contains shell wildcard charac-
ters. URLs with such characters should be quoted to protect
them from the shell.

-nv, --non-verbose
More verbose than -q but less verbose than -v. Only errors
and basic information are printed.

-o file, --output-file=file
Log all messages to file, instead of to standard error.

-P prefix, --directory-prefix=prefix
Use prefix for the directory prefix, i.e., the directory under
which all retrieved files are saved. The default is . (dot), i.e.,
the current directory.

--passive-ftp
Use passive FTP to retrieve files. Often needed for clients
residing behind a firewall.

--progress=type
Set the progress indicator. Valid values are dot and bar, the
default is bar.

--proxy-passwd=password
Use password as the password for authentication on a proxy
server. See the manpage for a discussion of security issues.

--proxy-user=user
Use user as the user for authentication on a proxy server. See
the manpage for a discussion of security issues.

-q, --quiet
Be quiet, printing no output.

-r, --recursive
Enable recursive retrieval.

-t count, --tries=count
Retry no more than count times. Use 0 or inf to retry infi-
nitely. The default is to retry 20 times.

-v, --verbose
Be verbose. This is the default.

-V, --version
Print a version message and exit.

Alphabetical Summary of GNU/Linux Commands | 303

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xmlto

-X dirlist, --exclude-directories=dirlist
When downloading, exclude the directories in the comma-
separated list dirlist from consideration. Elements in dirlist
may contain wildcards.

-Y val, --proxy=val
Enable/disable proxy support. Use one of on or off for val.

See the manpage for a description of the other options.

xmlto xmlto [options] format file

Convert a DocBook/XML file into a formatted file. The format is
typically something like pdf or html. The file should be a text file
containing DocBook/XML markup. xmlto applies a stylesheet to
convert the document to the appropriate format, possibly format-
ting it in the process.

Available Formats

Options

--extensions
Enable stylesheet extensions for the toolchain in use.

-m XSL-file
Use the XSL in XSL-file to modify the stylesheet.

-o dir
Place output files in the directory dir instead of in the current
directory.

-p options
Pass the options on to the post-processing program. Repeat -p
to pass options on to the second stage post-processor. (This
currently applies only to the ps format, which uses TeX to
produce DVI and dvips to produce PostScript.)

--searchpath path
Add the directories in the colon-separated path to the search
path for files to include.

dvi TeX DVI file.
fo XSL-FO formatting objects.
html Hypertext Markup Language.
html-nochunks HTML, in one large file.
htmlhelp HTML Help files.
javahelp Java Help files.
man Unix-style manpages.
pdf Adobe’s Portable Document Format (PDF) files.
ps PostScript files.
txt Plain text files.
xhtml XHTML (XML-derived HTML) files.
xhtml-nochunks XHTML, in one large file.

304 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apply

--skip-validation
Skip the normal validation check.

-x stylesheet
Use stylesheet instead of picking one automatically.

Examples

Produce a PDF file from DocBook/XML input:

xmlto pdf brochure.xml

Generate HTML in a separate directory:

xmlto -o /share/webserver/brochure html brochure.xml

Alphabetical Summary of Mac OS X Commands

apply apply [options] command argument ...

Apply command to one or more of the following arguments in turn.
command may contain a % followed by a digit from 1 to 9. Such text
is replaced with the corresponding following unused argument.

Options

-N Use arguments in groups of N. For example, -2 uses two argu-
ments for each invocation of command. Occurrences of %N in
command override this option.

-a char
Use char instead of % as the special character to represent
arguments.

-d Display the commands that would be executed, but don’t
actually execute them.

Example

Run awk against multiple test programs and data. The example uses
brace expansion as in Bash and tcsh:

apply -2 'awk -f' test1.{awk,in} test2.{awk,in} test3.{awk,in}

chflags chflags [-R [-H | -L | -P]] flags file ...

Change the file flags associated with files. The flags are additional
control bits that can be displayed by using ls -lo.

Options

-H With -R, follow symbolic links on the command line.
Symbolic links found during file traversal normally are not
followed.

-L With -R, follow all symbolic links.

Alphabetical Summary of Mac OS X Commands | 305

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

chpass

-P With -R, don’t follow any symbolic links. This is the default.

-R Recursive. For each file that is a directory, change the flags in
the entire contained directory hierarchy. Otherwise, just
changes the flags for each named file.

Flags

arch, archived
The archived flag (privileged user only)

nodump
The nodump flag (owner or privileged user only)

opaque
The opaque flag (owner or privileged user only)

sappnd, sappend
The system append-only flag (privileged user only)

schg, schange, simmutable
The system immutable flag (privileged user only)

sunlnk, sunlink
The system undeletable flag (privileged user only)

uappnd, uappend
The user append-only flag (owner or privileged user only)

uchg, uchange, uimmutable
The user immutable flag (owner or privileged user only)

uunlnk, uunlink
The user undeletable flag (owner or privileged user only)

Put the letters no in front of a flag name to clear the given flag.
Symbolic links don’t have flags, thus the operation always succeeds
but makes no change.

chfn chfn [options] [user]

Identical to chpass. See chpass for more information.

chpass chpass [options] [user]

Change information in the user database. If supplied, the informa-
tion for user is changed; otherwise, the current user’s information
is updated. Only a privileged user may change information for a
different user, and several options are restricted to privileged users.
chpass places the information into a temporary file and invokes an
editor. Once the new values are filled in and the information is
verified, the program updates the system’s user database, /etc/
master.passwd.

On Mac OS X, you are probably better off using the graph-
ical system administration tools for user management.

306 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

chsh

Options

-a list
Use the literal user database entry list directly. It is a colon-sepa-
rated list of items as found in each line of /etc/master.passwd.
Privileged users only.

-e time
Set the account’s expire time to time. Privileged users only.

-p pass
Use pass as the encrypted password. See getpwent(3) for the
implications of this option. Privileged users only.

-s shell
Use shell as the user’s shell. Valid shells are listed in /etc/
shells.

chsh chsh [options] [user]

Identical to chpass. See chpass for more information.

defaults defaults [options] command [arguments]

Access or update the application defaults database. Most Mac OS X
applications maintain a set of application defaults in a per-user data-
base. The database provides storage for these defaults for when the
application is not running. The defaults command provides access
to this database from the Unix shell. Besides the per-user database,
there is also a system-wide, global database of default values.

Applications are specified either by name with the -app option, or
via a Java-style domain name, such as com.apple.TextEdit. Defaults
are stored as key/value pairs. Keys are always strings, but values
may be complicated structures such as arrays and dictionaries, or
strings or binary data. They are stored as XML property lists.

It is inadvisable to change the defaults for an application
that is running. The application will not see the change,
and could potentially overwrite the new values when it
exits.

Options

-app appname
Access the defaults for application appname.

-array
The value for a preference key is an array. The array values are
given as separate arguments in a list. The new value over-
writes any previous value for the key.

-array-add
Like -array, but the new elements are appended to an existing
array of values.

Alphabetical Summary of Mac OS X Commands | 307

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

defaults

-bool[ean]
The value for a preference key is a boolean. The value must be
one of TRUE, FALSE, YES, or NO.

-currentHost
Preference operations may be performed only on the current
host.

-data
The value for a preference key consists of raw data bytes. The
data must be provided in hexadecimal.

-date
The value for a preference key is a date.

-dict
The value for a preference key is a dictionary. Dictionaries
consist of key/value pairs. They are provided as separate argu-
ments in key-pair, key-pair order. Any existing value for the
key is replaced with the dictionary.

-dict-add
Like -dict, but the key/value pairs are appended to an existing
dictionary.

-float
The value for a preference key is a floating point number.

-g, -globalDomain, NSGlobalDomain
Access the global system defaults in the Global Domain. Note
that NSGlobalDomain is a domain name, not really an option.

-host hostname
Preference operations may be performed only on the host
named hostname.

-int[eger]
The value for a preference key is an integer.

-string
The value for a preference key is a string.

Commands

delete domain [key]
With a key, remove the given key from domain’s defaults.
Without key, remove all the information for domain.

domains
Print the names of all domains in the user’s default system.

find string
Look for string in the user’s domain names, keys, and values,
and print a list of found matches.

help
Print a help message showing command formats.

read [domain [key]]
With no domain or key, read all of the current user’s defaults, for
every domain. With just a domain, read all of the current user’s
defaults for that domain. With both a domain and a key, read the
current user’s default for the given key in the given domain. In all
cases, the retrieved data are printed to standard output.

308 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

developer

read-type domain key
Print the property list type for the key key in the domain
domain.

write domain key value
Store value as the value for the key key in the application
domain domain. Quote value if it contains whitespace or shell
metacharacters.

write domain proplist
Store the property list proplist as the defaults for the applica-
tion domain domain. The proplist must be a property list
representation of a dictionary, and must be quoted so that it is
a single argument.

developer /Developer/Tools/*

The /Developer/Tools directory contains a number of programs
primarily for use by developers. The following three programs are
useful for general users as well; see their manpages for more
information:

The rest of the programs are:

ditto ditto [options] files directory
ditto [options] directory1 directory2

Copies files and directories while preserving most file information,
including resource fork and HFS metadata information when
desired. ditto preserves the permissions, ownership, and time-
stamp of the source files in the copies. ditto overwrites identically
named files in the target directory without prompting for
confirmation.

ditto works like cp in the first synopsis form. However, the second
form differs in that cp -r copies the entire directory1 into an
existing directory2, while ditto copies the contents of directory1
into directory2, creating directory2 if it doesn’t already exist.

CpMac Copy files, keeping multiple resource forks and HFS
attributes intact

MvMac Move or rename files while preserving resource forks
and HFS metadata

SplitForks Copy the resource fork and HFS attributes from
file into ._file.

agvtool firewire pbprojectdump SetFile
BuildStrings GetFileInfo PPCExplain uninstall-dev
cvs-unwrap MergePef ResMerger UnRezWack
cvs-wrap packagemaker Rez WSMakeStubs
DeRez pbhelpindexer RezWack

Alphabetical Summary of Mac OS X Commands | 309

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ditto

Options

-arch arch
When copying fat binary files, copy only the code for CPU
type arch. Fat binary files contain different code for different
CPU architectures. The -arch flag allows you to “thin” the
binary by copying only the code for the specified architecture.
Possible values for arch include ppc, m68k, i386, hppa, and
sparc.

-bom pathname
When copying a directory, include in the copy only those
items listed in BOM (Bill of Materials) file pathname. See
mkbom(8), lsbom(8), and bom(5) for more information on
BOM files.

-c Create a cpio archive at directory2.

--extattr
Preserve POSIX extended attributes. This is the default.

-h, --help
Print a usage message.

-k Specify that archives are PKZip format.

--keepParent
Embed directory1’s parent directory in directory2.

--nocache
Do not use the Mac OS X Unified Buffer Cache when copying
files.

--noextattr
Do not preserve POSIX extended attributes. Use with --rsrc
to copy only resource forks and HFS metadata, without
copying other extended attributes.

--norsrc
When copying files, do not preserve any resource forks or HFS
metadata information.

--rsrc
When copying files, do include any resource fork and HFS
metadata information.

--sequesterRsrc
For PKZip archives, preserve resource forks and HFS meta-
data in the subdirectory _ _MACOSX. The resources will be found
automatically when doing a PKZip extraction.

-v Be verbose; report each directory copied.

-V Be very verbose; report each file, symbolic link and device
copied.

-x Treat directory1 as a source archive and extract it. The
assumed format is cpio, unless -k is used. Compressed cpio
format is automatically recognized and handled.

-X Don’t descend into directories on another device.

-z Create or read compressed cpio archives.

310 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

lam

Example

Duplicate an entire home directory, copying the contents of /Users/
arnold into the directory /Volumes/Bigdisk/Users/arnold and
preserving resource forks and HFS metadata:

ditto --rsrc /Users/arnold "/Volumes/Big Disk/Users/arnold"

lam lam [options] file ...

Laminate files. Lines are read from the given files and pasted
together side by side. In other words, line 1 of the output is the
concatenation of line 1 from each input file, line 2 is the concatena-
tion of line 2 from each input file, and so on. Use - to mean
standard input.

Options

-f min.max
Use min as the minimum field width for the following file’s
lines, and max as the maximum field width. min may start
with a zero, in which case padding is done with zeros. It may
also start with a -, in which case the output is left-adjusted.

-F min.max
Like -f, but apply the field width specification to all following
input files, until another -f is encountered.

-p min.max
Like -f, but pad this file’s field in the output if end-of-file is
encountered on it while the other files still have data.

-P min.max
Like -p, but apply the field width specification to all following
input files, until another -p is encountered.

-s sep
Print sep after the following file’s line, before the line from the
next file. Normally, the lines are joined without any inter-
vening separator.

-S sep
Like -S, but apply the separator specification to all following
input files, until another -s is encountered.

-t char
Input lines are terminated by the character char, instead of
newline.

-T char
Like -t, but apply the input line terminator specification to all
following input files, until another -t is encountered.

leave leave [[+]hhmm]

Remind you when you have to leave. The time given, hhmm, may be
in 12 or 24-hour format. hh represents hours and mm represents
minutes. The time is converted to the corresponding wall clock time

Alphabetical Summary of Mac OS X Commands | 311

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

mount

in the upcoming 12 hours. leave prompts you to leave five minutes
before, one minute before, and at the given time, and then every
minute thereafter. With a leading +, the time is taken as an offset from
the current time. With no argument, leave prompts you for a time;
this is useful from a shell start-up file, such as ~/.profile or ~/.login.
Logout, or kill it with kill in order to terminate it.

mount mount [options] [[device] directory]

System administration command. Mount a filesystem. The file-
system on device is mounted on directory. If no device is specified,
mount looks for an entry in /etc/fstab to find what device is associ-
ated with the given directory. The directory, which must already
exist and should be empty, becomes the name of the root of the
newly mounted filesystem. If mount is invoked with no arguments, it
displays the name of each mounted device, the directory on which
it is mounted, its filesystem type, and any mount options associ-
ated with the device. See also umount.

Note: despite the references in the Mac OS X mount(8) manpage to
/etc/fstab, that file is not used. On Mac OS X 10.4, the file /etc/
fstab.hd (note the slightly different name) has these contents:

$ cat /etc/fstab.hd
IGNORE THIS FILE.
This file does nothing, contains no useful data, and might
go away in future releases. Do not depend on this file or
its contents.

Options

-a Mount all filesystems that are available for mounting. Use -t
to limit this to all filesystems of a particular type. Filesystems
marked noauto are not mounted.

-d Debugging; does everything but actually make the system call.
Useful with -v.

-f Force removal of write status; used for changing a mount from
read-write to read-only.

-o option
Qualify the mount with a mount option. Filesystem specific
options may be passed as a comma separated list in the argu-
ment to -o, and different filesystems may have additional
options. The following general options are available:

auto, noauto
Filesystems marked auto are mounted automatically with
the -a option. Those marked noauto are not.

async, noasync
The async option uses asynchronous I/O to the device.
This can improve throughput at a potential cost in reli-
ability. noasync disables this.

312 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nano

dev, nodev
The dev option allows the system to interpret any special
devices that exist on the filesystem as device files. The
nodev option disallows it; device files are ignored.

exec, noexec
The exec option allows the system to execute binary files
on the filesystem. The noexec option disallows it.

force
Identical to -f, removes write access from a mount.

nosuid
Do not acknowledge any setuid or setgid bits.

rdonly
Same as -r; the filesystem is mounted read-only.

sync
All I/O is done synchronously.

union
Merge the mounted filesystem’s root and the contents of
the directory upon which its mounted. Lookup opera-
tions are done in the mounted filesystem first, and then in
the underlying directory. New files are created in the
mounted filesystem.

update
Same as -u, changes the status of an already mounted
filesystem.

-r Mount the filesystem read-only.

-t type
Specify the filesystem type. Possible values include afp, autofs,
cd9660, cddafs, devfs, fdesc, ftp, hfs, ldf, msdos, nfs, ntfs,
smbfs, synthfs, udf, ufs, volfs, and webdav. The default type is
ufs. Use a comma-separated list to specify more than one type
to mount, and prefix a type with no to exclude that type.

-u Update (change) the status of an already mounted filesystem.
E.g., from read-only to read-write.

-v Display mount information verbosely.

-w Mount filesystem read/write. This is the default.

nano nano [+line] [options] [file]

Replacement program for the non-free Pico editor supplied with the
Pine email reader. Mac OS X provides pico as a symbolic link to nano.

URL: http://www.nano-editor.org/.

Options
The options -a, -b, -e, -f, -g, and -j are accepted but ignored for
compatibility with pico.
+line

Go to line number line at startup.

-B, --backup
Upon saving a file, keep the previous version in a file with the
same name and a ~ character at the end.

Alphabetical Summary of Mac OS X Commands | 313

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nano

-c, --const
Always (constantly) show the cursor position.

-D, --dos
Write files in MS-DOS format (CR-LF line terminators).

-F, --multibuffer
Use multiple file buffers.

-h, --help
Print a command-line option summary.

-H, --historylog
If support for startup files is configured, log search and replace
stings in ~/.nano_history.

-i, --autoindent
Enable auto-indentation. Useful for source code.

-I, --ignorercfiles
If support for startup files is configured, do not read the
$SYSCONFDIR/nanorc or ~/.nanorc files.

-k, --cut
Enable cut from cursor to end of line with ^K.

-K, --keypad
Use the ncurses keypad() function only if necessary. Try this
option if the arrow keys on the numeric keypad do not work
for you.

-l, --nofollow
If editing a symbolic link, replace the link with a regular file,
instead of following the link.

-m, --mouse
Enable mouse support.

-M --mac
Write files in Macintosh (presumably Mac OS 9) format (CR
line terminators).

-N --noconvert
Disable the automatic conversion of files from MS-DOS or
Macintosh formats.

-o dir, --operatingdir=dir
Use dir as the operating directory. The manual page says
“Makes nano set up something similar to a chroot.”

-p, --preserve
Allow the terminal to use XON and XOFF (^Q and ^S).

-Q str, --quote=str
Use str as the quoting string for justifying. If regular expres-
sion support is available, the default is “^([\t]*[|>:}#])+”;
otherwise, it’s “> ”.

-r cols, --fill=cols
Upon reaching column cols, wrap the line.

314 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

open-x11

-R, --regexp
If regular expression support is available, enable regular
expression matching for all search strings, and the use of \n in
replacement strings. (See Chapter 7.)

-s prog, --speller=prog
Use prog to check spelling.

-S, --smooth
Enable smooth, line-by-line scrolling.

-t, --tempfile
Always save the changed buffer without prompting for
confirmation.

-T num, --tabsize=num
Set the width of a tab to num characters.

-v, --view
View the file. (Read-only mode.)

-V, --version
Show the version number and author.

-w, --nowrap
Don’t wrap long lines.

-x, --nohelp
Disable the help screen at the bottom of the editor.

-Y name, --syntax=name
Use name as the kind of syntax highlighting to use.

-z, --suspend
Enable suspension of the editor.

open-x11 open-x11 program ...

Run program so that it can connect to the current X server. Needed
for X11 applications under Mac OS X, since Aqua is not an X
server.

pbcopy pbcopy [-help] [-pboard pasteboard]

Copy standard input into one of the system pasteboards. The
general pasteboard is used by default. The data are stored as
ASCII, unless they begin with an EPS (encapsulated PostScript) or
RTF (Rich Text Format) header, in which case those formats are
used. See also pbpaste.

Options

-help
Print a help message.

-pboard pasteboard
Use the pasteboard pasteboard. Possible values are general,
ruler, find, or font.

Alphabetical Summary of Mac OS X Commands | 315

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ps

pbpaste pbpaste [-help] [-pboard pasteboard] [-Prefer type]

Retrieve the data from the given pasteboard and print them to stan-
dard output. The general pasteboard is used by default. See also
pbcopy.

Options

-help
Print a help message.

-pboard pasteboard
Use the pasteboard pasteboard. Possible values are general,
ruler, find, or font.

-Prefer type
Try to retrieve data of the given type first. Possible values are
ascii, rtf, or ps. If data of the given type are not found,
pbpaste retrieves whatever data are there.

pico pico [+line] [options] [file]

Small simple editor. This is actually the “Nano” Free Software
editor. See nano for more information.

ps ps [options]

Report on active processes. Following the BSD tradition, a minus
sign is allowed but not required in front of options. In options, list
arguments should either be separated by commas or put in double
quotes.

Options

-a List other users’ processes, as well as your own.

-A List other users’ processes, including those without a control-
ling terminal.

-c In the command column, print just the command name, instead
of the full command line.

-C Use a different algorithm for calculating CPU percentage
which ignores resident time.

-e Include environment information after the command.

-h Print a header on each page of output.

-j Jobs format. Print the information for the command, jobc, pgid,
pid, ppid, sess, state, time tt, and user keywords.

-l Produce a long listing. Print the information for the command,
cpu, nice, pid, ppid, pri, rss, state, time tt, uid, vsz, and wchan
keywords.

-L Print list of keywords (field specifiers) that can be used for
output formatting or for sorting.

-m Sort by memory usage, not by process ID.

316 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ps

-M Show threads.

-N, --deselect
Negate the selection.

-o list
Like -O, but use only the keywords in list.

-O list
Append the keywords in list after the PID. The title of each
keyword may be changed by using an = sign after the keyword
(keyword=newtitle).

-p nums
Include only specified processes, which are given in a space-
delimited list.

-r Sort by CPU usage instead of by process ID number.

-S Include dead child process data in parent’s total.

-tttys
Display processes running on the specified terminals.

-T List information about processes using the current standard
input.

-u Give information for the keywords command, %cpu, %mem, pid, rss,
start, state, time tt, user, and vsz. This option implies -r.

-U user
Display processes for the specified user.

-v Display virtual memory format. This includes the keywords
command, %cpu, lim, %mem, pagein, pid, re, rss, sl, state, time,
tsiz, and vsz. This option implies -m.

-w Wide format. By default, use 132 columns. Repeating this
option causes ps to never truncate lines.

-x Display processes without an associated controlling terminal.

Keywords

Aliases for keywords are listed second, next to the keyword.

%cpu, pcpu Percentage of CPU used.
%mem, pmem Percentage of memory used.
acflag, acflg Accounting flag.
command Command and arguments.
cpu Short-term factor of CPU used.
flags, f Hexadecimal representation of process flags.
inblk, inblock Total amount of blocks read.
jobc Count for job control.
ktrace Tracing flags.
ktracep Tracing vnode.
lim Limit of memory usage.
logname Username of the user that started the

command.
lstart Start time.
majflt Page fault totals.
minflt Page reclaim totals.
msgrcv Messages received total.

Alphabetical Summary of Mac OS X Commands | 317

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ps

msgsnd Messages sent total.
nice, ni Nice value.
nivcsw Involuntary context switches total.
nsigs, nsignals Signals taken total.
nswap Swaps in/out total.
nvcsw Voluntary context switches total.
nwchan Wait channel (as number).
oublk, oublock Blocks written total.
p_ru Resource usage (valid only for zombie).
paddr Swap address.
pagein Pageins (same as majflt).
pgid Process group number.
pid Process ID number.
poip Number of pageouts in progress.
ppid Parent process ID.
pri Scheduling priority.
re Core residency time.
rgid Real GID.
rlink Reverse link on run queue.
rss Resident set size.
rsz, rssize Resident set size + (text size/text use count).
rtprio Realtime priority (101 = not a realtime

process).
ruid Real UID.
ruser Username (from ruid).
sess Session pointer.
sig, pending Signals that are pending.
sigcatch, caught Signals that have been caught.
sigignore, ignored Signals that are ignored.
sigmask, blocked Signals that are blocked.
sl Sleep time.
start Start time.
state, stat Symbolic process state.
svgid Saved GID from a setgid executable.
svuid Saved UID from a setuid executable.
tdev Device number of the controlling terminal.
time, cputime Total of user and system CPU time.
tpgid Process group ID of the controlling terminal.
tsess Session pointer for the controlling terminal.
tsiz Text size (in kilobytes).
tt Name of controlling terminal.
tty Controlling terminal’s full name.
uprocp Process pointer.
ucomm Command name used for accounting.
uid Effective UID.
upr, usrpri Scheduling priority after a system call has

been made.
user Username (from uid).
vsz, vsize Virtual size (in kilobytes).
wchan Wait channel (as symbolic name).
xstat Exit or stop status (only for stopped or

zombie processes).

318 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pstopdf

pstopdf pstopdf [inputfile] [-o outfile] [options]

Convert a PostScript input file to a PDF file. The PDF file is always
written to a file, whose name is either derived from the input file-
name, or which must be supplied via -o if the input data is read
from standard input.

Options

-i Read PostScript from standard input instead of from inputfile.

-l Write messages to a log file instead of to standard output. The
log file name is the same as the output filename, with a .log
extension added to it.

-p Print a progress message at the end of each page. The
messages always go to standard output, even with -l.

-o file
Place the output in file. By default, for an input PostScript file
whizprogdoc.ps, the PDF file will be named whizprogdoc.pdf.

pythonw pythonw python-args ...

Run a python program that has a GUI (Graphical User Interface).

URL: http://www.python.org.

say say [options] string | -f file

Text to speech synthesizer. The text is converted to sound and
played through the system’s speakers, or saved to a file.

Options

-f file
Read the text in file.

-o file.aiff
Save the sound in the given output file.

-v voice
Use the given voice for producing speech. Both masculine and
feminine voices are available. The default voice is selected in
the System Preferences.

Example

Add voice prompts to your shell scripts with the following shell
function:

prompt () {
 say "$*" & Play prompt in background
 echo -n "$*"": " Traditional shell prompting
}

Alphabetical Summary of Mac OS X Commands | 319

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

shlock

shar shar file ...

Produce a Shell archive. The output is a shell script, which when
run with a Bourne-compatible shell, will extract the original files
and directories. It is useful for distributing files via electronic mail
or ftp. All directories should be named on the command line
before regular files so that they will be re-created correctly.

This version of shar is very simple. It cannot handle
binary data files, and may not be robust in the face of
unusual filenames either.

shlock shlock -f lockfile [-p PID] [-u] [-v]

Create or verify a lockfile that can be used from shell scripts. shlock
uses the rename(2) system call for making the final lock file; its
operation is atomic.

When creating a lock, use -p to place the process ID into the file, so
that a later invocation can verify the existence of the original
creating process.

When verifying a lock, do not use the -p option. shlock then uses
the kill command to verify that the process recorded in the file is
still alive. If not, shlock exits with a value of 1.

Options

-f lockfile
Use lockfile as the name of the file to create or check. This
option must be provided.

-p PID
Write PID into lockfile.

-u UUCP-compatible locking. shlock writes the pid number as a
binary value.

-v Be verbose.

Example

Create and use a lock file:

lockf=/tmp/whizprog.lock

if shlock -f $lockf -p $$
then

do whatever is needed with the file locked
 rm -f $lockf
else
 echo "$0: Process ID $(cat $lockf) holds the lock" 1>&2
 exit 1
fi

320 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

srm

srm srm [options] file ...

Securely remove files. srm overwrites the data in each file before
unlinking it. This prevents recovery of file data by examination of
the raw disk blocks. The options are purposely similar to those of
the standard rm command.

URL: http://srm.sourceforge.net.

Options

-d, --directory
Ignored. For compatibility with rm.

-f, --force
Ignore nonexistent files. This prevents srm from prompting.

--help
Display an option summary and then exit.

-i, --interactive
Interactive. Prompt before removing files.

-m, --medium
Use seven US DOD compliant passes (0xF6, 0x00, 0xFF,
random, 0x00, 0xFF, and random).

-n, --nounlink
Overwrite the file, but do not unlink or rename it.

-r, -R, --recursive
Recursively remove the contents of directories.

-s, --simple
Overwrite files with just a single pass of random data.

-v, --verbose
Be verbose.

--version
Print version information and then exit.

-z, --zero
Zero the blocks used by the file after overwriting them.

umount umount [-fv] device | remotespec
umount -a|-A [-fv] [-h host] [-t type]

System administration command. Unmount a mounted filesystem.
device is a device name or other string indicating what is mounted.
A remotespec is a string of the form host:directory indicating a
remote host and filesystem (typically mounted via NFS). See also
mount.

Options

-a Unmount all filesystems listed in /etc/fstab or Open Directory.
(See mount for information about Mac OS X and /etc/fstab.)

-A Unmount all currently mounted filesystems, except for the
root filesystem (mounted at /).

Alphabetical Summary of Java Commands | 321

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt

-f Force the unmount. Open device files continue to work. Other
file accesses fail.

-h host
Unmount all filesystems from the server host.

-t type
Unmount filesystems of only the specified type.

-v Be verbose.

Alphabetical Summary of Java Commands

appletviewer appletviewer [options] urls

Connect to the specified urls and run any Java applets they specify
in their own windows, outside the context of a web browser.

Options

-debug
Run the applet viewer from within the Java debugger, jdb.

-encoding name
Specify the input HTML file encoding.

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

apt apt [options] [files ...] [@file ...]

Annotation processing tool. The apt command uses reflective APIs
from com.sun.mirror to annotate source code in order to provide a
view of a program’s structure. The APIs model the Java language’s
type structure, including generics.

Operands

files
Zero or more Java source files.

@file
One or more files listing the names of Java source files, or
other options.

Options

-A[key[=val]]
Options passed on to specific annotation processes, not inter-
preted directly by apt itself.

322 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

jar

-cp path, -classpath path
Look in path for class files and annotation processor factories.
With -factorypath, the classpath is not searched for factories.

-d dir
Place processor and compiled class files in dir.

-factory classname
Use classname as the annotation process factory. This
bypasses apt’s default discovery process.

-factorypath path
Find annotation processor factories in path. This option
disables searching the classpath for factories.

-nocompile
Disable compilation of source files into class files.

-print
Print a textual version of the types; do not do any annotation
processing or compilation.

-s dir
Use dir as the root directory in which to place generated
source files. Files are placed in subdirectories based on the
package namespace.

jar jar [options] [manifest] dest files

Java archive tool. All the named objects and directory trees (if
directories are given) are combined into a single Java archive,
presumably for downloading. jar is based on the ZIP and ZLIB
compression formats; zip and unzip can process .jar files with no
trouble. If a manifest is not provided, jar creates one automati-
cally. The manifest becomes the first entry in the archive, and it
contains any needed metadata about the archive.

Usage is similar to tar, in that the leading – may be omitted from
the options. jar is an excellent tool for creating and for opening
ZIP format files; its usage is much more intuitive for the long-time
Unix user already familiar with tar.

Options

-0 Do not use ZIP compression when creating the archive.

-c Create a new or empty archive to standard output.

-C directory
Change to directory before processing the filenames that
follow. Multiple -C options are allowed.

-f The second argument, dest, is the archive to process.

-i Create index information for the .jar file and the ones it
depends upon. Include a file named INDEX.LIST in the archive
which lists location information for each package in the .jar
file and all the .jar files in the Class-Path attribute of the file.

Alphabetical Summary of Java Commands | 323

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

jarsigner

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-m Use specified manifest instead of creating a manifest file.

-M Don’t create a manifest file.

-o Don’t compress the files with ZIP compression.

-t Print a table of contents for the archive on standard output.

-u Update an existing .jar file by adding to it the files and direc-
tories specified on the command line.

-v Produce verbose output to standard error.

-x[file]
Extract named file, or all files if no file given.

jarsigner jarsigner [options] jarfile alias
jarsigner -verify [options] jarfile

Sign or verify .jar files. Adding a digital signature to a .jar file
improves its security, since changing the contents causes the signa-
ture to become invalid. jarfile is the original file to be signed; alias
is a recognized alias for the identity of the signer. By default
jarsigner replaces the original file with the signed one. This can be
changed with the -signedjar option.

The generated signed .jar file is identical to the input one, with the
addition of two new files: a .SF signature file, and a .DSA signature
block file. The default names of these files are taken from the first
eight characters of alias, but this may be overridden with the -sigfile
option.

The -keypass, -keystore, -sigfile, -signedjar, and -storepass
options are only for signing a file.

Whenever jarsigner accepts a password for an option, if not
provided on the command line, the program prompts for a pass-
word. Such options should not be used in scripts or on the
command line, since they allow passwords to be seen. Similarly,
jarsigner does not turn off echoing when prompting for a pass-
word, so make sure no one else can see your screen when using
such options! See also keytool.

Options

-certs
Together with -verify and -verbose, provide certificate infor-
mation for each signer of the .jar file.

-internalsf
Revert to earlier behavior, whereby the .DSA file also contains a
copy of the .SF file. Useful mainly for testing.

324 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

jarsigner

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-keypass password
Use password to protect alias’s private key in the keystore.
This password must be used when signing a .jar file.

-keystore file | url
Provide the location of the keystore (database file) holding the
signer’s keys. The default is the .keystore file in the user’s
home directory, as specified by the user.home system prop-
erty. This defaults to the user’s home directory. The location
may be specified as either a filename or a URL.

-provider class_name
Use class_name as the master class file for the cryptographic
service provider when such is not listed in the security proper-
ties file.

-sectionsonly
Prevent jarsigner from including a header in the .SF file with a
hash of the entire manifest file. This prevents a useful optimi-
zation, and should only be used for testing.

-sigfile name
Use name as the base part of the filename for the signature and
signature block files added to the .jar file.

-signedjar file
Use file as the signed file.

-storepass password
Use password as the password to access the keystore.

-storetype type
Use type as the type of keystore to instantiate.

-verbose
Provide extra information about progress during signing or
about the verification.

-verify
Verify a .jar file instead of signing one. jarsigner can also
verify a file signed with the JDK 1.1 javakey program.

Examples

Sign a .jar file by multiple users:

jp$ jarsigner whizprog.jar jp User jp signs it
boss$ jarsigner whizprog.jar boss User boss signs it

Verify the signatures:

customer$ jarsigner -verify whizprog.jar Customer checks it out
jar verified

Alphabetical Summary of Java Commands | 325

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

java

java java [options] classname [args]
java [options] -jar jarfile [args]

Load and execute Java bytecode class files. By default, java uses the
“Just In Time” (JIT) compiler for the current system. args are
passed on to the Java program’s main() method.

Options

-agentlib:lib[=options]
Load the native agent library lib, optionally passing options to it.

-agentpath:path[=options]
Use path to load a native agent library by full path.

-client
Use the Java HotSpot Client VM.

-cp path, -classpath path
Use the colon-separated list of directories in path instead of
$CLASSPATH to find class files. It is usually a good idea to
have the current directory (“.”) on the search path.

-d32, -d64
Specify a 32- or 64-bit environment, respectively. On 64-bit
systems, 64 bits is the default. Otherwise, the 32-bit environ-
ment is used.

-dsa, -disablesystemassertions
Disable assertions in all system classes.

-Dprop=val
Redefine the value of prop to be val. This option may be used
any number of times.

-esa, -enablesystemassertions
Enable assertions in all system classes.

-jar jarfile
Invoke the main() method of the class listed in the Main-Class
manifest header in jarfile.

-javaagent:jarpath[=options]
Use jarpath to load a Java agent.

-server
Use the Java HotSpot Server VM.

-showversion
Display version information and continue running.

-verbose[:item]
With item, display information about that item. Possible
values for item are class, to print a message to standard
output each time a class file is loaded; gc, to report each
garbage collection event; and jni, for information about native
methods. Plain -verbose is the same as -verbose:class.

-version
Display version information for java.

-X Print information about nonstandard options, such as for
debugging, control of garbage collection, interpreted mode

326 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

javac

only, and so on. The Solaris java(1) manpage says: “The -X
options are nonstandard and subject to change without notice.”

-?, -help
Print a usage message.

javac javac [options] files

Compile Java source code into Java bytecode, for execution with
java. Java source files must have a .java suffix and must be named
for the class whose code they contain. The generated bytecode files
have a .class suffix. By default, class files are created in the same
directory as the corresponding source files. Use the CLASSPATH
variable to list directories and/or ZIP files that javac will search to
find your classes.

In the case that there are too many files to list on the command
line, you may list the source and class files in a separate file, and
indicate the contents of the file to javac by prepending an @ to the
filename.

Options

-bootclasspath path
Use the colon-separated list of directories in path for the boot
classes, instead of the boot classes used by the java command
itself.

-classpath path
Use the colon-separated list of directories in path instead of
$CLASSPATH to find class files. It is usually a good idea to
have the current directory (”.”) on the search path.

-cldc1.0
For compiling CLDC programs. This causes the compiler to
generate stack maps, which obviates the need for the
preverifier.

-d dir
Specify where to create generated class files.

-deprecation
Warn about every use or override of a deprecated member or
class, instead of warning at the end.

-Djava.ext.dirs=dirs
Use dirs as the location for installed extensions.

-Djava.endorsed.dirs=dirs
Use dirs as the endorsed standards path.

-encoding encoding
The source file is encoded using encoding. Without this
option, the system’s default converter is used.

-extdirs dirs
For cross-compilation, use the specified dirs as the extension
directories.

-g Generate all debugging information, including local variables.

Alphabetical Summary of Java Commands | 327

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

javadoc

-g:type
Generate only the debugging information specified by type.
Possible values are:

-help
Print a usage message.

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-nowarn
Disable all warnings.

-O Perform optimizations that may produce faster but larger class
files. It may also slow down compilation. This option should
be used with discretion.

-source version
Accept Java language source as specified by version. Accept-
able values are 1.5 and 5 for JDK 1.5 features, such as
generics, 1.4 for JDK 1.4 features (assertions), or 1.3 for only
JDK 1.3 language features.

-sourcepath path
Use path to search for class and interface definitions. Classes
found through the classpath may be recompiled if their source
files are found.

-target version
Compile for the JVM matching version. Values for version are
1.1, 1.2, 1.3, 1.4, 1.5, and 5 (a synonym for 1.5). The default
is 1.2, although -source 1.4 or lower changes the default JVM
to 1.4.

-verbose
Print messages as files are compiled and loaded.

-X Print information about nonstandard options and exit.

javadoc javadoc [options] files | classes

Process declaration and documentation comments in Java source
files and produce HTML pages describing the public and protected
classes, interfaces, constructors, methods, and fields.

In the case that there are too many files to list on the command
line, you may list the source and class files in a separate file, and
indicate the contents of the file to javadoc by prepending an @ to
the filename.

lines Line number debugging information.
none No debugging information.
source Source file debugging information.
vars Local variable debugging information.

328 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

javadoc

javadoc uses “doclets” to format the source code. You can supply
your own doclet with the -doclet option. The standard doclet
produces HTML. The following section lists the union of the
javadoc options and those of the standard doclet.

Options

Options are case-insensitive, although option arguments may not be.

-1.1
Create documentation matching that of javadoc 1.1. No longer
available; use javadoc 1.2 or 1.3 if you need it.

-author
Include @author tags.

-bootclasspath path
Use the colon-separated list of directories in path for the boot
classes, instead of the boot classes used by the java command
itself.

-bottom text
Place text at the bottom of each output file. text may contain
HTML tags and whitespace, but must be quoted if it does.

-breakiterator
Use internationalized sentence boundary of java.text.
BreakIterator for English for the first sentence, which is
copied to the index. The default is to use a locale-specific algo-
rithm for English.

-charset charset
Use charset as the HTML character set for the document.

-classpath path
Use the colon-separated list of directories in path instead of
$CLASSPATH to find class files. It is usually a good idea to
have the current directory (“.”) on the search path. It is better
to use -sourcepath instead of -classpath.

-d dir
Create the generated HTML files in dir.

-docencoding encoding
Use encoding for the generated HTML file.

-docfilessubdirs
Enable deep copying of directories for document files.

-doclet class
Use class as the doclet to produce documentation.

-docletpath pathlist
Use pathlist to find the doclet class file(s).

-doctitle title
Use title as the title of the document, which is placed near the
top of the overview summary file.

-encoding encoding
The Java source file is encoded using encoding.

Alphabetical Summary of Java Commands | 329

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

javadoc

-exclude packages
Unconditionally exclude packages, even if they would other-
wise be included.

-excludedocfilessubdir names
Exclude the subdirectories names. Useful to avoid copying
source code control directories.

-extdirs directories
Search for extensions in directories.

-footer text
Place text at the bottom of each output file.

-group groupheading package-list
Group the packages in package-list into a group labeled group-
heading. Each group gets its own table on the overview page.

-header text
Place text at the top of each output file.

-help
Print a short help message.

-helpfile file
Use file as the help file, instead of the automatically-generated
helpdoc.html file.

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-keywords
Place HTML meta keyword tags into the file.

-link URL
Add a link to the javadoc-generated document specified by
URL. It must specify a directory, not a file, and may be either a
relative or absolute URL.

-linkoffline URL packagelistfile
Use instead of -link when javadoc is not able to access the
URL over the Web. The list of packages is provided in pack-
agelistfile, which is usually a local file.

-linksource
Create an HTML version of the source code that is linked-to
by the HTML documentation.

-locale locale-spec
Generate documentation using the language described by
locale-spec. This option must come before any options
provided by any doclet, or else all the navigation bars will be
in English.

-nocomment
Suppress the comment body, generating only declarations.

-nodeprecated
Exclude paragraphs marked with @deprecated.

330 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

javadoc

-nodeprecatedlist
Do not generate the deprecated-list.html file or the link to it
from the navigation bar. Useful if you use no deprecated APIs
to make the documentation cleaner.

-nohelp
Do not generate the HELP link.

-noindex
Do not generate the package index.

-nonavbar
Do not generate the navigation bar, header, or footer. Useful if
all you need is the documentation itself.

-noqualifier all | package-list
Omit package qualifiers from the packages in package-list, or
from all packages if all is used.

-nosince
Do not generate the “since” sections from @since tags.

-notimestamp
Suppress the hidden timestamp in each file. Useful for
comparing two versions of the documentation.

-notree
Do not generate the class and interface hierarchy.

-overview file
Use file for the overview documentation in the overview page,
overview-summary.html.

-package
Include only package, protected, and public classes and
members.

-private
Include all classes and members.

-protected
Include only protected and public classes and members. This
is the default.

-public
Include only public classes and members.

-quiet
Do not include the version number of the standard doclet in
the generated output.

-serialwarn
Warn about missing @serial tags.

-sourcepath path
Use path as the search path for class source files. path is a
colon-separated list of directories. If not specified, it defaults
to the current -classpath directory. Running javadoc in the
directory with the sources allows you to omit this option.

-splitindex
Split the index into multiple files, one per letter of the
alphabet.

Alphabetical Summary of Java Commands | 331

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

javah

-stylesheetfile file
Use file as the HTML stylesheet file. The default is to create a
stylesheet file, stylesheet.css.

-subpackages package-list
Document the packages and recursively their subpackages for
the packages listed in package-list.

-tag tagname:placement:text
Inform javadoc about a custom tag named tagname. text is the
text placed into the documentation in bold. placement
describes where to use the tag, as follows:

-taglet class
Use class as the taglet for generating custom output. The taglet
is used for tags specified after it with the -tag option.

-tagletpath path
Search path to find taglets.

-title
This option no longer exists; use -doctitle.

-use
Create a “Use” page for each class, listing the classes that use
the page’s class.

-verbose
Print additional messages about time spent parsing source
files.

-version
Include @version tags.

-windowtitle title
Place title in the HTML <title> tag.

javah javah [options] classes | files

Generate C header and/or source files for implementing native
methods. The generated .h file defines a structure whose members
parallel those of the corresponding Java class.

The header filename is derived from the corresponding Java class.
If the class is inside a package, the package name is prepended to
the filename and the structure name, separated by an underscore.

a Use the tag in all places.
c Use the tag for constructors.
f Use the tag for fields.
m Use the tag for methods.
o Use the tag in overviews.
p Use the tag in packages.
t Use the tag for types (classes and interfaces).
X Tag is disabled, don’t generate it.

332 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

javap

Note: the Java Native Interface (JNI) does not require header or
stub files. Use the -jni option to create function prototypes for JNI
native methods.

Options

-bootclasspath path
Use the colon-separated list of directories in path for the boot
classes, instead of the boot classes used by the java command
itself.

-classpath path
Use the colon-separated list of directories in path instead of
$CLASSPATH to find class files. It is usually a good idea to
have the current directory (“.”) on the search path.

-d dir
Place generated files in dir.

-force
Always write output files.

-help
Print a help message.

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-jni
Produce JNI native method function prototypes.

-o file
Concatenate all generated header or source files for all the
classes and write them to file.

-old
Produce JDK 1.0-style headers.

-stubs
Generate C declarations, not headers.

-trace
Add tracing information to the generated stubs.

-verbose
Verbose.

-version
Print the version of javah.

javap javap [options] classfiles

Disassemble Java class files and print the results. By default, javap
prints the public fields and methods of the named classes.

Alphabetical Summary of Java Commands | 333

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

jdb

Options

-b Ignored. For backward compatibility with the JDK 1.1 javap.

-bootclasspath path
Use the colon-separated list of directories in path for the boot
classes, instead of the boot classes used by the java command
itself.

-c Print out the disassembled byte-codes for each method in the
given classes.

-classpath path
Use the colon-separated list of directories in path instead of
$CLASSPATH to find class files. It is usually a good idea to
have the current directory (“.”) on the search path.

-extdirs dirs
For cross-compilation, use the specified dirs as the extension
directories.

-h Generate code that can be used in a C header file.

-help
Print a usage message.

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-l Display line number and local variable information.

-package
Only disassemble package, protected, and public classes and
members. This is the default.

-private
Disassemble all classes and members.

-protected
Only disassemble protected and public classes and members.

-public
Only disassemble public classes and members.

-s Display the internal type signatures.

-verbose
For each method, print the stack size, number of arguments,
and number of local variables.

jdb jdb [options] [class] [args]

jdb is the Java Debugger. It is a line-oriented debugger, similar to
traditional Unix debuggers, providing inspection and debugging of
local or remote Java interpreters.

jdb can be used in place of java, in which case the program to be
run is already started in the debugger. Or, it may be used to attach
to an already running java session. In the latter case, java must
have been started with the option -agentlib:jdwp=transport=dt_
socket,server=y,suspend=n,address=PORT. You then attach to the

334 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

keytool

running JVM with jdb -attach PORT, where PORT is the same
numeric port number used to run java.

Options

jdb forwards the -v, -D, -classpath, and -X options to the JVM
running the program to be debugged. See java.

-attach address
Attach to an already running JVM at port address.

-connect connector:name=value…
Connect to the JVM using the specified connector.

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-launch
Start the application immediately, stopping before the initial
application class is loaded. This saves having to use the run
command from within jdb.

-listconnectors
List the connectors available in this JVM.

-listen address
Wait for a JVM to connect to the debugger at address.

-listenany
Wait for a JVM to connect to the debugger at any address.

-sourcepath path
Use path to search for class and interface definitions.

-tclient
Use the HotSpot Client Performance Engine to run the
application.

-tserver
Use the HotSpot Server Performance Engine to run the
application.

keytool keytool [subcommands]

Key and certificate management utility. Together with jarsigner,
replaces the JDK 1.1 javakey utility. Keys and certificates are main-
tained in a keystore. keytool manages the keystore, and jarsigner
uses the information in it for signing .jar files. If you need to work
with keys and keystores, read the keytool(1) manpage carefully
first!

The command-line arguments to keytool are subcommands, each
of which begins with a hyphen. Each subcommand, in turn,
accepts suboptions.

Whenever keytool accepts a password for an option, if a password
is not provided on the command line, the program prompts for
one. Such options should not be used in scripts or on the command

Alphabetical Summary of Java Commands | 335

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

keytool

line, since they allow passwords to be seen. Similarly, keytool does
not turn off echoing when prompting for a password, so make sure
no one else can see your screen when using such options! See also
jarsigner.

Subcommands

-certreq suboptions
Generate a Certificate Signing Request.

-delete suboptions
Delete the entry for the alias given with -alias from the
keystore. With no -alias option, prompt for the alias name.

-export suboptions
From the keystore, export the certificate belonging to the user
specified with -alias, storing it in the file specified with -file.

-genkey suboptions
Add a new public/private key pair to the keystore.

-help
Print a command usage summary.

-identitydb suboptions
Import information from the JDK 1.1 style identity database
specified with -file. If no such option is used, read from stan-
dard input. Create the keystore if it doesn’t exist.

-import suboptions
Import a certificate or certificate chain from the file specified
by the -file suboption. The certificates must be in either
binary encoding or in RFC 1421 Base64 printable encoding.

-keyclone suboptions
Create a new keystore entry with the same private key and
certificate chain as the original. Specify the source with -alias
and the new password for the copy with -new.

-keypasswd suboptions
Change the password protecting a private key. Specify whose
key with -alias, the original password with -keypass, and the
new one with -new.

-list suboptions
Print the contents of the keystore for the user specified with
-alias to standard output. With no -alias, print the entire
keystore.

-printcert suboptions
Read a certificate from the file specified with -file or from
standard input and print the contents in a human-readable
format. The original certificate may be binary-encoded or RFC
1421 encoded.

-selfcert suboptions
Generate an X.509 v1 self-signed certificate. Use -alias to
provide the alias of the user signing the certificate. Use -dname
to provide an X.500 Distinguished Name if you don’t wish to
use the Distinguished Name associated with the user’s alias.

336 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

keytool

-storepasswd suboptions
Change the password that protects the entire keystore. Use -new
to provide the new password, which must be at least six char-
acters long.

Suboptions for Subcommands

Following is the list of suboptions and their meanings. The entry
for each suboption lists the subcommands with which it may be
used.

-alias name
Use name as the user or alias name in order to specify which
key pair and/or certificates to use. May be used with: -certreq,
-delete, -export, -genkey, -import, -keyclone, -keypasswd, and
-selfcert.

-dest alias
Use alias as the new user alias. May be used with: -keyclone.

-dname name
Use name as the X.500 Distinguished Name. May be used
with: -genkey and -selfcert.

-file filename
Use filename as the source or sink of data, depending on the
subcommand in use. May be used with: -certreq, -export,
-import, and -printcert.

-keyalg algorithm
Use algorithm for producing keys. May be used with: -genkey.

-keypass password
Use password as the password for the given private key. Used
with: -certreq, -genkey, -import, -keyclone, -keypasswd, and
-selfcert.

-keysize size
Use size as the size in bits of the key. For DSA key pairs, size
must be in the range from 512 to 1024, and it must be a
multiple of 64. May be used with: -genkey.

-keystore filename
Use filename as the keystore. May be used with: -certreq,
-delete, -export, -genkey, -import, -keyclone, -keypasswd,
-list, -selfcert, and -storepasswd.

-new newpasswd
Use newpasswd as new password. May be used with: -keyclone,
-keypasswd, and -storepasswd.

-noprompt
Do not interact with the user. May be used with: -import.

-provider provider_class
Use provider_class as the name of the cryptographic service
provider’s master class file if the security properties file does not
list a service provider. May be used with: -certreq, -delete,
-export, -genkey, -import, -keyclone, -keypasswd, -list,
-selfcert, and -storepasswd.

Alphabetical Summary of Java Commands | 337

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rmic

-rfc
Use the RFC 1421 (Base64) printable encoding for output.
May be used with: -export and -list.

-sigalg algorithm
Use algorithm for producing signatures. Used with: -certreq,
-genkey, and -selfcert.

-storepass password
Use password as the password that protects the entire
keystore. Must be at least six characters long and must be
provided for all commands that access the keystore’s contents.
If this password isn’t provided on the command line, the user is
prompted for it. May be used with: -certreq, -delete, -export,
-genkey, -import, -keyclone, -keypasswd, -list, -selfcert, and
-storepasswd.

-storetype type
Use type as the type of the keystore. This an esoteric option; see
the manpage for more details. May be used with: -certreq,
-delete, -export, -genkey, -import, -keyclone, -keypasswd,
-list, -selfcert, and -storepasswd.

-trustcacerts
Use certificates in the “cacerts” (Certificate Authority certifi-
cates) file, in addition to those in the keystore. May be used
with: -import.

-validity days
Signature is valid for days days. May be used with: -genkey and
-selfcert.

The following table shows default values for several of the most
frequently used suboptions.

rmic rmic [options] classes

Remote Method Invocation compiler for Java. rmic takes the fully
package-qualified class names and generates skeleton and stub
class files to provide remote method invocation. The classes must
have previously been successfully compiled with java.

For a method WhizImpl in class whiz, rmic creates two files,
WhizImpl_Skel.class and WhizImpl_Stub.class. The “skeleton” file

Suboption Purpose Default value

-alias User name mykey

-file Data source / sink Standard input if reading,
standard output if writing

-keyalg Signature Algorithm DSA

-keysize Encryption key size 1024

-keystore Location of keystore $HOME/.keystore

-validity Days signature is
valid for

90

338 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rmic

implements the server side of the RMI; the “stub” file implements
the client side.

Options

-always, -alwaysgenerate
Always generate code, even if the existing IDL files are newer
than the input class. Use with -idl or -iiop only.

-bootclasspath path
Use the colon-separated list of directories in path for the boot
classes, instead of the boot classes used by the java command
itself.

-classpath path
Use the colon-separated list of directories in path instead of
$CLASSPATH to find class files. It is usually a good idea to
have the current directory (“.”) on the search path.

-d dir
Place the generated files in dir.

-extdirs dirs
For cross-compilation, use the specified dirs as the extension
directories.

-factory
Use the factory keyword in the IDL. Use with -idl only.

-g Generate all debugging information, instead of just line
numbers.

-idl Generate OMG IDL for the specified classes.

-idlFile package[.class] file
Provide an IDLEntity file mapping from Java package package
to IDL module file. Use with -idl only.

-idlModule package[.class] module
Provide an IDLEntity package mapping from Java package
package to IDL module module. Use with -idl only.

-iiop
Generate IIOP stub and tie classes, instead of the default
JRMP stub and skeleton classes.

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-keepg, -keepgenerated
Keep the generated .java source files for the skeletons and the
stubs.

-nolocalstubs
Do not create stubs optimized for clients and servers that will
run in the same process. Use with -iiop only.

-noValueMethods
Do not use valuetype methods and initializers in the gener-
ated IDL. Use with -idl only.

Alphabetical Summary of Java Commands | 339

U
nix

Com
m

ands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rmid

-nowarn
Disable all warnings.

-poa
Use the Portable Object Adapter. In other words, use org.omg.
PortableServer.Servant instead of org.omg.CORBA_2_3.
portable.ObjectImpl. Use with -idl only.

-sourcepath path
Use path to search for class and interface definitions. Classes
found through the classpath may be recompiled if their source
files are found.

-vVERS
Generate code compatible with version VERS of the JRMP
protocol. VERS is one of 1.1, for the JDK 1.1 protocol, 1.2, for
the JDK 1.2 protocol, or compat for code compatible with both
versions.

-verbose
Print messages as files are compiled and loaded.

rmid rmid [options]

RMI activation system daemon. This daemon must be started
before activatable objects can be registered or activated.

Options

-Cchild-option
Pass child-option on to each child process. Useful, for example,
for specifying a property’s default value.

-J java-option
Pass java-option on to the java program. Useful for changing
the execution environment or memory usage. java-option
should not contain spaces; use multiple -J options if
necessary.

-J-Dsun.rmi.activation.execPolicy=policy
Specify the policy for checking commands and command-line
options. Specific to Sun’s JVM. See the rmid(1) manpage for
the details.

-log directory
Use directory as the directory in which to place the database
and other information. The default is ./log.

-port port
Use port as the port for the rmid registry.

-stop
Stop the invocation of rmid that is using the port specified with
-port. If no -port is given, stop the rmid running on port 1098.

340 | Chapter 2: Unix Commands

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rmiregistry

rmiregistry rmiregistry [port] [-Jjava-option]

Create and start a remote object registry on the specified port. The
default port is 1099. The registry provides naming services for RMI
(Remote Method Invocation) servers and clients.

Option

-J java-option
Pass java-option on to the java program. Useful for changing the
execution environment or memory usage. java-option should
not contain spaces; use multiple -J options if necessary.

341

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3Shell Overview

3
The Unix Shell: An Overview

For novice users, this chapter presents basic concepts about the Unix shell. For
advanced users, this chapter also summarizes the major similarities and differ-
ences between the Bash, Korn, and “Tenex” C shells. Details on the three shells
are provided in Chapters 4 and 5.

The following topics are presented:

• Introduction to the shell

• Purpose of the shell

• Shell flavors

• Shell source code

• Common features

• Differing features

Introduction to the Shell
Today’s microwave ovens, and many other household appliances (ovens, washing
machines, dishwashers), let you use simple push-buttons to instruct them what to
do. They provide a simple user interface to a possibly complicated internal system.

The shell is the user interface to Unix, and by the same token, several shells are
available in Unix. Most systems provide more than one for you to choose from.
Each shell has different features, but all of them affect how commands will be
interpreted and provide tools to create your Unix environment.

The original shells were developed before the time of Graphical User Interfaces
(GUIs), and at first glance, appear harder to use than GUI interfaces. The truth,
though, is that they aren’t harder to use, they are harder to learn. However, once
you’ve mastered them, you’ll find that you can accomplish an infinite variety of
tasks that just cannot be managed with a GUI.

342 | Chapter 3: The Unix Shell: An Overview

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The shell is simply a program that allows the system to understand your
commands. (That’s why the shell is often called a command interpreter.) For many
users, the shell works invisibly—“behind the scenes.” Your only concern is that
the system does what you tell it to do; you don’t care about the inner workings. In
our microwave analogy, this is comparable to pressing the START button. Most
of us don’t care whether the user interface communicates with an embedded
microcomputer, or drives analog electronics, as long as the popcorn is ready in
time for the movie, and doesn’t burn.

Purpose of the Shell
There are three uses for the shell:

• Interactive use

• Customization of your Unix session

• Programming

Interactive Use

When the shell is used interactively, the system waits for you to type a command
at the Unix prompt. Your commands can include special symbols that let you
abbreviate filenames or redirect input and output.

Customization of Your Unix Session

A Unix shell defines variables to control the behavior of your Unix session.
Setting these variables tells the system, for example, which directory to use as
your home directory, or the file in which you store your mail. Some variables are
preset by the system; you can define others in startup files that are read when
you log in. Startup files can also contain Unix commands or special shell
commands. These are executed every time you log in. Many shells also support
special variables and internal commands that let you tailor the behavior of the
shell itself.

Programming

Unix shells provide a set of special (or built-in) commands that let you create
programs called shell scripts. In fact, many built-in commands can be used interac-
tively like Unix commands, and Unix commands are frequently used in shell
scripts. Scripts are useful for executing a series of individual commands. This is
similar to BATCH files in MS-DOS and Windows. Scripts can also execute
commands repeatedly (in a loop) or conditionally (if-else), as in many high-level
programming languages.

Shell Flavors | 343

Shell Overview

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Shell Flavors
Many different Unix shells are available. This quick reference describes the three
most popular shells:

• The GNU Project’s Bash (Bourne-Again SHell), arguably the most popular
shell in use today. It is a superset of the original Bourne shell, including com-
mand-line editing and many features first implemented in the Korn shell.

• The Korn shell, a superset of the original Bourne shell that lets you edit the
command line. There are two commonly available versions of the Korn shell,
distinguished by the year they were released, and referred to in this book as
ksh88 and ksh93 respectively.

• The “Tenex” C shell, an enhanced version of the original BSD C shell, which
uses C-like syntax and is more convenient for the interactive user than the
original Bourne shell.

The original Bourne shell is available as /bin/sh on commercial Unix systems, and
if invoked as sh, Bash will do its best to emulate the original Bourne shell’s
behavior. However, it is rare today to find the original Bourne shell being used
interactively as a login shell; other shells that provide better interactive features
and the Bourne shell’s programming language, such as Bash and ksh, are more
popular. However, when writing shell scripts, most people are careful to restrict
themselves to just those features of the Bourne shell.

The /etc/passwd file determines which shell takes effect during your interactive
Unix session. When you log in, the system checks your entry in /etc/passwd. The
last field of each entry names a program to run as the default shell.* For example:

You can change to another shell by typing the program name at the command
line. For example, to change from the Bourne shell to the Korn shell, type:

$ exec ksh

Which Shell Do I Want?

If you are new to Unix, picking a shell may be a bewildering question. Before ksh
was commonly available, the general advice was to use csh for interactive use

* On Solaris or other networked Unix systems, this information may come from NIS or NIS+. Usu-
ally, your system administrator will handle this for you; just don’t be surprised if your login name
doesn’t appear in /etc/passwd.

If the program name is: Your shell is the:

/bin/sh Bourne shell

/bin/bash The Bash shell

/bin/ksh Korn shell

/usr/dt/bin/dtksh The Desktop Korn shell, a version of ksh93 (Solaris only)

/bin/csh C shell or Tenex C shell (system dependent)

/bin/tcsh Tenex C shell

344 | Chapter 3: The Unix Shell: An Overview

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

(because it supported job control and had other features that made it a better
interactive shell than the Bourne shell), but to use the Bourne shell for scripting
(because it is a more powerful programming language, and more universally
available).

Today, a wide variety of Bourne-compatible shells are available that all support
job control and some sort of command history and command-line editing. Of
these, Bash is arguably the most popular, and it is a good choice. If Bash is not
available but the Korn shell is, you should use the Korn shell. In any case, source
code for both shells (as well as others) are easily available from the Internet.

Shell Source Code URLs
Here is a list of URLs for the source code for different shells.

The Public Domain Korn shell is mostly compatible with ksh88, and is usually the
version of ksh shipped with GNU/Linux systems. The Z shell (zsh) has many
features of the Bourne shell, Bash, and the Korn shell, and a plethora of features
unique to it.

Common Features
The following table displays features that are common to the Bash, Korn, and C
shells. Note that both the Korn shell and Bash are enhanced versions of the Bourne
shell; therefore, they include all features of the Bourne shell, plus some others.

Shell Location

Bash ftp://ftp.gnu.org/gnu/bash

Bash source code patches ftp://ftp.gnu.org/gnu/bash/bash-3.0-patches

Ksh93 http://www.research.att.com/sw/download/

The Z Shell http://www.zsh.org

The Public Domain Korn Shell http://web.cs.mun.ca/~michael/pdksh/

Tcsh http://www.tcsh.org

Symbol/command Meaning/action

> Redirect output.

>> Append to file.

< Redirect input.

<< “Here” document (redirect input).

| Pipe output.

& Run process in background.

; Separate commands on same line.

~ Home directory symbol.

* Match any character(s) in filename.

? Match single character in filename.

[] Match any characters enclosed.

Differing Features | 345

Shell Overview

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Differing Features
The following table displays features that are different among the three shells.

() Execute in subshell.

{ } Expand elements in list.a

` ` Substitute output of enclosed command.

" " Partial quote (allows variable and command expansion).

' ' Full quote (no expansion).

\ Quote following character.

$var Use value for variable.

$$ Process ID.

$0 Command name.

$n nth argument (0 ≤ n ≤ 9).

$* All arguments as simple words.

Begin comment.

bg Background execution.

break Break from loop statements.

cd Change directory.

continue Resume a program loop.

echo Display output.

eval Evaluate arguments.

exec Execute a new shell.

fg Foreground execution.

history List previous commands.

jobs Show active jobs.

kill Terminate running jobs.

shift Shift positional parameters.

suspend Suspend a foreground job (such as a shell created by su).

time Time a command.

umask Set default file permissions for new files.

unset Erase variable or function definitions.

wait Wait for a background job to finish.

a Brace expansion is a compile-time feature in the Korn shell. Usually commercial versions don’t have it,
but if you compile from source code, you do get it by default.

bash ksh tcsh Meaning/action

$ $ % Prompt.

>| >| >! Force redirection.

>>! Force append.

> file 2>&1 > file 2>&1 >& file Combine stdout and stderr.

>& file >& file Combine stdout and stderr.

Symbol/command Meaning/action

346 | Chapter 3: The Unix Shell: An Overview

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

` ` ` ` ` ` Substitute output of enclosed
command.

$() $() Substitute output of enclosed
command. (Preferred form.)

$HOME $HOME $home Home directory.

var=value var=value set var=value Variable assignment.

export var=val export var=val setenv var val Set environment variable.

${nn} ${nn} More than nine args can be
referenced.

"$@" "$@" All args as separate words.

$# $# $#argv Number of arguments.

$? $? $status Exit status.

$! $! Last background Process ID.

$- $- Current options.

. file . file source file Read commands in file.

alias x=y alias x=y alias x y Name x stands for y.

case case switch/case Choose alternatives.

cd ~- cd ~- popd/pushd Switch directories.

popd/pushd popd/pushd Switch directories.

done done end End a loop statement.

esac esac endsw End case or switch.

exit [n] exit [n] exit [(expr)] Exit with a status.

for/do for/do foreach Loop through values.

echo -E print -r glob Ignore echo escapes.

hash alias -t hashstat Display hashed commands
(tracked aliases).

hash cmds alias -t cmds rehash Remember command locations.

hash -r PATH=$PATH unhash Forget command locations.

history history history List previous commands.

fc -s r !! Redo previous command.

fc -s str r str !str Redo command that starts with str.

fc -s x=y [cmd] r x=y [cmd] !cmd:s/x/y/ Edit command, then execute.

if ((i==5)) if ((i==5)) if ($i==5) Sample if statement.

fi fi endif End if statement.

ulimit ulimit limit Set resource limits.

pwd pwd dirs Print working directory.

read read $< Read from standard input.

trap INTR trap INTR onintr Ignore interrupts.

unalias unalias unalias Remove aliases.

until/do until/do Begin until loop.

while/do while/do while Begin while loop.

bash ksh tcsh Meaning/action

347

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4Bash and Korn

4
The Bash and Korn Shells

The original Bourne shell distributed with V7 Unix in 1979 became the standard
shell for writing shell scripts. The Bourne shell is still to be found in /bin/sh on
many commercial Unix systems. The Bourne shell itself has not changed that
much since its initial release, although it has seen modest enhancements over the
years. The most notable new features were the CDPATH variable and a built-in
test command with System III (circa 1980), command hashing and shell func-
tions for System V Release 2 (circa 1984), and the addition of job control features
for System V Release 4 (1989).

Because the Berkeley C shell (csh) offered features that were more pleasant for
interactive use, such as command history and job control, for a long time the stan-
dard practice in the Unix world was to use the Bourne shell for programming and
the C shell for daily use. David Korn at Bell Labs was the first developer to
enhance the Bourne shell by adding csh-like features to it: history, job control, and
additional programmability. Eventually, the Korn shell’s feature set surpassed
both the Bourne shell and the C shell, while remaining compatible with the
Bourne shell for shell programming. Today, the POSIX standard defines the “stan-
dard shell” language and behavior based on the System V Bourne shell, with a
selected subset of features from the Korn shell.

On most commercial Unix systems, including Solaris, /bin/ksh is ksh88. On Mac
OS X (10.4 and newer), however, it’s a recent version of ksh93 from AT&T
Research.

The Free Software Foundation, in keeping with its goal to produce a complete
Unix work-alike system, developed a clone of the Bourne shell, written from
scratch, named “Bash,” the Bourne-Again SHell. Over time, Bash has become a
POSIX-compliant version of the shell, with many additional features. A large part
of these additional features overlap the features of the Korn shell, but Bash is not
an exact Korn shell clone.

348 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

This chapter covers Bash, which is the primary shell for GNU/Linux and Mac OS X.
Because ksh88 is still commonly found, and because the source code for ksh93 is
available, this chapter also covers the two main versions of the Korn shell, ksh88
and ksh93. It presents the following topics:

• Overview of features

• Invoking the shell

• Syntax

• Functions

• Variables

• Arithmetic expressions

• Command history

• Job control

• Command execution

• Restricted shells

• Built-in commands

http://www.gnu.org/software/bash/bash.html provides information about the Bash
shell. Another page is http://cnswww.cns.cwru.edu/~chet/bash/bashtop.html. http://
www.kornshell.com provides considerable information about the Korn shell. The
section “Shell Source Code URLs” in Chapter 3 provides Internet URLs for source
code download. See also Classic Shell Scripting, Learning the Korn Shell, and
Learning the bash Shell, which are listed in the Bibliography.

All references in this chapter to the Bash shell are for Bash version 3. Many of the
features listed for ksh93 are found only in the version available from AT&T
Research. Practically speaking, ksh93 binaries on commercial Unix systems tend to
be very early versions of ksh93; you should download the source and build your
own executable version if you wish to use ksh93 for production work.

Overview of Features
The Bash and Korn shells provide the following features:

• Input/output redirection

• Wildcard characters (metacharacters) for filename abbreviation

• Shell variables and options for customizing your environment

• A built-in command set for writing shell programs

• Shell functions, for modularizing tasks within a shell program

• Job control

• Command-line editing (using the command syntax of either vi or Emacs)

• Access to previous commands (command history)

• Integer arithmetic

• Arrays and arithmetic expressions

• Command-name abbreviation (aliasing)

Invoking the Shell | 349

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ksh93 and Bash (but not ksh88) have the following capabilities:

• Upwards compliance with POSIX

• Internationalization facilities

• An arithmetic for loop

• More ways to substitute variables

ksh93 adds the following capabilities:

• Floating-point arithmetic and built-in arithmetic functions

• Structured variable names and indirect variable references

• Associative arrays

• More ways to match patterns

Invoking the Shell
The command interpreter for the Bash shell (bash) or the Korn shell (ksh) can be
invoked as follows:

bash [options] [arguments]
ksh [options] [arguments]

ksh and Bash can execute commands from a terminal, from a file (when the first
argument is an executable script), or from standard input (if no arguments remain
or if -s is specified). Both shells automatically print prompts if standard input is a
terminal, or if -i is given on the command line.

On many systems, /bin/sh is a link to Bash. When invoked as sh, Bash acts more like
the traditional Bourne shell: login shells read /etc/profile and ~/.profile, and
regular shells read $ENV, if it’s set. Full details are available in the bash(1) manpage.

Options

Common options

-c str
Read commands from string str.

-D Print all $"..." strings in the program. Not ksh88.

-i Create an interactive shell (prompt for input).

-p Start up as a privileged user. Bash: don’t read $ENV or $BASH_ENV, don’t
import functions from the environment, and ignore the value of $SHELLOPTS.
Korn shell: don’t process $HOME/.profile, read /etc/suid_profile instead of
$ENV.

-r Create a restricted shell.

-s Read commands from standard input. Output from built-in commands goes
to file descriptor 1; all other shell output goes to file descriptor 2.

-, --
End option processing.

350 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Bash options

-O option
Enable shopt option option.

--debugger
Read the debugging profile at start-up, turn on the extdebug option to shopt,
and enable function tracing. For use by the Bash debugger.

--dump-po-strings
Same as -D, but output in GNU gettext format.

--dump-strings
Same as -D.

--help
Print a usage message and exit successfully.

--init-file file, --rcfile file
Use file as the start-up file instead of ~/.bashrc for interactive shells.

--login
Shell is a login shell.

--noediting
Do not use the readline library for input, even in an interactive shell.

--noprofile
Do not read /etc/profile or any of the personal start-up files.

--norc
Do not read ~/.bashrc. Enabled automatically when invoked as sh.

--posix
Turn on POSIX mode.

--restricted
Same as -r.

--verbose
Same as set -v; the shell prints lines as it reads them.

--version
Print a version message and exit.

The remaining options to Bash and ksh are listed under the set built-in command.

Arguments
Arguments are assigned in order to the positional parameters $1, $2, etc. If the first
argument is an executable script, commands are read from it, and the remaining
arguments are assigned to $1, $2, etc. The name of the script is available as $0.

Syntax
This section describes the many symbols peculiar to the Bash and Korn shells. The
topics are arranged as follows:

• Special files

• Filename metacharacters

Syntax | 351

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

• Quoting

• Command forms

• Redirection forms

• Coprocesses (Korn shell only)

Special Files

Both shells read one or more start-up files. Some of the files are read only when a
shell is a login shell.

The Korn shell reads these files:

1. /etc/profile. Executed automatically at login, first.

2. ~/.profile. Executed automatically at login, second.

3. $ENV. Specifies the name of a file to read when a new Korn shell is created.
(ksh88: all shells. ksh93: interactive shells only.) The value is variable (ksh93:
and command and arithmetic) substituted in order to determine the actual
file name. Login shells read $ENV after processing the files /etc/profile and
$HOME/.profile.

Bash reads these files:

1. /etc/profile. Executed automatically at login, first.

2. The first file found from this list: ~/.bash_profile, ~/.bash_login, or ~/.profile.
Executed automatically at login, second.

3. ~/.bashrc is read by every shell, after the login files. However, if invoked as sh,
Bash instead reads $ENV, just as the Korn shell does.

For both shells, the getpwnam() and getpwuid() functions are the sources of home
directories for ~name abbreviations. (On single-user systems, the user database is
stored in /etc/passwd. However on networked systems, this information may come
from NIS, NIS+, or LDAP, not your workstation password file.)

Filename Metacharacters

In the Korn shell, or Bash with the extglob option on:

* Match any string of zero or more characters.
? Match any single character.
[abc…] Match any one of the enclosed characters; a hyphen can specify a range

(e.g., a–z, A–Z, 0–9).
[!abc…] Match any character not enclosed as above.
~ Home directory of the current user.
~name Home directory of user name.
~+ Current working directory ($PWD).
~- Previous working directory ($OLDPWD).

?(pattern) Match zero or one instance of pattern.
*(pattern) Match zero or more instances of pattern.
+(pattern) Match one or more instances of pattern.

352 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

This pattern can be a sequence of patterns separated by |, meaning that the match
applies to any of the patterns. This extended syntax resembles that available in
egrep and awk. In the Korn shell, but not in Bash, if & is used instead of |, all the
patterns must match. & has higher precedence than |.

ksh93 and Bash support the POSIX [[=c=]] notation for matching characters that
have the same weight, and [[.c.]] for specifying collating sequences. In addition,
character classes, of the form [[:class:]], allow you to match the following
classes of characters.

Bash and ksh93 also accept the [:word:] character class, which is not in POSIX.
[[:word:]] is equivalent to [[:alnum:]_].

Examples

$ ls new* List new and new.1
$ cat ch? Match ch9 but not ch10
$ vi [D-R]* Match files that begin with uppercase D through R
$ pr !(*.o|core) | lp Print files that are not object files or core dumps

On modern systems, ranges such as [D-R] are not portable; the sys-
tem’s locale may include more than just the uppercase letters from
D to R in the range.

Quoting

Quoting disables a character’s special meaning and allows it to be used literally, as
itself. The following table displays characters that have special meaning to the
Bash and Korn shells.

@(pattern) Match exactly one instance of pattern.
!(pattern) Match any strings that don’t match pattern.
\n Match the text matched by the n’th subpattern in (...). ksh93 only.

Class Characters matched Class Characters matched

alnum Alphanumeric characters graph Nonspace characters

alpha Alphabetic characters print Printable characters

blank Space or tab punct Punctuation characters

cntrl Control characters space Whitespace characters

digit Decimal digits upper Uppercase characters

lower Lowercase characters xdigit Hexadecimal digits

Character Meaning

; Command separator

& Background execution

() Command grouping

| Pipe

< > & Redirection symbols

Syntax | 353

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

These characters can be used for quoting:

" "
Everything between " and " is taken literally, except for the following charac-
ters that keep their special meaning:

$ Variable (or command and arithmetic) substitution will occur.

` Command substitution will occur.

" This marks the end of the double quote.

' '
Everything between ' and ' is taken literally except for another '. You cannot
embed another ' within such a quoted string.

\
The character following a \ is taken literally. Use within " " to escape ", $,
and `. Often used to escape itself, spaces, or newlines.

$" "
Not ksh88. Just like "", except that locale translation is done.

$' '
Not ksh88. Similar to '', but the quoted text is processed for the following
escape sequences:

Examples

$ echo 'Single quotes "protect" double quotes'
Single quotes "protect" double quotes
$ echo "Well, isn't that \"special\"?"
Well, isn't that "special"?
$ echo "You have `ls | wc -l` files in `pwd`"
You have 43 files in /home/bob
$ echo "The value of \$x is $x"
The value of $x is 100

* ? [] ~ + - @ ! Filename metacharacters

" ' \ Used in quoting other characters

` Command substitution

$ Variable substitution (or command or arithmetic substitution)

space tab newline Word separators

Sequence Value Sequence Value

\a Alert \t Tab

\b Backspace \v Vertical tab

\cX Control character X \nnn Octal value nnn

\e Escape \xnn Hexadecimal value nn

\E Escape \' Single quote

\f Form feed \" Double quote

\n Newline \\ Backslash

\r Carriage return

Character Meaning

354 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Command Forms

Examples

$ nroff file > file.txt & Format in the background
$ cd; ls Execute sequentially
$ (date; who; pwd) > logfile All output is redirected
$ sort file | pr -3 | lp Sort file, page output, then print
$ vi `grep -l ifdef *.c` Edit files found by grep
$ egrep '(yes|no)' `cat list` Specify a list of files to search
$ egrep '(yes|no)' $(cat list) POSIX version of previous
$ egrep '(yes|no)' $(< list) Faster, not in POSIX
$ grep XX file && lp file Print file if it contains the pattern;
$ grep XX file || echo "XX not found" otherwise, echo an error message

Redirection Forms

The usual input source or output destination can be changed, as seen in the
following sections.

Simple redirection

cmd > file
Send output of cmd to file (overwrite).

cmd >> file
Send output of cmd to file (append).

cmd < file
Take input for cmd from file.

cmd & Execute cmd in background.
cmd1 ; cmd2 Command sequence; execute multiple cmds on the same line.
{ cmd1 ; cmd2 ; } Execute commands as a group in the current shell.
(cmd1 ; cmd2) Execute commands as a group in a subshell.
cmd1 | cmd2 Pipe; use output from cmd1 as input to cmd2.
cmd1 `cmd2` Command substitution; use cmd2 output as arguments to cmd1.
cmd1 $(cmd2) POSIX shell command substitution; nesting is allowed.
cmd $((expression)) POSIX shell arithmetic substitution. Use the result of

expression as argument to cmd.
cmd1 && cmd2 AND; execute cmd1 and then (if cmd1 succeeds) cmd2. This is a

“short-circuit” operation; cmd2 is never executed if cmd1 fails.
cmd1 || cmd2 OR; execute either cmd1 or (if cmd1 fails) cmd2. This is a “short-

circuit” operation; cmd2 is never executed if cmd1 succeeds.
! cmd NOT; execute cmd, and produce a zero exit status if cmd exits

with a nonzero status. Otherwise, produce a nonzero status
when cmd exits with a zero status. Not ksh88.

File descriptor Name Common abbreviation Typical default

0 Standard input stdin Keyboard

1 Standard output stdout Screen

2 Standard error stderr Screen

Syntax | 355

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cmd << text
The contents of the shell script up to a line identical to text become the stan-
dard input for cmd (text can be stored in a shell variable). This command
form is sometimes called a Here document. Input is usually typed at the
keyboard or in the shell program. Commands that typically use this syntax
include cat, ex, and sed. (If <<- is used, leading tabs are stripped from the
contents of the here document, and the tabs are ignored when comparing
input with the end-of-input text marker.) If any part of text is quoted, the
input is passed through verbatim. Otherwise, the contents are processed for
variable, command, and arithmetic substitutions.

cmd <<< word
Supply text of word, with trailing newline, as input to cmd. (This is known as
a here string, from the free version of the rc shell.) Not ksh88.

cmd <> file
Open file for reading and writing on the standard input. The contents are not
destroyed.*

cmd >| file
Send output of cmd to file (overwrite), even if the shell’s noclobber option is set.

Redirection using file descriptors

Multiple redirection

* With <, the file is opened read-only, and writes on the file descriptor will fail. With <>, the file is
opened read-write; it is up to the application to actually take advantage of this.

cmd >&n Send cmd output to file descriptor n.
cmd m>&n Same, except that output that would normally go to file descriptor m is

sent to file descriptor n instead.
cmd >&- Close standard output.
cmd <&n Take input for cmd from file descriptor n.
cmd m<&n Same, except that input that would normally come from file descriptor

m comes from file descriptor n instead.
cmd <&- Close standard input.
cmd <&n- Move input file descriptor n instead of duplicating it. Not ksh88.
cmd >&n- Move output file descriptor n instead of duplicating it. Not ksh88.

cmd 2>file Send standard error to file; standard output remains the same
(e.g., the screen).

cmd > file 2>&1 Send both standard error and standard output to file.
cmd &> file Same. Bash only, preferred form.
cmd >& file Same. Bash only.
cmd > f1 2>f2 Send standard output to file f1, standard error to file f2.
cmd | tee files Send output of cmd to standard output (usually the terminal)

and to files. (See the Example in Chapter 2, under tee.)
cmd 2>&1 | tee files Send standard output and error output of cmd to standard

output (usually the terminal) and to files.

356 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

No space should appear between file descriptors and a redirection symbol;
spacing is optional in the other cases.

Bash allows multidigit file descriptor numbers. The other shells do not.

Examples

$ cat part1 > book
$ cat part2 part3 >> book
$ mail tim < report
$ sed 's/^/XX /g' << END_ARCHIVE
> This is often how a shell archive is "wrapped",
> bundling text for distribution. You would normally
> run sed from a shell program, not from the command line.
> END_ARCHIVE
XX This is often how a shell archive is "wrapped",
XX bundling text for distribution. You would normally
XX run sed from a shell program, not from the command line.

To redirect standard output to standard error:

$ echo "Usage error: see administrator" 1>&2

The following command sends output (files found) to filelist and error messages
(inaccessible files) to file no_access:

$ find / -print > filelist 2>no_access

Coprocesses

Coprocesses are a feature of the Korn shell only.

Moving the coprocess input and output file descriptors to standard file descrip-
tors allows you to open multiple coprocesses.

Examples

$ ed - memo |& Start coprocess
$ print -p /word/ Send ed command to coprocess
$ read -p search Read output of ed command into variable search
$ print "$search" Show the line on standard output
A word to the wise.

cmd1 | cmd2 |& Coprocess; execute the pipeline in the background. The shell sets
up a two-way pipe, allowing redirection of both standard input
and standard output.

read -p var Read coprocess output into variable var.
print -p string Write string to the coprocess.
cmd <&p Take input for cmd from the coprocess.
cmd >&p Send output of cmd to the coprocess.
exec n<&p Move input from coprocess to file descriptor n.
exec n>&p Move output for coprocess to file descriptor n.

Functions | 357

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Functions
A shell function is a grouping of commands within a shell script. Shell functions
let you modularize your program by dividing it up into separate tasks. This way
the code for each task need not be repeated every time you need to perform the
task. The POSIX shell syntax for defining a function follows the Bourne shell:

name () {
function body's code come here

}

Functions are invoked just as are regular shell built-in commands or external
commands. The command line parameters $1, $2, and so on receive the function’s
arguments, temporarily hiding the global values of $1, etc. For example:

fatal --- print an error message and die:

fatal () {
 echo "$0: fatal error:" "$@" >&2 # messages to standard error
 exit 1
}
...
if [$# = 0] # not enough arguments
then
 fatal not enough arguments
fi

A function may use the return command to return an exit value to the calling shell
program. Be careful not to use exit from within a function unless you really wish
to terminate the entire program.

Bash and the Korn shell allow you to define functions using an additional
keyword, function, as follows:

function fatal {
 echo "$0: fatal error:" "$@" >&2 # messages to standard error
 exit 1
}

When working with the different shells and defining functions, there are semantic
differences that should be kept in mind:

• In Bash, all functions share traps with the “parent” shell (except the DEBUG
trap, if function tracing has been turned on). With the errtrace option
enabled (either set -E or set -o errtrace), functions also inherit the ERR trap. If
function tracing has been enabled, functions inherit the RETURN trap. Func-
tions may have local variables, and they may be recursive. The syntax used to
define a function is irrelevant.

• In ksh88, all functions have their own traps and local variables, and may be
recursive.

• In ksh93, name () functions share traps with the “parent” shell and may not
be recursive.

• In ksh93, function functions have their own traps and local variables, and may
be recursive. Using the . command with a function function gives it POSIX
shell semantics (i.e., shared traps and variables).

358 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Variables
This section describes the following:

• Variable substitution

• Built-in shell variables

• Other shell variables

• Arrays

• Discipline functions (ksh93 only)

• Special prompt strings

Variable Substitution
ksh93 provides structured variables, such as pos.x and pos.y. To create either one,
pos must already exist, and braces must be used to retrieve their values. Names
beginning with .sh are reserved for use by ksh.

No spaces should be used in the following expressions. The colon (:) is optional;
if it’s included, var must be nonnull as well as set.

In ksh93 and Bash:

var=value … Set each variable var to a value.
${var} Use value of var; braces are optional if var is separated from the

following text. They are required for array variables, and in
ksh93 if a variable name contains periods.

${var:-value} Use var if set; otherwise, use value.
${var:=value} Use var if set; otherwise, use value and assign value to var.
${var:?value} Use var if set; otherwise, print value and exit (if not interactive). If

value isn’t supplied, print the phrase “parameter null or not set.”
${var:+value} Use value if var is set; otherwise, use nothing.
${#var} Use the length of var.
${#*} Use the number of positional parameters.

Same.${#@}
${var#pattern} Use value of var after removing pattern from the left. Remove the

shortest matching piece.
${var##pattern} Same as #pattern, but remove the longest matching piece.
${var%pattern} Use value of var after removing pattern from the right. Remove

the shortest matching piece.
${var%%pattern} Same as %pattern, but remove the longest matching piece.

${!prefix*}, ${!prefix@} List of variables whose names begin with prefix.
${var:pos}, ${var:pos:len} Starting at position pos (0-based) in variable var, extract

len characters, or rest of string if no len. pos and len may
be arithmetic expressions.

${var/pat/repl} Use value of var, with first match of pat replaced with repl.
${var/pat} Use value of var, with first match of pat deleted.
${var//pat/repl} Use value of var, with every match of pat replaced

with repl.
${var/#pat/repl} Use value of var, with match of pat replaced with repl.

Match must occur at beginning of the value.
${var/%pat/repl} Use value of var, with match of pat replaced with repl.

Match must occur at end of the value.

Variables | 359

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

In ksh93, indirect variables allow you to “alias” one variable name to affect the
value of another. This is accomplished using typeset -n:

$ greet="hello, world" Create initial variable
$ typeset -n friendly_message=greet Set up alias
$ echo $friendly_message Access old value through new name
hello, world
$ friendly_message="don't panic" Change the value
$ echo $greet Old variable is changed
don't panic

Bash has a similar mechanism for indirect variable referencing:

$ greet="hello, world" Create initial variable
$ friendly_message=greet Aliasing variable
$ echo ${!friendly_message} Use the alias
hello, world

Examples

$ u=up d=down blank= Assign values to three variables (last is null)
$ echo ${u}root Braces are needed here
uproot
$ echo ${u-$d} Display value of u or d; since u is set, it’s printed
up
$ echo ${tmp-`date`} If tmp is not set, the date command is executed
Mon Aug 30 11:15:23 EDT 2004
$ echo ${blank="no data"} blank is set, so it is printed (a blank line)
$ echo ${blank:="no data"} blank is set but null, so the string is printed
no data
$ echo $blank blank now has a new value
no data
$ tail=${PWD##*/} Take the current directory name and remove the

longest character string ending with /, which
removes the leading pathname and leaves the tail

Built-in Shell Variables

Built-in variables are automatically set by the shell and are typically used inside
shell scripts. Built-in variables can make use of the variable substitution patterns
shown previously. Note that the $ is not actually part of the variable name,
although the variable is always referenced this way. The following are available in
any Bourne-compatible shell:

$# Number of command-line arguments.
$- Options currently in effect (arguments supplied on command line or to set).
$? Exit value of last executed command.
$$ Process number of current process.
$! Process number of last background command.
$0 First word; that is, command name. This will have the full pathname if it

was found via a PATH search.
$n Individual arguments on command line (positional parameters). The

Bourne shell allows only nine parameters to be referenced directly (n = 1–9);
Bash and the Korn shell allow n to be greater than 9 if specified as ${n}.

360 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Bash and the Korn shell automatically set these additional variables:

ksh93 automatically sets these additional variables. Variables whose names contain
“.” must be enclosed in braces when referenced, e.g., ${.sh.edchar}.

Bash automatically sets these additional variables. Many of these variables are for
use by the Bash Debugger (see http://bashdb.sourceforge.net) or for providing
programmable completion (see the section “Programmable Completion (Bash
Only),” later in this chapter).

$*, $@ All arguments on command line ($1 $2 …).
"$*" All arguments on command line as one string ("$1 $2…"). The values are

separated by the first character in IFS.
"$@" All arguments on command line, individually quoted ("$1" "$2" …).

$_ Temporary variable; initialized to pathname of script or program being
executed. Later, stores the last argument of previous command. Also
stores name of matching MAIL file during mail checks.

HISTCMD The history number of the current command.
LINENO Current line number within the script or function.
OLDPWD Previous working directory (set by cd).
OPTARG Name of last option processed by getopts.
OPTIND Numerical index of OPTARG.
PPID Process number of this shell’s parent.
PWD Current working directory (set by cd).
RANDOM[=n] Generate a new random number with each reference; start with integer

n, if given.
REPLY Default reply, used by select and read.
SECONDS[=n] Number of seconds since the shell was started, or, if n is given, number

of seconds + n since the shell started.

.sh.edchar The character(s) entered when processing a KEYBD trap. Changing it
replaces the characters that caused the trap.

.sh.edcol The position of the cursor in the most recent KEYBD trap.

.sh.edmode Will be equal to ESCAPE if in a KEYBD trap in vi mode, otherwise
empty.

.sh.edtext The characters in the input buffer during a KEYBD trap.

.sh.file The pathename of the current script.

.sh.fun The name of the current function.

.sh.match Array variable containing text matched during a variable substitution.
Index 0 is the entire value; the others correspond to parenthesized
subexpressions.

.sh.name The name of the variable running a discipline function.

.sh.subscript The subscript of the variable running a discipline function.

.sh.value The value of the variable inside the set and get discipline functions.

.sh.version The version of ksh93.

BASH The full pathname used to invoke this instance of Bash.
BASH_ARGC Array variable. Each element holds the number of

arguments for the corresponding function or dot-script
invocation. Set only in extended debug mode, with
shopt -s extdebug.

Variables | 361

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

BASH_ARGV An array variable similar to BASH_ARGC. Each element is one
of the arguments passed to a function or dot-script. It func-
tions as a stack, with values being pushed on at each call.
Thus, the last element is the last argument to the most
recent function or script invocation. Set only in extended
debug mode, with shopt -s extdebug.

BASH_COMMAND The command currently executing or about to be
executed. Inside a trap handler, it is the command running
when the trap was invoked.

BASH_EXECUTION_STRING The string argument passed to the –c option.
BASH_LINENO Array variable, corresponding to BASH_SOURCE and

FUNCNAME. For any given function number i (starting at 0),
${FUNCNAME[i]} was invoked in file ${BASH_SOURCE[i]} on
line ${BASH_LINENO[i]}. The information is stored with the
most recent function invocation first.

BASH_REMATCH Array variable, assigned by the =~ operator of the [[]]
construct. Index 0 is the text that matched the entire
pattern. The other indices are the text matched by paren-
thesized subexpressions. This variable is read-only.

BASH_SOURCE Array variable, containing source filenames. Each element
corresponds to those in FUNCNAME and BASH_LINENO.

BASH_SUBSHELL This variable is incremented by one each time a subshell or
subshell environment is created.

BASH_VERSINFO[0] The major version number, or release, of Bash.
BASH_VERSINFO[1] The minor version number, or version, of Bash.
BASH_VERSINFO[2] The patch level.
BASH_VERSINFO[3] The build version.
BASH_VERSINFO[4] The release status.
BASH_VERSINFO[5] The machine type, same value as in MACHTYPE.
BASH_VERSION A string describing the version of Bash.
COMP_CWORD For programmable completion. Index into COMP_WORDS,

indicating the current cursor position.
COMP_LINE For programmable completion. The current command line.
COMP_POINT For programmable completion. The position of the cursor

as a character index in COMP_LINE.
COMP_WORDBREAKS For programmable completion. The characters that the

readline library treats as word separators when doing word
completion.

COMP_WORDS For programmable completion. Array variable containing
the individual words on the command line.

DIRSTACK Array variable, containing the contents of the directory
stack as displayed by dirs. Changing existing elements
modifies the stack, but only pushd and popd can add or
remove elements from the stack.

EUID Read-only variable with the numeric effective UID of the
current user.

FUNCNAME Array variable, containing function names. Each element
corresponds to those in BASH_SOURCE and BASH_LINENO.

GROUPS Array variable containing the list of numeric group IDs in
which the current user is a member.

HISTCMD The history number of the current command.
HOSTNAME The name of the current host.
HOSTTYPE A string that describes the host system.
MACHTYPE A string that describes the host system in the GNU

cpu–company–system format.
OSTYPE A string that describes the operating system.

362 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Other Shell Variables

The following variables are not automatically set by the shell, although many of
them can influence the shell’s behavior. They are typically used in your .profile
file, where you can define them to suit your needs. Variables can be assigned
values by issuing commands of the form:

variable=value

This list includes the type of value expected when defining these variables. Those
that are specific to the Bash shell are marked as (B). Those that are specific to the
Korn shell are marked as (K). Those that are specific to ksh93 are marked (K93).

PIPESTATUS An array variable containing the exit statuses of the
commands in the most recent foreground pipeline.

SHELLOPTS A colon-separated list of shell options (for set -o). If set in
the environment at start-up, Bash enables each option
present in the list.

SHLVL Incremented by one every time a new Bash starts up.
UID Read-only variable with the numeric real UID of the

current user.

CDPATH=dirs Directories searched by cd; allows shortcuts in changing
directories; unset by default.

COLUMNS=n Screen’s column width; used in line edit modes and select
lists.

COMPREPLY=(words ...) (B) Array variable from which Bash reads the possible
completions generated by a completion function.

EDITOR=file (K) Pathname of line edit mode to turn on (can end in
emacs or vi); used when VISUAL is not set.

EMACS (B) If the value starts with t, Bash assumes it’s running in
an Emacs buffer and disables line editing.

ENV=file Name of script that gets executed at start-up; useful for
storing alias and function definitions. For example,
ENV=$HOME/.kshrc.

FCEDIT=file Editor used by fc command (default is /bin/ed). Obso-
leted in ksh93 by HISTEDIT.

FIGNORE=pattern (K93) Pattern describing the set of filenames to ignore
during pattern matching. (B) Similar: colon-separated list
of patterns describing filenames to ignore when doing file-
name completion.

FPATH=dirs (K) Directories to search for function definitions; unde-
fined functions are set via typeset -fu; FPATH is searched
when these functions are first referenced. (ksh93 also
searches PATH.)

GLOBIGNORE=patlist (B) Colon-separated list of patterns describing the set of
filenames to ignore during pattern matching.

HISTCONTROL=list (B) Colon-separated list of values controlling how
commands are saved in the history file. Recognized values
are: ignoredups, ignorespace, ignoreboth, and erasedups.

HISTEDIT=file (K93) Editor used by hist command, if set. Overrides the
setting of FCEDIT.

HISTFILE=file File in which to store command history. For ksh, it must
be set before ksh is started, and the default is
$HOME/.sh_history. If you use both Bash and ksh, be sure
to have different files for this value, as the format of the
saved history file is not compatible between the two shells.

Variables | 363

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

HISTFILESIZE=n (B) Number of lines to be kept in the history file. This may
be different than the number of commands.

HISTIGNORE=list (B) A colon-separated list of patterns that must match the
entire command line. Matching lines are not saved in the
history file. An unescaped & in a pattern matches the
previous history line.

HISTSIZE=n Number of history commands to be kept in the history file.
HISTTIMEFORMAT=string (B) A format string for strftime(3) to use for printing time-

stamps along with commands from the history command.
If set (even if null), Bash saves timestamps in the history
file along with the commands.

HOME=dir Home directory; set by login (from /etc/passwd file).
HOSTFILE=file (B) Name of a file in the same format as /etc/hosts

that Bash should use to find hostnames for hostname
completion.

IFS='chars' Input field separators; default is space, tab, and newline.
IGNOREEOF=n (B) Numeric value indicating how many successive EOF

characters must be typed before Bash exits. If null or
nonnumeric value, default is 10.

INPUTRC=file (B) Initialization file for the readline library. This overrides
the default value of ~/.inputrc.

LANG=dir Default value for locale, used if no LC_* variables are set.
LC_ALL=locale (B, K93) Current locale; overrides LANG and the other

LC_* variables.
LC_COLLATE=locale (B, K93) Locale to use for character collation (sorting

order).
LC_CTYPE=locale (B, K93) Locale to use for character class functions. (See

the earlier section “Filename Metacharacters.”)
LC_MESSAGES=locale (B) Locale to use for translating $"..." strings.
LC_NUMERIC=locale (B, K93) Locale to use for the decimal-point character.
LINES=n Screen’s height; used for select lists.
MAIL=file Default file to check for incoming mail; set by login.
MAILCHECK=n Number of seconds between mail checks; default is 600

(10 minutes).
MAILPATH=files One or more files, delimited by a colon, to check for

incoming mail. Along with each file, you may supply an
optional message that the shell prints when the file
increases in size. Messages are separated from the filename
by a ? character, and the default message is You have mail
in $_. $_ is replaced with the name of the file. For
example, you might have:
MAILPATH="$MAIL? Candygram!:/etc/motd?New Login Message"

OPTERR=n (B) When set to 1 (the default value), Bash prints error
messages from the built-in getopts command.

PATH=dirlist One or more pathnames, delimited by colons, in which to
search for commands to execute. Default for many systems
is /bin:/usr/bin. On Solaris, the default is /usr/bin:.
However, the standard start-up scripts change it to:

/usr/bin:/usr/ucb:/etc:.

ksh93: PATH is also searched for function definitions for
undefined functions.

POSIXLY_CORRECT=string (B) When set at start-up or while running, Bash enters
POSIX mode, disabling behavior and modifying features
that conflict with the POSIX standard.

PROMPT_COMMAND=command (B) If set, Bash executes this command each time before
printing the primary prompt.

PS1=string Primary prompt string; default is $.

364 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Arrays
Both shells support one-dimensional arrays. The first element is numbered 0. Bash
has no limit on the number of elements. ksh88 allowed up 1024 elements, early
versions of ksh93 allowed at least 4096 elements, and modern versions allow up to
65,536 elements. Arrays are initialized with a special form of assignment:

message=(hi there how are you today) Bash and ksh93

where the specified values become elements of the array. The Korn shell has an
additional syntax:

set -A message hi there how are you today Ksh88 and ksh93

Individual elements may also be assigned to:
message[0]=hi This is the hard way
message[1]=there
message[2]=how
message[3]=are
message[4]=you
message[5]=today

Declaring arrays is not required. Any valid reference to a subscripted variable can
create an array.

When referencing arrays, use the ${ … } syntax. This isn’t needed when refer-
encing arrays inside (()) (the form of let that does automatic quoting). Note that
[and] are typed literally (i.e., they don’t stand for optional syntax).

PS2=string Secondary prompt (used in multiline commands);
default is >.

PS3=string Prompt string in select loops; default is #?.
PS4=string Prompt string for execution trace (ksh -x, bash -x, or

set -x); default is +.
SHELL=file Name of default shell (e.g., /bin/sh). Bash sets this if it’s

not in the environment at start-up.
TERM=string Terminal type.
TIMEFORMAT=string (B) A format string for the output for the time keyword.
TMOUT=n If no command is typed after n seconds, exit the shell. Also

affects the read command and the select loop.
VISUAL=path (K) Same as EDITOR, but VISUAL is checked first.
auto_resume=list (B) Enables the use of simple strings for resuming stopped

jobs. With a value of exact, the string must match a
command name exactly. With a value of substring, it can
match a substring of the command name.

histchars=chars (B) Two or three characters that control Bash’s csh-style
history expansion. The first character signals a history event.
The second is the “quick substitution” character; the third
indicates the start of a comment. The default value is !^#.

${name[i]} Use element i of array name. i can be any arithmetic expression as
described under let.

${name} Use element 0 of array name.
${name[*]} Use all elements of array name.

Same.${name[@]}
${#name[*]} Use the number of elements in array name.

Same.${#name[@]}

Variables | 365

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ksh93 provides associative arrays, where the indices are strings instead of numbers
(as in awk). In this case, [and] act like double quotes. Associative arrays are created
with typeset -A. A special syntax allows assigning to multiple elements at once:

data=([joe]=30 [mary]=25)

The values would be retrieved as ${data[joe]} and ${data[mary]}.

Discipline Functions (ksh93 Only)

Along with structured variables, ksh93 introduces discipline functions. These are
special functions that are called whenever a variable’s value is accessed or
changed. For a shell variable named x, you can define the following functions:

Within the discipline functions, special variables provide information about the
variable being changed:

Special Prompt Strings

Both shells process the value of PS1 for special strings. The Korn shell expands a
single ! into the current command number. Use !! to get a literal !. For example:

PS1='cmd !> '

Bash processes the values of PS1, PS2, and PS4 for the following special escape
sequences.

x.get Called when x’s value is retrieved ($x).
x.set Called when x’s value is changed (x=2).
x.unset Called when x is unset (unset x).

.sh.name The name of the variable being changed.

.sh.subscript The subscript of the array element being changed.

.sh.value The value of the variable being assigned or returned. Changing it
within the discipline function changes the value that is actually
assigned or returned.

\a An ASCII BEL character (octal 07).
\A The current time in 24-hour HH:MM format.
\d The date in “weekday month day” format.
\D{format} The date as specified by the strftime(3) format format. The braces are

required.
\e An ASCII Escape character (octal 033).
\h The hostname, up to the first period.
\H The full hostname.
\j The current number of jobs.
\l The basename of the shell’s terminal device.
\n A newline character.
\r A carriage return character.
\s The name of the shell (basename of $0).
\t The current time in 24-hour HH:MM:SS format.
\T The current time in 12-hour HH:MM:SS format.
\u The current user’s username.

366 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

In addition, some or all of the PS1–PS4 variables undergo different substitutions,
as outlined in the following table:

In Bash, the escape sequences are processed first, and then, if the promptvars shell
option is enabled via the shopt command (the default), the substitutions are
performed.

Arithmetic Expressions
The let command performs arithmetic. ksh88 and Bash are restricted to integer
arithmetic. ksh93 can do floating-point arithmetic as well. Both shells provide a
way to substitute arithmetic values (for use as command arguments or in vari-
ables); base conversion is also possible:

Operators
The shells use arithmetic operators from the C programming language, in
decreasing order of precedence. ksh88 does not support the ++, --, unary +, ?:,
comma, or ** operators. Early versions of ksh93 do not have **.

\v The version of Bash.
\V The release (version plus patchlevel) of Bash.
\w The current directory, with $HOME abbreviated as ~.
\W The basename of the current directory, with $HOME abbreviated as ~.
\! The history number of this command.
\# The command number of this command.
\$ If the effective UID is 0, a #, otherwise a $.
\@ The current time in 12-hour a.m./p.m. format.
\nnn The character represented by octal value nnn.
\\ A literal backslash.
\[Start a sequence of nonprinting characters, such as for highlighting or

changing colors on a terminal.
\] End a sequence of nonprinting characters.

Substitution ksh88 ksh93 Bash

! for command number PS1 PS1

Escape sequences PS1, PS2, PS4

Variable substitution PS1 PS1 PS1, PS2, PS4

Command substitution PS1 PS1, PS2, PS4

Arithmetic substitution PS1 PS1, PS2, PS4

$((expr)) Use the value of the enclosed arithmetic expression.
B#n Interpret integer n in numeric base B. For example, 8#100 specifies the

octal equivalent of decimal 64.

Operator Description

++ -- Auto-increment and auto-decrement, both prefix and postfix.

+ - ! ~ Unary plus and minus, logical negation and binary inversion (one’s
complement).

Arithmetic Expressions | 367

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Built-in Mathematical Functions (ksh93 Only)

ksh93 provides access to the standard set of mathematical functions. They are
called using C function call syntax.

Examples
let "count=0" "i = i + 1" Assign i and count
let "num % 2" Test for an even number
((percent >= 0 && percent <= 100)) Test the range of a value

See the let entry in the later section “Built-in Commands (Bash and Korn Shells)”
for more information and examples.

** Exponentiation.a

* / % Multiplication; division; modulus (remainder).

+ - Addition; subtraction.

<< >> Bitwise left shift; bitwise right shift.

< <= > >= Less than; less than or equal to; greater than; greater than or equal to.

== != Equality; inequality (both evaluated left to right).

& Bitwise AND.

^ Bitwise exclusive OR.

| Bitwise OR.

&& Logical AND (short-circuit).

|| Logical OR (short-circuit).

?: Inline conditional evaluation.

= += -=

Assignment.
*= /= %=

<<= >>=

&= ^= |=

, Sequential expression evaluation.

a In ksh93, the ** operator is right-associative. In bash versions prior to 3.1, it is left-associative. It will
be changed to right-associative starting with version 3.1.

Name Function Name Function

abs Absolute value hypot Euclidean distance

acos Arc cosine int Integer part of floating-point number

asin Arc sine log Natural logarithm

atan Arc tangent pow Exponentiation (xy)

atan2 Arc tangent of two values sin Sine

cos Cosine sinh Hyperbolic sine

cosh Hyperbolic cosine sqrt Square root

exp Exponential (ex) tan Tangent

fmod Floating-point remainder tanh Hyperbolic tangent

Operator Description

368 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Command History
Both shells let you display or modify previous commands. Commands in the
history list can be modified using:

• Line-edit mode

• The fc and hist commands

Bash also supports a command history mechanism very similar to that of the C
shell. Because the interactive line-editing features are considerably superior, and
because Bash’s command history is almost identical to that of the C shell, we have
chosen not to cover those features here. See Chapter 5 and the Bash manpage for
more information.

Line-Edit Mode

Line-edit mode emulates many features of the vi and emacs editors. The history list
is treated like a file. When the editor is invoked, you type editing keystrokes to
move to the command line you want to execute. You can also change the line before
executing it. When you’re ready to issue the command, press the ENTER key.

In ksh, line-edit mode can be started in several ways. For example, these are
equivalent:

$ VISUAL=vi
$ EDITOR=vi
$ set -o vi Overrides value of VISUAL or EDITOR

For Bash, you must use either set -o vi or set -o emacs; assignment to the VISUAL
or EDITOR variables has no effect.

Note that vi starts in input mode; to type a vi command, press the Escape key
first.

Common editing keystrokes

vi emacs Result

k CTRL-p Get previous command.

j CTRL-n Get next command.

/string CTRL-r string Get previous command containing string.

h CTRL-b Move back one character.

l CTRL-f Move forward one character.

b ESC-b Move back one word.

w ESC-f Move forward one word.

X DEL Delete previous character.

x CTRL-d Delete character under cursor.

dw ESC-d Delete word forward.

db ESC-h Delete word backward.

xp CTRL-t Transpose two characters.

Command History | 369

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The fc and hist Commands

“fc” stands for either “find command” or “fix command,” since it does both jobs.
Use fc -l to list history commands and fc -e to edit them. See the fc entry in the
later section “Built-in Commands (Bash and Korn Shells),” for more information.

In ksh93, the fc command has been renamed hist, and alias fc=hist is predefined.

Examples

$ history List the last 16 commands
$ fc -l 20 30 List commands 20 through 30
$ fc -l -5 List the last 5 commands
$ fc -l cat List all commands since the last command beginning with cat
$ fc -l 50 List all commands since command 50
$ fc -ln 5 > doit Save command 5 to file doit
$ fc -e vi 5 20 Edit commands 5 through 20 using vi
$ fc -e emacs Edit previous command using emacs

The following only work in the Korn shell, which predefines the r alias:

$ r Reexecute previous command
$ r cat Reexecute last cat command
$ r doc=Doc Substitute, then reexecute last command
$ r chap=doc c Reexecute last command that begins with c, but change string chap to doc

For both shells, the interactive line-editing is easier to use than fc, since you can
move up and down in the saved command history using your favorite editor
commands (as long as your favorite editor is either vi or Emacs!). Current versions
of both shells also let you use the Up and Down arrow keys to traverse the
command history.

Programmable Completion (Bash Only)

Bash and the readline library provide completion facilities, whereby you can type
part of a command name, hit the TAB key, and have Bash fill in part or all of the
rest of the command or filename. Programmable completion lets you, as a shell
programmer, write code to customize the list of possible completions that Bash
will present for a particular, partially entered word. This is accomplished through
the combination of several facilities.

• The complete command allows you provide a completion specification, or
compspec, for individual commands. You specify, via various options, how to
tailor the list of possible completions for the particular command. This is
simple, but adequate for many needs. (See the complete entry in the section
“Built-in Commands (Bash and Korn Shells),” later in this chapter.)

• For more flexibility, you may use complete -F funcname command. This tells Bash
to call funcname to provide the list of completions for command. You write
the funcname function.

• Within the code for a -F function, the COMP* shell variables provide infor-
mation about the current command line. COMPREPLY is an array into
which the function places the final list of completion results.

370 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

• Also within the code for a -F function, you may use the compgen command to
generate a list of results, such as “usernames that begin with a” or “all set vari-
ables.” The intent is that such results would be used with an array assignment:

...
COMPREPLY=($(compgen options arguments))
...

Compspecs may be associated with either a full pathname for a command, or
more commonly, with an unadorned command name (/usr/bin/man versus plain
man). Completions are attempted in the following order, based on the options
provided to the complete command.

1. Bash first identifies the command. If a pathname is used, Bash looks to see if
a compspec exists for the full pathname. Otherwise, it sets the command
name to the last component of the pathname, and searches for a compspec
for the command name.

2. If a compspec exists, Bash uses it. If not, Bash falls back to the default built-in
completions.

3. Bash performs the action indicated by the compspec to generate a list of
possible matches. Of this list, only those that have the word being completed
as a prefix are used for the list of possible completions. For the -d and -f
options, the variable FIGNORE is used to filter out undesirable matches.

4. Bash generates filenames as specified by the -G option. GLOBIGNORE is not
used to filter the results, but FIGNORE is.

5. Bash processes the argument string provided to -W. The string is split using
the characters in $IFS. The resulting list provides the candidates for comple-
tion. This is often used to provide a list of options that a command accepts.

6. Bash runs functions and commands as specified by the -F and -C options. For
both, Bash sets COMP_LINE and COMP_POINT as described previously.
For a shell function, COMP_WORDS and COMP_CWORD are also set.

Also for both, $1 is the name of the command whose arguments are being
completed, $2 is the word being completed, and $3 is the word in front of the
word being completed. Bash does not filter the results of the command or
function.

a. Functions named with -F are run first. The function should set the
COMPREPLY array to the list of possible completions. Bash retrieves the
list from there.

b. Commands provided with -C are run next, in an environment equivalent
to command substitution. The command should print the list of possible
completions, one per line. An embedded newline should be escaped with
a backslash.

7. Once the list is generated, Bash filters the results according to the -X option.
The argument to -X is a pattern specifying files to exclude. By prefixing the
pattern with a !, the sense is reversed, and the pattern instead specifies that
only matching files should be retained in the list.

An & in the pattern is replaced with the text of the word being completed. Use
\& to produce a literal &.

Command History | 371

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

8. Finally, Bash prepends or appends any prefixes or suffixes supplied with the
-P or -S options.

9. In the case that no matches were generated, if -o dirnames was used, Bash
attempts directory name completion.

10. On the other hand, if -o plusdirs was provided, Bash adds the result of direc-
tory completion to the previously generated list.

11. Normally, when a compspec is provided, Bash’s default completions are not
attempted, nor are the readline library’s default filename completions.

a. If the compspec produces no results and -o bashdefault was provided,
then Bash attempts its default completions.

b. If neither the compspec nor the Bash default completions with -o
bashdefault produced any results, and -o default was provided, then Bash
has the readline library attempt its filename completions.

Ian Macdonald has collected a large set of useful compspecs, often distributed as
the file /etc/bash_completion. If your system does not have it, one location for
downloading it is http://www.dreamind.de/files/bash-stuff/bash_completion. It is
worth retrieving and reviewing.

Examples

Restrict files for the C compiler to C, C++ and assembler source files, and relocat-
able object files:

complete -f -X '!*.[Ccos]' gcc cc

For the man command, restrict expansions to things that have manpages:

Simple example of programmable completion for manual pages.
A more elaborate example appears in the bash_completion file.
Assumes man [num] command command syntax.

shopt -s extglob Enable extended pattern
 matching
_man () {
 local dir mandir=/usr/share/man Local variables

 COMPREPLY=() Clear reply list
 if [[${COMP_WORDS[1]} = +([0-9])]] Section number provided
 then
 # section provided: man 3 foo
 dir=$mandir/man${COMP_WORDS[COMP_CWORD-1]} Look in that directory
 else
 # no section, default to commands
 dir=$mandir/'man[18]' Look in command
 directories
 fi
 COMPREPLY=($(find $dir -type f | Generate raw file list
 sed 's;..*/;;' | Remove leading directories
 sed 's/\.[0-9].*$//' | Remove trailing suffixes
 grep "^${COMP_WORDS[$COMP_CWORD]}" | Keep those that match
 given prefix

372 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

 sort Sort final list
))
}
complete -F _man man Associate function with
 command

Job Control
Job control lets you place foreground jobs in the background, bring background
jobs to the foreground, or suspend (temporarily stop) running jobs. All modern
Unix systems, including Linux and BSD systems, support job control; thus, the
job control features are automatically enabled. Many job control commands take
a jobID as an argument. This argument can be specified as follows:

%n Job number n.

%s Job whose command line starts with string s.

%?s Job whose command line contains string s.

%% Current job.

%+ Current job (same as above).

%- Previous job.

Both shells provide the following job control commands. For more information
on these commands, see the section “Built-in Commands (Bash and Korn Shells)”
later in this chapter.

bg Put a job in the background.

fg Put a job in the foreground.

jobs
List active jobs.

kill
Terminate a job.

stty tostop
Stop background jobs if they try to send output to the terminal. (Note that
stty is not a built-in command.)

suspend
Suspend a job-control shell (such as one created by su).

wait
Wait for background jobs to finish.

CTRL-Z
Suspend a foreground job. Then use bg or fg. (Your terminal may use some-
thing other than CTRL-Z as the suspend character.)

Command Execution
When you type a command to Bash or ksh93, they look in the following places
until they find a match:

Restricted Shells | 373

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1. Keywords such as if and for.

2. Aliases. You can’t define an alias whose name is a shell keyword, but you can
define an alias that expands to a keyword, e.g., alias aslongas=while. (Bash,
when not in POSIX mode, does allow you to define an alias for a shell
keyword.)

3. Special built-ins like break and continue. The list of POSIX special built-ins is .
(dot), :, break, continue, eval, exec, exit, export, readonly, return, set, shift,
times, trap, and unset. The Korn shell adds alias, login, typeset, and unalias,
while Bash adds source.

4. Functions. When not in POSIX mode, Bash finds functions before built-in
commands.

5. Nonspecial built-ins like cd and test.

6. Scripts and executable programs, for which the shell searches in the directo-
ries listed in the PATH environment variable.

The distinction between “special” built-in commands and nonspecial ones comes
from POSIX. This distinction, combined with the command command, makes it
possible to write functions that override shell built-ins, such as cd. For example:

cd () { Shell function; found before built-in cd
 command cd "$@" Use real cd to change directory
 echo now in $PWD Other stuff we want to do
}

In ksh88, the search order is different, all built-ins are found before shell func-
tions. Thus you have to do more work to override a built-in command with a
function. You do so using a combination of functions and aliases:

_cd () { Shell function; note leading underscore
 cd "$@" Use real cd to change directory
 echo now in $PWD Other stuff we want to do
}
alias cd=_cd Alias found first

Restricted Shells
A restricted shell is one that disallows certain actions, such as changing directory,
setting PATH, or running commands whose names contain a / character.

The original V7 Bourne shell had an undocumented restricted mode. Later
versions of the Bourne shell clarified the code and documented the facility. Today,
Bash and the Korn shell both supply a restricted mode, but with differing sets of
items that get restricted. (See the respective manual pages for the details.)

Shell scripts can still be run, since in that case the restricted shell calls the
unrestricted version of the shell to run the script. This includes the /etc/profile,
$HOME/.profile, and other start-up files.

Restricted shells are not used much in practice, as they are difficult to set up
correctly.

374 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

!

Built-in Commands (Bash and Korn Shells)
Examples to be entered as a command line are shown with the $ prompt. Other-
wise, examples should be treated as code fragments that might be included in a
shell script. For convenience, some of the reserved words used by multiline
commands are also included.

! ! pipeline

Not ksh88. Negate the sense of a pipeline. Returns an exit status of
0 if the pipeline exited nonzero, and an exit status of 1 if the pipe-
line exited zero. Typically used in if and while statements.

Example

This code prints a message if user jane is not logged on:

if ! who | grep jane > /dev/null
then
 echo jane is not currently logged on
fi

#

Ignore all text that follows on the same line. # is used in shell
scripts as the comment character and is not really a command.

#!shell #!shell [option]

Used as the first line of a script to invoke the named shell. Anything
given on the rest of the line is passed as a single argument to the
named shell. This feature is typically implemented by the kernel,
but may not be supported on some older systems. Some systems
have a limit of around 32 characters on the maximum length of
shell. For example:

#!/bin/sh

: :

Null command. Returns an exit status of 0. See this Example and
the ones under case. The line is still processed for side effects, such
as variable and command substitutions, or I/O redirection.

Example

Check whether someone is logged in:

if who | grep $1 > /dev/null
then : # Do nothing if user is found
else echo "User $1 is not logged in"
fi

Built-in Commands (Bash and Korn Shells) | 375

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

alias

. . file [arguments]

Read and execute lines in file. file does not have to be executable
but must reside in a directory searched by PATH. The arguments
are stored in the positional parameters. If Bash is not in POSIX
mode and file is not found in PATH, Bash will look in the current
directory for file.

[[]] [[expression]]

Same as test expression or [expression], except that [[]] allows
additional operators. Word splitting and filename expansion are
disabled. Note that the brackets ([]) are typed literally, and that
they must be surrounded by whitespace.

Additional Operators

name () name () { commands; }

Define name as a function. POSIX syntax. The function definition
can be written on one line or across many. Bash and the Korn shell
provide the function keyword, alternate forms that work similarly.
See the earlier section “Functions.”

Example

$ count () {
> ls | wc -l
> }

When issued at the command line, count now displays the number
of files in the current directory.

alias alias [options] [name[='cmd']]

Assign a shorthand name as a synonym for cmd. If ='cmd' is
omitted, print the alias for name; if name is also omitted, print all
aliases. If the alias value contains a trailing space, the next word on
the command line also becomes a candidate for alias expansion.
See also unalias.

These aliases are built into ksh88. Some use names of existing
Bourne shell or C shell commands.

autoload='typeset -fu'
false='let 0'
functions='typeset -f'
hash='alias -t'

&& Logical AND of test expressions (short circuit).
|| Logical OR of test expressions (short circuit).
< First string is lexically “less than” the second.
> First string is lexically “greater than” the second.

376 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

autoload

history='fc -l'
integer='typeset -i'
nohup='nohup '
r='fc -e -'
true=':'
type='whence -v'

The following aliases are built into ksh93:
autoload='typeset -fu'
command='command '
fc='hist'
float='typeset -E'
functions='typeset -f'
hash='alias -t --'
history='hist -l'
integer='typeset -i'
nameref='typeset -n'
nohup='nohup '
r='hist -s'
redirect='command exec'
stop='kill -s STOP'
times='{ {time;} 2>&1;}'
type='whence -v'

Options

-p Print the word alias before each alias. Not ksh88.

-t Create a tracked alias for a Unix command name. The Korn
shell remembers the full pathname of the command, allowing
it to be found more quickly and to be issued from any direc-
tory. If no name is supplied, current tracked aliases are listed.
Tracked aliases are the similar to hashed commands in Bash.
Korn shell only. ksh93 always does alias tracking.

-x Export the alias; it can now be used in shell scripts and other
subshells. If no name is supplied, current exported aliases are
listed. Korn shell only. ksh93 accepts this option but ignores it.

Example

alias dir='echo ${PWD##*/}'

autoload autoload [functions]

Korn shell alias for typeset -fu. Load (define) the functions only
when they are first used.

bind bind [-m map] [options]
bind [-m map] [-q function] [-r sequence] [-u function]
bind [-m map] -f file
bind [-m map] -x sequence:command
bind [-m map] sequence:function
bind readline-command

Bash only. Manage the readline library. Non-option arguments
have the same form as in a .inputrc file.

Built-in Commands (Bash and Korn Shells) | 377

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

builtin

Options

-f file
Read key bindings from file.

-l List the names of all the readline functions.

-m map
Use map as the keymap. Available keymaps are: emacs, emacs-
standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is the same as vi-command and emacs is the same
emacs-standard.

-p Print the current readline bindings such that they can be
reread from a .inputrc file.

-P Print the current readline bindings.

-q function
Query which keys invoke the readline function function.

-r sequence
Remove the binding for key sequence sequence.

-s Print the current readline key sequence and macro bindings
such that they can be reread from a .inputrc file.

-S Print the current readline key sequence and macro bindings.

-u function
Unbind all keys that invoke the readline function function.

-v Print the current readline variables such that they can be
reread from a .inputrc file.

-V Print the current readline variables.

-x sequence:command
Execute the shell command command whenever sequence is
entered.

bg bg [jobIDs]

Put current job or jobIDs in the background. See the earlier section
“Job Control.”

break break [n]

Exit from a for, while, select, or until loop (or break out of n
loops).

builtin builtin command [arguments ...]

Bash version. Run the shell built-in command command with the
given arguments. This allows you to bypass any functions that
redefine a built-in command’s name. The command command is
more portable.

378 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

builtin

Example

This function lets you do your own tasks when you change
directory:

cd () {
 builtin cd "$@" Actually change directory
 pwd Report location
}

builtin builtin [-ds] [-f library] [name ...]

ksh93 version. This command allows you to load new built-in
commands into the shell at runtime from shared library files.

If no arguments are given, builtin prints all the built-in command
names. With arguments, builtin adds each name as a new built-in
command (like cd or pwd). If the name contains a slash, the newly-
added built-in version is used only if a path search would other-
wise have found a command of the same name. (This allows
replacement of system commands with faster, built-in versions.)
Otherwise, the built-in command is always found.

Options

-d Delete the built-in command name.

-f Load new built-in command from library.

-s Only print “special” built-ins (those designated as special by
POSIX).

caller caller [expression]

Bash only. Print the line number and source filename of the current
function call or dot file. With nonzero expression, prints that
element from the call stack. The most recent is zero. This
command is for use by the Bash debugger.

case case value in
pattern1) cmds1;;
pattern2) cmds2;;
 .
 .
 .
esac

Execute the first set of commands (cmds1) if value matches
pattern1, execute the second set of commands (cmds2) if value
matches pattern2, etc. Be sure the last command in each set ends
with ;;. value is typically a positional parameter or other shell vari-
able. cmds are typically Unix commands, shell programming
commands, or variable assignments. Patterns can use file-genera-
tion metacharacters. Multiple patterns (separated by |) can be
specified on the same line; in this case, the associated cmds are

Built-in Commands (Bash and Korn Shells) | 379

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cd

executed whenever value matches any of these patterns. See the
Examples here and under eval.

The shells allow pattern to be preceded by an optional open paren-
thesis, as in (pattern). In Bash and ksh88, it’s necessary for
balancing parentheses inside a $() construct.

The Korn shell allows a case to end with ;& instead of ;;. In such
cases control “falls through” to the group of statements for the next
pattern.

Examples

Check first command-line argument and take appropriate action:

case $1 in # Match the first arg
 no|yes) response=1;;
 -[tT]) table=TRUE;;
 *) echo "unknown option"; exit 1;;
esac

Read user-supplied lines until user exits:

while : # Null command; always true
do
 printf "Type . to finish ==> "
 read line
 case "$line" in
 .) echo "Message done"
 break ;;
 *) echo "$line" >> $message ;;
 esac
done

cd cd [-LP] [dir]
cd [-LP] [-]
cd [-LP] [old new]

With no arguments, change to home directory of user. Otherwise,
change working directory to dir. If dir is a relative pathname but is not
in the current directory, the CDPATH variable is searched. A direc-
tory of - stands for the previous directory. The last syntax is specific
to the Korn shell. It modifies the current directory name by replacing
string old with new and then switches to the resulting directory.

Options

-L Use the logical path (what the user typed, including any
symbolic links) for cd .. and the value of PWD. This is the
default.

-P Use the actual filesystem physical path for cd .. and the value
of PWD.

Example

$ pwd
/var/spool/cron
$ cd cron uucp Ksh: cd prints the new directory
/var/spool/uucp

380 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

command

command command [-pvV] name [arg ...]

Not ksh88. Without -v or -V, execute name with given arguments.
This command bypasses any aliases or functions that may be
defined for name. When used with a special built-in, prevents the
built-in from exiting the script if it fails.

Options

-p Use a predefined, default search path, not the current value of
PATH.

-v Print a description of how the shell interprets name.

-V Print a more verbose description of how the shell interprets
name.

Example

Create an alias for rm that will get the system’s version, and run it
with the -i option:

$ alias 'rm=command -p rm -i'

compgen compgen [options] [string]

Bash only. Generate possible completions for string according to
the options. Options are those accepted by complete, except for -p
and -r. For more information, see the entry for complete.

complete complete [options] command ...

Bash only. Specifies the way to complete arguments for each
command. This is discussed in the section “Programmable Comple-
tion (Bash Only),” earlier in the chapter.

Options

-a Same as -A alias.

-A type
Use type to specify a list of possible completions. The type may
be one of the following.

alias Alias names.
arrayvar Array variable names.
binding Bindings from the readline library.
builtin Shell built-in command names.
command Command names.
directory Directory names.
disabled Names of disabled shell built-in commands.
enabled Names of enabled shell built-in commands.
export Exported variables.
file Filenames.
function Names of shell functions.
group Group names.

Built-in Commands (Bash and Korn Shells) | 381

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

complete

-b Same as -A builtin.

-c Same as -A command.

-C command
Run command in a subshell and use its output as the list of
completions.

-d Same as -A directory.

-e Same as -A export.

-f Same as -A file.

-F function
Run shell function function in the current shell. Upon its
return, retrieve the list of completions from the COMPREPLY
array.

-g Same as -A group.

-G pattern
Expand pattern to generate completions.

-j Same as -A job.

-k Same as -A keyword.

-o option
Control the behavior of the completion specification. The
value for option is one of the following.

helptopic Help topics as allowed by the help built-in
command.

hostname Hostnames, as found in the file named by
$HOSTFILE.

job Job names.
keyword Shell reserved keywords.
running Names of running jobs.
service Service names (from /etc/services).
setopt Valid arguments for set -o.
shopt Valid option names for the shopt built-in

command.
signal Signal names.
stopped Names of stopped jobs.
user Usernames.
variable Shell variable names.

bashdefault Fall back to the normal Bash completions if no
matches are produced.

default Use the default readline completions if no
matches are produced.

dirnames Do directory name completion if no matches are
produced.

filenames Inform the readline library that the intended
output is filenames, so the library can do any file-
name-specific processing, such as adding a
trailing slash for directories, or removing trailing
spaces.

382 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

continue

-p With no commands, print all completion settings in a way
that can be reread.

-P prefix
The prefix is added to each resulting string as a prefix after all
the other options have been applied.

-r Remove the completion settings for the given commands, or
all settings if no commands.

-s Save as -A service.

-S suffix
The suffix is added to each resulting string as a suffix after all
the other options have been applied.

-u Same as -A user.

-v Same as -A variable.

-W wordlist
Split wordlist (a single shell word) using $IFS. The generated
list contains the members of the split list that matched the
word being completed. Each member is expanded using brace
expansion, tilde expansion, parameter and variable expan-
sion, command substitution, and arithmetic expansion. Shell
quoting is respected.

-X pattern
Exclude filenames matching pattern from the filename
completion list. With a leading !, the sense is reversed, and
only filenames matching pattern are retained.

continue continue [n]

Skip remaining commands in a for, while, select, or until loop,
resuming with the next iteration of the loop (or skipping n loops).

declare declare [options] [name[=value]]

Bash only. Declare variables and manage their attributes. In func-
tion bodies, variables are local, as if declared with the local
command.

Options

-a Each name is an array.

-f Each name is a function.

-F For functions, print just the functions’ name and attributes,
not the function definition (body).

nospace Inform the readline library that it should not
append a space to words completed at the end of
a line.

plusdirs Attempt directory completion and add any
results to the list of completions already gener-
ated.

Built-in Commands (Bash and Korn Shells) | 383

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

disown

-i Each variable is an integer; in an assignment, the value is eval-
uated as an arithmetic expression.

-p With no names, print all variables and their values. With
names, print the names, attributes, and values of the given
variables. This option causes all other options to be ignored.

-r Mark names as read-only. Subsequent assignments will fail.

-t Apply the trace attribute to each name. Traced functions
inherit the DEBUG trap. This attribute has no meaning for
variables.

-x Mark names for export into the environment of child
processes.

With a + instead of a -, the given attribute is disabled. With no
variable names, all variables having the given attribute(s) are
printed in a form that can be reread as input to the shell.

Examples

$ declare -i val Make val an integer
$ val=4+7 Evaluate value
$ echo $val Show result
11

$ declare -r z=42 Make z readonly
$ z=31 Try to assign to it
bash: z: readonly variable Assignment fails
$ echo $z
42

$ declare -p val z Show attributes and values
declare -i val="11"
declare -r z="42"

dirs dirs [-clpv] [+n] [-n]

Bash only. Print the directory stack, which is managed with pushd
and popd.

Options

+n Print the nth entry from the left; first entry is zero.

-n Print the nth entry from the right; first entry is zero.

-c Remove all entries from (clear) the directory stack.

-l Produce a longer listing, one that does not replace $HOME
with ~.

-p Print the directory stack, one entry per line.

-v Print the directory stack, one entry per line, with each entry
preceded by its index in the stack.

disown disown [-ahr] [job ...]

Bash version. Removes jobs from the list of jobs managed by Bash.

384 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

disown

Options

-a Remove all jobs. With -h, mark all jobs.

-h Instead of removing jobs from the list of known jobs, mark
them to not receive SIGHUP when Bash exits.

-r With no jobs, remove (or mark) only running jobs.

disown disown [job ...]

ksh93 version. When a login shell exits, do not send a SIGHUP to the
given jobs. If no jobs are listed, no background jobs will receive
SIGHUP.

do do

Reserved word that precedes the command sequence in a for,
while, until, or select statement.

done done

Reserved word that ends a for, while, until, or select statement.

echo echo [-eEn] [string]

Bash version, built-in to the shell. Write string to standard output.
(See also echo in Chapter 2.)

Options

-e Enable interpretation of the following escape sequences,
which must be quoted (or escaped with a \) to prevent inter-
pretation by the shell:

\a Alert (ASCII BEL).

\b Backspace.

\c Suppress the terminating newline (same as -n).

\e ASCII Escape character.

\f Formfeed.

\n Newline.

\r Carriage return.

\t Tab character.

\v Vertical-tab character.

\\ Backslash.

\0nnn
ASCII character represented by octal number nnn, where
nnn is zero, one, two, or three digits and is preceded by a 0.

Built-in Commands (Bash and Korn Shells) | 385

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

echo

\nnn
ASCII character represented by octal number nnn, where
nnn is one, two, or three digits.

\xHH
ASCII character represented by hexadecimal number HH,
where HH is one or two hexadecimal digits.

-E Do not interpret escape sequences, even on systems where the
default behavior of the built-in echo is to interpret them.

-n Do not print the terminating newline.

Examples

$ echo "testing printer" | lp
$ echo "Warning: ringing bell \a"

echo echo [-n] [string]

Korn shell version. Write string to standard output; if -n is speci-
fied, the output is not terminated by a newline. If no string is
supplied, echo a newline.

The Korn shell’s echo, even though it is built-in to the shell,
emulates the system’s version of echo. Thus, if the version found by
a path search supports -n, the built-in version does too. Similarly, if
the external version supports the escape sequences described
below, the built-in version does too; otherwise it does not.* (See
also echo in Chapter 2.) echo understands special escape charac-
ters, which must be quoted (or escaped with a \) to prevent
interpretation by the shell:

\a Alert (ASCII BEL).

\b Backspace.

\c Suppress the terminating newline (same as -n).

\f Formfeed.

\n Newline.

\r Carriage return.

\t Tab character.

\v Vertical-tab character.

\\ Backslash.

\0nnn
ASCII character represented by octal number nnn, where nnn
is one, two, or three digits and is preceded by a 0.

* The situation with echo is a mess; consider using printf instead.

386 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

enable

enable enable [-adnps] [-f file] [command ...]

Bash only. Enable or disable shell built-in commands. Disabling a
built-in lets you use an external version of a command that would
otherwise use a built-in version, such as echo or test.

Options

-a For use with -p; print information about all built-in
commands, disabled and enabled.

-d Remove (delete) a built-in previously loaded with -f.

-f file
Load a new built-in command command from the shared
library file file.

-n Disable the named built-in commands.

-p Print a list of enabled built-in commands.

-s Print only the POSIX special built-in commands. When
combined with -f, the new built-in command becomes a
POSIX special built-in.

esac esac

Reserved word that ends a case statement.

eval eval args

Typically, eval is used in shell scripts, and args is a line of code that
contains shell variables. eval forces variable expansion to happen
first and then runs the resulting command. This “double-scan-
ning” is useful any time shell variables contain input/output
redirection symbols, aliases, or other shell variables. (For example,
redirection normally happens before variable expansion, so a vari-
able containing redirection symbols must be expanded first using
eval; otherwise, the redirection symbols remain uninterpreted.) See
the C shell eval entry (Chapter 5) for another example.

Example

This fragment of a shell script shows how eval constructs a
command that is interpreted in the right order:

for option
do
 case "$option" in Define where output goes
 save) out=' > $newfile' ;;
 show) out=' | more' ;;
 esac
done

eval sort $file $out

Built-in Commands (Bash and Korn Shells) | 387

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

export

exec exec [command args ...]
exec [-a name] [-cl] [command args ...]

Execute command in place of the current process (instead of
creating a new process). exec is also useful for opening, closing, or
copying file descriptors. The second form is for ksh93 and Bash.

Options

-a Use name for the value of argv[0].

-c Clear the environment before executing the program.

-l Place a minus sign at the front of argv[0], just as login(1) does.
Bash only.

Examples

trap 'exec 2>&-' 0 Close standard error when
shell script exits (signal 0)

$ exec /bin/csh Replace shell with C shell
$ exec < infile Reassign standard input to infile

exit exit [n]

Exit a shell script with status n (e.g., exit 1). n can be 0 (success)
or nonzero (failure). If n is not given, the shell’s exit status is that of
the most recent command. exit can be issued at the command line
to close a window (log out). Exit statuses can range in value from 0
to 255.

Example

if [$# -eq 0]
then
 echo "Usage: $0 [-c] [-d] file(s)" 1>&2
 exit 1 # Error status
fi

export export [variables]
export [name=[value] ...]
export -p
export [-fn] [name=[value] ...]

Pass (export) the value of one or more shell variables, giving global
meaning to the variables (which are local by default). For example,
a variable defined in one shell script must be exported if its value is
used in other programs called by the script. If no variables are
given, export lists the variables exported by the current shell. The
second form is the POSIX version, which is similar to the first form
except that you can set a variable name to a value before exporting
it. The third form is not available in ksh88. The fourth form is
specific to Bash.

388 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

false

Options

-f Names refer to functions; the functions are exported in the
environment. Bash only.

-n Remove the named variables or functions from the environ-
ment. Bash only.

-p Print export before printing the names and values of exported
variables. This allows saving a list of exported variables for
rereading later.

Examples

In the original Bourne shell, you would type:

TERM=vt100
export TERM

In Bash and the Korn shell, you could type this instead:

export TERM=vt100

false false

ksh88 alias for let 0. Built-in command in Bash and ksh93 that exits
with a false return value.

fc fc [options] [first [last]]
fc -e - [old=new] [command]
fc -s [old=new] [command]

ksh88 and Bash. Display or edit commands in the history list. (Use
only one of -e, -l or -s.) first and last are numbers or strings speci-
fying the range of commands to display or edit. If last is omitted, fc
applies to a single command (specified by first). If both first and
last are omitted, fc edits the previous command or lists the last 16.
The second form of fc takes a history command, replaces old with
new, and executes the modified command. If no strings are speci-
fied, command is just reexecuted. If no command is given either, the
previous command is reexecuted. command is a number or string
like first. See the examples in the earlier section “Command
History.” The third form, available in Bash and ksh93, is equivalent
to the second form.

Options

-e [editor]
Invoke editor to edit the specified history commands. The
default editor is set by the shell variable FCEDIT. If that vari-
able is not set, the default is /bin/ed. (Bash defaults to vi;
version 3.1 and newer will default to /bin/ed when in POSIX
mode.) Bash tries FCEDIT, then EDITOR, and then /bin/ed.

-e - Execute (or redo) a history command; refer to second syntax
line above.

Built-in Commands (Bash and Korn Shells) | 389

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

for

-l List the specified command or range of commands, or list the
last 16.

-n Suppress command numbering from the -l listing.

-r Reverse the order of the -l listing.

-s Equivalent to -e -. Not in ksh88.

fc fc

ksh93 alias for hist.

fg fg [jobIDs]

Bring current job or jobIDs to the foreground. See the earlier
section “Job Control.”

fi fi

Reserved word that ends an if statement. (Don’t forget to use it!)

for for x [in list]
do
commands
done

For variable x (in optional list of values) do commands. If in list is
omitted, "$@" (the positional parameters) is assumed.

Examples

Paginate files specified on the command line; save each result:

for file; do
 pr $file > $file.tmp
done

Same, but put entire loop into the background:

for file; do
 pr $file > $file.tmp
done &

Search chapters for a list of words (like fgrep -f):

for item in `cat program_list`
do
 echo "Checking chapters for"
 echo "references to program $item..."
 grep -c "$item.[co]" chap*
done

Extract a one-word title from each file and use as new filename:

for file
do
 name=`sed -n 's/NAME: //p' $file`
 mv $file $name
done

390 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

for

for for ((init; cond; incr))
do
commands
done

Bash and ksh93. Arithmetic for loop, similar to C’s. Evaluate init.
While cond is true, execute the body of the loop. Evaluate incr
before retesting cond. Any one of the expressions may be omitted; a
missing cond is treated as being true.

Example

Search for a phrase in each odd chapter:

for ((x=1; x <= 20; x += 2))
do
 grep $1 chap$x
done

function function name { commands; }
function name () { commands; }

Define name as a shell function. See the description of semantic
issues in the earlier section “Functions.” The first form is for the
Korn shell, although it may also be used with Bash. The second form
is specific to Bash. Bash does not give different semantics to func-
tions declared differently; all Bash functions behave the same way.

Example

Define a function to count files.

$ function fcount {
> ls | wc -l
> }

functions functions

Korn shell alias for typeset -f. (Note the “s” in the name; function
is a Korn shell keyword.) See typeset later in this listing.

getconf getconf [name [path]]

ksh93 only. Retrieve the values for parameters that can vary across
systems. name is the parameter to retrieve; path is a filename to test
for parameters that can vary on different filesystem types.

The parameters are defined by the POSIX 1003.1 standard. See the
entry for getconf in Chapter 2.

Example

Print the maximum value that can be held in a C int.

$ getconf INT_MAX
2147483647

Built-in Commands (Bash and Korn Shells) | 391

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

hash

getopts getopts [-a name] string name [args]

Process command-line arguments (or args, if specified) and check
for legal options. getopts is used in shell script loops and is
intended to ensure standard syntax for command-line options.
Standard syntax dictates that command-line options begin with a -.
Options can be stacked; i.e., consecutive letters can follow a single
-. End processing of options by specifying -- on the command line.
string contains the option letters to be recognized by getopts when
running the shell script. Valid options are processed in turn and
stored in the shell variable name. If an option is followed by a
colon, the option must be followed by one or more arguments.
(Multiple arguments must be given to the command as one shell
word. This is done by quoting the arguments or separating them
with commas. The application must be written to expect multiple
arguments in this format.) getopts uses the shell variables
OPTARG and OPTIND. The Bash version also uses OPTERR.

Option

-a Use name in error messages about invalid options. ksh93 only.

hash hash [-dlrt] [-p file] [commands]

Bash version. As the shell finds commands along the search path
($PATH), it remembers the found location in an internal hash
table. The next time you enter a command, the shell uses the value
stored in its hash table.

With no arguments, hash lists the current hashed commands. The
display shows hits (the number of times the command has been
called by the shell) and the command name.

With commands, the shell adds those commands to the hash table.

Options

-d Remove (delete) just the specified commands from the hash
table.

-l Produce output in a format that can be reread to rebuild the
hash table.

-p file
Associate file with command in the hash table.

-r Remove all commands from the hash table.

-t With one name, print the full pathname of the command.
With more than one name, print the name and the full path,
in two columns.

Besides the -r option, the hash table is also cleared when PATH is
assigned. Use PATH=$PATH to clear the hash table without affecting
your search path. This is most useful if you have installed a new
version of a command in a directory that is earlier in $PATH than
the current version of the command.

392 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

hash

hash hash

Korn shell alias for alias -t (alias -t -- in ksh93). Approximates
the Bourne shell’s hash.

help help [-s] [pattern]

Bash only. Print usage information on standard output for each
command that matches pattern. The information includes descrip-
tions of each command’s options. With the -s option, print only
brief usage information.

Examples

$ help -s cd Short help
cd: cd [-L|-P] [dir]

$ help true Full help
true: true
 Return a successful result.

hist hist [options] [first [last]]
hist -s [old=new] [command]

ksh93 only. Display or edit commands in the history list. (Use only
one of -l or -s.) first and last are numbers or strings specifying the
range of commands to display or edit. If last is omitted, hist
applies to a single command (specified by first). If both first and
last are omitted, hist edits the previous command or lists the last
16. The second form of hist takes a history command, replaces old
with new, and executes the modified command. If no strings are
specified, command is just reexecuted. If no command is given
either, the previous command is reexecuted. command is a number
or string like first. See the examples in the earlier section
“Command History.”

Options

-e [editor]
Invoke editor to edit the specified history commands. The
default editor is set by the shell variable HISTEDIT. If that
variable is not set, FCEDIT is used. If neither is set, the default
is /bin/ed.

-l List the specified command or range of commands, or list the
last 16.

-n Suppress command numbering from the -l listing.

-N n Start with the command n commands before the current one.

-r Reverse the order of the -l listing.

-s Execute (or redo) a history command; refer to second syntax
line above.

Built-in Commands (Bash and Korn Shells) | 393

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

if

history history [count]
history [options]

Bash version. Print commands in the history list or manage the
history file. With no options or arguments, display the history list
with command numbers. With a count argument, print only that
many of the most recent commands.

Options

-a Append new history lines (those executed since the beginning
of the session) to the history file.

-c Clear the history list (remove all entries).

-d position
Delete the history item at position position.

-n Read unread history lines from the history file into the history
list.

-p argument ...
Perform csh-style history expansion on each argument,
printing the results to standard output. The results are not
saved in the history list.

-r Read the history file and replace the history list with its
contents.

-s argument ...
Store the arguments in the history list, as a single entry.

-w Write the current history list to the history file, overwriting it
entirely.

history history

ksh88 alias for fc -l. ksh93 alias for hist -l. Show the last 16
commands.

if if condition1
then commands1
[elif condition2
 then commands2]
 .
 .
 .
[else commands3]
fi

If condition1 is met, do commands1; otherwise, if condition2 is met,
do commands2; if neither is met, do commands3. Conditions are
often specified with the test and [[]] commands. See test and
[[]] for a full list of conditions, and see additional Examples under
: and exit.

394 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

integer

Examples

Insert a 0 before numbers less than 10:

if [$counter -lt 10]
then number=0$counter
else number=$counter
fi

Make a directory if it doesn’t exist:

if [! -d $dir]; then
 mkdir $dir
 chmod 775 $dir
fi

integer integer

Korn shell alias for typeset -i. Specify integer variables.

jobs jobs [options] [jobIDs]

List all running or stopped jobs, or list those specified by jobIDs.
For example, you can check whether a long compilation or text
format is still running. Also useful before logging out. See the
earlier section “Job Control.”

Options

-l List job IDs and process group IDs.

-n List only jobs whose status changed since last notification.

-p List process group IDs only.

-r List running jobs only. Bash only.

-x cmd
Replace each job ID found in cmd with the associated process
ID and then execute cmd. Bash only.

kill kill [options] IDs

Terminate each specified process ID or job ID. You must own the
process or be a privileged user. This built-in is similar to the
external kill command described in Chapter 2 but also allows
symbolic job names. See the kill entry in Chapter 2 for a list of
commonly available signals and for the header files where the
corresponding signal numbers may be found. Stubborn processes
can be killed using signal 9. See the earlier section “Job Control.”

Options

-l List the signal names. (Used by itself.)

-n num
Send the given signal number. Not ksh88.

Built-in Commands (Bash and Korn Shells) | 395

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nameref

-s name
Send the given signal name. Not ksh88.

-signal
The signal number (from <signal.h>) or name (from kill -l).
With a signal number of 9, the kill is absolute.

let let expressions

 or
((expressions))

Perform arithmetic as specified by one or more expressions. expres-
sions consist of numbers, operators, and shell variables (which
don’t need a preceding $). Expressions must be quoted if they
contain spaces or other special characters. The (()) form does the
quoting for you. For more information and examples, see the
section “Arithmetic Expressions,” earlier in this chapter. See also
expr in Chapter 2.

Examples

Each of these examples adds 1 to variable i:

i=`expr $i + 1` All Bourne shells
let i=i+1 Bash, ksh
let "i = i + 1"
((i = i + 1))
((i += 1))
((i++)) Bash, ksh93

local local [options] [name[=value]]

Bash only. Declares local variables for use inside functions. The
options are the same as those accepted by declare; see declare for
the full list. It is an error to use local outside a function body.

login login [user]

Korn shell only. The shell does an execve(2) of the standard login
program, allowing you to replace one login session with another,
without having to logout first.

logout logout

Bash only. Exit a login shell. The command fails if the current shell
is not a login shell.

nameref nameref newvar=oldvar ...

ksh93 alias for typeset -n. See the discussion of indirect variables in
the section “Variables,” earlier in this chapter.

396 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nohup

nohup nohup command [arguments] &

Don’t terminate a command after logout. nohup is a Korn shell
alias:

nohup='nohup '

The embedded space at the end lets the shell interpret the
following command as an alias, if needed.

popd popd [-n] [+count] [-count]

Bash only. Pop the top directory off the directory stack (as shown
by the dirs command), and change to the new top directory, or
manage the directory stack.

Options

-n Don’t change to the new top directory, just manipulate the
stack.

+count
Remove the item count entries from the left, as shown by dirs.
Counting starts at zero. No directory change occurs.

-count
Remove the item count entries from the right, as shown by
dirs. Counting starts at zero. No directory change occurs.

print print [options] [string ...]

Korn shell only. Display string (on standard output by default).
print includes the functions of echo and can be used in its place on
most Unix systems.

Options

- Ignore all subsequent options.

-- Same as –.

-e Interpret escape sequences in argument strings. (This is the
default, anyway.) Use it to undo an earlier -r in the same
command line. ksh93 only.

-f format
Print like printf, using format as the format string. Ignores the
-n, -r, and -R options. ksh93 only.

-n Don’t end output with a newline.

-p Send string to the process created by |&, instead of to standard
output.

-r Ignore the escape sequences often used with echo.

-R Same as -r and ignore subsequent options (except -n).

-s Send string to the history file.

-u[n]
Send string to file descriptor n (default is 1).

Built-in Commands (Bash and Korn Shells) | 397

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pwd

printf printf format [val ...]

Not ksh88. Formatted printing, like the ANSI C printf function.

Additional Format Letters

Both Bash and ksh93 accept additional format letters. Bash only
provides %b and %q, while ksh93 provides all those in the following
list.

%b Expand escape sequences in strings (e.g., \t to tab, and so on).

%B The corresponding argument is a variable name (typically
created via typeset -b); its value is retrieved and printed.

%d An additional period and the output base can follow the preci-
sion (e.g., %5.3.6d to produce output in base 6).

%H Output strings in HTML/XML format. (Spaces become
and < and > become < and >.)

%n Place the number of characters printed so far into the named
variable.

%P Translate egrep extended regular expression into ksh pattern.

%q Print a quoted string that can be reread later on.

%R Reverse of %P: translate ksh pattern into egrep extended regular
expression.

%(format)T
Print a string representing a date and time according to the
strftime(3) format format. The parentheses are entered liter-
ally. See the Examples.

%Z Print an ASCII NUL (8 zero bits).

Examples

$ date Reformat date/time
Tue Sep 7 15:39:42 EDT 2004
$ printf "%(It is now %m/%d/%Y %H:%M:%S)T\n" "$(date)"
It is now 09/07/2004 15:40:10

$ printf "%H\n" "Here is a <string>" Convert to HTML
Here is a <string>

pwd pwd [-LP]

Print your present working directory on standard output.

Options

Options give control over the use of logical versus physical treatment
of the printed path. See also the entry for cd, earlier in this section.

-L Use logical path (what the user typed, including any symbolic
links) and the value of PWD for the current directory. This is
the default.

-P Use the actual filesystem physical path for the current directory.

398 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pushd

pushd pushd [-n] [directory]
pushd [-n] [+count] [-count]

Bash only. Add directory to the directory stack, or rotate the direc-
tory stack. With no arguments, swap the top two entries on the
stack, and change to the new top entry.

Options

-n Don’t change to the new top directory, just manipulate the
stack.

+count
Rotate the stack so that the count’th item from the left, as
shown by dirs, is the new top of the stack. Counting starts at
zero. The new top becomes the current directory.

-count
Rotate the stack so that the count’th item from the left, as
shown by dirs, is the new top of the stack. Counting starts at
zero. The new top becomes the current directory.

r r

ksh88 alias for fc -e -. ksh93 alias for hist -s. Reexecute previous
command.

read read [options] [variable1[?string]] [variable2 ...]

Read one line of standard input and assign each word to the corre-
sponding variable, with all leftover words assigned to the last
variable. If only one variable is specified, the entire line is assigned
to that variable. See the Examples here and under case. The return
status is 0 unless EOF is reached. Both Bash and the Korn shell
support options, as shown below. If no variables are given, input is
stored in the REPLY variable.

Additionally, the Korn shell version supports the ? syntax for
prompting. If the first variable is followed by ?string, string is
displayed as a user prompt.

Options

-a array
Read into indexed array array. Bash only.

-A array
Read into indexed array array. ksh93 only.

-d delim
Read up to first occurrence of delim, instead of newline. Not
ksh88.

-e Use the readline library if reading from a terminal. Bash only.

-n count
Read at most count bytes. Not ksh88.

Built-in Commands (Bash and Korn Shells) | 399

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

redirect

-p prompt
Bash: print prompt before reading input.

-p Korn shell: read from the output of a |& coprocess.

-r Raw mode; ignore \ as a line-continuation character.

-s Bash: read silently; characters are not echoed.

-s Korn shell: save input as a command in the history file.

-t timeout
When reading from a terminal or pipe, if no data is entered
after timeout seconds, return 1. This prevents an application
from hanging forever, waiting for user input. Not ksh88.

-u[n]
Read input from file descriptor n (default is 0).

Examples

Read three variables:

$ read first last address
Sarah Caldwell 123 Main Street

$ echo "$last, $first\n$address"
Caldwell, Sarah
123 Main Street

Prompt yourself to enter two temperatures, Korn shell version:

$ read n1?"High low: " n2
High low: 65 33

readonly readonly [-afp] [variable[=value] ...]

Prevent the specified shell variables from being assigned new
values. An initial value may be supplied using the assignment
syntax, but that value may not be changed subsequently.

Options

ksh88 does not accept options for this command.

-a Each variable must refer to an array. Bash only.

-f Each variable must refer to an function. Bash only.

-p Print readonly before printing the names and values of read-
only variables. This allows saving a list of read-only variables
for rereading later.

redirect redirect i/o-redirection ...

ksh93 alias for command exec.

Example

Change the shell’s standard error to the console:

$ redirect 2>/dev/console

400 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

return

return return [n]

Use inside a function definition. Exit the function with status n or
with the exit status of the previously executed command.

select select x [in list]
do
commands
done

Display a list of menu items on standard error, numbered in the
order they are specified in list. If no in list is given, items are taken
from the command line (via "$@"). Following the menu is a prompt
string (set by PS3). At the PS3 prompt, users select a menu item by
typing its number, or they redisplay the menu by pressing the
ENTER key. User input is stored in the shell variable REPLY. If a
valid item number is typed, commands are executed. Typing EOF
terminates the loop.

Example

PS3="Select the item number: "
select event in Format Page View Exit
do
 case "$event" in
 Format) nroff $file | lp;;
 Page) pr $file | lp;;
 View) more $file;;
 Exit) exit 0;;
 *) echo "Invalid selection";;
 esac
done

The output of this script looks like this:

1. Format
2. Page
3. View
4. Exit
Select the item number:

set set [options arg1 arg2 ...]

With no arguments, set prints the values of all variables known to
the current shell. Options can be enabled (-option) or disabled
(+option). Options can also be set when the shell is invoked. (See
the earlier section “Invoking the Shell.”) Arguments are assigned in
order to $1, $2, etc.

Options

There is a large set of overlapping options amongst ksh88, ksh93,
and Bash. To minimize confusion, the following list includes every

Built-in Commands (Bash and Korn Shells) | 401

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

set

option. The table provided after the list summarizes which options
are available in which shells.

-a From now on automatically mark variables for export after
defining or changing them.

+A name
Assign remaining arguments as elements of array name. Korn
shell only.

-A name
Same as +A, but unset name before making assignments. Korn
shell only.

-b Print job completion messages as soon as jobs terminate; don’t
wait until the next prompt. Not ksh88.

-B Enable brace expansion. On by default. Bash only.

-C Prevent overwriting via > redirection; use >| to overwrite files.
Not ksh88.

-e Exit if a command yields a nonzero exit status. The ERR trap
executes before the shell exits.

-E Cause shell functions, command substitutions, and subshells
to inherit the ERR trap. Bash only.

-f Ignore filename metacharacters (e.g., * ? []).

-G Cause ** to also match subdirectories during filename expan-
sion. ksh93 only.

-h Locate commands as they are defined. The Korn shell creates
tracked aliases, whereas Bash hashes command names. On by
default. See hash.

-H Enable csh-style history substitution. On by default. Bash
only.

-k Assignment of environment variables (var=value) takes effect
regardless of where they appear on the command line.
Normally, assignments must precede the command name.

-m Enable job control; background jobs execute in a separate
process group. -m is usually set automatically.

-n Read commands but don’t execute; useful for checking
syntax. Both shells ignore this option if interactive.

+o [mode]
With mode, disable the given shell option. Plain set +o prints
the settings of all the current options. For Bash and ksh93, this
is in a form that can be reread by the shell later.

-o [mode]
List shell modes, or turn on mode mode. Many modes can be
set by other options. Modes are:

allexport Same as -a.
bgnice Run background jobs at lower priority.

Korn shell only.
braceexpand Same as -B. Bash only.
emacs Set command-line editor to emacs.

402 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

set

+p Reset effective UID to real UID.

-p Start up as a privileged user. Bash: don’t read $ENV or
$BASH_ENV, don’t import functions from the environment,
and ignore the value of $SHELLOPTS. Korn shell: don’t
process $HOME/.profile; read /etc/suid_profile instead of
$ENV.

-P Always use physical paths for cd and pwd. Bash only.

-s Sort the positional parameters. Korn shell only.

-t Exit after one command is executed.

-T Cause shell functions, command substitutions, and subshells
to inherit the DEBUG trap. Bash only.

-u In substitutions, treat unset variables as errors.

-v Show each shell command line when read.

errexit Same as -e.
errtrace Same as -E. Bash only.
functrace Same as -T. Bash only.
globstar Same as -G. ksh93 only.
gmacs Set command-line editor to gmacs (like GNU

Emacs). Korn shell only.
hashall Same as -h. Bash only.
histexpand Same as -H. Bash only.
history Enable command history. On by default.

Bash only.
ignoreeof Don’t process EOF signals. To exit the shell,

type exit.
keyword Same as -k.
markdirs Append / to directory names. Korn shell

only.
monitor Same as -m.
noclobber Same as -C.
noexec Same as -n.
noglob Same as -f.
nolog Omit function definitions from history file.

Accepted but ignored by Bash.
notify Same as -b.
nounset Same as -u.
onecmd Same as -t. Bash only.
physical Same as -P. Bash only.
pipefail Change pipeline exit status to be that of the

rightmost command that failed, or zero if all
exited successfully. Not ksh88.

posix Change to POSIX mode. Bash only.
privileged Same as -p.
trackall Same as -h. Korn shell only.
verbose Same as -v.
vi Set command-line editor to vi.
viraw Same as vi, but process each character when

it’s typed. Korn shell only.
xtrace Same as -x.

Built-in Commands (Bash and Korn Shells) | 403

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

set

-x Show commands and arguments when executed, preceded by
the value of PS4. This provides step-by-step tracing of shell
scripts.

- Turn off -v and -x, and turn off option processing. Included
for compatibility with older versions of the Bourne shell.

-- Used as the last option; -- turns off option processing so that
arguments beginning with - are not misinterpreted as options.
(For example, you can set $1 to –1.) If no arguments are given
after --, unset the positional parameters.

Option Availability Summary

Option Same as ksh88 ksh93 Bash

-a -o allexport • • •

-A • •

-b -o notify • •

-B -o braceexpand •

-C -o noclobber • •

-e -o errexit • • •

-E -o errtrace •

-f -o noglob • • •

-G -o globstar •

-h -o hashall •

-h -o trackall • •

-H -o histexpand •

-k -o keyword • • •

-m -o monitor • • •

-n -o noexec • • •

-o allexport -a • • •

-o bgnice • •

-o braceexpand -B •

-o emacs • • •

-o errexit -e • • •

-o errtrace -E •

-o functrace -T •

-o globstar -G •

-o gmacs • •

-o hashall -h •

-o history •

-o histexpand -H •

-o ignoreeof • • •

-o keyword -k • • •

-o markdirs • •

-o monitor -m • • •

-o noclobber -C • • •

404 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

shopt

Examples

set -- "$num" -20 -30 Set $1 to $num, $2 to –20, $3 to –30
set -vx Read each command line; show it;

execute it; show it again (with arguments)
set +x Stop command tracing
set -o noclobber Prevent file overwriting
set +o noclobber Allow file overwriting again

shopt shopt [-opqsu] [option]

Bash only. Sets or unsets shell options. With no options or just -p,
prints the names and settings of the options.

Options

-o Each option must be one of the shell option names for set -o,
instead of the options listed in the next section.

-p Print the option settings as shopt commands that can be
reread later.

-o noexec -n • • •

-o noglob -f • • •

-o nolog • • •

-o notify -b • •

-o nounset -u •

-o onecmd -t •

-o physical -P •

-o pipefail • •

-o posix •

-o privileged -p • • •

-o trackall -h • •

-o verbose -v • • •

-o vi • • •

-o viraw • •

-o xtrace -x • • •

-p -o privileged • • •

-P -o physical •

-s • •

-t -o onecmd • • •

-T -o functrace •

-u -o nonunset • • •

-v -o verbose • • •

-x -o xtrace • • •

Option Same as ksh88 ksh93 Bash

Built-in Commands (Bash and Korn Shells) | 405

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

shopt

-q Quiet mode. The exit status is zero if the given option is set,
nonzero otherwise. With multiple options, all of them must be
set for a zero exit status.

-s Set the given options. With no options, prints only those that
are set.

-u Unset the given options. With no options, prints only those
that are unset.

Settable Shell Options

The following descriptions describe the behavior when set. Options
marked with a dagger (†) are enabled by default.

cdable_vars
Treat a nondirectory argument to cd as a variable whose value
is the directory to go to.

cdspell
Attempt spelling correction on each directory component of
an argument to cd. Allowed in interactive shells only.

checkhash
Check that commands found in the hash table still exist before
attempting to use them. If not, perform a normal PATH
search.

checkwinsize
Check the window size after each command and update
LINES and COLUMNS if the size has changed.

cmdhist †
Save all lines of a multiline command in one history entry.
This permits easy re-editing of multiline commands.

dotglob
Include filenames starting with a period in the results of file-
name expansion.

execfail
Do not exit a noninteractive shell if the command given to
exec cannot be executed. Interactive shells do not exit in such
a case, no matter the setting of this option.

expand_aliases †
Expand aliases created with alias. Disabled in noninteractive
shells.

extdebug
Enable behavior needed for debuggers:

• declare -F displays the source filename and line number
for each function name argument.

• When a command run by the DEBUG trap fails, the next
command is skipped.

• When a command run by the DEBUG trap inside a shell func-
tion or script sourced with . (dot) or source returns with an
exit status of 2, the shell simulates a call to return.

406 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

shopt

• BASH_ARGC and BASH_ARGV are set as described
earlier.

• Function tracing is enabled. Command substitutions,
shell functions, and subshells invoked via (…) inherit the
DEBUG and RETURN traps.

• Error tracing is enabled. Command substitutions, shell
functions and subshells invoked via (…) inherit the ERROR
trap.

extglob
Enable extended pattern matching facilities such as +(...).
(These were not in the Bourne shell and are not in POSIX;
thus Bash requires you to enable them if you want them.)

extquote †
Allow $'…' and $"…" within ${variable} expansions inside
double quotes.

failglob
Cause patterns that do not match filenames to produce an
error.

force_fignore †
When doing completion, ignore words matching the list of
suffixes in FIGNORE, even if such words are the only possible
completions.

gnu_errfmt
Print error messages in the standard GNU format.

histappend
Append the history list to the file named by HISTFILE upon
exit, instead of overwriting the file.

histreedit
Allow a user to re-edit a failed csh-style history substitution
with the readline library.

histverify
Place the results of csh-style history substitution into the read-
line library’s editing buffer, in case the user wishes to modify it
further, instead of executing it directly.

hostcomplete †
If using readline, attempt hostname completion when a word
containing an @ is being completed.

huponexit
Send a SIGHUP to all running jobs upon exiting an interactive
shell.

interactive_comments †
Allow words beginning with # to start a comment in an inter-
active shell.

lithist
If cmdhist is also set, save mutliline commands to the history
file with newlines instead of semicolons.

Built-in Commands (Bash and Korn Shells) | 407

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

sleep

login_shell
Set by the shell when it is a login shell. This is a read-only option.

mailwarn
Print the message The mail in mailfile has been read when a
file being checked for mail has been accessed since the last
time Bash checked it.

no_empty_cmd_completion
If using readline, do not search $PATH when a completion is
attempted on an empty line.

nocaseglob
Ignore letter case when doing filename matching.

nullglob
Expand patterns that do not match any files to the null string,
instead of using the literal pattern as an argument.

progcomp †
Enable programmable completion.

promptvars †
Perform variable, command, and arithmetic substitution on
the values of PS1, PS2 and PS4.

restricted_shell
Set by the shell when it is a restricted shell. This is a read-only
option.

shift_verbose
Causes shift to print an error message when the shift count is
greater than the number of positional parameters.

sourcepath †
Causes the . (dot) and source commands to search $PATH in
order to find the file to read and execute.

xpg_echo
Causes echo to expand escape sequences, even without the -e

or -E options.

shift shift [n]

Shift positional arguments (e.g., $2 becomes $1). If n is given, shift
to the left n places. Used in while loops to iterate through
command-line arguments. In the Korn shell, n can be an integer
expression.

Examples

shift $1+$6 Korn shell: use expression result as shift count

shift $(($1 + $6)) Same, portable to any POSIX shell

sleep sleep [n]

ksh93 only. Sleep for n seconds. n can have a fractional part.

408 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

source

source source file [arguments]

Bash only. Identical to the . (dot) command; see that entry.

stop stop [jobIDs]

ksh88 alias for kill -STOP. ksh93 alias for kill -s STOP. Suspend the
background job specified by jobIDs; this is the complement of
CTRL-Z or suspend. See the earlier section “Job Control.”

suspend suspend [-f]

Suspend the current shell. Often used to stop an su command. In
ksh88, suspend is an alias for kill -STOP $$. In ksh93, it is an alias for
kill -s STOP $$. In Bash, it is a built-in command.

Option

-f Force the suspension, even if the shell is a login shell. Bash
only.

test test condition

 or
[condition]

 or
[[condition]]

Evaluate a condition and, if its value is true, return a zero exit
status; otherwise, return a nonzero exit status. An alternate form of
the command uses [] rather than the word test. An additional
alternate form uses [[]], in which case word splitting and path-
name expansion are not done. (See the [[]] entry.) condition is
constructed using the following expressions. Conditions are true if
the description holds true. Features that are specific to Bash are
marked with a (B). Features that are specific to the Korn shell are
marked with a (K). Features that are specific to ksh93 are marked
with a (K93).

File Conditions

-a file file exists.
-b file file exists and is a block special file.
-c file file exists and is a character special file.
-C file (K) file exists and is a contiguous file. This facility is

not available on most Unix systems.
-d file file exists and is a directory.
-f file file exists and is a regular file.
-g file file exists, and its set-group-id bit is set.
-G file file exists, and its group is the effective group ID.
-h file file exists and is a symbolic link.
-k file file exists, and its sticky bit is set.

Built-in Commands (Bash and Korn Shells) | 409

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

test

String Conditions

Internal Shell Conditions

Integer Comparisons

-L file file exists and is a symbolic link.
-N file (B) file exists and was modified after it was last read.
-O file file exists, and its owner is the effective user ID.
-p file file exists and is a named pipe (FIFO).
-r file file exists and is readable.
-s file file exists and has a size greater than zero.
-S file file exists and is a socket.
-t [n] The open file descriptor n is associated with a

terminal device; default n is 1.
-u file file exists, and its set-user-id bit is set.
-w file file exists and is writable.
-x file file exists and is executable.
f1 -ef f2 Files f1 and f2 are linked (refer to same file).
f1 -nt f2 File f1 is newer than f2.
f1 -ot f2 File f1 is older than f2.

string string is not null.
-n s1 String s1 has nonzero length.
-z s1 String s1 has zero length.
s1 = s2 (K) Strings s1 and s2 are identical. s2 can be a wildcard

pattern. Quote s2 to treat it literally. (See the section
“Filename Metacharacters” earlier in this chapter.)

s1 == s2 (B, K93) Strings s1 and s2 are identical. s2 can be a
wildcard pattern. Quote s2 to treat it literally.
Preferred over =.

s1 != s2 Strings s1 and s2 are not identical. s2 can be a wild-
card pattern. Quote s2 to treat it literally.

s1 =~ s2 (B) String s1 matches extended regular expression s2.
Quote s2 to keep the shell from expanding embedded
shell metacharacters. Strings matched by parenthe-
sized subexpressions are placed into elements of the
BASH_REMATCH array. See the description of
BASH_REMATCH in the “Built-in Shell Variables”
section earlier in this chapter.

s1 < s2 ASCII value of s1 precedes that of s2. (Valid only
within [[]] construct.)

s1 > s2 ASCII value of s1 follows that of s2. (Valid only within
[[]] construct.)

-o opt Option opt for set -o is on.

n1 -eq n2 n1 equals n2.
n1 -ge n2 n1 is greater than or equal to n2.
n1 -gt n2 n1 is greater than n2.
n1 -le n2 n1 is less than or equal to n2.
n1 -lt n2 n1 is less than n2.
n1 -ne n2 n1 does not equal n2.

410 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

time

Combined Forms

(condition)
True if condition is true (used for grouping). For test and [],
the ()s should be quoted by a \. The form using [[]] doesn’t
require quoting the parentheses.

! condition
True if condition is false.

condition1 -a condition2
True if both conditions are true.

condition1 && condition2
True if both conditions are true. (Valid only within [[]]
construct.)

condition1 -o condition2
True if either condition is true.

condition1 || condition2
True if either condition is true. (Valid only within [[]]
construct.)

Examples

The following examples show the first line of various statements
that might use a test condition:

while test $# -gt 0 While there are arguments...
while [-n "$1"] While there are nonempty

arguments...
if [$count -lt 10] If $count is less than 10...
if [-d RCS] If the RCS directory exists...
if ["$answer" != "y"] If the answer is not y...
if [! -r "$1" -o ! -f "$1"] If the first argument is not a

readable file or a regular file...

time time command
time [command]

Execute command and print the total elapsed time, user time, and
system time (in seconds). Same as the Unix command time (see
Chapter 2), except that the built-in version can also time other
built-in commands as well as all commands in a pipeline.

The second form applies to ksh93; with no command, the total user
and system times for the shell, and all children are printed.

times times

Print accumulated process times for user and system.

times times

ksh93 alias for { {time;} 2>&1;}. See also time.

Built-in Commands (Bash and Korn Shells) | 411

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

trap

trap trap [[commands] signals]
trap -p
trap -l

Execute commands if any signals are received. The second form is
specific to Bash and ksh93; it prints the current trap settings in a
form suitable for rereading later. The third form is specific to Bash;
it lists all signals and their numbers, like kill -l.

Common signals include EXIT (0), HUP (1), INT (2), and TERM (15).
Multiple commands must be quoted as a group and separated by
semicolons internally. If commands is the null string (i.e., trap ""
signals), signals are ignored by the shell. If commands are omitted
entirely, reset processing of specified signals to the default action.
Bash and ksh93: if commands is “–”, reset signals to their initial
defaults.

If both commands and signals are omitted, list current trap assign-
ments. See the Examples here and in exec.

Signals

A list of signal names, numbers, and meanings were given earlier,
in the kill entry in Chapter 2. The shells allow you to use either the
signal number, or the signal name (without the SIG prefix). In addi-
tion, the shells support “pseudo-signals,” signal names or numbers
that aren’t real operating system signals but which direct the shell
to perform a specific action. These signals are:

Examples

trap "" INT Ignore interrupts (signal 2)
trap INT Obey interrupts again

Remove a $tmp file when the shell program exits, or if the user logs
out, presses CTRL-C, or does a kill:

trap "rm -f $tmp; exit" EXIT HUP INT TERM POSIX style
trap "rm -f $tmp; exit" 0 1 2 15 Pre-POSIX Bourne shell style

Print a “clean up” message when the shell program receives signals
SIGHUP, SIGINT, or SIGTERM:

trap 'echo Interrupt! Cleaning up...' HUP INT TERM

DEBUG Execution of any command.
ERR Nonzero exit status.
EXIT Exit from shell (usually when shell script finishes).
0 Same as EXIT, for historical compatibility with the

Bourne shell.
KEYBD A key has been read in emacs, gmacs, or vi editing

mode. ksh93 only.
RETURN A return is executed, or a script run with . (dot) or

source finishes. Bash only.

412 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

true

true true

ksh88 alias for :. Bash and ksh93 built-in command that exits with a
true return value.

type type [-afpPt] commands

Bash version. Show whether each command name is a Unix
command, a built-in command, an alias, a shell keyword, or a
defined shell function.

Options

-a Print all locations in $PATH that include command, including
aliases and functions. Use -p together with -a to suppress
aliases and functions.

-f Suppress function lookup, as with command.

-p If type -t would print file for a given command, this option
prints the full pathname for the executable files. Otherwise, it
prints nothing.

-P Like -p, but force a PATH search, even if type -t would not
print file.

-t Print a word describing each command. The word is one of
alias, builtin, file, function, or keyword, depending upon the
type of each command.

Example

$ type mv read if
mv is /bin/mv
read is a shell builtin
if is a shell keyword

type type commands

Korn shell alias for whence -v.

typeset typeset [options] [variable[=value ...]]
typeset -p

In Bash, identical to declare. See declare.

In the Korn shell, assign a type to each variable (along with an
optional initial value), or, if no variables are supplied, display all
variables of a particular type (as determined by the options). When
variables are specified, -option enables the type and +option
disables it. With no variables, -option prints variable names and
values; +option prints only the names.

The second form shown is specific to ksh93.

Built-in Commands (Bash and Korn Shells) | 413

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

typeset

Options

-A arr
arr is an associative array. ksh93 only.

-b The variable can hold any data, including binary data. Refer-
ences retrieve the value printed in base-64 notation; The %B
format with printf may be used to print the value. ksh93 only.

-E d variable is a floating-point number. d is the number of decimal
places. The value is printed using printf %g format. ksh93 only.

-f[c]
The named variable is a function; no assignment is allowed. If
no variable is given, list current function names. Flag c can be t,
u, or x. t turns on tracing (same as set -x). u marks the function
as undefined, which causes autoloading of the function (i.e., a
search of FPATH locates the function when it’s first used. ksh93
also searches PATH). In ksh88, x exports the function. In ksh93,
x is accepted but does nothing. Note the aliases autoload and
functions.

-F d variable is a floating-point number. d is the number of decimal
places. The value is printed using printf %f format. ksh93 only.

-H On non-Unix systems, map Unix filenames to host filenames.
-i[n]

Define variables as integers of base n. integer is an alias for
typeset -i.

-L[n]
Define variables as left-justified strings, n characters long
(truncate or pad with blanks on the right as needed). Leading
blanks are stripped; leading zeroes are stripped if -Z is also
specified. If no n is supplied, field width is that of the vari-
able’s first assigned value.

-l Convert uppercase to lowercase.
-n variable is an indirect reference to another variable (a nameref).

ksh93 only. (See the section “Variables,” earlier in this chapter.)
-p Print typeset commands to re-create the types of all the

current variables. ksh93 only.
-R[n]

Define variables as right-justified strings, n characters long
(truncate or pad with blanks on the left as needed). Trailing
blanks are stripped. If no n is supplied, field width is that of
the variable’s first assigned value.

-r Mark variables as read-only. See also readonly.
-t Mark variables with a user-definable tag.

-u Convert lowercase to uppercase.
-ui[n]

Define variables as unsigned integers of base n. ksh93 only.
-x Mark variables for automatic export.
-Z[n]

When used with -L, strip leading zeroes. When used alone, it’s
similar to -R except that -Z pads numeric values with zeroes
and pads text values with blanks.

414 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ulimit

Examples

typeset List name, value, and type of all set variables
typeset -x List names and values of exported variables
typeset +r PWD End read-only status of PWD
typeset -i n1 n2 n3 Three variables are integers
typeset -R5 zipcode zipcode is flush right, five characters wide

ulimit ulimit [options] [n]

Print the value of one or more resource limits, or, if n is specified,
set a resource limit to n. Resource limits can be either hard (-H) or
soft (-S). By default, ulimit sets both limits or prints the soft limit.
The options determine which resource is acted on.

Options

-H Hard limit. Anyone can lower a hard limit; only privileged
users can raise it.

-S Soft limit. Must be less than or equal to the hard limit.

-a Print all limits.

-b Size of socket buffers. ksh93 only.

-c Maximum size of core files.

-d Maximum kilobytes of data segment or heap.

-f Maximum size of files (the default option).

-l Maximum size of address space that can be locked in memory.
Not ksh88.

-L Maximum number of file locks. ksh93 only.

-m Maximum kilobytes of physical memory. (Not effective on all
Unix systems.)

-M Maximum size of the address space. ksh93 only.

-n Maximum number of file descriptors.

-p Size of pipe buffers. (Not effective on all Unix systems.)

-s Maximum kilobytes of stack segment.

-t Maximum CPU seconds.

-T Maximum number of threads. ksh93 only.

-u Maximum number of processes a single user can have.

-v Maximum kilobytes of virtual memory.

umask umask [nnn]
umask [-pS] [mask]

Display file creation mask or set file creation mask to octal value
nnn. The file creation mask determines which permission bits are
turned off (e.g., umask 002 produces rw-rw-r--). See the entry in
Chapter 2 for examples.

The second form is not in ksh88. A symbolic mask is permissions
to keep.

Built-in Commands (Bash and Korn Shells) | 415

Bash and Korn

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

whence

Options

-p Output is in a form that can be reread later by the shell. Bash
only.

-S Print the current mask using symbolic notation. Not ksh88.

unalias unalias names
unalias -a

Remove names from the alias list. See also alias.

Option

-a Remove all aliases. Not ksh88.

unset unset [options] names

Erase definitions of functions or variables listed in names.

Options

-f Unset functions names.

-n Unset indirect variable (nameref) name, not the variable the
nameref refers to. ksh93 only.

-v Unset variables names (default). Not ksh88.

until until condition
do
commands
done

Until condition is met, do commands. condition is often specified
with the test command. See the Examples under case and test.

wait wait [ID]

Pause in execution until all background jobs complete (exit status 0
is returned), or pause until the specified background process ID or
job ID completes (exit status of ID is returned). Note that the shell
variable $! contains the process ID of the most recent background
process.

Example

wait $! Wait for most recent background process to finish

whence whence [options] commands

Korn shell only. Show whether each command name is a Unix
command, a built-in command, a defined shell function, or an alias.

416 | Chapter 4: The Bash and Korn Shells

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

while

Options

-a Print all interpretations of commands. ksh93 only.

-f Skip the search for shell functions. ksh93 only.

-p Search for the pathname of commands.

-v Verbose output.

while while condition
do
commands
done

While condition is met, do commands. condition is often specified
with the test commands. See the Examples under case and test.

filename filename

Read and execute commands from executable file filename, or
execute a binary object file.

417

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5tcsh

5
tcsh: An Extended C Shell

This chapter describes tcsh, an enhanced version of the C shell. On many systems,
tcsh is also the regular C shell (/bin/csh); in that case, the tcsh features described
in this chapter work even when you run csh. The C shell was so named because
many of its programming constructs and symbols resemble those of the C
programming language. The following topics are presented:

• Overview of features

• Invoking the shell

• Syntax

• Variables

• Expressions

• Command history

• Command-line manipulation

• Job control

• Built-in commands

For more information on tcsh, see Using csh & tcsh, which is listed in the Bibliog-
raphy. The web site for tcsh is http://www.tcsh.org.

Overview of Features
Features of tcsh include:

• Input/output redirection

• Wildcard characters (metacharacters) for filename abbreviation

• Shell variables for customizing your environment

• Integer arithmetic

• Access to previous commands (command history)

418 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

• Command-name abbreviation (aliasing)

• A built-in command language for writing shell programs

• Job control

• Command-line editing and editor commands

• Word completion (tab completion)

• Spellchecking

• Scheduled events, such as logout or terminal locking after a set idle period
and delayed commands

• Read-only variables

Invoking the Shell
The tcsh shell can be invoked as follows:

tcsh [options] [arguments]

tcsh executes commands from a terminal or a file. The options -n, -v, and -x are
useful when debugging scripts.

Options
-b Allow the remaining command-line options to be interpreted as options to a

specified command rather than as options to tcsh itself.

-c Read and execute commands specified by the argument that follows and
place any remaining arguments in the argv shell variable.

-d Load directory stack from ~/.cshdirs even if not a login shell.

-e Exit if a command produces errors.

-f Fast startup; start without executing .tcshrc or .login.

-i Invoke interactive shell (prompt for input) even if not on a terminal.

-l Login shell (must be the only option specified).

-m Load ~/.tcshrc even if effective user is not the owner of the file.

-n Parse commands, but do not execute.

-q Accept SIGQUIT when used under a debugger. Disables job control.

-s Read commands from the standard input.

-t Exit after executing one line of input (which may be continued with a \ to
escape the newline).

-v Display commands before executing them; expand history substitutions, but
not other substitutions (e.g., filename, variable, and command). Same as
setting verbose.

-V Same as -v, but also display .tcshrc.

-x Display commands before executing them, but expand all substitutions.
Same as setting the echo shell variable. -x is often combined with -v.

-X Same as -x, but also display .tcshrc.

Syntax | 419

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Arguments

Arguments are assigned, in order, to the positional parameters $1, $2, and so on. If
the first argument is an executable file, commands are read from it, and the
remaining arguments are assigned to $1, $2, and so forth. The positional parame-
ters are also available in the argv shell variable.

Syntax
This section describes the syntax used by tcsh. The topics are arranged as follows:

• Special files

• Filename metacharacters

• Quoting

• Command forms

• Redirection forms

Special Files

Example startup files are available from http://tcshrc.sourceforge.net.

Filename Metacharacters

Filename Description

/etc/csh.cshrc Read by any shell before reading per-user initialization files.

~/.tcshrc or ~/.cshrc Executed at each instance of shell startup. If no ~/.tcshrc is
found, tcsh tries ~/.cshrc.

/etc/csh.login Read by login shell before reading per-user initialization files.

~/.login Executed by login shell after .tcshrc.

~/.cshdirs Used to reload the directory stack after executing ~/.login. (See
the savedirs variable.)

~/.history History list saved from previous login.

/etc/csh.logout Executed by login shell at logout, before ~/.logout.

~/.logout Executed by login shell at logout.

/etc/passwd Source of home directories for ~name abbreviations. (May come
from NIS or NIS+ instead.)

Metacharacters Meaning

* Match any string of zero or more characters.

? Match any single character.

[abc...] Match any one of the enclosed characters; a hyphen can be used
to specify a range (e.g., a–z, A–Z, 0–9).

[^abc…] Match any character not enclosed as above.

420 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examples

% ls new* Match new and new.1
% cat ch? Match ch9 but not ch10
% vi [D-R]* Match files that begin with uppercase D through R
% ls {ch,app}? Expand, then match ch1, ch2, app1, app2
% mv info{,.old} Expands to mv info info.old
% cd ~tom Change to tom's home directory

% touch aa bb cc Create some files
% ls ^a* List nonmatching filenames
bb cc

On modern systems, ranges such as [D-R] are not portable; the sys-
tem’s locale may include more than just the uppercase letters from
D to R in the range.

Quoting

Quoting disables a character’s special meaning and allows it to be used literally, as
itself. The characters in the following table have special meaning to tcsh.

{abc,xxx,…} Expand each comma-separated string inside braces. The strings
need not match actual filenames.

~ Home directory for the current user.

~name Home directory of user name.

=n The nth entry in the directory stack, counting from zero.

=- The last entry in the directory stack.

^pattern Matches anything that pattern does not match. To work
correctly, pattern must contain ?, *, or […], and should not
contain {…} or ~.

Characters Description

; Command separator

& Background execution

() Command grouping

| Pipe

* ? [] ~ ^ Filename metacharacters

{ } String expansion characters (usually don’t require quoting)

< > & ! Redirection symbols

! ^ History substitution, quick substitution

" ' \ Used in quoting other characters

` Command substitution

$ Variable substitution

space tab newline Word separators

Metacharacters Meaning

Syntax | 421

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The characters that follow can be used for quoting:

" " Everything between " and " is taken literally except for the following charac-
ters, which keep their special meaning:

$ Variable substitution will occur.

` Command substitution will occur.

" The end of the double quote.

\ Escape next character.

! The history character.

newline
The newline character.

' ' Everything between ' and ' is taken literally except for ! (history), another ',
and newline.

\ The character following a \ is taken literally. Use within " " to escape ", $, `,
and newline. Use within ' ' to escape newlines. Often used to escape itself,
spaces, or newlines. Always needed to escape a history character (usually !).

Examples

% echo 'Single quotes "protect" double quotes'
Single quotes "protect" double quotes

% echo "Don't double quotes protect single quotes too?"
Don't double quotes protect single quotes too?

% echo "You have `ls|wc -l` files in `pwd`"
You have 43 files in /home/bob

% echo The value of \$x is $x
The value of $x is 100

Command Forms

Command Action

cmd & Execute cmd in the background.

cmd1 ; cmd2 Command sequence; execute multiple cmds on the same line.

(cmd1 ; cmd2) Subshell; treat cmd1 and cmd2 as a command group.

cmd1 | cmd2 Pipe; use output from cmd1 as input to cmd2.

cmd1 `cmd2` Command substitution; run cmd2 first and use its output as
arguments to cmd1.

cmd1 && cmd2 AND; execute cmd1 and then (if cmd1 succeeds) cmd2. This is a
“short-circuit” operation; cmd2 is never executed if cmd1 fails.

cmd1 || cmd2 OR; execute either cmd1 or (if cmd1 fails) cmd2. This is a
“short-circuit” operation; cmd2 is never executed if cmd1
succeeds.

422 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examples

% nroff file > file.out & Format in the background
% cd; ls Execute sequentially
% (date; who; pwd) > logfile All output is redirected
% sort file | pr -3 | lp Sort file, page output, then print
% vi `grep -l ifdef *.c` Edit files found by grep
% egrep '(yes|no)' `cat list` Specify a list of files to search
% grep XX file && lp file Print file if it contains the pattern,
% grep XX file || echo XX not found otherwise, echo an error message

Redirection Forms

The usual input source or output destination can be changed with the redirection
commands listed in the following sections.

Simple redirection

Multiple redirection

File descriptor Name Common abbreviation Typical default

0 Standard input stdin Keyboard

1 Standard output stdout Screen

2 Standard error stderr Screen

Command Action

cmd > file Send output of cmd to file (overwrite).

cmd >! file Same as preceding, even if noclobber is set.

cmd >> file Send output of cmd to file (append).

cmd >>! file Same as preceding, even if noclobber is set.

cmd < file Take input for cmd from file.

cmd << text Read standard input up to a line identical to text (text can be stored
in a shell variable). Input usually is typed at the keyboard or in the
shell program. Commands that typically use this syntax include cat,
echo, ex, and sed. If text is quoted (using any of the shell’s quoting
mechanisms), the input is passed through verbatim. Otherwise, the
shell performs variable and command substitutions on the input.
When quoting text, the ending delimiter must be quoted identically.

Command Action

cmd >& file Send both standard output and standard error to file.

cmd >&! file Same as preceding, even if noclobber is set.

cmd >>& file Append standard output and standard error to end of file.

cmd >>&! file Same as preceding, even if noclobber is set.

cmd1 |& cmd2 Pipe standard error together with standard output.

(cmd > f1) >& f2 Send standard output to file f1 and standard error to file f2.

cmd | tee files Send output of cmd to standard output (usually the screen)
and to files. (See the Example in Chapter 2 under tee.)

Variables | 423

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examples

% cat part1 > book Copy part1 to book
% cat part2 part3 >> book Append parts 2 and 3 to same file as part1
% mail tim < report Take input to message from report
% cc calc.c >& error_out Store all messages, including errors
% cc newcalc.c >&! error_out Overwrite old file
% grep Unix ch* |& pr Pipe all messages, including errors
% (find / -print > filelist) >& no_access Separate error messages from list of files
% sed 's/^/XX /' << "END_ARCHIVE" Supply text right after command
? This is often how a shell archive is "wrapped",
? bundling text for distribution. You would normally
? run sed from a shell program, not from the command line.
? "END_ARCHIVE"
XX This is often how a shell archive is "wrapped",
XX bundling text for distribution. You would normally
XX run sed from a shell program, not from the command line.

Variables
This subsection describes the following:

• Variable substitution

• Variable modifiers

• Predefined shell variables

• Formatting in the prompt variable

• Sample .tcshrc file

• Environment variables

Variable Substitution

In the following substitutions, braces ({ }) are optional, except when needed to
separate a variable name from following characters that would otherwise be
considered part of the name.

Variable Description

${var} The value of variable var.

${var[i]} Select word or words in position i of var. i can be a single number, a
range m–n, a range -n (missing m implies 1), a range m- (missing n
implies all remaining words), or * (select all words). i also can be a
variable that expands to one of these values.

${#var} The number of words in var.

${#argv} The number of arguments.

$# Same as ${#argv}.

${%var} The number of characters in var.

${%n} The number of characters in $argv[n].

$0 Name of the program.

${argv[n]} Individual arguments on command line (positional parameters); 1 ≤ n ≤ 9.

${n} Same as ${argv[n]}.

424 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examples

Sort the third through last arguments and save the output in a file whose name is
unique to this process:

sort $argv[3-] > tmp.$$

In a .tcshrc file, process commands only if the shell is interactive (i.e., if the prompt
variable is set):

if ($?prompt) then
set commands,
alias commands,
etc.

endif

Variable Modifiers

Except for $?var, $?0, $#var, $%var, $#, $$, $?, $!, $_, and $<, the variable substitu-
tions in the preceding section may be followed by one of these modifiers (when
braces are used, the modifier goes inside them):

${argv[*]} All arguments on command line.

$* Same as {$argv[*]}.

$argv[$#argv] The last argument.

${?var} Return 1 if var is set; 0 if var is not set.

$?0 Return 1 if input filename is known, 0 if not.

$$ Process number of current shell; useful as part of a filename for creating
temporary files with unique names.

$? Same as $status.

$! Process ID number of last background process started by the shell.

$_ Text of the command line of the last command executed.

$< Read a line from standard input.

:r Return the variable’s root (the portion before the last dot).
:e Return the variable’s extension.
:h Return the variable’s header (the directory portion).
:t Return the variable’s tail (the portion after the last slash).
:gr Return all roots.
:ge Return all extensions.
:gh Return all headers.
:gt Return all tails.
:q Quote a wordlist variable, keeping the items separate. Prevents further substi-

tution. Useful when the variable contains filename metacharacters that should
not be expanded.

:x Quote a pattern, expanding it into a wordlist.

Variable Description

Variables | 425

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examples using pathname modifiers

The following table shows the effect of pathname modifiers if the aa variable is set
as follows:

set aa=(/progs/num.c /book/chap.ps)

Examples using quoting modifiers

Unless quoted, the shell expands variables to represent files in the current directory:

% set a="[a-z]*" A="[A-Z]*"
% echo "$a" "$A"
[a-z]* [A-Z]*

% echo $a $A
at cc m4 Book Doc

% echo $a:x $A
[a-z]* Book Doc

% set d=($a:q $A:q)
% echo $d
at cc m4 Book Doc

% echo $d:q
[a-z]* [A-Z]*

% echo $d[1] +++ $d[2]
at cc m4 +++ Book Doc

% echo $d[1]:q
[a-z]*

Variable portion Specification Output result

Normal variable echo $aa /progs/num.c /book/chap.ps

Second root echo $aa[2]:r /book/chap

Second header echo $aa[2]:h /book

Second tail echo $aa[2]:t chap.ps

Second extension echo $aa[2]:e ps

Root echo $aa:r /progs/num /book/chap.ps

Global root echo $aa:gr /progs/num /book/chap

Header echo $aa:h /progs /book/chap.ps

Global header echo $aa:gh /progs /book

Tail echo $aa:t num.c /book/chap.ps

Global tail echo $aa:gt num.c chap.ps

Extension echo $aa:e c /book/chap.ps

Global extension echo $aa:ge c ps

426 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Predefined Shell Variables

Variables can be set in one of two ways; by assigning a value:

set var=value

or by simply turning the variable on:

set var

The latter case is useful for simple “Is the variable set?” kinds of tests.

In the following list, variables that accept values are shown with the equals sign
followed by the type of value they accept; the value is then described. (Note,
however, that variables such as argv, cwd, and status are never explicitly assigned.)
For variables that are turned on or off, the list describes what they do when set.
tcsh automatically sets (and, in some cases, updates) the variables addsuffix, argv,
autologout, command, csubstnonl, cwd, dirstack, echo-style, edit, gid, home, loginsh,
logout, owd, path, prompt, prompt2, prompt3, shell, shlvl, status, tcsh, term, tty, uid,
user, and version.

addsuffix
Append / to directories and a space to files during tab completion to indicate
a precise match.

afsuser
Set value to be used instead of the local username for Kerberos authentica-
tion with the autologout locking feature.

ampm
Display all times in 12-hour format.

argv=(args)
List of arguments passed to current command; default is ().

autocorrect
Check spelling before attempting to complete commands.

autoexpand
Expand history (such as ! references) during command completion.

autolist[=ambiguous]
Print possible completions when correct one is ambiguous. If ambiguous is
specified, print possible completions only when completion adds no new
characters.

autologout=(logout-minutes [locking-minutes])
Log out after logout-minutes of idle time. Lock the terminal after locking-
minutes of idle time, requiring a password before continuing. Not used if the
DISPLAY environment variable is set.

backslash_quote
Always allow backslashes to quote \, ', and ".

catalog
Use tcsh.${catalog} as the filename of the message catalog. The default is tcsh.

Variables | 427

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cdpath=(dirs)
List of alternate directories to search when locating arguments for cd, popd, or
pushd.

color
Turn on color for ls-F, ls, or both. Setting to nothing is equivalent to setting
for both.

colorcat
Enable color escape sequence for Native Language System (NLS) support and
display NLS messages in color.

command
If set, holds the command passed to the shell with the -c option.

complete=enhance
If set to enhance, ignore case in completion, treat ., -, and _ as word separa-
tors, and consider _ and - to be the same.

continue=(cmdlist)
cmdlist is a list of command names. If a stopped job consists of one of the
named commands, restart that job when the user enters the corresponding
command name, instead of starting a new job.

continue_args=(cmdlist)
Like continue, but execute the following:

echo `pwd` $argv > ~/.cmd_pause; %cmd

correct={cmd|complete|all}
When cmd, spellcheck commands. When complete, complete commands.
When all, spellcheck whole command line.

csubstnonl
Newlines and carriage returns in command substitution output are replaced
by spaces. Set by default.

cwd=dir
Full pathname of current directory.

dextract
When set, the pushd command extracts the desired directory and puts it at the
top of the stack instead of rotating the stack.

dirsfile=file
History file consulted by dirs -S and dirs -L. Default is ~/.cshdirs.

dirstack
Directory stack, in array format. dirstack[1] is always equivalent to cwd. The
other elements can be artificially changed.

dspmbyte=code
Enable use of multibyte code; for use with Kanji. See the tcsh manpage for
details.

dunique
Make sure that each directory exists only once in the stack.

echo
Redisplay each command line before execution; same as tcsh -x.

428 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

echo_style={bsd|sysv|both|none}
Don’t echo a newline with the -n option (bsd), parse escaped characters
(sysv), do both, or do neither.

edit
Enable command-line editor. Set by default for interactive shells.

ellipsis
For use with prompt variable. Use ... to represent skipped directories.

fignore=(suffs)
List of filename suffixes to ignore during filename completion.

filec
This variable exists for compatibility with the 4.3 BSD csh. By default, it is
ignored in tcsh. However, if edit has been unset, then if filec is set a file-
name that is partially typed on the command line can be expanded to its full
name when the Escape key is pressed. If more than one filename matches,
type CTRL-D (EOF) to list possible completions.

gid
User’s group ID.

group
User’s group name.

histchars=ab
A two-character string that sets the characters to use in history-substitution
and quick-substitution (default is !^).

histdup={all|prev|erase}
Maintain a record only of unique history events (all), do not enter a new
event when it is the same as the previous one (prev), or remove an old event
that is the same as the new one (erase).

histfile=file
History file consulted by history -S and history -L. Default is ~/.history.

histlit
Do not expand history lines when recalling them.

history=(n format)
The first word indicates the number of commands to save in the history list.
The second indicates the format with which to display that list. See the
section “Formatting for the Prompt Variable” later in this chapter for possible
formats.

home=dir
Home directory of user, initialized from the environment variable HOME. The ~
character is shorthand for this value.

ignoreeof
Ignore an end-of-file (EOF) from terminals; prevents accidental logout.

implicitcd[=verbose]
If a directory name is entered as a command, cd to that directory. Can be set
to verbose to echo the cd to standard output.

inputmode={insert|overwrite}
Control editor’s mode.

Variables | 429

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

killdup={all|prev|erase}
Enter only unique strings in the kill ring (all), do not enter a new string when
it is the same as the current killed string (prev), or erase from the kill ring an
old string that is the same as the current string (erase).

killring=num
Set the number of killed strings to keep in memory to num. The default is 30.
If unset or set to a number less than two, keep only the most recently killed
string.

listflags=(flags [path])
One or more of the a, A, or x options for the ls-F built-in command. The
second word can be set to the path for the ls command.

listjobs[=long]
When a job is suspended, list all jobs (in long format, if specified).

listlinks
In the ls-F command, include the type of file to which links point (directory,
nonexistent file, nondirectory).

listmax=num
Do not allow the list-choices editor command to print more than num
choices before prompting.

listmaxrows=num
Do not allow the list-choices editor command to print more than num rows
of choices before prompting.

loginsh
Set if shell is a login shell.

logout
Indicates status of an imminent logout (normal, automatic, or hangup). Useful in
a ~/.logout file.

mail=(n files)
One or more files checked for new mail every five minutes or (if n is supplied)
every n seconds.

matchbeep={never|nomatch|ambiguous|notunique}
Specifies circumstances under which completion should beep: never, if no
match exists, if multiple matches exist, or if multiple matches exist and one is
exact. If unset, ambiguous is used.

nobeep
Disable beeping, such as for ambiguous file completion.

noclobber
Don’t redirect output to an existing file; prevents accidental destruction of
files.

noding
Don’t print DING! in prompt time specifiers when the hour changes.

noglob
Turn off filename expansion; useful in shell scripts.

430 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nokanji
Disable Kanji (if supported).

nonomatch
Treat filename metacharacters as literal characters if no match exists (e.g.,
vi ch* creates new file ch* instead of printing “No match”).

nostat=(directory-list)
Do not stat directory-list during completion.

notify
Notify user of completed jobs right away, instead of waiting for the next
prompt.

owd
Old working directory.

path=(dirs)
List of pathnames in which to search for commands to execute. Initialized
from PATH; the default is . /usr/ucb /bin /usr/bin. However, standard start-up
scripts may change it.

printexitvalue
Print all nonzero exit values.

prompt='str'
String that prompts for interactive input; default is %# in interactive shells. See
the section “Formatting for the Prompt Variable” later in this chapter for
formatting information.

prompt2='str'
String that prompts for interactive input in foreach and while loops and
continued lines (those with escaped newlines). See the section “Formatting
for the Prompt Variable” for formatting information.

prompt3='str'
String that prompts for interactive input in automatic spelling correction. See
the section “Formatting for the Prompt Variable” for formatting information.

promptchars=cc
Use the two characters specified as cc with the %# prompt sequence to indicate
normal users and the superuser, respectively.

pushdsilent
Do not print directory stack when pushd and popd are invoked.

pushdtohome
Change to home directory when pushd is invoked without arguments.

recexact
Consider completion to be concluded on first exact match.

recognize_only_executables
When command completion is invoked, show only executable files.

rmstar
Prompt before executing the command rm *.

Variables | 431

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rprompt=string
The string to print on the right side of the screen while the prompt is
displayed on the left. The string may have the same special contents as for the
prompt variable.

savedirs
Execute dirs -S before exiting.

savehist=(max [merge])
Execute history -S before exiting. Save no more than max lines of history. If
merge specified, merge those lines with previous history saves, and sort by
time.

sched=string
Format for sched’s printing of events. See the section “Formatting for the
Prompt Variable” for formatting information.

shell=file
Pathname of the shell program.

shlvl
Number of nested shells.

status=n
Exit status of last command. Built-in commands return 0 (success) or 1
(failure).

symlinks={chase|ignore|expand}
Specify manner in which to deal with symbolic links. Expand them to real
directory name in cwd (chase), treat them as real directories (ignore), or
expand arguments that resemble pathnames (expand).

tcsh
Version of tcsh.

term
Terminal type.

time='n %c'
If command execution takes more than n CPU seconds, report user time,
system time, elapsed time, and CPU percentage. Supply optional %c flags to
show other data. See the tcsh manpage for the details.

tperiod
Number of minutes between executions of the periodic alias (described later
in this chapter).

tty
Name of tty, if applicable.

uid
User ID.

user
Login name of user, initialized from USER.

verbose
Display a command after history substitution; same as tcsh -v.

432 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

version
Shell’s version and additional information, including options set at compile
time.

visiblebell
Flash screen instead of beeping.

watch=([n] user terminal...)
Watch for user logging in at terminal, where terminal can be a device name or
any. Check every n minutes, or 10 by default.

who=string
Specify information to be printed by watch. See the tcsh manpage for the
details.

wordchars=chars
List of all nonalphanumeric characters that may be part of a word. Default is
*?_-.[]~=.

Formatting for the Prompt Variable

tcsh provides a list of substitutions that can be used in formatting the prompt.
The list of available substitutions includes:

%% Literal %.
%/ The present working directory.
%~ The present working directory, in ~ notation.
%# # for the superuser, > for others.
%? Previous command’s exit status.
%$var The value of the shell or environment variable var.
%{string%} Include string as a literal escape sequence to change terminal

attributes (but should not move the cursor location); cannot be the
last sequence in the prompt.

\c, ^c Parse c as in the bindkey built-in command.
%b End boldfacing.
%B Begin boldfacing.
%c[[0]n],
%.[[0]n]

The last n (default 1) components of the present working directory; if a
leading 0 is specified, replace removed components with /<skipped>.

%C Similar to %c, but use full pathnames instead of ~ notation.
%d Day of the week (e.g., Mon, Tue).
%D Day of month (e.g., 09, 10).
%h, %!, ! Number of current history event.
%j The number of jobs.
%l Current tty.
%L Clear from the end of the prompt to the end of the display or the line.
%m First component of hostname.
%M Fully qualified hostname.
%n Username.
%p Current time, with seconds (12-hour mode).
%P Current time, with seconds (24-hour format).
%R In prompt2, the parser status; in prompt3, the corrected string; and in

history, the history string.
%s End standout mode (reverse video).
%S Begin standout mode (reverse video).

Variables | 433

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Sample .tcshrc File
PREDEFINED VARIABLES

set path=(~ ~/bin /usr/ucb /bin /usr/bin)
set mail=(/var/mail/tom)

if ($?prompt) then # settings for interactive use
 set echo
 set noclobber ignoreeof

 set cdpath=(/usr/lib /var/spool/uucp)
Now I can type cd macros
instead of cd /usr/lib/macros

 set history=100
 set prompt='tom \!% ' # includes history number
 set time=3

MY VARIABLES

 set man1="/usr/share/man/man1" # lets me do cd $man1, ls $man1
 set a="[a-z]*" # lets me do vi $a
 set A="[A-Z]*" # or grep string $A

ALIASES

 alias c "clear; dirs" # use quotes to protect ; or |
 alias h "history|more"
 alias j jobs -l
 alias ls ls -sFC # redefine ls command
 alias del 'mv \!* ~/tmp_dir' # a safe alternative to rm
endif

Environment Variables

tcsh maintains a set of environment variables, which are distinct from shell vari-
ables and aren’t really part of the shell. Shell variables are meaningful only within
the currently running shell, but environment variables are exported automati-
cally, making them available to other programs run by the shell. For example,
shell variables are accessible only to the particular script in which they’re defined,
whereas environment variables can be used by any shell scripts, mail utilities, or
editors you might invoke.

%t, %@ Current time (12-hour format).
%T Current time (24-hour format).
%u End underlining.
%U Begin underlining.
%w Month name (e.g., Jan, Feb).
%W Month number (e.g., 09, 10).
%y Year, two digits (e.g., 06, 07).
%Y Year, four digits (e.g., 2006, 2007).

434 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Environment variables are assigned as follows:

setenv VAR value

By convention, environment variable names are all uppercase. You can create your
own environment variables, or you can use the predefined environment variables
that follow.

The following environment variables have corresponding tcsh shell variables.
When either one changes, the value is copied to the other.

Other environment variables, which do not have corresponding shell variables,
include the following:

AFSUSER Alternative to local user for Kerberos authentication with autologout
locking; same as afsuser.

GROUP User’s group name; same as group.
HOME Home directory; same as home.
PATH Search path for commands; same as path.
SHLVL Number of nested shell levels; same as shlvl.
TERM Terminal type; same as term.
USER User’s login name; same as user.

COLUMNS Number of columns on terminal.
DISPLAY Identifies user’s display for the X Window System. If set, the shell doesn’t

set autologout.
EDITOR Pathname to default editor. See also VISUAL.
EXINIT A string of ex commands similar to those found in the startup .exrc file

(e.g., set ai). Used by vi and ex. See also Chapter 9.
HOST Name of machine.
HOSTTYPE Type of machine. Obsolete; will be removed eventually.
HPATH Colon-separated list of directories to search for documentation for the run-

help editor command.
LANG Preferred language. Used for native language support.
LC_CTYPE The locale, as it affects character handling. Used for native language support.
LINES Number of lines on the screen.
LOGNAME Another name for the USER variable.
LS_COLORS Colors for use with the ls command. See the tcsh manpage for detailed

information.
MACHTYPE Type of machine.
MAIL The file that holds mail. Used by mail programs. This is not the same as the

shell variable mail, which only checks for new mail.
NOREBIND Printable characters not rebound. Used for native language support.
OSTYPE Operating system.
PWD The current directory; the value is copied from cwd, but only after a

directory change.
REMOTEHOST Machine name of remote host from which the user logged in.
SHELL Undefined by default; once initialized to shell, the two are identical.
TERMCAP The file that holds the cursor-positioning codes for your terminal type.

Default is /etc/termcap.
VENDOR System vendor.
VISUAL Pathname to default full-screen editor. See also EDITOR.

Expressions | 435

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Expressions
Expressions are used in @ (the C shell math operator), if, and while statements to
perform arithmetic, string comparisons, file testing, and so on. exit and set also
specify expressions, as can the tcsh built-in command filetest. Expressions are
formed by combining variables and constants with operators that resemble those
in the C programming language. Operator precedence is the same as in C. It is
easiest to just remember the following precedence rules:

• * / %
• + -

• Group all other expressions inside ()s; parentheses are required if the expres-
sion contains <, >, &, or |

Operators
Operators can be one of the following types.

Assignment operators

Arithmetic operators

Bitwise and logical operators

Operator Description

= Assign value.

+= -= Reassign after addition/subtraction.

*= /= %= Reassign after multiplication/division/remainder.

&= ^= |= Reassign after bitwise AND/XOR/OR.

++ Increment.

-- Decrement.

Operator Description

* / % Multiplication; integer division; modulus (remainder).

+ - Addition; subtraction.

Operator Description

~ Binary inversion (one’s complement).

! Logical negation.

<< >> Bitwise left shift; bitwise right shift.

& Bitwise AND.

^ Bitwise exclusive OR.

| Bitwise OR.

&& Logical AND (short-circuit).

|| Logical OR (short-circuit).

{ command } Return 1 if command is successful, 0 otherwise. Note that this is the
opposite of command ’s normal return code. The $status variable may
be more practical.

436 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Comparison operators

File inquiry operators

Command substitution and filename expansion are performed on file before the
test is performed. Operators can be combined (e.g., -ef). The following is a list of
the valid file inquiry operators.

Finally, tcsh provides the following operators, which return other kinds of
information.

Operator Description

== != Equality; inequality.

<= >= Less than or equal to; greater than or equal to.

< > Less than; greater than.

=~ String on left matches a filename pattern on right containing *, ?,
or [...].

!~ String on left does not match a filename pattern on right containing *, ?,
or [...].

Operator Description

-b file The file is a block special file.

-c file The file is a character special file.

-d file The file is a directory.

-e file The file exists.

-f file The file is a plain file.

-g file The file’s set-group-ID bit is set.

-k file The file’s sticky bit is set.

-l file The file is a symbolic link.

-L file Apply any remaining operators to symbolic link, not the file it points to.

-o file The current user owns the file.

-p file The file is a named pipe (FIFO).

-r file The current user has read permission.

-s file The file has nonzero size.

-S file The file is a socket special file.

-t file file is a digit and is an open file descriptor for a terminal device.

-u file The file’s set-user-ID bit is set.

-w file The current user has write permission.

-x file The current user has execute permission.

-X file The file is executable and is in the path, or is a shell built-in.

-z file The file has zero size.

! Reverse the sense of any following inquiry, which may be any of the
tests in this table.

Expressions | 437

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

These operators may only be used in multioperator tests, and they must be the
last operator in such tests.

Examples
The following examples show @ commands and assume n = 4.

The following examples show the first line of if or while statements.

Operator Description

-A[:] file Last time file was accessed, as the number of seconds since the epoch.
With a colon (:), the result is in timestamp format.

-C[:] file Last time inode was modified. With a colon (:), the result is in
timestamp format.

-D file Device number.

-F file Composite file identifier, in the form device:inode.

-G[:] file Numeric group ID for the file. With a colon (:), the result is the group
name if known, otherwise the numeric group ID.

-I file Inode number.

-L file The name of the file pointed to by symbolic link file.

-M[:] file Last time file was modified. With a colon (:), the result is in timestamp
format.

-N file Number of hard links.

-P[:] file Permissions in octal, without leading 0. With a colon (:), the result
includes a leading 0.

-Pmode[:] file Equivalent to -P file ANDed with mode. With a colon (:), the result
includes a leading 0.

-U[:] file Numeric user ID of the file’s owner. With a colon (:), the result is the
username if known, otherwise the numeric user ID.

-Z file The file’s size, in bytes.

Expression Value of $x

@ x = ($n > 10 || $n < 5) 1

@ x = ($n >= 0 && $n < 3) 0

@ x = ($n << 2) 16

@ x = ($n >> 2) 1

@ x = $n % 2 0

@ x = $n % 3 1

Expression Meaning

while ($#argv != 0) While there are arguments …

if ($today[1] == "Fri") If the first word is “Fri” …

if ($file !~ *.[zZ]) If the file doesn’t end with .z or .Z …

if ($argv[1] =~ chap?) If the first argument is chap followed by a single
character …

if (-f $argv[1]) If the first argument is a plain file …

if (! -d $tmpdir) If tmpdir is not a directory …

438 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Command History
Previously executed commands are stored in a history list. You can access this list
to verify commands, repeat them, or execute modified versions of them. The
history built-in command displays the history list; the predefined variables
histchars, history, and savehist also affect the history mechanism. There are a
number of ways to use the history list:

• Rerun a previous command

• Edit a previous command

• Make command substitutions

• Make argument substitutions (replace specific words in a command)

• Extract or replace parts of a command or word

The easiest way to take advantage of the command history is to use the arrow
keys to move around in the history, select the command you want, and then rerun
it or use the editing features described in the section “Command-Line Editing,”
later in this chapter, to modify the command. The arrow keys are:

The next sections describe some tools for editing and rerunning commands. With
the C shell, which does not have the command-line editing features of tcsh, these
features are important for rerunning commands. With tcsh, they are less often
used, but they still work.

Command Substitution

Key Description

Up arrow (↑) Previous command.

Down arrow (↓) Next command.

Left arrow (←) Move left in command line.

Right arrow (→) Move right in command line.

Command Description

! Begin a history substitution.

!! Previous command.

!N Command number N in history list.

!-N Nth command back from current command.

!string Most recent command that starts with string.

!?string? Most recent command that contains string.

!?string?% Most recent command argument that contains string.

!$ Last argument of previous command.

!!string Previous command, then append string.

!N string Command N, then append string.

!{s1}s2 Most recent command starting with string s1, then append string s2.

^old^new^ Quick substitution; change string old to new in previous command,
and execute modified command.

Command History | 439

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Command Substitution Examples

The following command is assumed:
3% vi cprogs/01.c ch002 ch03

Word Substitution
Word specifiers allow you to retrieve individual words from previous command
lines. Colons may precede any word specifier. After an event number, colons are
optional unless shown here.

Word Substitution Examples
The following command is assumed:

13% cat ch01 ch02 ch03 biblio back

Event number Command typed Command executed

4 ^00^0 vi cprogs/01.c ch02 ch03

5 nroff !* nroff cprogs/01.c ch02 ch03

6 nroff !$ nroff ch03

7 !vi vi cprogs/01.c ch02 ch03

8 !6 nroff ch03

9 !?01 vi cprogs/01.c ch02 ch03

10 !{nr}.new nroff ch03.new

11 !!|lp nroff ch03.new | lp

12 more !?pr?% more cprogs/01.c

Specifier Description

:0 Command name.

:n Argument number n.

^ First argument.

$ Last argument.

% Argument matched by a !?string? search.

:n-m Arguments n through m.

-m Words 0 through m; same as :0-m.

:n- Arguments n through next-to-last.

:n* Arguments n through last; same as n-$.

* All arguments; same as ^-$ or 1-$.

Current command line up to this point; fairly useless.

Event number Command typed Command executed

14 ls !13^ ls ch01

15 sort !13:* sort ch01 ch02 ch03 biblio back

16 lp !cat:3* lp ch03 biblio back

17 !cat:0-3 cat ch01 ch02 ch03

18 vi !-5:4 vi biblio

440 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

History Modifiers

Command and word substitutions can be modified by one or more of the
following modifiers.

Printing, substitution, and quoting

Truncation

History Modifier Examples

From the table in the section “Word Substitution Examples,” command number
17 is:

17% cat ch01 ch02 ch03

Modifier Description

:p Display command, but don’t execute.

:s/old/new Substitute string new for old, first instance only.

:gs/old/new Substitute string new for old, all instances.

:& Repeat previous substitution (:s or ^ command), first instance only.

:g& Repeat previous substitution, all instances.

:q Quote a word list.

:x Quote separate words.

Modifier Description

:r Extract the first available pathname root (the portion before the last period).

:gr Extract all pathname roots.

:e Extract the first available pathname extension (the portion after the last
period).

:ge Extract all pathname extensions.

:h Extract the first available pathname header (the portion before the last slash).

:gh Extract all pathname headers.

:t Extract the first available pathname tail (the portion after the last slash).

:gt Extract all pathname tails.

:u Make first lowercase letter uppercase.

:l Make first uppercase letter lowercase.

:a Apply modifier(s) following a as many times as possible to a word. If used
with g, a is applied to all words.

Event number Command typed Command executed

19 !17:s/ch/CH/ cat CH01 ch02 ch03

20 !17:g& cat CH01 CH02 CH03

21 !more:p more cprogs/01.c (displayed only)

22 cd !$:h cd cprogs

23 vi !mo:$:t vi 01.c

Command History | 441

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Special Aliases

Certain special aliases can be set in tcsh. The aliases are initially undefined. Once
set, the commands they specify are executed when specific events occur. The
following is a list of the special aliases and when they are executed:

beepcmd
At beep.

cwdcmd
When the current working directory changes.

jobcmd
Before running a command or before its state changes. Like postcmd, but does
not print built-ins.

helpcommand
Invoked by the run-help editor command. See the tcsh manpage for details.

periodic
Every few minutes. The exact amount of time is set by the tperiod shell
variable.

precmd
Before printing a new prompt.

postcmd
Before running a command.

shell program
If a script does not specify a shell, interpret it with program, which should be
a full pathname.

Examples

Demonstrate the cwdcmd alias:

[arnold@mybox ~]$ alias cwdcmd 'echo now in $PWD' Set alias
[arnold@mybox ~]$ cd /tmp Change directory
now in /tmp Output from alias
[arnold@mybox /tmp]$ cd Change back home
now in /home/arnold Output from alias

Demonstrate the postcmd alias:

[arnold@mybox ~]$ alias postcmd 'echo now starting\!' Set alias
[arnold@mybox ~]$ ls -FC *.txt Run a command
now starting! Output from alias
adr.gdb.backcover.txt gdb.backcover.txt sol-d1-2.txt Output from command
awkhomepage.txt sol-d1-1.txt

24 grep stdio !$ grep stdio 01.c

25 ^stdio^include stdio^:q grep "include stdio" 01.c
(quotes not shown in tcsh output)

26 nroff !21:t:p nroff 01.c (is that what I wanted?)

27 !! nroff 01.c (execute it)

Event number Command typed Command executed

442 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Command-Line Manipulation
tcsh provides functionality for manipulating the command line, including word or
command completion and the ability to edit a command line.

Completion

The shell automatically completes words and commands when you press the Tab
key, and notifies you when a completion is finished by appending a space to
complete filenames or commands and a / to complete directories.

In addition, tcsh recognizes ~ notation for home directories; it assumes that words
at the beginning of a line and following |, &, ;, ||, or && are commands, and modi-
fies the search path appropriately. Completion can be done midword; only the
letters to the left of the cursor are checked for completion.

Related Shell Variables
• autolist
• fignore
• filec
• listmax
• listmaxrows

Related Command-Line Editor Commands
• complete-word-back
• complete-word-forward
• expand-glob
• list-glob

See the tcsh manpage for a discussion of the built-in command-line editor and its
commands.

Related Shell Built-ins
• complete
• uncomplete

Command-Line Editing

tcsh lets you move your cursor around in the command line, editing the line as
you type. There are two main modes for editing the command line, based on the
two most common text editors: Emacs and vi. Emacs mode is the default; you can
switch between the modes with:

% bindkey -e Select Emacs bindings
% bindkey -v Select vi bindings

The main difference between the Emacs and vi bindings is that the Emacs bind-
ings are modeless (i.e., they always work). With the vi bindings, you must switch

Command-Line Manipulation | 443

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

between input and command modes; different commands are useful in each
mode. Additionally:

• Emacs mode is simpler; vi mode allows finer control.

• Emacs mode allows you to yank cut text and set a mark; vi mode does not.

• The command-history searching capabilities differ.

Emacs mode

The various editing keystrokes available in Emacs mode are described in Tables
5-1 through 5-3.

Table 5-1. Cursor positioning (Emacs mode)

Command Description

CTRL-B Move cursor back (left) one character.

CTRL-F Move cursor forward (right) one character.

M-b Move cursor back one word.

M-f Move cursor forward one word.

CTRL-A Move cursor to beginning of line.

CTRL-E Move cursor to end of line.

Table 5-2. Text deletion (Emacs mode)

Command Description

DEL or CTRL-H Delete character to left of cursor.

CTRL-D Delete character under cursor.

M-d Delete word.

M-DEL or M-CTRL-H Delete word backward.

CTRL-K Delete from cursor to end-of-line.

CTRL-U Delete entire line.

Table 5-3. Command history (Emacs mode)

Command Description

CTRL-P Previous command.

CTRL-N Next command.

Up arrow Previous command.

Down arrow Next command.

cmd-fragment M-p Search history for cmd-fragment, which must be the beginning
of a command.

cmd-fragment M-n Like M-p, but search forward.

M-num Repeat next command num times.

CTRL-Y Yank previously deleted string.

444 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

vi mode

vi mode has two submodes, input mode and command mode. The default mode
is input. You can toggle modes by pressing Esc; alternatively, in command mode,
typing a (append) or i (insert) will return you to input mode.

The editing keystrokes available in vi mode are described in Tables 5-4 through 5-10.

Table 5-4. Command history (vi input and command modes)

Command Description

CTRL-P Previous command.

CTRL-N Next command.

Up arrow Previous command.

Down arrow Next command.

Esc Toggle mode.

Table 5-5. Editing (vi input mode)

Command Description

CTRL-B Move cursor back (left) one character.

CTRL-F Move cursor forward (right) one character.

CTRL-A Move cursor to beginning of line.

CTRL-E Move cursor to end-of-line.

DEL or CTRL-H Delete character to left of cursor.

CTRL-W Delete word backward.

CTRL-U Delete from beginning of line to cursor.

CTRL-K Delete from cursor to end-of-line.

Table 5-6. Cursor positioning (vi command mode)

Command Description

h or CTRL-H Move cursor back (left) one character.

l or SPACE Move cursor forward (right) one character.

w Move cursor forward one word.

b Move cursor back one word.

e Move cursor to next word ending.

W, B, E Like w, b, and e, but treat only whitespace as word separator
instead of any nonalphanumeric character.

^ or CTRL-A Move cursor to beginning of line (first nonwhitespace character).

0 Move cursor to beginning of line.

$ or CTRL-E Move cursor to end-of-line.

Job Control | 445

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Job Control
Job control lets you place foreground jobs in the background, bring background
jobs to the foreground, or suspend (temporarily stop) running jobs. The shell

Table 5-7. Text insertion (vi command mode)

Command Description

a Append new text after cursor until Esc.

i Insert new text before cursor until Esc.

A Append new text after end of line until Esc.

I Insert new text before beginning of line until Esc.

Table 5-8. Text deletion (vi command mode)

Command Description

x Delete character under cursor.

X or DEL Delete character to left of cursor.

dm Delete from cursor to end of motion command m.

D Same as d$.

CTRL-W Delete word backward.

CTRL-U Delete from beginning of line to cursor.

CTRL-K Delete from cursor to end of line.

Table 5-9. Text replacement (vi command mode)

Command Description

cm Change characters from cursor to end of motion command m
until Esc.

C Same as c$.

rc Replace character under cursor with character c.

R Replace multiple characters until Esc.

s Substitute character under cursor with characters typed until Esc.

Table 5-10. Character-seeking motion (vi command mode)

Command Description

fc Move cursor to next instance of c in line.

Fc Move cursor to previous instance of c in line.

tc Move cursor to just before next instance of c in line.

Tc Move cursor to just after previous instance of c in line.

; Repeat previous f or F command.

, Repeat previous f or F command in opposite direction.

446 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

@

provides the following commands for job control. For more information on these
commands, see the following section, “Built-in Commands.”

Many job-control commands take a jobID as an argument. This argument can be
specified as follows:

Built-in Commands

@ @ variable = expression
@ variable[n] = expression
@

Assign the value of the arithmetic expression to variable, or to the
nth element of variable if the index n is specified. With no variable
or expression specified, print the values of all shell variables (same
as set). Expression operators as well as examples are listed under
the section “Expressions,” earlier in this chapter. Two special
forms are also valid:

@ variable++
@ variable[n]++

Increment variable or element by 1.

@ variable--
@ variable[n]--

Decrement variable or element by 1.

#

Ignore all text that follows on the same line. # is used in shell
scripts as the comment character and is not really a command. In
addition, a file that has # as its first character is sometimes inter-
preted by older systems as a C shell script.

bg Put a job in the background.
fg Put a job in the foreground.
jobs List active jobs.
kill Terminate a job.
notify Notify when a background job finishes.
stop Suspend a background job.
CTRL-Z Suspend the foreground job.

%n Job number n.
%s Job whose command line starts with string s.
%?s Job whose command line contains string s.
%% Current job.
% Current job (same as preceding).
%+ Current job (same as preceding).
%- Previous job.

Built-in Commands | 447

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

alloc

#! #! shell

Used as the first line of a script to invoke the named shell. Anything
given on the rest of the line is passed as a single argument to the
named shell. This feature is typically implemented by the kernel,
but may not be supported on some older systems. Some systems
have a limit of around 32 characters on the maximum length of
shell. Any program that interprets input may be used for shell, such
as awk or Perl. For example:

#! /bin/tcsh -f

: :

Null command. Returns an exit status of 0. The colon command is
often put as the first character of a Bourne or Korn shell script to
act as a place-holder to keep a # (hash) from accidentally becoming
the first character.

alias alias [name [command]]

Assign name as the shorthand name, or alias, for command. If
command is omitted, print the alias for name; if name also is
omitted, print all aliases. Aliases can be defined on the command
line, but more often they are stored in .tcshrc so that they take
effect upon logging in. (See the section “Sample .tcshrc File” earlier
in this chapter.) Alias definitions can reference command-line
arguments, much like the history list. Use \!* to refer to all
command-line arguments, \!^ for the first argument, \!\!:2 for the
second, \!$ for the last, and so on. An alias name can also be any
valid Unix command except alias or unalias; however, you lose
the original command’s meaning unless you type \name. See also
unalias and the earlier section “Special Aliases.”

Examples

Set the size for xterm windows under the X Window System:

alias R 'set noglob; eval `resize`; unset noglob'

Show aliases that contain the string “ls”:

alias | grep ls

Run nroff on all command-line arguments:

alias ms 'nroff -ms \!*'

Copy the file that is named as the first argument:

alias back 'cp \!^ \!^.old'

Use the regular ls, not its alias:

% \ls

alloc alloc

Print total amount of used and free memory.

448 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

bg

bg bg [jobIDs]

Put the current job or the jobIDs in the background. See the earlier
section “Job Control.”

Example

To place a time-consuming process in the background, you might
begin with:

4% nroff -ms report | col > report.txt
CTRL-Z

and then issue any one of the following:

5% bg
5% bg % Current job
5% bg %1 Job number 1
5% bg %nr Match initial string nroff
5% % &

bindkey bindkey [options] [key] [command]

Display all key bindings, or bind a key to an editor command.

Options

-a List standard and alternate key bindings.

-b key
Expect key to be one of the following: a control character (in
hat notation, e.g., ^B, or C notation, e.g., C-B); a metachar-
acter (e.g., M-B); a function key (e.g., F-string); or an extended
prefix key (e.g., X-B).

-c command
Interpret command as a shell command, not as an editor
command.

-d key
Bind key to its original binding.

-e Bind to standard Emacs bindings.

-k key
Expect key to refer to an arrow (left, right, up, or down).

-l List and describe all editor commands.

-r key
Completely unbind key.

-s Interpret command as a literal string and treat as terminal
input.

-u Print usage message.

-v Bind to standard vi bindings.

-- End option processing. The following item is treated as a key,
even if it looks like an option.

Built-in Commands | 449

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

complete

break break

Resume execution following the end command of the nearest
enclosing while or foreach.

breaksw breaksw

Break from a switch; continue execution after the endsw.

built-ins built-ins

Print all built-in shell commands.

bye bye

Same as logout. Must have been compiled into the shell; see the
version variable.

case case pattern:

Identify a pattern in a switch.

cd cd [options] [dir]

Change working directory to dir; default is home directory of user.
If dir is a relative pathname but is not in the current directory, the
cdpath variable is searched. See the section “Sample .tcshrc File”
earlier in this chapter.

Options

- Change to previous directory. (Compare to popd, which
manipulates the directory stack.)

-l Explicitly expand ~ notation; implies -p.

-n Wrap entries before end-of-line; implies -p.

-p Print directory stack.

-v Print entries one per line; implies -p.

chdir chdir [dir]

Same as cd. Useful if you are redefining cd as an alias.

complete complete [string [word/pattern/list[:select]/[suffix]]]

List all completions, or, if specified, all completions for string
(which may be a pattern). Further options can be specified.

450 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

continue

Options for word

Options for list

Various lists of strings can be searched for possible completions.
Some list options include:

select

select should be a glob pattern. Completions are limited to words
that match this pattern. suffix is appended to all completions.

continue continue

Resume execution of nearest enclosing while or foreach.

c Complete current word only, without referring to
pattern.

C Complete current word only, referring to pattern.
n Complete previous word.
N Complete word before previous word.
p Expect pattern to be a range of numbers. Perform

completion within that range.

(string) Members of the list string.
$variable Words from variable.
`command` Output from command.
a Aliases.
b Bindings.
c Commands.
C External (not built-in) commands.
d Directories.
D Directories whose names begin with string.
e Environment variables.
f Filenames.
F Filenames that begin with string.
g Groups.
j Jobs.
l Limits.
n Nothing.
s Shell variables.
S Signals.
t Text files.
T Text files whose names begin with string.
u Users.
v Any variables.
x Like n, but prints select as an explanation with the

editor command list-choices.
X Completions.

Built-in Commands | 451

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

echotc

default default:

Label the default case (typically last) in a switch.

dirs dirs [options]

Print the directory stack, showing the current directory first. See
also popd and pushd.

Options

-c Clear the directory stack.

-l Expand the home directory symbol (~) to the actual directory
name.

-L file
Recreate stack from file, which should have been created by
dirs -S file.

-n Wrap output.

-S file
Print to file a series of pushd and popd commands that can be
invoked to replicate the stack.

-v Print one directory per line.

echo echo [-n] string

Write string to standard output; if -n is specified, the output is not
terminated by a newline. Set the echo_style shell variable to
emulate BSD and/or System V echo flags and escape sequences. See
also echo in Chapter 2 and Chapter 4.

echotc echotc [options] arguments

Display terminal capabilities or move cursor on screen, depending
on the argument.

Options

-s Return empty string, not error, if capability doesn’t exist.

-v Display verbose messages.

Arguments

baud Display current baud rate.
cols Display current column.
cm column row Move cursor to specified coordinates.
home Move cursor to home position.
lines Print number of lines per screen.
meta Does this terminal have meta capacity (usually

the Alt key)?
tabs Does this terminal have tab capacity?

452 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

else

else else

Reserved word for interior of if … endif statement.

end end

Reserved word that ends a foreach or while statement.

endif endif

Reserved word that ends an if statement.

endsw endsw

Reserved word that ends a switch statement.

eval eval args

Typically, eval is used in shell scripts, and args is a line of code that
may contain shell variables. eval forces variable expansion to
happen first and then runs the resulting command. This “double
scanning” is useful any time shell variables contain input/output
redirection symbols, aliases, or other shell variables. (For example,
redirection normally happens before variable expansion, so a vari-
able containing redirection symbols must be expanded first using
eval; otherwise, the redirection symbols remain uninterpreted.) A
Bourne shell example can be found under eval in Chapter 4. A tcsh
example of eval can be found under alias. Other uses of eval are
shown next.

Examples

The following lines can be placed in the .login file to set up
terminal characteristics:

set noglob
eval `tset -s xterm`
unset noglob

The following commands show the effect of eval:

% set b='$a'
% set a=hello
% echo $b Read the command line once
$a
% eval echo $b Read the command line twice
hello

exec exec command [args ...]

Execute command in place of current shell. This terminates the
current shell, rather than creating a new process under it.

Built-in Commands | 453

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

foreach

exit exit [expr]

Exit a shell script with the status given by expr. A status of zero
means success; nonzero means failure. If expr is not specified, the
exit value is that of the status variable. exit can be issued at the
command line to close a window (log out).

fg fg [jobIDs]

Bring the current job or the jobIDs to the foreground. jobID can be
%job-number. See also the section “Job Control” earlier in this
chapter.

Example

If you suspend a vi editing session (by pressing CTRL-Z), you
might resume vi using any of these commands:

% %
% fg
% fg %
% fg %vi Match initial string

filetest filetest -op files

Apply op file-test operator to files. Print results in a list. See the
section “File inquiry operators” earlier in this chapter for the list of
file-test operators.

foreach foreach name (wordlist)
commands
end

Assign variable name to each value in wordlist and execute
commands between foreach and end. You can use foreach as a multi-
line command issued at the shell prompt (first of the following
examples), or you can use it in a shell script (second example).

Examples

Rename all files that begin with a capital letter:

% foreach i ([A-Z]*)
foreach? mv $i $i.old
foreach? end

Check whether each command-line argument is an option or not:

foreach arg ($argv)
 # does it begin with - ?
 if ("$arg" =~ -*) then
 echo "Argument is an option"
 else
 echo "Argument is a filename"
 endif
end

454 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

glob

glob glob wordlist

Do filename, variable, and history substitutions on wordlist. This
expands it much like echo, except that no \ escapes are recognized,
and words are delimited by null characters. glob is typically used in
shell scripts to “hardcode” a value so that it remains the same for
the rest of the script.

goto goto string

Skip to a line whose first nonblank word is string followed by a
colon, and continue execution below that line. On the goto line,
string can be a variable or filename pattern, but the label branched
to must be a literal, expanded value and must not occur within a
foreach or while.

hashstat hashstat

Display statistics that show the hash table’s level of success at
locating commands via the path variable.

history history [options]

Display the list of history events. (History syntax is discussed
earlier in the section “Command History.”)

Note: multiline compound commands such as foreach ... end are
not saved in the history list. In general, the interactive command-
line editing facilities are preferable to those of history and history
substitution with the ! character.

Options

n Display only the last n history commands, instead of the
number set by the history shell variable.

-c Clear history list.

-h Print history list without event numbers.

-L file
Append the list of saved history commands in file to the
history list.

-M file
Merge the current history list and the history list in file, sorted
by time.

-r Print in reverse order; show oldest commands last.

-S file
Save the history list to file. See also the savehist variable.

-T Print with timestamp.

Built-in Commands | 455

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

jobs

Example

To save and execute the last five commands:

history -h 5 > do_it
source do_it

hup hup [command]

Start command but make it exit when sent a hangup signal, which
is sent when shell exits. With no arguments, set the shell to exit on
hangup signal. This latter form is allowed only in scripts.

if if

Begin a conditional statement. The simple format is:

if (expr) cmd

There are three other possible formats, shown side by side:

if (expr) then if (expr) then if (expr) then
cmds cmds1 cmds1

endif else else if (expr) then
cmds2 cmds2

 endif else
cmds3

 endif

In the simplest form, execute cmds if expr is true, otherwise do
nothing. (Even if expr is false, any redirection in cmd still occurs;
this is a bug.) In the other forms, execute one or more commands.
If expr is true, continue with the commands after then; if expr is
false, branch to the commands after else or else if and continue
checking. For more examples, see the section “Expressions” earlier
in this chapter, or the shift or while commands.

Example

Take a default action if no command-line arguments are given:

if ($#argv == 0) then
 echo "No filename given. Sending to Report."
 set outfile = Report
else
 set outfile = $argv[1]
endif

jobs jobs [-l]

List all running or stopped jobs; -l includes process IDs. For
example, you can check whether a long compilation or text format
is still running. Also useful before logging out.

456 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

kill

kill kill [options] IDs

Terminate each specified process ID or job ID. You must own the
process or be a privileged user. This built-in is similar to the external
kill command described in Chapter 2 but also allows symbolic job
names. See the kill entry in Chapter 2 for a list of commonly avail-
able signals and for the header files where the corresponding signal
numbers may be found. Stubborn processes can be killed using
signal 9. See also the earlier section “Job Control.”

Options

-l List the signal names. (Used by itself.)

-signal, -s signal
Send the given signal to the jobs specified by IDs. The signal is
either a signal number, or a signal name without the SIG prefix
(e.g., HUP, not SIGHUP).

Examples

If you’ve issued the following command:

44% nroff -ms report > report.txt &
[1] 19536 tcsh prints job and process IDs

you can terminate it in any of the following ways:

45% kill 19536 Process ID
45% kill % Current job
45% kill %1 Job number 1
45% kill %nr Initial string
45% kill %?report Matching string

limit limit [-h] [resource [limit]]

Display limits or set a limit on resources used by the current
process and by each process it creates. If no limit is given, the
current limit is printed for resource. If resource also is omitted, all
limits are printed. By default, the current soft limits are shown or
set; with -h, hard limits are used. A soft limit may be increased or
decreased without requiring special privileges. A hard limit imposes
an absolute limit that can’t be exceeded. Only a privileged user
may raise it. See also unlimit.

Option

-h Use hard, not soft, limits.

Resources

concurrency Maximum number of per-process threads. Not
available on all systems.

coredumpsize Maximum size of a core dump file.
cputime Maximum number of seconds the CPU can

spend; can be abbreviated as cpu.
datasize Maximum size of data (including stack).

Built-in Commands | 457

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

newgrp

Limit

A number followed by an optional character (a unit specifier).

log log

Consult the watch variable for list of users being watched. Print list
of those who are presently logged in.

login login [options] [user]

Replace a login shell with /bin/login. See the entry for login in
Chapter 2 and your system’s login manpage.

logout logout

Terminate the login shell.

ls-F ls-F [options] [files]

Faster alternative to ls -F. If given any options, invokes ls. See also
the listlinks variable.

newgrp newgrp [-] [group]

Change user’s group ID to specified group ID or, if none is speci-
fied, to original group ID. If - is entered as an option, reset
environment as if user had logged in with new group. Must have
been compiled into the shell; see the version variable.

descriptors Maximum number of open files.
filesize Maximum size of any one file.
maxproc Maximum number of processes.
memorylocked Maximum size a process can lock into memory.
memoryuse Maximum amount of physical memory that

can be allocated to a process.
sbsize Maximum size of a socket buffer. Not available

on all systems.
stacksize Maximum size of stack.
vmemoryuse Maximum amount of virtual memory that can

be allocated to a process.

For cputime: nh (for n hours)
nm (for n minutes)
mm:ss (minutes and seconds)

For others: nk (for n kilobytes, the default)
nm (for n megabytes)

458 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nice

nice nice [±n] command

Change the execution priority for command or, if none is given,
change priority for the current shell. (See also nice in Chapter 2.)
The priority range is –20 to 19, with a default of 4. The range is
backwards from what you might expect: –20 gives the highest
priority (fastest execution); 19 gives the lowest. Only a privileged
user may specify a negative number.

+n Add n to the priority value (lower job priority).

-n Subtract n from the priority value (raise job priority). Privi-
leged users only.

nohup nohup [command]

“No hangup signals.” Do not terminate command after terminal
line is closed (i.e., when you hang up from a phone or log out). Use
without command in shell scripts to keep script from being termi-
nated. (See also nohup in Chapter 2.)

notify notify [jobID]

Report immediately when a background job finishes (instead of
waiting for you to exit a long editing session, for example). If no
jobID is given, the current background job is assumed.

onintr onintr label
onintr -
onintr

“On interrupt.” Used in shell scripts to handle interrupt signals
(similar to the trap 2 and trap "" 2 commands in the Bourne
shell). The first form is like a goto label. The script will branch to
label: if it catches an interrupt signal (e.g., CTRL-C). The second
form lets the script ignore interrupts. This is useful at the begin-
ning of a script or before any code segment that needs to run
unhindered (e.g., when moving files). The third form restores inter-
rupt handling previously disabled with onintr -.

Example

onintr cleanup Go to "cleanup" on interrupt
 .
 . Shell script commands
 .
cleanup: Label for interrupts
 onintr - Ignore additional interrupts
 rm -f $tmpfiles Remove any files created
 exit 2 Exit with an error status

Built-in Commands | 459

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rehash

popd popd [options]

Remove the current entry from the directory stack or remove the nth
entry from the stack. The current entry has number zero and
appears on the left. See also dirs and pushd.

Options

+n Specify nth entry.

-l Expand ~ notation.

-n Wrap long lines.

-p Override the pushdsilent shell variable, which otherwise
prevents the printing of the final stack.

-v Print precisely one directory per line.

printenv printenv [variable]

Print all (or one specified) environment variables and their values.

pushd pushd [options] name
pushd [options] +n
pushd

The first form changes the working directory to name and adds it to
the directory stack. The second form rotates the nth entry to the
beginning, making it the working directory. (Entry numbers begin
at zero.) With no arguments, pushd switches the first two entries
and changes to the new current directory.

The -l, -n, and -v options behave the same as in popd. See also dirs
and popd.

Examples

% dirs
/home/bob /usr
% pushd /etc Add /etc to directory stack
/etc /home/bob /usr
% pushd +2 Switch to third directory
/usr /etc /home/bob
% pushd Switch top two directories
/etc /usr /home/bob
% popd Discard current entry; go to next
/usr /home/bob

rehash rehash

Recompute the internal hash table for the path variable. Use rehash
whenever a new command is created during the current session.
This allows the path variable to locate and execute the command.
(If the new command resides in a directory not listed in path, add
the directory to path before rehashing.) See also unhash.

460 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

repeat

repeat repeat n command

Execute n instances of command.

Examples

Generate a test file for a program by saving 25 copies of /usr/dict/
words in a file:

% repeat 25 cat /usr/dict/words > test_file

Read 10 lines from the terminal and store in item_list:

% repeat 10 line > item_list

Append 50 boilerplate files to report:

% repeat 50 cat template >> report

sched sched [options]
sched time command

Without options, print all scheduled events. The second form
schedules an event. time should be specified in hh:mm form (e.g.,
13:00).

Options

+hh:mm
Schedule event to take place hh:mm from now.

-n
Remove nth item from schedule.

set set [-r] variable = value
set [-r] variable[n] = value
set [-f | -l] variable=(list)
set [-r] variable
set [-r]

Set variable to value or, if multiple values are specified, set the vari-
able to the list of words in the value list. If an index n is specified,
set the nth word in the variable to value. (The variable must
already contain at least that number of words.) If only variable is
specified, set the variable to null. With no arguments, display the
names and values of all set variables. See also the section
“Predefined Shell Variables,” earlier in this chapter. Only one of -f
or -l can be given.

Options

-f When setting a variable to a list, remove duplicate words from
the list, keeping only the first occurrence of a duplicate.

-l When setting a variable to a list, remove duplicate words from
the list, keeping only the last occurrence of a duplicate.

-r List only read-only variables, or set specified variable to
read-only.

Built-in Commands | 461

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

shift

Examples

% set list=(yes no maybe) Assign a wordlist
% set list[3]=maybe Assign an item in existing wordlist
% set quote="Make my day" Assign a variable
% set x=5 y=10 history=100 Assign several variables
% set blank Assign a null value to blank

setenv setenv [name [value]]

Assign a value to an environment variable name. By convention,
name should be uppercase. value can be a single word or a quoted
string. If no value is given, the null value is assigned. With no argu-
ments, display the names and values of all environment variables. A
number of environment variables are automatically exported from
the corresponding shell variables; see the earlier section “Environ-
ment Variables.”

settc settc capability value

Set terminal capability to value.

setty setty [options] [±mode]

Do not allow shell to change specified tty modes. There are three
sets of modes, edit, quote, and execute. By default, act on the
execute set.

Options

+mode
Without arguments, list all modes in specified set that are on.
Otherwise, turn on specified mode.

-mode
Without arguments, list all modes in specified set that are off.
Otherwise, turn off specified mode.

-a List all modes in specified set.

-d Act on the edit set of modes (used when editing commands).

-q Act on the quote set of modes (used when entering characters
verbatim).

-x Act on the execute set of modes (used when executing
commands). This is the default.

shift shift [variable]

If variable is given, shift the words in a word list variable; e.g.,
assuming a wordlist variable named offices, offices[2] becomes
offices[1]. With no argument, shift the positional parameters
(command-line arguments); i.e., $2 becomes $1. shift is typically
used in a while loop. See additional example under while.

462 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

source

Example

while ($#argv) While there are arguments
 if (-f $argv[1])
 wc -l $argv[1]
 else
 echo "$argv[1] is not a regular file"
 endif
 shift Get the next argument
end

source source [-h] script [args]

Read and execute commands from a shell script. With -h, the
commands are added to the history list but aren’t executed. Argu-
ments can be passed to the script and are put in argv.

Example

% source ~/.tcshrc

stop stop jobIDs

Stop the background jobs specified by jobIDs; this is the comple-
ment of CTRL-Z or suspend.

suspend suspend

Suspend the current foreground job; similar to CTRL-Z. Often
used to stop an su command.

switch switch

Process commands depending on a string value. When you need to
handle more than three choices, switch is a useful alternative to an
if-then-else statement. If the string matches pattern1, the first set
of commands executes; if string matches pattern2, the second set of
commands executes; and so on. If no patterns match, the set of
commands under the default case executes. string can be specified
using command substitution, variable substitution, or filename
expansion. Patterns can be specified using the pattern-matching
symbols *, ?, [‚ and]. breaksw exits the switch after commands are
executed. If breaksw is omitted (which is rarely done), the switch
continues to execute another set of commands until it reaches a
breaksw or endsw. Here is the general syntax of switch, side-by-side
with an example that processes the first command-line argument.

switch (string) switch ($argv[1])
 case pattern1: case -[nN]:

commands nroff $file | lp
 breaksw breaksw
 case pattern2: case -[Pp]:

commands pr $file | lp

Built-in Commands | 463

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

uncomplete

 breaksw breaksw
 case pattern3: case -[Mm]:

commands more $file
 breaksw breaksw
 . case -[Ss]:
 . sort $file
 . breaksw
 default: default:

commands echo "Error--no such option"
 exit 1
 breaksw breaksw
endsw endsw

telltc telltc

Print all terminal capabilities and their values.

termname termname [termtype]

Check the termcap or terminfo database to see if termtype exists.
With no argument, use the current value of the TERM variable. This
command prints the termtype to standard output and returns zero
if the terminal type is found in the database, one otherwise.

time time [command]

Execute a command and show how much time it uses. With no
argument, time can be used in a shell script to time the script.

umask umask [nnn]

Display file-creation mask or set file-creation mask to octal nnn.
The file-creation mask determines which permission bits are turned
off. With no nnn, print the current mask. See the umask entry in
Chapter 2 for examples.

unalias unalias pattern

Remove all aliases whose names match pattern from the alias list.
See alias for more information.

uncomplete uncomplete pattern

Remove completions (specified by complete) whose names match
pattern.

464 | Chapter 5: tcsh: An Extended C Shell

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

unhash

unhash unhash

Stop using the internal hash table. The shell stops using hashed
values and searches the path directories to locate a command. See
also rehash.

unlimit unlimit [-h] [resource]

Remove the allocation limits on resource. If resource is not speci-
fied, remove limits for all resources. See limit for more information.
With -h, remove hard limits. Removing hard limits can be done
only by a privileged user.

unset unset variables

Remove one or more variables. Variable names may be specified as
a pattern, using filename metacharacters. Does not remove read-
only variables. See set.

unsetenv unsetenv variables

Remove one or more environment variables. Variable names may
be specified as a pattern, using filename metacharacters. See
setenv.

wait wait

Pause in execution until all child processes complete, or until an
interrupt signal is received.

watchlog watchlog

Same as log. Must have been compiled into the shell; see the
version shell variable.

where where command

Display all aliases, built-in commands, and executables named
command found in the path.

which which command

Report which version of command will be executed. Same as the
external executable which, but faster, and checks tcsh built-ins.

Built-in Commands | 465

tcsh

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

while

while while (expression)
commands
end

As long as expression is true (evaluates to nonzero), evaluate
commands between while and end. break and continue can be used
to terminate or continue the loop. See also the example under shift.

Example

set user = (alice bob carol ted)
while ($argv[1] != $user[1])

Cycle through each user, checking for a match
 shift user

If we cycled through with no match...
 if ($#user == 0) then
 echo "$argv[1] is not on the list of users"
 exit 1
 endif
end

467

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 6Package Management

6
Package Management

Package management systems automate the installation, removal and upgrade of
software. Different systems do things in similar but not identical ways. GNU/
Linux systems have the most highly developed package management systems.
This chapter describes the facilities available for Linux, Solaris, and Mac OS X. It
presents the following topics:

• Linux package management

• The Red Hat package manager

• Yum: Yellowdog Updater Modified

• up2date: Red Hat update agent

• The Debian package manager

• Mac OS X package management

• Solaris package management

Linux Package Management
This chapter describes the two major Linux packaging systems: the Red Hat
Package Manager (RPM) and the Debian GNU/Linux Package Manager. It also
describes the major frontend applications designed to simplify and automate
package management: yum and up2date for RPM-based systems, aptitude and
synaptic for Debian-based systems, and apt, which is a Debian package manage-
ment tool that is now also available for RPM-based systems.

When you install applications on your Linux system, most often you’ll find a
binary or a source package containing the application you want, instead of (or in
addition to) a .tar.gz file. A package is a file containing the files necessary to
install an application. However, while the package contains the files you need for
installation, the application might require the presence of other files or packages
that are not included, such as particular libraries (and even specific versions of the

468 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

libraries), to actually be able to run. Such requirements are known as
dependencies.

Package management systems offer many benefits. As a user, you may want to
query the package database to find out what packages are installed on the system
and their versions. As a system administrator, you need tools to install and
manage the packages on your system. And if you are a developer, you need to
know how to build a package for distribution.

Among other things, package managers do the following:

• Provide tools for installing, updating, removing, and managing the software
on your system.

• Allow you to install new or upgraded software directly across a network.

• Tell you what software package a particular file belongs to or what files a
package contains.

• Maintain a database of packages on the system and their status, so that you
can determine what packages or versions are installed on your system.

• Provide dependency checking, so that you don’t mess up your system with
incompatible software.

• Provide GPG, PGP, MD5, or other signature verification tools.

• Provide tools for building packages.

Any user can list or query packages. However, installing, upgrading, or removing
packages generally requires root privileges. This is because the packages normally
are installed in system-wide directories that are writable only by root. Sometimes
you can specify an alternate directory to install a package into your home direc-
tory or into a project directory where you have write permission, if you aren’t
running as root.

Signature verification is an important feature of package management systems that
helps maintain the security of your system. An MD5 checksum is used to check
the integrity of a package, making sure, for example, that it was downloaded
correctly and that it has not been tampered with by a malicious user. GPG (and
PGP) encrypt a digital signature into the package, which is used to verify the
authenticity of the package creator.

Most often you’ll install a binary package, where the source code has been
compiled and the software is ready to run once it is installed. You may also want
or need to install source packages, which provide the source code and instruc-
tions for compiling and installing the program. Source code packages do not
contain executable files. Packages follow certain naming conventions, and you can
tell from the name whether it is a binary or source package. RPM and Debian
package names contain the same information, but they are expressed slightly
differently. An RPM package has the form:

package-version-release.architecture.rpm

A Debian package has the form:

package_version-revision_architecture.deb

Linux Package Management | 469

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

In both cases, package is the name of the package, version is the version number of
the software, release (RPM) and revision (Debian) indicate the revision number of
the package for that version, and architecture shows what system architecture the
software was packaged for (e.g., i386 or m68k). The value of architecture may also
be noarch for a package that is not hardware-specific or src for an RPM source
package (Debian source packages come as tarred, gzipped files).

All the package managers check for dependencies when you install a package. In the
case of RPM, if there are missing dependencies, it prints an error and terminates
without installing the package. To proceed, you need to first install the missing
package (or packages). This can become an involved process if the missing package
has its own dependencies. A major advantage of the high-level package managers
described in this chapter (i.e., apt, yum, up2date, synaptic, and aptitude) is that they
automatically resolve dependencies and install missing packages for you. Another
advantage is that they locate and download the package automatically, based on
information in configuration files specifying where to look for packages. With RPM,
you first have to locate the package, then download it, and only then can you run
rpm to do the install. On the other hand, if you already have the package file on your
system or on a CD, rpm is quick and easy to run.

Both RPM and the apt system back up old files before installing an updated
package. Not only does this let you go back if there is a problem, but it also
ensures that you don’t lose your changes (to configuration files, for example).

The following list shows the package management programs described in the rest
of this chapter. Which program to use is very much a matter of personal prefer-
ence, and you can use more than one at different times. However, it’s best to pick
the program you prefer and use it consistently, so that all your packages are main-
tained in a single database that you can query.

The Advanced Package Tool (APT)
APT is a modern, user-friendly package management tool that consists of a
number of commands. The most frequently used of these commands is apt-get,
which is used to download and install a Debian package. apt-get can be run
from the command line or selected as a method from dselect. One of the
features of apt-get is that you can use it to get and install packages across the
Internet by specifying an FTP or HTTP URL. You can also use it to upgrade
all packages currently installed on your system in a single operation.

Note that there are versions of the apt commands that can be used on an
RPM-based system. If you plan to do that, it’s best to install the version of apt
that comes with your Linux distribution.

aptitude
High-level text-based interface to APT. Runs either from the command line or
in a visual mode inside a terminal window such as an xterm.

dpkg
The original Debian packaging tool. Used to install or uninstall packages or
as a frontend to dpkg-deb. Getting and installing packages is usually done with
apt-get, but dpkg is still commonly used to install a package that is already on
your system. In fact, apt-get calls dpkg to do the installation once it’s gotten
the package.

470 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg-deb
Lower-level packaging tool. Used to create and manage the Debian package
archives. Accepts and executes commands from dpkg or can be called directly.

dselect
An interactive frontend to dpkg. With the advent of the newer tools and the
increased number of packages, the use of dselect is deprecated.

RPM
The original command-line system for installing and managing RPM pack-
ages. RPM has two commands, rpm for installing and managing packages, and
rpmbuild for creating packages.

synaptic
A graphical frontend to APT.

up2date
A graphical frontend to RPM.

yum
A frontend to RPM that runs from the command line.

If you want to update your system daily, to keep it current and to be sure you
have the latest security fixes, you can set up a command that you can reissue every
day, or you can set it up as a cron job to run overnight. (See the description of the
crontab command in Chapter 2 for more information on setting up a cron job.)

For example, with apt-get, you can set up the command:

apt-get update && apt-get -u dist-upgrade

This command runs apt-get twice; first to update the local package lists and then
to actually do the upgrade. The dist-upgrade command handles all dependencies
when it does the upgrade, and the -u option prints a list of the packages being
upgraded.

yum, on the other hand, comes with a cron job that can be run daily. This job first
updates yum itself, then updates all the remaining packages:

#!/bin/sh
if [-f /var/lock/subsys/yum]; then
 /usr/bin/yum -R 10 -e 0 -d 0 -y update yum
 /usr/bin/yum -R 120 -e 0 -d 0 -y update
fi

The -R option sets a maximum time, in minutes, for yum to wait before running the
command, -e sets the error level to 0 to print only critical errors, -d specifies a
debug level of 0 to print no debugging messages, and -y assumes “yes” as the
answer to any questions.

The Red Hat Package Manager
The Red Hat Package Manager (RPM) is a freely available packaging system for
software distribution and installation. In addition to the Red Hat Enterprise Linux
and Fedora Core distributions, both SuSE and Mandrake are among the Linux
distributions that use RPM.

The Red Hat Package Manager | 471

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Using RPM is straightforward. A single command, rpm, has options to perform all
package management functions except building packages.* For example, to find
out if the Emacs editor is installed on your system, you could say:

$ rpm -q emacs
emacs-21.3-17

This command prints the full package name, confirming its presence.

You use the rpmbuild command to build both binary and source packages.

RPM Package Concepts

This section provides an overview of some of the parts of an RPM package. Much
of the information is of primary use to developers, but because some of the terms
are referenced in the RPM command descriptions, they are explained briefly here.

An RPM package has three primary components. The header contains all the
information about the package, such as its name and version, a description, a list
of included files, the copyright terms, and where the source file can be found. The
signature contains information used to verify the integrity and authenticity of the
package. The archive contains the actual files that make up the package.

When a package is being built, one of the requirements for the developers is to
create a spec file. If you download the source RPM for a package, you can look at
the spec file; it has a filename of package.spec (e.g., yum.spec for the yum spec file).
The spec file contains all the information required for building a package,
including a description of the software, instructions telling the rpmbuild command
how to build the package, and a list of the files included and where they get
installed. Some other features of spec files include the following:

Macros
Macros are sequences of commands stored together and executed by
invoking the macro name. The RPM build process provides two standard
macros, %setup to unpack the original sources and %patch to apply patches.
Other macros appear later in this chapter in the command descriptions and
are described there.

Scripts
Scripts are used to control the build process. Some of the scripts RPM uses
include %prep to begin the build process, %build primarily to run make and
perhaps do some configuration, %install to do a make install and %clean to
clean up afterwards. Four additional scripts may be created to run when a
package is actually installed on a system. These scripts are %pre for scripts run
before package installation, %post for scripts run after package installation,
%preun for scripts run before a package is uninstalled, and %postun for scripts
run after a package is uninstalled.

* In older versions of RPM, the build options were part of the rpm command.

472 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Trigger scriptlets
Trigger scriptlets are extensions of the normal install and uninstall scripts.
They provide for interaction between packages. A trigger scriptlet provided
with one package will be triggered to run by the installation or removal of
some other package. For example, a newly installed RPM package may cause
an existing application to run or restart once installation is complete. In many
cases, a newly installed package requires services to be restarted.

The rpm Command

RPM packages are installed and queried with the rpm command. RPM package
filenames usually end with a .rpm extension. rpm has a set of modes, each with its
own options. The format of the rpm command is:

rpm [options] [packages]

With a few exceptions, as noted in the lists of options that follow, the first option
specifies the rpm mode (install, query, update, etc.), and any remaining options
affect that mode.

Options that refer to packages are sometimes specified as package-name and
sometimes as package-file. The package name is the name of the program or
application, such as xpdf. The package file is the name of the RPM file, such as
xpdf-3.00-10.1.i386.rpm.

RPM provides a configuration file for specifying frequently used options. The
default global configuration file is usually /usr/lib/rpm/rpmrc, the local system
configuration file is /etc/rpmrc, and users can set up their own $HOME/.rpmrc files.
You can use the --showrc option to show the values RPM will use by default for all
the options that may be set in an rpmrc file:

rpm --showrc

The rpm command includes FTP and HTTP clients, so you can specify an ftp:// or
http:// URL to install or query a package across the Internet. You can use an FTP
or HTTP URL wherever package-file is specified in the commands presented here.
Be careful, however, when downloading packages from the Internet. Always verify
package contents by checking MD5 checksums and signatures. Whenever
possible, install from trusted media.

Any user can query the RPM database. Most of the other functions, such as
installing and removing packages, require superuser privileges.

General options

The following options can be used with all modes:

--dbpath path
Use path as the path to the RPM database instead of the default /var/lib/rpm.

-?, --help
Print a long usage message (running rpm with no options gives a shorter
usage message).

The Red Hat Package Manager | 473

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--quiet
Display only error messages.

--rcfile filelist
Get configuration from the files in the colon-separated filelist. If --rcfile is
specified, there must be at least one file in the list and the file must exist. filelist
defaults to /usr/lib/rpm/rpmrc:/usr/lib/rpm/redhat/rpmrc:/etc/rpmrc:~/.rpmrc.
Use with --showrc to see what options will be used if alternate configuration
files are specified.

--root dir
Perform all operations within the directory tree rooted at dir.

-v Verbose. Print progress messages.

--version
Print the version number of rpm.

-vv Print debugging information. Each additional v character makes rpm be more
verbose.

Install, upgrade, and freshen options

Use the install command to install or upgrade an RPM package. Upgrading with
install leaves any existing versions on the system. The install syntax is:

rpm -i [install-options] package_file …
rpm --install [install-options] package_file …

To install a new version of a package and remove an existing version at the same
time, use the upgrade option instead:

rpm -U [install-options] package_file …
rpm --upgrade [install-options] package_file …

If the package doesn’t already exist on the system, -U acts like -i and installs it. To
prevent that behavior, you can freshen a package instead; in that case, rpm
upgrades the package only if an earlier version is already installed. The freshen
syntax is:

rpm -F [install-options] package_file …
rpm --freshen [install-options] package_file …

For all forms, package-file can be specified as an FTP or HTTP URL to download the
file before installing it. See the section “FTP/HTTP options,” later in this chapter.

The installation and upgrade options are:

--aid
If rpm suggests additional packages, add them to the list of package files.

--allfiles
Install or upgrade all files.

--badreloc
Used with --relocate to force relocation even if the package is not relocatable.

--excludedocs
Don’t install any documentation files.

474 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--excludepath path
Don’t install any file whose filename begins with path.

--force
Force the installation. Equivalent to --replacepkgs --replacefiles --oldpackage.

-h, --hash
Print 50 hash marks as the package archive is unpacked. Can be used with -v
or --verbose for a nicer display.

--ignorearch
Install even if the binary package is intended for a different architecture.

--ignoreos
Install binary package even if the operating systems don’t match.

--ignoresize
Don’t check disk space availability before installing.

--includedocs
Install documentation files. This is needed only if excludedocs: 1 is specified in
an rpmrc file.

--justdb
Update the database only; don’t change any files.

--nodeps
Don’t check whether this package depends on the presence of other packages.

--nodigest
Don’t verify package or header digests.

--noorder
Don’t reorder packages to satisfy dependencies before installing.

--nopost
Don’t execute any post-install script.

--nopostun
Don’t execute any post-uninstall script.

--nopre
Don’t execute any pre-install script.

--nopreun
Don’t execute any pre-uninstall script.

--noscripts
Don’t execute any pre-install or post-install scripts. Equivalent to --nopre
--nopost --nopreun --nopostun.

--nosignature
Don’t verify package or header signatures.

--nosuggest
Don’t suggest packages that provide a missing dependency.

--notriggerin
Don’t execute any install trigger scriptlet.

--notriggerun
Don’t execute any uninstall trigger scriptlet.

The Red Hat Package Manager | 475

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--notriggerpostun
Don’t execute any post-uninstall trigger scriptlet.

--notriggers
Don’t execute any scripts triggered by package installation. Equivalent to
--notriggerin --notriggerun --notriggerpostun.

--oldpackage
Allow an upgrade to replace a newer package with an older one.

--percent
Print percent-completion messages as files are unpacked. Useful for running
rpm from other tools.

--prefix path
Set the installation prefix to path for relocatable binary packages.

--relocate oldpath=newpath
For relocatable binary files, change all file paths from oldpath to newpath.
Can be specified more than once to relocate multiple paths.

--repackage
Repackage the package files before erasing an older version, to save the
package in case a transaction rollback is necessary. Rename the package as
specified by the macro %_repackage_name_fmt and save it in the directory speci-
fied by the macro %_repackage_dir (by default /var/spool/repackage). The
repackaged file is not identical to the original package.

--replacefiles
Install the packages even if they replace files from other installed packages.

--replacepkgs
Install the packages even if some of them are already installed.

--test
Go through the installation to see what it would do, but don’t actually install
the package. This option lets you test for problems before doing the
installation.

Query options

The syntax for the query option is:

rpm -q [package-options] [information-options]
rpm --query [package-options] [information-options]

There are two subsets of query options. Package selection options determine what
packages to query, and information selection options determine what information
to provide.

Here are the package selection options:

package_name
Query the installed package package_name.

-a, --all
Query all installed packages.

476 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-f file, --file file
Find out what package owns file.

--fileid md5
Query package with the specified MD5 checksum.

-g group, --group group
Find out what packages have group group.

--hdrid sha1
Query package with the specified SHA1 digest in the package header.

-p package_file, --package package_file
Query the uninstalled package package_file, which can be a URL. If package_
file is not a binary package, it is treated as a text file containing a package
manifest, with each line of the manifest containing a path or one or more
whitespace-separated glob expressions to be expanded to paths. These paths
are then used instead of package_file as the query arguments. The manifest
can contain comments that begin with a hash mark (#).

--pkgid md5
Query the package with a package identifier that is the given MD5 checksum
of the combined header and contents.

--querybynumber num
Query the numth database entry. Useful for debugging.

-qf string, --queryformat string
Specify the format for displaying the query output, using tags to represent
different types of data (e.g., NAME, FILENAME, DISTRIBUTION). The
format specification is a variation of the standard printf formatting, with the
type specifier omitted and replaced by the name of the header tag inclosed in
curly braces ({…}). For example:

%{NAME}

The tag names are case-insensitive. Use --querytags (see the later section
“Miscellaneous options”) to view a list of available tags. The tag can be
followed by :type to get a different output format type. The possible types are:

:armor
Wrap a public key in ASCII armor.

:base64
Encode binary data as base64.

:date
Use "%c" format as in strftime(3) to display the preferred date and time
format for this locale.

:day
Use "%a %b %d %Y" format as in the function strftime(3). This format
displays the day of the week, the day of the month, the month as a
decimal number, and the four-digit year.

:depflags
Format dependency flags.

The Red Hat Package Manager | 477

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

:fflags
Format file flags.

:hex
Use hexadecimal format.

:octal
Use octal format.

:perms
Format file permissions.

:shescape
Escape single quotes for use in a script.

:triggertype
Display trigger suffix (i.e., in, un, or postun, indicating whether it’s an
install, uninstall, or post-uninstall trigger).

--specfile specfile
Query specfile as if it were a package. Useful for extracting information from
a spec file.

--tid tid
List packages with the specified transaction identifier (tid). The tid is a Unix
timestamp. All packages installed or erased in a single transaction have the
same tid.

--triggeredby pkg
List packages containing triggers that are run when the installation status of
package pkg changes. For example:

$ rpm -q --triggeredby glibc
redhat-lsb-1.3-4

In this example, the package redhat-lsb-1.3.4 contains a triggerpostun
scriptlet that runs after glibc is uninstalled.

--whatrequires capability
List packages that require the given capability to function. For example:

$ rpm -q --whatrequires popt
rpm-4.3.2-21
gstreamer-0.8.7-3
librsvg2-2.8.1-1
planner-0.12.1-1

--whatprovides capability
List packages that provide the given capability. For example:

$ rpm -q --whatprovides popt
popt-1.9.1-21

Here are the information selection options:

-c, --configfiles
List configuration files in the package. Implies -l.

--changelog
Display the log of change information for the package.

478 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-d, --docfiles
List documentation files in the package. Implies -l.

--dump
Dump information for each file in the package. This option must be used
with at least one of -l, -c, or -d. The output includes the following informa-
tion in this order:

path size mtime md5sum mode owner group isconfig isdoc rdev symlink

--filesbypkg
List all files in each package.

-i, --info
Display package information, including the name, version, and description.
Formats the results according to --queryformat if specified.

-l, --list
List all files in the package.

--last
List packages by install time, with the latest packages listed first.

--provides
List the capabilities this package provides.

-R, --requires
List any packages this package depends on.

-s, --state
List each file in the package and its state. The possible states are normal, not
installed, or replaced. Implies -l.

--scripts
List any package-specific shell scripts used during installation and uninstalla-
tion of the package.

--triggers, --triggerscript
Display any trigger scripts in the package.

Uninstall options

The syntax for the erase (uninstall) option is:

rpm -e [uninstall-options] package_name …
rpm --erase [uninstall-options] package_name …

The uninstall options are:

--allmatches
Remove all versions of the package. Only one package should be specified;
otherwise, an error results.

--nodeps
Don’t check dependencies before uninstalling the package.

--nopostun
Don’t run any post-uninstall scripts.

The Red Hat Package Manager | 479

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--nopreun
Don’t run any pre-uninstall scripts.

--noscripts
Don’t execute any pre-uninstall or post-uninstall scripts. Equivalent to --nopreun
--nopostun.

--notriggerpostun
Don’t execute any post-uninstall scripts triggered by the removal of this
package.

--notriggers
Don’t execute any scripts triggered by the removal of this package. Equiva-
lent to --notriggerun --notriggerpostun.

--notriggerun
Don’t execute any uninstall scripts triggered by the removal of this package.

--repackage
Repackage the files before uninstalling them, to save the package in case a
transaction rollback is necessary. Rename the package as specified by the
macro %_repackage_name_fmt and save it in the directory specified by the macro
%_repackage_dir (by default /var/spool/repackage). The repackaged file is not
identical to the original package file.

--test
Don’t really uninstall anything; just go through the motions. Use with -vv for
debugging.

Verify options

The syntax for the verify option is:

rpm -V [package-selection-options] [verify-options]
rpm --verify [package-selection-options] [verify-options]

Verify mode compares information about the installed files in a package with
information about the files that came in the original package, and displays any
discrepancies. The information compared includes the size, MD5 checksum,
permissions, type, owner, and group of each file. Uninstalled files are ignored.

The package selection options include those available for query mode. In addi-
tion, the following verify options are available:
--nodeps

Ignore package dependencies.

--nodigest
Ignore package or header digests.

--nofiles
Ignore attributes of package files.

--nogroup
Ignore group ownership errors.

--nolinkto
Ignore symbolic link errors.

--nomd5
Ignore MD5 checksum errors.

480 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--nomode
Ignore file mode (permissions) errors.

--nordev
Ignore major and minor device number errors.

--nomtime
Ignore modification time errors.

--noscripts
Ignore any verify script.

--nosignature
Ignore package or header signatures.

--nosize
Ignore file size errors.

--nouser
Ignore user ownership errors.

The output is formatted as an eight-character string, possibly followed by an
attribute marker, and then the filename. Each of the eight characters in the string
represents the result of comparing one file attribute to the value of that attribute
from the RPM database. A period (.) indicates that the file passed that test. The
following characters indicate failure of the corresponding test:

The possible attribute markers are:

Database rebuild options

The syntax of the command to rebuild the RPM database is:

rpm --rebuilddb [options]

You also can build a new database:

rpm --initdb [options]

The options available with the database rebuild mode are the --dbpath, --root, and
-v options described in the earlier section “General options.”

5 MD5 checksum
D Device
G Group
L Symlink
M Mode (includes permissions and file type)
S File size
T Modification time
U User

c Configuration file
d Documentation file
g Ghost file (contents not included in package)
l License file
r Readme file

The Red Hat Package Manager | 481

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Signature check options

RPM packages may have a GPG signature built into them. There are three types of
digital signature options: you can check signatures, add signatures to packages,
and import signatures.

The syntax of the signature check mode is:

rpm --checksig [options] package_file …
rpm -K [options] package_file …

The signature-checking options -K and --checksig check the digests and signa-
tures contained in the specified packages to insure the integrity and origin of the
packages. Note that RPM now automatically checks the signature of any package
when it is read; this option is still useful, however, for checking all headers and
signatures associated with a package.

The --nosignature and --nodigest options described in the earlier section “Install,
upgrade, and freshen options,” are available for use with signature check mode.

The syntax for adding signatures to binary packages is:

rpm --addsign binary-pkgfile …
rpm --resign binary-pkgfile …

Both --addsign and --resign generate and insert new signatures, replacing any that
already exist in the specified binary packages.*

The syntax for importing signatures is:

rpm --import public-key

The --import option is used to import an ASCII public key to the RPM database so
that digital signatures for packages using that key can be verified. Imported public
keys are carried in headers, and keys are kept in a ring, which can be queried and
managed like any package file.

Miscellaneous options

Several additional rpm options are available:

--querytags
Print the tags available for use with the --queryformat option in query mode.

--setperms packages
Set file permissions of the specified packages to those in the database.

--setugids packages
Set file owner and group of the specified packages to those in the database.

--showrc
Show the values rpm will use for all options that can be set in an rpmrc file.

* In older versions of RPM, --addsign was used to add new signatures without replacing existing
ones, but currently both options work the same way and replace any existing signatures.

482 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

FTP/HTTP options

The following options are available for use with FTP and HTTP URLs in install,
update, and query modes.

--ftpport port
Use port for making an FTP connection on the proxy FTP server instead of
the default port. Same as specifying the macro %_ftpport.

--ftpproxy host
Use host as the proxy server for FTP transfers through a firewall that uses a
proxy. Same as specifying the macro %_ftpproxy.

--httpport port
Use port for making an HTTP connection on the proxy HTTP server instead
of the default port. Same as specifying the macro %_httpport.

--httpproxy host
Use host as the proxy server for HTTP transfers. Same as specifying the macro
%_httpproxy.

RPM Examples

Query the RPM database to find Emacs-related packages:

rpm -q -a | grep emacs

Query an uninstalled package, printing information about the package and listing
the files it contains:

rpm -qpil ~/downloads/bash2-doc-2.03-8.i386.rpm

Install a package (assumes superuser privileges):

rpm -i sudo-1.6.7p5-30.1.i386.rpm

Do the same thing, but report on the progress of the installation:

rpm -ivh sudo-1.6.7p5-30.1.i386.rpm

The rpmbuild Command

The rpmbuild command is used to build RPM packages. The syntax for rpmbuild is:

rpmbuild -bstage [build-options] spec-file …
rpmbuild -tstage [build-options] spec-file …

Specify -b to build a package directly from a spec file, or -t to open a tarred,
gzipped file and use its spec file.

Both forms take the following single-character stage arguments, which specify the
stages, or steps, required to build a package. The stages are listed in the order they
would be performed:

p Perform the prep stage, unpacking source files and applying patches.

l Do a list check, expanding macros in the files section of the spec file and veri-
fying that each file exists.

c Perform the prep and build stages; generally equivalent to running make.

The Red Hat Package Manager | 483

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

i Perform the prep, build, and install stages; generally equivalent to running
make install.

b Perform the prep, build, and install stages, then build a binary package.

s Build a source package.

a Perform the prep, build, and install stages, then build both binary and source
packages.

The difference between the build stage, which is one of the early steps, and
building a binary package in b or a is the difference between building a working
binary for the software and putting all the pieces together into a final rpm package.

rpmbuild options

The general rpm options described in the earlier section “General options” can be
used with rpmbuild. The following additional options can also be used when
building an RPM file with rpmbuild:

--buildroot dir
Override the BuildRoot tag with dir when building the package.

--clean
Clean up (remove) the build files after the package has been made.

--nobuild
Go through the motions, but don’t execute any build stages. Used for testing
spec files.

--rmsource
Remove the source files when the build is done. Can be used as a standalone
option with rpmbuild to clean up files separately from creating the packages.

--rmspec
Remove the spec file when the build is done. Like --rmsource, --rmspec can be
used as a standalone option with rpmbuild.

--short-circuit
Can be used with -bc and -bi to skip previous stages that already ran success-
fully. With --short-circuit, -bc starts directly at the build stage and -bi starts
with the install stage.

--sign
Add a GPG signature to the package for verifying its integrity and origin.

--target platform
When building the package, set the %_target, %_target_arch, and %_target_os
macros to the value indicated by platform.

Two other options can be used standalone with rpmbuild to recompile or rebuild a
package:

--rebuild source-pkgfile …
Like --recompile, but also build a new binary package. Remove the build
directory, the source files, and the spec file once the build is complete.

--recompile source-pkgfile …
Install the named source package, and prep, compile, and install the package.

484 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Finally, the --showrc option shows the current rpmbuild configuration:

rpmbuild --showrc

This option shows the values that will be used for all options that can be set in an
rpmrc file.

Yum: Yellowdog Updater Modified
Yum is a system for managing RPM packages, including installing, updating,
removing, and maintaining packages; it automatically handles dependencies
between packages. Yum is derived from yup, an updating system written for
Yellow Dog Linux, an RPM-based Macintosh distribution. Yum downloads the
information in the package headers to a directory on your system, which it then
uses to make decisions about what it needs to do. Yum obtains both the headers
and the RPMs themselves from a collection of packages on a server, known as a
repository.

A repository consists of a set of RPM packages and the package headers on a
server that can be accessed via FTP or HTTP, from an NFS server, or from a local
filesystem. A single server can contain multiple repositories, repositories are often
mirrored on many servers, and you can configure yum to use multiple repositories.
When they are downloaded to your system, the header and package files are
maintained in /var/cache/yum.

The configuration file, /etc/yum.conf, is where you customize yum. It consists of
two section types. The first section, [main], sets configuration defaults for yum
operation. This section is followed by [server] sections, where each server is
named according to the repository it specifies. For example, for Fedora Core, you
might have [base] for the base Fedora Core repository and [development] for the
development repository.

The server sections can also be stored, one to a file, in /etc/yum.repos.d. yum comes
with a default yum.conf file, which you can use as-is or as a starting point from
which to add additional repositories.

The yum Command

The yum command is an automated system for updating rpm-based packages,
particularly on Fedora Core and Red Hat Enterprise Linux. Yum can automati-
cally install, upgrade, and remove packages. In addition to individual packages or
a list of packages, yum can operate on an entire group of packages at a time.

When you run yum, it first updates the cache (unless you tell it not to with the -C
option), then it proceeds to perform the requested operation.

The format of the yum command is:

yum [options] [command] [package ...]

Any general options are specified first, followed by a command telling yum what
you want it to do, usually followed by a list of one or more packages. The
command is always required, except with the --help, -h, and --version options.

Yum: Yellowdog Updater Modified | 485

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Package names can be specified in various combinations of name, architecture,
version, and release. For example, you could refer to the bash package as bash,
bash.i386, bash-3.0, bash-3.0-17, or bash-3.0-17.i386.

General options

The following general options can be set on the command line. For those that can
also be set in the [main] section of the yum.conf configuration file, the name of the
configuration option is given.

-c config-file
Specify the location of the yum configuration file. The file can be specified as a
path to a local file or as an HTTP or FTP URL. The default is /etc/yum.conf.

-C Run entirely from the local cache. Don’t download or update headers unless
required to complete the requested action.

-d num
Set the debug level to num, which is generally a number between 0 and 10, to
specify how much debugging information to print. The configuration option
is debuglevel.

--disablerepo=repoid
Disable the repository specified by repoid so yum won’t use it for this opera-
tion. The configuration option is enabled.

-e num
Set the error level to num, where num is a number, generally between 0 and 10.
If the value is 0, print only critical errors. If it is 1, print all errors. Values
greater than 1 mean print more errors, if there are any.

--enablerepo=repoid
Enable the specified repository that is marked as disabled (enable=0) in the
configuration file. This allows the repository to be used for this operation.
The configuration option is enabled.

--exclude=package
Exclude the specified package from updates on all repositories. package can be
given as a name or a glob. The configuration option is exclude.

-h, --help
Display a help message and exit.

--installroot=root
Specify an alternative root for package installation. All packages will be
installed relative to root. The configuration option is installroot.

--obsoletes
Enable obsoletes processing logic, taking into consideration packages that are
obsoleted by other packages in the repository. Only meaningful with the yum
update command. The configuration option is obsoletes.

-R min
Set the maximum amount of time in minutes that yum will wait before
performing a command.

486 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

check-update

--rss-filename=filename
Use filename as the output file for the generate-rss command. The configura-
tion option is rss-filename.

-t, --tolerant
Keep going (be tolerant) if there are package errors on the command line.
This allows yum to continue processing other packages even if there is a
problem with one package (e.g., trying to install a package that is already
installed). The configuration option is tolerant.

-y Assume that the answer to any question is yes. The configuration option is
assumeyes.

Yum Command Summary

The individual yum commands are listed here.

check-update check-update

Determine if updates are available, without running yum interac-
tively. If any package updates are available, return an exit value of
100 and a list of packages. If there are no updates, return 0.

clean clean [options]

Clean up the yum cache directory.

Options

all Clean everything: headers, packages, metadata, and the cache.

cache
Clean up the cache.

headers
Remove all header files, forcing yum to download new headers
the next time it runs.

metadata
Remove the metadata files, which maintain information about
the packages such as package name, file size, description,
dependencies, etc.

packages
Remove cached packages.

generate-rss generate-rss [updates]

Create an rss file that lists changelogs for all packages in the
enabled repositories. If updates is specified, the rss file lists only
updates that apply to your system.

Yum: Yellowdog Updater Modified | 487

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

list

groupinfo groupinfo groups

Like info, but operates on package groups instead of individual
packages.

groupinstall groupinstall groups

Like install, but operates on package groups instead of individual
packages.

grouplist grouplist

Generate a list of installed and available groups to standard output.
You can use these groups as input parameters to the other group
commands, with their names in quotes ("…").

groupremove groupremove groups

Like remove, but operates on package groups instead of individual
packages.

groupupdate groupupdate groups

Like update, but operates on package groups instead of individual
packages.

info info [options] [packages]

Display version information, a summary, and a description for each
package, or for all packages if none is specified. See list for a
description of the options.

install install packages

Install the latest version of a package or packages, ensuring that all
dependencies are met. If no package matches the name as specified,
the name is treated as a shell glob and any matches are installed.

list list [options] [packages]

Display a list of packages that match the packages specification and
that are installed or available for installation.

Options

all List all installed or available packages.

available
List packages on the repository that are available for installation.

488 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

localinstall

extras
List packages on the system that are not available on any
repository in the configuration file.

installed
List installed packages.

obsoletes
List installed packages that are made obsolete by any pack-
ages in any repository in the configuration file.

updates
List packages that have updates available for installation.

localinstall localinstall packages

Install the specified packages, which reside on the local system,
rather than downloading them from a repository.

localupdate localupdate packages

Update the specified packages, which reside on the local system,
rather than downloading them from a repository.

makecache makecache

Download and cache the metadata files from the repository. Once
the cache has been built, you can use the -C option to run the
commands that use the metadata (check-update, info, list,
provides, and search) directly from the cache.

provides provides feature1 [feature2 ...]

List packages that are available or installed that provide the speci-
fied features. The features can be specified as a name or as a
wildcard in file-glob syntax format, and Perl or Python regular
expressions can be used.

remove remove package1 [package2 ...]
erase package1 [package2 ...]

Remove the specified packages from the system. Also remove any
packages that depend on the specified packages.

search search string1 [string2 ...]

Find packages matching the specified string or strings in the
description, summary, packager, or package name fields. Perl or
Python regular expressions can be used for the strings. Useful for
finding a package if you don’t know the name.

up2date: Red Hat Update Agent | 489

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

whatprovides

update update [packages]

With no packages specified, update all installed packages. Other-
wise, update the specified packages. In either case, yum makes sure
that all dependencies are satisfied. If no package matches, the
names specified are assumed to be shell globs and any matches are
installed.

With the --obsoletes option, yum includes obsolete processing logic
in its calculations.

upgrade upgrade [packages]

Equivalent to update --obsoletes.

whatprovides whatprovides feature1 [feature2 ...]

Same as provides. See provides for more information.

up2date: Red Hat Update Agent
The Red Hat Update Agent, up2date, installs and updates packages on RPM-based
systems, primarily on Red Hat and Fedora Core Linux systems. Originally, up2date
was intended for use with Red Hat Enterprise Linux and the Red Hat Network,
but it has since been updated to work with yum and apt repositories as well. up2date
operates on groupings of packages known as channels, based on the system archi-
tecture and Fedora Core or Red Hat Enterprise release. For example, a channel
might be fedora-core-3, containing packages for that distribution; this type of
channel is a base channel. Child channels are associated with a base channel and
contain extra packages, such as for an application or a set of applications. Entries
for the channels are found in /etc/sysconfig/rhn/sources. This file contains an
entry for each channel that associates the repository type (e.g., up2date, yum, or apt)
with a channel name and a URL in the case of a yum repository. For an apt reposi-
tory, the URL is separated by spaces into parts: service:server, path, and repository
name. You can also include entries for a local directory of packages, known as a
dir repository.

up2date has both a command-line and a graphical interface; it is primarily the
command-line interface that we describe in this section. If you are running
GNOME or KDE and have the rhn-applet installed, clicking on the icon in the
panel brings up the graphical up2date interface. The rhn-applet is the Red Hat
Network Notification Tool, which runs in your desktop panel and notifies you
when package updates are available. The panel icon is red with a blinking excla-
mation point if updates are available, and blue with a check mark if your system is
up-to-date.

490 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The format of the up2date command is:

up2date [options] [packages]

There are two additional commands:

up2date-nox [options] [packages]
up2date-config

Running up2date-nox is equivalent to running up2date with the --nox option; it runs
without X (without the graphical interface). up2date-config runs a graphical tool
for configuring up2date. You can also configure the program by editing the config-
uration file, /etc/sysconfig/rhn/up2date, directly. These versions of the up2date
command are not described further here.

Running up2date with no packages specified brings up the graphical interface.
With packages, up2date updates or installs those packages, resolving dependen-
cies as needed. Specify packages by name; up2date determines the appropriate
version, release, and distribution.

Options
--arch=arch

Install the package for the specified architecture. Not valid with -u, --list, or
--dry-run.

--configure
Configure the Update Agent. Puts up a graphical window that lets you
configure proxy and authentication information, retrieval options, and pack-
ages and files to skip.

--channel channels
Specify the channels to use.

-d, --download
Download the specified package, but do not install it.

--dbpath path
Specify the path to an alternate RPM database. The default path is /var/lib/rpm.

--dry-run
Go through the motions, but don’t actually download and install any
packages.

--exclude packages
Exclude packages in the comma-separated list packages from being installed
or updated.

-f, --force
Force package installation. Overrides file, package, and configuration skip lists.

--get
Download the packages, but don’t resolve any dependencies.

--get-source
Download the source package. Don’t resolve any dependencies.

up2date: Red Hat Update Agent | 491

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--gpg-flags
List the flags that will be used when GPG is invoked. Useful for scripts that
want to invoke GPG the way up2date does.

-h, --help
Print a help message and exit.

-i, --install
Download and install the package. Overrides configuration option. Cannot
be used with --download.

--installall
Install all available packages on the channel specified by --channel.

--justdb
Add packages to the database, but do not install them to the filesystem.

-k, --packagedir dirs
Use the colon-separated list of directories to search for packages.

-l, --list
List packages available for update. Also shows packages marked to be skipped.

--list-rollbacks
Display a list of all RPM rollbacks available. A rollback lets you return to an
earlier state, from before you installed a package.

--nodownload
Do not download any packages. Used for testing.

--nosig
Do not use GPG to check package signatures. If specified, overrides configu-
ration option.

--nosrc
Do not download source packages. If specified, overrides configuration option.

--nox
Do not display the graphical interface.

--proxy proxy
Specify an HTTP proxy to use.

--proxyUser=username
Specify the username to use with an authenticated HTTP proxy.

--proxyPassword=password
Specify a password to use with an authenticated HTTP proxy.

--register
Register or re-register the system.

--showall
Display a list of all packages available for download, including both packages
that are already installed and those that are not.

--show-available
Display a list of all packages available for download and not currently installed.

492 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--show-channels
Show the channels associated with a package. If used alone, show the
currently subscribed channels.

--show-groups
Display a list of package groups that are available for download.

--show-orphans
List any installed packages that are not in any of the subscribed-to channels.

--show-package-dialog
When running in GUI mode, show the package installation dialog.

--solve-deps=dependencies
Download and install packages needed to resolve the specified dependencies.
The dependencies are given in a comma-separated list.

--src
Download source, as well as binary, RPMs.

--serverUrl=url
Specify the URL of the server to use.

--tmpdir=directory
Specify a temporary storage directory for files and packages, overriding the
configured value.

-u, --update
Do a complete system update, downloading and installing all relevant
packages.

--undo
Undo the last package set update.

--upgrade-to-release=release-version
Upgrade to the specified release, where release-version indicates the channel
for that release.

-v, --verbose
Display additional output.

--version
Print version information and exit.

--what-provides=dependencies
List packages that solve the comma-separated list of dependencies.

The Debian Package Manager
Debian GNU/Linux provides several package management tools, primarily intended
to facilitate the building, installation, and management of binary packages. In addi-
tion to Debian GNU/Linux, the tools described here also work on other Debian-
based systems such as Xandros, Knoppix, Ubuntu, and numerous others.

Debian package names generally end in .deb. The Debian package management
tools described here include apt, aptitude, dpkg, dpkg-deb, dselect, and synaptic.

Each of these tools is described in detail in the section “Debian Package Manager
Command Summary,” later in this chapter.

The Debian Package Manager | 493

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Files

Some important files used by the Debian package management tools are described
briefly here:
control

Comes with each package. Documents dependencies; contains the name and
version of the package, a description, maintainer, installed size, the package
priority, etc.

conffiles
Comes with each package. Contains a list of the configuration files associ-
ated with the package.

preinst, postinst, prerm, postrm
Scripts that developers can include in a package to be run before installation,
after installation, before removal, or after removal of the package.

/var/lib/dpkg/available
Contains information about packages available on the system.

/var/lib/dpkg/status
Contains information about the status of packages available on the system.

/etc/apt/sources.list
A list for APT of package sources, used to locate packages. The sources are
listed one per line, in order of preference.

/etc/apt/apt.conf
The main APT configuration file.

/etc/apt/apt_preferences
A preferences file that controls various aspects of APT, such as letting a user
select the version or release of a package to install.

/etc/dpkg/dpkg.cfg
A configuration file containing default options for dpkg.

For a user, the important file is /etc/apt/sources.list. This file is where you set up
the paths to the package archives, telling apt where to go to find packages. apt is
installed with a default file. You aren’t required to modify the sources in the file,
but you’ll probably want to change some sources, or add additional ones at some
point. You might also want to change some of the options in the configuration
files apt.conf, apt_preferences, and dpkg.config if you aren’t satisfied with the
defaults. The control, conffiles, and the pre- and post- install and removal script
files are created by the package developers and used internally by the package
management system.

Package Priorities

Every Debian package has a priority associated with it, indicating how important
the package is to the system. The priorities are:

required
The package is essential to the proper functioning of the system.

important
The package provides important functionality that enables the system to
run well.

494 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

standard
The package is included in a standard system installation.

optional
The package is one that you might want to install, but you can omit it if you
are short on disk space, for example.

extra
The package either conflicts with other packages that have a higher priority,
has specialized requirements, or is one that you would want to install only if
you need it.

The control file for dpkg, for example, shows that dpkg itself has a priority of
required, while dpkg-dev (which provides tools for building Debian packages) has a
priority of standard, and dpkg-doc is optional.

Package and Selection States

The possible states that a package can be in are:

config-files
Only the configuration files for the package are present on the system.

half-configured
The package is unpacked and configuration was started but not completed.

half-installed
Installation was started but not completed.

installed
The package is unpacked and configured.

not-installed
The package is not installed.

unpacked
The package is unpacked but not configured.

The possible package selection states are:

deinstall
The package has been selected for deinstallation (i.e., for removal of every-
thing but the configuration files).

install
The package has been selected for installation.

purge
The package has been selected to be purged (i.e., for removal of everything
including the configuration files).

Package Flags

Two possible package flags can be set for a package:

hold
The package shouldn’t be handled by dpkg unless forced with the --force-hold
option. Holding a package keeps it at the current version, preventing it
from being updated. You might hold a package, for example, if the latest

The Debian Package Manager | 495

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

version is broken and you want to stay with the version you have until a
newer one is released.

reinst-required
The package is broken and needs to be reinstalled. Such a package cannot be
removed unless forced with the --force-reinstreq option.

Scripts

In addition to the commands described in the next section, a number of shell and
Perl scripts are included with the package manager for use in managing and
building packages:

apt-file
Search for packages, specifying an action and a pattern to search for. (Perl
script)

apt-rdepends
Recursively list dependencies. (Perl script)

apt-setup
An interactive script for adding download sources to the sources.list file.
(Shell script)

dpkg-architecture
Determine and set the build and host architecture for package building. (Perl
script)

dpkg-checkbuilddeps
Check installed packages against the build dependencies and build conflicts
listed in the control file. (Perl script)

dpkg-buildpackage
A control script to help automate package building. (Shell script)

dpkg-distaddfile
Add an entry for a file to debian/files. (Perl script)

dpkg-divert
Create and manage the list of diversions, used to override the default loca-
tion for installing files. (Perl script)

dpkg-genchanges
Generate an upload control file from the information in an unpacked built
source tree and the files it has generated. (Perl script)

dpkg-gencontrol
Read information from an unpacked source tree, generate a binary package
control file (by default, debian/tmp/DEBIAN/control), and add an entry for the
binary file to debian/files. (Perl script)

dpkg-name
Rename Debian packages to their full package names. (Shell script)

dpkg-parsechangelog
Read and parse the changelog from an unpacked source tree and write the
information to standard output in machine-readable form. (Perl script)

496 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-cache

dpkg-preconfigure
Let packages ask questions prior to installation. (Perl script)

dpkg-reconfigure
Reconfigure a package that is already installed. (Perl script)

dpkg-scanpackages
Create a Packages file from a tree of binary packages. The Packages file is used
by dselect to provide a list of packages available for installation. (Perl script)

dpkg-shlibdeps
Calculate shared library dependencies for named executables. (Perl script)

dpkg-source
Pack and unpack Debian source archives. (Perl script)

dpkg-statoverride
Manage the list of stat overrides, which let dpkg override file ownership and
mode when a package is installed. (Perl script)

Debian Package Manager Command Summary

For the apt- commands, options can be specified on the command line or set in
the configuration file. Boolean options set in the configuration file can be over-
ridden on the command line in a number of different ways, such as --no-opt and
-opt=no, where opt is the single-character or full name of the option.

Many of these commands accept the following the common options:

-c file, --config-file=file
Specify a configuration file to be read after the default configuration file.

-h, --help
Print usage information and exit.

-o, --option
Set a configuration option. Syntax is -o group::tool=option.

-v, --version
Print version information and exit.

apt-cache apt-cache [options] command

Perform low-level operations on the APT binary cache, including
the ability to perform searches and produce output reports from
package metadata.

Commands

add files
Add the specified package index files to the source cache.

depends pkgs
For each specified package, show a list of dependencies and
packages that can fulfill them.

The Debian Package Manager | 497

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-cache

dotty pkgs
Graph the relationships between the specified packages. The
default is to trace out all dependent packages; turn this
behavior off by setting the APT::Cache::GivenOnly configura-
tion option.

dump
List every package in the cache. Used for debugging.

dumpavail
Print a list of available packages to standard output, suitable
for use with dpkg.

gencaches
Build source and package caches from the sources in the file
sources.list and from /var/lib/dpkg/status. Equivalent to
running apt-get check.

madison [pkgs]
Display a table showing the available versions of each speci-
fied package. Similar to madison, a Debian tool that checks for
package versions and reports their status. This option works
locally and doesn’t require access to the Debian project’s
internal archive.

pkgnames [prefix]
Print a list of packages in the system. If prefix is specified,
print only packages whose names begin with that prefix. Most
useful with the --generate option.

policy [pkgs]
Print detailed information about the priority selection of each
specified package. With no arguments, print the priorities of
all sources. Useful for debugging issues related to the
preferences file.

rdepends [pkgs]
Show a list of reverse dependencies for each specified package;
i.e., list any packages that depend on the specified packages.

search regex
Search package names and descriptions of all available
package files for the specified regular expression and print the
name and short description of each matching package. With
--full, the output is identical to that from the show command.
With --names-only, only the package name is searched.
Multiple regular expressions can be specified. Useful for
finding packages when you don’t know the actual package
name.

show pkgs
Display the package records for each specified package. See
the -a option for more details.

showpkg pkgs
Display information about the specified packages. For each
package, the output includes the available versions, packages
that depend on this package, and packages that this package
depends on. Useful for debugging.

498 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-cache

showsrc pkgs
Display source package records for each specified package.

stats
Display statistics about the cache.

unmet
Display the unmet dependencies in the package cache.

Options

The common options listed earlier are also accepted.

-a, --all-versions
Print full records for all available versions. For use with the show
command. The default is to show all versions; turn it off with
--no-all-versions to display only the version that would be
installed. The configuration option is APT::Cache::AllVersions.

--all-names
Cause pkgnames to print all names, including virtual packages
and missing dependencies. The configuration option is
APT::Cache::AllNames.

-f, --full
Print full package records when searching. The configuration
option is APT::Cache::ShowFull.

-g, --generate
Automatically regenerate the package cache rather than using
the current cache. The default is to regenerate; you can turn it
off with --no-generate. The configuration option is
APT::Cache::Generate.

-i, --important
Print only important dependencies (Depends and Pre-Depends
relations). For use with unmet. The configuration option is
APT::Cache::Important.

--installed
Only produce output for currently installed packages. For use
with depends and rdepends. The configuration option is
APT::Cache::Installed.

-n, --names-only
Search only on package names, not long descriptions. The
configuration option is APT::Cache::NamesOnly.

-p file, --pkg-cache=file
Use the specified file for the package cache, which is the
primary cache used by all operations. The configuration
option is Dir::Cache::pkgcache.

-q, --quiet
Operate quietly, producing output for logging but no progress
indicators. Use -qq for even quieter operation. The configura-
tion option is quiet.

The Debian Package Manager | 499

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-config

--recurse
Run depends or rdepends recursively, so that all specified pack-
ages are printed once. The configuration option is
APT::Cache::RecurseDepends.

-s file, --src-cache=file
Specify the source cache file used by gencaches. The configura-
tion option is Dir::Cache::srcpkgcache.

apt-cdrom apt-cdrom [options] command

Add a new CD-ROM to APT’s list of available sources. The database
of CD-ROM IDs that APT maintains is /var/lib/apt/cdroms.list.

Commands

add Add a CD-ROM to the source list.

ident
Print the identity of the current CD-ROM and the stored file-
name. Used for debugging.

Options

The common options listed earlier are also accepted.

-a, --thorough
Do a thorough package scan. May be needed with some old
Debian CD-ROMs.

-d mount-point, --cdrom=mount-point
Specify the CD-ROM mount point, which must be listed in
/etc/fstab. The configuration option is Acquire::cdrom::mount.

-f, --fast
Do a fast copy, assuming the files are valid and don’t all need
checking. Specify this only if the disk has been run before
without error. The configuration option is APT::CDROM::Fast.

-m, --no-mount
Don’t mount or unmount the mount point. The configuration
option is APT::CDROM::NoMount.

-n, --just-print, --recon, --no-act
Check everything, but don’t actually make any changes. The
configuration option is APT::CDROM::NoAct.

-r, --rename
Prompt for a new label and rename the disk to the new value.
The configuration option is APT::CDROM::Rename.

apt-config apt-config [options] shell args
apt-config [options] dump

An internal program for querying configuration information.

500 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-extracttemplates

Commands

dump
Display the contents of the configuration space.

shell
Access the configuration information from a shell script. The
arguments are in pairs, specifying the name of a shell variable
and a configuration value to query. The value may be post-
fixed with /x, where x is one of the following letters:

b Return true or false.

d Return directories.

f Return filenames.

i Return an integer.

Options

The common options listed earlier are accepted.

apt-
extracttemplates

apt-extracttemplates [options] files

Extract configuration scripts and templates from the specified
Debian package files. For each specified file, a line of output is
generated with the following information:

package version template-file config-script

and the template files and configuration scripts are written to the
directory specified with -t or --temp-dir or by the configuration
option APT::ExtractTemplates::TempDir. The filenames are in the
form package.template.xxxx and package.config.xxxx.

Options

The common options listed earlier are also accepted.

-t dir, --tempdir=dir
Write the extracted template files and configuration scripts to
the specified directory. The configuration option is
APT::ExtractTemplates::TempDir.

apt-ftparchive apt-ftparchive [options] command

Generate package and other index files used to access a distribution
source. The files should be generated on the source’s origin site.

Commands

clean config-file
Clean the databases used by the specified configuration file by
removing obsolete records.

contents path
Search the specified directory tree recursively. For each .deb
file found, read the file list, sort the files by package, and write
the results to standard output. Use with --db to specify a
binary caching database.

The Debian Package Manager | 501

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-ftparchive

generate config-file sections
Build indexes according to the specified configuration file.

packages path [override [pathprefix]]
Generate a package file from the specified directory tree. The
optional override file contains information describing how the
package fits into the distribution, and the optional path
prefix is a string prepended to the filename fields. Similar to
dpkg-scanpackages. Use with --db to specify a binary caching
database.

release path
Generate a release file from the specified directory tree.

sources paths [override [pathprefix]]
Generate a source index file from the specified directory tree.
The optional override file contains information used to set
priorities in the index file and to modify maintainer informa-
tion. The optional path prefix is a string prepended to the
directory field in the generated source index. Use --source-
override to specify a different source override file. Similar to
dpkg-scansources.

Options

The common options listed earlier are also accepted.

--contents
Perform contents generation. If set, and package indexes are
being generated with a cache database, the file listing is
extracted and stored in the database. If used with generate,
allows the creation of any contents files. The default is on. The
configuration option is APT::FTPArchive::Contents.

-d, --db
Use a binary caching database. This option has no effect on
generate. The configuration option is APT::FTPArchive::DB.

--delink
Enable delinking of files when used with the External-Links
setting. The default is on; turn off with --no-delink. The
configuration option is APT::FTPArchive::DeLinkAct.

--md5
Generate MD5 checksums for the index files. The default is
on. The configuration option is APT::FTPArchive::MD5.

-q, --quiet
Run quietly, producing logging information but no progress
indicators. Use -qq for quieter operation. The configuration
option is quiet.

--read-only
Make the caching databases read-only. The configuration
option is APT::FTPArchive::ReadOnlyDB.

-s file, --source-override=file
Specify a source override file. For use with the sources
command. See sources description for more information. The
configuration option is APT::FTPArchive::SourceOverride.

502 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-get

apt-get apt-get [options] command [package ...]

A command-line tool for handling packages. Also serves as a
backend to other APT tools such as dselect, synaptic, and aptitude
(all described later in this section). As described earlier in this
chapter, the following command can be run every day to keep your
system updated:

apt-get update && apt-get -u dist-upgrade

Commands

autoclean
Like clean, but remove only package files that can no longer be
downloaded. Set the configuration option APT::Clean-Installed
to off to prevent installed packages from being erased.

build-dep
Install or remove packages to satisfy the build dependencies
for a source package.

clean
Clear the local repository of retrieved package files. Useful for
freeing up disk space.

check
Update the package cache and check for broken packages.

dist-upgrade
Like upgrade, but also handle dependencies intelligently. See
the -f option for more information.

dselect-upgrade
Used with dselect. Track the changes made by dselect to the
Status field of available packages and take actions necessary to
realize that status.

install packages
Install one or more packages. Specify the package name, not
the full filename. Other required packages are also retrieved
and installed. With a hyphen appended to the package name,
the package is removed if it is already installed. Select a
version to install by appending an equals sign and the
version.

remove packages
Remove one or more packages. Specify the package name, not
the full filename. With a plus sign appended to the name, the
package is installed.

source packages
Find source packages and download them into the current
directory. If specified with --compile, the source packages are
compiled into binary packages. With --download-only, the
source packages are not unpacked. Select a specific version by
appending an equals sign and the version.

The Debian Package Manager | 503

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-get

update
Resynchronize the package overview files from their sources.
Must be done before an upgrade or dist-upgrade.

upgrade
Install the latest versions of all packages currently installed.
Remember to run update first.

Options

The common options listed earlier are also accepted.

--arch-only
Process only architecture-dependent build dependencies.
Configuration option is APT::Get::Arch-Only.

-b, --build, --compile
Compile source packages after download. The configuration
option is APT::Get::Compile.

-d, --download-only
Retrieve package files, but don’t unpack or install them. The
configuration option is APT::Get::Download-only.

--diff-only
Download only the diff file from a source archive. The config-
uration option is APT::Get::Diff-Only.

-f, --fix-broken
Try to fix a system with broken dependencies. Can be used
alone or with a command. Run with the install command if
you have problems installing packages. You can run the
sequence:

apt-get -f install
apt-get dist-upgrade

several times to clean up interlocking dependency problems.
The configuration option is APT::Get::Fix-Broken.

--force-yes
Force yes. Causes APT to continue without prompting if it is
doing something that could damage your system. Use with
great caution and only if absolutely necessary. The configura-
tion option is APT::Get::force-yes.

--ignore-hold
Ignore a hold placed on a package, which normally prevents
the package from being upgraded. Use with dist-upgrade to
override many undesired holds. The configuration option is
APT::Get::Ignore-Hold.

--list-cleanup
Erase obsolete files from /var/lib/apt/lists. The default is
on; use --no-list-cleanup to turn it off, which you would
normally do only if you frequently modify your list of sources.
The configuration option is APT::Get::List-Cleanup.

-m, --ignore-missing, --fix-missing
Ignore missing or corrupted packages or packages that cannot
be retrieved. Can cause problems when used with -f. The
configuration option is APT::Get::Fix-Missing.

504 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

apt-get

--no-download
Disable package downloading; use with --ignore-missing to
force APT to use only the packages that have already been
downloaded. The configuration option is APT::Get::Download.

--no-remove
Do not remove any packages; instead, abort without
prompting. The configuration option is APT::Get::Remove.

--no-upgrade
Do not upgrade packages. Use with install to prevent
upgrade of packages that are already installed. The configura-
tion option is APT::Get::Upgrade.

--only-source
Do not map the names specified with the source or build-dep
commands through the binary table. With this option, only
source package names can be specified. The configuration
option is APT::Get::Only-Source.

--print-uris
Print Uniform Resource Indicators (URIs) of files instead of
fetching them. Print path, destination filename, size, and
expected MD5 checksum. The configuration option is
APT::Get::Print-URIs.

--purge
Tell dpkg to do a purge instead of a remove for items that
would be removed. Purging removes packages completely,
including any configuration files. The configuration option is
APT::Get::Purge.

-q, --quiet
Quiet mode. Omit progress indicators and produce only
logging output. Use -qq to make even quieter. The configura-
tion option is quiet.

--reinstall
Reinstall packages that are already installed, upgrading them
to the latest version. The configuration option is
APT::Get::ReInstall.

-s, --simulate, --just-print, --dry-run, --recon, --no-act
Go through the motions, but don’t actually make any changes
to the system. The configuration option is APT::Get::Simulate.

-t rel, --target-release=rel, --default-release=rel
Retrieve packages only from the specified release. The value of
rel can be a release number or a value such as unstable. The
configuration option is APT::Default-Release.

--tar-only
Download only the tar file from a source archive. The config-
uration option is APT::Get::Tar-Only.

--trivial-only
Perform only operations that are considered trivial; i.e., ones
that won’t harm your system, by, say, removing needed files.
Unlike --assume-yes, which always answers “yes” to any

The Debian Package Manager | 505

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

aptitude

prompts, --trivial-only always answers “no.” The configura-
tion option is APT::Get::Trivial-Only.

-u, --show-upgraded
Print a list of all packages to be upgraded. The configuration
option is APT::Get::Show-Upgraded.

-V, --verbose-versions
Show full versions for upgraded and installed packages. The
configuration option is APT::Get::Show-Versions.

-y, --yes, --assume-yes
Automatically reply “yes” to prompts and run noninterac-
tively. Abort if there is an error. The configuration option is
APT::Get::Assume-Yes.

apt-sortpkgs apt-sortpkgs [options] indexfiles

Sort the records in a source or package index file by package name
and write the results to standard output. apt-sortpkgs also sorts the
internal fields of each record.

Options

The common options listed earlier are also accepted.

-s, --source
Order by source index field. The configuration option is
APT::SortPkgs::Source.

aptitude aptitude [options] [action [arguments]]

A text-based frontend to apt, which can be run either directly from
the command line or from a visual mode that runs in a terminal
window.

Actions

The following actions are supported. Running aptitude with no
action invokes the visual mode. Package names can be entered indi-
vidually or as search patterns. A search pattern consists of terms
starting with a tilde (~), followed by a character indicating the type
of term, followed by the text to be searched for. The most common
usage is to use ~n to search for a package name (e.g., ~nemacs, to
search for packages that have emacs in their name). You can find the
full list of term types in the Aptitude User’s Manual. The manual can
be found in /usr/share/doc/README on a Debian system. On an RPM-
based system with aptitude installed, the README file may be in /usr/
share/aptitude or /usr/share/doc/aptitude.

autoclean
Clean out the cache by removing only packages that can no
longer be downloaded.

clean
Clean out the cache by removing all previously downloaded
.deb files.

506 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

aptitude

dist-upgrade
Upgrade as many installed packages as possible, installing and
removing packages as needed to satisfy dependencies.

download packages
Download the .deb file for each specified package to the
current directory.

forbid-version package[=version] …
Don’t allow aptitude to upgrade the package to a particular
version. If no version is specified, it is assumed to be the
version that would normally be used.

forget-new
Remove internal information about what packages are “new.”

help
Display help information and exit.

hold packages
Place a hold on each specified package.

install [package[=version] …]
Install the specified packages. With a version, install that
version. With no arguments, install any stored or pending
actions. You can also use install to perform different actions
on multiple packages with a single command. Append - to the
package name to remove, + to install, _ to purge, or = to hold a
package.

markauto packages
Mark the specified packages as automatically installed.

purge [package[=version] …]
Remove the specified packages and their configuration files.

remove [package[=version] …]
Remove the specified packages.

search patterns
Search for packages matching each of the specified patterns
and display a list of matches. The full list of search terms can
be found in the Aptitude User’s Manual.

show patterns
Search for packages matching each of the specified patterns
and display detailed information for every match it finds.

unhold packages
Remove the hold on each specified package.

unmarkauto packages
Mark the specified packages as manually installed.

update
Update the list of available packages by downloading the
names of new and upgradeable packages.

upgrade
Upgrade as many packages as possible; if a package has
dependency problems, avoid upgrading that package (but
don’t remove it).

The Debian Package Manager | 507

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

aptitude

Options

Most of the aptitude options have corresponding configuration
options that can be set in the configuration file.

-d, --download-only
Download packages to the cache but do not install them.
Configuration option is Aptitude::CmdLine::Download-Only.

-D, --show-deps
Show summaries of why packages will be automatically
installed or removed. Aptitude::CmdLine::Show-Deps is the
configuration option.

-f Attempt to fix dependencies of broken packages. Configura-
tion option is Aptitude::CmdLine::Fix-Broken.

-F format, --display-format format
Specify the output format for search. See the Aptitude User’s
Manual for details on specifying the format. Configuration
option is Aptitude::CmdLine::Package-Display-Format.

-h, --help
Print help message and exit.

-O order, --sort order
Specify the sort order for search output. See the Aptitude
User’s Manual for details.

-P, --prompt
Always display a prompt, even for actions that were explicitly
requested. Configuration option is Aptitude::CmdLine::Always-
Prompt.

-r, --with-recommends
Treat recommendations as dependencies when installing new
packages. Aptitude::CmdLine::Recommends-Important is the
configuration option.

-R, --without-recommends
Do not treat recommendations as dependencies when
installing new packages. The configuration option is
Aptitude::CmdLine::Recommends-Important.

-s, --simulate
Go through the motions, but do not actually perform the
actions. Print the actions that would be performed. The
configuration option is Aptitude::CmdLine::Simulate.

-t release, --target-release release
Specify the release to use for installing packages. The configu-
ration option is Aptitude::CmdLine::Default-Release.

-v, --verbose
Operate verbosely, displaying additional information. Specify
multiple times to get even more information displayed.
Configuration option is Aptitude::CmdLine::Verbose.

-V, --show-versions
Display the version for packages being installed. The configu-
ration option is Aptitude::CmdLine::Show-Versions.

508 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg

--version
Display the version information for aptitude and exit.

--visual-preview
Start the visual interface and display the preview screen.

-w width, --width width
Specify the output display width for search. The default is the
terminal width. Aptitude::CmdLine::Package-Display-Width is
the configuration option.

-y, --assume-yes
Assume a “yes” response to a yes/no prompt and don’t display
the prompt. Prompts for dangerous actions are still shown.
This option overrides -P. The configuration option is
Aptitude::CmdLine::Assume-Yes.

-Z Display the disk space that will be used or freed by the pack-
ages being acted upon. The configuration option is
Aptitude::CmdLine::Show-Size-Changes.

Internal options

The following options are used internally for aptitude’s visual
mode. You shouldn’t need to issue them directly.

-i Display a download preview when the program starts. Cannot
be used with -u.

-S filename
Load extended state information from the specified file, not
the default state file.

-u Begin updating the package lists as soon as the program starts.
Cannot be used with -i.

dpkg dpkg [options] action

A tool for installing, managing, and building packages. Also serves
as a frontend to dpkg-deb and dpkg-query.

dpkg actions

These actions are carried out by dpkg itself:

-A pkgfile, --record-avail pkgfile
Update the record of available files kept in /var/lib/dpkg/
available with information from pkgfile. This information is
used by dpkg and dselect to determine what packages are
available. With -R or --recursive, pkgfile must be a directory.

-C, --audit
Search for partially installed packages and suggest how to get
them working.

--clear-avail
Remove existing information about what packages are
available.

The Debian Package Manager | 509

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg

--command-fd n
Accept commands passed on the file descriptor given by n.
Note that any additional options set through this file
descriptor or on the command line are not reset, but remain
for other commands issued during the same session.

--compare-versions ver1 op ver2
Perform a binary comparison of two version numbers. The
operators lt, le, eq, ne, ge, and gt treat a missing version as
earlier. The operators lt-nl, le-nl, ge-nl, and gt-nl treat a
missing version as later (where nl is “not later”). A third set of
operators (< << <= = >= >> >) is provided for compatibility with
control-file syntax. dpkg returns zero for success (i.e., the
condition is satisfied) and nonzero otherwise.

--configure [packages|-a|--pending]
Reconfigure one or more unpacked packages. If -a or --pending
is given instead of packages, configure all packages that are
unpacked but not configured. Configuring a package involves
unpacking the configuration files, backing up the old configura-
tion files, and running the postinst script if one is present.

-Dh, --debug=help
Print debugging help message and exit.

--force-help
Print help message about the --force-list options and exit.
See the --force-list option description later in this entry for
the possible values of list.

--forget-old-unavail
Forget about uninstalled, unavailable packages.

--get-selections [pattern]
Get list of package selections and write to standard output.
With pattern specified, write selections that match the pattern.

--help
Print help message and exit.

-i pkgfile, --install pkgfile
Install the package specified as pkgfile. With -R or --recursive,
pkgfile must be a directory.

--license, --licence
Print dpkg license information and exit.

--merge-avail pkgs-file
Update the record of available files kept in /var/lib/dpkg/
available. This information is used by dpkg and dselect to
determine what packages are available. Merging combines the
information from pkgs-file (distributed as Packages) with the
existing information.

--print-architecture
Print the target architecture.

--print-gnu-build-architecture
Print the GNU version of the target architecture.

510 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg

--print-installation-architecture
Print the host architecture for installation.

--purge [packages|-a|--pending]
-r, --remove [packages|-a|--pending]

Purge or remove one or more installed packages. Removal gets
rid of everything except the configuration files listed in debian/
conffiles; purging also removes the configuration files. If -a
or --pending is given instead of packages, dpkg removes or
purges all packages that are unpacked and marked (in /var/
lib/dpkg/status) for removing or purging.

--set-selections
Set package selections based on input file read from standard
input.

--unpack pkgfile
Unpack the package, but do not configure it. With -R or
--recursive, pkgfile must be a directory.

--update-avail pkgs-file
Like --merge-avail, but replaces the information with the
contents of the pkgs-file.

--version
Print dpkg version information and exit.

--yet-to-unpack
Search for uninstalled packages that have been selected for
installation.

dpkg-deb actions

The following actions can be specified for dpkg and are passed to
dpkg-deb for execution. Also see dpkg-deb.

-b dir [archive], --build dir [archive]
Build a package.

-c archive, --contents archive
List the contents of a package.

-e archive [dir], --control archive [dir]
Extract control information from a package.

-f archive [control-fields], --field archive [control-fields]
Display the control field or fields of a package.

-I archive [control-files], --info archive [control-files]
Show information about a package.

--fsys-tarfile archive
Write the filesystem tree contained in archive to standard
output in tar format.

-x archive dir, --extract archive dir
Extract the files from a package.

-X archive dir, --vextract archive dir
Extract the files and display the filenames from a package.

The Debian Package Manager | 511

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg

dpkg-query actions

The following actions can be specified for dpkg and are passed to
dpkg-query for execution. Also see dpkg-query.

-l, --list [pkg-name-pattern]
List all packages whose names match the specified pattern.
With no pattern, list all packages in /var/lib/dpkg/available.
The pattern can include standard shell wildcard characters
and may have to be quoted to prevent the shell from doing
filename expansion.

-L packages, --listfiles packages
List installed files that came from the specified package or
packages.

-p, --print-avail package
Print the details about package from /var/lib/dpkg/available.

-s packages, --status packages
Report the status of one or more packages by displaying the
entry in the status database /var/lib/dpkg/status.

-S filename-pattern, --search filename-pattern
Search installed packages for a filename. The pattern can
include standard shell wildcard characters and may have to be
quoted to prevent the shell from doing filename expansion.

Options

dpkg options can be specified on the command line or set in the
configuration file. Each line in the configuration file contains a
single option, specified without the leading dash (-).

--abort-after=num
Abort processing after num errors. Default is 50.

--admindir=adir, --instdir=idir, --root=rdir
Change default directories. adir contains administrative files with
status and other information about packages; it defaults to /var/
lib/dpkg. idir is the directory into which packages are installed;
it defaults to /. Changing the root directory to rdir automatically
changes idir to rdir and adir to /rdir/var/lib/dpkg.

-B, --auto-deconfigure
When a package is removed, automatically deconfigure any
other package that depended on it.

-Doctal, --debug=octal
Turn on debugging, with the octal value specifying the desired
level of debugging information. Use -Dh or --debug=help to
display the possible values. You can OR the values to get the
desired output.

-E, --skip-same-version
Don’t install the package if this version is already installed.

--force-list, --no-force-list, --refuse-list
Force or refuse to force an operation. list is specified as a
comma-separated list of options. With --force, a warning is
printed, but processing continues. --refuse and --no-force

512 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg

cause processing to stop with an error. Use --force-help to
display a message describing the options. The force/refuse
options are:

all Turn all force options on or off.

architecture
Process even if intended for a different architecture.

auto-select
Select or deselect packages to install or remove them.
Forced by default.

bad-path
Some programs are missing from the path.

bad-verify
Install package even if it fails to verify.

confdef
Always choose the default action for modified configura-
tion files. If there is no default and confnew or confold is
also specified, use that to decide; otherwise, ask the user.

configure-any
Configure any unconfigured package that the package
depends on.

conflicts
Permit installation of conflicting packages. Can result in
problems from files being overwritten.

confmiss
Always install a missing configuration file. Be careful
using this option, since it means overriding the removal
of the file.

confnew
Always install the new version of a modified configura-
tion file unless confdef is also specified. In that case, use
the default action if there is one.

confold
Keep the old version of a modified configuration file
unless confdef is also specified. In that case, use the
default action if there is one.

depends
Turn dependency problems into warnings.

depends-version
Warn of version problems when checking dependencies,
but otherwise ignore.

downgrade
Install even if a newer version is already installed. Forced
by default.

hold
Process packages even if they are marked to be held.

not-root
Try to install or remove even when not logged on as root.

The Debian Package Manager | 513

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg-deb

overwrite
Overwrite a file from one package with the same file from
another package.

overwrite-dir
Overwrite one package’s directory with a file from
another package.

overwrite-diverted
Overwrite a diverted file with an undiverted version.

remove-essential
Remove a package even if it is essential. Note that this
can cause your system to stop working.

remove-reinstreq
Remove a package even if it is broken and is marked to
require reinstallation.

-G Don’t install a package if a newer version is already installed.
Same as --refuse-downgrade.

--ignore-depends=pkglist
Dependency problems result only in a warning for the pack-
ages in pkglist.

--new
New binary package format. This is a dpkg-deb option.

--no-act, --dry-run, --simulate
Go through the motions, but don’t actually write any changes.
Used for testing. Be sure to specify before the action; other-
wise, changes might be written.

--nocheck
Ignore the contents of the control file when building a
package. This is a dpkg-deb option.

-O, --selected-only
Process only packages that are marked as selected for
installation.

--old
Old binary package format. This is a dpkg-deb option.

-R, --recursive
Recursively handle .deb files found in the directories and their
subdirectories specified with -A, -i, --install, --unpack, and
--avail.

--status-fd n
Send the package status information to the specified file
descriptor. Can be given more than once.

dpkg-deb dpkg-deb action [options]

Backend command for building and managing Debian package
archives. Also see dpkg; you’ll often want to use dpkg to pass
commands through to dpkg-deb, rather than call dpkg-deb directly.

514 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg-deb

Actions

-b dir [archive], --build dir [archive]
Create an archive from the filesystem tree starting with directory
dir. The directory must have a DEBIAN subdirectory containing
the control file and any other control information. If archive is
specified and is a filename, the package is written to that file; if
no archive is specified, the package is written to dir.deb. If the
archive already exists, it is replaced. If archive is the name of a
directory, dpkg-deb looks in the control file for the information it
needs to generate the package name. (Note that for this reason,
you cannot use --nocheck with a directory name.)

-c archive, --contents archive
List the filesystem-tree portion of archive.

-e archive [dir], --control archive [dir]
Extract control information from archive into the directory dir,
which is created if it doesn’t exist. If dir is omitted, a DEBIAN
subdirectory in the current directory is used.

-f archive [control-fields], --field archive [control-fields]
Extract information about one or more fields in the control file
for archive. If no fields are provided, print the entire control file.

-h, --help
Print help information and exit.

-I archive [control-files], --info archive [control-files]
Write information about binary package archive to standard
output. If no control files are provided, print a summary of the
package contents; otherwise, print the control files in the
order they were specified. An error message is printed to stan-
dard error for any missing components.

--fsys-tarfile archive
Extract the filesystem tree from archive, and send it to stan-
dard output in tar format. Can be used with tar to extract
individual files from an archive.

--license, --licence
Print the license information and exit.

--version
Print the version number and exit.

-W archive, --showarchive archive
Show information about the specified archive. The output can
be customized with the --showformat option.

-x archive dir, --extract archive dir
-X archive dir, --vextract archive dir

Extract the filesystem tree from archive into the specified direc-
tory, creating dir if it doesn’t already exist. -x (--extract) works
silently, while -X (--vextract) lists the files as it extracts them.
Do not use this action to install packages; use dpkg instead.

The Debian Package Manager | 515

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg-query

Options

-D, --debug
Turn on debugging.

--new
Build a new-style archive format (this is the default).

--nocheck
Don’t check the control file before building an archive. This
lets you build a broken archive.

--old
Build an old-style archive format.

--showformat=format
Specify the output format for -W/--show. The format can
include the standard escape sequences \n (newline), \r
(carriage return), or \\ (backslash). Specify package fields with
the syntax ${var[;width]}. Fields are right-aligned by default,
or left-aligned if width is negative.

-z# Set the compression level to the value specified by #.

-Z type
Set the type of compression to use when building an archive.
Possible values are: gzip, bzip2, and none.

dpkg-query dpkg-query [option] command

Display information about packages listed in the dpkg database.
You can also use dpkg-query as a backend for dpkg, instead of
calling dpkg-query directly.

Commands

--help
Print help information and exit.

-l [patterns], --list [patterns]
List packages whose names match any of the specified
patterns. With no pattern specified, list all packages in /var/
lib/dpkg/available. The pattern may need to be in quotes to
avoid expansion by the shell.

-L packages, --listfiles packages
List files installed on your system from each of the specified
packages. This command does not list files created by
package-specific installation scripts.

--license, --licence
Print the license information and exit.

-p package, --print-avail package
Display details for the specified package, as found in /var/lib/
dpkg/available.

-s package, --status package
Report on the status of the specified package.

516 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dpkg-split

-S patterns, --search patterns
Search the installed packages for filenames matching one of
the specified patterns. At least one pattern must be specified.

-W [patterns], --show [patterns]
Similar to -l; however, the output can be customized with the
--showformat option.

--version
Print version information and exit.

Options

--admindir=dir
Use dir as the location of the dpkg database. The default is /var/
lib/dpkg.

--showformat=format
Specify the output format for -W/--show. The format can
include the standard escape sequences \n (newline), \r
(carriage return), or \\ (backslash). Specify package fields with
the syntax ${var[;width]}. Fields are right-aligned by default,
or left-aligned if width is negative.

dpkg-split dpkg-split [action] [options]

Split a binary package into smaller pieces and reassemble the
pieces, either manually or in automatic mode. The automatic mode
maintains a queue of parts for reassembling. Useful for transferring
to and from floppy disks on older systems.

Actions

-a -o output part, --auto -o output part
Add part to the queue for automatic reassembly, and if all the
parts are available, reassemble the package as output. Requires
the use of the -o (or --output) option, as shown.

-d [packages], --discard [packages]
Discard parts from the automatic-assembly queue. If any pack-
ages are specified, discard only parts from those packages.
Otherwise, empty the queue.

-I parts, --info parts
Print information about the part file or files specified to stan-
dard output.

-j parts, --join parts
Join the parts of a package file together from the parts speci-
fied. The default output file is package-version.deb.

-l, --listq
List the contents of the queue of parts waiting for reassembly,
giving the package name, the parts that are on the queue, and
the number of bytes.

The Debian Package Manager | 517

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dselect

-s full-package [prefix], --split full-package [prefix]
Split the package full-package into parts, named prefixNofM.deb.
The prefix defaults to the full-package name without the .deb
extension.

-h, --help
Print help message and exit.

--license, --licence
Print license information and exit.

--version
Print version information and exit.

Options

--depotdir dir
Specify an alternate directory dir for the queue of parts waiting
for reassembly. Default is /var/lib/dpkg.

--msdos
Force --split output filenames to be MS-DOS-compatible.

-o output, --output output
Use output as the filename for a reassembled package.

-Q, --npquiet
Do not print an error message for a part that doesn’t belong to
a binary package when doing automatic queuing or
reassembly.

-S num, --partsize num
When splitting, specify the maximum part size (num) in kilo-
bytes. Default is 450 KB.

dselect dselect [options] [action]

A screen-oriented user frontend to dpkg. One of the primary user
interfaces for installing and managing packages. See dpkg and
dpkg-deb for information on building packages.

Actions

If dselect is run with no action specified on the command line, it
displays the following menu:

 * 0. [A]ccess Choose the access method to use.
 1. [U]pdate Update list of available packages, if
 possible.
 2. [S]elect Request which packages you want on your
 system.
 3. [I]nstall Install and upgrade wanted packages.
 4. [C]onfig Configure any packages that are
 unconfigured.
 5. [R]emove Remove unwanted software.
 6. [Q]uit Quit dselect.

518 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

dselect

The asterisk (on the first line) shows the currently selected option.
Any of the menu items can be specified directly on the command
line as an action (access, update, select, install, config, remove,
quit) to go directly to the desired activity. For example:

dselect access

If you enter quit on the command line, dselect exits immediately
without doing anything. An additional command-line action is
menu, which displays the menu and is equivalent to running dselect
with no action.

Options

Options can be specified both on the command line and in the
dselect configuration file, /etc/dpkg/dselect.cfg.

--admindir dir
Change the directory that holds internal data files to dir.
Default is /var/lib/dpkg.

--color colorspec, --colour colorspec
Set colors for different parts of the screen, as specified by
colorspec as follows:

screenpart:[fgcolor],[bgcolor][:attr[+attr+ ...]]

This option can be specified multiple times, to override the
default colors for different screen parts. Rather than having to
specify the colors on the command line each time you run
dselect, you might prefer to set them in the configuration file.
The possible screen parts (going from the top of the screen to
the bottom) are:

title
The screen title.

listhead
The header line above the package list.

list
The scrolling list of packages and some help text.

listsel
The selected item in the list.

pkgstate
The text showing the current state of each package.

pkgstatesel
The text showing the current state of the selected
package.

infohead
The header line showing the state of the selected package.

infodesc
The short description of the package.

info
The text that displays information such as the package
description.

The Debian Package Manager | 519

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

synaptic

infofoot
The last line of the screen when selecting packages.

query
Query lines.

helpscreen
The color of help screens.

Either the foreground color, the background color, or both
can be specified for each screen part. The colors are given as
the standard curses colors. After the color specification, you
can specify a list of attributes separated by plus signs (+). The
possible attributes are normal, standout, underline, reverse,
blink, bright, dim, and bold. Not all attributes work on all
terminals.

--expert
Run in expert mode; don’t print help messages.

-D [file], --debug [file]
Turn on debugging. Send output to file if specified.

--help
Print help message and exit.

--license, licence
Print license information and exit.

--version
Print version information and exit.

synaptic synaptic [options]

Graphical frontend for APT. Use in place of apt-get to install,
upgrade, or remove packages from your system. With synaptic,
you can view a list of all available packages, or you can break the
list down in various ways to make it more manageable. From the
synaptic window, you can select from a list of categories. The cate-
gories are section (e.g., view only development-related packages),
package status, alphabetic (e.g., view only packages whose name
starts with the letter A), search history, or filter.

If you choose to display by filter, there are a set of predefined
filters, or you can define your own. The predefined filters include
ones to display all packages, packages marked for a status change,
packages that can be configured with debconf (Debian systems
only), packages with broken dependencies, and packages that can
be upgraded to a later version. You can edit the existing filters or
define your own, by selecting Preferences ➝ Filters from the Edit
menu.

Once you’ve used the selection criteria to find the list of packages,
you can select a single package, or you can select multiple pack-
ages by holding down the SHIFT or CTRL key. Like apt-get, first
do an update to update the package lists, then you can do an
install or upgrade.

520 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

synaptic

To start synaptic from Gnome, select System tools ➝ Synaptic
Package Manager from the Application menu. From the KDE
menu, select Settings ➝ Extra ➝ Synaptic Package Manager. You
can also start the graphical interface from the command line, with
the command:

synaptic [options]

Options

In addition to the following options, synaptic accepts the standard
GTK+ toolkit command-line options.

-f filename, --filter-file=filename
Use the specified file as an alternative filter settings file.

-h, --help
Print help message and exit.

-i num, --initial-filter=num
Start up with the filter numbered num as the initial filter.

--non-interactive
Run without prompting for user input.

-o option, --option=option
Set an internal option. Don’t use this option unless you are
sure you know what you are doing.

-r Open with the file repository window displayed. This window
lists the repositories and shows which are active.

Mac OS X Package Management
There are two freely available package management systems for Mac OS X.

Fink and Fink Commander

The Fink project’s goal is to port important Open Source and Free Software to
Darwin and Mac OS X. To that end, the project provides the Fink package
management system, which makes it easy to install, upgrade, and uninstall Open
Source software.

Fink is based on the Debian tools dpkg, dselect, and apt-get (described earlier in
this chapter). It uses these tools to manage downloading, building, and installa-
tion of available packages. The current default location for installation is the /sw
directory; this name does not conflict with any of the other standard Unix or Mac
OS X installation directories, which keeps package management simple.

The Fink project is based at http://fink.sourceforge.net. From there you can down-
load the fink command-line program and other tools and start downloading the
packages that are available.

Solaris Package Management | 521

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Fink Commander provides an Aqua-based GUI interface to Fink. The web
starting point is http://finkcommander.sourceforge.net. A binary version of Fink
Commander is included when you download Fink, so you don’t have to build
Fink Commander yourself.

For more information, including screenshots of Fink Commander, see the two
web sites just cited.

The GNU Mac OS X Public Archive

The GNU Mac OS X Public Archive (OSXGNU) at http://www.osxgnu.org
provides an alternative to Fink. It provides a package management system that
extends the rudimentary facilities already available in Mac OS X (i.e., the stan-
dard Mac OS X installer facilities).

The advantage to the OSXGNU project is that you don’t have to use a terminal to
install packages; you just launch them. The OSXGNU project provides the OS X
Package Manager, which is an Aqua-based GUI interface to the Mac OS X
package management system. It lets you manage all the packages installed on your
system, not just those downloaded from the OSXGNU site.

A disadvantage to the OSXGNU system is that it doesn’t track different versions
of packages or automatically download new software for you. You have to do that
yourself manually, whereas Fink’s Debian-based tools are considerably more
Internet-aware.

Building from Source

Of course, you can always build software from source code as well. Open a
Terminal window and download whatever package you wish to build using a
program such as curl or ftp. Be sure you have the development tools installed,
and then follow the standard recipe as presented in Chapter 1.

Solaris Package Management
Solaris uses an enhanced version of the System V Release 4 package manage-
ment system. These tools are used for installation of Sun’s software and for
software available from http://www.sunfreeware.com. The tools are different
from those of GNU/Linux, since they do not manage automatic updating of
installed packages. (pkgadd can, however, download and install packages
provided with http:// URLs.)

If you need to create Solaris packages, you should read Sun’s Application Pack-
aging Developer’s Guide. The Solaris 9 version of this document is currently
available at http://docs.sun.com/app/docs/doc/806-7008/.

522 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

installf

Solaris Package Management Command Summary

Adding and removing packages are straightforward operations: use the pkgadd and
pkgrm commands. The pkginfo command provides information about installed
packages. The pkgadm command provides rudimentary control over installed
packages.

Creating packages is more involved, requiring the use of pkgproto to build a proto-
type(4) file and then pkgmk to actually create the package.

The installf and removef commands are useful when writing scripts to be run by
pkgadd and pkgrm.

installf /usr/sbin/installf [options] pkginst pathname
 [ftype [major minor] [mode owner group]]
/usr/sbin/installf [options] pkginst -
/usr/sbin/installf -f [options] pkginst

installf adds a file to the system installation database that isn’t
listed in the pkgmap file. It’s used for files created dynamically (such
as device files in /dev) during package installation. All invocations
supply the package name and instance, pkginst, associated with the
new file. This command should be run before any files are changed.

The first synatx supplies the file type, its major and minor device
numbers if the file is a device file, and the protection mode, owner,
and group on the command line.

The second syntax is similar to the first, but reads the information
from standard input, one file’s information per line. The third
syntax is used after the files are all in place: it finalizes the informa-
tion in the installation database.

Options

-c class
The class with which the objects should be associated. The
default is none.

-f Indicate that installation is complete (final).

-M Do not use $root_path/etc/vfstab for determining a client’s
mount points. Rather, assume that the mount points are
correct on the server.

-R root-path
Install all files under root-path. This is used on server systems
when installing packages for clients.

-V vfstab-file
Use vfstab-file instead of $root_path/etc/vfstab when
installing files. This is primarily useful on a server installing
software for a client, where the client’s /etc/vfstab file is not
available or is incorrect.

Solaris Package Management | 523

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pkgadd

ftype

The ftype value is a single character indicating the type of the file.
The allowed values are:

b A block-special device file.

c A character-special device file.

d A directory.

e A file that will be edited on installation or removal.

f A regular file (executable or data).

l A linked file.

p A named-pipe or FIFO.

s A symbolic link.

v A volatile file; one whose contents are expected to change over
time.

x An exclusive directory.

pkgadd /usr/sbin/pkgadd [options] [source-loc] [pkg-name]
/usr/sbin/pkgadd -s [source-loc] [pkg-name]

Install a package. By default, pkgadd looks in /var/spool/pkg for
installable package files; this can be changed with the -d option.
The -s option may be used to write a package from installation
media to the spool directory instead of installing it.

Options

-a adminfile
Use adminfile as the installation administration file, instead of
the system default file (/var/sadm/install/admin/default).
This file specifies policies for installation in terms of user inter-
action, how many instances of a package may be installed, and
so on.

-d device
Use device as the source for the package to be installed or
copied.

-G Install the package only in the current zone. If installed in the
global zone, the package is not propogated to any nonglobal
zones.

-k keystore
Use keystore as the source for trusted certificate authority
certificates.

-M Do not use $root_path/etc/vfstab for determining a client’s
mount points. Rather, assume that the mount points are
correct on the server.

-n Do a noninteractive installation. This suppresses the output
list of installed files.

-P password
Use password to decrypt the keystore provided with -k.

524 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pkgadm

-r response-file
The full pathname response-file provides the output of pkgask.
Use the contents to provide the responses to questions that
pkgadd would otherwise ask interactively. See pkgask.

-R root-path
Install all files under root-path. This is used on server systems
when installing packages for clients.

-s spooldir
Write the package to spooldir instead of installing it.

-v Verbose: trace execution of all scripts run by pkgadd.

-V vfstab-file
Use vfstab-file instead of $root_path/etc/vfstab when
installing packages. This is primarily useful on a server
installing software for a client, where the client’s /etc/vfstab
file is not available or is incorrect.

-x host:port
Use an HTTP or HTTPS proxy on host host at port number port.

Sources

The sources parameter is either the name of a package, in which
case pkgadd searches for the package in /var/spool/pkg, or a device
(such as a floppy disk or CD-ROM) specified with the -d option.

Instances

The instances parameter specifies which instances of the named
packages should be installed, as follows:

all Install all packages on the given source media.

pkg-name, pkg-name.*
Install just the named package. With the suffix .*, all
instances of the named package are installed.

-Y category[,category …]
Install packages whose CATEGORY parameter in the package’s
pkginfo file matches one of the given categories.

pkgadm pkgadm addcert [options] certfile
pkgadm removecert -n name [options]
pkgadm listcert -n name [options]
pkgadm dbstatus [-R rootpath]
pkgadm -V | -?

The pkgadm command manages the Solaris packaging system. The
first argument is a command indicating what it should do, with
options controlling the behavior. The certfile is a file containing the
certificate and optionally, the private key for adding to the
database.

Solaris Package Management | 525

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pkgadm

Commands

addcert
Import a certificate into the database. Optionally, specify the
trust of the certificate.

dbstatus
Print the type of internal database used for managing pack-
ages. The current version always prints text, but this could
change in future Solaris releases.

listcert
Print the details of one or more certificates in the keystore.

removecert
Remove either a certificate/private key pair, or a trusted certifi-
cate authority certificate from the keystore. Once removed,
they cannot be used.

Options

-a application
Use the keystore for application instead of the global keystore.

-e keyfile
Obtain the private key for a non-trusted certificate/key combi-
nation from keyfile instead of from the file containing the
certificate.

-f format
Use format for reading or printing keys. Allowed values for
input and output are pem for PEM encoding and der for DER
encoding. Output also allows text format for human-readable
output.

-k keystore
Use keystore as the keystore instead of the system default
keystore.

-n name
Specify the name of the entity in the keystore on which the
operation is being performed (key removed, deleted, etc.).
When printing, if this option isn’t supplied, all keystore enti-
ties are printed.

-o file
Send output to file instead of to standard output. Used when
printing certificates.

-p method
Use the password retrieval method method for decrypting the
certificate or private key. The method is one of those listed in
pkgadd(1); the default is console.

-P method
Like -p but for decrypting the keystore.

-R rootpath
Use rootpath/var/sadm/security to store keys and certificates
instead of the default $HOME/.pkg. You must have sufficient
permissions to access this directory.

526 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pkgask

-t The certificate being imported is a trusted CA certificate.
pkgadm asks you to verify the details in the certificate; this step
can be skipped with -y.

-V Print version information for the package management
programs.

-y Do not bother verifying the details in a certificate being
imported as a trusted certificate with -t.

-? Print a help message.

pkgask /usr/sbin/pkgask [-d device] [-R root-path] -r response pkginst ...

This command creates response files for use with pkgadd. By
producing “canned” responses for otherwise interactive installa-
tions, it’s possible to install packages without requiring any
interaction.

Options

-d device
Use device as the source for the package to be installed or
copied.

-r response-file
The full pathname response-file for the output of pkgask. The
argument may be a directory, in which case the response files
for multiple packages are placed there, each one named
according to the corresponding package.

-R root-path
Install all files under root-path. This is used on server systems
when installing packages for clients.

pkgchk /usr/sbin/pkgchk [-d device] [options] pkginst

pkgchk checks the integrity of installed packages by comparing the
information in the package file to what is actually on the system.
With the -d option, it checks the packages on a particular device
but cannot check the file attributes of the packages therein. The
pkginst is a package name, possibly followed by .* to indicate all
instances of the package.

Options

-a Check file attributes only, do not check file contents.

-c Check file contents only, do not check file attributes.

-d device
Use device as the source for the package to be checked.

-e file
Resolve parameters in the given package map file using infor-
mation in the environment file file.

-f Correct file attributes. With -x, remove hidden files.

Solaris Package Management | 527

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pkginfo

-i file
Read pathnames from file and compare the list against the
installation database or against the given package map file.

-l List information on the files that make up a package. May not
be used with -a, -c, -f, -g, or -v.

-m pkg-map-file
Check the package against pkg-map-file which is a package
map file (see pkgmap(4)).

-M Do not use $root_path/etc/vfstab for determining a client’s
mount points. Rather, assume that the mount points are
correct on the server.

-n Do not check files that are editable or are likely to change
during normal operation. Intended for post-installation
checking.

-p path
Check only the path listed. You can check multiple paths by
separating pathnames with a comma, or quoting the list and
separating them with spaces.

-P partial-path
Like -p, but checks the partial-path (a portion of a path, such
as a file or directory name) instead of requiring a full path. It
matches any pathname containing the partial-path.

-q Quiet mode. Do not print messages about missing files.

-R root-path
Check all files under root-path. This is used on server systems
when checking packages for clients.

-v Verbose: list files as they are processed.

-V vfstab-file
Use vfstab-file instead of $root_path/etc/vfstab when
checking packages. This is primarily useful on a server
checking software for a client, where the client’s /etc/vfstab
file is not available or is incorrect.

-x Search exclusive directories, looking for files which exist but
are not in the database of installed packages or in the package
map file.

-Y category[,category …]
Check packages whose CATEGORY parameter in the package’s
pkginfo file matches one of the given categories.

pkginfo pkginfo [options] [pkginst ...]

With no options, display the primary category, package instance
and names of all installed packages. With -d, provide information
about the packages on the given device. With one or more pkginsts,
print information about the named packages.

528 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pkgmk

The pkginst may be a package name, optionally followed by a
period and a version number to restrict it to a particular instance.
Use .* to specify all instances.

Options

Options -l, -q and -x are mutually exclusive, and -p and -i have no
meaning if used with -d.

-a arch
Use arch for the package’s architecture.

-c category[,category …]
Provide information about packages whose CATEGORY param-
eter in the package’s pkginfo file matches one of the given
categories.

-d device
Use device as the source for the package(s) to be described.

-i Display information only about fully installed packages.

-l Use long format output, which prints all available
information.

-p Display information only about partially installed packages.

-q Quiet mode: do not display any information. Useful for scripts
which need to check if a package has been installed.

-r Print the installation base for relocatable packages.

-R root-path
Print information about all files under root-path. This is used
on server systems when working with packages for clients.

-v version
Use version as the package version (corresponding to the
VERSION parameter in the pkginfo file). All compatible versions
can be requested by prefixing version with a ~ character.

-x Print an “extracted” listing, giving the package abbreviation,
the name, the architecture (if available), and the version (if
available).

pkgmk pkgmk [options] [variable=value ...] [package-name]

pkgmk reads a package prototype file (see prototype(4)) and creates a
package installable with pkgadd. It also creates the corresponding
package map file (see pkgmap(4)). Prototype files are most easily
created with pkgproto (see pkgproto).

variable=value places variable in the packaging environment with
the given value. See prototype(4) for more information.

The package-name is a package name, optionally followed by a
period and a version number to restrict it to a particular instance.
Use .* to specify all instances.

pkgmk uses an elaborate algorithm for finding files to put in the
package: see the pkgmk(1) manpage for the details.

Solaris Package Management | 529

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pkgparam

Options

-a arch
Use arch as the architecture, overriding what’s provided in the
pkginfo file.

-b base-dir
Search under base-dir for objects named in the prototype file.

-d device
Use device as the destination for the package being built.

-f file
Use file as the prototype file. The default is to use a file named
Prototype or prototype.

-l max
Use max as the maximum size of the output device. The value
is in units of 512-byte blocks. Normally pkgmk uses df to deter-
mine if enough space is available.

-o Overwrite the same instance of the package if it already exists.

-p stamp
Use stamp instead of the stamp definition in the pkginfo file.

-r root-path
Find files to be included in the package under root-path.

-v version
Use version as the version instead of what’s in the pkginfo file.

pkgparam pkgparam [options] pkginst [param ...]
pkgparam -f filename [-v] [param ...]

pkgparam prints the values of the given parameters for the named
packages. With no parameters, it prints the values of all parameters.
By default it looks in the pkginfo file for the package, but the -f
option restricts pkgparam to looking in the named file. pkginst is the
package for which information should be printed.

Options

-d device
Use device as the source for the package to be processed.

-f file
Read parameter values from file instead of from the pkginfo
file.

-R root-path
Process all files under root-path. This is used on server systems
when working with packages for clients.

-v Verbose mode. Display the parameter name and value, instead
of just the value.

530 | Chapter 6: Package Management

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

pkgproto

pkgproto pkgproto [-i] [-c class] [path1[=path2] ...]

pkgproto builds the prototype file for use with pkgmk. With no direc-
tories on the command line, it reads a list of pathnames from
standard input to process. Otherwise, it processes the directories
named on the command line. path1 is where objects are located on
the system building the package. path2 indicates where the file
should be placed on systems where the package is installed, if that
location is different.

Options

-c class
Map the class of all objects to class.

-i Follow symbolic links, recording them as regular files
(ftype=f), instead of as links (ftype=s).

pkgrm /usr/sbin/pkgrm [options] [instances]
/usr/sbin/pkgrm -s spool [instances]

pkgrm removes installed packages. If some other package depends
upon a package being removed, the action taken will be what’s
defined in the admin file.

Options

-a adminfile
Use adminfile as the removal administration file, instead of the
system default file (/var/sadm/install/admin/default). This
file specifies policies for installation and removal in terms of
user interaction, how many instances of a package may be
installed, and so on.

-A Absolutely remove the package’s files from the client’s file-
system. However, if the file is shared with other packages, the
default is not to remove it.

-M Do not use $root_path/etc/vfstab for determining a client’s
mount points. Rather, assume that the mount points are
correct on the server.

-n Do a non-interactive removal. If a need for interaction arises,
pkgrm exits.

-R root-path
Remove files from under root-path. This is used on server
systems when removing packages for clients.

-s spooldir
Remove the package from spooldir instead of from the system.

-v Verbose: trace execution of all scripts run by pkgrm.

-V vfstab-file
Use vfstab-file instead of $root_path/etc/vfstab when
removing packages. This is primarily useful on a server
removing software for a client, where the client’s /etc/vfstab
file is not available or is incorrect.

Solaris Package Management | 531

Package
M

anagem
ent

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

removef

Instances

The instances parameter specifies which instances of the named
packages should be installed.

pkg-name, pkg-name.*
Remove just the named package. With the suffix .*, all
instances of the named package are removed.

-Y category[,category …]
Remove packages whose CATEGORY parameter in the packages
pkginfo file matches one of the given categories.

removef /usr/sbin/removef [options] pkginst path ...
/usr/sbin/removef [options] -f pkginst

removef updates the installation database with a list of pathnames
that are about to be removed. The resulting output is a list of files
that may be safely removed (i.e., for which there are no dependen-
cies from other packages). This command is useful in scripts that
are run when packages are removed; for example, removing device
files created upon package installation.

Like installf, this command should be invoked twice; the first
time before removing any files, and the second time, with the -f
option, to indicate that the removal has indeed taken place. See
also installf.

Options

-f Indicate that removal is complete (final).

-M Do not use $root_path/etc/vfstab for determining a client’s
mount points. Rather, assume that the mount points are
correct on the server.

-R root-path
Remove files from under root-path. This is used on server
systems when installing packages for clients.

-V vfstab-file
Use vfstab-file instead of $root_path/etc/vfstab when
installing files. This is primarily useful on a server removing
software for a client, where the client’s /etc/vfstab file is not
available or is incorrect.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

II
Text Editing and Processing

Part II summarizes the command set for the text editors and related utilities
in Unix. Chapter 7 reviews pattern matching, an important aspect of text
editing.

Chapter 7, Pattern Matching

Chapter 8, The Emacs Editor

Chapter 9, The vi, ex, and vim Editors

Chapter 10, The sed Editor

Chapter 11, The awk Programming Language

535

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7Pattern Matching

7
Pattern Matching

A number of Unix text-processing utilities let you search for, and in some cases
change, text patterns rather than fixed strings. These utilities include the editing
programs ed, ex, vi, and sed, the awk programming language, and the commands
grep and egrep. Text patterns (called regular expressions in the computer science
literature) contain normal characters mixed with special characters (called
metacharacters).

This chapter presents the following topics:

• Filenames versus patterns

• Description of metacharacters

• List of metacharacters available to each program

• Examples

For more information on regular expressions, see Mastering Regular Expressions,
listed in the Bibliography.

Filenames Versus Patterns
Metacharacters used in pattern matching are different from metacharacters used
for filename expansion (see Chapter 4 and Chapter 5). However, several meta-
characters have meaning for both regular expressions and for filename expansion.
This can lead to a problem: the shell sees the command line first, and can poten-
tially interpret an unquoted regular expression metacharacter as a filename
expansion. For example, the command:

$ grep [A-Z]* chap[12]

could be transformed by the shell into:

$ grep Array.c Bug.c Comp.c chap1 chap2

536 | Chapter 7: Pattern Matching

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

and grep would then try to find the pattern Array.c in files Bug.c, Comp.c, chap1, and
chap2. To bypass the shell and pass the special characters to grep, use quotes as
follows:

$ grep "[A-Z]*" chap[12]

Double quotes suffice in most cases, but single quotes are the safest bet, since the
shell does absolutely no expansions on single-quoted text.

Note also that in pattern matching, ? matches zero or one instance of a regular
expression; in filename expansion, ? matches a single character.

Metacharacters
Different metacharacters have different meanings, depending upon where they are
used. In particular, regular expressions used for searching through text (matching)
have one set of metacharacters, while the metacharacters used when processing
replacement text (such as in a text editor) have a different set. These sets also vary
somewhat per program. This section covers the metacharacters used for searching
and replacing, with descriptions of the variants in the different utilities.

Search Patterns

The characters in the following table have special meaning only in search patterns.

Character Pattern

. Match any single character except newline. Can match newline in awk.

* Match any number (or none) of the single character that immediately
precedes it. The preceding character can also be a regular expression. For
example, since . (dot) means any character, .* means “match any number of
any character.”

^ Match the following regular expression at the beginning of the line or string.

$ Match the preceding regular expression at the end of the line or string.

[] Match any one of the enclosed characters: a hyphen (-) indicates a range of
consecutive characters. A circumflex (^) as the first character in the brackets
reverses the sense: it matches any one character not in the list. A hyphen or
close bracket (]) as the first character is treated as a member of the list. All
other metacharacters are treated as members of the list (i.e., literally).

{n,m} Match a range of occurrences of the single character that immediately precedes
it. The preceding character can also be a regular expression. {n} matches
exactly n occurrences, {n,} matches at least n occurrences, and {n,m} matches
any number of occurrences between n and m. n and m must be between 0 and
255, inclusive. (GNU programs allow a range of 0 to 32,767.)

\{n,m\} Just like {n,m}, earlier, but with backslashes in front of the braces. (Histori-
cally, different utilities used different syntaxes for the same thing.)

\ Turn off the special meaning of the following character.

\(\) Save the subpattern enclosed between \(and \) into a special holding space.
Up to nine subpatterns can be saved on a single line. The text matched by the
subpatterns can be “replayed” in substitutions by the escape sequences \1 to \9.

\n Replay the nth subpattern enclosed in \(and \) into the pattern at this point. n
is a number from 1 to 9, with 1 starting on the left. See the following Examples.

\< \> Match characters at beginning (\<) or end (\>) of a word.

Metacharacters | 537

Pattern
M

atching

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Many Unix systems allow the use of POSIX “character classes” within the square
brackets that enclose a group of characters. They are typed enclosed in [: and :].
For example, [[:alnum:]] matches a single alphanumeric character.

Finally, the GNU versions of the standard utilities accept additional escape
sequences that act like metacharacters. (Because \b can also be interpreted as the
sequence for the ASCII Backspace character, different utilities treat it differently.
Check each utility’s documentation.)

Replacement Patterns

The characters in the following table have special meaning only in replacement
patterns.

+ Match one or more instances of preceding regular expression.

? Match zero or one instances of preceding regular expression.

| Match the regular expression specified before or after the vertical bar
(alternation).

() Apply a match to the enclosed group of regular expressions.

Class Characters matched Class Characters matched

alnum Alphanumeric characters lower Lowercase characters

alpha Alphabetic characters print Printable characters

blank Space or TAB punct Punctuation characters

cntrl Control characters space Whitespace characters

digit Decimal digits upper Uppercase characters

graph Non-space characters xdigit Hexadecimal digits

Sequence Meaning

\b Word boundary, either beginning or end of a word, as for the \< and \>
metacharacters described earlier.

\B Interword match; matches between two word-constituent characters.

\w Matches any word-constituent character; equivalent to [[:alnum:]_].

\W Matches any non-word-constituent character; equivalent to [^[:alnum:]_].

\` Beginning of an Emacs buffer. Used by most other GNU utilities to mean
unambiguously “beginning of string.”

\' End of an Emacs buffer. Used by most other GNU utilities to mean unambig-
uously “end of string.”

Character Pattern

\ Turn off the special meaning of the following character.

\n Reuse the text matched by the nth subpattern previously saved by \(and \)
as part of the replacement pattern. n is a number from 1 to 9, with 1 starting
on the left.

& Reuse the text matched by the search pattern as part of the replacement
pattern.

Character Pattern

538 | Chapter 7: Pattern Matching

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Metacharacters, Listed by Unix Program
Some metacharacters are valid for one program but not for another. Those that
are available are marked by a bullet (•) in Table 7-1. (This table is correct for
most commercial Unix systems, including Solaris.) Items marked with a “P” are
specified by POSIX; double-check your system’s version. (On Solaris, the versions
in /usr/xpg4/bin and /usr/xpg6/bin accept these items.) Full descriptions were
provided in the previous section.

Note that in ed, ex, vi, and sed, you specify both a search pattern (on the left) and
a replacement pattern (on the right). The metacharacters in Table 7-1 are mean-
ingful only in a search pattern.

~ Reuse the previous replacement pattern in the current replacement pattern.
Must be the only character in the replacement pattern (ex and vi).

% Reuse the previous replacement pattern in the current replacement pattern.
Must be the only character in the replacement pattern (ed).

\u Convert first character of replacement pattern to uppercase.

\U Convert entire replacement pattern to uppercase.

\l Convert first character of replacement pattern to lowercase.

\L Convert entire replacement pattern to lowercase.

\e Turn off previous \u or \l.

\E Turn off previous \U or \L.

Table 7-1. Unix metacharacters

Symbol ed ex vi sed awk grep egrep Action

. • • • • • • • Match any character.

* • • • • • • • Match zero or more preceding.

^ • • • • • • • Match beginning of line/string.

$ • • • • • • • Match end of line/string.

\ • • • • • • • Escape following character.

[] • • • • • • • Match one from a set.

\(\) • • • • • Store pattern for later replay.a

a Stored subpatterns can be “replayed” during matching. See Table 7-2.

\n • • • • • Replay subpattern in match.

{ } • P • P Match a range of instances.

\{ \} • • • Match a range of instances.

\< \> • • • Match word’s beginning or end.

+ • • Match one or more preceding.

? • • Match zero or one preceding.

| • • Separate choices to match.

() • • Group expressions to match.

Character Pattern

Examples of Searching | 539

Pattern
M

atching

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

In ed, ex, vi, and sed, the metacharacters in Table 7-2 are valid only in a replace-
ment pattern.

Examples of Searching
When used with grep or egrep, regular expressions should be surrounded by
quotes. (If the pattern contains a $, you must use single quotes; e.g., 'pattern'.)
When used with ed, ex, sed, and awk, regular expressions are usually surrounded
by /, although (except for awk) any delimiter works. The following tables show
some example patterns.

Table 7-2. Metacharacters in replacement patterns

Symbol ex vi sed ed Action

\ • • • • Escape following character.

\n • • • • Text matching pattern stored in \(\).

& • • • • Text matching search pattern.

~ • • Reuse previous replacement pattern.

% • Reuse previous replacement pattern.

\u \U • • Change character(s) to uppercase.

\l \L • • Change character(s) to lowercase.

\e • • Turn off previous \u or \l.

\E • • Turn off previous \U or \L.

Pattern What does it match?

bag The string bag.

^bag bag at the beginning of the line.

bag$ bag at the end of the line.

^bag$ bag as the only word on the line.

[Bb]ag Bag or bag.

b[aeiou]g Second letter is a vowel.

b[^aeiou]g Second letter is a consonant (or uppercase or
symbol).

b.g Second letter is any character.

^...$ Any line containing exactly three characters.

^\. Any line that begins with a dot.

^\.[a-z][a-z] Same, followed by two lowercase letters (e.g.,
troff requests).

^\.[a-z]\{2\} Same as previous, ed, grep, and sed only.

^[^.] Any line that doesn’t begin with a dot.

bugs* bug, bugs, bugss, etc.

"word" A word in quotes.

"*word"* A word, with or without quotes.

[A-Z][A-Z]* One or more uppercase letters.

[A-Z]+ Same; egrep or awk only.

540 | Chapter 7: Pattern Matching

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examples of Searching and Replacing

The examples in Table 7-3 show the metacharacters available to sed or ex. Note
that ex commands begin with a colon. A space is marked by a ❑; a TAB is marked
by a ➔.

[[:upper:]]+ Same as previous, POSIX egrep or awk.

[A-Z].* An uppercase letter, followed by zero or more
characters.

[A-Z]* Zero or more uppercase letters.

[a-zA-Z] Any letter, either lower- or uppercase.

[^0-9A-Za-z] Any symbol or space (not a letter or a number).

[^[:alnum:]] Same, using POSIX character class.

egrep or awk pattern What does it match?

[567] One of the numbers 5, 6, or 7.

five|six|seven One of the words five, six, or seven.

80[2-4]?86 8086, 80286, 80386, or 80486.

80[2-4]?86|(Pentium(-III?)?) 8086, 80286, 80386, 80486, Pentium,
Pentium-II, or Pentium-III.

compan(y|ies) company or companies.

ex or vi pattern What does it match?

\<the Words like theater or the.

the\> Words like breathe or the.

\<the\> The word the.

ed, sed, or grep pattern What does it match?

0\{5,\} Five or more zeros in a row.

[0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\} U.S. Social Security number (nnn-nn-nnnn).

\(why\).*\1 A line with two occurrences of why.

\([[:alpha:]_][[:alnum:]_.]*\) = \1; C/C++ simple assignment statements.

Table 7-3. Searching and replacing

Command Result

s/.*/(&)/ Redo the entire line, but add spaces and parentheses.

s/.*/mv & &.old/ Change a wordlist (one word per line) into mv
commands.

/^$/d Delete blank lines.

:g/^$/d Same as previous, in ex editor.

/^[❑➔]*$/d Delete blank lines, plus lines containing only spaces or
TABs.

:g/^[❑➔]*$/d Same as previous, in ex editor.

Pattern What does it match?

Examples of Searching | 541

Pattern
M

atching

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Finally, here are some sed examples for transposing words. A simple transposi-
tion of two words might look like this:

s/die or do/do or die/ Transpose words

The real trick is to use hold buffers to transpose variable patterns. For example:

s/\([Dd]ie\) or \([Dd]o\)/\2 or \1/ Transpose, using hold buffers

s/❑❑*/❑/g Turn one or more spaces into one space.

:%s/❑❑*/❑/g Same as previous, in ex editor.

:s/[0-9]/Item &:/ Turn a number into an item label (on the current line).

:s Repeat the substitution on the first occurrence.

:& Same as previous.

:sg Same as previous, but for all occurrences on the line.

:&g Same as previous.

:%&g Repeat the substitution globally (i.e., on all lines).

:.,$s/Fortran/\U&/g On current line to last line, change word to uppercase.

:.,$s/\(F\)\(ORTRAN\)/\1\L\2/g On current line to last line, change spelling of
“FORTRAN” to correct, modern usage.

:%s/.*/\L&/ Lowercase entire file.

:s/\<./\u&/g Uppercase first letter of each word on current line.
(Useful for titles.)

:%s/yes/No/g Globally change a word to No.

:%s/Yes/~/g Globally change a different word to No (previous
replacement).

Table 7-3. Searching and replacing (continued)

Command Result

543

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 8Emacs

8
The Emacs Editor

Although most commercial operating systems do not come with Emacs, it is avail-
able for all versions of Unix, including Mac OS X, and MS-Windows. (GNU/
Linux systems usually do supply it.) On all these systems, there are often multiple
versions: one for character terminals, another for X11, and possibly yet another
for the native windowing system. This text editor is a popular alternative to vi.
This chapter documents GNU Emacs (Version 21.3), which is available from the
Free Software Foundation (http://www.gnu.org/software/emacs).

This chapter presents the following topics:

• Conceptual overview

• Command-line syntax

• Summary of emacs commands by group

• Summary of emacs commands by key

• Summary of emacs commands by name

For more information about emacs, see Learning GNU Emacs, listed in the
Bibliography.

Conceptual Overview

This section describes some Emacs terminology that may be unfamiliar if you
haven’t used Emacs before.

Modes

One of the features that makes Emacs popular is its editing modes. The modes set
up an environment designed for the type of editing you are doing, with features
like having appropriate key bindings available, and automatically indenting

544 | Chapter 8: The Emacs Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

according to standard conventions for a particular type of document. There are
two types of modes, major and minor. The major modes include modes for
various programming languages like C or Java, for text processing (e.g., SGML or
even straight text), and many more. One particularly useful major mode is Dired
(Directory Editor), which has commands that let you manage directories. Minor
modes set or unset features that are independent of the major mode, such as auto-
fill (which controls line wrapping), insert versus overwrite, and auto-save. For a
full discussion of modes, see Learning GNU Emacs or the Emacs Info documenta-
tion system (C-h i).

Buffer and Window

When you open a file in Emacs, the file is put into a buffer so you can edit it. If
you open another file, that file goes into another buffer. The view of the buffer
contents that you have at any point in time is called a window. For a small file, the
window might show the entire file; for a large file, it shows only a portion of a file.
Emacs allows multiple windows to be open at the same time, to display the
contents of different buffers or different portions of a single buffer.

Point and Mark

When you are editing in Emacs, the position of the cursor is known as point. You
can set a mark at another place in the text to operate on the region between point
and mark. This is a very useful feature for such operations as deleting or moving
an area of text.

Kill and Yank

Emacs uses the terms kill and yank for the concepts more commonly known today
as cut and paste. You cut text in Emacs by killing it, and paste it by yanking it
back. If you do multiple kills in a row, you can yank them back all at once.

Emacs can store any number of deleted chunks up to a user-settable maximum. In
addition, it has powerful Undo and Redo facilities, letting you undo all the
changes back to the last time your file was saved.

Notes on the Tables

Emacs commands use the Control key and the Meta key (Meta is usually the Alt
key or the Escape key). In this chapter, the notation C- indicates that the Control
key is pressed at the same time as the character that follows. Similarly, M- indi-
cates the use of the Meta key. When using Escape for Meta, press and release the
Escape key, then type the next key. If you use Alt (or Option on the Macintosh)
for Meta, it is just like Control or Shift, and you should press it simultaneously
with the other key(s).

In the command tables that follow, the first column lists the keystroke and the last
column describes it. When there is a middle column, it lists the command name.
If there are no keystrokes for a given command, you’ll see (none) in the first

Command-Line Syntax | 545

Em
acs

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

column. Access these commands by typing M-x followed by the command name. If
you’re unsure of the name, you can type a tab or a carriage return, and Emacs lists
possible completions of what you’ve typed so far.

Because Emacs is such a comprehensive editor, containing literally thousands of
commands, some commands must be omitted for the sake of preserving a “quick”
reference. You can browse the command set by typing C-h (for help) or M-x Tab (for
command names).

Absolutely Essential Commands

If you’re just getting started with Emacs, here’s a short list of the most important
commands:

Command-Line Syntax
To start an Emacs editing session, type:

emacs [file]

Keystrokes Description

C-h Enter the online help system.

C-x C-s Save the file.

C-x C-c Exit emacs.

C-_ Undo last edit (can be repeated).

C-g Get out of current command operation.

C-p

Up/down/forward/back by line or character.
C-n

C-f

C-b

C-v
Forward/backward by one screen.M-v

C-s
Search forward/backward for characters.C-r

C-d
Delete next/previous character.

Del

546 | Chapter 8: The Emacs Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Summary of Commands by Group
Reminder: C- indicates the Control key; M- indicates the Meta key.

File-Handling Commands

Cursor-Movement Commands

Keystrokes Command name Description

C-x C-f find-file Find file and read it.

C-x C-v find-alternate-file Read another file; replace the one read with
C-x C-f.

C-x i insert-file Insert file at cursor position.

C-x C-s save-buffer Save file (may hang terminal; use C-q to restart).

C-x C-w write-file Write buffer contents to file.

C-x C-c save-buffers-kill-emacs Exit emacs.

C-z suspend-emacs Suspend emacs (use exit or fg to restart).

Keystrokes Command name Description

C-f forward-char Move forward one character (right).

C-b backward-char Move backward one character (left).

C-p previous-line Move to previous line (up).

C-n next-line Move to next line (down).

M-f forward-word Move one word forward.

M-b backward-word Move one word backward.

C-a beginning-of-line Move to beginning of line.

C-e end-of-line Move to end of line.

M-a backward-sentence Move backward one sentence.

M-e forward-sentence Move forward one sentence.

M-{ backward-paragraph Move backward one paragraph.

M-} forward-paragraph Move forward one paragraph.

C-v scroll-up Move forward one screen.

M-v scroll-down Move backward one screen.

C-x [backward-page Move backward one page.

C-x] forward-page Move forward one page.

M-> end-of-buffer Move to end of file.

M-< beginning-of-buffer Move to beginning of file.

(none) goto-line Go to line n of file.

(none) goto-char Go to character n of file.

C-l recenter Redraw screen with current line in the center.

M-n digit-argument Repeat the next command n times.

C-u n universal-argument Repeat the next command n times.

Summary of Commands by Group | 547

Em
acs

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Deletion Commands

Paragraphs and Regions

Stopping and Undoing Commands

Transposition Commands

Keystrokes Command name Description

Del backward-delete-char Delete previous character.

C-d delete-char Delete character under cursor.

M-Del backward-kill-word Delete from point to beginning of word.

M-d kill-word Delete from point to end of word.

C-k kill-line Delete from cursor to end of line.

M-k kill-sentence Delete from point to end of sentence.

C-x Del backward-kill-sentence Delete from point to beginning of sentence.

C-y yank Restore what you’ve deleted.

C-w kill-region Delete a marked region (see next section).

(none) backward-kill-paragraph Delete previous paragraph.

(none) kill-paragraph Delete from the cursor to the end of the
paragraph.

Keystrokes Command name Description

C-@ set-mark-command Mark the beginning (or end) of a region.

C-Space (same as above)

C-x C-p mark-page Mark page.

C-x C-x exchange-point-and-mark Exchange location of cursor and mark.

C-x h mark-whole-buffer Mark buffer.

M-q fill-paragraph Reformat paragraph.

(none) fill-region Reformat individual paragraphs within a region.

M-h mark-paragraph Mark paragraph.

Keystrokes Command name Description

C-g keyboard-quit Abort current command.

C-_ advertised-undo Undo last edit (can be done repeatedly).

(none) revert-buffer Restore buffer to the state it was in when the file
was last saved (or auto-saved).

Keystrokes Command name Description

C-t transpose-chars Transpose two letters.

M-t transpose-words Transpose two words.

C-x C-t transpose-lines Transpose two lines.

548 | Chapter 8: The Emacs Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Search Commands

Capitalization Commands

Word-Abbreviation Commands

(none) transpose-sentences Transpose two sentences.

(none) transpose-paragraphs Transpose two paragraphs.

Keystrokes Command name Description

C-s isearch-forward Incremental search forward.

C-r isearch-backward Incremental search backward

M-% query-replace Search and replace.

C-M-s Enter re-search-forward Regular expression search forward.

C-M-r Enter re-search-backward Regular expression search backward

Keystrokes Command name Description

M-c capitalize-word Capitalize first letter of word.

M-u upcase-word Uppercase word.

M-l downcase-word Lowercase word.

M-– M-c negative-argument;
capitalize-word

Capitalize previous word.

M-– M-u negative-argument;
upcase-word

Uppercase previous word.

M-– M-l negative-argument;
downcase-word

Lowercase previous word.

(none) capitalize-region Capitalize region.

C-x C-u upcase-region Uppercase region

C-x C-l downcase-region Lowercase region.

Keystrokes Command name Description

(none) abbrev-mode Enter (or exit) word abbreviation mode.

M-/ dabbrev-expand Expand to the most recent preceding word.

C-x a i g inverse-add-global-abbrev Type global abbreviation, then definition.

C-x a i l inverse-add-local-abbrev Type local abbreviation, then definition.

(none) unexpand-abbrev Undo the last word abbreviation.

(none) write-abbrev-file Write the word abbreviation file.

(none) edit-abbrevs Edit the word abbreviations.

(none) list-abbrevs View the word abbreviations.

(none) kill-all-abbrevs Kill abbreviations for this session.

Keystrokes Command name Description

Summary of Commands by Group | 549

Em
acs

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Buffer-Manipulation Commands

Window Commands

Special Shell Characters

Keystrokes Command name Description

C-x b switch-to-buffer Move to specified buffer.

C-x C-b list-buffers Display buffer list.

C-x k kill-buffer Delete specified buffer.

(none) kill-some-buffers Ask about deleting each buffer.

(none) rename-buffer Change buffer name to specified name.

C-x s save-some-buffers Ask whether to save each modified buffer.

Keystrokes Command name Description

C-x 2 split-window-vertically Divide the current window into two, one on top
of the other.

C-x 3 split-window-horizontally Divide the current window into two, side by side.

C-x > scroll-right Scroll the window right.

C-x < scroll-left Scroll the window left.

C-x o other-window Move to the other window.

C-x 0 delete-window Delete current window.

C-x 1 delete-other-windows Delete all windows but this one.

(none) delete-windows-on Delete all windows on a given buffer.

C-x ^ enlarge-window Make window taller.

(none) shrink-window Make window shorter.

C-x } enlarge-window-
horizontally

Make window wider.

C-x { shrink-window-
horizontally

Make window narrower.

C-M-v scroll-other-window Scroll other window.

C-x 4 f find-file-other-window Find a file in the other window.

C-x 4 b switch-to-buffer-other-
window

Select a buffer in the other window.

C-x 5 f find-file-other-frame Find a file in a new frame.

C-x 5 b switch-to-buffer-other-
frame

Select a buffer in another frame.

(none) compare-windows Compare two buffers; show first difference.

Keystrokes Command name Description

(none) shell Start a shell buffer.

C-c C-c comint-interrupt-subjob Terminate the current job.

C-c C-d comint-send-eof End of file character.

550 | Chapter 8: The Emacs Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Indentation Commands

Centering Commands

Macro Commands

C-c C-u comint-kill-inputw Erase current line.

C-c C-w backward-kill-word Erase the previous word.

C-c C-z comint-stop-subjob Suspend the current job.

Keystrokes Command name Description

C-x . set-fill-prefix Use characters from the beginning of the line
up to the cursor column as the “fill prefix.”
This prefix is prepended to each line in the
paragraph. Cancel the prefix by typing this
command in column 1.

(none) indented-text-mode Major mode: each tab defines a new indent for
subsequent lines.

(none) text-mode Exit indented text mode; return to text mode.

C-M-\ indent-region Indent a region to match first line in region.

M-m back-to-indentation Move cursor to first character on line.

C-M-o split-line Split line at cursor; indent to column of cursor.

(none) fill-individual-paragraphs Reformat indented paragraphs, keeping
indentation.

Keystrokes Command name Description

M-s center-line Center line that cursor is on.

(none) center-paragraph Center paragraph that cursor is on.

(none) center-region Center currently defined region.

Keystrokes Command name Description

C-x (start-kbd-macro Start macro definition.

C-x) end-kbd-macro End macro definition.

C-x e call-last-kbd-macro Execute last macro defined.

M-n C-x e digit-argument and
call-last-kbd-macro

Execute last macro defined n times.

C-u C-x (universal-argument and
start-kbd-macro

Execute last macro defined, then add
keystrokes.

(none) name-last-kbd-macro Name last macro you created (before saving it).

(none) insert-keyboard-macro Insert the macro you named into a file.

(none) load-file Load macro files you’ve saved and loaded.

(none) macroname Execute a keyboard macro you’ve saved.

Keystrokes Command name Description

Summary of Commands by Group | 551

Em
acs

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Basic Indentation Commands

Detail Information Help Commands

Help Commands

C-x q kbd-macro-query Insert a query in a macro definition.

C-u C-x q (none) Insert a recursive edit in a macro definition.

C-M-c exit-recursive-edit Exit a recursive edit.

Keystrokes Command name Description

C-M-\ indent-region Indent a region to match first line in region.

M-m back-to-indentation Move to first nonblank character on line.

M-^ delete-indentation Join this line to the previous one.

Keystrokes Command name Description

C-h a command-apropos What commands involve this concept?

(none) apropos What functions and variables involve this
concept?

C-h c describe-key-briefly What command does this keystroke sequence
run?

C-h b describe-bindings What are all the key bindings for this buffer?

C-h k describe-key What command does this keystroke sequence
run, and what does it do?

C-h l view-lossage What are the last 100 characters I typed?

C-h w where-is What is the key binding for this command?

C-h f describe-function What does this function do?

C-h v describe-variable What does this variable mean, and what is its
value?

C-h m describe-mode Tell me about the mode the current buffer is in.

C-h s describe-syntax What is the syntax table for this buffer?

Keystrokes Command name Description

C-h t help-with-tutorial Run the emacs tutorial.

C-h i info Start the Info documentation reader.

C-h n view-emacs-news View news about updates to emacs.

C-h C-c describe-copying View the emacs General Public License.

C-h C-d describe-distribution View information on ordering emacs from the
FSF.

C-h C-w describe-no-warranty View the (non)warranty for emacs.

Keystrokes Command name Description

552 | Chapter 8: The Emacs Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Summary of Commands by Key
Emacs commands are presented below in two alphabetical lists. Reminder: C-
indicates the Control key; M- indicates the Meta key.

Control-Key Sequences

Keystrokes Command name Description

C-@ set-mark-command Mark the beginning (or end) of a region.

C-Space (same as previous)

C-] (none) Exit recursive edit and exit query-replace.

C-a beginning-of-line Move to beginning of line.

C-b backward-char Move backward one character (left).

C-c C-c comint-interrupt-subjob Terminate the current job.

C-c C-d comint-send-eof End-of-file character.

C-c C-u comint-kill-input Erase current line.

C-c C-w backward-kill-word Erase the previous word.

C-c C-z comint-stop-subjob Suspend the current job.

C-d delete-char Delete character under cursor.

C-e end-of-line Move to end of line.

C-f forward-char Move forward one character (right).

C-g keyboard-quit Abort current command.

C-h help-command Enter the online help system.

C-h a command-apropos What commands involve this concept?

C-h b describe-bindings What are all the key bindings for this buffer?

C-h C-c describe-copying View the emacs General Public License.

C-h C-d describe-distribution View information on ordering emacs from FSF.

C-h C-w describe-no-warranty View the (non-)warranty for emacs.

C-h c describe-key-briefly What command does this keystroke sequence
run?

C-h f describe-function What does this function do?

C-h i info Start the Info documentation reader.

C-h k describe-key What command does this keystroke sequence
run, and what does it do?

C-h l view-lossage What are the last 100 characters I typed?

C-h m describe-mode Tell me about the mode the current buffer is in.

C-h n view-emacs-news View news about updates to emacs.

C-h s describe-syntax What is the syntax table for this buffer?

C-h t help-with-tutorial Run the emacs tutorial.

C-h v describe-variable What does this variable mean, and what is its
value?

C-h w where-is What is the key binding for this command?

C-k kill-line Delete from cursor to end of line.

Summary of Commands by Key | 553

Em
acs

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

C-l recenter Redraw screen with current line in the center.

C-M-\ indent-region Indent a region to match first line in region.

C-M-c exit-recursive-edit Exit a recursive edit.

C-M-o split-line Split line at cursor; indent to column of cursor.

C-M-v scroll-other-window Scroll other window.

C-n next-line Move to next line (down).

C-p previous-line Move to previous line (up).

C-r isearch-backward Start incremental search backward.

C-s isearch-forward Start incremental search forward.

C-t transpose-chars Transpose two letters.

C-u n universal-argument Repeat the next command n times.

C-u C-x (universal-argument and
start-kbd-macro

Execute last macro defined, then add
keystrokes.

C-u C-x q (none) Insert recursive edit in a macro definition.

C-v scroll-up Move forward one screen.

C-w kill-region Delete a marked region.

C-x (start-kbd-macro Start macro definition.

C-x) end-kbd-macro End macro definition.

C-x [backward-page Move backward one page.

C-x] forward-page Move forward one page.

C-x ^ enlarge-window Make window taller.

C-x { shrink-window-
horizontally

Make window narrower.

C-x } enlarge-window-
horizontally

Make window wider.

C-x < scroll-left Scroll the window left.

C-x > scroll-right Scroll the window right.

C-x . set-fill-prefix Use characters from the beginning of the line up
to the cursor column as the “fill prefix.” This
prefix is prepended to each line in the paragraph.
Cancel the prefix by typing this command in
column 1.

C-x 0 delete-window Delete current window.

C-x 1 delete-other-windows Delete all windows but this one.

C-x 2 split-window-vertically Divide the current window into two, one on top
of the other.

C-x 3 split-window-horizontally Divide the current window into two, side by side.

C-x 4 b switch-to-buffer-other-
window

Select a buffer in the other window.

C-x 4 f find-file-other-window Find a file in the other window.

C-x 5 b switch-to-buffer-other-
frame

Select a buffer in another frame.

C-x 5 f find-file-other-frame Find a file in a new frame.

C-x C-b list-buffers Display the buffer list.

Keystrokes Command name Description

554 | Chapter 8: The Emacs Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Meta-Key Sequences

C-x C-c save-buffers-kill-emacs Exit emacs.

C-x C-f find-file Find file and read it.

C-x C-l downcase-region Lowercase region.

C-x C-p mark-page Mark page.

C-x C-q (none) Toggle read-only status of buffer.

C-x C-s save-buffer Save file (may hang terminal; use C-q to restart).

C-x C-t transpose-lines Transpose two lines.

C-x C-u upcase-region Uppercase region

C-x C-v find-alternate-file Read an alternate file, replacing the one read
with C-x C-f.

C-x C-w write-file Write buffer contents to file.

C-x C-x exchange-point-and-mark Exchange location of cursor and mark.

C-x DEL backward-kill-sentence Delete previous sentence.

C-x a i g inverse-add-global-abbrev Type global abbreviation, then definition.

C-x a i l inverse-add-local-abbrev Type local abbreviation, then definition.

C-x b switch-to-buffer Move to the buffer specified.

C-x e call-last-kbd-macro Execute last macro defined.

C-x h mark-whole-buffer Mark buffer.

C-x i insert-file Insert file at cursor position.

C-x k kill-buffer Delete the buffer specified.

C-x o other-window Move to the other window.

C-x q kbd-macro-query Insert a query in a macro definition.

C-x s save-some-buffers Ask whether to save each modified buffer.

C-_ advertised-undo Undo last edit (can be done repeatedly).

C-y yank Restore what you’ve deleted.

C-z suspend-emacs Suspend emacs (use exit or fg to restart).

Keystrokes Command name Description

Meta (none) Exit a query-replace or successful search.

M-– M-c negative-argument;
capitalize-word

Capitalize previous word.

M-– M-l negative-argument;
downcase-word

Lowercase previous word.

M-– M-u negative-argument;
upcase-word

Uppercase previous word.

M-$ spell-word Check spelling of word after cursor.

M-< beginning-of-buffer Move to beginning of file.

M-> end-of-buffer Move to end of file.

M-{ backward-paragraph Move backward one paragraph.

M-} forward-paragraph Move forward one paragraph.

Keystrokes Command name Description

Summary of Commands by Name | 555

Em
acs

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Summary of Commands by Name
The emacs commands below are presented alphabetically by command name. Use
M-x to access the command name. Reminder: C- indicates the Control key; M-
indicates the Meta key.

M-^ delete-indentation Join this line to the previous one.

M-/ dabbrev-expand Expand to the most recent preceding word.

M-n digit-argument Repeat the next command n times.

M-n C-x e digit-argument and
call-last-kbd-macro

Execute the last defined macro, n times.

M-a backward-sentence Move backward one sentence.

M-b backward-word Move one word backward.

M-c capitalize-word Capitalize first letter of word.

M-d kill-word Delete word that cursor is on.

M-DEL backward-kill-word Delete previous word.

M-e forward-sentence Move forward one sentence.

M-f forward-word Move one word forward.

(none) fill-region Reformat individual paragraphs within a region.

M-h mark-paragraph Mark paragraph.

M-k kill-sentence Delete sentence the cursor is on.

M-l downcase-word Lowercase word.

M-m back-to-indentation Move cursor to first nonblank character on line.

M-q fill-paragraph Reformat paragraph.

M-s center-line Center line that cursor is on.

M-t transpose-words Transpose two words.

M-u upcase-word Uppercase word.

M-v scroll-down Move backward one screen.

M-x (none) Access command by command name.

Command name Keystrokes Description

macroname (none) Execute a keyboard macro you’ve saved.

abbrev-mode (none) Enter (or exit) word abbreviation mode.

advertised-undo C-_ Undo last edit (can be done repeatedly).

apropos (none) What functions and variables involve this
concept?

back-to-indentation M-m Move cursor to first nonblank character on line.

backward-char C-b Move backward one character (left).

backward-delete-char Del Delete previous character.

backward-kill-paragraph (none) Delete previous paragraph.

backward-kill-sentence C-x Del Delete previous sentence.

backward-kill-word C-c C-w Erase previous word.

Keystrokes Command name Description

556 | Chapter 8: The Emacs Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

backward-kill-word M-Del Delete previous word.

backward-page C-x [Move backward one page.

backward-paragraph M-{ Move backward one paragraph.

backward-sentence M-a Move backward one sentence.

backward-word M-b Move backward one word.

beginning-of-buffer M-< Move to beginning of file.

beginning-of-line C-a Move to beginning of line.

call-last-kbd-macro C-x e Execute last macro defined.

capitalize-region (none) Capitalize region.

capitalize-word M-c Capitalize first letter of word.

center-line M-s Center line that cursor is on.

center-paragraph (none) Center paragraph that cursor is on.

center-region (none) Center currently defined region.

comint-interrupt-subjob C-c C-c Terminate the current job.

comint-kill-input C-c C-u Erase current line.

comint-send-eof C-c C-d End of file character.

comint-stop-subjob C-c C-z Suspend current job.

command-apropos C-h a What commands involve this concept?

compare-windows (none) Compare two buffers; show first difference.

dabbrev-expand M-/ Expand to the most recent preceding word.

M-^ delete-
indentation

Join this line to the previous one.

delete-char C-d Delete character under cursor.

delete-indentation M-^ Join this line to previous one.

delete-other-windows C-x 1 Delete all windows but this one.

delete-window C-x 0 Delete current window.

delete-windows-on (none) Delete all windows on a given buffer.

describe-bindings C-h b What are all the key bindings for in this buffer?

describe-copying C-h C-c View the emacs General Public License.

describe-distribution C-h C-d View information on ordering emacs from the
FSF.

describe-function C-h f What does this function do?

describe-key C-h k What command does this keystroke sequence
run, and what does it do?

describe-key-briefly C-h c What command does this keystroke sequence
run?

describe-mode C-h m Tell me about the mode the current buffer is in.

describe-no-warranty C-h C-w View the (non)warranty for emacs.

describe-syntax C-h s What is the syntax table for this buffer?

describe-variable C-h v What does this variable mean, and what is its
value?

digit-argument and call-
last-kbd-macro

M-n C-x e Execute the last defined macro, n times.

Command name Keystrokes Description

Summary of Commands by Name | 557

Em
acs

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

digit-argument M-n Repeat next command, n times.

downcase-region C-x C-l Lowercase region.

downcase-word M-l Lowercase word.

edit-abbrevs (none) Edit word abbreviations.

end-kbd-macro C-x) End macro definition.

end-of-buffer M-> Move to end of file.

end-of-line C-e Move to end of line.

enlarge-window C-x ^ Make window taller.

enlarge-window-
horizontally

C-x } Make window wider.

exchange-point-and-mark C-x C-x Exchange location of cursor and mark.

exit-recursive-edit C-M-c Exit a recursive edit.

fill-individual-paragraphs (none) Reformat indented paragraphs, keeping
indentation.

fill-paragraph M-q Reformat paragraph.

fill-region (none) Reformat individual paragraphs within a region.

find-alternate-file C-x C-v Read an alternate file, replacing the one read
with C-x C-f.

find-file C-x C-f Find file and read it.

find-file-other-frame C-x 5 f Find a file in a new frame.

find-file-other-window C-x 4 f Find a file in the other window.

forward-char C-f Move forward one character (right).

forward-page C-x] Move forward one page.

forward-paragraph M-} Move forward one paragraph.

forward-sentence M-e Move forward one sentence.

forward-word M-f Move forward one word.

goto-char (none) Go to character n of file.

goto-line (none) Go to line n of file.

help-command C-h Enter the online help system.

help-with-tutorial C-h t Run the emacs tutorial.

indent-region C-M-\ Indent a region to match first line in region.

indented-text-mode (none) Major mode: each tab defines a new indent for
subsequent lines.

info C-h i Start the Info documentation reader.

insert-file C-x i Insert file at cursor position.

insert-keyboard-macro (none) Insert the macro you named into a file.

inverse-add-global-abbrev C-x a i g Type global abbreviation, then definition.

inverse-add-local-abbrev C-x a i l Type local abbreviation, then definition.

isearch-backward C-r Start incremental search backward.

isearch-backward-regexp C-r Same, but search for regular expression.

isearch-forward C-s Start incremental search forward.

isearch-forward-regexp C-r Same, but search for regular expression.

Command name Keystrokes Description

558 | Chapter 8: The Emacs Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

kbd-macro-query C-x q Insert a query in a macro definition.

keyboard-quit C-g Abort current command.

kill-all-abbrevs (none) Kill abbreviations for this session.

kill-buffer C-x k Delete the buffer specified.

kill-line C-k Delete from cursor to end of line.

kill-paragraph (none) Delete from cursor to end of paragraph.

kill-region C-w Delete a marked region.

kill-sentence M-k Delete sentence the cursor is on.

kill-some-buffers (none) Ask about deleting each buffer.

kill-word M-d Delete word the cursor is on.

list-abbrevs (none) View word abbreviations.

list-buffers C-x C-b Display buffer list.

load-file (none) Load macro files you’ve saved.

mark-page C-x C-p Mark page.

mark-paragraph M-h Mark paragraph.

mark-whole-buffer C-x h Mark buffer.

name-last-kbd-macro (none) Name last macro you created (before saving it).

negative-argument;
capitalize-word

M-– M-c Capitalize previous word.

negative-argument;
downcase-word

M-– M-l Lowercase previous word.

negative-argument;
upcase-word

M-– M-u Uppercase previous word.

next-line C-n Move to next line (down).

other-window C-x o Move to the other window.

previous-line C-p Move to previous line (up).

query-replace-regexp C-M-% Query-replace a regular expression.

recenter C-l Redraw screen, with current line in center.

rename-buffer (none) Change buffer name to specified name.

replace-regexp (none) Replace a regular expression unconditionally.

re-search-backward (none) Simple regular expression search backward.

re-search-forward (none) Simple regular expression search forward.

revert-buffer (none) Restore buffer to the state it was in when the file
was last saved (or auto-saved).

save-buffer C-x C-s Save file (may hang terminal; use C-q to restart).

save-buffers-kill-emacs C-x C-c Exit emacs.

save-some-buffers C-x s Ask whether to save each modified buffer.

scroll-down M-v Move backward one screen.

scroll-left C-x < Scroll the window left.

scroll-other-window C-M-v Scroll other window.

scroll-right C-x > Scroll the window right.

scroll-up C-v Move forward one screen.

Command name Keystrokes Description

Summary of Commands by Name | 559

Em
acs

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

set-fill-prefix C-x . Use characters from the beginning of the line up
to the cursor column as the “fill prefix.” This
prefix is prepended to each line in the paragraph.
Cancel the prefix by typing this command in
column 1.

set-mark-command C-@ or
C-Space

Mark the beginning (or end) of a region.

shell (none) Start a shell buffer.

shrink-window (none) Make window shorter.

shrink-window-
horizontally

C-x { Make window narrower.

spell-buffer (none) Check spelling of current buffer.

spell-region (none) Check spelling of current region.

spell-string (none) Check spelling of string typed in minibuffer.

spell-word M-$ Check spelling of word after cursor.

split-line C-M-o Split line at cursor; indent to column of cursor.

split-window-vertically C-x 2 Divide the current window into two, one on top
of the other.

split-window-horizontally C-x 3 Divide the current window into two, side by side.

start-kbd-macro C-x (Start macro definition.

suspend-emacs C-z Suspend emacs (use exit or fg to restart).

switch-to-buffer C-x b Move to the buffer specified.

switch-to-buffer-other-
frame

C-x 5 b Select a buffer in another frame.

switch-to-buffer-other-
window

C-x 4 b Select a buffer in the other window.

text-mode (none) Exit indented text mode; return to text mode.

transpose-chars C-t Transpose two letters.

transpose-lines C-x C-t Transpose two lines.

transpose-paragraphs (none) Transpose two paragraphs.

transpose-sentences (none) Transpose two sentences.

transpose-words M-t Transpose two words.

unexpand-abbrev (none) Undo the last word abbreviation.

universal-argument C-u n Repeat the next command n times.

universal-argument and
start-kbd-macro

C-u C-x (Execute last macro defined, then add keystrokes
to it.

upcase-region C-x C-u Uppercase region.

upcase-word M-u Uppercase word.

view-emacs-news C-h n View news about updates to emacs.

view-lossage C-h l What are the last 100 characters I typed?

where-is C-h w What is the key binding for this command?

write-abbrev-file (none) Write the word abbreviation file.

write-file C-x C-w Write buffer contents to file.

yank C-y Restore what you’ve deleted.

Command name Keystrokes Description

561

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9vi, ex, and vim

9
The vi, ex, and vim Editors

The vi and ex editors are the “standard” editors on Unix systems. You can count on
there being some version of them, no matter what Unix flavor you are using. The
two editors are in fact the same program; based on how the editor was invoked, it
enters full-screen mode or line mode. vim is a popular extended version of vi.

This chapter presents the following topics:

• Conceptual overview

• Command-line syntax

• Review of vi operations

• Alphabetical list of keys in command mode

• vi commands

• vi configuration

• ex basics

• Alphabetical summary of ex commands

vi is pronounced “vee eye.”

Besides the original Unix vi, there are a number of freely available vi clones
(including vim). Both the original vi and the clones are covered in Learning the vi
Editor, listed in the Bibliography. The Internet starting point for vim is http://
www.vim.org.

Conceptual Overview
vi is the classic screen-editing program for Unix. A number of enhanced versions
exist, including nvi, vim, vile, and elvis. On GNU/Linux systems, the vi
command is usually one of these programs (either a copy or a link). The Emacs
editor, covered in Chapter 8, has several vi modes that allow you to use many of
the same commands covered in this chapter.

562 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The vi editor operates in two modes, command mode and insert mode. The dual
mode makes vi an attractive editor for users who separate text entry from editing.
For users who edit as they type, the modeless editing of emacs can be more
comfortable. However, vim supports both ways of editing, through the insertmode
option and the evim command for invoking vim.

vi is based on an older line editor called ex. (ex, in turn, was developed by Bill Joy
at the University of California, Berkeley, from the primordial Unix line editor, ed.)
A user can invoke powerful editing capabilities within vi by typing a colon (:),
entering an ex command, and pressing the ENTER key. Furthermore, you can
place ex commands in a startup file called ~/.exrc, which vi reads at the begin-
ning of your editing session. Because ex commands are such an important part of
vi, they are also described in this chapter.

One of the most common versions of vi found on GNU/Linux systems is Bram
Moolenaar’s Vi IMproved, or vim. On some GNU/Linux distributions, vim is the
default version of vi and runs when you invoke vi. vim offers many extra features,
and optionally changes some of the basic features of vi, most notoriously
changing the undo command to support multiple levels of undo.

Fully documenting vim is beyond the scope of this chapter, but we do cover some
of its most commonly used options and features. Beyond what we cover here, vim
offers enhanced support to programmers through an integrated build and debug-
ging process, syntax highlighting, extended ctags support, and support for Perl
and Python, as well as GUI fonts and menus, function key mapping, independent
mapping for each mode, and more. Fortunately, vim comes with a powerful
internal help system that you can use to learn more about the things that we just
couldn’t fit into this chapter. See http://www.vim.org/ for more information.

Command-Line Syntax
The three most common ways of starting a vi session are:

vi [options] file
vi [options] +num file
vi [options] +/pattern file

You can open file for editing, optionally at line num or at the first line matching
pattern. If no file is specified, vi opens with an empty buffer.

Command-Line Options

Because vi and ex are the same program, they share the same options. However,
some options only make sense for one version of the program. Options specific to
vim are so marked.

+[num]
Start editing at line number num, or the last line of the file if num is omitted.

+/pattern
Start editing at the first line matching pattern. (For ex, this fails if nowrapscan
is set in your .exrc startup file, since ex starts editing at the last line of a file.)

-b Edit the file in binary mode. {vim}

Command-Line Syntax | 563

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-c command
Run the given ex command upon startup. Only one -c option is permitted for
vi; vim accepts up to 10. An older form of this option, +command, is still
supported.

--cmd command
Like -c, but execute the command before any resource files are read. {vim}

-C Solaris vi: Same as -x, but assume the file is encrypted already.

vim: Start the editor in vi-compatible mode.

-d Run in diff mode. Works like vimdiff. (See vimdiff in Chapter 2.) {vim}

-D Debugging mode for use with scripts. {vim}

-e Run as ex (line editing rather than full-screen mode).

-h Print help message, then exit. {vim}

-i file
Use the specified file instead of the default (~/.viminfo) to save or restore vim’s
state. {vim}

-l Enter Lisp mode for running Lisp programs (not supported in all versions).

-L List files that were saved due to an aborted editor session or system crash (not
supported in all versions). For vim, this option is the same as -r.

-m Start the editor with the write option turned off so that the user cannot write
to files. {vim}

-M Do not allow text in files to be modified. {vim}

-n Do not use a swap file; record changes in memory only. {vim}

--noplugin
Do not load any plug-ins. {vim}

-N Run vim in a non-vi-compatible mode. {vim}

-o[num]
Start vim with num open windows. The default is to open one window for
each file. {vim}

-O[num]
Start vim with num open windows arranged horizontally (split vertically) on
the screen. {vim}

-r [file]
Recovery mode; recover and resume editing on file after an aborted editor
session or system crash. Without file, list files available for recovery.

-R Edit files read-only.

-s Silent; do not display prompts. Useful when running a script. This behavior
also can be set through the older - option. For vim, only applies when used
together with -e.

-s scriptfile
Read and execute commands given in the specified scriptfile as if they were
typed in from the keyboard. {vim}

564 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-S commandfile
Read and execute commands given in commandfile after loading any files for
editing specified on the command line. Shorthand for vim -c 'source
commandfile'. {vim}

-t tag
Edit the file containing tag and position the cursor at its definition. (See ctags
in Chapter 2 for more information.)

-T type
Set the terminal type. This value overrides the $TERM environment variable.
{vim}

-u file
Read configuration information from the specified resource file instead of
default .vimrc resource file. If the file argument is NONE, vim will read no
resource files, load no plug-ins, and run in compatible mode. If the argument
is NORC, it will read no resource files but it will load plug-ins. {vim}

-v Run in full-screen mode (default for vi).

--version
Print version information, then exit. {vim}

-V[num]
Verbose mode; print messages about what options are being set and what
files are being read or written. You can set a level of verbosity to increase or
decrease the number of messages received. The default value is 10 for high
verbosity. {vim}

-w rows
Set the window size so rows lines at a time are displayed; useful when editing
over a slow dial-up line (or long distance Internet connection). Older versions
of vi do not permit a space between the option and its argument. vim does not
support this option.

-W scriptfile
Write all typed commands from the current session to the specified scriptfile.
The file created can be used with the -s command. {vim}

-x Prompt for a key that will be used to try to encrypt or decrypt a file using
crypt (not supported in all versions).*

-y Modeless vi; run vim in insert mode only, without a command mode. This is
the same as invoking vim as evim. (See evim in Chapter 2.) {vim}

-Z Start vim in restricted mode. Do not allow shell commands or suspension of
the editor. {vim}

While most people know ex commands only by their use within vi, the editor also
exists as a separate program and can be invoked from the shell (for instance, to
edit files as part of a script). Within ex, you can enter the vi or visual command
to start vi. Similarly, within vi, you can enter Q to quit the vi editor and enter ex.

* The crypt command’s encryption is weak. Don’t use it for serious secrets.

Review of vi Operations | 565

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

You can exit ex in several ways:

Review of vi Operations
This section provides a review of the following:

• vi modes

• Syntax of vi commands

• Status-line commands

Command Mode
Once the file is opened, you are in command mode. From command mode, you can:

• Invoke insert mode

• Issue editing commands

• Move the cursor to a different position in the file

• Invoke ex commands

• Invoke a Unix shell

• Save the current version of the file

• Exit vi

Insert Mode
In insert mode, you can enter new text in the file. You normally enter insert mode
with the i command. Press the ESCAPE key to exit insert mode and return to
command mode. The full list of commands that enter insert mode is provided
later, in the section “Insert Commands.”

Syntax of vi Commands

In vi, editing commands have the following general form:

[n] operator [m] motion

The basic editing operators are:

If the current line is the object of the operation, the motion is the same as the oper-
ator: cc, dd, yy. Otherwise, the editing operators act on objects specified by
cursor-movement commands or pattern-matching commands. (For example, cf.
changes up to the next period.) n and m are the number of times the operation is
performed, or the number of objects the operation is performed on. If both n and
m are specified, the effect is n × m.

:x Exit (save changes and quit).
:q! Quit without saving changes.
:vi Enter the vi editor.

c Begin a change.
d Begin a deletion.
y Begin a yank (or copy).

566 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

An object of operation can be any of the following text blocks:

Examples

More commands and examples may be found in the section “Changing and
deleting text,” later in this chapter.

Visual mode (vim only)

vim provides an additional facility, “visual mode.” This allows you to highlight
blocks of text which then become the object of edit commands such as deletion or
saving (yanking). Graphical versions of vim allow you to use the mouse to high-
light text in a similar fashion. See the vim help file visual.txt for the full story.

Status-Line Commands

Most commands are not echoed on the screen as you input them. However, the
status line at the bottom of the screen is used to edit these commands:

Commands that are entered on the status line must be entered by pressing the
ENTER key. In addition, error messages and output from the CTRL-G command
are displayed on the status line.

word Includes characters up to a whitespace character (space or tab) or punc-
tuation mark. A capitalized object is a variant form that recognizes only
whitespace.

sentence Up to ., !, or ?, followed by two spaces.
paragraph Up to the next blank line or paragraph macro defined by the para= option.
section Up to the next nroff/troff section heading defined by the sect= option.
motion Up to the character or other text object as specified by a motion speci-

fier, including pattern searches.

2cw Change the next two words.
d} Delete up to next paragraph.
d^ Delete back to beginning of line.
5yy Copy the next five lines.
y]] Copy up to the next section.
cG Change to the end of the edit buffer.

v Select text in visual mode one character at a time.
V Select text in visual mode one line at a time.
CTRL-V Select text in visual mode in blocks.

/ Search forward for a pattern.
? Search backward for a pattern.
: Invoke an ex command.
! Invoke a Unix command that takes as its input an object in the buffer and

replaces it with output from the command. You type a motion command after
the ! to describe what should passed to the Unix command. The command itself
is entered on the status line.

vi Commands | 567

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

vi Commands
vi supplies a large set of single-key commands when in command mode. vim
supplies additional multikey commands.

Movement Commands
Some versions of vi do not recognize extended keyboard keys (e.g., arrow keys,
Page Up, Page Down, Home, Insert, and Delete); some do. All, however, recog-
nize the keys in this section. Many users of vi prefer to use these keys, as it helps
them keep their fingers on the home row of the keyboard. A number preceding a
command repeats the movement. Movement commands are also used after an
operator. The operator works on the text that is moved.

Character

Text

Lines

Long lines in a file may show up on the screen as multiple lines. (They wrap
around from one screen line to the next.) While most commands work on the
lines as defined in the file, a few commands work on lines as they appear on the
screen. The vim option wrap allows you to control how long lines are displayed.

h, j, k, l Left, down, up, right (←, ↓, ↑, →).
Spacebar Right.
BACKSPACE Left.
CTRL-H Left.

w, b Forward, backward by “word” (letters, numbers, and underscore
make up words).

W, B Forward, backward by “WORD” (only whitespace separates items).
e End of word.
E End of WORD.
ge End of previous word. {vim}
gE End of previous WORD. {vim}
), (Beginning of next, current sentence.
}, { Beginning of next, current paragraph.
]], [[Beginning of next, current section.
][, [] End of next, current section. {vim}

0, $ First, last position of current line.
^, _ First nonblank character of current line.
+, - First nonblank character of next, previous line.
ENTER First nonblank character of next line.
num| Column num of current line.
g0, g$ First, last position of screen line. {vim}
g^ First nonblank character of screen line. {vim}
gm Middle of screen line. {vim}
gk, gj Move up, down one screen line. {vim}

568 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Screens

Searches

Line numbering

H Top line of screen (Home position).
M Middle line of screen.
L Last line of screen.
numH num lines after top line.
numL num lines before last line.

CTRL-F, CTRL-B Scroll forward, backward one screen.
CTRL-D, CTRL-U Scroll down, up one-half screen.
CTRL-E, CTRL-Y Show one more line at bottom, top of screen.
z ENTER Reposition line with cursor to top of screen.
z. Reposition line with cursor to middle of screen.
z- Reposition line with cursor to bottom of screen.
CTRL-L Redraw screen (without scrolling).
CTRL-R vi: Redraw screen (without scrolling).

vim: Redo last undone change.

/pattern Search forward for pattern. End with ENTER.
/pattern/+num Go to line num after pattern.
?pattern Search backward for pattern. End with ENTER.
?pattern?-num Go to line num before pattern.
:noh Suspend search highlighting until next search. {vim}.
n Repeat previous search.
N Repeat search in opposite direction.
/ Repeat previous search forward.
? Repeat previous search backward.
* Search forward for word under cursor. Matches only exact words. {vim}
Search backward for word under cursor. Matches only exact words.

{vim}
g* Search backward for word under cursor. Matches the characters of

this word when embedded in a longer word. {vim}
g# Search backward for word under cursor. Matches the characters of

this word when embedded in a longer word. {vim}
% Find match of current parenthesis, brace, or bracket.
fx Move cursor forward to x on current line.
Fx Move cursor backward to x on current line.
tx Move cursor forward to character before x in current line.
Tx Move cursor backward to character after x in current line.
, Reverse search direction of last f, F, t, or T.
; Repeat last f, F, t, or T.

CTRL-G Display current line number.
gg Move to first line in file. {vim}
numG Move to line number num.
G Move to last line in file.
:num Move to line number num.

vi Commands | 569

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Marks

Insert Commands

The following commands work in insert mode.

mx Place mark x at current position.
`x (backquote) Move cursor to mark x.
'x (apostrophe) Move to start of line containing x.
`` (backquotes) Return to position before most recent jump.
'' (apostrophes) Like preceding, but return to start of line.
'" (apostrophe quote) Move to position when last editing the file. {vim}
`[, `] (backquote bracket) Move to beginning/end of previous text operation. {vim}
'[, '] (apostrophe bracket) Like preceding, but return to start of line where opera-

tion occurred. {vim}
`. (backquote period) Move to last change in file. {vim}
'. (apostrophe period) Like preceding, but return to start of line. {vim}
`0 Position where you last exited vim. {vim}
:marks List active marks. {vim}

a Append after cursor.
A Append to end of line.
c Begin change operation.
C Change to end of line.
gI Insert at beginning of line. {vim}
i Insert before cursor.
I Insert at beginning of line.
o Open a line below cursor.
O Open a line above cursor.
R Begin overwriting text.
s Substitute a character.
S Substitute entire line.
ESC Terminate insert mode.

BACKSPACE Delete previous character.
DELETE Delete current character.
TAB Insert a tab.
CTRL-A Repeat last insertion. {vim}
CTRL-D Shift line left to previous shift width. {vim}
CTRL-E Insert character found just below cursor. {vim}
CTRL-H Delete previous character (same as Backspace).
CTRL-I Insert a tab.
CTRL-K Begin insertion of multi-keystroke character.
CTRL-N Insert next completion of the pattern to the left of the cursor. {vim}
CTRL-P Insert previous completion of the pattern to the left of the cursor. {vim}
CTRL-T Shift line right to next shift width. {vim}
CTRL-U Delete current line.
CTRL-V Insert next character verbatim.
CTRL-W Delete previous word.
CTRL-Y Insert character found just above cursor. {vim}
CTRL-[(ESCAPE) Terminate insert mode.

570 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Some of the control characters listed in the previous table are set by stty. Your
terminal settings may differ.

Edit Commands

Recall that c, d, and y are the basic editing operators.

Changing and deleting text

The following table is not exhaustive, but illustrates the most common
operations.

cw Change word.
cc Change line.
c$ Change text from current position to end-of-line.
C Same as c$.
dd Delete current line.
numdd Delete num lines.
d$ Delete text from current position to end-of-line.
D Same as d$.
dw Delete a word.
d} Delete up to next paragraph.
d^ Delete back to beginning of line.
d/pat Delete up to first occurrence of pattern.
dn Delete up to next occurrence of pattern.
dfx Delete up to and including x on current line.
dtx Delete up to (but not including) x on current line.
dL Delete up to last line on screen.
dG Delete to end of file.
gqap Reformat current paragraph to textwidth. {vim}
g~w Switch case of word. {vim}
guw Change word to lowercase. {vim}
gUw Change word to uppercase. {vim}
p Insert last deleted or yanked text after cursor.
gp Same as p, but leave cursor at end of inserted text. {vim}
]p Same as p, but match current indention. {vim}
[p Same as P, but match current indention. {vim}
P Insert last deleted or yanked text before cursor.
gP Same as P, but leave cursor at end of inserted text. {vim}
rx Replace character with x.
Rtext Replace with new text (overwrite), beginning at cursor. ESCAPE ends

replace mode.
s Substitute character.
4s Substitute four characters.
S Substitute entire line.
u Undo last change.
CTRL-R Redo last change. {vim}
U Restore current line.
x Delete current cursor position.
X Delete back one character.
5X Delete previous five characters.
. Repeat last change.

vi Commands | 571

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Copying and moving

Register names are the letters a–z. Uppercase names append text to the corre-
sponding register.

Saving and Exiting

Writing a file means overwriting the file with the current text.

Accessing Multiple Files

~ Reverse case and move cursor right.
CTRL-A Increment number under cursor. {vim}
CTRL-X Decrement number under cursor. {vim}

Y Copy current line.
yy Copy current line.
"xyy Copy current line to register x.
ye Copy text to end of word.
yw Like ye, but include the whitespace after the word.
y$ Copy rest of line.
"xdd Delete current line into register x.
"xd Delete into register x.
"xp Put contents of register x.
y]] Copy up to next section heading.
J Join current line to next line.
gJ Same as J, but without inserting a space. {vim}
:j Same as J.
:j! Same as gJ.

ZZ Quit vi, writing the file only if changes were made.
:x Same as ZZ.
:wq Write file and quit.
:w Write file.
:w file Save copy to file.
:n,mw file Write lines n to m to new file.
:n,mw >> file Append lines n to m to existing file.
:w! Write file (overriding protection).
:w! file Overwrite file with current text.
:w %.new Write current buffer named file as file.new.
:q Quit vi (fails if changes were made).
:q! Quit vi (discarding edits).
Q Quit vi and invoke ex.
:vi Return to vi after Q command.
% Replaced with current filename in editing commands.
Replaced with alternate filename in editing commands.

:e file Edit another file; current file becomes alternate.
:e! Return to version of current file at time of last write.
:e + file Begin editing at end of file.

572 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Window Commands (vim)

The following table lists common commands for controlling windows in vim. See
also the split, vsplit, and resize commands in the later section “Alphabetical
Summary of ex Commands.” For brevity, control characters are marked in the
following list by ^.

Interacting with the System

:e +num file Open file at line num.
:e # Open to previous position in alternate file.
:ta tag Edit file at location tag.
:n Edit next file in the list of files.
:n! Force next file.
:n files Specify new list of files.
:rewind Edit first file in the list.
CTRL-G Show current file and line number.
:args Display list of files to be edited.
:prev Edit previous file in the list of files.

:new Open a new window.
:new file Open file in a new window.
:sp [file] Split the current window. With file, edit that file in the new window.
:sv [file] Same as :sp, but make new window read-only.
:sn [file] Edit next file in file list in new window.
:vsp [file] Like :sp, but split vertically instead of horizontally.
:clo Close current window.
:hid Hide current window, unless it is the only visible window.
:on Make current window the only visible one.
:res num Resize window to num lines.
:wa Write all changed buffers to their files.
:qa Close all buffers and exit.
^W s Same as :sp.
^W n Same as :new.
^W ^ Open new window with alternate (previously edited) file.
^W c Same as :clo.
^W o Same as :only.
^W j, ^W k Move cursor to next/previous window.
^W p Move cursor to previous window.
^W h, ^W l Move cursor to window on left/right.
^W t, ^W b Move cursor to window on top/bottom of screen.
^W K, ^W B Move current window to top/bottom of screen.
^W H, ^W L Move current window to far left/right of screen.
^W r, ^W R Rotate windows down/up.
^W +, ^W - Increase/decrease current window size.
^W = Make all windows same height.

:r file Read in contents of file after cursor.
:r !command Read in output from command after current line.
:numr !command Like above, but place after line num (0 for top of file).

vi Commands | 573

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Macros

In vi, the following characters are unused in command mode and can be mapped
as user-defined commands:

Letters
g K q V v

Control keys
^A ^K ^O ^W ^X ^_ ^\

Symbols
_ * \ = #

The = is used by vi if Lisp mode is set. Different versions of vi may
use some of these characters, so test them before using.

vim does not use ^K, ^_, _, or \.

Miscellaneous Commands

:!command Run command, then return.
!motion command Send the text covered by motion to Unix command; replace with

output.
:n,m! command Send lines n–m to command; replace with output.
num!!command Send num lines to Unix command; replace with output.
:!! Repeat last system command.
:sh Create subshell; return to editor with EOF.
CTRL-Z Suspend editor, resume with fg.
:so file Read and execute ex commands from file.

:ab in out Use in as abbreviation for out in insert mode.
:unab in Remove abbreviation for in.
:ab List abbreviations.
:map string sequence Map characters string as sequence of commands. Use #1,

#2, etc., for the function keys.
:unmap string Remove map for characters string.
:map List character strings that are mapped.
:map! string sequence Map characters string to input mode sequence.
:unmap! string Remove input mode map (you may need to quote the

characters with CTRL-V).
:map! List character strings that are mapped for input mode.
qx Record typed characters into register specified by letter x. If

letter is uppercase, append to register. {vim}
q Stop recording. {vim}
@x Execute the register specified by letter x. Use @@ to repeat

the last @ command.

< Shift text described by following motion command left by one shiftwidth. {vim}
> Shift text described by following motion command right by one shiftwidth. {vim}
<< Shift line left one shift width (default is eight spaces).

574 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

vi Configuration
This section describes the following:

• The :set command

• Options available with :set

• Example .exrc file

The :set Command

The :set command allows you to specify options that change characteristics of
your editing environment. Options may be put in the ~/.exrc file or set during a vi
session.

The colon does not need to be typed if the command is put in .exrc:

Options Used by :set

Table 9-1 contains brief descriptions of the important set command options. In
the first column, options are listed in alphabetical order; if the option can be
abbreviated, that abbreviation is shown in parentheses. The second column shows
the default setting. The last column describes what the option does, when
enabled.

This table lists set options for the Solaris version of vi, with the addition of
important vim options. Other versions of vi may have more or fewer or different
options. See your local documentation, or use :set all to see the full list. Options
that receive a value are marked with an =.

>> Shift line right one shift width (default is eight spaces).
>} Shift right to end of paragraph.
<% Shift left until matching parenthesis, brace, or bracket. (Cursor must be on the

matching symbol.)
== Indent line in C-style, or using program specified in equalprg option. {vim}
g Start many multiple character commands in vim.
K Look up word under cursor in manpages (or program defined in keywordprg).

{vim}
^O Return to previous jump. {vim}
q Record keystrokes. {vim}
^Q Same as ^V. {vim} (On some terminals, resume data flow.)
^T Return to the previous location in the tag stack. (Solaris vi and vim)
^] Perform a tag lookup on the text under the cursor.
^\ Enter ex line-editing mode.
^^ (Caret key with CTRL key pressed) Return to previously edited file.

:set x Enable boolean option x, show value of other options.
:set nox Disable option x.
:set x=value Give value to option x.
:set Show changed options.
:set all Show all options.
:set x? Show value of option x.

vi Configuration | 575

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Table 9-1. :set options

Option Default Description

autoindent (ai) noai In insert mode, indent each line to the same
level as the line above or below. Use with the
shiftwidth option.

autoprint (ap) ap Display changes after each editor command.
(For global replacement, display last
replacement.)

autowrite (aw) noaw Automatically write (save) the file if changed
before opening another file with a command
such as :n or before giving a Unix command
with :!.

background (bg) Describe the background so the editor can
choose appropriate highlighting colors.
Default value of dark or light depends on the
environment in which the editor is invoked.
{vim}

backup (bk) nobackup Create a backup file when overwriting an
existing file. {vim}

backupdir= (bdir) .,~/tmp/,~/ Name directories in which to store backup
files if possible. The list of directories is
comma-separated and in order of preference.
{vim}

beautify (bf) nobf Ignore all control characters during input
(except tab, newline, or formfeed).

backupext= (bex) ~ String to append to filenames for backup files.
{vim}

cindent (cin) nocindent In insert mode, indents each line relative to
the one above it, as is appropriate for C or
C++ code. {vim}

compatible (cp) cp Make vim behave more like vi. Default is nocp
when a ~/.vimrc file is found. {vim}

directory (dir) /tmp Name of directory in which ex/vi stores
buffer files. (Directory must be writable.) This
can be a comma-separated list for vim.

edcompatible noedcompatible Remember the flags used with the most
recent substitute command (global,
confirming) and use them for the next substi-
tute command. Despite the name, no version
of ed actually does this.

equalprg= (ep) Use the specified program for the =
command. When the option is blank (the
default), the key invokes the internal C
indenting function or the value of the
indentexpr option. {vim}

errorbells (eb) errorbells Sound bell when an error occurs.

exrc (ex) noexrc Allow the execution of .exrc files that reside
outside the user’s home directory.

flash (fp) Flash the screen instead of ringing the bell.

formatprg= (fp) The gq command invokes the named external
program to format text. It calls internal
formatting functions when this option is
empty (the default). {vim}

576 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gdefault (gd) nogdefault Set the g flag on for substitutions by default.
{vim}

hardtabs= (ht) 8 Define boundaries for terminal hardware
tabs.

hidden (hid) nohidden Hide buffers rather than unload them when
they are abandoned. {vim}

hlsearch (hls) hlsearch Highlight all matches of most recent search
pattern. Use :nohlsearch to remove high-
lighting. {vim}

history= (hi) 20 Number of ex commands to store in the
history table. {vim}

ignorecase (ic) noic Disregard case during a search.

incsearch (is) noincsearch Highlight matches to a search pattern as it is
typed. {vim}

lisp nolisp Insert indents in appropriate Lisp format. (,),
{, }, [[, and]] are modified to have meaning
for Lisp.

list nolist Print tabs as ^I; mark ends of lines with $.
(Use list to tell if end character is a tab or a
space.)

magic magic Wildcard characters . (dot), * (asterisk), and
[] (brackets) have special meaning in
patterns.

mesg mesg Permit system messages to display on
terminal while editing in vi.

mousehide (mh) mousehide When characters are typed, hide the mouse
pointer. {vim}

novice nonovice Require the use of long ex command names,
such as copy or read.

number (nu) nonu Display line numbers on left of screen during
editing session.

open open Allow entry to open or visual mode from ex.
Although not in Solaris vi or vim, this option
has traditionally been in vi, and may be in
your version of vi.

optimize (opt) noopt Abolish carriage returns at the end of lines
when printing multiple lines; speed output on
dumb terminals when printing lines with
leading whitespace (spaces or tabs).

paragraphs (para) IPLPPPQPP
LIpplpipnpbplpipbp

Define paragraph delimiters for movement by
{ or }. The pairs of characters in the value are
the names of troff macros that begin
paragraphs.

paste nopaste Change the defaults of various options to make
pasting text into a terminal window work
better. All options are returned to their original
value when the paste option is reset. {vim}

prompt prompt Display the ex prompt (:) when vi ’s Q
command is given.

readonly (ro) noro Any writes (saves) of a file fail unless you use
! after the write (works with w, ZZ, or
autowrite).

Table 9-1. :set options (continued)

Option Default Description

vi Configuration | 577

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

redraw (re) vi redraws the screen whenever edits are
made. noredraw is useful at slow speeds on a
dumb terminal: the screen isn’t fully updated
until you press ESCAPE. Default depends on
line speed and terminal type.

remap remap Allow nested map sequences.

report= 5 Display a message on the status line whenever
you make an edit that affects at least a certain
number of lines. For example, 6dd reports the
message “6 lines deleted.”

ruler (ru) ruler Show line and column numbers for the
current cursor position. {vim}

scroll= [1⁄2 window] Number of lines to scroll with ^D and ^U
commands.

sections= (sect) NHSHH HUuhsh+c Define section delimiters for [[and]] move-
ment. The pairs of characters in the value are
the names of troff macros that begin sections.

shell= (sh) /bin/sh Pathname of shell used for shell escape (:!)
and shell command (:sh). Default value is
derived from shell environment, which varies
on different systems.

shiftwidth= (sw) 8 Define number of spaces used when the
indent is increased or decreased.

showmatch (sm) nosm In vi, when) or } is entered, cursor moves
briefly to matching (or {. (If no match, rings
the error message bell.) Very useful for
programming.

showmode noshowmode In insert mode, display a message on the
prompt line indicating the type of insert you
are making. For example, “OPEN MODE” or
“APPEND MODE.”

slowopen (slow) Hold off display during insert. Default
depends on line speed and terminal type.

smartcase (scs) nosmartcase Override the ignorecase option when a search
pattern contains uppercase characters. {vim}

tabstop= (ts) 8 Define number of spaces a tab indents during
editing session. (Printer still uses system tab of 8.)

taglength= (tl) 0 Define number of characters that are signifi-
cant for tags. Default (zero) means that all
characters are significant.

tags= tags /usr/lib/tags Define pathname of files containing tags. (See
the Unix ctags command.) (By default, vi
searches the file tags in the current directory
and /usr/lib/tags.)

tagstack tagstack Enable stacking of tag locations on a stack.
(Solaris vi and vim.)

term= Set terminal type.

terse noterse Display shorter error messages.

textwidth= (tw) 0 The maximum width of text to be inserted;
longer lines are broken after whitespace.
Default (zero) disables this feature, in which
case wrapmargin is used. {vim}

Table 9-1. :set options (continued)

Option Default Description

578 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Example .exrc File

In an ex script file, comments start with the double-quote character. The
following lines of code are an example of a customized .exrc file:

set nowrapscan " Searches don't wrap at end of file
set wrapmargin=7 " Wrap text at 7 columns from right margin
set sections=SeAhBhChDh nomesg " Set troff macros, disallow message
map q :w^M:n^M " Alias to move to next file
map v dwElp " Move a word
ab ORA O'Reilly Media, Inc. " Input shortcut

The q alias isn’t needed for vim, which has the :wn command. The v
alias would hide the vim command v, which enters character-at-a-
time visual mode operation.

timeout (to) timeout Keyboard maps time out after 1 second.a

timeoutlen= (tm) 1000 Number of milliseconds after which keyboard
maps time out. Default value of 1000
provides traditional vi behavior. {vim}

ttytype= Set terminal type. This is just another name
for term.

undolevels= (ul) 1000 Number of changes that can be undone.
{vim}

warn warn Display the warning message, “No write since
last change.”

window (w) Show a certain number of lines of the file on
the screen. Default depends on line speed and
terminal type.

wrap wrap When on, long lines wrap on the screen.
When off, only the first part of the line is
displayed. {vim}

wrapmargin (wm) 0 Define right margin. If greater than zero, vi
automatically inserts carriage returns to break
lines.

wrapscan (ws) ws Searches wrap around either end of file.

writeany (wa) nowa Allow saving to any file.

writebackup (wb) wb Back up files before attempting to overwrite
them. Remove the backup when the file has
been successfully written, unless the backup
option is set. {vim}

a When you have mappings of several keys (for example, :map zzz 3dw), you probably want to use
notimeout. Otherwise, you need to type zzz within one second. When you have an insert mode mapping
for a cursor key (for example, :map! ^[OB ^[ja), you should use timeout. Otherwise, vi won’t react to
ESCAPE until you type another key.

Table 9-1. :set options (continued)

Option Default Description

ex Basics | 579

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ex Basics
The ex line editor serves as the foundation for the screen editor vi. Commands in
ex work on the current line or on a range of lines in a file. Most often, you use ex
from within vi. In vi, ex commands are preceded by a colon and entered by
pressing ENTER.

You can also invoke ex on its own—from the command line—just as you would
invoke vi. (You could execute an ex script this way.) Or you can use the vi
command Q to quit the vi editor and enter ex.

Syntax of ex Commands

To enter an ex command from vi, type:

:[address] command [options]

An initial : indicates an ex command. As you type the command, it is echoed on
the status line. Execute the command by pressing the ENTER key. address is the
line number or range of lines that are the object of command. options and addresses
are described below. ex commands are described in the section “Alphabetical
Summary of ex Commands.”

You can exit ex in several ways:

Addresses

If no address is given, the current line is the object of the command. If the address
specifies a range of lines, the format is:

x,y

where x and y are the first and last addressed lines (x must precede y in the
buffer). x and y may each be a line number or a symbol. Using ; instead of , sets
the current line to x before interpreting y. The notation 1,$ addresses all lines in
the file, as does %.

Address Symbols

:x Exit (save changes and quit).
:q! Quit without saving changes.
:vi Switch to the vi editor on the current file.

1,$ All lines in the file.
x,y Lines x through y.
x;y Lines x through y, with current line reset to x.
0 Top of file.
. Current line.
num Absolute line number num.
$ Last line.
% All lines; same as 1,$.
x-n n lines before x.

580 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

abbreviate

See Chapter 7 for more information on using patterns.

Options
! Indicates a variant form of the command, overriding the normal behavior.

The ! must come immediately after the command.

count
The number of times the command is to be repeated. Unlike in vi commands,
count cannot precede the command, because a number preceding an ex
command is treated as a line address. For example, d3 deletes three lines
beginning with the current line; 3d deletes line 3.

file
The name of a file that is affected by the command. % stands for the current
file; # stands for the previous file.

Alphabetical Summary of ex Commands
ex commands can be entered by specifying any unique abbreviation. In this listing,
the full name appears in the margin, and the shortest possible abbreviation is used
in the syntax line. Examples are assumed to be typed from vi, so they include the
: prompt.

abbreviate ab [string text]

Define string when typed to be translated into text. If string and
text are not specified, list all current abbreviations.

Examples

Note: ^M appears when you type ^V followed by ENTER.

:ab ora O'Reilly Media, Inc.
:ab id Name:^MRank:^MPhone:

append [address] a[!]
text
.

Append new text at specified address, or at present address if none
is specified. Add a ! to toggle the autoindent setting that is used
during input. That is, if autoindent was enabled, ! disables it. Enter
new text after entering the command. Terminate input of new text
by entering a line consisting of just a period.

x+n n lines after x.
-[num] One or num lines previous.
+[num] One or num lines ahead.
'x Line marked with x.
'' Previous mark.
/pattern/ Forward to line matching pattern.
?pattern? Backward to line matching pattern.

Alphabetical Summary of ex Commands | 581

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

change

Example

:a Begin appending to current line
Append this line
and this line too.
. Terminate input of text to append

args ar
args file ...

Print the members of the argument list (files named on the
command line), with the current argument printed in brackets ([]).

The second syntax is for vim, which allows you to reset the list of
files to be edited.

bdelete [num] bd[!] [num]

Unload buffer num and remove it from the buffer list. Add a ! to force
removal of an unsaved buffer. The buffer may also be specified by file-
name. If no buffer is specified, remove the current buffer. {vim}

buffer [num] b[!] [num]

Begin editing buffer num in the buffer list. Add a ! to force a switch
from an unsaved buffer. The buffer may also be specified by filename.
If no buffer is specified, continue editing the current buffer. {vim}

buffers buffers[!]

Print the members of the buffer list. Some buffers (e.g., deleted
buffers) will not be listed. Add ! to show unlisted buffers. ls is
another abbreviation for this command. {vim}

cd cd dir
chdir dir

Change current directory within the editor to dir.

center [address] ce [width]

Center line within the specified width. If width is not specified, use
textwidth. {vim}

change [address] c[!]
text
.

Replace the specified lines with text. Add a ! to switch the
autoindent setting during input of text. Terminate input by
entering a line consisting of just a period.

582 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

close

close clo[!]

Close current window unless it is the last window. If buffer in
window is not open in another window, unload it from memory.
This command will not close a buffer with unsaved changes, but
you may add ! to hide it instead. {vim}

copy [address] co destination

Copy the lines included in address to the specified destination
address. The command t (short for “to”) is a synonym for copy.

Example

:1,10 co 50 Copy first 10 lines to just after line 50

delete [address] d [register]

Delete the lines included in address. If register is specified, save or
append the text to the named register. Register names are the
lowercase letters a–z. Uppercase names append text to the corre-
sponding register.

Examples

:/Part I/,/Part II/-1d Delete to line above “Part II”
:/main/+d Delete line below “main”
:.,$d x Delete from this line to last line into
 register x

edit e[!] [+num] [filename]

Begin editing on filename. If no filename is given, start over with a
copy of the current file. Add a ! to edit the new file even if the
current file has not been saved since the last change. With the
+num argument, begin editing on line num. Or num may be a
pattern, of the form /pattern.

Examples

:e file Edit file in current editing buffer
:e +/^Index # Edit alternate file at pattern match
:e! Start over again on current file

file f [filename]

Change the filename for the current buffer to filename. The next
time the buffer is written, it will be written to file filename. When
the name is changed, the buffer’s “not edited” flag is set, to indi-
cate you are not editing an existing file. If the new filename is the
same as a file that already exists on the disk, you will need to use
:w! to overwrite the existing file. When specifying a filename, the %

Alphabetical Summary of ex Commands | 583

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

insert

character can be used to indicate the current filename. A # can be
used to indicate the alternate filename. If no filename is specified,
print the current name and status of the buffer.

Example

:f %.new

fold address fo

Fold the lines specified by address. A fold collapses several lines on
the screen into one line, which can later be unfolded. It doesn’t
affect the text of the file. {vim}

foldclose [address] foldc[!]

Close folds in specified address, or at present address if none is
specified. Add a ! to close more than one level of folds. {vim}

foldopen [address] foldo[!]

Open folds in specified address, or at present address if none is
specified. Add a ! to open more than one level of folds. {vim}

global [address] g[!]/pattern/[commands]

Execute commands on all lines that contain pattern or, if address is
specified, on all lines within that range. If commands are not speci-
fied, print all such lines. Add a ! to execute commands on all lines
not containing pattern. See also v.

Examples

:g/Unix/p Print all lines containing “Unix”
:g/Name:/s/tom/Tom/ Change “tom” to “Tom” on all lines
 containing “Name:”

hide hid

Close current window unless it is the last window, but do not
remove the buffer from memory. This is a safe command to use on
an unsaved buffer. {vim}

insert [address] i[!]
text
.

Insert text at line before the specified address, or at present address
if none is specified. Add a ! to switch the autoindent setting during
input of text. Terminate input of new text by entering a line
consisting of just a period.

584 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

join

join [address] j[!] [count]

Place the text in the specified range on one line, with whitespace
adjusted to provide two space characters after a period (.), no space
characters before a), and one space character otherwise. Add a ! to
prevent whitespace adjustment.

Example

:1,5j! Join first five lines, preserving whitespace

jumps ju

Print jump list used with CTRL-I and CTRL-O commands. The
jump list is a record of most movement commands that skip over
multiple lines. It records the position of the cursor before each
jump. {vim}

k [address] k char

Same as mark; see mark, later in this list.

left [address] le [count]

Left-align lines specified by address, or current line if no address is
specified. Indent lines by count spaces. {vim}

list [address] l [count]

Print the specified lines so that tabs display as ^I, and the ends of
lines display as $. l is like a temporary version of :set list.

map map[!] [string commands]

Define a keyboard macro named string as the specified sequence of
commands. string is usually a single character, or the sequence
#num, representing a function key on the keyboard. Use a ! to
create a macro for input mode. With no arguments, list the
currently defined macros.

Examples

:map K dwwP Transpose two words
:map q :w^M:n^M Write current file; go to next
:map! + ^[bi(^[ea) Enclose previous word in parentheses

vim has K and q commands, which the above aliases
would hide.

Alphabetical Summary of ex Commands | 585

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

next

mark [address] ma char

Mark the specified line with char, a single lowercase letter. Return
later to the line with 'x (where x is the same as char). vim also uses
uppercase and numeric characters for marks. Lowercase letters
work the same as in vi. Uppercase letters are associated with file-
names and can be used between multiple files. Numbered marks,
however, are maintained in a special viminfo file and cannot be set
using this command. Same as k.

marks marks [chars]

Print list of marks specified by chars, or all current marks if no
chars specified. {vim}

Example

:marks abc Print marks a, b, and c

mkexrc mk[!] file

Create an .exrc file containing set commands for changed ex
options and key mappings. This saves the current option settings,
allowing you to restore them later.

move [address] m destination

Move the lines specified by address to the destination address.

Example

:.,/Note/m /END/ Move text block to after line containing “END”

new [count] new

Create a new window count lines high with an empty buffer. {vim}

next n[!] [[+num] filelist]

Edit the next file from the command-line argument list. Use args to
list these files. If filelist is provided, replace the current argument
list with filelist and begin editing on the first file. With the +num
argument, begin editing on line num. Or num may be a pattern, of
the form /pattern.

Example

:n chap* Start editing all “chapter” files

586 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

nohlsearch

nohlsearch noh

Temporarily stop highlighting all matches to a search when using
the hlsearch option. Highlighting is resumed with the next search.
{vim}

number [address] nu [count]

Print each line specified by address, preceded by its buffer line
number. Use # as an alternate abbreviation for number. count speci-
fies the number of lines to show, starting with address.

only on [!]

Make the current window be the only one on the screen. Windows
open on modified buffers are not removed from the screen
(hidden), unless you also use the ! character. {vim}

open [address] o [/pattern/]

Enter open mode (vi) at the lines specified by address, or at the
lines matching pattern. Exit open mode with Q. Open mode lets
you use the regular vi commands, but only one line at a time. It
can be useful on slow dialup lines (or on very distant Internet ssh
connections).

preserve pre

Save the current editor buffer as though the system were about to
crash.

previous prev[!]

Edit the previous file from the command-line argument list. {vim}

print [address] p [count]

Print the lines specified by address. count specifies the number of
lines to print, starting with address. P is another abbreviation.

Example

:100;+5p Show line 100 and the next 5 lines

put [address] pu [char]

Place previously deleted or yanked lines from named register speci-
fied by char, to the line specified by address. If char is not specified,
the last deleted or yanked text is restored.

Alphabetical Summary of ex Commands | 587

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rewind

qall qa[!]

Close all windows and terminate current editing session. Use ! to
discard changes made since the last save. {vim}

quit q[!]

Terminate current editing session. Use ! to discard changes made
since the last save. If the editing session includes additional files in
the argument list that were never accessed, quit by typing q! or by
typing q twice. vim only closes the editing window if there are still
other windows open on the screen.

read [address] r filename

Copy the text of filename after the line specified by address. If file-
name is not specified, the current filename is used.

Example

:0r $HOME/data Read file in at top of current file

read [address] r !command

Read the output of shell command into the text after the line speci-
fied by address.

Example

:$r !spell % Place results of spell checking at end of file

recover rec [file]

Recover file from the system save area.

redo red

Restore last undone change. Same as CTRL-R. {vim}

resize res [[±]num]

Resize current window to be num lines high. If + or - is specified,
increase or decrease the current window height by num lines. {vim}

rewind rew[!]

Rewind argument list and begin editing the first file in the list. Add
a ! to rewind even if the current file has not been saved since the
last change.

588 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

right

right [address] ri [width]

Right-align lines specified by address, or current line if no address is
specified, to column width. Use textwidth option if no width is
specified. {vim}

sbnext [count] sbn [count]

Split the current window and begin editing the count next buffer
from the buffer list. If no count is specified, edit the next buffer in
the buffer list. {vim}

sbuffer [num] sb [num]

Split the current window and begin editing buffer num from the
buffer list in the new window. The buffer to be edited may also be
specified by filename. If no buffer is specified, open the current
buffer in the new window. {vim}

set se parameter1 parameter2 ...

Set a value to an option with each parameter, or, if no parameter is
supplied, print all options that have been changed from their
defaults. For boolean options, each parameter can be phrased as
option or nooption; other options can be assigned with the syntax
option=value. Specify all to list current settings. The form set
option? displays the value of option. See the list of set options in
the section “The :set Command,” earlier in this chapter.

Examples

:set nows wm=10
:set all

shell sh

Create a new shell. Resume editing when the shell terminates.

snext [count] sn [[+num] filelist]

Split the current window and begin editing the next file from the
command-line argument list. If count is provided, edit the count
next file. If filelist is provided, replace the current argument list
with filelist and begin editing the first file. With the +n argument,
begin editing on line num. Alternately, num may be a pattern of the
form /pattern. {vim}

Alphabetical Summary of ex Commands | 589

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

substitute

source so file

Read (source) and execute ex commands from file.

Example

:so $HOME/.exrc

split [count] sp [+num] [filename]

Split the current window and load filename in the new window, or
the same buffer in both windows if no file is specified. Make the
new window count lines high, or if count is not specified, split the
window into equal parts. With the +n argument, begin editing on
line num. num may also be a pattern of the form /pattern. {vim}

sprevious [count] spr [+num]

Split the current window and begin editing the previous file from
the command-line argument list in the new window. If count is
specified, edit the count previous file. With the +num argument,
begin editing on line num. num may also be a pattern of the form
/pattern. {vim}

stop st

Suspend the editing session. Same as CTRL-Z. Use the shell fg
command to resume the session.

substitute [address] s [/pattern/replacement/] [options] [count]

Replace the first instance of pattern on each of the specified lines
with replacement. If pattern and replacement are omitted, repeat last
substitution. count specifies the number of lines on which to substi-
tute, starting with address. See additional examples in Chapter 7.
(Spelling out the command name does not work in Solaris vi.)

Options

Examples

:1,10s/yes/no/g Substitute on first 10 lines
:%s/[Hh]ello/Hi/gc Confirm global substitutions
:s/Fortran/\U&/ 3 Uppercase “Fortran” on next three
 lines
:g/^[0-9][0-9]*/s//Line &:/ For every line beginning with one or

more digits, add “Line” and a colon

c Prompt for confirmation before each change.
g Substitute all instances of pattern on each line (global).
p Print the last line on which a substitution was made.

590 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

suspend

suspend su

Suspend the editing session. Same as CTRL-Z. Use the shell fg
command to resume the session.

sview [count] sv [+num] [filename]

Same as the split command, but set the readonly option for the
new buffer. {vim}

t [address] t destination

Copy the lines included in address to the specified destination
address. t is equivalent to copy.

Example

:%t$ Copy the file and add it to the end

tag [address] ta tag

In the tags file, locate the file and line matching tag and start
editing there.

Example

Run ctags, then switch to the file containing myfunction:

:!ctags *.c
:tag myfunction

tags tags

Print list of tags in the tag stack. {vim}

unabbreviate una word

Remove word from the list of abbreviations.

undo u

Reverse the changes made by the last editing command. In vi the
undo command will undo itself, redoing what you undid. vim
supports multiple levels of undo. Use redo to redo an undone
change in vim.

unhide [count] unh

Split screen to show one window for each active buffer in the buffer
list. If specified, limit the number of windows to count. {vim}

Alphabetical Summary of ex Commands | 591

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

wnext

unmap unm[!] string

Remove string from the list of keyboard macros. Use ! to remove a
macro for input mode.

v [address] v/pattern/[command]

Execute command on all lines not containing pattern. If command is
not specified, print all such lines. v is equivalent to g!. See global.

Example

:v/#include/d Delete all lines except “#include” lines

version ve

Print the editor’s current version number and date of last change.

view vie[[+num] filename]

Same as edit, but set file to readonly. When executed in ex mode,
return to normal or visual mode. {vim}

visual [address] vi [type] [count]

Enter visual mode (vi) at the line specified by address. Return to ex
mode with Q. type can be one of -, ^, or . (see the z command).
count specifies an initial window size.

visual vi [+ num] file

Begin editing file in visual mode (vi), optionally at line num.

vsplit [count] vs [+num] [filename]

Same as the split command, but split the screen vertically. The
count argument can be used to specify a width for the new window.
{vim}

wall wa[!]

Write all changed buffers with filenames. Add ! to force writing of
any buffers marked readonly. {vim}

wnext [count] wn[!] [[+num] filename]

Write current buffer and open next file in argument list, or the
count next file if specified. If filename is specified, edit it next. With

592 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

write

the +num argument, begin editing on line num. num may also be a
pattern of the form /pattern. {vim}

write [address] w[!] [[>>] file]

Write lines specified by address to file, or write full contents of
buffer if address is not specified. If file is also omitted, save the
contents of the buffer to the current filename. If >> file is used,
append lines to the end of the specified file. Add a ! to force the
editor to write over any current contents of file.

Examples

:1,10w name_list Copy first 10 lines to file name_list
:50w >> name_list Now append line 50

write [address] w !command

Write lines specified by address to command.

Example

:1,66w !pr -h myfile | lp Print first page of file

wq wq[!]

Write and quit the file in one action. The file is always written. The
! flag forces the editor to write over any current contents of file.

wqall wqa[!]

Write all changed buffers and quit the editor. Add ! to force
writing of any buffers marked readonly. xall is another alias for
this command. {vim}

X X

Prompt for an encryption key. This can be preferable to :set key as
typing the key is not echoed to the console. To remove an encryp-
tion key, just reset the key option to an empty value. {vim}

xit x

Write the file if it was changed since the last write; then quit.

yank [address] y [char] [count]

Place lines specified by address in named register char. Register
names are the lowercase letters a–z. Uppercase names append text
to the corresponding register. If no char is given, place lines in the

Alphabetical Summary of ex Commands | 593

vi, ex, and vim

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

!

general register. count specifies the number of lines to yank,
starting with address.

Example

:101,200 ya a Copy lines 100–200 to register “a”

z [address] z [type] [count]

Print a window of text with the line specified by address at the top.
count specifies the number of lines to be displayed.

Type

+ Place specified line at the top of the window (default).

- Place specified line at the bottom of the window.

. Place specified line in the center of the window.

^ Print the previous window.

= Place specified line in the center of the window and leave the
current line at this line.

& [address] & [options] [count]

Repeat the previous substitute (s) command. count specifies the
number of lines on which to substitute, starting with address.
options are the same as for the substitute command.

Examples

:s/Overdue/Paid/ Substitute once on current line
:g/Status/& Redo substitution on all “Status” lines

@ [address] @ [char]

Execute contents of register specified by char. If address is given,
move cursor to the specified address first. If char is @, repeat the
last @ command.

= [address] =

Print the line number of the line indicated by address. Default is
line number of the last line.

! [address] !command

Execute Unix command in a shell. If address is specified, use the
lines contained in address as standard input to command, and
replace the lines with the output and error output. (This is called
filtering the text through the command.)

594 | Chapter 9: The vi, ex, and vim Editors

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

< >

Examples

:!ls List files in the current directory
:11,20!sort -f Sort lines 11–20 of current file

< > [address] < [count]

 or
[address] > [count]

Shift lines specified by address either left (<) or right (>). Only
leading spaces and tabs are added or removed when shifting lines.
count specifies the number of lines to shift, starting with address.
The shiftwidth option controls the number of columns that are
shifted. Repeating the < or > increases the shift amount. For
example, :>>> shifts three times as much as :>.

~ [address] ~ [count]

Replace the last used regular expression (even if from a search, and
not from an s command) with the replacement pattern from the
most recent s (substitute) command. This is rather obscure; see
Chapter 6 of Learning the vi Editor for details.

address address

Print the lines specified in address.

ENTER Print the next line in the file. (For ex only, not from the : prompt
in vi.)

595

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 10sed

10
The sed Editor

The sed “stream editor” is one of the most prominent Unix text processing tools.
It is most often used for performing simple substitutions on data streams going
through pipelines, but sed scripts can be written to do much more.

This chapter presents the following topics:

• Conceptual overview of sed

• Command-line syntax

• Syntax of sed commands

• Group summary of sed commands

• Alphabetical summary of sed commands

Source code for GNU sed is available from ftp://ftp.gnu.org/gnu/sed/. The Free
Software Foundation’s home page for sed is http://www.gnu.org/software/sed/
sed.html. For more information on sed, see sed & awk, listed in the
Bibliography.

Conceptual Overview
The stream editor, sed, is a noninteractive editor. It interprets a script and
performs the actions in the script. sed is stream-oriented because, like many Unix
programs, input flows through the program and is directed to standard output.
For example, sort is stream-oriented; vi is not. sed’s input typically comes from a
file or pipe but it can also be taken from the keyboard. Output goes to the screen
by default but can be captured in a file or sent through a pipe instead. GNU sed
can edit files that use multibyte character sets.

596 | Chapter 10: The sed Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Typical Uses of sed

• Editing one or more files automatically.

• Simplifying repetitive edits to multiple files.

• Writing conversion programs.

sed Operation

sed operates as follows:

• Each line of input is copied into a “pattern space,” an internal buffer where
editing operations are performed.

• All editing commands in a sed script are applied, in order, to each line of
input.

• Editing commands are applied to all lines (globally) unless line addressing
restricts the lines affected.

• If a command changes the input, subsequent commands and address tests are
applied to the current line in the pattern space, not the original input line.

• The original input file is unchanged because the editing commands modify an
in-memory copy of each original input line. The copy is sent to standard out-
put (but can be redirected to a file).

• sed also maintains the “hold space,” a separate buffer that can be used to save
data for later retrieval.

Command-Line Syntax
The syntax for invoking sed has two forms:

sed [-n] [-e] 'command' file(s)
sed [-n] -f scriptfile file(s)

The first form allows you to specify an editing command on the command line,
surrounded by single quotes. The second form allows you to specify a scriptfile, a
file containing sed commands. Both forms may be used together, and they may be
used multiple times. If no file(s) is specified, sed reads from standard input.

Standard Options

The following options are recognized:

-n Suppress the default output; sed displays only those lines specified with the p
command or with the p flag of the s command.

-e cmd
Next argument is an editing command. Necessary if multiple scripts or
commands are specified.

-f file
Next argument is a file containing editing commands.

Command-Line Syntax | 597

sed

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

If the first line of the script is #n, sed behaves as if -n had been specified.

Multiple -e and -f options may be provided, and they may be mixed. The final
script consists of the concatenation of all the script and file arguments.

GNU sed Options

GNU sed accepts a number of additional command-line options, as well as long-
option equivalents for the standard options. The GNU sed options are:

-e cmd, --expression cmd
Use cmd as editing commands.

-f file, --file file
Obtain editing commands from file.

--help
Print a usage message and exit.

-i[suffix], --in-place[=suffix]
Edit files in place, overwriting the original file. If optional suffix is supplied,
use it for renaming the original file as a backup file. See the GNU sed online
Info documentation for the details.

-l len, --line-length len
Set the line length for the l command to len characters.

-n, --quiet, --silent
Suppress the default output; sed displays only those lines specified with the p
command or with the p flag of the s command.

--posix
Disable all GNU extensions. Setting POSIXLY_CORRECT in the environ-
ment merely disables those extensions that are incompatible with the POSIX
standard.

-r, --regex-extended
Use Extended Regular Expressions instead of Basic Regular Expressions. See
Chapter 7 for more information.

-s, --separate
Instead of considering the input to be one long stream consisting of the
concatenation of all the input files, treat each file separately. Line numbers
start over with each file; the address $ refers to the last line of each file; files
read by the R command are rewound; and range addresses (/x/,/y/) may not
cross file boundaries.

-u, --unbuffered
Buffer input and output as little as possible. Useful for editing the output of
tail -f when you don’t want to wait for the output.

--version
Print the version of GNU sed and a copyright notice, and then exit.

598 | Chapter 10: The sed Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Syntax of sed Commands
sed commands have the general form:

[address[,address]][!]command [arguments]

commands consist of a single letter or symbol; they are described later, by group
and alphabetically. arguments include the label supplied to b or t, the filename
supplied to r or w, and the substitution flags for s. addresses are described below.

Pattern Addressing

A sed command can specify zero, one, or two addresses. In POSIX sed, an address
has one of the forms in the following table. Regular expressions are described in
Chapter 7. Additionally, \n can be used to match any newline in the pattern space
(resulting from the N command), but not the newline at the end of the pattern
space.

GNU sed allows additional address forms:

Address Meaning

/pattern/ Lines that match pattern.

\;pattern; Like previous, but use semicolon as the delimiter instead of slash. Any
character may be used. This is useful if pattern contains multiple slash
characters.

N Line number N.

$ The last input line.

If the command specifies: Then the command is applied to:

No address Each input line.

One address Any line matching the address. Some commands accept only
one address: a, i, r, q, and =.

Two comma-separated
addresses

First matching line and all succeeding lines up to and
including a line matching the second address.

An address followed by ! All lines that do not match the address.

Address Meaning

/pattern/i Match pattern, ignoring case. I may be used instead of i.

/pattern/m Match pattern, allowing ^ and $ to match around an embedded newline.
M may be used instead of m.

0,/pattern/ Similar to 1,/pattern/, but if line 1 matches pattern, it will end the range.

address,+N Matches line matching address, and the N following lines.

address~incr Matches line matching address, and every incr lines after it. For example,
42~3 matches 42, 45, 48, and so on.

Syntax of sed Commands | 599

sed

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examples

Braces ({}) are used in sed to nest one address inside another or to apply multiple
commands at a single matched address.

[/pattern/[,/pattern/]]{
command1
command2
}

The opening curly brace must end its line, and the closing curly brace must be on
a line by itself. Be sure there are no spaces after the braces.

GNU sed Regular Expression Extensions

With the -r option, GNU sed uses Extended Regular Expressions instead of Basic
Regular Expressions. (See Chapter 7 for more information.) However, even
without -r, you can use additional escape sequences for more powerful text
matching. The following escape sequences are valid only in regular expressions:

The following escape sequences may be used anywhere.

Command Action performed

s/xx/yy/g Substitute on all lines (all occurrences).

/BSD/d Delete lines containing BSD.

/^BEGIN/,/^END/p Print between BEGIN and END, inclusive.

/SAVE/!d Delete any line that doesn’t contain SAVE.

/BEGIN/,/END/!s/xx/yy/g Substitute on all lines, except between BEGIN and END.

\b Matches on a word boundary, where of the two surrounding characters (x\by)
one is a word-constituent character and the other is not.

\B Matches on a nonword boundary, where both of the two surrounding charac-
ters (x\By) are either word-constituent or not word-constituent.

\w Matches any word-constituent character (i.e., a letter, digit, or underscore).
\W Matches any non-word-constituent character (i.e., anything that is not a

letter, digit, or underscore).
\` Matches the beginning of the pattern space. This is different from ^ when the

m modifier is used for a pattern or the s command.
\' Matches the end of the pattern space. This is different from $ when the m

modifier is used for a pattern or the s command.

\a The ASCII BEL character.
\f The ASCII formfeed character.
\n The ASCII newline character.
\r The ASCII carriage return character.
\v The ASCII vertical tab character.
\dNN The character whose ASCII decimal value is NN (version 4.0 and later).
\oNN The character whose ASCII octal value is NN (version 4.0 and later).
\xNN The character whose ASCII hexadecimal value is NN (version 4.0 and later).

600 | Chapter 10: The sed Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Group Summary of sed Commands
In the lists that follow, the sed commands are grouped by function and are
described tersely. Full descriptions, including syntax and examples, can be found
in the following section, “Alphabetical Summary.” Commands marked with a †
are specific to GNU sed.

Basic Editing

Line Information

Input/Output Processing

Yanking and Putting

Branching Commands

a\ Append text after a line.
c\ Replace text (usually a text block).
i\ Insert text before a line.
d Delete lines.
s Make substitutions.
y Translate characters (like Unix tr).

= Display line number of a line.
l Display control characters in ASCII.
p Display the line.

e† Execute commands.
n Skip current line and go to the next line.
r Read another file’s contents into the output stream.
R† Read one line from a file into the output.
w Write input lines to another file.
W† Write first line in pattern space to another file.
q Quit the sed script (no further output).
Q† Quit without printing the pattern space.
v† Require a specific version of GNU sed to run the script.

h Copy into hold space; wipe out what’s there.
H Copy into hold space; append to what’s there.
g Get the hold space back; wipe out the destination line.
G Get the hold space back; append to the pattern space.
x Exchange contents of the hold and pattern spaces.

b Branch to label or to end of script.
t Same as b, but branch only after substitution.

Alphabetical Summary of sed Commands | 601

sed

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

a

Multiline Input Processing

Alphabetical Summary of sed Commands
GNU sed lets you use the filenames /dev/stdin, /dev/stdout, and /dev/stderr to
refer to standard input, output, and error respectively for the r, R, w, and W
commands and the w flag to the s command.

GNU-specific commands or extensions are noted with {G} in the command
synopsis. When the GNU version allows a command to have two addresses, the
command is performed for each input line within the range.

#

Begin a comment in a sed script. Valid only as the first character of
the first line. (Some versions, including GNU sed, allow comments
anywhere, but it is better not to rely on this.) If the first line of the
script is #n, sed behaves as if -n had been specified.

: :label

Label a line in the script for the transfer of control by b or t.
According to POSIX, sed must support labels that are unique in the
first eight characters. GNU sed has no limit, but some older
versions only support up to seven characters.

= [/pattern/]=
[address1[,address2]]= {G}

Write to standard output the line number of each line addressed by
pattern.

a [address]a\
text
[address1[,address2]]a \ {G}
text

Append text following each line matched by address. If text goes
over more than one line, newlines must be “hidden” by preceding
them with a backslash. The text is terminated by the first newline
that is not hidden in this way. The text is not available in the

T† Same as t, but branch only if no successful substitutions.
:label Label branched to by t or b.

N Read another line of input (creates embedded newline).
D Delete up to the embedded newline.
P Print up to the embedded newline.

602 | Chapter 10: The sed Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

b

pattern space, and subsequent commands cannot be applied to it.
The results of this command are sent to standard output when the
list of editing commands is finished, regardless of what happens to
the current line in the pattern space.

The GNU version accepts two addresses, and allows you to put the
first line of text on the same line as the a command.

Example

$a\
This goes after the last line in the file\
(marked by $). This text is escaped at the\
end of each line, except for the last one.

b [address1[,address2]]b[label]

Unconditionally transfer control to :label elsewhere in script. That
is, the command following the label is the next command applied
to the current line. If no label is specified, control falls through to
the end of the script, so no more commands are applied to the
current line.

Example

Ignore HTML tables; resume script after </table>:
/<table/,/<\/table>/b

c [address1[,address2]]c\
text

Replace (change) the lines selected by the address(es) with text.
(See a for details on text.) When a range of lines is specified, all
lines are replaced as a group by a single copy of text. The contents
of the pattern space are, in effect, deleted and no subsequent
editing commands can be applied to the pattern space (or to text).

Example

Replace first 100 lines in a file:
1,100c\
\
<First 100 names to be supplied>

d [address1[,address2]]d

Delete the addressed line (or lines) from the pattern space. Thus,
the line is not passed to standard output. A new line of input is
read, and editing resumes with the first command in the script.

Example

Delete all empty lines, including lines with just whitespace:
/^[❑➔]*$/d

Alphabetical Summary of sed Commands | 603

sed

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

G

D [address1[,address2]]D

Delete the first part (up to embedded newline) of a multiline
pattern space created by the N command and resume editing with
the first command in the script. If this command empties the
pattern space, then a new line of input is read, as if the d command
had been executed.

Example

Strip multiple blank lines, leaving only one:
/^$/{
N
/^\n$/D
}

e [address1[,address2]]e [command] {G}

With command, execute the command and send the result to stan-
dard output. Without command, execute the contents of the
pattern space as a command, and replace the pattern space with
the results.

g [address1[,address2]]g

Paste the contents of the hold space (see h and H) back into the
pattern space, wiping out the previous contents of the pattern
space. The Example shows a simple way to copy lines.

Example

This script collects all lines containing the word Item: and copies
them to a place marker later in the file. The place marker is
overwritten:

/Item:/H
/<Replace this line with the item list>/g

G [address1[,address2]]G

Same as g, except that a newline and the hold space are pasted to
the end of the pattern space instead of overwriting it. The Example
shows a simple way to “cut and paste” lines.

Example

This script collects all lines containing the word Item: and moves
them after a place marker later in the file. The original Item: lines
are deleted.

/Item:/{
H
d
}
/Summary of items:/G

604 | Chapter 10: The sed Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

h

h [address1[,address2]]h

Copy the pattern space into the hold space, a special temporary
buffer. The previous contents of the hold space are obliterated. You
can use h to save a line before editing it.

Example

Edit a line; print the change; replay the original
/Unix/{
h
s/.* Unix \(.*\) .*/\1:/
p
x
}

Sample input:

This describes the Unix ls command.
This describes the Unix cp command.

Sample output:

ls:
This describes the Unix ls command.
cp:
This describes the Unix cp command.

H [address1[,address2]]H

Append a newline and then the contents of the pattern space to the
contents of the hold space. Even if the hold space is empty, H still
appends a newline. H is like an incremental copy. See the Examples
under g and G.

i [address]i\
text
[address1[,address2]]i \ {G}
text

Insert text before each line matched by address. (See a for details on
text.)

The GNU version accepts two addresses, and allows you to put the
first line of text on the same line as the i command.

Example

/Item 1/i\
The five items are listed below:

Alphabetical Summary of sed Commands | 605

sed

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

N

l [address1[,address2]]l
[address1[,address2]]l [len] {G}

List the contents of the pattern space, showing nonprinting charac-
ters as ASCII codes. Long lines are wrapped. With GNU sed, len is
the character position at which to wrap long lines. A value of 0
means to never break lines.

n [address1[,address2]]n

Read the next line of input into pattern space. The current line is
sent to standard output, and the next line becomes the current line.
Control passes to the command following n instead of resuming at
the top of the script.

Example

In DocBook/XML, titles follow section tags. Suppose you are using
a convention where each opening section tag is on a line by itself,
with the title on the following line. To print all the section titles,
invoke this script with sed -n:

/<sect[1-4]/{
n
p
}

N [address1[,address2]]N

Append the next input line to contents of pattern space; the new
line is separated from the previous contents of the pattern space by
a newline. (This command is designed to allow pattern matches
across two lines.) By using \n to match the embedded newline, you
can match patterns across multiple lines. See the Example under D.

Examples

Like the Example in n, but print the section tag line as well as
header title:

/<sect[1-4]/{
N
p
}

Join two lines (replace newline with space):

/<sect[1-4]/{
N
s/\n/ /
p
}

606 | Chapter 10: The sed Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

p

p [address1[,address2]]p

Print the addressed line(s). Note that this can result in duplicate
output unless default output is suppressed by using #n or the -n
command-line option. Typically used before commands that
change control flow (d, n, b), which might prevent the current line
from being output. See the Examples under h, n, and N.

P [address1[,address2]]P

Print first part (up to embedded newline) of multiline pattern space
created by N command. Same as p if N has not been applied to a
line.

Example

Suppose you have function references in two formats:

function(arg1, arg2)
function(arg1,
 arg2)

The following script changes argument arg2, regardless of whether
it appears on the same line as the function name:

s/function(arg1, arg2)/function(arg1, XX)/
/function(/{
N
s/arg2/XX/
P
D
}

q [address]q
[address]q [value] {G}

Quit when address is encountered. The addressed line is first
written to the output (if default output is not suppressed), along
with any text appended to it by previous a or r commands. GNU
sed allows you to provide value, which is used as the exit status.

Examples

Delete everything after the addressed line:

/Garbled text follows:/q

Print only the first 50 lines of a file:

50q

Q [address]Q [value] {G}

Quits processing, but without printing the pattern space. If value is
provided, it is used as sed’s exit status.

Alphabetical Summary of sed Commands | 607

sed

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

s

r [address]r file
[address1[,address2]]r file {G}

Read contents of file and append to the output after the contents of
the pattern space. There must be exactly one space between the r
and the filename. The GNU version accepts two addresses.

Example

/The list of items follows:/r item_file

R [address1[,address2]]R file {G}

Read one line of file and append to the output after the contents of
the pattern space. Successive R commands read successive lines
from file.

s [address1[,address2]]s/pattern/replacement/[flags]

Substitute replacement for pattern on each addressed line. If pattern
addresses are used, the pattern // represents the last pattern
address specified. Any delimiter may be used. Use \ within pattern
or replacement to escape the delimiter. The following flags can be
specified (those marked with a † are specific to GNU sed):

n Replace nth instance of pattern on each addressed line. n is
any number in the range 1 to 512, and the default is 1.

e† If the substitution was made, execute the contents of the
pattern space as a shell command and replace the pattern
space with the results.

g Replace all instances of pattern on each addressed line, not
just the first instance.

i or I†
Do a case-insensitive regular expression match.

m or M†
Allow ^ and $ to match around a newline embedded in the
pattern space.

p Print the line if the substitution is successful. If several succes-
sive substitutions are successful, sed prints multiple copies of
the line.

w file
Write the line to file if a replacement was done. In Unix sed, a
maximum of 10 different files can be opened.

GNU sed allows you to use the special filenames /dev/stdout
and /dev/stderr to write to standard output or standard
error, respectively.

608 | Chapter 10: The sed Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

t

Within the replacement, GNU sed accepts special escape
sequences, with the following meanings:

Examples

Here are some short, commented scripts:

Change third and fourth quote to (and):
/function/{
s/"/)/4
s/"/(/3
}

Remove all quotes on a given line:
/Title/s/"//g

Remove first colon and all quotes; print resulting
lines:
s/://p
s/"//gp

Change first "if" but leave "ifdef" alone:
/ifdef/!s/if/ if/

t [address1[,address2]]t [label]

Test if successful substitutions have been made on addressed lines,
and if so, branch to the line marked by :label. (See b and :.) If label
is not specified, control branches to the bottom of the script. The t
command is like a case statement in the C programming language
or the various shell programming languages. You test each case;
when it’s true, you exit the construct.

Example

Suppose you want to fill empty fields of a database. You have this:

ID: 1 Name: greg Rate: 45
ID: 2 Name: dale
ID: 3

You want this:

ID: 1 Name: greg Rate: 45 Phone: ??
ID: 2 Name: dale Rate: ?? Phone: ??
ID: 3 Name: ???? Rate: ?? Phone: ??

\L Lowercase the replacement text until a terminating \E or \U.
\l Lowercase the following character only.
\U Uppercase the replacement text until a terminating \E or \L.
\u Uppercase the following character only.
\E Terminate case conversion from \L or \U.

Alphabetical Summary of sed Commands | 609

sed

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

w

You need to test the number of fields already there. Here’s the
script (fields are tab-separated):

#n
/ID/{
s/ID: .* Name: .* Rate: .*/& Phone: ??/p
t
s/ID: .* Name: .*/& Rate: ?? Phone: ??/p
t
s/ID: .*/& Name: ???? Rate: ?? Phone: ??/p
}

T [address1[,address2]]T [label] {G}

Like t, but only branches to label if there were not any successful
substitutions. (See b, t, and :.) If label is not specified, control
branches to the bottom of the script.

v [address1[,address2]]v [version] {G}

This command doesn’t do anything. You use it to require GNU sed
for your script. This works, since non-GNU versions of sed don’t
implement the command at all, and will therefore fail. If you
supply a specific version, then GNU sed fails if the required version
is newer than the one executing the script.

w [address1[,address2]]w file

Append contents of pattern space to file. This action occurs when
the command is encountered rather than when the pattern space is
output. Exactly one space must separate the w and the filename.
This command creates the file if it does not exist; if the file exists,
its contents are overwritten each time the script is executed.
Multiple write commands that direct output to the same file
append to the end of the file.

Most Unix versions of sed allow a maximum of only 10 different
files to be opened in a script. The GNU version does not have this
limit.

GNU sed allows you to use the special filenames /dev/stdout and
/dev/stderr to write to standard output or standard error,
respectively.

Example

Store HTML tables in a file
/<table/,/<\/table>/w tables.html

610 | Chapter 10: The sed Editor

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

W

W [address1[,address2]]W file

Like w, but only write the contents of the first line in the pattern
space to the file.

x [address1[,address2]]x

Exchange the contents of the pattern space with the contents of the
hold space. See h for an example.

y [address1[,address2]]y/abc/xyz/

Translate characters. Change every instance of a to x, b to y, c to z,
etc.

Example

Change item 1, 2, 3 to Item A, B, C ...
/^item [1-9]/y/i123456789/IABCDEFGHI/

611

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 11awk

11
The awk Programming

Language

The awk programming language is often used for text and string manipulation
within shell scripts, particularly when input data can be viewed as records and
fields. However, it is also an elegant and capable programming language that
allows you to accomplish a lot with very little work.

This chapter presents the following topics:

• Conceptual overview

• Command-line syntax

• Patterns and actions

• Built-in variables

• Operators

• Variables and array assignment

• User-defined functions

• gawk-specific facilities

• Implementation limits

• Group listing of awk functions and commands

• Alphabetical summary of awk functions and commands

• Source code

For more information, see sed & awk and Effective awk Programming, listed in the
Bibliography.

Conceptual Overview
awk is a pattern-matching program for processing files, especially when each line
has a simple field-oriented layout. The new version of awk, called nawk, provides

612 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

additional capabilities.* Every modern Unix system comes with a version of new
awk, and its use is recommended over old awk. The GNU version of awk, called gawk,
implements new awk and provides a number of additional features.

Different systems vary in what new and old awk are called. Some have oawk and awk,
for the old and new versions, respectively. Others have awk and nawk. Still others
only have awk, which is the new version. This example shows what happens if
your awk is the old one:

$ awk 1 /dev/null
awk: syntax error near line 1
awk: bailing out near line 1

awk will exit silently if it is the new version.

The POSIX standard for awk is based on new awk, and the standard uses the simple
designation awk for that language. Thus, we do also. If your system’s awk is the old
one, find the new one, and use it for your programs.

Solaris is the only modern Unix system that persists in having old awk
as the default version. You should be sure to put /usr/xpg4/bin in
your shell’s search path before /usr/bin, so that you will get a POSIX-
compliant version of awk. Alternatively, just install the GNU version.

Items described here as “common extensions” are often available in different
versions of new awk, as well as in gawk, but should not be used if strict portability
of your programs is important to you.

The freely available versions of awk described in the section “Source Code,” later in
this chapter, all implement new awk.

With awk, you can:

• Think of a text file as made up of records and fields in a textual database.

• Perform arithmetic and string operations.

• Use programming constructs such as loops and conditionals.

• Produce formatted reports.

• Define your own functions.

• Execute Unix commands from a script.

• Process the results of Unix commands.

• Process command-line arguments gracefully.

• Work easily with multiple input streams.

• Flush open output files and pipes (with the latest Bell Laboratories version of awk).

In addition, with GNU awk (gawk), you can:

• Use regular expressions to separate records, as well as fields.

• Skip to the start of the next file, not just the next record.

* It really isn’t so new. The additional features were added in 1984, and it was first shipped with
System V Release 3.1 in 1987.

Command-Line Syntax | 613

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

• Perform more powerful string substitutions.

• Sort arrays.

• Retrieve and format system time values.

• Use octal and hexadecimal constants in your program.

• Do bit manipulation.

• Internationalize your awk programs, allowing strings to be translated into a
local language at runtime.

• Perform two-way I/O to a coprocess.

• Open a two-way TCP/IP connection to a socket.

• Dynamically add built-in functions.

• Profile your awk programs.

Command-Line Syntax
The syntax for invoking awk has two forms:

awk [options] 'script' var=value file(s)
awk [options] -f scriptfile var=value file(s)

You can specify a script directly on the command line, or you can store a script in
a scriptfile and specify it with -f. POSIX awk allows multiple -f scripts. Variables
can be assigned a value on the command line. The value can be a string or
numeric constant, a shell variable ($name), or a command substitution (`cmd`), but
the value is available only after the BEGIN statement is executed.

awk operates on one or more files. If none are specified (or if - is specified), awk
reads from the standard input.

Standard Options

The standard options are:

-Ffs
Set the field separator to fs. This is the same as setting the built-in variable FS.
POSIX awk allows fs to be a regular expression. Each input line, or record, is
divided into fields by white space (spaces or TABs) or by some other user-
definable field separator. Fields are referred to by the variables $1, $2,…, $n. $0
refers to the entire record.

-v var=value
Assign a value to variable var. This allows assignment before the script begins
execution.

For example, to print the first three (colon-separated) fields of each record on
separate lines:

awk -F: '{ print $1; print $2; print $3 }' /etc/passwd

Many examples are shown later in the section “Simple Pattern-Action Examples.”

614 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Important gawk Options

Besides the standard command-line options, gawk has a large number of addi-
tional options. This section lists those that are of most value in day-to-day use.
Any unique abbreviation of these options is acceptable.

--dump-variables[=file]
When the program has finished running, print a sorted list of global variables
and their types and final values to file. The default file is awkvars.out.

--gen-po
Read the awk program and print all strings marked as translatable to standard
output in the form of a GNU gettext Portable Object file. See the later section
“Internationalization,” for more information.

--help
Print a usage message to standard error and exit.

--lint[=fatal]
Enable checking of nonportable or dubious constructs, both when the
program is read, and as it runs. With an argument of fatal, lint warnings
become fatal errors.

--non-decimal-data
Allow octal and hexadecimal data in the input to be recognized as such. This
option is not recommended; use strtonum() in your program, instead.

--profile[=file]
With gawk, put a “prettyprinted” version of the program in file. Default is
awkprof.out. With pgawk (see the “Profiling” section later in this chapter), put
the profiled listing of the program in file.

--posix
Turn on strict POSIX compatibility, in which all common and gawk-specific
extensions are disabled.

--source='program text'
Use program text as the awk source code. Use this option with -f to mix
command line programs with awk library files.

--traditional
Disable all gawk-specific extensions, but allow common extensions (e.g., the
** operator for exponentiation).

--version
Print the version of gawk on standard error and exit.

Patterns and Procedures
awk scripts consist of patterns and actions:

pattern { action }

Both are optional. If pattern is missing, { action } is applied to all lines. If { action }
is missing, the matched line is printed.

Patterns and Procedures | 615

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Patterns

A pattern can be any of the following:

general expression
/regular expression/
relational expression
pattern-matching expression
BEGIN
END

• General expressions can be composed of quoted strings, numbers, operators,
function calls, user-defined variables, or any of the predefined variables
described later in the section “Built-in Variables.”

• Regular expressions use the extended set of metacharacters as described in
Chapter 7.

• The ^ and $ metacharacters refer to the beginning and end of a string (such as
the fields), respectively, rather than the beginning and end of a line. In partic-
ular, these metacharacters will not match at a newline embedded in the mid-
dle of a string.

• Relational expressions use the relational operators listed in the section “Opera-
tors,” later in this chapter. For example, $2 > $1 selects lines for which the sec-
ond field is greater than the first. Comparisons can be either string or numeric.
Thus, depending upon the types of data in $1 and $2, awk will do either a
numeric or a string comparison. This can change from one record to the next.

• Pattern-matching expressions use the operators ~ (matches) and !~ (doesn’t
match). See the section “Operators” later in this chapter.

• The BEGIN pattern lets you specify actions that take place before the first input
line is processed. (Generally, you process the command line and set global
variables here.)

• The END pattern lets you specify actions that take place after the last input
record is read.

• BEGIN and END patterns may appear multiple times. The actions are merged as
if there had been one large action.

Except for BEGIN and END, patterns can be combined with the Boolean operators ||
(or), && (and), and ! (not). An inclusive range of lines can also be specified using
comma-separated patterns:

pattern,pattern

Procedures

Procedures consist of one or more commands, function calls, or variable assign-
ments, separated by newlines or semicolons, and are contained within curly
braces. Commands fall into five groups:

• Variable or array assignments

• Input/output commands

• Built-in functions

616 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

• Control-flow commands

• User-defined functions

Simple Pattern-Action Examples

• Print first field of each line:
{ print $1 }

• Print all lines that contain pattern:
/pattern/

• Print first field of lines that contain pattern:
/pattern/ { print $1 }

• Select records containing more than two fields:
NF > 2

• Interpret input records as a group of lines up to a blank line. Each line is a
single field:

BEGIN { FS = "\n"; RS = "" }

• Print fields 2 and 3 in switched order, but only on lines whose first field
matches the string URGENT:

$1 ~ /URGENT/ { print $3, $2 }

• Count and print the number of lines matching pattern:
/pattern/ { ++x }
END { print x }

• Add numbers in second column and print the total:
{ total += $2 }
END { print "column total is", total}

• Print lines that contain fewer than 20 characters:
length($0) < 20

• Print each line that begins with Name: and that contains exactly 7 fields:
NF == 7 && /^Name:/

• Print the fields of each record in reverse order, one per line:
{
 for (i = NF; i >= 1; i--)
 print $i
}

Built-in Variables
All awk variables are included in gawk.

Operators | 617

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Operators
The following table lists the operators, in order of increasing precedence, that are
available in awk.

Version Variable Description

awk ARGC Number of arguments on the command line.

ARGV An array containing the command-line arguments, indexed
from 0 to ARGC – 1.

CONVFMT String conversion format for numbers ("%.6g"). (POSIX)

ENVIRON An associative array of environment variables.

FILENAME Current filename.

FNR Like NR, but relative to the current file.

FS Field separator (a space).

NF Number of fields in current record.

NR Number of the current record.

OFMT Output format for numbers ("%.6g"). (Pre-POSIX awk used this
for string conversion also.)

OFS Output field separator (a space).

ORS Output record separator (a newline).

RLENGTH Length of the string matched by match() function.

RS Record separator (a newline).

RSTART First position in the string matched by match() function.

SUBSEP Separator character for array subscripts ("\034").

$0 Entire input record.

$n nth field in current record; fields are separated by FS.

gawk ARGIND Index in ARGV of current input file.

BINMODE Controls binary I/O for input and output files. Use values of 1,
2, or 3 for input, output, or both kinds of files, respectively. Set
it on the command line to affect standard input, standard
output and standard error.

ERRNO A string indicating the error when a redirection fails for
getline or if close() fails.

FIELDWIDTHS A space-separated list of field widths to use for splitting up the
record, instead of FS.

IGNORECASE When true, all regular expression matches, string comparisons
and index() ignore case.

LINT Dynamically controls production of “lint” warnings. With a
value of "fatal", lint warnings become fatal errors.

PROCINFO An array containing information about the process, such as
real and effective UID numbers, process ID number, and so on.

RT The text matched by RS, which can be a regular expression in
gawk.

TEXTDOMAIN The text domain (application name) for internationalized
messages ("messages").

618 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

While ** and **= are common extensions, they are not part of
POSIX awk.

Variable and Array Assignment
Variables can be assigned a value with an = sign. For example:

FS = ","

Expressions using the operators +, -, /, and % (modulo) can be assigned to
variables.

Arrays can be created with the split() function (described later), or they can
simply be named in an assignment statement. Array elements can be subscripted
with numbers (array[1], …, array[n]) or with strings. Arrays subscripted by strings
are called associative arrays.* For example, to count the number of widgets you
have, you could use the following script:

/widget/ { count["widget"]++ } Count widgets
END { print count["widget"] } Print the count

You can use the special for loop to read all the elements of an associative array:

for (item in array)
process array[item]

The index of the array is available as item, while the value of an element of the
array can be referenced as array[item].

Symbol Meaning

= += -= *= /= %= ^=
**=

Assignment

?: C conditional expression

|| Logical OR (short-circuit)

&& Logical AND (short-circuit)

in Array membership

~ !~ Match regular expression and negation

< <= > >= != == Relational operators

(blank) Concatenation

+ - Addition, subtraction

* / % Multiplication, division, and modulus (remainder)

+ - ! Unary plus and minus, and logical negation

^ ** Exponentiation

++ -- Increment and decrement, either prefix or postfix

$ Field reference

* In fact, all arrays in awk are associative; numeric subscripts are converted to strings before using
them as array subscripts. Associative arrays are one of awk’s most powerful features.

User-Defined Functions | 619

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

You can use the in operator to test that an element exists by testing to see if its
index exists. For example:

if (index in array)
 ...

tests that array[index] exists, but you cannot use it to test the value of the element
referenced by array[index].

You can also delete individual elements of the array using the delete statement.
(See also the delete entry in the section “Alphabetical Summary of awk Functions
and Commands,” later in this chapter.)

Escape Sequences

Within string and regular expression constants, the following escape sequences
may be used.

The \x escape sequence is a common extension; it is not part of
POSIX awk.

Octal and Hexadecimal Constants in gawk

gawk allows you to use octal and hexadecimal constants in your program source
code. The form is as in C: octal constants start with a leading 0, and hexadecimal
constants with a leading 0x or 0X. The hexadecimal digits a–f may be in either
upper- or lowercase.

$ gawk 'BEGIN { print 042, 42, 0x42 }'
34 42 66

Use the strtonum() function to convert octal or hexadecimal input data into
numerical values.

User-Defined Functions
POSIX awk allows you to define your own functions. This makes it easy to encap-
sulate sequences of steps that need to be repeated into a single place, and reuse
the code from anywhere in your program.

Sequence Meaning Sequence Meaning

\a Alert (bell) \v Vertical tab

\b Backspace \\ Literal backslash

\f Form feed \nnn Octal value nnn
\n Newline \xnn Hexadecimal value nn
\r Carriage return \" Literal double quote (in strings)

\t TAB \/ Literal slash (in regular expressions)

620 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The following function capitalizes each word in a string. It has one parameter,
named input, and five local variables that are written as extra parameters:

capitalize each word in a string
function capitalize(input, result, words, n, i, w)
{
 result = ""
 n = split(input, words, " ")
 for (i = 1; i <= n; i++) {
 w = words[i]
 w = toupper(substr(w, 1, 1)) substr(w, 2)
 if (i > 1)
 result = result " "
 result = result w
 }
 return result
}

main program, for testing
{ print capitalize($0) }

With this input data:
A test line with words and numbers like 12 on it.

This program produces:
A Test Line With Words And Numbers Like 12 On It.

For user-defined functions, no space is allowed between the func-
tion name and the left parenthesis when the function is called.

Gawk-Specific Features
This section describes features unique to gawk.

Coprocesses and Sockets
gawk allows you to open a two-way pipe to another process, called a coprocess. This
is done with the |& operator used with getline and print or printf.

print database command |& "db_server"
"db_server" |& getline response

If the command used with |& is a filename beginning with /inet/, gawk opens a
TCP/IP connection. The filename should be of the following form:

/inet/protocol/lport/hostname/rport

The parts of the filename are:

protocol
One of tcp, udp, or raw, for TCP, UDP, or raw IP sockets, respectively. Note:
raw is currently reserved but unsupported.

lport
The local TCP or UPD port number to use. Use 0 to let the operating system
pick a port.

Gawk-Specific Features | 621

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

hostname
The name or IP address of the remote host to connect to.

rport
The port (application) on the remote host to connect to. A service name (e.g.,
tftp) is looked up using the C getservbyname() function.

Profiling

When gawk is built and installed, a separate program named pgawk (profiling gawk) is
built and installed with it. The two programs behave identically; however, pgawk
runs more slowly since it keeps execution counts for each statement as it runs.
When it is done, it automatically places an execution profile of your program in a
file named awkprof.out. (You can change the filename with the --profile option.)

The execution profile is a “prettyprinted” version of your program with execution
counts listed in the left margin. For example, after running this program:

$ pgawk '/bash$/ { nusers++ }
> END { print nusers, "users use Bash." }' /etc/passwd
16 users use Bash.

The execution profile looks like this:

 # gawk profile, created Mon Nov 1 14:34:38 2004

 # Rule(s)

35 /bash$/ { # 16
16 nusers++
 }

 # END block(s)

 END {
 1 print nusers, "users use Bash."
 }

If sent SIGUSR1, pgawk prints the profile and an awk function call stack trace, and
then keeps going. Multiple SIGUSR1 signals may be sent; the profile and trace will
be printed each time. This facility is useful if your awk program appears to be
looping, and you want to see if something unexpected is being executed.

If sent SIGHUP, pgawk prints the profile and stack trace, and then exits.

File Inclusion

The igawk program provides a file inclusion facility for gawk. You invoke it the same
way you do gawk: it passes all command-line arguments on to gawk. However, igawk
processes source files and command-line programs for special statements of the form:

@include file.awk

Such files are searched for along the list of directories specified by the AWKPATH
environment variable. When found, the @include line is replaced with the text of the
corresponding file. Included files may themselves include other files with @include.

622 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The combination of the AWKPATH environment variable and igawk makes it easy
to have and use libraries of awk functions.

Internationalization

You can internationalize your programs if you use gawk. This consists of choosing a
text domain for your program, marking strings that are to be translated, and if
necessary, using the bindtextdomain(), dcgettext(), and dcngettext() functions.

Localizing your program consists of extracting the marked strings, creating transla-
tions, and compiling and installing the translations in the proper place. Full
details are given in Effective awk Programming, cited in the Bibliography.

The internationalization features in gawk use GNU gettext. You may need to
install the GNU gettext tools to create translations if your system doesn’t already
have them. Here is a very brief outline of the steps involved.

1. Set TEXTDOMAIN to your text domain in a BEGIN block:
BEGIN { TEXTDOMAIN = "whizprog" }

2. Mark all strings to be translated by prepending a leading underscore:
printf(_"whizprog: can't open /dev/telepath (%s)\n",
 dcgettext(ERRNO)) > "/dev/stderr"

3. Extract the strings with the --gen-po option:
$ gawk --gen-po -f whizprog.awk > whizprog.pot

4. Copy the file for translating, and make the translations:
$ cp whizprog.pot esperanto.po
$ ed esperanto.po

5. Use the msgfmt program from GNU gettext to compile the translations. The
binary format allows fast lookup of the translations at runtime. The default
output is a file named messages:

$ msgfmt esperanto.po
$ mv messages esperanto.mo

6. Install the file in the standard location. This is usually done at program instal-
lation. The location can vary from system to system.

That’s it! gawk will automatically find and use the translated messages, if they exist.

Implementation Limits
Many versions of awk have various implementation limits, on things such as:

• Number of fields per record

• Number of characters per input record

• Number of characters per output record

• Number of characters per field

• Number of characters per printf string

• Number of characters in literal string

• Number of characters in character class

Alphabetical Summary of awk Functions and Commands | 623

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

• Number of files open

• Number of pipes open

• The ability to handle 8-bit characters and characters that are all zero (ASCII
NUL)

gawk does not have limits on any of the above items, other than those imposed by
the machine architecture and/or the operating system.

Group Listing of awk Functions and Commands
The following table classifies awk functions and commands.

The following functions are specific to gawk.

Alphabetical Summary of awk Functions
and Commands
The following alphabetical list of keywords and functions includes all that are
available in POSIX awk and gawk. Extensions that aren’t part of POSIX awk but that
are in both gawk and the Bell Laboratories awk are marked as {E}. Cases where gawk
has extensions are marked as {G}. Items that aren’t marked with a symbol are
available in all versions.

Function type Functions or commands

Arithmetic atan2 cos exp int log

rand sin sqrt srand

String asorta

a Available in gawk.

asortia gensuba gsub index

length match split sprintf strtonuma

sub substr tolower toupper

Control Flow break continue do/while exit for

if/else return while

I/O close fflushb

b Available in Bell Labs awk and gawk.

getline next nextfileb

print printf

Programming extensionb delete function system

Function type Functions or commands

Bit Manipulation and compl lshift or rshift

xor

Time mktime strftime systime

Translation bindtextdomain dcgettext dcngettext

624 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

#

#

Ignore all text that follows on the same line. # is used in awk scripts
as the comment character and is not really a command.

and and(expr1, expr2) {G}

Return the bitwise AND of expr1 and expr2, which should be
values that fit in a C unsigned long.

asort asort(src [,dest]) {G}

Sort the array src based on the element values, destructively
replacing the indices with values from one to the number of
elements in the array. If dest is supplied, copy src to dest and sort
dest, leaving src unchanged. Returns the number of elements in src.

asorti asorti(src [,dest]) {G}

Like asort(), but the sorting is done based on the indices in the
array, not based on the element values. For gawk 3.1.2 and later.

atan2 atan2(y, x)

Return the arctangent of y/x in radians.

bindtextdomain bindtextdomain(dir [,domain]) {G}

Look in directory dir for message translation files for text domain
domain (default: value of TEXTDOMAIN). Returns the directory where
domain is bound.

break break

Exit from a while, for, or do loop.

close close(expr)
close(expr, how) {G}

In most implementations of awk, you can only have up to 10 files
open simultaneously and one pipe. Therefore, POSIX awk provides
a close() function that allows you to close a file or a pipe. It takes
the same expression that opened the pipe or file as an argument.
This expression must be identical, character by character, to the
one that opened the file or pipe—even whitespace is significant.

In the second form, close one end of either a TCP/IP socket or a
two-way pipe to a coprocess. how is a string, either "from" or "to".
Case does not matter.

Alphabetical Summary of awk Functions and Commands | 625

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

exit

compl compl(expr) {G}

Return the bitwise complement of expr, which should be a value
that fits in a C unsigned long.

continue continue

Begin next iteration of while, for, or do loop.

cos cos(x)

Return the cosine of x, an angle in radians.

dcgettext dcgettext(str [, dom [, cat]]) {G}

Return the translation of str for the text domain dom in message
category cat. Default text domain is value of TEXTDOMAIN. Default
category is "LC_MESSAGES".

dcngettext dcngettext(str1, str2, num [, dom [, cat]]) {G}

If num is one, return the translation of str1 for the text domain dom
in message category cat. Otherwise return the translation of str2.
Default text domain is value of TEXTDOMAIN. Default category is
"LC_MESSAGES". For gawk 3.1.1 and later.

delete delete array[element]
delete array {E}

Delete element from array. The brackets are typed literally. The
second form is a common extension, which deletes all elements of
the array in one shot.

do do
statement
while (expr)

Looping statement. Execute statement, then evaluate expr and if
true, execute statement again. A series of statements must be put
within braces.

exit exit [expr]

Exit from script, reading no new input. The END action, if it exists,
will be executed. An optional expr becomes awk’s return value.

626 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

exp

exp exp(x)

Return exponential of x (ex).

extension extension(lib, init) {G}

Dynamically load the shared object file lib, calling the function init
to initialize it. Return the value returned by the init function. This
function allows you to add new built-in functions to gawk. See
Effective awk Programming for the details.

fflush fflush([output-expr]) {E}

Flush any buffers associated with open output file or pipe output-
expr.

gawk extends this function. If no output-expr is supplied, it flushes
standard output. If output-expr is the null string (""), it flushes all
open files and pipes.

for for (init-expr; test-expr; incr-expr)
statement

C-style looping construct. init-expr assigns the initial value of a
counter variable. test-expr is a relational expression that is evalu-
ated each time before executing the statement. When test-expr is
false, the loop is exited. incr-expr is used to increment the counter
variable after each pass. All of the expressions are optional. A
missing test-expr is considered to be true. A series of statements
must be put within braces.

for for (item in array)
statement

Special loop designed for reading associative arrays. For each
element of the array, the statement is executed; the element can be
referenced by array[item]. A series of statements must be put
within braces.

function function name(parameter-list) {
statements
}

Create name as a user-defined function consisting of awk statements
that apply to the specified list of parameters. No space is allowed
between name and the left parenthesis when the function is called.

Alphabetical Summary of awk Functions and Commands | 627

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

if

gensub gensub(regex, str, how [, target]) {G}

General substitution function. Substitute str for matches of the
regular expression regex in the string target. If how is a number,
replace the howth match. If it is "g" or "G", substitute globally. If
target is not supplied, $0 is used. Return the new string value. The
original target is not modified. (Compare with gsub and sub.) Use & in
the replacement string to stand for the text matched by the pattern.

getline getline
getline [var] [< file]
command | getline [var]
command |& getline [var] {G}

Read next line of input.

The second form reads input from file and the third form reads the
output of command. All forms read one record at a time, and each
time the statement is executed it gets the next record of input. The
record is assigned to $0 and is parsed into fields, setting NF, NR, and
FNR. If var is specified, the result is assigned to var and $0 and NF are
not changed. Thus, if the result is assigned to a variable, the
current record does not change. getline is actually a function and it
returns 1 if it reads a record successfully, 0 if end-of-file is encoun-
tered, and –1 if for some reason it is otherwise unsuccessful.

The fourth form reads the output from coprocess command. See
the earlier section “Coprocesses and Sockets” for more
information.

gsub gsub(regex, str [, target])

Globally substitute str for each match of the regular expression
regex in the string target. If target is not supplied, default to $0.
Return the number of substitutions. Use & in the replacement string
to stand for the text matched by the pattern.

if if (condition)
statement1
[else
statement2]

If condition is true, do statement1; otherwise, do statement2 in
optional else clause. The condition can be an expression using any
of the relational operators <, <=, ==, !=, >=, or >, as well as the array
membership operator in, and the pattern-matching operators ~ and
!~ (e.g., if ($1 ~ /[Aa].*/)). A series of statements must be put
within braces. Another if can directly follow an else in order to
produce a chain of tests or decisions.

628 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

index

index index(str, substr)

Return the position (starting at 1) of substr in str, or zero if substr is
not present in str.

int int(x)

Return integer value of x by truncating any fractional part.

length length([arg])

Return length of arg, or the length of $0 if no argument.

log log(x)

Return the natural logarithm (base e) of x.

lshift lshift(expr, count) {G}

Return the result of shifting expr left by count bits. Both expr and
count should be values that fit in a C unsigned long.

match match(str, regex)
match(str, regex [, array]) {G}

Function that matches the pattern, specified by the regular expres-
sion regex, in the string str, and returns either the position in str
where the match begins, or 0 if no occurrences are found. Sets the
values of RSTART and RLENGTH to the start and length of the match,
respectively.

If array is provided, gawk puts the text that matched the entire regular
expression in array[0], the text that matched the first parenthesized
subexpression in array[1], the second in array[2], and so on.

mktime mktime(timespec) {G}

Turns timespec (a string of the form "YYYY MM DD HH MM SS [DST]"
representing a local time) into a time-of-day value in seconds since
Midnight, January 1, 1970, UTC.

next next

Read next input line and start new cycle through pattern/actions
statements.

Alphabetical Summary of awk Functions and Commands | 629

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rand

nextfile nextfile {E}

Stop processing the current input file and start new cycle through
pattern/actions statements, beginning with the first record of the
next file.

or or(expr1, expr2) {G}

Return the bitwise OR of expr1 and expr2, which should be values
that fit in a C unsigned long.

print print [output-expr[, ...]] [dest-expr]

Evaluate the output-expr and direct it to standard output followed by
the value of ORS. Each comma-separated output-expr is separated in
the output by the value of OFS. With no output-expr, print $0. The
output may be redirected to a file or pipe via the dest-expr, which is
described in the section “Output Redirections,” later in this chapter.

printf printf(format [, expr-list]) [dest-expr]

An alternative output statement borrowed from the C language. It
has the ability to produce formatted output. It can also be used to
output data without automatically producing a newline. format is a
string of format specifications and constants. expr-list is a list of
arguments corresponding to format specifiers. As for print, output
may be redirected to a file or pipe. See the section “printf Formats,”
later in the chapter, for a description of allowed format specifiers.

Like any string, format can also contain embedded escape
sequences: \n (newline) or \t (tab) being the most common. Spaces
and literal text can be placed in the format argument by quoting
the entire argument. If there are multiple expressions to be printed,
there should be multiple format specifiers.

Example

Using the script:

{ printf("The sum on line %d is %.0f.\n", NR, $1+$2) }

The following input line:

5 5

produces this output, followed by a newline:

The sum on line 1 is 10.

rand rand()

Generate a random number between 0 and 1. This function returns
the same series of numbers each time the script is executed, unless
the random number generator is seeded using srand().

630 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

return

return return [expr]

Used within a user-defined function to exit the function, returning
the value of expr. The return value of a function is undefined if expr
is not provided.

rshift rshift(expr, count) {G}

Return the result of shifting expr right by count bits. Both expr and
count should be values that fit in a C unsigned long.

sin sin(x)

Return the sine of x, an angle in radians.

split split(string, array [, sep])

Split string into elements of array array[1],…,array[n]. Return the
number of array elements created. The string is split at each occur-
rence of separator sep. If sep is not specified, FS is used.

sprintf sprintf(format [, expressions])

Return the formatted value of one or more expressions, using the
specified format. Data is formatted but not printed. See the section
“printf Formats,” later in the chapter, for a description of allowed
format specifiers.

sqrt sqrt(arg)

Return the square root of arg.

srand srand([expr])

Use optional expr to set a new seed for the random number gener-
ator. Default is the time of day. Return value is the old seed.

strftime strftime([format [,timestamp]]) {G}

Format timestamp according to format. Return the formatted
string. The timestamp is a time-of-day value in seconds since
Midnight, January 1, 1970, UTC. The format string is similar to
that of sprintf, in that it is a mixture of literal text and format
specifiers. If timestamp is omitted, it defaults to the current time. If
format is omitted, it defaults to a value that produces output
similar to that of the Unix date command. See the date entry in
Chapter 2 for a list.

Alphabetical Summary of awk Functions and Commands | 631

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

systime

strtonum strtonum(expr) {G}

Return the numeric value of expr, which is a string representing an
octal, decimal, or hexadecimal number in the usual C notations.
Use this function for processing nondecimal input data.

sub sub(regex, str [, target])

Substitute str for first match of the regular expression regex in the
string target. If target is not supplied, default to $0. Return 1 if
successful; 0 otherwise. Use & in the replacement string to stand for
the text matched by the pattern.

substr substr(string, beg [, len])

Return substring of string at beginning position beg (counting from
1), and the characters that follow to maximum specified length len.
If no length is given, use the rest of the string.

system system(command)

Function that executes the specified command and returns its exit
status. The status of the executed command typically indicates
success or failure. A value of 0 means that the command executed
successfully. A nonzero value indicates a failure of some sort. The
documentation for the command that you’re running will give you
the details.

awk does not make the output of the command available for
processing within the awk script. Use command | getline to read
the output of a command into the script.

systime systime() {G}

Return a time-of-day value in seconds since Midnight, January 1,
1970, UTC.

Example

Log the start and end times of a data-processing program:

BEGIN {
 now = systime()

mesg = strftime("Started at %Y-%m-%d %H:%M:%S", now)
 print mesg
}
process data ...
END {
 now = systime()
 mesg = strftime("Ended at %Y-%m-%d %H:%M:%S", now)
 print mesg
}

632 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tolower

tolower tolower(str)

Translate all uppercase characters in str to lowercase and return the
new string.*

toupper toupper(str)

Translate all lowercase characters in str to uppercase and return the
new string.

while while (condition)
 statement

Do statement while condition is true (see if for a description of allow-
able conditions). A series of statements must be put within braces.

xor xor(expr1, expr2) {G}

Return the bitwise XOR of expr1 and expr2, which should be
values that fit in a C unsigned long.

Output Redirections
For print and printf, dest-expr is an optional expression that directs the output to
a file or pipe.

> file
Directs the output to a file, overwriting its previous contents.

>> file
Appends the output to a file, preserving its previous contents. In both of
these cases, the file will be created if it does not already exist.

| command
Directs the output as the input to a system command.

|& command
Directs the output as the input to a coprocess. gawk only.

Be careful not to mix > and >> for the same file. Once a file has been opened with >,
subsequent output statements continue to append to the file until it is closed.

Remember to call close() when you have finished with a file, pipe, or coprocess.
If you don’t, eventually you will hit the system limit on the number of simulta-
neously open files.

* Very early versions of nawk don’t support tolower() and toupper(). However, they are now part
of the POSIX specification for awk.

Output Redirections | 633

aw
k

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

printf Formats

Format specifiers for printf and sprintf have the following form:

%[posn$][flag][width][.precision]letter

The control letter is required. The format conversion control letters are given in
the following table.

gawk allows you to provide a positional specifier after the % (posn$). A positional
specifier is an integer count followed by a $. The count indicates which argument
to use at that point. Counts start at one, and don’t include the format string. This
feature is primarily for use in producing translations of format strings. For
example:

$ gawk 'BEGIN { printf "%2$s, %1$s\n", "world", "hello" }'
hello, world

The optional flag is one of the following:

Character Description

c ASCII character.

d Decimal integer.

i Decimal integer. (Added in POSIX)

e Floating-point format ([-]d.precisione[+-]dd).

E Floating-point format ([-]d.precisionE[+-]dd).

f Floating-point format ([-]ddd.precision).

g e or f conversion, whichever is shortest, with trailing zeros removed.

G E or f conversion, whichever is shortest, with trailing zeros removed.

o Unsigned octal value.

s String.

u Unsigned decimal value.

x Unsigned hexadecimal number. Uses a–f for 10 to 15.

X Unsigned hexadecimal number. Uses A–F for 10 to 15.

% Literal %.

Character Description

- Left-justify the formatted value within the field.

space Prefix positive values with a space and negative values with a minus.

+ Always prefix numeric values with a sign, even if the value is positive.

Use an alternate form: %o has a preceding 0; %x and %X are prefixed with 0x
and 0X, respectively; %e, %E, and %f always have a decimal point in the
result; and %g and %G do not have trailing zeros removed.

0 Pad output with zeros, not spaces. This only happens when the field width
is wider than the converted result. This flag applies to all output formats,
even nonnumeric ones. (Unfortunately, not all awk implementations do
this correctly.)

' gawk 3.1.4 and later only. For numeric formats, in locales that support it,
supply a thousands-separator character.

634 | Chapter 11: The awk Programming Language

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The optional width is the minimum number of characters to output. The result
will be padded to this size if it is smaller. The 0 flag causes padding with zeros;
otherwise, padding is with spaces.

The precision is optional. Its meaning varies by control letter, as shown in this table:

Source Code
The following URLs indicate where to get source code for four freely available
versions of awk, and for GNU gettext.

 http://cm.bell-labs.com/~bwk
Brian Kernighan’s home page, with links to the source code for the latest
version of awk from Bell Laboratories.

 ftp://ftp.whidbey.net/pub/brennan/mawk1.3.3.tar.gz
Michael Brennan’s mawk. A very fast, very robust version of awk.

 ftp://ftp.gnu.org/gnu/gawk/
The Free Software Foundation’s version of awk, called gawk.

 http://www.gnu.org/software/gawk/gawk.html
The Free Software Foundation’s home page for gawk.

 http://awka.sourceforge.net
The home page for awka, a translator that turns awk programs into C, compiles
the generated C, and then links the object code with a library that performs
the core awk functions.

 ftp://ftp.gnu.org/gnu/gettext/
The source code for GNU gettext. Get this if you need to produce transla-
tions for your awk programs that use gawk.

Conversion Precision means

%d, %i, %o, %u, %x, %X The minimum number of digits to print.

%e, %E, %f The number of digits to the right of the decimal point.

%g, %G The maximum number of significant digits.

%s The maximum number of characters to print.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

III
Software Development

Part III describes important tools for software development. The Unix oper-
ating system earned its reputation by providing an unexcelled environment
for software development. RCS, CVS, Subversion, make, and GDB are major
contributors to the efficiency of this environment.

RCS allows multiple versions of a source file to be stored in a single archival
file. CVS goes further, enabling easy multideveloper access to a group of
shared source files. Subversion is a new version control system intended to
“build a better CVS.” make automatically updates a group of interrelated
programs. The GDB debugger lets you examine the state of your program as
it runs in order to find and fix problems.

Finally, an important part of software development is program documenta-
tion. Unix programs traditionally come with a “man page,” a file that
documents the program’s usage, for use with the man command. Manual
pages are written using the venerable troff text formatting program. troff
is no longer used for much else, though. Therefore, we have provided
enough information to enable you to write a manual page.

Chapter 12, Source Code Management: An Overview

Chapter 13, The Revision Control System

Chapter 14, The Concurrent Versions System

Chapter 15, The Subversion Version Control System

Chapter 16, The GNU make Utility

Chapter 17, The GDB Debugger

Chapter 18, Writing Manual Pages

637

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 12Managing Source Code

12
Source Code Management:

An Overview

The following chapters describe three popular source code management systems
for Unix. This chapter introduces the major concepts involved with using these
systems for users who may never have used one. If you’re already familiar with
source code management, feel free to skip ahead to the particular software suite
that interests you. See also the related books in the Bibliography.

This chapter covers the following topics:

• Introduction and terminology

• Usage models

• Unix source code management systems

• Other source code management systems

Introduction and Terminology
Source code management systems let you store and retrieve multiple versions of a
file. While originally designed for program source code, they can be used for any
kind of file: source code, documentation, configuration files, and so on. Modern
systems allow you to store binary files as well, such as image or audio data.

Source code management systems let you compare different versions of a file, as
well as do “parallel development.” In other words, you can work on two different
versions of a file at the same time, with the source code management system
storing both versions. You can then merge changes from two versions into a third
version. This will become more clear shortly. We’ll start by defining some terms.

Repository
A repository is where the source code management system stores its copy of
your file. Usually one Unix file is used to hold all the different versions of a
source file. Each source code management system uses its own format to

638 | Chapter 12: Source Code Management: An Overview

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

allow it to retrieve different versions easily, and to track who made what
changes, and when.

Sandbox
A sandbox is your personal, so-called “working copy” of the program or set of
documents under development. You edit your private copy of the file in your
own sandbox, returning changes to the source code management system
when you’re satisfied with the new version.

Check in, check out
You “check out” files from the repository, edit them, and then “check them
in” when you’re satisfied with your changes. Other developers working
against the same repository will not see your changes until after you check
them back in. Another term used for check-in is commit.

Log message
Every time you check in a file, you are prompted for a message describing the
changes you made. You should do so in a concise fashion. If your software
development practices include the use of a bug tracking system, you might
also wish to include the bug number or problem report (PR) number which
your change resolves.

Keyword substitutions
When you check out a file, the source code management system can replace
special keywords with values representing such things as the file’s version
number, the name of the user who made the most recent change, the date
and time the file was last changed, the file’s name, and so on. Each of the
systems described in this book uses an overlapping set of keywords. Some
systems always do keyword substitution, while others require that you explic-
itly enable the feature for each file.

Branch
A branch is a separate development path. For example, once you’ve released
version 1.0 of whizprog, you will wish to proceed with the development for
version 2.0. The main line of development is often called the trunk.

Now consider what happens when you wish to make a bug-fix release to
whizprog 1.0, to be named version 1.1. You create a separate branch, based on
the original 1.0 code, in a new sandbox. You perform all your development
there, without disturbing the development being done for the 2.0 release.

Tag
A tag is a name you give to a whole group of files at once, at whatever version
each individual file may be, in order to identify those files as part of a partic-
ular group. For example, you might create tags WHIZPROG-1_0-ALPHA,
WHIZPROG-1_0-BETA, WHIZPROG-1_0-RELEASE, and so on. This is a powerful
facility which should be used well, since it allows you to retrieve a “snap-
shot” of your entire development tree as it existed at different points in time.

Merging
Most typically, when development along a branch is completed, it becomes
necessary to merge the changes from that branch back into the main line of
development. In our hypothetical example, all the bugs fixed in whizprog 1.0 to

Usage Models | 639

M
anaging

Source Code

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

create version 1.1 should also be fixed in the ongoing 2.0 development. Source
code management systems can help you automate the process of merging.

Conflict
A conflict occurs when two developers make inconsistent changes to the same
part of a source file. Modern source code management systems detect the
conflict, usually marking the conflicting parts of the file in your working copy
using special markers. You first discuss the conflict with the other developer,
in order to arrive at a correct resolution of the conflict. Once that’s done, you
then resolve the conflict manually (by making the appropriate changes), and
then you check in the new version of the file.

Client/server
As with other “client/server” networking models, the idea here is that the
repository is stored on one machine, the server, and that different developers
may access the repository from multiple client systems. This powerful feature
facilitates distributed development, allowing developers to work easily on
their local systems, with the repository kept in a central place where it can be
easily accessed and administered.

Usage Models
Different systems have different conceptual “models” as to how they’re used.

Older systems such as SCCS and RCS use a “check out with locking” model. These
systems were developed before client/server computing, when software develop-
ment was done on centralized minicomputers and mainframes. In this model, the
repository is a central directory on the same machine where the developers work,
and each developer checks out a private copy into their own sandbox. In order to
avoid two developers making conflicting changes to a file, the file must be locked
when it’s checked out. Only one user may lock a particular version of a file at a
time. When that user has checked in their changes, they unlock the file so that the
next user can check in changes. If necessary, the second user may “break” the first
user’s lock, in which case the first user is notified via electronic mail.

This model works well for small projects where developers are co-located and can
communicate easily. As long as one developer locks a file when she checks it out,
another developer wishing to work with the file will know that he can’t until the
first one is done. The drawback is that such locking can slow down development
significantly.

Newer systems, such as CVS and Subversion, use a “copy, modify, merge” model.
In practice, when two developers wish to work on the same file, they usually end
up changing different, unrelated parts of the file. Most of the time each developer
can make changes without adversely affecting the other. Thus, files are not locked
upon checkout into a sandbox. Instead, the source code management system
detects conflicts and disallows a check-in when conflicts exist.

For example, consider two developers, dangermouse and penfold, who are both
working on whizprog.c. They each start with version 1.4 of the file. dangermouse
commits his changes, creating version 1.5. Before penfold can commit his

640 | Chapter 12: Source Code Management: An Overview

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

changes, the source code management system notices that the file has changed in
the repository. penfold must first merge dangermouse’s changes into his working
copy. If there are no conflicts, he can then commit his changes, creating version 1.6.
On the other hand, if there are conflicts, he must first resolve them (they’ll be
marked in the working copy), and only then may he commit his version.

The combination of the “copy, modify, merge” model with a networked client/
server facility creates a powerful environment for doing distributed development.
Developers no longer have to worry about file locks. Because the source code
management system enforces serialization (making sure that new changes are based
on the latest version in the repository), development can move more smoothly, with
little danger of miscommunication or that successive changes will be lost.

Unix Source Code Management Systems
There are several source code management systems for Unix.

Source Code Control System (SCCS)
SCCS is the original Unix source code management system. It was developed
in the late 1970s for the Programmer’s Workbench (PWB) Unix systems
within Bell Labs. It is still in use at a few large long-time Unix sites. However,
for a long time it was not available as a standard part of most commercial or
BSD Unix systems, and it did not achieve the wide-spread popularity of
other, later systems. (It is still available with Solaris.) SCCS uses a file storage
format that allows it to retrieve any version of a source file in constant time.

Revision Control System (RCS)
RCS was developed in the early 1980s at Purdue University by Walter F.
Tichy. It became popular in the Unix world when it was shipped with 4.2
BSD in 1983. At the time, Berkeley Unix was the most widely-used Unix
variant, even though to get it a site had to have a Unix license from AT&T.

RCS is easier to use than SCCS. Although it has a number of related
commands, only three or four are needed for day-to-day use, and they are
quickly mastered. A central repository is easy to use: you first create a direc-
tory for the sandbox. In the sandbox, you make a symbolic link to the
repository named RCS, and then all the developers can share the repository.
RCS uses a file format that is optimized for retrieving the most recent version
of a file.

Concurrent Versions System (CVS)
CVS was initially built as a series of shell scripts sitting atop RCS. Later it was
rewritten in C for robustness, although still using RCS commands to manage
the storage of files. However, for quite some time, CVS has had the RCS func-
tionality built into it, and no longer requires that RCS be available. The file
format continues to be the same. CVS was the first distributed source code
management system, and is currently the standard one for Unix systems, and
in particular for collaborative, distributed, Free, and Open Source develop-
ment projects.

Other Source Code Management Systems | 641

M
anaging

Source Code

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The repository is named when you create a sandbox, and is then stored in the
files in the sandbox, so that it need not be provided every time you run a CVS
command. Unlike SCCS and RCS, which provide multiple commands, CVS
has one main command (named cvs), which you use for just about every
operation.

Subversion
With increasing use, it became clear that CVS lacked some fundamental
capabilities. The Subversion project was started by several long-time CVS
users and developers with the explicit goal to “build a better CVS,” not
necessarily to explore uncharted territory in source code management
systems. Subversion is thus intentionally easy to learn for CVS users.
Subversion uses its own format for data storage, based on the Berkeley DB
in-process data library. Distributed use was designed in from day one,
providing useful facilities that leverage the capabilities of the well-known
Apache HTTP server.

RCS, CVS, and Subversion represent a progression, each one building on the
features of its predecessors. For example, all three share a large subset of the same
keyword substitutions, and command names are similar or identical in all three.
They also demonstrate the progression from centralized, locking-based develop-
ment to distributed, conflict-resolution–based development.

Other Source Code Management Systems
Besides the source code management systems covered in this book, several other
systems are worth knowing about. The following list, though, is by no means
exhaustive.

Arch
GNU Arch is a distributed source code management system similar to CVS
and Subversion. One of its significant strengths is that you can do off-line
development with it, working on multiple versions even on systems that are
not connected to the Internet and that cannot communicate with the central
repository. For more information, see http://www.gnu.org/software/gnu-arch/.

Codeville
Codeville is a distributed version control system in the early stages of devel-
opment. It is written in Python, is easy to set up and use, and shows a lot of
promise. For more information, see http://codeville.org/.

CSSC
CSSC is a free clone of SCCS. It intends to provide full compatibility with
SCCS, including file format, command names and options, and “bug for bug”
compatible behavior. If you have an existing SCCS repository, you should be
able to drop CSSC into your environment, in place of SCCS. CSSC can be
used to migrate from a commercial Unix system to a freely available clone,
such as GNU/Linux or a BSD system. For more information, see http://
directory.fsf.org/GNU/CSSC.html.

642 | Chapter 12: Source Code Management: An Overview

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Monotone
The web page for monotone describes it well:

monotone is a free distributed version control system. It provides a simple,
single-file transactional version store, with fully disconnected operation and
an efficient peer-to-peer synchronization protocol. It understands history-
sensitive merging, lightweight branches, integrated code review, and third
party testing. It uses cryptographic version naming and client-side RSA
certificates. It has good internationalization support, has no external depen-
dencies, runs on Linux, Solaris, Mac OS X, NetBSD, and Windows, and is
licensed under the GNU GPL.

For more information, see http://www.venge.net/monotone/.

643

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 13RCS

13
The Revision Control System

The Revision Control System (RCS) provides a series of commands for main-
taining multiple versions of files. It can manage both textual and binary data.
While primarily used for software development, RCS can manage other files as
well: documentation, textual databases, and so on.

This chapter presents the following topics:

• Overview of commands

• Basic operation

• General RCS specifications

• Alphabetical summary of commands

The Revision Control System (RCS) is designed to keep track of multiple file revi-
sions, thereby reducing the amount of storage space needed. With RCS you can
automatically store and retrieve revisions, merge or compare revisions, keep a
complete history (or log) of changes, and identify revisions using symbolic
keywords. RCS preserves execute permission on the files it manages, and you can
store binary data in RCS files.

RCS is not a standard part of Solaris. It can be obtained from the Free Software
Foundation (see http://www.gnu.org/software/rcs/). It typically does come with
GNU/Linux and Mac OS X. The Official RCS Homepage may be found at http://
www.cs.purdue.edu/homes/trinkle/RCS/. This chapter describes RCS Version 5.7.

For more information, see Applying RCS and SCCS, listed in the Bibliography.

Overview of Commands
The three most important RCS commands are:

ci Check in revisions (put a file under RCS control).
co Check out revisions.
rcs Set up or change attributes of RCS files.

644 | Chapter 13: The Revision Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Two commands provide information about RCS files:

You can compare RCS files with these commands:

The following commands help with configuration management. However, they
are considered optional, so they are not always installed:

Basic Operation
Normally, you maintain RCS files in a subdirectory called RCS, so the first step in
using RCS should be:

mkdir RCS

Next, you place an existing file (or files) under RCS control by running the check-
in command:

ci file

This creates a file called file,v in the RCS directory. file,v is called an RCS file, and
it stores all future revisions of file. When you run ci on a file for the first time, you
are prompted to describe the contents. ci then deposits file into the RCS file as
revision 1.1.

To edit a new revision, check out a copy:

co -l file

This causes RCS to extract a copy of file from the RCS file. You must lock the file
with -l to make it writable by you. This copy is called a working file. When you’re
done editing, you can record the changes by checking the working file back in
again:

ci file

This time, you are prompted to enter a log of the changes made, and the file is
deposited as revision 1.2. Note that a check-in normally removes the working file.
To retrieve a read-only copy, do a check-out without a lock:

co file

This is useful when you need to keep a copy on hand for compiling or searching.
As a shortcut to the previous ci/co, you could type:

ci -u file

ident Extract keyword values from an RCS file.
rlog Display a summary (log) about the revisions in an RCS file.

merge Incorporate changes from two files into a third file.
rcsdiff Report differences between revisions.
rcsmerge Incorporate changes from two RCS files into a third RCS file.

rcsclean Remove working files that have not been changed.
rcsfreeze Label the files that make up a configuration.

General RCS Specifications | 645

RCS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

This checks in the file but immediately checks out a read-only (“unlocked”) copy.
In practice, you would probably make a “checkpoint” of your working version
and then keep going, like this:

ci -l file

This checks in the file, and then checks it back out again, locked, for continued
work. To compare changes between a working file and its latest revision, you can
type:

rcsdiff file

Another useful command is rlog, which shows a summary of log messages. System
administrators can use the rcs command to set up the default behavior of RCS.

General RCS Specifications
This section discusses:

• Keyword substitution

• Keywords

• Example values

• Revision numbering

• Specifying the date

• Specifying states

• Standard options and environment variables

Keyword Substitution

RCS lets you place keyword variables in your working files. These variables are
later expanded into revision notes. You can then use the notes either as embedded
comments in the input file or as text strings that appear when the output is
printed. To create revision notes via keyword substitution, follow this procedure:

1. In your working file, type any of the keywords listed below.

2. Check the file in.

3. Check the file out again. Upon checkout, the co command expands each
keyword to include its value. That is, co replaces instances of:

$keyword$

 with:
$keyword:value $.

4. Subsequent check-in and check-out of a file updates any existing keyword
values. Unless otherwise noted below, existing values are replaced by new
values.

Many commands have a -k option that provides considerable flexibility during
keyword substitution.

646 | Chapter 13: The Revision Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Keywords

Example Values

Let’s assume that the file /projects/new/mydata has been checked in and out by a
user named arnold. Here’s what keyword substitution produces for each keyword,
for the second revision of the file:

$Author: arnold $

$Date: 2004/08/05 10:32:27 $

$Header: /projects/new/RCS/mydata,v 1.2 2004/08/05 10:32:27 arnold Exp arnold $

ID

$Locker: arnold $

$Log: mydata,v
Revision 1.2 2004/08/05 10:32:27 arnold
Added more important information.

Revision 1.1 2004/08/05 10:31:44 arnold
Initial revision

$Name: $

$RCSfile: mydata,v $

$Revision: 1.2 $

$Source: /projects/new/RCS/mydata,v $

$State: Exp $

$Author$ Username of person who checked in the revision.
$Date$ Date and time of check-in.
$Header$ A title that includes the RCS file’s full pathname, revision number, date,

author, state, and (if locked) the person who locked the file.
Id Same as $Header$, but exclude the full pathname of the RCS file.
$Locker$ Username of person who locked the revision. If the file isn’t locked, this

value is empty.
Log The message that was typed during check-in to describe the file,

preceded by the RCS filename, revision number, author, and date. Log
messages accumulate rather than being overwritten.
RCS uses the “comment leader” of the Log line for the log messages
left in the file. The comment leader stored in the RCS file is useful only
for exchanging files with older versions of RCS.

$Name$ The symbolic name used to check in the revision, if any.
$RCSfile$ The RCS filename, without its pathname.
$Revision$ The assigned revision number.
$Source$ The RCS filename, including its pathname.
$State$ The state assigned by the -s option of ci or rcs.

General RCS Specifications | 647

RCS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Test data file.
This second line is very important.

Revision Numbering

Unless told otherwise, RCS commands typically operate on the latest revision. Some
commands have a -r option that specifies a revision number. In addition, many
options accept a revision number as an optional argument. (In the command
summary, this argument is shown as [R].) Revision numbers consist of up to four
fields: release, level, branch, and sequence, but most revisions consist of only the
release and level. For example, you can check out revision 1.4 as follows:

co -l -r1.4 ch01

When you check it in again, the new revision will be marked as 1.5. Now suppose
the edited copy needs to be checked in as the next release. You would type:

ci -r2 ch01

This creates revision 2.1. (Revision numbers always start at one, not at zero.) You
can also create a branch from an earlier revision. The following command creates
revision 1.4.1.1:

ci -r1.4.1 ch01

Numbers that begin with a period are considered to be relative to the default
branch of the RCS file. Normally, this is the “trunk” of the revision tree.

Numbers are not the only way to specify revisions, though. You can assign a text
label as a revision name, using the -n option of ci or rcs. You can also specify this
name in any option that accepts a revision number for an argument. For example,
you could check in each of your C files, using the same label regardless of the
current revision number:

ci -u -nPrototype *.c

In addition, you may specify a $, which means the revision number extracted from
the keywords of a working file. For example:

rcsdiff -r$ ch01

compares ch01 to the revision that is checked in. You can also combine names and
symbols. The command:

rcs -nDraft:$ ch*

assigns a name to the revision numbers associated with several chapter files.
(These last two examples require that the file contain a ID line.)

Specifying the Date

Revisions are timestamped by time and date of check-in. Several keyword strings
include the date in their values. Dates can be supplied in options to ci, co, and
rlog. RCS uses the following date format as its default:

2000/01/10 02:00:00 Year/month/day time

The default time zone is Greenwich Mean Time (GMT), which is also referred to
as Coordinated Universal Time (UTC). Dates can be supplied in free format. This

648 | Chapter 13: The Revision Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

lets you specify many different styles. Here are some of the more common ones,
which show the same time as in the previous example:

6:00 pm lt Assuming today is Jan. 10, 2000
2:00 AM, Jan. 10, 2000
Mon Jan 10 18:00:00 2000 LT
Mon Jan 10 18:00:00 PST 2000

The uppercase or lowercase “lt” indicates local time (here, Pacific Standard Time).
The third line shows ctime format (plus the “LT”); the fourth line is the date
command format.

Specifying States
In some situations, particularly programming environments, you want to know
the status of a set of revisions. RCS files are marked by a text string that describes
their state. The default state is Exp (experimental). Other common choices include
Stab (stable) or Rel (released). These words are user-defined and have no special
internal meaning. Several keyword strings include the state in their values. In
addition, states can be supplied in options to ci, co, rcs, and rlog.

Standard Options and Environment Variables
RCS defines an environment variable, RCSINIT, which sets up default options for
RCS commands. If you set RCSINIT to a space-separated list of options, they will
be prepended to the command-line options that you supply to any RCS command.

Six options are useful to include in RCSINIT: -q, -V, -Vn, -T, -x, and -z. They can
be thought of as standard options because most RCS commands accept them.
-q[R]

Quiet mode; don’t show diagnostic output. R specifies a file revision.
-T If the file with the new revision has a later modification time than that of the

RCS file, update the RCS file’s modification time. Otherwise, preserve the
RCS file’s modification time. This option should be used with care; see the
discussion in the ci manpage for more detail.

-V Print the RCS version number.
-Vn Emulate version n of RCS; useful when trading files between systems that run

different versions. n can be 3, 4, or 5.
-xsuffixes

Specify an alternate list of suffixes for RCS files. Each suffix is separated by a /.
On Unix systems, RCS files normally end with the characters ,v. The -x
option provides a workaround for systems that don’t allow a comma char-
acter in filenames.

-ztimezone
timezone controls the output format for dates in keyword substitution. time-
zone should have one of the following values:

Value Effect

empty Default format: UTC with no time zone and slashes separating the
parts of the date.

LT The local time and date, in ISO-8601 format, with time-zone
indication (YYYY-MM-DD HH:MM:SS-ZZ).

±hh:mm With a numeric offset from UTC, the output is in ISO-8601 format.

Alphabetical Summary of Commands | 649

RCS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ci

For example, when depositing a working file into an RCS file, the command:

ci -x,v/ ch01 Second suffix is blank

searches in order for the RCS filenames:

RCS/ch01,v
ch01,v
RCS/ch01

RCS allows you to specify a location for temporary files. It checks the environ-
ment variables TMPDIR, TMP, and TEMP, in that order. If none of those exist, it
uses a default location, such as /tmp.

Alphabetical Summary of Commands
For details on the syntax of keywords, revision numbers, dates, states, and stan-
dard options, refer to the previous discussions.

ci ci [options] files

Check in revisions. ci stores the contents of the specified working
files into their corresponding RCS files. Normally, ci deletes the
working file after storing it. If no RCS file exists, the working file is
an initial revision. In this case, the RCS file is created, and you are
prompted to enter a description of the file. If an RCS file exists, ci
increments the revision number and prompts you to enter a
message that logs the changes made. If a working file is checked in
without changes, the file reverts to the previous revision.

The two mutually exclusive options -u and -l, along with -r, are
the most common. Use -u to keep a read-only copy of the working
file (for example, so the file can be compiled or searched). Use -l to
update a revision and then immediately check it out again with a
lock. This allows you to save intermediate changes but continue
editing (for example, during a long editing session). Use -r to check
in a file with a different release number. ci accepts the standard
options -q, -V, -Vn, -T, -x, and -z.

Options

-d[date]
Check the file in with a timestamp of date or, if no date is
specified, with the time of last modification.

-f[R]
Force a check-in even if there are no differences.

-i[R]
Initial check-in, report an error if the RCS file already exists.

-I[R]
Interactive mode; prompt user even when standard input is
not a terminal (e.g., when ci is part of a command pipeline).

650 | Chapter 13: The Revision Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ci

-j[R]
Just check in and do not initialize. Report an error if the RCS
file does not already exist.

-k[R]
Assign a revision number, creation date, state, and author
from keyword values that were placed in the working file,
instead of computing the revision information from the local
environment. -k is useful for software distribution: the preset
keywords serve as a timestamp shared by all distribution sites.

-l[R]
Do a co -l after checking in. This leaves a locked copy of the
next revision.

-mmsg
Use the msg string as the log message for all files checked in.
When checking in multiple files, ci normally prompts whether
to reuse the log message of the previous file. -m bypasses this
prompting.

-M[R]
Set the working file’s modification time to that of the retrieved
version. Use of -M can confuse make and should be used with
care.

-nname
Associate a text name with the new revision number.

-Nname
Same as -n, but override a previous name.

-rR Check the file in as revision R.
-r Without a revision number, -r restores the default behavior of

releasing a lock and removing the working file. It is intended to
override any default -l or -u set up by aliases or scripts. The
behavior of -r in ci is different from most other RCS commands.

-sstate
Set the state of the checked-in revision.

-tfile
Replace RCS file description with contents of file. This works
only for initial check-in.

-t-string
Replace RCS file description with string. This works only for
initial check-in.

-u[R]
Do a co -u after checking in. This leaves a read-only copy.

-wuser
Set the author field to user in the checked-in revision.

Examples

Check in chapter files using the same log message:
ci -m'First round edits' chap*

Check in edits to prog.c, leaving a read-only copy:
ci -u prog.c

Start revision level 2; refer to revision 2.1 as “Prototype”:

ci -r2 -nPrototype prog.c

Alphabetical Summary of Commands | 651

RCS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

co

co co [options] files

Retrieve (check out) a previously checked-in revision and place it in
the corresponding working file (or print to standard output if -p is
specified). If you intend to edit the working file and check it in
again, specify -l to lock the file. co accepts the standard options -q,
-V, -Vn, -T, -x, and -z.

Options

-ddate
Retrieve latest revision whose check-in timestamp is on or
before date.

-f[R]
Force the working file to be overwritten.

-I[R]
Interactive mode; prompt user even when standard input is
not a terminal.

-jR2:R3[,…]
This works like rcsmerge. R2 and R3 specify two revisions
whose changes are merged into a third file: either the corre-
sponding working file or a third revision (any R specified by
other co options). Multiple comma-separated pairs may be
provided; the output of the first join becomes the input of the
next. See the co manpage for more details.

-kc Expand keyword symbols according to flag c. c can be:

-l[R]
Same as -r, but also lock the retrieved revision.

-M[R]
Set the working file’s modification time to that of the retrieved
version. Use of -M can confuse make and should be used with
care.

-p[R]
Send retrieved revision to standard output instead of to a
working file. Useful for output redirection or filtering.

-r[R]
Retrieve the latest revision or, if R is given, retrieve the latest
revision that is equal to or lower than R. If R is $, retrieve the
version specified by the keywords in the working file.

b Like -ko, but uses binary I/O. This is most useful on
non-Unix systems.

kv Expand symbols to keyword and value (the default). Insert
the locker’s name only during a ci -l or co -l.

kvl Like kv, but always insert the locker’s name.
k Expand symbols to keywords only (no values). This is useful

for ignoring trivial differences during file comparison.
o Expand symbols to keyword and value present in previous

revision. This is useful for binary files that don’t allow
substring changes.

v Expand symbols to values only (no keywords). This prevents
further keyword substitution and is not recommended.

652 | Chapter 13: The Revision Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

ident

-sstate
Retrieve the latest revision having the given state.

-u[R]
Same as -r, but also unlock the retrieved revision if you locked
it previously.

-w[user]
Retrieve the latest revision that was checked in either by the
invoking user or by the specified user.

Examples

Sort the latest stored version of file:

co -p file | sort

Check out (and lock) all files whose names start with an uppercase
letter for editing:

co -l [A-Z]*

Note that filename expansion fails unless a working copy resides in
the current directory. Therefore, this example works only if the files
were previously checked in via ci -u. Finally, here are some
different ways to extract the working files for a set of RCS files (in
the current directory):

co -r3 *,v Latest revisions of release 3
co -r3 -wjim *,v Same, but only if checked in by jim
co -rPrototype *,v Latest revisions named Prototype
co -d'May 5, 2 pm LT' *,v Latest revisions that were

modified on or before the date

ident ident [options] [files]

Extract keyword/value symbols from files. files can be text files,
object files, or dumps. ident accepts the standard option -V.

Options

-q Suppress warning message when no keyword patterns are
found.

-V Print the version number of ident.

Examples

If file prog.c is compiled, and it contains this line of code:

char rcsID[] = "$Author: arnold $";

the following output is produced:

$ ident prog.c prog.o
prog.c:
 $Author: arnold $
prog.o:
 $Author: arnold $

Show keywords for all RCS files (suppress warnings):

co -p RCS/*,v | ident -q

Alphabetical Summary of Commands | 653

RCS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rcs

merge merge [options] [diff3 options] file1 file2 file3

Perform a three-way merge of files (via diff3) and place changes in
file1. file2 is the original file. file1 is the “good” modification of
file2. file3 is another, conflicting modification of file2. merge finds
the differences between file2 and file3, and then incorporates those
changes into file1. If both file1 and file3 have changes to common
lines, merge warns about overlapping lines and inserts both choices
in file1. The insertion appears as follows:

<<<<<<< file1
lines from file1
========
lines from file3
>>>>>>> file3

You’ll need to edit file1 by deleting one of the choices. merge exits
with a status of 0 (no overlaps), 1 (some overlaps), or 2 (unknown
problem). See also rcsmerge.

merge accepts the -A, -e, and -E options for diff3, and simply
passes them on, causing diff3 to perform the corresponding kind
of merge. See the entry for diff3 in Chapter 2 for details. (The -A
option is for the GNU version of diff3.)

Options

-L label
This option may be provided up to three times, supplying
different labels in place of the filenames file1, file2, and file3,
respectively.

-p Send merged version to standard output instead of to file1.

-q Produce overlap insertions but don’t warn about them.

rcs rcs [options] files

An administrative command for setting up or changing the default
attributes of RCS files. rcs requires you to supply at least one
option. (This is for “future expansion.”)

Among other things, rcs lets you set strict locking (-L), delete revi-
sions (-o), and override locks set by co (-l and -u). RCS files have
an access list (created via -a); anyone whose username is on the list
can run rcs. The access list is often empty, meaning that rcs is
available to everyone. In addition, you can always invoke rcs if you
own the file, if you’re a privileged user, or if you run rcs with -i.
rcs accepts the standard options -q, -V, -Vn, -T, -x, and -z.

Options

-ausers
Append the comma-separated list of users to the access list.

-Aotherfile
Append otherfile’s access list to the access lists of files.

654 | Chapter 13: The Revision Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rcs

-b[R]
Set the default branch to R or, if R is omitted, to the highest
branch on the trunk.

-c's'
The comment leader for Log keyword is set to string s. You
could, for example, set s to .\" for troff files or set s to * for C
programs. (You would need to manually insert an enclosing /*
and */ before and after Log.)

-c is obsolescent; RCS uses the character(s) preceding Log
in the file as the comment leader for log messages. You may
wish to set this, though, if you are accessing the RCS file with
older versions of RCS.

-e[users]
Erase everyone (or only the specified users) from the access
list.

-i Create (initialize) an RCS file, but don’t deposit a revision.

-I Interactive mode; prompt user even when standard input is
not a terminal.

-kc Use c as the default style for keyword substitution. (See co for
values of c.) -kkv restores the default substitution style.

-l[R]
Lock revision R or the latest revision. -l “retroactively locks” a
file and is useful if you checked out a file incorrectly by typing
co instead of co -l. rcs will ask you if it should break the lock
if someone else has the file locked.

-L Turn on strict locking (the default). This means that everyone,
including the owner of the RCS file, must use co -l to edit
files. Strict locking is recommended when files are to be
shared. (See -U.)

-mR:msg
Use the msg string to replace the log message of revision R.

-M Do not send mail when breaking a lock. This is intended for
use by RCS frontends, not for direct use by users!

-nflags
Add or delete an association between a revision and a name.
flags can be:

-Nflags
Same as -n, but overwrite existing names.

-oR_list
Delete (outdate) revisions listed in R_list. R_list can be speci-
fied as: R1, R1:R2, R1:, or :R2. When a branch is given, -o
deletes only the latest revision on it. The - range separator
character from RCS versions prior to 5.6 is still valid.

name:R Associate name with revision R.
name: Associate name with latest revision.
name Remove association of name.

Alphabetical Summary of Commands | 655

RCS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rcsclean

-sstate[:R]
Set the state of revision R (or the latest revision) to the word
state.

-t[file]
Replace RCS file description with contents of file or, if no file
is given, with standard input.

-t-string
Replace RCS file description with string.

-u[R]
The complement of -l: unlock a revision that was previously
checked out via co -l. If someone else did the check-out, you
are prompted to state the reason for breaking the lock. This
message is mailed to the original locker.

-U Turn on nonstrict locking. Everyone except the file owner
must use co -l to edit files. (See -L.)

Examples

Associate the label To_customer with the latest revision of all RCS
files:

rcs -nTo_customer: RCS/*

Add three users to the access list of file beatle_deals:

rcs -ageorge,paul,ringo beatle_deals

Delete revisions 1.2 through 1.5:

rcs -o1.2:1.5 doc

Replace an RCS file description with the contents of a variable:

echo "$description" | rcs -t file

rcsclean rcsclean [options] [files]

Although included with RCS, this command is optional and might
not be installed on your system. rcsclean compares checked-out files
against the corresponding latest revision or revision R (as given by
the options). If no differences are found, the working file is removed.
(Use rcsdiff to find differences.) rcsclean is useful in makefiles; for
example, you could specify a “clean-up” target to update your direc-
tories. rcsclean is also useful prior to running rcsfreeze. rcsclean
accepts the standard options -q, -V, -Vn, -T, -x, and -z.

Options

-kc When comparing revisions, expand keywords using style c.
(See co for values of c.)

-n[R]
Show what would happen but don’t actually execute.

-r[R]
Compare against revision R. R can be supplied as arguments
to other options, so -r is redundant.

-u[R]
Unlock the revision if it’s the same as the working file.

656 | Chapter 13: The Revision Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rcsdiff

Example

Remove unchanged copies of program and header files:

rcsclean *.c *.h

rcsdiff rcsdiff [options] [diff_options] files

Compare revisions via diff. Specify revisions using -r as follows:

rcsdiff accepts the standard options -q, -V, -Vn, -T, -x, and -z, as
well as diff_options, which can be any valid diff option. rcsdiff
exits with a status of 0 (no differences), 1 (some differences), or 2
(unknown problem). The -c and -u options to diff can be very
useful with rcsdiff.

rcsdiff prints “retrieving revision …” messages to standard error,
as well as a line of equals signs for separating multiple files. It is
often useful to redirect standard error and standard output to the
same file.

Options

-kc When comparing revisions, expand keywords using style c.
(See co for values of c.)

-rR1
Use revision R1 in the comparison.

-rR2
Use revision R2 in the comparison. (-rR1 must also be specified.)

Examples

Compare the current working file against the last checked-in version:

rcsdiff -c ch19.sgm 2>&1 | more

Compare the current working file against the very first version:

rcsdiff -c -r1.1 ch19.sgm 2>&1 | more

Compare two earlier versions of a file against each other:

rcsdiff -c -r1.3 -r1.4 ch19.sgm 2>&1 | more

rcsfreeze rcsfreeze [name]

Although included with RCS, this shell script is optional and might
not be installed on your system. rcsfreeze assigns a name to an entire
set of RCS files, which must already be checked in. This is useful for
marking a group of files as a single configuration. The default name is
C_n, where n is incremented each time you run rcsfreeze.

of revisions Comparison made

None Working file against latest revision.

One Working file against specified revision.

Two One revision against the other.

Alphabetical Summary of Commands | 657

RCS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rlog

rcsmerge rcsmerge [options] [diff3 options] file

Perform a three-way merge of file revisions, taking two differing
versions and incorporating the changes into the working file. You
must provide either one or two revisions to merge (typically with -r).
Overlaps are handled the same as with merge, by placing warnings in
the resulting file. rcsmerge accepts the standard options -q, -V, -Vn,
-T, -x, and -z. rcsmerge exits with a status of 0 (no overlaps), 1
(some overlaps), or 2 (unknown problem).

rcsmerge accepts the -A, -e, and -E options for diff3 and simply
passes them on, causing diff3 to perform the corresponding kind
of merge. See merge, and also see the entry for diff3 in Chapter 2
for details. (The -A option is for the GNU version of diff3.)

Options

-kc When comparing revisions, expand keywords using style c.
(See co for values of c.)

-p[R]
Send merged version to standard output instead of over-
writing file.

-r[R]
Merge revision R or, if no R is given, merge the latest revision.

Examples

Suppose you need to add updates to an old revision (1.3) of prog.c,
but the current file is already at revision 1.6. To incorporate the
changes:

$ co -l prog.c Get latest revision
(Edit latest revision by adding updates for revision 1.3, then:)
$ rcsmerge -p -r1.3 -r1.6 prog.c > prog.updated.c

Undo changes between revisions 3.5 and 3.2, and overwrite the
working file:

rcsmerge -r3.5 -r3.2 chap08

rlog rlog [options] files

Display identification information for RCS files, including the log
message associated with each revision, the number of lines added
or removed, date of last check-in, etc. With no options, rlog
displays all information. Use options to display specific items. rlog
accepts the standard options -q, -V, -Vn, -T, -x, and -z.

Options

-b Prune the display; print information only about the default
branch.

-ddates
Display information for revisions whose check-in timestamp
falls in the range of dates (a list separated by semicolons). Be
sure to use quotes. Each date can be specified as:

658 | Chapter 13: The Revision Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rlog

d1 < d2
Select revisions between date d1 and d2, inclusive.

d1 <
Select revisions made on or after date1.

d1 >
Select revisions made on or before date1.

Timestamp comparisons are strict. If two files have exactly
the same time, < and > won’t work. Use <= and >= instead.

-h Display the beginning of the normal rlog listing.

-l[users]
Display information only about locked revisions or, if users is
specified, only about revisions locked by the list of users.

-L Skip files that aren’t locked.

-N Don’t print symbolic names.

-r[list]
Display information for revisions in the comma-separated list
of revision numbers. If no list is given, the latest revision is
used. Items can be specified as:

The – range separator character from RCS versions prior to 5.6
is still valid.

-R Display only the name of the RCS file.

-sstates
Display information for revisions whose state matches one
from the comma-separated list of states.

-t Same as -h, but also display the file’s description.

-w[users]
Display information for revisions checked in by anyone in the
comma-separated list of users. If no users are supplied, assume
the name of the invoking user.

Examples

Display the revision histories of all your RCS files:

rlog RCS/*,v | more

Display names of RCS files that are locked by user arnold:

rlog -R -L -larnold RCS/*

Display the “title” portion (no revision history) of a working file:

rlog -t calc.c

R1 Select revision R1. If R1 is a branch, select all revisions on it.
R1. If R1 is a branch, select its latest revision.
R1:R2 Select revisions R1 through R2.
:R1 Select revisions from beginning of branch through R1.
R1: Select revisions from R1 through end of branch.

659

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 14CVS

14
The Concurrent Versions

System

This chapter is a comprehensive reference of all CVS commands, with a brief
summary of what each does. It is intended to be useful as a quick reference, not as
a tutorial.

This chapter covers the following topics:

• Conceptual overview

• Command-line syntax and options

• CVS dot files

• Environment variables

• Keywords and keyword modes

• Dates

• CVSROOT variables

• Alphabetical summary of commands

Most of the material in this chapter is adapted from Essential CVS, which is cited
in the Bibliography. See that book for much more information on CVS. The
Internet starting point for CVS is http://www.cvshome.org/.

Conceptual Overview
The basic concepts for source code management systems were presented earlier in
Chapter 12. As described there, CVS is a distributed source code management
system based on the “copy, modify, merge” model. It uses RCS format files for
storing data in its repository and is currently the most popular source code
management suite for Unix and Unix-like systems.

Table 14-1 is a quick-start guide to using CVS. You would use the commands in
the order shown to create and start using a CVS repository. (The basic steps for

660 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

the Subversion source code management system are shown in more detail in the
section “Using Subversion: A Quick Tour” in Chapter 15. Using CVS is similar.)

CVS Wrappers

When resolving conflicts, the usual method CVS uses is MERGE, which means that
CVS puts both versions of the conflicting group of lines into the file, surrounded
by special markers. However, this method doesn’t work for binary files. Thus the
second conflict-resolution method is COPY, which presents both versions of the file
to the user for manual resolution.

You can manually specify the conflict resolution method and keyword expan-
sion method when a file is added to a repository, as well as later, after the file is
already there. However, doing so manually for lots of files is painful and error-
prone. Wrappers allow you to specify the conflict resolution method and
keyword expansion method for groups of files, based on filename patterns. You
may do this on the command line, or more conveniently, by placing the wrap-
pers into a .cvswrappers file. Each line has the following format:

wildcard option 'value' [option 'value' …]

The wildcard is a shell-style wildcard pattern. If option is -m, it indicates the
conflict resolution method. In this case, value should be either MERGE or COPY. If
option is -k, then value is one of the keyword resolution modes (b, k, o, etc.).

Stickiness

When some aspect of the persistent state of a file in a sandbox is different from
that of the file in the repository, that aspect is said to be sticky. For example, when
a file is retrieved based on a specific date, tag, or revision, those attributes are
sticky. Similarly, when a file in a sandbox belongs to a branch, the branch is said
to be sticky, and if the keyword expansion mode is set on a file, that mode is also
sticky. Entire directories may be marked as sticky, not just individual files.

These attributes are termed “sticky” because the state of the file becomes persis-
tent. In particular, a cvs update does not update such files to the latest revision in
the repository. Similarly, you cannot use cvs commit to make such a file become the

Table 14-1. CVS commands quick-start guide

Command Purpose

mkdir /path/to/repos Make the repository directory.

cvs init /path/to/repos Initialize the repository.

cvs import … Import the initial version of a project into the repository.

cvs checkout … Create a sandbox.

cvs diff … Compare the sandbox to the repository, or different versions
in the repository.

cvs status Check if files have changed in the sandbox or the repository.

cvs update Download changes from the repository to the sandbox.

cvs commit Upload changes from the sandbox to the repository.

Command-Line Syntax and Options | 661

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

head of a branch or the trunk in the repository. Finally, when a file is on a sticky
branch, it can only be committed on that branch. cvs status shows the stickiness
of various attributes.

This all makes sense: work on a branch should be done only on that branch.
When work on the branch is finished, the branch’s changes should be merged
into the files on the trunk, instead of checking the files into the head of the trunk
directly.

Stickiness is created or changed using the -D, -k or -r options to cvs checkout and
cvs update. Use cvs update -A to remove stickiness. You must use this command on
a sticky directory directly; applying it just to all the contained files in the direc-
tory is not enough.

See Chapter 4 in Essential CVS for more details.

Command-Line Syntax and Options
CVS supports a number of command-line options that you can use to control
various aspects of CVS behavior. Each CVS subcommand has its own options, as
well.

The syntax of any CVS command is as follows:

cvs [cvs-options] [command] [command-options-and-arguments]

The cvs-options modify the behavior of the main CVS code, rather than the code
for a specific command.

cvs Options

Options to the cvs command are supplied before the particular subcommand to
be executed. This section focuses on options that you pass to the cvs executable
itself, not to any specific CVS command. The following options are valid:

-a Authenticate all network traffic. Without this option, the initial connection
for the command is authenticated, but later traffic along the same data stream
is assumed to be from the same source.

This option is available only with GSS-API connections, but if you use ssh as
your rsh replacement in the ext connection mode, ssh authenticates the data
stream.

This option is supported if it is listed in cvs --help-options. The command-
line client can be compiled to support it by using the --enable-client option
to the configure script.

--allow-root=directory
Used as part of the inetd command string for the server, kserver, and pserver
connection methods. The directory is the repository root directory that the
server allows connections to. Using --allow-root more than once in a
command allows users to connect to any of the specified repositories.

662 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-d repository_path
Use repository_path as the path to the repository root directory. This option
overrides both the CVSROOT environment variable and the contents of the
Root file in the sandbox’s CVS subdirectory. It also overrides the contents of
the .cvsrc file.

The syntax for the repository path is:

[:method:][[[user][:password]@]hostname[:[port]]]/path

See Essential CVS for a full explanation of each element of the repository path.

-e editor
Use the specified editor when CVS calls an editor for log information during
the commit or import process. This option overrides the EDITOR,
CVSEDITOR, and VISUAL environment variables and the contents of the
.cvsrc file.

-f Prevent CVS from reading the ~/.cvsrc file and using the options in it.

-H, --help
If called as cvs -H or cvs --help, CVS displays a general CVS help message.

If called as cvs -H command or cvs --help command, CVS displays the available
options and help information for the specified command.

--help-commands
List the available CVS commands with brief descriptions of their purposes.

--help-options
List the available cvs-options with brief descriptions of their purposes.

--help-synonyms
List the valid synonyms (short names) for the CVS commands.

-l Do not log the current command to the history file in the repository’s CVSROOT
directory. The command will not show in subsequent cvs history output.

-n Execute only commands that do not change the repository. Using this option
with cvs update can provide a status report on the current sandbox.

-q Run in quiet mode. This option causes CVS to display only some of the infor-
mational messages.

-Q Run in very quiet mode. This option causes CVS to display only the most crit-
ical information.

-r Set files checked out to the sandbox as read-only. This option only sets newly
checked-out files. If a file is being watched with cvs watch, read-only is the
default. This option overrides settings in the .cvsrc file.

-s variable=value
Set a user variable for use with one of the scripting files in CVSROOT. The user
variables are explained in the later section “CVSROOT Variables.”

-t Display messages that trace the execution of the command. This option can
be used with -n to determine precisely what a command does.

Command-Line Syntax and Options | 663

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-T directory
Use the named directory to store temporary files. This option overrides envi-
ronment variables or settings in the .cvsrc file.

-v, --version
Display CVS version and copyright information.

-w Set files checked out to the sandbox as readable and writable. This option only
sets the permissions of newly checked-out files. This option overrides the
CVSREAD environment variable and it overrides settings in the .cvsrc file.

-x Encrypt all data that travels across the network between the client and the
server. This option is currently available in GSS-API or Kerberos mode only,
but if you use ssh as your rsh replacement in the ext connection mode, ssh
encrypts the data stream.

This option is available only if the client supports it. It is supported if it is
listed in cvs --help-options. You can compile the command-line client to
support it by using the --enable-client and --enable-encryption options to the
configure script.

-z N Compress all network traffic by using the specified gzip compression level N.
The compression levels range from 0 (no compression) to 9 (maximum
compression). This option overrides settings in the .cvsrc file.

This option is available only if the client supports it. It is supported if it is
listed in cvs --help-options. You can compile the command-line client to
support it by using the --enable-client option to the configure script.

Common Subcommand Options

Many of the CVS subcommands (add, commit, and so on) share a large number of
common options. They are described here.

-d directory-name
Check out or update a sandbox into a directory called directory-name instead
of using the repository directory name or the name designated in the modules
file in the repository’s CVSROOT directory. This is particularly useful when
creating a second sandbox for a project.

CVS usually creates the same directory structure that the repository uses.
However, if the checkout parameter contains only one file or directory and the
-d option is used, CVS does not create any intervening directories. Use -N to
prevent CVS from shortening the path.

-D date
Run the subcommand on the latest revision of a file that is as old as or older
than the date or time specified by date.

-f Use the latest (HEAD) revision of a file that is on the current branch or trunk if
no revision matches a specified date or revision number. This option applies
only if -r or -D is used.

664 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-k mode
Specify the keyword expansion mode to be mode. For cvs add, this option also
sets the default keyword mode for the file. If you forget to set the default
keyword mode with cvs add, you can do so later with cvs admin. The keyword-
expansion modes are listed in the later section “Keywords and Keyword Modes.”

-l Run the subcommand on the files in the local directory only. (Do not recurse
into subdirectories.) See also -R.

-m message
Use the specified message as the description of the newly added file or as the
description of the change made.

-n Do not run any program listed in the modules file for this directory.

-N Do not shorten the path. CVS usually creates the same directory structure
that the repository uses. However, if the checkout parameter contains only
one file and the -d option is used, CVS does not create any intervening
directories unless -N is also specified.

-r revision
Run the subcommand on the specified revision or tag of a file. If this option
refers to a branch, run the command on the latest (HEAD) revision of the branch.

-R Run the subcommand on the files in the local directory and all subdirectories
and recurse down the subdirectories. This option is generally the default. See
also -l.

Dot Files
In client/server mode, all the dot files other than .rhosts should be on the client
computer. The .rhosts file should be in the user’s home directory on the server
computer.

These are the dot files in the sandbox directory:

.cvsignore
Contains a list of files CVS should not process. The format is one or more
lines, with whitespace-separated filenames or shell wildcard patterns
matching files that CVS should ignore when producing informational
messages, and during commit, update, or status operations. A single ! causes
CVS to empty out its ignore list and start over again with subsequent file-
names or patterns. The file may be checked into CVS.

.#filename.revision
If a project file that is not fully synchronized with the repository is over-
written by CVS, the original file is stored as .#filename.revision, where
revision is the BASE revision of the file.

These are the dot files in a user’s home directory:
.cvsignore

Contains a list of files CVS should not process. See the earlier description.

.cvspass
Used in pserver remote-access mode. This file contains the user’s password
for each repository the user is logged into, stored in a simple form of

Environment Variables | 665

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

encoding. Be aware that the file is human-readable and that the passwords
are easy to decrypt.

.cvsrc
Contains a list of CVS commands and the options the user wants as default
options for those commands.

.cvswrappers
Contains a list of wrappers that affect how a file is stored. The wrappers
include a pattern that CVS matches against filenames and a keyword-
expansion mode that CVS applies to any file whose name matches the
pattern.

.rhosts
Used when connecting with rsh. This file should be in the user’s home direc-
tory on the server machine, and it should contain the client’s computer and
username.

The rsh command is terribly, terribly insecure. You should avoid it
completely; use ssh instead.

Environment Variables
Several environment variables affect CVS. Some are read only when CVS is the
client, and some are read only when CVS is the server. When the repository
resides on the local machine, both sets are read.

Client Environment Variables

The environment variables in the following list are read and used by the process
that runs on the client computer and must be in the calling user’s environment:

CVS_CLIENT_LOG
Used for debugging CVS in client/server mode. If set, everything sent to the
server is stored in the $CVS_CLIENT_LOG.in file, and everything received by the
client is stored in $CVS_CLIENT_LOG.out.

CVS_CLIENT_PORT
Used to set the port the client uses to connect to the CVS server in kserver,
gserver, and pserver modes. By default, the client uses port 2401 (gserver and
pserver) or port 1999 (kserver) to connect to the server.

CVSIGNORE
A whitespace-separated list of filename patterns that should be ignored. See
the description of the .cvsignore file, earlier in this chapter.

CVSEDITOR, EDITOR, VISUAL
Used to set the editor CVS calls when it opens an editor for log messages.
On Unix and GNU/Linux systems, the default editor is vi. Using CVSED-
ITOR is preferred over EDITOR and VISUAL, as other variables may be
used by other programs.

666 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

CVS_PASSFILE
Used to change the file CVS uses to store and retrieve the password in pserver
remote-access mode. The default file is $HOME/.cvspass.

CVSREAD
If set to 1, CVS tries to check out your sandbox in read-only mode. (CVS
actually checks whether this variable is nonnull, so it works regardless of the
setting. This behavior may change in the future.)

CVSROOT
Contains the full pathname of the CVS repository. When you’re working in a
sandbox, this variable is not needed. If you’re working outside a sandbox,
either this variable must be present or the -d repository_path option must be
used.

CVS_RSH
Used to set the program CVS calls to connect to a remote repository in ext
mode. The default program is rsh.

The rsh command is terribly, terribly insecure. You should avoid it
completely; use ssh instead.

CVS_SERVER
If connecting to a CVS server using rsh, this variable is used to determine
which program is started on the server side. In ext and server modes, this
defaults to cvs. When the repository is on the local system, this defaults to
the path to the CVS client program.

CVSWRAPPERS
May contain no more than one wrapper, as explained in the earlier section
“CVS Wrappers.”

HOME, HOMEPATH, HOMEDRIVE
Used to determine where the user’s home directory is, to enable CVS to locate
its files. On Unix, GNU/Linux, and related systems, only HOME is used. On
Windows systems, HOMEDRIVE and HOMEPATH are used. Some Windows
operating systems (Windows NT, 2000, and XP) set these variables automati-
cally. If yours doesn’t, HOMEDRIVE should be set to the drive letter (e.g., C:)
and HOMEPATH should be set to the path (e.g., \home\arnold).

PATH
Used to locate any programs whose path is not compiled with the CVS
program. This variable is still used, but it is less important now that the rcs,
diff, and patch programs CVS uses are all distributed with CVS.

Server Environment Variables

The following variables are read when CVS is operating as the server (or when the
repository is on the local system). They must be in the calling user’s environment
on the server computer.

Keywords and Keyword Modes | 667

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

CVS_SERVER_SLEEP
Used only when debugging the server in client/server mode. This variable
delays the start of the server process by CVS_SERVER_SLEEP seconds to
allow the debugger to be attached to it.

CVSUMASK
Used to set the default permissions of files in the repository. This variable
may be added to the client code in a later version of CVS.

PATH
Used to locate any programs whose path is not compiled with the CVS
program. This variable is still used, but it is less important now that the rcs,
diff, and patch programs CVS uses are all distributed with CVS.

TMPDIR
Sets the temporary directory CVS stores data in. This variable defaults to /tmp.

CVS creates temporary files with mkstemp (BSD 4.3), if possible. If mkstemp is not
available when CVS is compiled, it tries tempnam (SVID 3), mktemp (BSD 4.3), or
tmpnam (POSIX), in that order. If it uses tmpnam, it cannot use the TMPDIR
environment variable and files are created in /tmp.

Keywords and Keyword Modes
CVS contains keywords that can be included in nonbinary project files. When
CVS finds a keyword in a file it is checking out, it expands the keyword to provide
metadata about the latest revision of the file. You can set keyword-expansion
modes on a file to tell CVS whether (and how) to expand the keywords it finds.

Keyword-expansion modes also control line-ending conversion. Unix, Macintosh,
and Windows operating systems use different sets of codes to signal the ends of
lines. (GNU/Linux uses the same codes as Unix.) When you commit a file from an
operating system that doesn’t use Unix line endings, CVS converts the line endings
to Unix style. If you are storing binary files, this conversion can corrupt the file. Use
the -kb keyword-expansion mode to tell CVS not to convert line endings.

CVS keywords take the form:

$Keyword$

All keywords except Log expand to the format:

$Keyword: value$

These are the keywords and the information they show about the file they are in:

Author
The username of the user who committed the last revision.

Date
The date on which the last revision was committed, in UTC.

Header
A header containing information about the file, including the author, date
and revision number, path and filename of the RCS file (project file in the
repository), file status, and whether the file is locked.

668 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Id A header like the one given by the Header keyword, without the path of the
RCS file.

Locker
The username of the user who locked the file with cvs admin -l (empty if the
file is not locked).

Log The commit messages, dates, and authors for the file. This keyword instructs
CVS to store this information in the file itself. Any characters that prefix the
keyword are also used to prefix log lines; this enables comment markers to be
included automatically. Unlike most keywords, existing log expansions are
not overwritten with the new ones; the new log expansions are merely
prepended to the list.

The Log keyword is best used at the end of a file, to avoid users having to go
through all the log messages to get to the important parts of the file.

This feature was inherited from RCS. As such, the log created by the Log
keyword does not merge neatly when CVS merges a branch back to the
trunk. If your file is likely to be branched and remerged, it is better to use the
cvs log command than to store a log within the file.

The cvs log command displays all the information that the Log key-
word provides.

Name
The tag name the file was checked out with. This keyword can display a
branch or provide a more meaningful identification of a revision than the
revision number alone.

RCSfile
The name of the RCS file (the project file in the repository).

Revision
The CVS internal revision number of the file. This number is specific to the
individual file and does not identify a stage within the project.

Source
The name and path of the RCS file (the project file in the repository).

State
The current state assigned to the current revision, set with cvs admin -s. See
Chapter 7 in Essential CVS.

The keyword-expansion modes in the following list are used in commands and
CVS wrappers to control keyword expansion and line-ending conversion. The
syntax differs slightly for each use. In commands, you use the mode without a
space between the option and the mode (e.g., -kb). In wrappers, you need a space
and may need to quote (e.g., -k 'b').

b Inhibit keyword expansion and line-ending conversion. Use this keyword-
expansion mode to signal that a file is binary. This option is needed because
CVS can convert line endings from the form appropriate to the server to the

Dates | 669

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

form appropriate to the client. This causes obvious problems when working
with binary files.

k Generate only a keyword name, not a name and value. Use this option when
merging different (nonbinary) versions of a file, to prevent keyword substitu-
tion from creating spurious merge errors. This option can corrupt binary files.

o Generate the version of a keyword string that was present just before the
current file was last committed, rather than generating a version with the
modifications of the last commit. This option is similar to -kb, but with line-
ending conversion.

v Generate only the value of a keyword, rather than the name and value. This is
most useful with cvs export, but do not use it for binary files. Once any
keyword is removed from a file, further expansions are not possible unless
the word is replaced.

kv Generate the name and value of a keyword. This is the default mode.

kvl Generate the name and value of a keyword and add the name of the locking
user if the revision is locked with cvs admin -l.

Dates
In CVS, all dates and times are processed by a version of the GNU getdate func-
tion, which can translate dates and times given in several different formats. Case is
always irrelevant when interpreting dates. Spaces are permitted in date strings, but
in the command-line client a string with spaces should be surrounded by quotes.
If a year is 0 to 99, it is considered to be in the twentieth century.

If a time is not given, midnight at the start of the date is assumed. If a time zone is
not specified, the date is interpreted as being in the client’s local time zone.

Legal Date Formats

The legal time and date formats for CVS are defined by the ISO 8601 standard
and RFC 822 as amended by RFC 1123. Other formats can be interpreted, but
CVS is designed to handle only these standards.

ISO 8601

The basic ISO 8601 date format is as follows:

year-month-day hours:minutes:seconds

All values are numbers with leading zeros to ensure that the correct number of
digits are used. Hours are given in 24-hour time. This produces the structure
YYYY-MM-DD HH:MM:SS, which is internationally acceptable and can be sorted easily.
You can use a date, a time, or both.

If you’re using ISO 8601 format with the hyphens, the full date is required in CVS.
The YYYYMMDD date format is also acceptable and can be abbreviated to YYYYMM or YYYY.

The HH and HH:MM time formats are acceptable. Times can also be specified without
the colon, so HHMMSS or HHMM are usable.

670 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Be aware that HHMM may be misinterpreted as YYYY. Get into the
habit of using separators.

In strict ISO 8601 format, a T is required between the date and the time, but CVS
understands this format with or without the T. The ISO 8601 standard also states
that a Z at the end of the string designates UTC (Universal Coordinated Time),
but CVS does not recognize the use of Z.

RFC 822 and RFC 1123

RFCs 822 and 1123 define a precise time format:

[DDD ,] DD MMM YYYY HH:MM[:SS] ZZZ

These are the terms in the format:

Legal Date Keywords

CVS also allows short English phrases such as “last Wednesday” and “a month
ago” to be used in placed of actual dates. Case is not significant, and CVS can
understand plurals. These are the keywords it understands:

Month names
January, February, March, April, May, June, July, August, September, October,
November, and December

Month abbreviations
Jan, Feb, Mar, Apr, Jun, Jul, Aug, Sep, Sept, Oct, Nov, and Dec

Days of the week
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday

Day abbreviations
Sun, Mon, Tue, Tues, Wed, Wednes, Thu, Thur, Thurs, Fri, and Sat

Units of time
year, month, fortnight, week, day, hour, minute, min, second, and sec

Relative times
tomorrow, yesterday, today, and now

Meridian qualifiers
am, pm, a.m., and p.m.

DDD A three-letter day of the week.
DD A two-digit date of the month.
MMM A three-letter month.
YYYY The year (it must be a four-digit year).
HH Hours.
MM Minutes.
SS Seconds.
ZZZ The time zone (can be the text abbreviation, a military time zone, or an offset

from UTC in hours and minutes).

Dates | 671

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Modifiers
a, last, this, next, and ago

Sequences
first, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, and
twelfth (second can’t be used as a sequence term, because it is used as a time
unit)

Time Zones

CVS understands time zones expressed in offsets from UTC, such as +0700 (7
hours ahead) and -1130 (11 hours, 30 minutes behind). The format for these time
zones is +HHMM or -HHMM, where + means ahead of UTC and - means behind UTC.
CVS also understands time-zone abbreviations and ignores case and punctuation
when interpreting them.

Some of the time-zone abbreviations CVS recognizes are ambigu-
ous. CVS recognizes only one meaning for each of the ambiguous
time zones. However, which meaning is recognized may vary
depending on your operating system, and on how CVS was config-
ured when it was compiled.

Table 14-2 shows the valid civilian time-zone abbreviations for CVS. Table 14-3
shows military time-zone abbreviations that CVS recognizes.

Table 14-2. Civilian time-zone abbreviations

Abbrev. Offset/name Abbrev. Offset/name

gmt +0000 Greenwich Mean met -0100 Middle European

ut +0000 Coordinated Universal Time mewt -0100 Middle European Winter

utc +0000 Coordinated Universal Time mest Middle European Summer

wet +0000 Western European swt -0100 Swedish Winter

bst +0000 British Summer
(ambiguous with Brazil Standard)

sst Swedish Summer
(ambiguous with South Sumatra)

wat +0100 West Africa fwt -0100 French Winter

at +0200 Azores fst French Summer

bst +0300 Brazil Standard
(ambiguous with British Summer)

eet -0200 Eastern Europe,
USSR Zone 1

gst +0300 Greenland Standard
(ambiguous with Guam Standard)

bt -0300 Baghdad, USSR Zone 2

nft +0330 Newfoundland it -0330 Iran

nst +0330 Newfoundland Standard
(ambiguous with North Sumatra)

zp4 -0400 USSR Zone 3

ndt Newfoundland Daylight zp5 -0500 USSR Zone 4

ast +0400 Atlantic Standard ist -0530 Indian Standard

adt Atlantic Daylight zp6 -0600 USSR Zone 5

est +0500 Eastern Standard nst -0630 North Sumatra (ambiguous
with Newfoundland Summer)

672 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

CVSROOT Variables
The administrative files in CVSROOT can use several types of variables: internal, envi-
ronment, and shell variables. You can use these variables to pass parameters to
the scripts in the scripting files, or you can use them as part of command-line
templates.

The internal variables allow you to use information CVS stores about the
currently running command. The environment variables are used to access infor-
mation from the environment the command is running in, and the shell variables
are used to access information about the shell.

edt Eastern Daylight sst -0700 South Sumatra,
USSR Zone 6 (ambiguous with
Swedish Summer)

cst +0600 Central Standard wast -0700 West Australian Standard

cdt Central Daylight wadt West Australian Daylight

mst +0700 Mountain Standard jt -0730 Java

mdt Mountain Daylight cct -0800 China Coast, USSR Zone 7

pst +0800 Pacific Standard jst -0900 Japan Standard,
USSR Zone 8

pdt Pacific Daylight cast -0930 Central Australian Standard

yst +0900 Yukon Standard cadt Central Australian Daylight

ydt Yukon Daylight east -1000 Eastern Australian Standard

hst +1000 Hawaii Standard eadt Eastern Australian Daylight

hdt Hawaii Daylight gst -1000 Guam Standard,
USSR Zone 9 (ambiguous with
Greenland Standard)

cat +1000 Central Alaska nzt -1200 New Zealand

ahst +1000 Alaska-Hawaii Standard nzst -1200 New Zealand Standard

nt +1100 Nome nzdt New Zealand Daylight

idlw +1200 International Date Line
West

idle -1200 International Date Line East

cet -0100 Central European

Table 14-3. Military time-zone abbreviations

Name Offset Name Offset Name Offset Name Offset Name Offset

a +0100 f +0600 l +1100 q -0400 v -0900

b +0200 g +0700 m +1200 r -0500 w -1000

c +0300 h +0800 n -0100 s -0600 x -1100

d +0400 i +0900 o -0200 t -0700 y -1200

e +0500 k +1000 p -0300 u -0800 z 0000

Table 14-2. Civilian time-zone abbreviations (continued)

Abbrev. Offset/name Abbrev. Offset/name

CVSROOT Variables | 673

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Environment Variables in CVSROOT Files

Three environment variables are set when CVS runs commands or scripts from
CVS administrative files:

CVS_USER
This variable is meaningful only with the pserver access method. It refers to
the CVS username provided in the leftmost field of the appropriate line in
CVSROOT/passwd. If this username does not exist, the variable expands to an
empty string.

LOGNAME, USER
Both of these variables contain the username of the user calling the CVS process.

In the pserver access method, the username is the third field of the line in
passwd. If no username is there, the CVS_USER value is used.

Internal Variables in CVSROOT Files

The syntax for referencing a CVS internal variable is ${VARIABLE}. The $VARIABLE
syntax can also be used if the character immediately following the variable is
neither alphanumeric nor an underscore (_).

These are the internal CVS variables:
CVSROOT

The path to the repository root directory (not the path to the CVSROOT direc-
tory within the repository). This variable contains the path only, not any
access method or host information.

CVSEDITOR, EDITOR, VISUAL
The editor CVS is using. If you use the -e editor CVS option, CVS uses the
editor you specify on the command line. If you don’t use -e, CVS reads the
environment variables and uses the first editor it finds. CVS uses CVSED-
ITOR by preference, then EDITOR, then VISUAL.

USER
The username (on the server machine in client/server mode) of the user
running CVS.

With the pserver access method, this is the third field of the appropriate line
in passwd. If no username is there, it is the name in the leftmost field.

CVS permits user-defined variables that can be passed to administrative files from
the client. In the administrative files, reference such a variable with the syntax
${=VARIABLE}. On the command line, use the -s variable=value CVS option to pass
the variable to CVS. All strings that contain the $ symbol, other than the variable
references, are reserved for CVS internal use. There is no way to escape the $ symbol.

Shell Variables in CVSROOT Files
Two shell variables are also used in the administrative files:
~/ The home directory of the user calling the CVS process.

~username
The home directory of the user identified as username.

674 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

add

Alphabetical Summary of Commands
Most of your interaction with CVS is through the various CVS subcommands.
Even if you use a graphical client, most of the functions the client uses call the
CVS subcommands.

Most subcommands have a shortened nickname that you can type instead of the
longer subcommand name. These are called command synonyms in CVS jargon.

add cvs [cvs-options] add [-k mode] [-m message] files

Add a file or directory to the repository. This command can also be
used to undo an uncommitted file deletion or to restore a deleted
file. You must commit any added files in order for the addition to
fully take effect.

Synonyms: ad, new.

Standard subcommand options: -k, -m.

Example

$ cvs add Design.rtf
cvs server: scheduling file `Design.rtf' for addition
cvs server: use 'cvs commit' to add this file permanently

admin cvs [cvs-options] admin [options] [files ...]

Use RCS commands on the repository copy of project files. This
command is a frontend for a range of useful (though sometimes
useless to CVS) RCS-based commands. Project files are stored in
the repository in RCS format, so it is useful to have a way to use
some of the RCS commands on the files directly.

Synonyms: adm, rcs.

Standard subcommand options: -k.

Options

-ausernames
Append the comma-separated list of usernames to the RCS
access list in the repository (RCS-format) copy of a file. This
change to an RCS file has no effect on CVS. See also -A and -e.

-Afilename
Append the RCS access list in filename to the access list of the
files being operated on.This change to an RCS file has no
effect on CVS. See also -a and -e.

-b[revision]
Set the default branch of a file to the named branch revision;
or, if no revision is named, set the default branch to the
highest branch revision on the trunk. This option should be
used very rarely in CVS; it is better to check out a sandbox as a
branch sandbox with the -r option to checkout or update.

Alphabetical Summary of Commands | 675

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

admin

-cstring
Set the RCS comment leader of a file to the specified string.
This option is not used in CVS.

-e[usernames]
Remove the comma-separated list of usernames from the RCS
access list in the repository (RCS-format) copy of a file. If no
list of usernames is provided, remove all names. This change to
an RCS file has no effect on CVS. See also -a and -A.

-i Create and initialize an RCS file. This option isn’t used in CVS
(use cvs add instead), and it is not available in CVS 1.9.14 and
later.

-I Run interactively. This option does not work in client/server-
mode CVS and may be removed from later versions of CVS.

-l[revision]
Lock the specified revision of a file so that another user cannot
commit to it. If revision is omitted, CVS locks the latest revi-
sion on the current sandbox’s branch or the trunk. To work
with CVS, the lock requires a script such as the rcslock script
in the contrib directory of the source. See Essential CVS for
how to use this option. See also -u.

-L Set RCS locking for a file to strict, which means that the owner of
the file must lock the file before committing. (This locking is
done by the CVS code, and need not be done manually.) File
locking must be set to strict for CVS to work properly; see also -U.

-mrevision:message
Replace the log message of the designated revision of a file
with the specified message.

-ntagname[:[revision]]
Tag the designated revision or branch of a file with the
tagname. If there is no revision and no colon, delete the tag; if
there is a colon but no revision, tag the latest revision on the
default branch, usually the trunk. If the tagname is already
present in the file (and the operation isn’t “delete”), this
option prints an error and exits. See also -N.

Generally, it is better to use cvs tag and cvs rtag to manipu-
late tags.

-Ntagname[:[revision]]
Tag the designated revision or branch of a file with the
tagname. If there is no revision and no colon, delete the tag; if
there is a colon but no revision, tag the latest revision on the
default branch, usually the trunk. If the tagname is already
present in the file (and the operation isn’t “delete”), this
option moves the tag to the new revision. See also -n.

Generally, it is better to use cvs tag and cvs rtag to manipu-
late tags.

-orange
Delete the revisions specified in the range. The revisions given
in the range can be revision numbers or tags, but be wary of
using tags if multiple tags in a file denote the same revision.

676 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

admin

There is no way to undo a cvs admin -o command.

The range can be any of the following:

revision1:revision2
Delete revisions between revision1 and revision2,
including revision1 and revision2.

revision1::revision2
Delete revisions between revision1 and revision2,
excluding revision1 and revision2.

revision:
Delete revision and all newer revisions on the same
branch (or the trunk).

revision::
Delete all revisions newer than revision on the same
branch (or the trunk).

:revision
Delete revision and all older revisions on the same branch
(or the trunk). This range does not delete the base revi-
sion of the branch or revision 1.1.

::revision
Delete all revisions older then revision on the same
branch (or the trunk). This range does not delete the base
revision of the branch or revision 1.1.

revision
Delete revision.

-q Run quietly, without printing diagnostics (redundant with
cvs -q admin).

-sstate[:revision]
Set the state of the designated revision of a file, or set the last
revision on the trunk or the current branch if no revision is
listed. The state should be a string and is shown in the output
of cvs log and by the Log and State keywords. The dead state
is reserved for CVS internal use.

-t[filename]
Write the contents of the file specified by filename to the
description of each file listed in the command. The descrip-
tion is an RCS field, shown in cvs log output. This option
deletes any existing description. If the filename is omitted,
CVS seeks input from standard input, ending with a period (.)
on a line by itself. See also -t-string.

-t-string
Write the contents of the string to the description of each file
listed in the command. The description is an RCS field, shown
in cvs log output. This option deletes any existing descrip-
tion. See also -t.

Alphabetical Summary of Commands | 677

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

checkout

-u[revision]
Unlock the specified revision of a file so that another user can
commit from that revision. If the revision is omitted, this
option unlocks the latest revision on the current sandbox’s
branch or the trunk. This option requires a script such as the
rcslock script in the contrib directory of the source. See Essen-
tial CVS for how to use this option. See also -l.

-U Set RCS locking for a file to nonstrict, which means that the
owner of the file does not need to lock the file before commit-
ting. (This locking is done by the CVS code and need not be
done manually.)

File locking must be set to strict for CVS to work properly. This
option should never be used on CVS-stored files. See also -L.

-VN Write an RCS file compatible with RCS version N. This option
isn’t used in CVS anymore, and it is not available in CVS 1.9.20
and later.

-xsuffix
Specify the suffix for the RCS file. This option is not used or
available in CVS (all CVS files use ,v as the suffix).

Example

$ cvs admin -kb AcceptanceTest.doc
RCS file: /var/lib/cvs/wizzard/doc/AcceptanceTest.doc,v
done

annotate cvs [cvs-options] annotate [options] [files ...]

Display a file or files with annotations showing the last editor and
revision that changed each line of the file. If no files are supplied,
the files in the current sandbox are shown. See also rannotate.

Synonym: ann.

Standard subcommand options: -D, -f, -l, -r, -R.

Option

-F Show annotations for binary files.

Example

$ cvs annotate Makefile

Annotations for Makefile

1.2 (arnold 01-Sep-02): #
1.2 (arnold 01-Sep-02): # Wizzard project Makefile
1.2 (arnold 01-Sep-02): # A Robbins, 1 September 2002

checkout cvs [cvs-options] checkout [options] projects ...

Create a new sandbox in the current working directory. This
command can also be used to update an existing sandbox. See also
export and update.

678 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

checkout

The projects argument to checkout may be one or more paths to
directories within the repository, paths to files within the repository,
or module names as specified in the modules file in the repository’s
CVSROOT directory. These paths must be separated by spaces.

When creating a new sandbox, the repository path must be speci-
fied by using the -d repository_path CVS option or the CVSROOT
environment variable.

If you are creating a new sandbox inside an existing sandbox, the
CVS/Root file of the current directory in the existing sandbox can
provide a repository path. In most cases, having a sandbox inside a
sandbox is needlessly confusing.

Synonyms: co, get.

Standard subcommand options: -d, -D, -f, -k, -l, -n, -N, -r, -R.

Options

-A Clear sticky tags, dates, and keyword-expansion modes from a
project and replace the current files with the head of the trunk.

-c Display the contents of the modules file in the repository’s
CVSROOT directory. This option lists the modules in the current
repository and the options applicable to those modules. See
also -s.

checkout -c lists only those projects that have entries in
the modules file.

-j revision[:date]
Determine the changes between the revision the files in the
sandbox are based on and the specified revision and merge
those changes to the sandbox.

If two -j options are used, determine the changes between the
first -j revision and the second -j revision and merge those
changes to the sandbox.

The date can be used only if the revision designates a branch.
date specifies the latest revision on that date.

-p Check out the listed files to the standard output, rather than
to the filesystem.

-P Do not include empty directories in the sandbox.

-s Display the contents of the modules file in the repository’s
CVSROOT directory. This option lists the modules in the current
repository and their status. See also -c.

Example

$ cvs -d cvs:/var/lib/cvs checkout wizzard
cvs server: Updating wizzard
U wizzard/Changelog
U wizzard/INSTALL
U wizzard/Makefile

Alphabetical Summary of Commands | 679

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

diff

commit cvs [cvs-options] commit [options] [files ...]

Commit changes in a sandbox to the repository. Until a commit is
run, changes such as modified, new, or removed files are not
reflected in the repository. If no files are listed as arguments, CVS
uploads all changes in the current sandbox.

Unless you use either the -m or -F options, commit invokes an editor
to request a log message.

If there have been changes in the repository version of a file since it
was last synchronized with the repository and the local version has
also changed, you have a conflict and the file cannot be committed.
You can try to commit the file again once you have updated it using
cvs update or cvs checkout. The update will include an attempt to
merge the file.
Synonyms: ci, com.
Standard subcommand options: -l, -m, -n, -r, -R.

Options

-f
Force CVS to commit a file even if there have been no changes
to the file. This option implies the -l option.

-F logfile
Read a log message from the specified logfile rather than
calling an editor.

Example

/home/arnold/cvs/wizzard$ cvs commit
cvs commit: Examining .
cvs commit: Examining doc
cvs commit: Examining lib
...
RCS file: /var/lib/cvs/wizzard/doc/Design.rtf,v
done
Checking in doc/Design.rtf;
/var/lib/cvs/wizzard/doc/Design.rtf,v <-- Design.rtf
initial revision: 1.1
done

diff cvs [cvs-options] diff [format-options] [options] [files ...]

Display the differences between two revisions of a file or files. By
default, diff checks the sandbox copy against the revision in the
repository that the sandbox copy was last synchronized with. If the
files argument is a directory, all files under that directory are
compared and files in subdirectories are also compared recursively.
See also rdiff.

Synonyms: di, dif.

Standard subcommand options: -D, -k, -l, -r, -R.

The format-options determine how cvs diff displays any differ-
ences it finds. They operate in the same way as the options to the

680 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

edit

GNU diff program. This includes full support for the line and
group format options; see the entry for diff in Chapter 2.

Example

This is a simple example to show how CVS displays the difference
between the current and repository revisions of the Makefile.

$ cvs diff Makefile
Index: Makefile
=============================
RCS file: /var/lib/cvs/wizzard/Makefile,v
retrieving revision 1.6
diff -r1.6 Makefile
25a26
> rm -f lib/*.o

edit cvs [cvs-options] edit [options] [files ...]

Mark a file as being edited by the current user. This command is
used as part of the cvs watch family of commands. If a file is being
watched, it is checked out to the sandbox with read permissions
but not write permissions. The edit command sets the sandbox file
as writable, notifies any watchers that the file is being edited, and
sets the user as a temporary watcher to be notified if certain actions
are performed on the file by other users. See also editors, unedit,
watch, and watchers.

CVS does not notify you of your own changes.

You can unedit (set read-only and clear the temporary watch) a file
with cvs unedit or cvs release, or by removing the file and recre-
ating it with cvs update or cvs checkout.

CVS uses any script in the notify file in the repository’s CVSROOT
directory to notify the user of changes.

Synonyms: none.

Standard subcommand options: -l, -R.

Option

-a action
Notify the user when the specified action occurs to the file.
This setting acts as a temporary watch (see watch) on the file
and is removed when the file is no longer being edited. Each -a
designates one of the possible actions. The -a option can be
repeated to designate multiple actions. The action may be any
of the following:

commit
Notify the user when someone else commits changes to
the file.

Alphabetical Summary of Commands | 681

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

export

edit
Notify the user if someone else has run cvs edit on the
file.

unedit
Notify the user when the file is no longer being edited by
someone else. This notification is triggered by the user
running cvs unedit or cvs release or by the file being
deleted and re-created with cvs update or cvs checkout.

all
Notify the user of all of the previous actions.

none
Notify the user of none of the previous actions.

editors cvs [cvs-options] editors [-lR] [files ...]

Displays the list of people who have a current edit command for
the file or files listed as parameters. If no files are listed, this
command lists the editors for the files in the current directory and
subdirectories. See also edit, unedit, watch, and watchers.

Synonyms: none.

Standard subcommand options: -l, -R.

Example

$ cvs editors Makefile
Makefile arnold Sat Oct 26 01:51:02 2002 GMT helit
/home/arnold/cvs/wizzard

export cvs [cvs-options] export [options] project

Create a directory containing all directories and files belonging to a
specified release of a project, with no CVS administrative files. It
acts like a checkout or update for that specific point, but it does not
produce the CVS administrative files. export requires the -r or -D
command options. When exporting, the repository path must be
specified by using the -d repository_path CVS option or the
CVSROOT environment variable. See also checkout and update.

The argument to export can be a directory name or path within the
repository, a filename or path within the repository, or a module
name as specified in the modules file in the repository’s CVSROOT
directory.

You can imply the repository path by being in a sandbox,
but exporting into a sandbox is not recommended.

Synonyms: exp, ex.

Standard subcommand options: -d, -D, -f, -k, -l, -n, -N, -r, -R.

682 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

history

Example

$ cvs -d cvs:/var/lib/cvs export -D now wizzard
cvs server: Updating wizzard
U wizzard/Changelog
U wizzard/INSTALL
U wizzard/Makefile

history cvs [cvs-options] history [options] [files ...]

Display the information stored in the history file in the reposi-
tory’s CVSROOT directory. If that file does not exist or is not writable,
the history command fails with an error. CVS writes to the history
file during checkout, export, commit, rtag, update, and release
operations.

Synonyms: hi, his.

Standard subcommand options: -D, -r.

The -f, -l, -n, and -p options for cvs history act differ-
ently than their normal uses in CVS.

Options

-a Show history data for all users. By default, CVS shows only
the data for the calling user.

-b string
Show data that is more recent than the newest record that
contains the given string in the module name, filename, or
repository path.

-c Report only commits—times when the repository was modi-
fied (equivalent to -xAMR).

-e
Report on every record type. This option is equivalent to -x
with every type specified.

-f file
Show data for the specified file. This option can be repeated to
show data for multiple files.

-l Show only the most recent commit to the repository.

-m module
Show data for a particular module. CVS checks the modules file
in the repository’s CVSROOT directory and then searches the
history file for files and directories that belong to the module.

-n module
Like -m, but search only the history file for the specified
module name.

-o Report on records of checkouts (equivalent to -xO).

Alphabetical Summary of Commands | 683

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

history

-p directory
Show records for a particular project directory. This option
can be repeated to show records for several projects.

-r revision
Show data as of, or more recent than, the revision or tag. CVS
searches the repository’s project files to determine the time-
stamp of the revision.

-t tagname
Show data as of, or more recent than, the latest time a tag
record with this tagname was stored in the history file by any
user.

-T Report on records of tags (equivalent to -xT).

-u username
Report on records for the specified username. This option can
be repeated to search for multiple users.

-w Report on records of actions that match the current working
directory.

-x flag(s)
Extract records that match the given flag or flags. Any number
of flags can be used with the -x option. cvs history extracts all
records in the history file that match this option and all other
options. The flags may be any of the following:

A Report on records of files added to the repository.

C Report on records of files that would have been updated
in a sandbox, but where the files needed to be merged
and there were conflicts in the merge.

E Report on records of files exported from the repository.

F Report on records of files that were released.

G Report on records of files updated in a sandbox with a
successful merge.

M Report on records of files that were modified (a sandbox
revision added to the repository).

O Report on records of files that were checked out.

R Report on records of files that were removed from the
repository.

T Report on records of files that were tagged with CVS rtag.

U Report on records of files updated in a sandbox file with
no merge required.

W Report on records of files deleted from a sandbox during
an update because they were no longer active in the
repository.

-z timezone
Produce output and convert times to the specified timezone.
The time zone can be a recognized abbreviation such as EST, or
it can be given as an offset of UTC. Time zones are listed in
the earlier section “Time Zones.”

684 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

import

Example

$ cvs history
O 2002-10-03 08:33 +0000 arnold wizzard/src =wizmain= <remote>/*
O 2002-10-03 09:12 +0000 arnold wizzard =wizmake= <remote>/*
O 2002-10-03 09:12 +0000 arnold wizzard/src =wiztest= <remote>/*
O 2002-10-25 08:58 +0000 arnold wizzard =wizzard= <remote>/*

import cvs [cvs-options] import [options] project-name vendor-tag
release-tag

Create a new project in the repository or manage vendor branches.
To create a new project, lay out the project structure and any initial
files. You can do this in a temporary directory, as CVS does not
need the initial structure or files once the project has been
imported. Change directories into the root directory of the new
project, then run cvs import. You need to specify the repository
path and provide a project name and two tags: a vendor tag and a
release tag.

The project-name will become the project’s root directory name.
The tags are less critical; if you do not intend to use a vendor
branch, a meaningless pair of tags such as a1 b2 is sufficient. The
tag names must conform to all the normal requirements for tags:
they must start with a letter and can contain only alphanumeric
characters, underscores (_), and hyphens (-). The HEAD and BASE tag
names are reserved.

A vendor branch is a special branch that CVS provides to track
third-party code that contributes to a project. If you use vendor
branches, CVS uses the vendor-tag as a branch tag for the vendor
branch, and it uses the release-tag to mark the current revisions of
the vendor branch files.

Create a vendor branch by using cvs import to create the project.
When you want to update to a new release from the vendor, use
cvs import on the same project with the same vendor tag and a new
release tag.

Test that you can cvs checkout the new project before
removing the original files.

Synonyms: im, imp.

Standard subcommand options: -k, -m.

Options

-b branch
Import to the specified vendor branch. If you have more than
one external supplier for a project, you may need to use two or
more distinct vendor branches to manage the project. If you
are using multiple vendor branches, use the -b option to
specify which branch you are importing to. branch must be the

Alphabetical Summary of Commands | 685

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

log

branch number, not a tag, and CVS does not check that the
branch number given with the option and the symbolic tag
provided as the vendor-tag argument to the command corre-
spond to the same branch.

-d When setting the timestamp on each imported file, use each
file’s last modification time rather than the current time.

-I file
Ignore file when updating. -I can be used more than once. Use
-I ! to clear the list of ignored files.

-W wrapper
Modify the import based on elements of each filename.

Example

$ cvs -d cvs:/var/lib/cvs import wizzard wizproject ver_0-1
...
No conflicts created by this import

init cvs [cvs-options] init

Convert an existing directory into a CVS repository and create and
populate the CVSROOT directory that contains the administrative files
for a CVS repository.

CVS creates the final directory in the path if it does not already
exist. Previous directories in the path must exist.

Synonyms: none.

Example

$ cvs -d /var/lib/cvsroot init

kserver cvs [cvs-options] kserver

Run the repository-server end of a Kerberos 4 connection. The cvs
kserver command must be called from inetd or an equivalent
server daemon. See also pserver.

Synonyms: none.

log cvs [cvs-options] log [options] [files ...]

Display information about the files in the current sandbox or the
files specified as parameters. The information this command
provides is part of the header section of the files in the repository.
This command also provides information from the log messages
created when files are imported or changes are committed.

With no options, cvs log displays all the information it has avail-
able. See also rlog.

Synonym: lo.

Standard subcommand options: -l.

686 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

log

Options

-b Display information about only the revisions on the default
branch, normally the trunk.

-d dates
Display information only on revisions checked in on or
between the dates or times provided. Date and time formats
are listed in the earlier section “Dates.” More than one date
range can be given; ranges must be separated by semicolons.
Date ranges can be specified according to the following list:

date1>date2, date2<date1
Select all revisions between the two dates.

date1>=date2, date2<=date1
Select all revisions on or between the two dates.

date>, <date
Select all revisions earlier than date.

date>=, <=date
Select all revisions on or earlier than date.

date<, >date
Select all revisions later than date.

date<=, >=date
Select all revisions on or later than date.

date
Select all revisions on date.

-h Print only the header information for a file, not the descrip-
tion, the log messages, or revision information.

-N Do not list the tags (the symbolic names).

-r[revisions]
Provide information only on revisions in the ranges provided.
More than one range can be given; ranges must be separated
by commas. There must be no space between the -r and its
argument. If no range is provided, the latest revision on the
default branch, normally the trunk, is used.

Ranges can be specified according to the following list:

revision1:revision2, revision1::revision2
Select all revisions between revision1 and revision2. The
revisions must be on the same branch. With the double
colon, CVS excludes revision1.

:revision, ::revision
Select revisions from the start of the branch or trunk the
revision is on, up to and including the revision.

revision:, revision::
Select revisions from revision to the end of the branch or
trunk the revision is on. With the double colon, CVS
excludes the revision.

branch
Select all revisions on branch.

Alphabetical Summary of Commands | 687

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

login

branch1:branch2, branch1::branch2
Select all revisions on both branches and any branches
that split off from the two branches.

branch.
Select the latest revision on branch. Note the trailing
period.

-R Display the name of the repository copy of a file only.

-s states
Display only revisions with states that match one of the states
in the comma-separated list.

-S Do not display header information if there are no revisions to
display.

-t Print only the header information and description, not the log
messages or revision information.

-w[usernames]
Display only revisions committed by the specified list of users.
Provide the list of users as a comma-separated list. If no user-
names are listed, the revisions committed by the current user
are displayed. There can be no space between -w and its
argument.

Example

$ cvs log
cvs server: Logging .

RCS file: /var/lib/cvs/wizzard/Changelog,v
Working file: Changelog
head: 1.1
branch:
locks: strict
access list:
symbolic names:
beta_0-1_branch: 1.1.0.2
beta_0-1_branch_root: 1.1
pre_beta_0-1: 1.1
keyword substitution: kv
total revisions: 1; selected revisions: 1
description:

revision 1.1
date: 2002/08/31 13:37:56; author: arnold; state: Exp;
Creating a structure.
...

login cvs [cvs-options] login

Log in to a CVS pserver session. This command is needed only
with the pserver connection mode. See also logout.

Synonyms: none.

688 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

logout

Example

$ acct=:pserver:arnold:password:@cvs.nosuch.net:/var/lib/cvs
$ cvs -d $acct login
Logging in to :pserver:arnold@cvs:2401/var/lib/cvs

logout cvs [cvs-options] logout

Log out of a CVS pserver session. This command is needed only
with the pserver connection mode. See also login.

Synonyms: none.

Example

$ cvs -d :pserver:arnold@cvs:/var/lib/cvs logout
Logging out of :pserver:arnold@cvs:2401/var/lib/cvs

pserver cvs [cvs-options] pserver

Run the repository-server end of a password server or Kerberos 5
(via the GSS-API) connection. This command must be called from
inetd or an equivalent server daemon. See also kserver.

Synonyms: none.

rannotate cvs [cvs-options] rannotate [options] files ...

Displays files with annotations showing the last editor and revision
that changed each line of each specified file. You can run rannotate
without a sandbox, but you must have a repository specified if you
do so. rannotate requires at least one filename, directory name, or
module name from within the repository as an argument. See also
annotate.

Synonyms: ra, rann.
Standard subcommand options: -D, -f, -l, -r, -R.

Option

-F Show annotations for binary files.

Example

$ cvs rannotate wizzard/Makefile

Annotations for wizzard/Makefile

1.2 (arnold 01-Sep-02): #
1.2 (arnold 01-Sep-02): # Wizzard project Makefile
1.2 (arnold 01-Sep-02): # A Robbins, 1 September 2002

rdiff cvs [cvs-options] rdiff [options] projects ...

Create output that can be redirected into a file and used with the
GNU (or equivalent) patch program. The output goes to the stan-
dard output. rdiff operates directly from the repository and does
not need to be used from a sandbox. It does require a filename,

Alphabetical Summary of Commands | 689

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rdiff

directory name, or module name as an argument, and you must
specify one or two revisions or dates. If you specify one revision or
date, rdiff calculates the differences between that date and the
current (HEAD) revision. If two dates are specified, rdiff calculates
the differences between the two. See also diff.

Synonyms: pa, patch.

Most people use rdiff to make a file to use with patch. If
you’re using a patch file that was created over more than
one directory, you may need to use the -p option to
patch, so that it can find all the appropriate directories.

Standard subcommand options: -D, -f, -l, -r, -R.

Options

-c Use context output format, with three lines of context around
each change. This is the default format.

-s Create a summary change report rather than a patch, showing
which files have changed with one line per file.

-t Produce a report on the two most recent revisions in a file. Do
not use -r or -D with the -t option.

-u Use unidiff format instead of context format.

-V version
This option is now obsolete, but it used to allow you to expand
keywords according to the rules of the specified RCS version.

Example

$ cvs rdiff -r 1.5 wizzard/Makefile
Index: wizzard/Makefile
diff -c wizzard/Makefile:1.5 wizzard/Makefile:1.6
*** wizzard/Makefile:1.5 Thu Oct 17 08:50:14 2002
--- wizzard/Makefile Thu Oct 17 10:01:12 2002

*** 2,18 ****
 # Makefile for the Wizzard project
 # First created by A Robbins, 1 September 2002
 #
! # Current revision $Revision: 1.5 $
 # On branch $Name: $ (not expanded if this is the trunk)
! # Latest change by
 # $Author: arnold $ on $Date: 2002/10/16 22:50:14 $
 #
 ##

 # Initial declarations
 #
 CC=gcc
! SUBDIRS = man doc src lib

 # Declaring phony targets
--- 2,18 ----

690 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

release

 # Makefile for the Wizzard project
 # First created by A Robbins, 1 September 2002
 #
! # Current revision $Revision: 1.6 $
 # On branch $Name: $ (not expanded if this is the trunk)
! # Latest change by
 # $Author: arnold $ on $Date: 2002/10/17 00:01:12 $
 #
 ##

 # Initial declarations
 #
 CC=gcc
! SUBDIRS = man doc src lib test

 # Declaring phony targets

...

release cvs [cvs-options] release [-d] directories ...

Make a sandbox inactive. This command checks for uncommitted
changes, removing any existing edit flags, and writes to the
CVSROOT/history file that the sandbox has been released. You can
use release on an entire sandbox or on one or more subdirectories.

Synonyms: re, rel.

Option

-d Delete the sandbox after it has been released.

Example

$ cvs -d cvs:/var/lib/cvs release wizzard
You have [0] altered files in this repository.
Are you sure you want to release directory `wizzard': y

remove cvs [cvs-options] remove [-flR] [files ...]

The remove command removes a file or directory from the reposi-
tory. It can also be used to undo an uncommitted file addition.

Synonyms: rm, delete.

Standard subcommand options: -l, -R.

Option

-f Delete the files from the sandbox before removing them from
the repository.

Example

$ cvs remove server.cc
cvs server: scheduling `server.cc' for removal
cvs server: use 'cvs commit' to remove this file permanently

Alphabetical Summary of Commands | 691

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rtag

rlog cvs [cvs-options] rlog [options] files ...

The rlog command is a remote version of the log command. rlog
works without a sandbox and requires a file, directory, or module
name from the repository. See also log.

Synonym: rl.

Standard subcommand option: -l.

Options

-b Provide information only about the revisions or a file on the
default branch, normally the highest branch on the trunk.

-d dates
Provide information only on revisions of a file that were
checked in on or between the dates or times provided. Date
formats are listed in the earlier section “Dates.” More than one
date range can be given; ranges must be separated by semico-
lons. Date ranges are the same as for the log command; see log.

-h Print only the header information, not the description, log
messages, or revision information.

-N Do not list the tags (the symbolic names).

-r[revisions]
Provide information only on revisions in the ranges provided.
More than one revision range can be given; ranges must be
separated by commas. There must be no space between the -r
and its argument. If no range is provided, the latest revision on
the default branch, normally the trunk, is used. The possible
values for revisions are the same as for log, see log.

-R Display the name of the repository copy of the file only.

-s states
Display only revisions with states that match one of the states
in the comma-separated list.

-S Do not display header information of a file if there are no revi-
sions to display.

-t Print only the header information of a file and its description,
not the log messages or revision information.

-w[usernames]
Display only revisions committed by the usernames in the
comma-separated list. If there are no usernames listed, the
revisions committed by the current user are displayed. There
can be no space between -w and its argument.

rtag cvs [cvs-options] rtag [options] tagname files ...

Mark a revision of a single file with a meaningful name or mark a
set of revisions of multiple files so that they can all be retrieved
easily as a group. Tagnames must begin with a letter and may
contain only alphanumeric characters, underscores (_), and
hyphens (-). There are two tags reserved for CVS: the BASE and HEAD
tags. See also tag.

692 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

server

The tag and rtag commands are also used to create branches.

The rtag command does not need to run from a sandbox, but it
does need to have a revision or date specified. It also requires a file-
name, directory name, or module name given as a parameter.

Synonyms: rt, rfreeze.

Standard subcommand options: -D, -f, -l, -n, -r, -R.

Options

-a Clear a tag from files that have been removed from active devel-
opment. Normally, removed files are not searched when tags
are removed. This option works with the -d and -F options.

-b Create a branch off the designated revision (provided with -r),
using the designated tagname as the branch name.

-B Allow -F and -d to act on branch tags. Back up the repository
before you use this option, and be extremely careful. See
Chapter 4 in Essential CVS before using this option.

-d Delete the specified tag.

-F Move the tag from the revision it currently refers to, to the
revision specified in the rtag command.

Example

$ cvs -d cvs:/var/lib/cvs rtag -D now alpha_1-6 wizzard
cvs rtag: Tagging wizzard
cvs rtag: Tagging wizzard/doc
cvs rtag: Tagging wizzard/doc/design
cvs rtag: Tagging wizzard/doc/plan
...

server cvs server

Runs the repository end of the CVS server using an internal version
of the rsh program. The CVS client must also be able to use this
internal version. This is used for the server access method. See also
kserver and pserver.

Synonyms: none.

status cvs [cvs-options] status [-vlR] [files ...]

Display information about files, such as the current working or
base revision, the current revision in the repository, and whether
the files are currently synchronized with the repository. With the -v
option, status also shows the files’ tags.

Synonyms: st, stat.

Standard subcommand options: -l, -R.

Option

-v Include information about tags.

Alphabetical Summary of Commands | 693

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tag

Example

$ cvs status Makefile
=============================
File: Makefile Status: Locally Modified

Working revision: 1.6
Repository revision: 1.6 /var/lib/cvs/wizzard/
Makefile,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

tag cvs [cvs-options] tag [options] tagname [files ...]

Mark a revision of a single file with a meaningful name or mark a
set of revisions of multiple files so that they can all be retrieved
easily as a group. Tagnames must begin with a letter and may
contain only alphanumeric characters, underscores (_), and
hyphens (-). There are two tags reserved for CVS: the BASE and HEAD
tags. See also rtag.
The tag and rtag commands are also used to create branches.
If no revision number or date is given to the tag command, this
command tags based on the most recent revision in the repository
that was synchronized with the current sandbox directory (i.e., the
most recently updated, checked-out, or committed revision). This
revision can be seen as the working revision in the cvs status
command.

Synonyms: ta, freeze.

Standard subcommand options: -D, -f, -l, -r, -R.

Options

-b Create a branch off the specified revision, using the specified
tagname as the branch name.

-c Check whether the sandbox copies of the specified files have
been modified since they were last synchronized with the
repository. If they have been modified, do not tag them and
display an error. If they are unmodified, tag them with the
specified tagname. This option is useful when tagging the
current sandbox revisions.

-d Delete the specified tagname from a file.
-F Move the tagname from the revision it currently refers to, to

the revision specified in the tag command.

Example

$ cvs tag alpha_1-5
cvs server: Tagging .
T Changelog
T INSTALL
T Makefile
T README
T TODO
...

694 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

unedit

unedit cvs [cvs-options] unedit [-lR] [files ...]

Unmark a file as being edited by the current user. The cvs unedit
command is used as part of the cvs watch family of commands. If a
file is being watched, CVS writes it (when it is checked out) to the
sandbox with read permissions but not write permissions. The
unedit command notifies watchers that the file is no longer being
edited, clears the temporary watch, sets the file as read-only, and
restores the file to the repository revision that the sandbox copy
was based on. See also edit, editors, watch, and watchers.

The script in the notify file in the repository’s CVSROOT directory is
used to notify the user of changes.

Synonyms: none.

Standard subcommand options: -l, -R.

update cvs [cvs-options] update [options] [files ...]

Download changes from the repository to an existing sandbox.
While doing this, update merges changes from the repository into
changed files in the sandbox. See also checkout and export.

If update cannot merge repository changes with sandbox changes
without losing data, it reports a conflict.

If update is not given any filenames or directory names as parame-
ters, it acts on the current sandbox.

Synonyms: up, upd.

Standard subcommand options: -D, -f, -k, -l, -r, -R.

Options

-A Clear sticky tags, dates, and keyword-expansion modes and
replace the current files in the sandbox with the head of the
trunk.

-C Replace any file that has been changed locally with the revi-
sion from the repository that the local file was based on. The
modified local file is saved as .#file.revision in the local
sandbox directory.

-d Create any directories that are in the repository but not in the
sandbox. By default, update works only on the directories that
are currently in the sandbox and ignores any new directories.

-I file
Ignore file when updating. -I can be used more than once. Use
-I ! to clear the list of ignored files.

-j revision[:date]
Determine the changes between the revision the files in the
sandbox are based on and the specified revision and merge the
changes to the sandbox.

If two -j options are used, determine the changes between the
first -j revision and the second -j revision and merge those
changes to the sandbox.

Alphabetical Summary of Commands | 695

CVS

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

watch

The date can be used only if the revision designates a branch.
If date is used, it specifies the latest revision on (not before)
that date.

-p Update the listed files, but write them to the standard output
rather than to the filesystem. Do not change the sandbox.

-P Do not include empty directories in the sandbox.

-W wrapper
Modify the update based on elements of each filename.

Example

$ cvs update
cvs server: Updating .
U wizzard/Changelog
U wizzard/INSTALL
U wizzard/Makefile

version cvs [cvs-options] version

Display the version information for the current installation of CVS.

Synonyms: ve, ver.

Example

$ cvs version
Concurrent Versions System (CVS) 1.11.15 (client/server)

watch cvs [cvs-options] watch command [options] [files ...]

Set files to be watched or add users to the file watch list. Users who
are watching a file are notified via the script in the notify file in the
repository’s CVSROOT directory when other users perform specific
actions. Essential CVS explains uses of the cvs watch family of
commands. See also edit, editors, unedit, and watchers.

CVS does not notify you of your own changes.

Synonyms: none.

Standard subcommand options: -l, -R.

Commands

on and off
The on and off subcommands control whether the file or files
are marked as being watched. If a file is marked as being
watched, CVS sets it as read-only when it is checked out of the
repository. Without this read-only setting, developers might
forget to use cvs edit when editing a file.

If the argument is a directory, all current files in the directory
and all new files added to that directory in the future are set as
being watched.

696 | Chapter 14: The Concurrent Versions System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

watchers

The on and off subcommands set whether a file is watchable,
but they do not set who is watching it; the add and remove
subcommands set whether or not you are watching a file.

add and remove
Use the add and remove subcommands to set or remove files
you want to watch. Use the -a option to specify which actions
you want to be notified of.

Option

-a action
Notify the user when the designated actions occur to the file.
Each -a designates one possible action. The -a option can be
repeated to designate multiple actions. The -a option is usable
only with the add and remove subcommands.

These are the possible actions:

commit
Notify the user when someone else commits changes to
the file.

edit
Notify the user if someone else has run cvs edit on the
file.

unedit
Notify the user when the file is no longer being edited by
someone else. Notification occurs when cvs unedit or cvs
release runs or when the file is deleted and re-created
with cvs update or cvs checkout.

all
Notify the user in all of the previous cases.

none
Notify the user in none of the previous cases.

Examples

$ cvs watch on Makefile Enable watching
$ cvs watch add Makefile Add me to list of watchers

watchers cvs [cvs-options] watchers [-lR] [files ...]

Displays the list of users who are watching the files listed as param-
eters. If no files are listed, this command lists the watchers for the
files in the current directory and its subdirectories. See also edit,
editors, unedit, and watch.

Standard subcommand options: -l, -R.

Example

$ cvs watchers Makefile
Makefile doppel edit unedit commit
arnold edit unedit commit

697

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 15Subversion

15
The Subversion Version

Control System

The Subversion version control system is a powerful Open Source system for
management of file and directory versions. Designed from the ground up to
support distributed development, it offers many leading-edge features.

This chapter covers the following topics:

• Conceptual overview

• Obtaining Subversion

• Using Subversion: a quick tour

• The Subversion command line client: svn

• Repository administration: svnadmin

• Examining the repository: svnlook

• Providing remote access: svnserve

• Other Subversion components

Most of the material in this chapter is adapted from Version Control with Subver-
sion, which is cited in the Bibliography. See that book for much more information
on Subversion.

Conceptual Overview
Subversion is a version control system. It lets you track changes to an entire
project directory tree. Every change made to the tree is recorded and can be
retrieved.

Subversion is intended to be “a better CVS;” this is discussed in detail shortly.
Subversion is purposely an Open Source project. If you want to participate, you can!

698 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Basic Version Control Operations

Actual data is kept in a repository, a set of directories and files managed by
Subversion. Users use the svn client program to access the repository and make
changes to it.

Subversion uses the copy-modify-merge development model. You make a private
copy of a given project in a sandbox. (This is often called checking out a copy.) Like
CVS and unlike RCS, this private copy is not locked in the repository. You then
make all the changes you like to the copy within the sandbox, without having to
worry about what other developers are doing. As you work, you can compare your
changes to the version you started with, as well as to the version currently in the
repository. Once you’re satisfied with the changes, you commit them, sometimes
referred to as a check-in. (These terms come from RCS and CVS.)

In the event that another developer has modified part of a file that you were working
on and checked it in, when you commit your changes Subversion notices, and indi-
cates that a conflict exists. Conflicts are marked as such in the file, and Subversion
creates pristine copies of the file as it exists in the repository and of the file as you
modified it, so that you can do full comparisons. Once you have resolved the
conflict, you tell Subversion about it, and then commit the final version.

Like CVS, Subversion lets you create a development branch, a separate stream of
development versions. You can periodically merge changes from the main devel-
opment stream (the trunk) into your branch, and also merge changes from your
branch back into the trunk.

Finally, you can tag a particular copy of the project. For instance, when a project
is ready for a release, you can create a snapshot of the project, and give it a
descriptive tag that allows you to re-create the project tree exactly as it was for the
release. This is particularly valuable for when you need to produce a bug fix for an
older version of the project, or attempt to retrofit a fix or feature from current
development into an older version.

Building a Better CVS

When discussing Subversion’s features, it is often helpful to speak of them in
terms of how they improve upon CVS’s design. Subversion provides:

Directory versioning
CVS only tracks the history of individual files, but Subversion implements a
“virtual” versioned filesystem that tracks changes to whole directory trees
over time. Files and directories are versioned.

True version history
Since CVS is limited to file versioning, operations such as copies and
renames—which might happen to files, but which are really changes to the
contents of some containing directory—aren’t supported in CVS. In CVS,
you cannot delete a versioned file and then create a new file of the same name
with different contents without inheriting the history of the old—perhaps
completely unrelated—file. With Subversion, you can add, delete, copy, and

Conceptual Overview | 699

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rename both files and directories. Every newly added file begins with a fresh,
clean history all its own, even if the filename was previously used.

Atomic commits
A collection of modifications either goes into the repository completely, or
not at all. This allows developers to construct and commit changes as logical
chunks, and prevents problems that can occur when only a portion of a set of
changes is successfully sent to the repository.

Versioned metadata
Each file and directory has a set of properties—keys and their values—associ-
ated with it. You can create and store any arbitrary key/value pairs. Properties
are versioned over time, just like file contents.

Choice of network layers
Subversion has an abstracted notion of repository access, making it easy to
implement new network mechanisms. Subversion can plug into the Apache
HTTP Server as an extension module. This gives Subversion a big advantage
in stability and interoperability, and instant access to existing features
provided by that server—authentication, authorization, wire compression,
and so on. A more lightweight, standalone Subversion server process is also
available. This server speaks a custom protocol that can be easily tunneled
over SSH.

Consistent data handling
Subversion expresses file differences using a binary differencing algorithm,
which works identically on both text (human-readable) and binary (human-
unreadable) files. Both types of files are stored equally compressed in the
repository, and only the differences are transmitted in both directions across
the network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project
size. Subversion creates branches and tags by simply copying the project,
using a mechanism similar to a hard link. Thus these operations take only a
very small, constant amount of time.

Hackability
Subversion has no historical baggage; it is implemented as a collection of
shared C libraries with well-defined APIs. This makes Subversion extremely
maintainable and usable by other applications and languages.

Optimized around the network
Disk storage continues to increase in size and speed and decrease in cost: disk
space is cheap on today’s systems. However, network connectivity has not
kept pace; access to remote repositories is several orders of magnitude slower
than local access. Thus the Subversion design is optimized to avoid
connecting to the repository when possible. For example, in the working
copy’s administrative directory, .svn, Subversion maintains a pristine copy of
each file as it was checked out of the repository. This makes it possible to
produce the differences very quickly, with no need to contact the repository.

700 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

In addition, Subversion uses commands similar to those of CVS, making it
straightforward to transfer your CVS habits to Subversion.

Converting a Repository from CVS to Subversion

A very effective way to learn Subversion if you already know CVS is to move your
project from CVS to Subversion. The quickest way to accomplish this is to do a
flat import into a Subversion repository from an exported CVS repository.
However, this only gives you a “snapshot” of your repository; the revision history
(changes, logs, tags, branches, etc.) are not kept.

Copying a repository while maintaining history is a difficult problem to solve. Never-
theless, a few tools exist that at least partially convert existing CVS repositories into
new Subversion ones, such as cvs2svn, a Python script originally created by members
of Subversion’s own development community (see http://cvs2svn.tigris.org/), and Lev
Serebryakov’s RefineCVS (see http://lev.serebryakov.spb.ru/refinecvs/).

For an updated collection of links to known converter tools, visit the Links page
of the Subversion web site, http://subversion.tigris.org/project_links.html.

Special File Properties

Subversion allows you to associate properties with files or directories. A property is
just a keyword/value pair associated with the file. Subversion reserves property
names starting with svn: for its own use. The special properties in Subversion 1.0 are:

svn:author
The username of the person who committed a particular revision.

svn:date
The date when the transaction for a revision was created.

svn:eol-style
Different operating systems use different conventions to mark the end of lines
in text files. Unix and its workalikes use a single ASCII line-feed character (LF)
to end lines. MS Windows systems use a Carriage Return + Line Feed combi-
nation (CRLF), and older Macintosh systems use a single Carriage Return
(CR). This can cause problems when a Windows user stores a new revision of
the file: suddenly a Unix user who does a checkout sees a file with extraneous
Carriage Return characters at the end of every line. The svn:eol-style attribute
solves this problem. It should be set to one of the following values:

Subversion always stores files in normalized, LF-only format in the repository.

CR Clients should always use CR line terminators, no matter what the
native format is.

CRLF Clients should always use CR-LF line terminators, no matter what the
native format is.

LF Clients should always use LF line terminators, no matter what the
native format is.

native Clients should use the native format when checking out files.

Conceptual Overview | 701

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

svn:executable
Valid only for files, the mere presence of this property indicates that the file
should be made executable when it’s checked out or updated from the reposi-
tory. It has no effect on filesystems, such as FAT-32 or NTFS, that don’t have
the concept of an execute bit.

svn:externals
This property, when set on a directory under version control, allows you to
specify other external repositories to use for particular local subdirectories.
You set this property with svn propset or svn propedit (see the “svn Subcom-
mands” section later in the chapter). The value is a multiline table of
directories and fully-qualified Subversion URLs. For example:

$ svn propget svn:externals calc
third-party/sounds http://sounds.red-bean.com/repos
third-party/skins http://skins.red-bean.com/repositories/skinproj
third-party/skins/toolkit -r21 http://svn.red-bean.com/repos/skin-maker

Once set, anyone else who checks out a working copy will also get the third-
party files checked out automatically.

svn:ignore
A property containing a list of file patterns that certain Subversion opera-
tions will ignore. It should be set on directories, as needed. It works to filter
unversioned files and directories out of commands like svn status, svn add,
and svn import. It is similar to the .cvsignore file in CVS, and you can often
import your .cvsignore with this command:

$ svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'

svn:keywords
A list of keywords for which Subversion should perform keyword expansion
when checking out the file. This is purposely similar to the same feature in
RCS and CVS. However, Subversion only does keyword expansion when this
property is set, and only for the keywords listed in the property’s value. The
list of recognized keywords is provided shortly.

svn:log
The log message associated with the commit of a particular revision.

svn:mime-type
An indication of the type of data stored in the file. In general, if it does not
begin with text/, Subversion assumes that the file contains binary data. For
updates, this causes Subversion to rename a modified working copy of the file
with a .orig extension and replace the file with the current version from the
repository. This prevents an attempt to perform a “merge” on data that can’t
be merged. This property also influences how the Subversion Apache module
sets the HTTP Content-type: header.

svn:realmstring
A specialized property that describes the “authentication realm” for a file in
Subversion’s cached copy of the authentication credentials. See Chapter 6 of
Version Control with Subversion for more information.

702 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Subversion defines the list of keywords available for substitution. That list
contains the following five keywords, some of which have shorter aliases that you
can also use:

$LastChangedDate$
This keyword describes the last time the file was changed in the repository,
and looks like $LastChangedDate: 2002-07-22 21:42:37 -0700 (Mon, 22 Jul 2002) $.
It may be abbreviated as Date.

$LastChangedRevision$
This keyword describes the last revision in which this file changed in the
repository, and looks like $LastChangedRevision: 144 $. It may be abbreviated
as Revision or Rev.

$LastChangedBy$
This keyword describes the last user to change this file in the repository, and
looks like $LastChangedBy: joe $. It may be abbreviated as Author.

$HeadURL$
This keyword describes the full URL to the latest version of the file in the
repository. It looks like $HeadURL: http://svn.collab.net/repos/trunk/README $.
It may be abbreviated as URL.

Id
This keyword is a compressed combination of the other keywords. Its substi-
tution looks like $Id: calc.c 148 2002-07-28 21:30:34Z sue $, and is interpreted
to mean that the file calc.c was last changed in revision 148 on the evening of
July 28, 2002 by the user sue.

Obtaining Subversion
The Subversion project web site is http://subversion.tigris.org/. It contains links to
project documentation, Frequently Asked Questions (FAQs), and project source
code.

Some GNU/Linux systems come with Subversion available on the installation
CDs. Thus, you may be able to install a pre-built binary for your system, or use a
package manager to download and install it.

Subversion Releases

Subversion uses the “even/odd” release model. Even numbered point releases
(1.0, 1.2, etc.) are considered to be stable releases. Such releases undergo change
only to fix problems. New features are not added, and users can expect to use the
software without problems. Odd numbered point releases (1.1, 1.3, etc.), on the
other hand, are development versions. New features are added in such versions,
they tend to undergo rapid change and evolution, and such releases may have
bugs or problems that could cause loss of data. You should use an even-numbered
release if stability and data preservation are important to you. Use an odd-
numbered release only if it has a critical, must-have feature and if you are willing
to live with the risks involved.

Obtaining Subversion | 703

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

A View Down the Road

The one constant in the Open Source world is change. At the time of writing,
Subversion 1.0 is the current released stable version. The first development release
of Subversion 1.1 is also available. Along with a host of fixes and several new
command-line options, the next version has the following interesting features:

Symbolic links may be versioned
Unix-style symbolic links are stored in the repository as a regular file with a
special attribute. The svn client knows how to store and extract symbolic
links correctly on Unix-style systems.

Nondatabase repository back-end
Repositories can be set up to store data in regular files, instead of requiring
the use of Berkeley DB.

Better localization support
The framework for localization of the Subversion code has been improved,
with at least eight translations already available.

The Subversion web site’s Roadmap page (http://subversion.tigris.org/roadmap.html)
lists the following future development goals (you should recheck the web site;
things will undoubtedly have changed):

Subversion 1.2 goals

• Optional locking (reserved checkouts)

Medium-term goals

• True rename support (not based on copy/delete)

• Merge tracking (describes a whole class of problems)

• Repository-level Access Control Lists (ACLs)*

Long-term goals

• SQL repository back-end

• Rewrite of working-copy library

• Broader WebDAV/deltaV compatibility†

• Pluggable client-side diff programs

• Progressive multilingual support

Source Code

The latest Subversion source is kept in a Subversion archive available from the
main Subversion site. This leads to a so-called bootstrapping problem; you can’t

* ACLs provide finer-grained access controls than the regular Unix user/group/other permissions
mechanism. Many Unix systems support some form of ACLs, but in incompatible ways.

† WebDAV is short for “Web-based Distributed Authoring and Versioning,” an extension to HTTP
that makes read/write file resources available over the Web. Despite the “V” in the name, the orig-
inal specification (RFC 2518) does not provide a model for version control; this is provided by
DeltaV, described in RFC 3253. See http://www.webdav.org for more information.

704 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

get Subversion unless you already have it. Fortunately, the developers make
Subversion releases available as standalone tar archives that you can use to build
your initial Subversion client. You can get these from the main web site, http://
subversion.tigris.org. Once there, select the “Downloads” link. You may choose to
download a binary distribution (Red Hat RPM file, Debian package, etc.), if one is
available. This is the easiest road to take. Or you may choose to download source
code and build your own. Building Subversion follows the general steps outlined
in the section “Building Software,” in Chapter 1.

Using Subversion: A Quick Tour
This section provides a very quick tour of using Subversion for version control.
We start with the initial version of a project for importing into Subversion:

$ find /tmp/hello -print Show directory layout
/tmp/hello
/tmp/hello/branches Directory for branch development
/tmp/hello/tags Directory for tagged releases
/tmp/hello/trunk
/tmp/hello/trunk/hello.c Mainline development is done on the trunk
/tmp/hello/trunk/Makefile
/tmp/hello/trunk/README

The next steps are to create the repository and then to import the project into it:

$ svnadmin create /path/to/svnrepos
$ svn import /tmp/hello file:///path/to/svnrepos -m "initial import"
Adding /tmp/hello/trunk
Adding /tmp/hello/trunk/hello.c
Adding /tmp/hello/trunk/Makefile
Adding /tmp/hello/trunk/README
Adding /tmp/hello/branches
Adding /tmp/hello/tags

Committed revision 1.

Now that the project exists in Subversion, we check out a working copy into a
sandbox underneath our home directory and start making changes:

$ cd Move to home directory
$ svn checkout file:///path/to/svnrepos hello Check out working copy
A hello/trunk
A hello/trunk/hello.c
A hello/trunk/README
A hello/trunk/Makefile
A hello/branches
A hello/tags
Checked out revision 1.

$ cd hello/trunk Change to sandbox
$ vi message.c hello.c Makefile Make changes
3 files to edit

Using Subversion: A Quick Tour | 705

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

$ cat message.c Show newly created file
const char message[] = "hello, world!";
$ make Compile program and test it
cc -c -o hello.o hello.c
cc -c -o message.o message.c
cc -O hello.o message.o -o hello
$ hello
hello, world!

One of the most common operations is to compare the changed copy with the orig-
inal. The result is in “unified diff” format, the equivalent of the regular diff -u
command:

$ svn diff hello.c
Index: hello.c
===
--- hello.c (revision 1)
+++ hello.c (working copy)
@@ -1,7 +1,9 @@
 #include <stdio.h>

+extern const char message[];
+
 int main(void)
 {
- printf("hello, world!\n");
+ printf("%s\n", message);
 return 0;
 }

Now that we’re comfortable with the changes, we schedule the new file, message.c,
for addition to the repository, and then we actually commit our changes:

$ svn add message.c Schedule message.c for addition
A message.c
$ svn commit Commit all the changes
Sending trunk/Makefile
Sending trunk/hello.c
Adding trunk/message.c
Transmitting file data ...
Committed revision 2.

Finally, we can view all of our changes relative to the initial revision:

$ svn diff -r 1
Index: hello.c
===
--- hello.c (revision 1)
+++ hello.c (working copy)
@@ -1,7 +1,9 @@
 #include <stdio.h>

+extern const char message[];
+
 int main(void)
 {

706 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

- printf("hello, world!\n");
+ printf("%s\n", message);
 return 0;
 }
Index: Makefile
===
--- Makefile (revision 1)
+++ Makefile (working copy)
@@ -1,2 +1,2 @@
-hello: hello.c
- $(CC) -O $< -o $@
+hello: hello.o message.o
+ $(CC) -O hello.o message.o -o $@
Index: message.c
===
--- message.c (revision 0)
+++ message.c (revision 2)
@@ -0,0 +1 @@
+const char message[] = "hello, world!";

The Subversion Command Line Client: svn
The syntax for the Subversion command line client, svn, is:

svn [options] subcommand [arguments]

The options and subcommand may be provided in any order.

svn Options

While Subversion has different options for its subcommands, all options are
global—that is, each option is guaranteed to mean the same thing regardless of
the subcommand that you use it with. For example, --verbose (-v) always means
“verbose output,” no matter which subcommand you use it with.

--auto-props
Enable auto-props, overriding the enable-auto-props directive in the config file.

--config-dir dir
Read configuration information from the specified directory instead of the
default location (.subversion in the user’s home directory).

--diff-cmd cmd
Use cmd as the external program to show differences between files. Normally,
svn diff uses Subversion’s internal diff engine, which provides unified diffs
by default. To use an external diff program, use --diff-cmd. You can pass
options to the diff program with the --extensions option (discussed later in
this list).

--diff3-cmd cmd
Use cmd as the external program to merge files.

The Subversion Command Line Client: svn | 707

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--dry-run
Pretend to run a command, but make no actual changes—either in the
sandbox or in the repository.

--editor-cmd cmd
Use cmd as the program for editing a log message or a property value. If not
set, Subversion checks the environment variables SVN_EDITOR, VISUAL,
and EDITOR, in that order, for the name of the editor to use.

--encoding enc
Use enc as the encoding for the commit message. The default encoding is
your operating system’s native locale, and you should specify the encoding if
your commit message is in any other encoding.

--extensions args, -x args
Pass args to an external diff command when providing differences between
files. To pass multiple arguments, enclose all of them in quotes (for example,
svn diff --diff-cmd /usr/bin/diff -x "-b -E"). This option can be used only if
you also pass the --diff-cmd option.

--file filename, -F filename
Use the contents of filename for the specified subcommand.

--force
Force a particular command or operation to run. There are some operations
that Subversion prevents you from doing in normal usage, but you can pass
this option to tell Subversion “I know what I’m doing as well as the possible
repercussions of doing it, do it anyway.” Use with caution.

--force-log
Force a suspicious parameter passed to the --message (-m) or --file (-F)
options to be accepted as valid. By default, Subversion produces an error if
parameters to these options look like they might instead be targets of the
subcommand. For example, if you pass a versioned file’s path to the --file (-F)
option, Subversion assumes that you’ve made a mistake, that the path was
instead intended as the target of the operation, and that you simply failed to
provide some other—unversioned—file as the source of your log message. To
assert your intent and override these types of errors, pass the --force-log
option to commands that accept log messages.

--help, -h, -?
If used with one or more subcommands, show the built-in help text for each
subcommand. If used alone, display the general client help text.

--ignore-ancestry
Ignore ancestry when calculating differences (i.e., rely on path contents
alone).

--incremental
Print output in a format suitable for concatenation.

--message message, -m message
Use message as the commit message. For example:

$ svn commit -m "They don't make Sunday."

708 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--new arg
Use arg as the newer target when producing a diff.

--no-auth-cache
Do not cache authentication information (e.g., username and password) in
the Subversion administrative directories.

--no-auto-props
Disable auto-props, overriding the enable-auto-props directive in the config file.

--no-diff-deleted
Do not print differences for deleted files. The default behavior when you
remove a file is for svn diff to print the same differences that you would see if
you had left the file but removed all the content.

--no-ignore
Show files in the status listing that would normally be omitted since they
match a pattern in the svn:ignore property.

--non-interactive
In the case of an authentication failure, or insufficient credentials, do not
prompt for credentials (e.g., username or password). This is useful if you’re
running Subversion inside of an automated script where it’s better to have
Subversion fail instead of trying to prompt for more information.

--non-recursive, -N
Stop a subcommand from recursing into subdirectories. Most subcommands
recurse by default, but some subcommands—usually those that have the
potential to remove or undo your local modifications—do not.

--notice-ancestry
Pay attention to ancestry when calculating differences.

--old arg
Use arg as the older target when producing a diff.

--password pass
Use pass as the password for authentication on the command line—other-
wise, if it is needed, Subversion prompts you for it.

--quiet, -q
Print only essential information while performing an operation.

--recursive, -R
Make a subcommand recurse into subdirectories. Most subcommands
recurse by default.

--relocate from to [path …]
Used with the svn switch subcommand to change the location of the reposi-
tory that your working copy references. This is useful if the location of your
repository changes and you have an existing working copy that you’d like to
continue to use. See svn switch for an example.

The Subversion Command Line Client: svn | 709

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--revision rev, -r rev
Use rev as the revision (or range of revisions) for a particular operation. You
can provide revision numbers, revision keywords, or dates (in curly braces),
as arguments to the revision option. To provide a range of revisions, provide
two revisions separated by a colon. For example:

$ svn log -r 1729
$ svn log -r 1729:HEAD
$ svn log -r 1729:1744
$ svn log -r {2001-12-04}:{2002-02-17}
$ svn log -r 1729:{2002-02-17}

The list of revision keywords is provided later in this section.

--revprop
Operate on a revision property instead of a Subversion property specific to a
file or directory. This option requires that you also pass a revision with the
--revision (-r) option.

--show-updates, -u
Display information about which files in your working copy are out-of-date.
This doesn’t actually update any of your files, it just shows you which files
will be updated if you run svn update.

--stop-on-copy
Cause a Subversion subcommand that is traversing the history of a versioned
resource to stop harvesting that historical information when it encounters a
copy—that is, a location in history where that resource was copied from
another location in the repository.

--strict
Use strict semantics, a notion that is rather vague unless talking about specific
subcommands. See Version Control with Subversion for more information.

--targets filename
Retrieve the list of files to operate on from filename instead of listing all the
files on the command line.

--username name
Use name as the username for authentication—otherwise, if it is needed,
Subversion prompts you for it.

--verbose, -v
Print out as much information as possible while running any subcommand.
This may result in Subversion printing out additional fields, detailed informa-
tion about every file, or additional information regarding its actions.

--version
Print the client version info. This information not only includes the version
number of the client, but also a listing of all repository access modules that
the client can use to access a Subversion repository.

--xml
Print output in XML format.

710 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

add

 The acceptable revision keywords for --revision are:

svn Subcommands

The svn command is the main user interface to Subversion. It works by accepting
subcommands with arguments. The general form is:

svn subcommand [options] arguments

add svn add path ...

Add files and directories to your working copy and schedule them
for addition to the repository. They will be uploaded and added to
the repository on your next commit. If you add something and
change your mind before committing, you can unschedule the
addition using svn revert.

Options

Examples

To add a file to your working copy:

$ svn add foo.c
A foo.c

You can add a directory without adding its contents:

$ svn add --non-recursive otherdir
A otherdir

BASE The original unmodified version of the working copy. This keyword
cannot refer to a URL.

COMMITTED The last revision, before or at BASE, at which an item actually
changed. This keyword cannot refer to a URL.

HEAD The most recent revision in the repository.
PREV The revision just before that at which an item changed. Equivalent to

COMMITED – 1. This keyword cannot refer to a URL.
Revision Date A date specification enclosed in curly braces, { and }, such as

{2002-02-17}, {15:30}, {"2002-02-17 15:30"}, {2002-02-17T15:30},
or {20020217T1530-0500}. Full details are provided in Version
Control with Subversion.

Alternate Names: None
Changes: Working Copy
Accesses Repository: No

--auto-props --non-recursive (-N)
--config-dir dir --quiet (-q)
--no-auto-props --targets filename

The Subversion Command Line Client: svn | 711

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

cat

blame svn blame target ...

Show author and revision information in-line for the specified files
or URLs. Each line of text is annotated at the beginning with the
author (username) and the revision number for the last change to
that line.

Options

cat svn cat target ...

Output the contents of the specified files or URLs. For listing the
contents of directories, see svn list.

Options

Examples

To view readme.txt in your repository without checking it out:

$ svn cat http://svn.red-bean.com/repos/test/readme.txt
This is a README file.
You should read this.

If your working copy is out of date (or if you have local
modifications) and you want to see the HEAD revision of a
file in your working copy, svn cat automatically fetches
the HEAD revision when you give it a path:

$ cat foo.c
This file is in my local working copy
and has changes that I've made.

$ svn cat foo.c
Latest revision fresh from the repository!

Alternate Names: praise, annotate, ann
Changes: Nothing
Accesses Repository: Yes

--config-dir dir --password pass
--no-auth-cache --revision rev, -r rev
--non-interactive --username user

Alternate Names: None
Changes: Nothing
Accesses Repository: Yes

--config-dir dir --password pass
--no-auth-cache --revision rev, -r rev
--non-interactive --username user

712 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

checkout

checkout svn checkout URL ... [path]

Check out a working copy from a repository. If path is omitted, the
basename of the URL is used as the destination. If multiple URLs
are given, each one is checked out into a subdirectory of path, with
the name of the subdirectory being the basename of the URL.

Options

Examples

Check out a working copy into a directory called mine:

$ svn checkout file:///tmp/repos/test mine
A mine/a
A mine/b
Checked out revision 2.
$ ls
mine

If you interrupt a checkout (or something else interrupts your
checkout like loss of connectivity, etc.), you can restart it either by
issuing the identical checkout command again, or by updating the
incomplete working copy:

$ svn checkout file:///tmp/repos/test test
A test/a
A test/b
^C
svn: The operation was interrupted
svn: caught SIGINT

$ svn checkout file:///tmp/repos/test test
A test/c
A test/d
^C
svn: The operation was interrupted
svn: caught SIGINT

$ cd test
$ svn update
A test/e
A test/f
Updated to revision 3.

Alternate Names: co
Changes: Creates a working copy
Accesses Repository: Yes

--config-dir dir --password pass
--no-auth-cache --quiet (-q)
--non-interactive --revision rev, -r rev
--non-recursive (-N) --username user

The Subversion Command Line Client: svn | 713

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

commit

cleanup svn cleanup [path ...]

Recursively clean up the working copy, removing locks and
resuming unfinished operations. If you ever get a “working copy
locked” error, run this command to remove stale locks and get
your working copy into a usable state again.

If, for some reason, an svn update fails due to a problem running an
external diff program (e.g., user input or network failure), pass the
--diff3-cmd option to allow cleanup to complete any merging with
your external diff program. You can also specify any configura-
tion directory with the --config-dir option, but you should rarely
need these options.

Options:

--config-dir dir
--diff3-cmd cmd

commit svn commit [path ...]

Send changes from your working copy to the repository. If you don’t
supply a log message with your commit by using either the --file or
--message option, svn starts your editor for you to compose a commit
message.

If you begin a commit and Subversion starts your editor
to compose the commit message, you can still abort with-
out committing your changes. To cancel your commit,
just quit your editor without saving your commit mes-
sage. Subversion prompts you to either abort the com-
mit, continue with no message, or edit the message again.

Options

Alternate Names: None
Changes: Working copy
Accesses Repository: No

Alternate Names: ci (short for “check in,” not co, which is
short for “check out”)

Changes: Working copy, repository
Accesses Repository: Yes

--config-dir dir --non-interactive
--encoding enc --non-recursive (-N)
--file file, -F file --password pass
--force-log --quiet (-q)
--message text, -m text --targets filename
--no-auth-cache --username user

714 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

copy

Examples

Commit a simple modification to a file with the commit message
on the command line and an implicit target of your current direc-
tory (“.”):

$ svn commit -m "added howto section."
Sending a
Transmitting file data .
Committed revision 3.

To commit a file scheduled for deletion:

$ svn commit -m "removed file 'c'."
Deleting c
Committed revision 7.

copy svn copy src dst

Copy a file in a working copy or in the repository. src and dst can
each be either a working copy (WC) path or a URL:

WC ➝ WC
Copy and schedule an item for addition (with history).

WC ➝ URL
Immediately commit a copy of WC to URL.

URL ➝ WC
Check out URL into WC, and schedule it for addition.

URL ➝ URL
Complete server-side copy. This is usually used to branch and
tag.

You can only copy files within a single repository. Subver-
sion does not support cross-repository copying.

Options

Alternate Names: cp
Changes: Repository if destination is a URL

Working copy if destination is a WC path
Accesses Repository: If source or destination is in the repository,

or if needed to look up the source revision
number

--config-dir dir --no-auth-cache
--editor-cmd editor --non-interactive
--encoding enc --password pass
--file file, -F file --quiet (-q)
--force-log --revision rev, -r rev
--message text, -m text --username user

The Subversion Command Line Client: svn | 715

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

delete

Examples

Copy an item within your working copy (just schedule the copy—
nothing goes into the repository until you commit):

$ svn copy foo.txt bar.txt
A bar.txt
$ svn status
A + bar.txt

Copy an item from the repository to your working copy (just
schedule the copy—nothing goes into the repository until you
commit):

$ svn copy file:///tmp/repos/test/far-away near-here
A near-here

This is the recommended way to resurrect a dead file in
your repository!

And finally, copying between two URLs:

$ svn copy file:///tmp/repos/test/far-away \
> file:///tmp/repos/test/over-there -m "remote copy."
Committed revision 9.

This is the easiest way to “tag” a revision in your reposi-
tory—just svn copy that revision (usually HEAD) into your
tags directory.

$ svn copy file:///tmp/repos/test/trunk \
> file:///tmp/repos/test/tags/0.6.32-prerelease \
> -m "tag tree"
Committed revision 12.

delete svn delete path ...
svn delete URL ...

Items specified by path are scheduled for deletion upon the next
commit. Files (and directories that have not been committed) are
immediately removed from the working copy. The command will
not remove any unversioned or modified items; use the --force
option to override this behavior.

Items specified by URL are deleted from the repository via an
immediate commit. Multiple URLs are committed atomically.

Alternate Names: del, remove, rm
Changes: Working copy if operating on files

Repository if operating on URLs
Accesses Repository: Only if operating on URLs

716 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

diff

Options

diff svn diff [-r N[:M]] [--old old-tgt][--new new-tgt] [path ...]
svn diff -r N:M URL
svn diff [-r N[:M]] URL1[@N] URL2[@M]

Display the differences between two paths. The three different
ways you can use svn diff are:

svn diff [-r N[:M]] [--old old-tgt] [--new new-tgt] [path …]
Display the differences between old-tgt and new-tgt. If paths are
given, they are treated as relative to old-tgt and new-tgt and the
output is restricted to differences in only those paths. old-tgt
and new-tgt may be working copy paths or URL[@rev]. old-tgt
defaults to the current working directory and new-tgt defaults
to old-tgt. N defaults to BASE or, if old-tgt is a URL, to HEAD. M
defaults to the current working version or, if new-tgt is a URL,
to HEAD. svn diff -r N sets the revision of old-tgt to N, whereas
svn diff -r N:M also sets the revision of new-tgt to M.

svn diff -r N:M URL
A shorthand for svn diff -r N:M --old=URL --new=URL.

svn diff [-r N[:M]] URL1[@N] URL2[@M]
A shorthand for svn diff [-r N[:M]] --old=URL1 --new=URL2.

If target is a URL, then revisions N and M can be given either via
the --revision option or by using “@” notation as described
earlier.

If target is a working copy path, then the --revision option means:

--revision N:M
The server compares target@N and target@M.

--revision N
The client compares target@N against the working copy.

No --revision option
The client compares the base and working copies of target.

If the alternate syntax is used, the server compares URL1 and
URL2 at revisions N and M respectively. If either N or M are
omitted, a value of HEAD is assumed.

By default, svn diff ignores the ancestry of files and merely
compares the contents of the two files being compared. If you use
--notice-ancestry, the ancestry of the paths in question is taken
into consideration when comparing revisions (that is, if you run svn

--config-dir dir --no-auth-cache
--editor-cmd editor --non-interactive
--encoding enc --password pass
--file file, -F file --quiet (-q)
--force-log --targets filename
--force --username user
--message text, -m text

The Subversion Command Line Client: svn | 717

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

export

diff on two files with identical contents but different ancestry you
will see the entire contents of the file as having been removed and
added again).

Options

Examples

Compare BASE and your working copy:

$ svn diff COMMITTERS
Index: COMMITTERS
==
--- COMMITTERS (revision 4404)
+++ COMMITTERS (working copy)
...

See how your working copy’s modifications compare against an
older revision:

$ svn diff -r 3900 COMMITTERS
Index: COMMITTERS
==
--- COMMITTERS (revision 3900)
+++ COMMITTERS (working copy)
...

Use --diff-cmd cmd and -x to pass arguments directly to the
external diff program:

$ svn diff --diff-cmd /usr/bin/diff -x "-i -b" COMMITTERS
Index: COMMITTERS
==
0a1,2
> This is a test
>

export svn export [-r rev] URL [path]
svn export path1 path2

The first form exports a clean directory tree from the repository
specified by URL (at revision rev if it is given, otherwise at HEAD)

Alternate Names: di
Changes: Nothing
Accesses Repository: For obtaining differences against

anything but the BASE revision in your
working copy

--config-dir dir --non-recursive (-N)
--diff-cmd cmd --notice-ancestry
--extensions args, -x args --old old-target
--new new-target --password pass
--no-auth-cache --revision rev, -r rev
--no-diff-deleted --username user
--non-interactive

718 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

help

into path. If path is omitted, the last component of the URL is used
for the local directory name.

The second form exports a clean directory tree from the working
copy specified by path1 into path2. All local changes are preserved,
but files not under version control are not copied.

Options

help svn help [subcommand ...]

Provide a quick usage summary. With subcommand, provide infor-
mation about the given subcommand.

Options

--quiet (-q)
--version

import svn import [path] URL

Recursively commit a copy of path to URL. If path is omitted “.” is
assumed. Parent directories are created in the repository as
necessary.

Options

Alternate Names: None
Changes: Local disk
Accesses Repository: Only if exporting from a URL

--config-dir dir --password pass
--force --quiet (-q)
--no-auth-cache --revision rev, -r rev
--non-interactive --username user

Alternate Names: ?, h
Changes: Nothing
Accesses Repository: No

Alternate Names: None
Changes: Repository
Accesses Repository: Yes

--auto-props --no-auth-cache
--config-dir dir --no-auto-props
--editor-cmd editor --non-interactive
--encoding enc --non-recursive (-N)
--file file, -F file --password pass
--force-log --quiet (-q)
--message text, -m text --username user

The Subversion Command Line Client: svn | 719

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

info

Examples

Import the local directory myproj into the root of your repository:

$ svn import -m "New import" myproj \
> http://svn.red-bean.com/repos/test
Adding myproj/sample.txt
...
Transmitting file data
Committed revision 16.

Import the local directory myproj into trunk/vendors in your reposi-
tory. The directory trunk/vendors need not exist before you import
into it—svn import will recursively create directories for you:

$ svn import -m "New import" myproj \
> http://svn.red-bean.com/repos/test/trunk/vendors/myproj
Adding myproj/sample.txt
...
Transmitting file data
Committed revision 19.

After importing data, note that the original tree is not under version
control. To start working, you still need to svn checkout a fresh
working copy of the tree.

info svn info [path ...]

Print information about paths in your working copy, including:

• Path

• Name

• URL

• Revision

• Node Kind

• Last Changed Author

• Last Changed Revision

• Last Changed Date

• Text Last Updated

• Properties Last Updated

• Checksum

Options

--config-dir dir
--recursive (-R)
--targets filename

Alternate Names: None
Changes: Nothing
Accesses Repository: No

720 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

list

list svn list [target ...]

List each target file and the contents of each target directory as they
exist in the repository. If target is a working copy path, the corre-
sponding repository URL is used. The default target is “.”, meaning
the repository URL of the current working copy directory.

With --verbose, the following fields show the status of the item:

• Revision number of the last commit

• Author of the last commit

• Size (in bytes)

• Date and time of the last commit

Options

Examples

To see what files a repository has without downloading a working
copy:

$ svn list http://svn.red-bean.com/repos/test/support
README.txt
INSTALL
examples/
...

Pass the --verbose option for additional information:

$ svn list --verbose file:///tmp/repos
 16 sue 28361 Jan 16 23:18 README.txt
 27 sue 0 Jan 18 15:27 INSTALL
 24 joe Jan 18 11:27 examples/

log svn log [path]
svn log URL [path ...]

The default target is the path of your current directory. If no argu-
ments are supplied, svn log shows the log messages for all files and
directories inside of (and including) the current working directory
of your working copy. You can refine the results by specifying a
path, one or more revisions, or any combination of the two. The
default revision range for a local path is BASE:1.

Alternate Names: ls
Changes: Nothing
Accesses Repository: Yes

--config-dir dir --recursive (-R)
--no-auth-cache --revision rev, -r rev
--non-interactive --username user
--password pass --verbose (-v)

The Subversion Command Line Client: svn | 721

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

log

If you specify a URL alone, svn log prints log messages for every-
thing that the URL contains. If you add paths past the URL, only
messages for those paths under that URL are printed. The default
revision range for a URL is HEAD:1.

With --verbose, svn log also prints all affected paths with each log
message. With --quiet, svn log does not print the log message
body itself (this is compatible with --verbose).

Each log message is printed just once, even if more than one of the
affected paths for that revision were explicitly requested. Logs
follow copy history by default. Use --stop-on-copy to disable this
behavior, which can be useful for determining branch points.

Options

Examples

To see the log messages for all the paths that changed in your
working copy, run svn log from the top (some long output lines
have wrapped):

$ svn log

r20 | joe | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line
Tweak.

r17 | sue | 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003) | 2 lines
...

If you don’t have a working copy handy, you can log a URL:

$ svn log http://svn.red-bean.com/repos/test/foo.c

r32 | sue | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.

r28 | sue | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
...

Alternate Names: None
Changes: Nothing
Accesses Repository: Yes

--config-dir dir --revision rev, -r rev
--incremental --stop-on-copy
--no-auth-cache --targets filename
--non-interactive --username user
--password pass --verbose (-v)
--quiet (-q) --xml

722 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

merge

If you run svn log on a specific path and provide a spe-
cific revision and get no output at all:

$ svn log -r 20
> http://svn.red-bean.com/untouched.txt

then that just means that the path was not modified in
that revision. If you log from the top of the repository, or
know the file that changed in that revision, you can spec-
ify it explicitly:

$ svn log -r 20 touched.txt

r20 | sue | 2003-01-17 22:56:19 -0600 (Fri, 17
Jan 2003) | 1 line

Made a change.

merge svn merge sourceURL1[@N] sourceURL2[@M] [wcpath]
svn merge -r N:M source [path]

In the first form, the source URLs are specified at revisions N and
M. These are the two sources to be compared. The revisions default
to HEAD if omitted.

In the second form, source can be a URL or working copy item, in
which case the corresponding URL is used. This URL, at revisions
N and M, defines the two sources to be compared.

wcpath is the working copy path that will receive the changes. If
wcpath is omitted, a default value of “.” is assumed, unless the
sources have identical basenames that match a file within “.”, in
which case, the differences are applied to that file.

Unlike svn diff, this command takes the ancestry of a file into
consideration when performing a merge operation. This is very
important when you’re merging changes from one branch into
another and you’ve renamed a file on one branch but not the other.

Options

Alternate Names: None
Changes: Working copy
Accesses Repository: Only if working with URLs

--config-dir dir --non-interactive
--diff3-cmd cmd --non-recursive (-N)
--dry-run --password pass
--force --quiet (-q)
--ignore-ancestry --revision rev, -r rev
--no-auth-cache --username user

The Subversion Command Line Client: svn | 723

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

move

Examples

Merge a branch back into the trunk (assuming that you have a
working copy of the trunk, and that the branch was created in revi-
sion 250):

$ svn merge -r 250:HEAD \
> http://svn.red-bean.com/repos/branches/my-branch
U myproj/tiny.txt
U myproj/thhgttg.txt
U myproj/win.txt
U myproj/flo.txt

If you branched at revision 23, and you want to merge changes
from the trunk into your branch, you could do this from inside the
working copy of your branch:

$ svn merge -r 23:30 file:///tmp/repos/trunk/vendors
U myproj/thhgttg.txt
...

To merge changes to a single file:

$ cd myproj
$ svn merge -r 30:31 thhgttg.txt
U thhgttg.txt

mkdir svn mkdir path ...
svn mkdir URL ...

Create a directory with a name given by the final component of the
path or URL. A directory specified by a working copy path is sched-
uled for addition in the working copy. A directory specified by a
URL is created in the repository via an immediate commit.
Multiple directory URLs are committed atomically. In both cases
all the intermediate directories must already exist.

Options

move svn move src dst

This command moves (renames) a file or directory in your working
copy or in the repository.

Alternate Names: None
Changes: Working copy; repository if operating

on a URL
Accesses Repository: Only if operating on a URL

--config-dir dir --no-auth-cache
--editor-cmd editor --non-interactive
--encoding enc --password pass
--file file, -F file --quiet (-q)
--force-log --username user
--message text, -m text

724 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

propdel

This command is equivalent to an svn copy followed by
svn delete.

WC ➝ WC
Move and schedule a file or directory for addition (with
history).

URL ➝ URL
Complete server-side rename.

Subversion does not support moving between working
copies and URLs. In addition, you can only move files
within a single repository—Subversion does not support
cross-repository moving.

Options

propdel svn propdel propname [path ...]
svn propdel propname --revprop -r rev [URL]

This removes properties from files, directories, or revisions. The
first form removes versioned properties in your working copy,
whereas the second removes unversioned remote properties on a
repository revision.

Options

Alternate Names: mv, rename, ren
Changes: Working copy; repository if operating

on a URL
Accesses Repository: Only if operating on a URL

--config-dir dir --no-auth-cache
--editor-cmd editor --non-interactive
--encoding enc --password pass
--file file, -F file --quiet (-q)
--force-log --revision rev, -r rev
--force --username user
--message text, -m text

Alternate Names: pdel, pd
Changes: Working copy; repository only if operating

on a URL
Accesses Repository: Only if operating on a URL

--config-dir dir --recursive (-R)
--no-auth-cache --revision rev, -r rev
--non-interactive --revprop
--password pass --username user
--quiet (-q)

The Subversion Command Line Client: svn | 725

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

propget

Examples

Delete a property from a file in your working copy:

$ svn propdel svn:mime-type some-script
property 'svn:mime-type' deleted from 'some-script'.

Delete a revision property:

$ svn propdel --revprop -r 26 release-date
property 'release-date' deleted from repository revision '26'

propedit svn propedit propname path ...
svn propedit propname --revprop -r rev [URL]

Edit one or more properties using your favorite editor. The first form
edits versioned properties in your working copy, while the second
edits unversioned remote properties on a repository revision.

Options

propget svn propget propname [path ...]
svn propget propname --revprop -r rev [URL]

Print the value of a property on files, directories, or revisions. The
first form prints the versioned property of an item or items in your
working copy, while the second prints the unversioned remote
property on a repository revision.

Options

Alternate Names: pedit, pe
Changes: Working copy; repository only if operating

on a URL
Accesses Repository: Only if operating on a URL

--config-dir dir --password pass
--editor-cmd editor --revision rev, -r rev
--encoding enc --revprop
--no-auth-cache --username user
--non-interactive

Alternate Names: pget, pg
Changes: Working copy; repository only if operating

on a URL
Accesses Repository: Only if operating on a URL

--config-dir dir --recursive (-R)
--no-auth-cache --revprop
--non-interactive --strict
--password pass --username user

726 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

proplist

proplist svn proplist propname [path ...]
svn proplist propname --revprop -r rev [URL]

List all properties on files, directories, or revisions. The first form
lists versioned properties in your working copy, while the second
lists unversioned remote properties on a repository revision.

Options

Examples

You can use svn proplist to see the properties on an item in your
working copy:

$ svn proplist foo.c
Properties on 'foo.c':
 svn:mime-type
 svn:keywords
 owner

But with the --verbose flag, svn proplist is extremely handy as it
also shows you the values for the properties:

$ svn proplist --verbose foo.c
Properties on 'foo.c':
 svn:mime-type : text/plain
 svn:keywords : Author Date Rev
 owner : sue

propset svn propset propname [propval] path ...
svn propset propname --revprop -r rev [propval] [URL]

Set propname to propval on files, directories, or revisions. The first
example creates a versioned, local property change in the working
copy, and the second creates an unversioned, remote property
change on a repository revision. The new property value, propval,
may be provided literally, or using the -F valfile option.

Alternate Names: plist, pl
Changes: Working copy; repository only if operating

on a URL
Accesses Repository: Only if operating on a URL

--config-dir dir --recursive (-R)
--no-auth-cache --revision rev, -r rev
--non-interactive --revprop
--password pass --username user
--quiet (-q) --verbose (-v)

Alternate Names: pset, ps
Changes: Working copy; repository only if operating

on a URL
Accesses Repository: Only if operating on a URL

The Subversion Command Line Client: svn | 727

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

resolved

Options

Examples

Set the mimetype on a file:

$ svn propset svn:mime-type image/jpeg foo.jpg
property 'svn:mime-type' set on 'foo.jpg'

On a Unix system, if you want a file to have execute permission:

$ svn propset svn:executable ON somescript
property 'svn:executable' set on 'somescript'

By default, you cannot modify revision properties in a
Subversion repository. Your repository administrator
must explicitly enable revision property modifications by
creating a hook named pre-revprop-change.

resolved svn resolved path ...

Remove the “conflicted” state on working copy files or directories.
This command does not semantically resolve conflict markers; it
merely removes conflict-related artifact files and allows path to be
committed again; that is, it tells Subversion that the conflicts have
been “resolved.” Use it after you have resolved the conflict in the file.

Options

Example

If you get a conflict on an update, your working copy will contain
three additional files:

$ svn update
C foo.c
Updated to revision 31.
$ ls
foo.c Merged version with conflict markers
foo.c.mine Original working copy version
foo.c.r30 Unmodified BASE version
foo.c.r31 Unmodified HEAD version

--config-dir dir --quiet (-q)
--encoding enc --recursive (-R)
--file file, -F file --revision rev, -r rev
--force --revprop
--no-auth-cache --targets filename
--non-interactive --username user
--password pass

Alternate Names: None
Changes: Working copy
Accesses Repository: No

--config-dir dir --recursive (-R)
--quiet (-q) --targets filename

728 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

revert

Once you’ve resolved the conflict and foo.c is ready to be
committed, run svn resolved to let your working copy know you’ve
taken care of everything.

You can just remove the conflict files and commit, but
svn resolved fixes up some bookkeeping data in the
working copy administrative area in addition to remov-
ing the conflict files, so you should use this command.

revert svn revert path ...

Revert any local changes to a file or directory and resolve any
conflicted states. svn revert not only reverts the contents of an item
in your working copy, but also any property changes. Finally, you
can use it to undo any scheduling operations that you may have
done (e.g., files scheduled for addition or deletion can be
“unscheduled”).

Options

Examples

Discard changes to a file:

$ svn revert foo.c
Reverted foo.c

If you want to revert a whole directory of files, use the --recursive
flag:

$ svn revert --recursive .
Reverted newdir/afile
Reverted foo.c
Reverted bar.txt

If you provide no targets to svn revert, it does nothing—
to protect you from accidentally losing changes in your
working copy, svn revert requires you to provide at least
one target.

status svn status [path ...]

Print the status of working copy files and directories. With no argu-
ments, print only locally modified items (no repository access).

Alternate Names: None
Changes: Working copy
Accesses Repository: No

--config-dir dir --recursive (-R)
--quiet (-q) --targets filename

The Subversion Command Line Client: svn | 729

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

status

With --show-updates, add working revision and server out-of-date
information. With --verbose, print full revision information on
every item.

The first five columns in the output are each one character wide,
and each column gives you information about different aspects of
each working copy item.

The first column indicates that an item was added, deleted, or
otherwise changed:

The second column tells the status of a file’s or directory’s
properties:

The third column is populated only if the working copy directory is
locked:

The fourth column is populated only if the item is scheduled for
addition-with-history:

The fifth column is populated only if the item is switched relative
to its parent:

space No modifications.
A Item is scheduled for addition.
D Item is scheduled for deletion.
M Item has been modified.
C Item is in conflict with updates received from the repository.
X Item is related to an externals definition.
I Item is being ignored (e.g., with the svn:ignore property).
? Item is not under version control.
! Item is missing (e.g., you moved or deleted it without using

svn). This also indicates that a directory is incomplete (a
checkout or update was interrupted).

~ Item is versioned as a directory, but has been replaced by a
file, or vice versa.

space No modifications.
M Properties for this item have been modified.
C Properties for this item are in conflict with property

updates received from the repository.

space Item is not locked.
L Item is locked.

space No history scheduled with commit.
+ History scheduled with commit.

space Item is a child of its parent directory.
S Item is switched.

730 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

status

If you pass the --show-updates option, the out-of-date information
appears in the eighth column:

The remaining fields are variable width and delimited by spaces. The
working revision is the next field if the --show-updates or --verbose
options are passed.

If the --verbose option is passed, the last committed revision and
last committed author are displayed next.

The working copy path is always the final field, so it can include
spaces.

Options

Examples

To find out what changes you have made to your working copy:

$ svn status wc
 M wc/bar.c
A + wc/qax.c

To find out what files in your working copy are out-of-date, pass
the --show-updates option (this does not make any changes to your
working copy). Here you can see that wc/foo.c has changed in the
repository since we last updated our working copy:

$ svn status --show-updates wc
 M 965 wc/bar.c
 * 965 wc/foo.c
A + 965 wc/qax.c
Status against revision: 981

--show-updates places an asterisk only next to items that
are out of date (that is, items that will be updated from
the repository if you run svn update). --show-updates
does not cause the status listing to reflect the repository’s
version of the item.

space The item in your working copy is up-to-date.
* A newer revision of the item exists on the server.

Alternate Names: stat, st
Changes: Nothing
Accesses Repository: Only if using --show-updates

--config-dir dir --password pass
--no-auth-cache --quiet (-q)
--no-ignore --show-updates (-u)
--non-interactive --username user
--non-recursive (-N) --verbose (-v)

The Subversion Command Line Client: svn | 731

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

switch

And finally, the most information you can get out of the status
subcommand:

$ svn status --show-updates --verbose wc
 M 965 938 sue wc/bar.c
 * 965 922 joe wc/foo.c
A + 965 687 joe wc/qax.c
 965 687 joe wc/zig.c
Head revision: 981

switch svn switch URL [path]

This subcommand updates your working copy to mirror a new
URL—usually a URL that shares a common ancestor with your
working copy, although not necessarily. This is the Subversion way
to move a working copy to a new branch.

Options

Examples

If you’re currently inside the directory vendors, which was
branched to fixed, and you’d like to switch your working copy to
that branch:

$ svn switch http://svn.red-bean.com/repos/branches/fixed .
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.

And to switch back, just provide the URL to the location in the
repository from which you originally checked out your working
copy:

$ svn switch http://svn.red-bean.com/repos/trunk/vendors .
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.

Alternate Names: sw
Changes: Working copy
Accesses Repository: Yes

--config-dir dir --password pass
--diff3-cmd cmd --quiet (-q)
--no-auth-cache --relocate
--non-interactive --revision rev, -r rev
--non-recursive (-N) --username user

732 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

update

You can just switch part of your working copy to a
branch if you don’t want to switch your entire working
copy.

Sometimes an administrator might change the “base location” of
your repository—in other words, the contents of the repository
doesn’t change, but the main URL used to reach the root of the
repository does. For example, the hostname may change, or the
URL schema, or perhaps just the path that leads to the repository.
Rather than check out a new working copy, you can have the svn
switch command “rewrite” the beginnings of all the URLs in your
working copy. Use the --relocate command to do the substitu-
tion. No file contents are changed, nor is the repository contacted.
It’s similar to running a sed script over your working copy .svn/
directories that runs s/OldRoot/NewRoot/.

$ cd /tmp
$ svn checkout file:///tmp/repos test
A test/a
A test/b
...

$ mv repos newlocation
$ cd test/

$ svn update
svn: Unable to open an ra_local session to URL
svn: Unable to open repository 'file:///tmp/repos'

$ svn switch --relocate \
> file:///tmp/repos file:///tmp/newlocation .
$ svn update
At revision 3.

update svn update [PATH ...]

svn update brings changes from the repository into your working
copy. If no revision is given, it brings your working copy up-to-date
with the HEAD revision. Otherwise, it synchronizes the working copy
to the revision given by the --revision option.

For each updated item, Subversion prints a line starting with a
specific character reporting the action taken. These characters have
the following meaning:

A Added
C Conflict
D Deleted
G Merged
U Updated

Repository Administration: svnadmin | 733

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

update

A character in the first column signifies an update to the actual file,
while updates to the file’s properties are shown in the second
column.

If you want to examine an older revision of a single file,
you may want to use svn cat.

Options

Repository Administration: svnadmin
svnadmin is the administrative tool for monitoring and repairing your Subversion
repository.

svnadmin Options
--bdb-log-keep

Disable automatic log removal of database log files. (Berkeley DB-specific)

--bdb-txn-nosync
Disable use of fsync() when committing database transactions. (Berkeley
DB-specific)

--bypass-hooks
Bypass the repository hook system.

--clean-logs
Remove unused Berkeley DB logs.

--force-uuid
By default, when loading data into a repository that already contains revi-
sions, svnadmin ignores the UUID from the dump stream. This option causes
the repository’s UUID to be set to the UUID from the stream.

--ignore-uuid
By default, when loading an empty repository, svnadmin uses the UUID from
the dump stream. This option causes that UUID to be ignored.

--incremental
Dump a revision only as a diff against the previous revision, instead of the
usual full text.

Alternate Names: up
Changes: Working copy
Accesses Repository: Yes

--config-dir dir --password pass
--diff3-cmd cmd --quiet (-q)
--no-auth-cache --revision rev, -r rev
--non-interactive --username user
--non-recursive (-N)

734 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

create

--parent-dir dir
When loading a dumpfile, root paths at dir instead of /.

--quiet
Do not show normal progress—show only errors.

--revision rev, -r rev
Specify a particular revision to operate on.

svnadmin Subcommands

The svnadmin command creates and administers the repository. As such, it always
operates on local paths, not on URLs.

create svnadmin create repos_path

Create a new, empty repository at the path provided. If the
provided directory does not exist, it is created for you.

Options

--bdb-log-keep
--bdb-txn-nosync

Example

Creating a new repository is just this easy:

$ svnadmin create /usr/local/svn/repos

deltify svnadmin deltify [-r lower[:upper]] repos_path

svnadmin deltify exists in 1.0.x only due to historical reasons. This
command is deprecated and no longer needed.

It dates from a time when Subversion offered administrators greater
control over compression strategies in the repository. This turned
out to be a lot of complexity for very little gain, and this “feature”
was deprecated.

Options

--quiet
--revision rev, -r rev

dump svnadmin dump repos_path [-r lower[:upper]] [--incremental]

Dump the contents of filesystem to standard output in a “dumpfile”
portable format, sending feedback to standard error. Dump revi-
sions lower rev through upper rev. If no revisions are given, dump all
revision trees. If only lower is given, dump that one revision tree.

Options

--incremental
--quiet
--revision rev, -r rev

Repository Administration: svnadmin | 735

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

list-unused-dblogs

Examples

Dump your whole repository:

$ svnadmin dump /usr/local/svn/repos
SVN-fs-dump-format-version: 1
Revision-number: 0
* Dumped revision 0.
Prop-content-length: 56
Content-length: 56
...

Incrementally dump a single transaction from your repository:

$ svnadmin dump /usr/local/svn/repos -r 21 --incremental
* Dumped revision 21.
SVN-fs-dump-format-version: 1
Revision-number: 21
Prop-content-length: 101
Content-length: 101
...

help svnadmin help [subcommand ...]

Provide a quick usage summary. With subcommand, provide infor-
mation about the given subcommand.

hotcopy svnadmin hotcopy old_repos_path new_repos_path

This subcommand makes a full “hot” backup of your repository,
including all hooks, configuration files, and, of course, database
files. If you pass the --clean-logs option, svnadmin performs a
hotcopy of your repository, and then removes unused Berkeley DB
logs from the original repository. You can run this command at any
time and make a safe copy of the repository, regardless of whether
other processes are using the repository.

Options

--clean-logs

list-dblogs svnadmin list-dblogs repos_path

List Berkeley DB log files. Berkeley DB creates logs of all changes to
the repository, allowing the repository to recover in the face of
catastrophe. Unless you enable DB_LOGS_AUTOREMOVE, the log files
accumulate, although most are no longer used and can be deleted
to reclaim disk space.

list-unused-
dblogs

svnadmin list-unused-dblogs repos_path

List unused Berkeley DB log files (see svnadmin list-dblogs).

Alternate Names: ?, h

736 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

load

Example

Remove all unused log files from a repository:

$ svnadmin list-unused-dblogs /path/to/repos | xargs rm
disk space reclaimed!

load svnadmin load repos_path

Read a “dumpfile”-formatted stream from standard input, commit-
ting new revisions into the repository’s filesystem. Send progress
feedback to standard output.

Options

Examples

This shows the beginning of loading a repository from a backup file
(made, of course, with svn dump):

$ svnadmin load /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1
 * adding path : test ... done.
 * adding path : test/a ... done.
...

Or, to load into a subdirectory:

$ svnadmin load --parent-dir new/subdir/for/project \
> /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1
 * adding path : test ... done.
 * adding path : test/a ... done.
...

lstxns svnadmin lstxns repos_path

Print the names of all uncommitted transactions.

recover svnadmin recover repos_path

Run this command if you get an error indicating that your reposi-
tory needs to be recovered.

rmtxns svnadmin rmtxns repos_path txn_name ...

Delete outstanding transactions from a repository.

Options

--quiet (-q)

--force-uuid --parent-dir
--ignore-uuid --quiet (-q)

Examining the Repository: svnlook | 737

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

verify

Examples

Remove all uncommitted transactions from your repository, using
svn lstxns to provide the list of transactions to remove:

$ svnadmin rmtxns /usr/local/svn/repos/ \
> `svnadmin lstxns /usr/local/svn/repos/`

setlog svnadmin setlog repos_path -r revision file

Set the log message on revision revision to the contents of file.

This is similar to using svn propset --revprop to set the svn:log prop-
erty on a revision, except you can also use the option --bypass-hooks
to avoid running any pre- or post-commit hooks, which is useful if
the modification of revision properties has not been enabled in the
pre-revprop-change hook.

Revision properties are not under version control, so this
command permanently overwrites the previous log
message.

Options

--bypass-hooks
--revision rev, -r rev

Example

Set the log message for revision 19 to the contents of the file msg:

$ svnadmin setlog /usr/local/svn/repos/ -r 19 msg

verify svnadmin verify repos_path

Run this command to verify the integrity of your repository. This
iterates through all revisions in the repository by internally
dumping all revisions and discarding the output.

Examining the Repository: svnlook
svnlook is a command-line utility for examining different aspects of a Subversion
repository. It does not make any changes to the repository. svnlook is typically
used by the repository hooks, but a repository administrator might find it useful
for diagnostic purposes.

Since svnlook works via direct repository access (and thus can only be used on the
machine that holds the repository), it refers to the repository with a path, not a URL.

If no revision or transaction is specified, svnlook defaults to the youngest (most
recent) revision of the repository.

738 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

author

svnlook Options

Options in svnlook are global, just like in svn and svnadmin; however, most options
only apply to one subcommand since the functionality of svnlook is (intentionally)
limited in scope.

--no-diff-deleted
Do not print differences for deleted files. The default behavior when a file is
deleted in a transaction/revision is to print the same differences that you
would see if you had left the file but removed all the content.

--revision rev, -r rev
Examine revision number rev.

--show-ids
Show the filesystem node revision IDs for each path in the filesystem tree.

--transaction tid, -t tid
Examine transaction ID tid.

--verbose
Show property values too for the property-related commands.

--version
Display version and copyright information.

svnlook Subcommands

author svnlook author repos_path

Print the author of a revision or transaction in the repository.

Options

--revision rev, -r rev
--transaction tid, -t tid

cat svnlook cat repos_path path_in_repos

Print the contents of a file.

Options

--revision rev, -r rev
--transaction tid, -t tid

changed svnlook changed repos_path

Print the paths that were changed in a particular revision or trans-
action, as well as an svn update-style status letter in the first
column: A for added, D for deleted, and U for updated (modified).

Options

--revision rev, -r rev
--transaction tid, -t tid

Examining the Repository: svnlook | 739

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

help

Example

Show a list of all the changed files in revision 39 of a test
repository:

$ svnlook changed -r 39 /usr/local/svn/repos
A trunk/vendors/deli/
A trunk/vendors/deli/chips.txt
A trunk/vendors/deli/sandwich.txt
A trunk/vendors/deli/pickle.txt

date svnlook date repos_path

Print the datestamp of a revision or transaction in a repository.

Options

--revision rev, -r rev
--transaction tid, -t tid

diff svnlook diff repos_path

Print GNU-style differences of changed files and properties in a
repository. If a file has a nontextual svn:mime-type property, then
the differences are explicitly not shown.

Options

--no-diff-deleted
--revision rev, -r rev
--transaction tid, -t tid

dirs-changed svnlook dirs-changed repos_path

Print the directories that were themselves changed (property edits)
or whose file children were changed.

Options

--revision rev, -r rev
--transaction tid, -t tid

help svnlook help
svnlook -h
svnlook -?

Provide a quick usage summary. With subcommand, provide infor-
mation about the given subcommand.

Alternate Names: ?, h

740 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

history

history svnlook history repos_path [path_in_repos]

Print information about the history of a path in the repository (or
the root directory if no path is supplied).

Options

--revision rev, -r rev
--show-ids

Example

This shows the history output for the path /tags/1.0 as of revision
20 in our sample repository.

$ svnlook history -r 20 /usr/local/svn/repos /tags/1.0 \
> --show-ids
REVISION PATH <ID>
-------- ---------
 19 /tags/1.0 <1.2.12>
 17 /branches/1.0-rc2 <1.1.10>
 16 /branches/1.0-rc2 <1.1.x>
 14 /trunk <1.0.q>
...

info svnlook info repos_path

Print the author, datestamp, log message size, and log message.

Options

--revision rev, -r rev
--transaction tid, -t tid

log svnlook log repos_path

Print the log message.

Options

--revision rev, -r rev
--transaction tid, -t tid

propget svnlook propget repos_path propname path_in_repos

List the value of a property on a path in the repository.

Options

--revision rev, -r rev
--transaction tid, -t tid

Alternate Names: pg, pget

Examining the Repository: svnlook | 741

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tree

Example

Show the value of the “seasonings” property on the file /trunk/
sandwich in the HEAD revision:

$ svnlook pg /usr/local/svn/repos seasonings \
> /trunk/sandwich
mustard

proplist svnlook proplist repos_path path_in_repos

List the properties of a path in the repository. With --verbose,
show the property values too.

Options

--revision rev, -r rev
--transaction tid, -t tid
--verbose (-v)

Examples

Show the names of properties set on the file /trunk/README in the
HEAD revision:

$ svnlook proplist /usr/local/svn/repos /trunk/README
original-author
svn:mime-type

This is the same command as in the previous example, but this
time showing the property values as well:

$ svnlook proplist --verbose /usr/local/svn/repos \
> /trunk/README
original-author : fitz
svn:mime-type : text/plain

tree svnlook tree repos_path
[path_in_repos]

Print the tree, starting at path_in_repos (if supplied, at the root of
the tree otherwise), optionally showing node revision IDs.

Options

--revision rev, -r rev
--show-ids
--transaction tid, -t tid

Example

This shows the tree output (with node-IDs) for revision 40 in our
sample repository:

$ svnlook tree -r 40 /usr/local/svn/repos --show-ids
/ <0.0.2j>
 trunk/ <p.0.2j>
 vendors/ <q.0.2j>

Alternate Names: pl, plist

742 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

uuid

 deli/ <1g.0.2j>
 egg.txt <1i.e.2j>
 soda.txt <1k.0.2j>
 sandwich.txt <1j.0.2j>

uuid svnlook uuid repos_path

Print the UUID for the repository. The UUID is the repository’s
Universal Unique IDentifier. The Subversion client uses this identi-
fier to differentiate between one repository and another.

youngest svnlook youngest repos_path

Print the youngest revision number of a repository.

Providing Remote Access: svnserve
svnserve provides access to Subversion repositories using the svn network
protocol. You can run svnserve either as a standalone server process, or you can
have another process, such as inetd, xinetd, or sshd, start it for you.

Once the client has selected a repository by transmitting its URL, svnserve reads a
file named conf/svnserve.conf in the repository directory to determine repository-
specific settings such as what authentication database to use and what authoriza-
tion policies to apply. The details are provided in Version Control with Subversion.

svnserve Options

Unlike the previous commands we’ve described, svnserve has no subcommands—
svnserve is controlled exclusively by options.

--daemon, -d
Run in daemon mode. svnserve backgrounds itself and accepts and serves
TCP/IP connections on the svn port (3690, by default).

--foreground
When used together with -d, this option causes svnserve to stay in the fore-
ground. This option is mainly useful for debugging.

--help, -h
Display a usage summary and exit.

--inetd, -i
Use the standard input/standard output file descriptors, as is appropriate for
a server running out of inetd.

--listen-host=host
Listen on the interface specified by host, which may be either a hostname or
an IP address.

Other Subversion Components | 743

Subversion

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

svndumpfilter

--listen-once, -X
Accept one connection on the svn port, serve it, and exit. This option is
mainly useful for debugging.

--listen-port=port
Listen on port when run in daemon mode.

--root=root, -r=root
Set the virtual root for repositories served by svnserve to root. The pathnames
in URLs provided by the client are interpreted relative to this root, and are
not allowed to escape this root.

--threads, -T
When running in daemon mode, spawn a thread instead of a process for each
connection. The svnserve process still backgrounds itself at startup time.

--tunnel, -t
Run in tunnel mode, which is just like the inetd mode of operation (serve one
connection over standard input/standard output) except that the connection is
considered to be pre-authenticated with the username of the current UID. This
flag is selected by the client when running over a tunnelling agent such as ssh.

Other Subversion Components
Subversion creates the mod_dav_svn plug-in for use with the Apache 2.0 httpd web
server. By running Apache 2.0 with mod_dav_svn, you can make your repository
available via the HTTP protocol. Full details are provided in Version Control with
Subversion, which is cited in the Bibliography. Two other commands are supplied
with Subversion.

svndumpfilter svndumpfilter subcommand [options] paths ...

Filter out files from a repository dump for use in later repository
restoration (see svnadmin dump and svnadmin load).

Subcommands

Options

--drop-empty-revs
Remove empty revisions. Such a revision can be created when
the original revision contained paths that were filtered out.
This option removes such empty revisions from the dump.

--preserve-revprops
If empty revisions are being kept, preserve their revision prop-
erties (such as log message, author, date, and so on).

exclude Exclude from the dump the files and directories
named by paths. Everything else is left in the dump.

help, h, ? Print a help message and exit.
include Include in the dump only the files and directories

named by paths. Everything else is excluded.

744 | Chapter 15: The Subversion Version Control System

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

svnversion

Otherwise, empty revisions contain only the original date-
stamp and a generated log message that the revision was
dropped.

--renumber-revs
If empty revisions are being dropped, subsequent revisions are
renumbered, so that all revision numbers are contiguous.

Example

Dump the repository, then separate out its two components:

$ svnadmin dump /path/to/repos > dumpfile
* Dumped revision 0.
* Dumped revision 1.
* Dumped revision 2.
...

$ svndumpfilter include \
> client < dumpfile > client-dumpfile
$ svndumpfilter include \
> server < dumpfile > server-dumpfile

svnversion svnversion [options] path [URL]

Produce a version number for the working copy in path. The URL
is the pathname part of a Subversion URL used to tell if the path
was switched (see svn switch).

The output is a single number if the working copy represents an
unmodified, non-switched revision whose URL matches the
supplied URL.

Options

-c Report “last changed” revision instead of the current revision.

-n Do not print the final newline.

745

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 16GNU make

16
The GNU make Utility

The make program is a long time mainstay of the Unix toolset. It automates the
building of software and documentation based on a specification of dependencies
among files; e.g., object files that depend upon program source files, or PDF files
that depend upon documentation program input files. GNU make is the standard
version for GNU/Linux and Mac OS X.

This chapter presents the following topics:

• Conceptual overview

• Command-line syntax

• Makefile lines

• Macros

• Special target names

• Writing command lines

For more information, see Managing Projects with GNU make and GNU Make: A
Program for Directing Recompilation, both listed in the Bibliography.

The software download site for GNU make is ftp://ftp.gnu.org/gnu/make/.

Conceptual Overview
The make program generates a sequence of commands for execution by the Unix
shell. It uses a table of file dependencies provided by the programmer, and with
this information, can perform updating tasks automatically for the user. It can
keep track of the sequence of commands that create certain files, and the list of
files or programs that require other files to be current before they can be rebuilt
correctly. When a program is changed, make can create the proper files with a
minimum of effort.

746 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Each statement of a dependency is called a rule. Rules define one or more targets,
which are the files to be generated, and the files they depend upon, the prerequi-
sites or dependencies. For example, prog.o would be a target that depends upon
prog.c; each time you update prog.c, prog.o must be regenerated. It is this task that
make automates, and it is a critical one for large programs that have many pieces.

The file containing all the rules is termed a makefile; for GNU make, it may be named
GNUmakefile, makefile or Makefile, in which case make will read it automatically, or
you may use a file with a different name and tell make about it with the -f option.

Over the years, different enhancements to make have been made by many vendors,
often in incompatible ways. POSIX standardizes how make is supposed to work.
Today, GNU make is the most popular version in the Unix world. It has (or can
emulate) the features of just about every other version of make, and many Open
Source programs require it.

This chapter covers GNU make. Commercial Unix systems come with versions
derived from the original System V version; these can be used for bootstrapping
GNU make if need be. On the x86 versions of Solaris 10, you can find GNU make in
/usr/sfw/bin/gmake. It isn’t available on the Sparc version, although it can be easily
bootstrapped with the standard version of make in /usr/ccs/bin.

Command-Line Syntax
The make program is invoked as follows:

make [options] [targets] [macro definitions]

Options, targets, and macro definitions can appear in any order. The last assign-
ment to a variable is the one that’s used. Macro definitions are typed as:

name=string

or

name:=string

For more information, see the section “Creating and Using Macros,” later in this
chapter.

If no GNUmakefile, makefile, or Makefile exists, make attempts to extract the most
recent version of one from either an RCS file, if one exists, or from an SCCS file, if
one exists. Note though, that if a real makefile exists, make will not attempt to extract
one from RCS or SCCS, even if the RCS or SCCS file is newer than the makefile.

Options

Like just about every other GNU program, GNU make has both long and short
options. The available options are as follows:

-b Silently accepted, but ignored, for compatibility with other versions of make.

-B, --always-make
Treat all targets as out of date. All targets are remade, no matter what the
actual status is of their prerequisites.

Command-Line Syntax | 747

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-C dir, --directory=dir
Change directory to dir before reading makefiles. With multiple options, each
one is relative to the previous. This is usually used for recursive invocations of
make.

-d Print debugging information in addition to regular output. This information
includes which files are out of date, the file times being compared, the rules
being used to update the targets, and so on. Equivalent to --debug=a.

--debug[=debug-opt]
Print debugging information as specified by debug-opt, which is one or more
of the following letters, separated by spaces or commas. With no argument,
provide basic debugging.

-e, --environment-overrides
Environment variables override any macros defined in makefiles.

-f file, --file=file, --makefile=file
Use file as the makefile; a filename of - denotes standard input. -f can be
used more than once to concatenate multiple makefiles. With no -f option,
make first looks for a file named GNUmakefile, then one named makefile, and
finally one named Makefile.

-h, --help
Print a usage summary, and then exit.

-i, --ignore-errors
Ignore error codes from commands (same as .IGNORE).

-I dir, --include-dir=dir
Look in dir for makefiles included with the include directive. Multiple options
add more directories to the list; make searches them in order.

-j [count], --jobs[=count]
Run commands in parallel. With no count, make runs as many separate
commands as possible. (In other words, it will build all the targets that are
independent of each other, in parallel.) Otherwise, it runs no more than count
jobs. This can decrease the time it takes to rebuild a large project.

-k, --keep-going
Abandon the current target when it fails, but keep working with unrelated
targets. In other words, rebuild as much as possible.

a All. Enable all debugging.
b Basic. Print each target that is out of date, and whether or not the build was

successful.
i Implicit. Like basic, but include information about the implicit rules

searched for each target.
j Jobs. Provide information about subcommand invocation.
m Makefiles. Enable basic debugging, and any of the other options, for

description of attempts to rebuild makefiles. (Normally, make doesn’t print
information about its attempts to rebuild makefiles.)

v Verbose. Like basic, but also print information about which makefiles were
read, and which prerequisites did not need to be rebuilt.

748 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-l [load], --load-average[=load], --max-load[=load]
If there are jobs running and the system load average is at least load, don’t
start any new jobs running. Without an argument, clear a previous limit. The
load value is a floating point number.

-m Silently accepted, but ignored, for compatibility with other versions of make.

-n, --dry-run, --just-print, --recon
Print commands but don’t execute (used for testing). -n prints commands
even if they begin with @ in the makefile.

Lines that contain $(MAKE) are an exception. Such lines are executed.
However, since the -n is passed to the subsequent make in the MAKEFLAGS
environment variable, that make also just prints the commands it executes.
This allows you to test out all the makefiles in a whole software hierarchy
without actually doing anything.

--no-print-directory
Don’t print the working directory as make runs recursive invocations. Useful if
-w is automatically in effect but you don’t want to see the extra messages.

-o file, --assume-old=file, --old-file=file
Pretend that file is older than the files that depend upon it, even if it’s not.
This avoids remaking the other files that depend on file. Use this in cases
where you know that the changed contents of file will have no effect upon the
files that depend upon it; e.g., changing a comment in a header file.

-p, --print-data-base
Print macro definitions, suffixes, and built-in rules. In a directory without a
makefile, use env -i make -p to print out the default variable definitions and
built-in rules.

-q, --question
Query; return 0 if the target is up to date; nonzero otherwise.

-r, --no-builtin-rules
Do not use the default rules. This also clears out the default list of suffixes
and suffix rules.

-s, --quiet, --silent
Do not display command lines (same as .SILENT).

-S, --no-keep-going, --stop
Cancel the effect of a previous -k. This is only needed for recursive make invo-
cations, where the -k option might be inherited via the MAKEFLAGS
environment variable.

-t, --touch
Touch the target files, causing them to be updated.

-v, --version
Print version, copyright, and author information, and exit.

Makefile Lines | 749

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

-w, --print-directory
Print the working directory, before and after executing the makefile. Useful
for recursive make invocations. This is usually done by default, so it’s rare to
explicitly need this option.

--warn-undefined-variables
Print a warning message whenever an undefined variable is used. This is
useful for debugging complicated makefiles.

-W file, --assume-new=file, --new-file=file, --what-if=file
Treat file as if it had just been modified. Together with -n, this lets you see
what make would do if file were modified, without actually doing anything.
Without -n, make pretends that the file is freshly updated, and acts
accordingly.

Makefile Lines
Instructions in the makefile are interpreted as single lines. If an instruction must
span more than one input line, use a backslash (\) at the end of the line so that the
next line is considered a continuation. The makefile may contain any of the
following types of lines:

Blank lines
Blank lines are ignored.

Comment lines
A number sign (#) can be used at the beginning of a line or anywhere in the
middle. make ignores everything after the #.

Dependency lines
One or more target names, a single- or double-colon separator, and zero or
more prerequisites:

targets : prerequisites
targets :: prerequisites

In the first form, subsequent commands are executed if the prerequisites are
newer than the target. The second form is a variant that lets you specify the
same targets on more than one dependency line. (This second form is useful
when the way you rebuild the target depends upon which prerequisite is
newer.) In both forms, if no prerequisites are supplied, subsequent
commands are always executed (whenever any of the targets are specified).
For example, the following is invalid, since single-colon rules do not allow
targets to repeated:

PROBLEM: Single colon rules disallow repeating targets
whizprog.o: foo.h
 $(CC) -c $(CFLAGS) whizprog.o
 @echo built for foo.h

whizprog.o: bar.h
 $(CC) -c $(CFLAGS) whizprog.o
 @echo built for bar.h

750 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

In such a case, the last set of rules is used and make issues a diagnostic.
However, double-colon rules treat the dependencies separately, running each
set of rules if the target is out of date with respect to the individual
dependencies:

OK: Double colon rules work independently of each other
whizprog.o:: foo.h
 $(CC) -c $(CFLAGS) whizprog.o
 @echo built for foo.h

whizprog.o:: bar.h
 $(CC) -c $(CFLAGS) whizprog.o
 @echo built for bar.h

No tab should precede any targets. (At the end of a dependency line, you can
specify a command, preceded by a semicolon; however, commands are typi-
cally entered on their own lines, preceded by a tab.)

Targets of the form library(member) represent members of archive libraries, e.g.,
libguide.a(dontpanic.o). Furthermore, both targets and prerequisites may
contain shell-style wildcards (e.g., *.c). make expands the wildcard and uses
the resulting list for the targets or prerequisites.

Suffix rules
These specify that files ending with the first suffix can be prerequisites for
files ending with the second suffix (assuming the root filenames are the
same). Either of these formats can be used:

.suffix.suffix:

.suffix:

The second form means that the root filename depends on the filename with
the corresponding suffix.

Pattern rules
Rules that use the % character define a pattern for matching targets and
prerequisites. This is a powerful generalization of the original make’s suffix
rules. Many of GNU make’s built-in rules are pattern rules. For example, this
built-in rule is used to compile C programs into relocatable object files:

%.o : %.c
 $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

Each target listed in a pattern rule must contain only one % character. To
match these rules, files must have at least one character in their names to
match the %; a file named just .o would not match the above rule. The text
that matches the % is called the stem, and the stem’s value is substituted for
the % in the prerequisite. (Thus, for example, prog.c becomes the prerequisite
for prog.o.)

Conditional statements
Statements that evaluate conditions, and depending upon the result, include
or exclude other statements from the contents of the makefile. More detail is
given in the section “Conditional Input,” later in this chapter.

Makefile Lines | 751

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Macro definitions
Macro definitions define variables: identifiers associated with blocks of text.
Variable values can be created with either =, :=, or define, and appended to
with +=. More detail is provided in the later section “Creating and Using
Macros.”

include statements
Similar to the C #include directive, there are three forms:

include file [file ...]
-include file [file ...]
sinclude file [file ...]

make processes the value of file for macro expansions before attempting to
open the file. Furthermore, each file may be a shell-style wildcard pattern, in
which case make expands it to produce a list of files to read.

The second and third forms have the same meaning. They indicate that make
should try to include the named lines, but should continue without an error if
a file could not be included. The sinclude version provides compatibility with
other versions of make.

vpath statements
Similar to the VPATH variable, the vpath line has one of the following three
forms:

vpath pattern directory ... Set directory list for pattern
vpath pattern Clear list for pattern
vpath Clear all lists

Each pattern is similar to those for pattern rules, using % as a wildcard char-
acter. When attempting to find a prerequisite, make looks for a vpath rule that
matches the prerequisite, and then searches in the directory list (separated by
spaces or colons) for a matching file. Directories provided with vpath direc-
tives are searched before those provided by the VPATH variable.

Command lines
These lines are where you give the commands to actually rebuild those files
that are out of date. Commands are grouped below the dependency line and
are typed on lines that begin with a tab. If a command is preceded by a
hyphen (–), make ignores any error returned. If a command is preceded by an
at sign (@), the command line won’t echo on the display (unless make is called
with -n). Lines beginning with a plus (+) are always executed, even if -n, -q, or
-t are used. This also applies to lines containing $(MAKE) or ${MAKE}. Further
advice on command lines is given later in this chapter.

Special Dependencies

GNU make has two special features for working with dependencies.

Library dependencies
A dependency of the form -lNAME causes make to search for a library file whose
name is either libNAME.so or libNAME.a in the standard library directories. This
is customizable with the .LIBPATTERNS variable; see the later section “Macros
with Special Handling” for more information.

752 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Order-only prerequisites
When a normal prerequisite of a target is out of date, two things happen.
First, the prerequisite (and its prerequisites, recursively) are rebuilt as needed.
This imposes an ordering on the building of targets and prerequisites. Second,
after the prerequisites are updated, the target itself is rebuilt using the accom-
panying commands. Normally, both of these are what’s desired.

Sometimes, you just wish to impose an ordering, such that the prerequisites
are themselves updated, but the target is not rebuilt by running its rules. Such
order-only prerequisites are specified in a dependency line by placing them to
the right of a vertical bar or pipe symbol, |:

target: normal-dep1 normal-dep2 | order-dep1 order-dep2
 command

Dependency lines need not contain both. I.e., you do not have to provide
regular dependencies if there are order-only dependencies as well; just place
the | right after the colon.

Here is an annotated example of an order-only dependency:

$ cat Makefile
all: target First target is default, point to real target

prereq0: How to make prereq0
 @echo making prereq0
 touch prereq0

prereq1: How to make prereq1
 @echo making prereq1
 touch prereq1

prereq2: prereq0 prereq2 depends on prereq0
 @echo making prereq2
 touch prereq2

target: prereq1 | prereq2 How to make target
 @echo making target
 touch target

The order of creation is shown in Figure 16-1.

And here is the result of running make:
$ make
making prereq1
touch prereq1

Figure 16-1. The order of creation

prereq0 prereq2

prereq1

target

Makefile Lines | 753

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

making prereq0
touch prereq0
making prereq2
touch prereq2
making target
touch target

This is normal and as expected. Now, let’s update one of the order-only prerequi-
sites and rerun make:

$ touch prereq0
$ make
making prereq2
touch prereq2

Note that target was not rebuilt! Had the dependency on prereq2 been a regular
dependency, then target itself would also have been remade.

Conditional Input
Conditional statements allow you to include or exclude specific lines based on
some condition. The condition can be that a macro is or is not defined, or that the
value of a macro is or is not equal to a particular string. The equivalence/
nonequivalence tests provide three different ways of quoting the values. Condi-
tionals may have an optional “else” part; i.e., lines that are used when the
condition is not true. The general form is as follows:

ifXXX test
lines to include if true

[else
lines to include if false]

endif

(The square brackets indicate optional parts of the construct; they are not to be
entered literally.) Actual tests are as follows:

For example:

whizprog.o: whizprog.c
ifeq($(ARCH),ENIAC) # Serious retrocomputing in progess!
 $(CC) $(CFLAGS) $(ENIACFLAGS) -c $< -o $@
else
 $(CC) $(CFLAGS) -c $< -o $@
endif

Condition Meaning

ifdef macroname True if macroname is a macro that has been given a value.

ifndef macroname True if macroname is a macro that has not been given a value.

ifeq (v1,v2)

ifeq 'v1' 'v2' True if values v1 and v2 are equal.

ifeq "v1" "v2"

ifneq (v1,v2)

ifneq 'v1' 'v2' True if values v1 and v2 are not equal.

ifneq "v1" "v2"

754 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Macros
This section summarizes creating and using macros, internal macros, macro modi-
fiers, macros with special handling, and text manipulation with macros and
functions.

Creating and Using Macros

Macros (often called variables) are like variables in a programming language. In
make, they are most similar to variables in the shell language, having string values
that can be assigned, referenced, and compared.

Defining macros

GNU make provides multiple ways to define macros. The different mechanisms
affect how make treats the value being assigned. This in turn affects how the value
is treated when the macro’s value is retrieved, or referenced. GNU make defines
two types of variables, called recursively expanded variables and simply expanded
variables, respectively. The various macro assignment forms are as follows:

name = value
Create a recursively expanded variable. The value of name is the verbatim text
on the right side of the =. If this value contains any references to other vari-
able values, those values are retrieved and expanded when the original
variable is referenced. For example:

bar = v1
foo = $(bar) Value of bar retrieved when foo’s value is referenced
...
x = $(foo) x is assigned ‘v1’
bar = v2
y = $(foo) y is assigned ‘v2’

name := value
Create a simply expanded variable. The value is expanded completely, imme-
diately at the time of the assignment. Any variable references in value are
expanded then and there. For example:

bar = v1
foo := $(bar) foo is assigned ‘v1’
x = $(foo) x is assigned ‘v1’
bar = v2
y = $(foo) y is still assigned ‘v1’

A significant advantage of simply expanded variables is that they work like
variables in most programming languages, allowing you to use their values in
assignments to themselves:

x := $(x) other stuff

name += value
Append value to the contents of variable name. If name was never defined, +=
acts like =, creating a recursively defined variable. Otherwise, the result of +=
depends upon the type of name. If name was defined with =, then value is

Macros | 755

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

appended literally to the contents of name. However, if name was defined
with :=, then make completely expands value before appending it to the
contents of name.

name ?= value
Create recursively expanded variable name with value value only if name is
not defined. Note that a variable that has been given an empty value is still
considered to be defined.

define name
 ...
endef

Define a recursively expanded variable, similar to =. However, using define,
you can give a macro a value that contains one or more newlines. This is not
possible with the other assignment forms (=, :=, +=, ?=).

Macro values

Macro values are retrieved by prefixing the macro name with a $. A plain $ is
enough for macros whose names are a single character, such as $< and $@.
However, macro names of two or more characters must be enclosed in paren-
theses and preceded by a $. For example, $(CC), $(CPP), and so on.

Although it was not documented, the original V7 Unix version of make allowed the
use of curly braces instead of parentheses: ${CC}, ${RM}, and so on.* All Unix
versions and GNU make support this as well, and it is included in POSIX. This
usage was particularly common in makefiles in the BSD distributions. There is no
real reason to prefer one over the other, although long-time Unix programmers
may prefer the parentheses form, since that is what was originally documented.

Exporting macros

By default, make exports variables to subprocesses only if those variables were
already in the environment or if they were defined on the command line. Further-
more, only variables whose names contain just letters, digits, and underscores are
exported, as many shells cannot handle environment variables with punctuation
characters in their names. You can use the export directive to control exporting of
specific variables, or all variables. The unexport directive indicates that a partic-
ular variable should not be exported; it cancels the effect of a previous export
command. The command forms are as follows:

export
By itself, the export directive causes make to export all alphanumerically
named variables to the environment (where underscore counts as a letter
too).

export var
Export variable var to the environment. The variable will be exported even if
its name contains nonalphanumeric characters.

* See the function subst() in http://minnie.tuhs.org/UnixTree/V7/usr/src/cmd/make/misc.c.html.

756 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

export var = value
export var := value
export var += value
export var ? value

Perform the kind of assignment indicated by the given operator (as described
earlier), and then export the variable to the environment.

unexport var
Do not export variable var to the environment. Cancels a previous export of
var (for example, from a separate, included makefile).

Overriding command-line macros

Normally, when a macro is defined on the command line, the given value is used,
and any value assigned to the macro within the makefile is ignored. Occasionally,
you may wish to force a variable to have a certain value, or to append a value to a
variable, no matter what value was given on the command line. This is the job of
the override directive.

override var = value
override var := value
override var += value
override var ? value
override define name
...

endef
Perform the kind of assignment indicated by the given operator (as described
earlier), and then export the variable to the environment.

The example given in the GNU make documentation, GNU Make: A Program for
Directing Recompilation, is forcing CFLAGS to always contain the -g option:

override CFLAGS += -g

Internal Macros

$? The list of prerequisites that have been changed more recently than the current
target. Can be used only in normal makefile entries—not suffix rules.

$@ The name of the current target, except in makefile entries for making libraries,
where it becomes the library name. (For libguide.a(dontpanic.o), $@ is
libguide.a). Can be used both in normal makefile entries and in suffix rules.

$$@ The name of the current target. Can be used only to the right of the colon in
dependency lines. This is provided only for compatibility with System V make; its
use is not recommended.

$< The name of the current prerequisite that has been modified more recently than
the current target.

$* The name—without the suffix—of the current prerequisite that has been modi-
fied more recently than the current target. Should be used only in implicit rules or
static pattern rules.

$% The name of the corresponding .o file when the current target is a library
module. (For libguide.a(dontpanic.o), $% is dontpanic.o). Can be used both in
normal makefile entries and in suffix rules.

Macros | 757

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Macro Modifiers

Macro modifiers may be applied to the built-in internal macros listed earlier,
except for $$.

D The directory portion of any internal macro name. Valid uses are:

$(%D) $(@D)
$(*D) $$(@D)
$(<D) $(^D)
$(?D) @(+D)

F The file portion of any internal macro name. Valid uses are:

$(%F) $(@F)
$(*F) $$(@F)
$(<F) $(^F)
$(?F) @(+F)

Macros with Special Handling

$^ The list of prerequisites for the current target. For archive members, only the
member name is listed. Even if a prerequisite appears multiple times in a depen-
dency list for a target, it only appears once in the value of $^.

$+ Like $^, but prerequisites that appear multiple times in a dependency list for a
target are repeated. This is most useful for libraries, since multiple dependencies
upon a library can make sense and be useful.

$$ A literal $ for use in rule command lines: for example, when referencing shell
variables in the environment or within a loop.

$| The order-only prerequisites for the current target.

CURDIR The current working directory. Set by make but not used by it, for use
in makefiles.

.LIBPATTERNS Used for finding link library names as prerequisites of the form
-lname. For each such prerequisite, make searches in the current direc-
tory, directories matching any vpath directives, directories named by
the VPATH variable, /lib, /usr/lib, and prefix/lib, where prefix is
the installation directory for GNU make (normally /usr/local).
The default value of .LIBPATTERNS is lib%.so lib%.a. Thus make first
searches for a shared library file, and then for a regular archive
library.

MAKE The full pathname used to invoke make. It is special because
command lines containing the string $(MAKE) or ${MAKE} are always
executed, even when any of the -n, -q, or -t options are used.

MAKECMDGOALS The targets given to make on the command line.
MAKEFILE_LIST A list of makefiles read so far. The rightmost entry in the list is the

name of the makefile currently being read.
MAKEFILES Environment variable: make reads the whitespace-separated list of

files named in it before reading any other makefiles.
MAKEFLAGS Contains the flags inherited in the environment variable MAKE-

FLAGS, plus any command-line options. Used to pass the flags to
subsequent invocations of make, usually via command lines in a
makefile entry that contain $(MAKE).

MAKELEVEL The depth of recursion (sub-make invocation). Primarily for use in
conditional statements so that a makefile can act in one way as the
top-level makefile and in another way if invoked by another make.

758 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Text Manipulation with Macros and Functions

Standard versions of make provide a limited text manipulation facility:

$(macro:s1=s2)
Evaluates to the current definition of $(macro), after substituting the string s2
for every occurrence of s1 that occurs either immediately before a blank or
tab, or at the end of the macro definition.

GNU make supports this for compatibility with Unix make and the POSIX stan-
dard. However, GNU make goes far beyond simple text substitution, providing a
host of functions for text manipulation. The following list provides a brief descrip-
tion of each function.

$(addprefix prefix, names …)
Generates a new list, created by prepending prefix to each of the names.

$(addsuffix suffix, names …)
Generates a new list, created by appending suffix to each of the names.

$(basename names …)
Returns a list of the basename of each of the names. The basename is the text
up to but not including the final period.

$(call var, param, …)
The call function allows you to treat the value of a variable as a procedure.
var is the name of a variable, not a variable reference. The params are
assigned to temporary variables that may be referenced as $(1), $(2), and so
on. $(0) will be the name of the variable. The value of var should reference
the temporary values. The result of call is the result of evaluating var in this
way. If var names a built-in function, that function is always called, even if a

MAKOVERRIDES A list of the command-line variable definitions. MAKEFLAGS refers to
this variable. By setting it to the empty string:

MAKEOVERRIDES =
You can pass down the command-line options to sub-makes but avoid
passing down the variable assignments.

MAKESHELL For MS-DOS only, the shell make should use for running commands.
MFLAGS Similar to MAKEFLAGS, this variable is set for compatibility with other

versions of make. It contains the same options as in MAKEFLAGS, but
not the variable settings. It was designed for explicit use on command
lines that invoke make. For example:

mylib:
 cd mylib && $(MAKE) $(MFLAGS)

The use of MAKEFLAGS is preferred.
SHELL Sets the shell that interprets commands. If this macro isn’t defined,

the default is /bin/sh. On MS-DOS, if SHELL not set, the value of
COMSPEC is used; see also the MAKESHELL variable, earlier in this list.

SUFFIXES The default list of suffixes, before make reads and processes makefiles.
.VARIABLES A list of all variables defined in all makefiles read up to the point that

this variable is referenced.
VPATH Specifies a list of directories to search for prerequisites when not

found in the current directory. Directories in the list should be sepa-
rated with spaces or colons.

Macros | 759

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

make variable of the same name exists. Finally, call may be used recursively;
each invocation gets its own $(1), $(2), and so on.

$(dir names …)
Returns a list of the directory part of each of the names. The directory part is
all text, up to and including the final / character. If there is no /, the two
characters ./ are used.

$(error text …)
Causes make to produce a fatal error message consisting of text.

$(filter pattern …, text)
Chooses the words in text that match any pattern. Patterns are written using
%, as for the patsubst function.

$(filter-out pattern …, text)
Like filter, but selects the words that do not match the patterns.

$(findstring find, text)
Searches text for an instance of find. If found, the result is find; otherwise, it’s
the empty string.

$(firstword names …)
Returns the first word in names.

$(foreach var, words, text)
This function is similar to the for loop in the shell. It expands var and words,
first. The result of expanding var names a macro. make then loops, setting var
to each word in words, and then evaluating text. The result is the concatena-
tion of all the iterations. The text should contain a reference to the variable
for this to work correctly.

If var is defined before the foreach is evaluated, it maintains the same value it
had after the evaluation. If it was undefined before the foreach, it remains
undefined afterwords. In effect, foreach creates a temporary, private variable
named var.

$(if condition, then-text[, else-text])
The condition is evaluated. If, after removing leading and trailing whitespace,
the result is not empty, the condition is considered to be true, and the result
of if is the expansion of the then-text. Otherwise, the condition is considered
to be false, and the result is the expansion of else-text, if any. If there’s no
else-text, then a false condition produces the empty string. Only one or the
other of then-text and else-text is evaluated.

$(join list1, list2)
Produces a new list where the first element is the concatenation of the first
elements in list1 and list2, the second element is the concatenation of the
second elements in list1 and list2, and so on.

$(notdir names …)
Returns a list of the nondirectory part of each of the names. The nondirec-
tory part is all the text after the final /, if any. If not, it’s the entire name.

760 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

$(origin variable)
Returns a string describing the origin of variable. Here, variable is a variable
name (foo), not a variable reference ($(foo)). Possible return values are one of
the following:

$(patsubst pattern, replacement, text)
Replaces words in text that match pattern with replacement. The pattern
should use a % as a wildcard character. In replacement, a % acts as the place-
holder for the text that matched the % in pattern. This is a general form of
string substitution. For example, the traditional OBJS = $(SRCS:.c=.o) could
instead be written OBJS = $(patsubst %.c, %.o, $(SRCS)).

$(shell command)
Runs the shell command command and returns the output. make converts
newlines in the output into spaces and removes trailing newlines. This is
similar to `…` in the shell.

$(sort list)
Returns a sorted copy of the words in list, with duplicates removed. Each
word is separated from the next by a single space.

$(subst from, to, text)
Replaces every instance of from in text with to.

$(suffix names …)
Returns a list of the suffixes of each name. The suffix is the final period and
any following text. Returns an empty string for a name without a period.

$(strip string)
Removes leading and trailing whitespace from string and converts internal
runs of whitespace into single spaces. This is especially useful in conjunction
with conditionals.

$(warning text …)
Causes make to produce a warning message consisting of text.

$(wildcard pattern …)
Creates a space-separated list of filenames that match the shell pattern
pattern. (Note! Not a make-style % pattern.)

$(word n, text)
Returns the nth word of text, counting from one.

automatic The variable is an automatic variable for use in the
commands of rules, such as $* and $@.

command line The variable was defined on the command line.
default The variable is one of those defined by make’s built-in

rules, such as CC.
environment The variable was defined in the environment, and -e

was not used.
environment override The variable was defined in the environment, and -e

was used.
file The variable was defined in a makefile.
override The variable was defined with an override command.

See the earlier section “Overriding command-line
macros.”

undefined The variable was never given a value.

Special Target Names | 761

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

$(wordlist start, end, text)
Creates a new list consisting of the words start to end in text. Counting starts
at one.

$(words text)
Returns the number of words in text.

Special Target Names

.DEFAULT: Commands associated with this target are executed if make
can’t find any makefile entries or suffix rules with which to
build a requested target.

.DELETE_ON_ERROR: If this target appears in a makefile, then for any target that
make is rebuilding, if its command(s) exit with a nonzero
status, make deletes the target.

.EXPORT_ALL_VARIABLES: The mere existence of this target causes make to export all
variables to child processes.

.IGNORE: With prerequisites, ignore problems just for those files. For
historical compatibility, with no prerequisites, ignore error
returns from all commands. This is the same as the -i option.

.INTERMEDIATE: Prerequisites for this target are treated as intermediate files,
even if they are mentioned explicitly in other rules. (An
intermediate file is one that needs to be built “along the
way” to the real target. For example, making a .c file from a
.y file, in order to create a .o object file. The .c file is an
intermediate file.) This prevents them from being re-
created, unless one of their prerequisites is out of date.

.LOW_RESOLUTION_TIME: make notes that prerequisites for this target are updated by
commands that only create low resolution timestamps (one
second granularity). For such targets, if their modification
time starts at the same second as the modification time of a
prerequisite, make does not try to compare the sub-second
time values, and does not treat the file as being out of date.

.NOTPARALLEL: Prerequisites for this target are ignored. Its existence in a
makefile overrides any -j option, forcing all commands to
run serially. Recursive make invocations may still run jobs in
parallel, unless their makefiles also contain this target.

.POSIX: When this target exists, changing the MAKEOVERRIDES vari-
able does not affect the MAKEFLAGS variable. (This is a rather
specialized case.) This target also disables the special treat-
ment of $$@, $$(@D), and $$(@F).

.PHONY: Prerequisites for this target are marked as “phony.” I.e.,
make always executes their rules, even if a file by the same
name exists.

.PRECIOUS: Files you specify for this target are not removed when you
send a signal (such as interrupt) that aborts make, or when a
command line in your makefile returns an error.

.SECONDARY: Prerequisites of this target are treated like intermediate files,
except that they are never automatically removed. With no
prerequisites, all targets are treated as secondary.

.SILENT: When given prerequisites, make will not print the
commands for those prerequisites when they are rebuilt.
Otherwise, for historical compatibility, when this target has
no prerequisites, make executes all commands silently,
which is the same as the -s option.

.SUFFIXES: Suffixes associated with this target are meaningful in suffix
rules. If no suffixes are listed, the existing suffix rules are
effectively “turned off.”

762 | Chapter 16: The GNU make Utility

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Writing Command Lines
Writing good, portable makefile files is a bit of an art. Skill comes with practice
and experience. Here are some tips to get you started:

• Depending upon your locale, naming your file Makefile instead of makefile
can cause it to be listed first with ls. This makes it easier to find in a direc-
tory with many files.

• Remember that command lines must start with a leading tab character. You
cannot just indent the line with spaces, even eight spaces. If you use spaces,
make exits with an unhelpful message about a “missing separator.”

• Remember that $ is special to make. To get a literal $ into your command lines,
use $$. This is particularly important if you want to access an environment
variable that isn’t a make macro. Also, if you wish to use the shell’s $$ for the
current process ID, you have to type it as $$$$.

• Write multiline shell statements, such as shell conditionals and loops, with
trailing semicolons and a trailing backslash:

if [-f specfile] ; then \
... ; \
else \
... ; \
fi

Note that the shell keywords then and else don’t need the semicolon. (What
happens is that make passes the backslashes and the newlines to the shell. The
escaped newlines are not syntactically important, so the semicolons are
needed to separate the different parts of the command. This can be confus-
ing. If you use a semicolon where you would normally put a newline in a shell
script, things should work correctly.)

• Remember that each line is run in a separate shell. This means that com-
mands that change the shell’s environment (such as cd) are ineffective across
multiple lines. The correct way to write such commands is to keep the com-
mands on the same line, separated with a semicolon. In the particular case of
cd, separate the commands with && in case the subdirectory doesn’t exist or
can’t be changed to:

cd subdir && $(MAKE)
...
PATH=special-path-value ; export PATH ; $(MAKE)

• For guaranteed portability, always set SHELL to /bin/sh. Some versions of make
use whatever value is in the environment for SHELL, unless it is explicitly set in
the makefile.

• Use macros for standard commands. make already helps out with this, provid-
ing macros such as $(CC), $(YACC), and so on.

• When removing files, start your command line with -$(RM) instead of $(RM).
(The – causes make to ignore the exit status of the command.) This way, if the
file you were trying to remove doesn’t exist, and rm exits with an error, make
can keep going.

Writing Command Lines | 763

m
ake

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

• When running subsidiary invocations of make, typically in subdirectories of
your main program tree, always use $(MAKE), and not make. Lines that contain
$(MAKE) are always executed, even if -n has been provided, allowing you to test
out a whole hierarchy of makefiles. This does not happen for lines that
invoke make directly.

• Often, it is convenient to organize a large software project into subprojects,
with each one having a subdirectory. The top-level makefile then just invokes
make in each subdirectory. Here’s the way to do it:

SUBDIRS = proj1 proj2 proj3
...
projects: $(SUBDIRS)
 for i in $(SUBDIRS); \
 do \
 echo ====== Making in $$i ; \
 (cd $$i && $(MAKE) $(MAKEFLAGS) $@) ; \
 done

765

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 17GDB

17
The GDB Debugger

The GNU Debugger, GDB, is the standard debugger on GNU/Linux and BSD
systems, and can be used on just about any Unix system with a C compiler and at
least one of several well-known object file formats. It can be used on other kinds
of systems as well. It has a very rich feature set, making it the preferred debugger
of many developers the world over.

This chapter covers the following topics:

• Conceptual overview

• Command-line syntax

• Initialization files

• GDB expressions

• The GDB text user interface

• Group listing of GDB commands

• Summary of set and show commands

• Summary of info command

• Alphabetical summary of GDB commands

For more information, see Debugging with GDB: The GNU Source-Level
Debugger, listed in the Bibliography.

Conceptual Overview
A debugger is a program that lets you run a second program, which we will call
the debuggee. The debugger lets you examine and change the state of the
debuggee, and control its execution. In particular, you can single-step the
program, executing one statement or instruction at a time, in order to watch the
program’s behavior.

766 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Debuggers come in two flavors: instruction-level debuggers, which work at the level
of machine instructions, and source-level debuggers, which operate in terms of your
program’s source code and programming language. The latter are considerably
easier to use, and usually can do machine-level debugging if necessary. GDB is a
source level debugger; it is probably the most widely applicable debugger (portable
to the largest number of architectures) of any current debugger.

GDB itself provides two user interfaces: the traditional command-line interface
(CLI) and a text user interface (TUI). The latter is meant for regular terminals or
terminal emulators, dividing the screen into separate “windows” for the display of
source code, register values, and so on.

GDB provides support for debugging programs written in C, C++, Objective C,
Java,* and Fortran. It provides partial support for Modula-2 programs compiled
with the GNU Modula-2 compiler and for Ada programs compiled with the GNU
Ada Translator, GNAT. GDB provides some minimal support for debugging
Pascal programs. The Chill language is no longer supported.

When working with C++ and Objective C, GDB provides name demangling.
C++ and Objective C encode overloaded procedure names into a unique
“mangled” name that represents the procedure’s return type, argument types,
and class membership. This ensures so-called type-safe linkage. There are
different methods for name mangling, thus GDB allows you to select among a
set of supported methods, besides just automatically demangling names in
displays.

If your program is compiled with GCC (the GNU Compiler Collection), using the
-g3 and -gdwarf-2 options, GDB understands references to C preprocessor macros.
This is particularly helpful for code using macros to simplify complicated struct
and union members. GDB itself also has partial support for expanding prepro-
cessor macros, with more support planned.

GDB allows you to specify several different kinds of files when doing debugging:

• The exec file is the executable program to be debugged—i.e., your program.

• The optional core file is a memory dump generated by the program when it
dies; this is used, together with the exec file, for post-mortem debugging.
Core files are usually named core on commercial Unix systems. On BSD sys-
tems, they are named program.core. On GNU/Linux systems, they are named
core.PID, where PID represents the process ID number. This lets you keep
multiple core dumps, if necessary.

• The symbol file is a separate file from which GDB can read symbol informa-
tion: information describing variable names, types, sizes, and locations in the
executable file. GDB, not the compiler, creates these files if necessary. Symbol
files are rather esoteric; they’re not necessary for run-of-the-mill debugging.

* GDB can only debug Java programs that have been compiled to native machine code with GJC,
the GNU Java compiler (part of GCC, the GNU Compiler Collection).

Conceptual Overview | 767

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

There are different ways to stop your program:

• A breakpoint specifies that execution should stop at a particular source code
location.

• A watchpoint indicates that execution should stop when a particular memory
location changes value. The location can be specified either as a regular vari-
able name or via an expression (such as one involving pointers). If hardware
assistance for watchpoints is available, GDB uses it, making the cost of using
watchpoints small. If it is not available, GDB uses virtual memory tech-
niques, if possible, to implement watchpoints. This also keeps the cost down.
Otherwise, GDB implements watchpoints in software by single-stepping the
program (executing one instruction at a time).

• A catchpoint specifies that execution should stop when a particular event occurs.

The GDB documentation and command set often use the word breakpoint as a
generic term to mean all three kinds of program stoppers. In particular, you use
the same commands to enable, disable, and remove all three.

GDB applies different statuses to breakpoints (and watchpoints and catchpoints).
They may be enabled, which means that the program stops when the breakpoint is
hit (or fires), disabled, which means that GDB keeps track of them but that they
don’t affect execution, or deleted, which means that GDB forgets about them
completely. As a special case, breakpoints can be enabled only once. Such a
breakpoint stops execution when it is encountered, then becomes disabled (but
not forgotten).

Breakpoints may have conditions associated with them. When execution reaches
the breakpoint, GDB checks the condition, stopping the program only if the
condition is true.

Breakpoints may also have an ignore count, which is a count of how many times
GDB should ignore the breakpoint when it’s reached. As long as a breakpoint’s
ignore count is nonzero, GDB does not bother checking any condition associated
with the breakpoint.

Perhaps the most fundamental concept for working with GDB is that of the frame.
This is short for stack frame, a term from the compiler field. A stack frame is the
collection of information needed for each separate function invocation. It contains
the function’s parameters and local variables, as well as linkage information indi-
cating where return values should be placed and the location the function should
return to. GDB assigns numbers to frames, starting at 0 and going up. Frame 0 is
the innermost frame, i.e., the function most recently called.

GDB uses the readline library, as does the Bash shell, to provide command
history, command completion, and interactive editing of the command line. Both
Emacs and vi style editing commands are available.

Finally, GDB has many features of a programming language. You can define your
own variables and apply common programming language operators to them. You
can also define your own commands. Additionally, you can define special hook
commands, user-defined commands that GDB executes before or after running a
built-in command. (See the entry for define in the section “Alphabetical Summary

768 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

of GDB Commands” for the details.) You can also create while loops and test
conditions with if … else … end.

GDB is typically used to debug programs on the same machine (host) on which
it’s running. GDB can also be configured for cross-debugging, i.e., controlling a
remote debuggee with a possibly different machine architecture (the target).
Remote targets are usually connected to the host via a serial port or a network
connection. Such use is rather esoteric and is therefore not covered here. See the
GDB documentation for the full details.

Source Code Locations

GDB is the default debugger on GNU/Linux and BSD systems. It is usable on just
about any modern Unix system, though, as well as many older ones. (However, if
your system is really ancient, you may need to fall back to an older version of
GDB.) Besides the command line and text user interfaces built in to GDB, there
are other programs that provide GUI debuggers. Two of the more popular ones
are ddd (the Data Display Debugger) and Insight. Both of these use GDB to
provide the underlying debugging functionality. Source code URLs for these
programs are listed in the following table.

Command-Line Syntax
GDB is invoked as follows:

gdb [options] [executable [corefile-or-PID]]
gdb [options] --args executable [program args ...]

The gdbtui command is equivalent to gdb --tui; it invokes GDB with the Text User
Interface. The TUI is described in the later section “The GDB Text User Interface.”

GDB has both traditional short options and GNU-style long options. Long
options may start with either one or two hyphens. The command-line options are
as follows.

--args
Pass on arguments after executable to the program being debugged.

--async, --noasync
Enable/disable the asynchronous version of the command-line interface.

-b baudrate, --baud baudrate
Set the serial port baud rate used for remote debugging.

--batch
Process options and then exit.

Debugger Location

ddd ftp://ftp.gnu.org/gnu/ddd/

GDB ftp://ftp.gnu.org/gnu/gdb/

Insight http://sources.redhat.com/insight/

Command-Line Syntax | 769

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--cd dir
Change current directory to dir.

-c file, --core file
Analyze the core dump file.

-d dir, --directory dir
Search for source files in dir.

-e file, --exec file
Use file as the executable.

-f, --fullname
Output information used by the Emacs-GDB interface.

--help
Print a usage and option summary and then exit.

--interpreter interp
Select a specific interpreter/user interface. The command-line interface is the
default, although there are other interfaces for use by frontend programs.

-n, --nx
Do not read the .gdbinit file.

-nw, --nowindows
Force the use of the command-line interface, even if a windows interface is
available.

-p pidnum, -c pidnum, --pid pidnum
Attach to running process pidnum.

-q, --quiet, --silent
Do not print the version number on startup.

-r, --readnow
Fully read symbol files on first access.

-s file, --symbols file
Read symbols from file.

--se file
Use file for both the symbol file and the executable file.

--statistics
Print statistics about CPU time and memory usage after each command
finishes.

-t device, --tty device
Use device for input/output by the program being debugged.

--tui
Use the Terminal User Interface (TUI).

-x file, --command file
Execute GDB commands from file.

770 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

--version
Print version information and then exit.

-w, --windows
Force the use of a window interface if there is one.

--write
Allow writing into the executable and core files.

Initialization Files
Two files are used to initialize GDB and the readline library, respectively.

The .gdbinit File

At startup, GDB reads its initialization file. This is a file of commands, such as
option settings, that you tell GDB to run every time it starts up. The initialization
file is named .gdbinit on Unix (BSD, Linux, etc.) systems. Some MS-Windows
versions of GDB use gdb.ini instead. Empty lines (they do nothing) are allowed,
and comments in initialization files start with a # and continue to the end of the
line. GDB executes commands from initialization files and from the command line
in the following order:

1. Commands in $HOME/.gdbinit. This acts as a “global” initialization; settings
that should always be used go here.

2. Command-line options and operands.

3. Commands in ./.gdbinit. This allows for option settings that apply to a
particular program by keeping the file in the same directory as the program’s
source code.

4. Command files specified with the -x option.

You may use the -nx option to make GDB skip the execution of the initialization
files.

The .inputrc File

Just like the Bash shell (see Chapter 4), GDB uses the readline library to provide
command-line history and editing. You may use either vi- or Emacs-style commands
for editing your command line. The readline library reads the file ~/.inputrc to
initialize its settings and options. The details are beyond the scope of this book; see
the Bash and GDB documentation or the online Info system for the full story. Here is
a sample .inputrc file:

set editing-mode vi Use vi editor commands
set horizontal-scroll-mode On Scroll line left/right as cursor moves along it
control-h: backward-delete-char Use ^H as backspace character
set comment-begin # For Bash, # starts comments
set expand-tilde On Expand ~ notation
"\C-r": redraw-current-line Make ^R redraw the current input line

GDB Expressions | 771

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

GDB Expressions
GDB can be thought of as a specialized programming language. It has variables
and operators similar to those of C, and special features for debugging. This
section looks at the different kinds of expressions that GDB understands.

The Value History

Every time you print a value with print, GDB saves the value in the value history.
You can reference these saved values by their numeric place in the history,
preceded with a $. GDB reminds you of this by printing $n = val. For example:

$ gdb whizprog
...
(gdb) print stopped_early
$1 = 0
(gdb) print whiny_users
$2 = TRUE
(gdb)

A plain $ refers to the most recent value in the value history. This can save consid-
erable typing. If you’ve just looked at a pointer variable, you can use:

(gdb) print *$

to print the contents of whatever the pointer is pointing to. $$ refers to the next
most recent value in the history, and $$n refers to the value n places from the end.
(Thus, $n counts from the beginning, while $$n counts from the end.)

You can use show values to see the values in the history. Whenever GDB reloads
the executable (rereads the symbol table), it clears the value history. This is
because the value history may have contained pointers into the symbol table and
such pointers become invalid when the symbol table is reloaded.

Convenience Variables and Machine Registers

GDB lets you create convenience variables. These are variables you can use to store
values as you need them. Their names begin with a $ and consist of alphanumeric
characters and underscores. They should start with a letter or underscore. (Note
that values in the value history have names that are numeric.) You might want to
use a convenience variable as an array index:

(gdb) set $j = 0
(gdb) print data[$j++]

After these two commands, simply hitting the ENTER key repeats the last
command, stepping through the array one element at a time.

GDB predefines several convenience variables. It also enables you to access the
machine registers using predefined register names. Register names vary with
machine architecture, of course, but there are four predefined registers available
on every architecture. The following list summarizes the convenience variables
and predefined registers. The last four entries in the list are the registers that are
always available.

772 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Special Expressions

GDB understands the syntax (types, operators, operator precedence) of the
language being debugged. You can use the same syntax to enter expressions as
you do to modify GDB convenience variables (such $i++). GDB also understands
several special syntaxes that let you do things that are not in the target language,
as follows:

Array constants
You can create an array constant in the debuggee’s memory by enclosing a
list of element values in braces. For example, { 1, 2, 3, 42, 57 }.

Array operator
The @ array operator prints all the elements of an array up to a given
subscript. For example, if your program uses malloc() to allocate memory:

double *vals = malloc(count * sizeof(double));

you can print a single element using regular subscripting:

(gdb) print vals[3]
$1 = 9

However, you can access vals[0] through vals[2] with:

(gdb) print *vals@3
$2 = {0, 1, 4}

File resolution
If you use the same variable name in several source files (for example, each
one is static), you can specify which one you mean using file::variable. For
example:

(gdb) print 'main.c'::errcount
$2 = 0

It is necessary to put main.c in single quotes to avoid ambiguity with the C++
:: operator.

$ The most recent value in the value history.
$n Item n in the value history.
$$ The next to last item in the value history.
$$n Item n in the value history, counting from the end.
$_ The address last printed by the x command.
$__ The contents of the address last printed by the x command.
$_exitcode The exit status that the debuggee returned when it exited.
$bpnum The breakpoint number of the most recently set breakpoint.
$cdir The compilation directory for the current source file, if one is recorded in

the object file.
$cwd The current working directory.
$fp The frame pointer register.
$pc The program counter register.
$ps The processor status register.
$sp The stack pointer register.

Group Listing of GDB Commands | 773

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

The GDB Text User Interface
GDB, in its default mode, shows its line-oriented heritage. When single stepping,
it displays only one line of source code at a time. Graphical debuggers can show
you much more, and indeed many programmers prefer a graphical debugger, if
only for this reason. However, recent versions of GDB offer a Text User Interface
(TUI), which uses the tried-and-true curses library to provide several “windows”
on a regular terminal or terminal emulator, such as an xterm. This can be quite
effective, especially since it allows you to do everything from the keyboard.

A number of set options and GDB commands are specific to the TUI. These are
listed along with the rest of the set options and GDB commands in the later
sections “Summary of set and show Commands” and “Alphabetical Summary of
GDB Commands.”

Unfortunately (as of GDB 6.3), the TUI is still immature; the author could not get
several documented features to work. Thus this book doesn’t provide detailed
coverage of it. However, it should improve over time, and you should continue to
evaluate it to see if it meets your needs.

Group Listing of GDB Commands
This section summarizes the GDB commands by task. Esoteric commands, such
as those used by GDB’s maintainers, or to cross-debug remote systems connected
via serial port or a network, have been omitted.

Aliases for Other Commands

Breakpoints

Alias Short for… Alias Short for .. Alias Short for…

bt backtrace f frame p print

c continue fo forward-search po print-object

cont continue gcore generate-core-
file

r run

d delete h help s step

dir directory i info share sharedlibrary

dis disable l list si stepi

do down n next u until

e edit ni nexti where backtrace

awatch Set an expression watchpoint.
break Set a breakpoint at a line or function.
catch Set a catchpoint to catch an event.
clear Clear a given breakpoint.
commands Specify commands to run when a breakpoint is reached.
condition Supply a condition to a particular breakpoint.
delete Delete one more breakpoints or auto-display expressions.

774 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examining Data

Controlling and Examining Files
add-symbol-file

Add symbols from a dynamically loaded file to GDB’s symbol table.

add-symbol-file-from-memory
Load the symbols from a dynamically loaded object file in the debuggee’s
memory.

cd Set the current directory for GDB and the debuggee.

disable Disable one or more breakpoints.
enable Enable one or more breakpoints.
hbreak Set a hardware assisted breakpoint.
ignore Set the ignore-count of a particular breakpoint.
rbreak Set a breakpoint for all functions matching a regular expression.
rwatch Set a read watchpoint for an expression.
tbreak Set a temporary breakpoint.
tcatch Set a temporary catchpoint.
thbreak Set a temporary hardware assisted breakpoint.
watch Set an expression watchpoint.

call Call a function in the program.
delete display Cancel one or more expressions that have been set to display

when the program stops.
delete mem Delete a memory region.
disable display Disable one or more expressions that have been set to display

when the program stops.
disable mem Disable a memory region.
disassemble Disassemble a section of memory.
display Print the value of an expression each time the program stops.
enable display Enable one or more expressions that have been set to display

when the program stops.
enable mem Enable a memory region.
inspect Same as print.
mem Define attributes for a memory region.
output Similar to print, but doesn’t save the value in history and doesn’t

print a newline. For scripting.
print Print the value of an expression.
print-object Cause an Objective C object to print information about itself.
printf Print values like the printf command.
ptype Print the definition of a given type.
set Evaluate an expression and save the result in a program variable.
set variable Same as set, avoids conflict with GDB variables.
undisplay Cancel one or more expressions that have been set to display

when the program stops.
whatis Print the data type of an expression.
x Examine memory: x/fmt address. See the entry for x in the later

section “Alphabetical Summary of GDB Commands.”

Group Listing of GDB Commands | 775

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

core-file
Specify a file to use as the core dump for memory and register contents.

directory
Add a directory to the beginning of the source file search path.

edit
Edit a file or function.

exec-file
Specify a file to use as the executable.

file
Specify the filename of the program to be debugged.

forward-search
Search forward in the current source file for a regular expression, starting at
the last line listed.

generate-core-file
Create a core file from the current state of the debuggee.

list
List a function or line.

nosharedlibrary
Unload all shared object library symbols.

path
Add one or more directories to the object file search path.

pwd
Print the current directory.

reverse-search
Search backward in the current source file for a regular expression, starting at
the last line listed.

search
Same as forward-search.

section
Change the base address of a particular section in the exec file.

sharedlibrary
Load shared object library symbols for files matching a regular expression.

symbol-file
Load symbol table information from a specified executable file.

Running a Program

advance Continue the program up to the given location.
attach Attach to a process or file outside of GDB.
continue Continue the program being debugged.
detach Detach a previously attached process or file.
finish Execute until selected stack frame returns.
handle Specify how to handle a signal.
interrupt Interrupt the execution of the debugged program.
jump Continue program being debugged at specified line or address.

776 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Examining the Stack

Status Inquiries

Support Facilities

kill Kill the program being debugged.
next Execute the program’s next statement.
nexti Execute the program’s next instruction.
run Start the debugged program.
signal Continue the program, giving it a specified signal.
start Run the debugged program until the beginning of the main proce-

dure. Useful for C++ where constructors run before main().
step Step the program until it reaches a different source line. Descends

into called functions.
stepi Step exactly one instruction.
thread Switch between threads.
thread apply Apply a command to a list of threads.
thread apply all Apply a command to all threads.
tty Set the terminal for future runs of the debuggee.
unset environment Remove a variable from the debuggee’s environment.
until Execute until the program reaches a source line greater than the

current one.

backtrace Print a backtrace of all stack frames.
down Select and print the stack frame called by the current one.
frame Select and print a stack frame.
return Make selected stack frame return to its caller.
select-frame Select a stack frame without printing anything.
up Select and print the stack frame that called the current one.

info General command for showing information about the debuggee.
macro Prefix for commands dealing with C preprocessor macros.
show General command for showing information about the debugger.

apropos Search for commands matching a regular expression.
complete List the command completions for the rest of the line.
define Define a new command.
document Document a user-defined command.
dont-repeat Don’t repeat this command. For use in user-defined commands.
down-silently Same as the down command, but doesn’t print messages.
echo Print a constant string.
else Provide a list of alternative commands for use with if.
end End a list of commands or actions.
help Print list of commands.
if Execute nested commands once if the conditional expression is

nonzero.
make Run the make program using the rest of the line as arguments.
quit Exit GDB.

Summary of set and show Commands | 777

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Text User Interface Commands

Frequently Used Commands

GDB offers a bewilderingly large number of commands, but most users can get by
with just a small handful. Table 17-1 lists the ones that you are likely to use most
often.

Summary of set and show Commands
The set command accepts a large number of different parameters that control
GDB’s behavior. Many of the accepted parameters are rather esoteric. The show
command displays the values of the same parameters as set accepts. This section
summarizes the parameters and how they affect GDB.

shell Execute the rest of the line as a shell command.
source Read commands from a named file.
up-silently Same as the up command, but doesn’t print messages.
while Execute nested commands while the conditional expression is

nonzero.

focus Change which window receives the keyboard focus.
layout Change the layout of the windows in use.
refresh Clear and redraw the screen.
tui reg Change which registers are shown in the register window.
update Update the source window.
winheight Change the height of a particular window.

Table 17-1. The top dozen GDB commands

Command Purpose Examples

backtrace Show call trace ba

break Set breakpoint at routine entry or at line
number

b main

b parser.c:723

continue Continue from breakpoint cont

delete Remove breakpoint d 3

finish Step until end of routine fin

info breakpoints List current breakpoints i br

next Step to next statement and over routine calls ne

print Print expression print 1.0/3.0

run (Re)run program, optionally with arguments ru

ru -u -o foo < data

step Step to next statement and into routines s

x Examine memory x/s *environ

until Continue execution until reaching a source
line

until

until 2367

778 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

annotate

For most of the options, set option and set option on are equivalent; they enable
the option. Use set option off to disable the option.

annotate set annotate level
show annotate

Set the annotation_level variable to level. GUI programs that call
GDB as a subsidiary process use this variable.

architecture set architecture architecture
show architecture

Set the architecture of target to architecture. Primarily used in
cross-debugging.

args set args
show args

Give the debuggee the argument list when you start it. The run
command uses this list when it isn’t given any arguments. See the
entry for run in the later section “Alphabetical Summary of GDB
Commands.”

auto-solib-add set auto-solib-add
show auto-solib-add

Automatically load symbols from shared libraries as needed. When
set to off, symbols must be loaded manually with the
sharedlibrary command.

auto-solib-limit set auto-solib-limit megs
show auto-solib-limit

Limit the size of symbols from shared libraries that will be auto-
matically loaded to megs megabytes. Not available on all systems.

backtrace set backtrace limit count
show backtrace limit
set backtrace past-main
show backtrace past-main

The first syntax limits the number of stack frames shown in a back-
trace to count. The default is unlimited. The second syntax controls
whether GDB shows information about frames that precede the
main() function. Such startup code is usually not of interest, thus
the default is off.

Summary of set and show Commands | 779

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

complaints

breakpoint set breakpoint pending val
show breakpoint pending

How GDB should handle breakpoint locations that can’t be found
(for example, if a shared library has yet to be loaded). Values are
on, off, or auto. When val is on, GDB automatically creates a
pending breakpoint. For auto, it asks you. For off, pending break-
points are not created.

can-use-hw-
watchpoints

set can-use-hw-watchpoints value
show can-use-hw-watchpoints

If nonzero, GDB uses hardware support for watchpoints, if the
system has such support. Otherwise, it doesn’t.

case-sensitive set case-sensitive
show case-sensitive

Set whether GDB should ignore case when searching for symbols.
This variable can be set to on, off, or auto. For auto the case sensi-
tivity depends upon the language.

coerce-float-to-
double

set coerce-float-to-double
show coerce-float-to-double

When calling a function that is not prototyped, if this variable is on,
GDB coerces values of type float to type double. If the variable is
off, floats are not coerced to double and prototyped functions
receive float values as is.

commands show commands [cmdnum]
show commands +

By default, show the last 10 commands in the command history.
With a numeric cmdnum, show the 10 commands centered around
cmdnum. The second syntax shows the 10 commands following
those just printed.

complaints set complaints limit
show complaints

When GDB encounters problems reading in symbol tables, it
normally does not complain. By setting this variable, GDB
produces up to limit complaints about each kind of problem it
finds. The default is 0, which creates no complaints. Use a large
number to mean “unlimited.”

780 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

confirm

confirm set confirm
show confirm

GDB normally asks for confirmation before certain operations,
such as deleting breakpoints. Set this value to off to disable confir-
mation. Do this only if you’re really sure that you know what
you’re doing.

convenience show convenience

Print a list of convenience variables used so far, along with their
values. Can be abbreviated show conv.

copying show copying

Display the GNU General Public License (GPL).

cp-abi set cp-abi
show cp-abi

The Application Binary Interface (ABI) used for inspecting C++
objects. The default is auto, where GDB determines the ABI on its
own. Other acceptable values are gnu-v2 for g++ versions before 3.0,
gnu-v3 for g++ versions 3.0 and later, and hpaCC for the HP ANSI
C++ compiler.

debug-file-
directory

set debug-file-directory dir
show debug-file-directory

Look in dir for separate debugging information files. For use on
systems where debugging information is not included in execut-
able files.

demangle-style set demangle-style style
show demangle-style

Choose the scheme used to convert a “mangled” name back into the
original Objective C or C++ name. Available values for style are:

arm Use the algorithm given in The Annotated C++ Refer-
ence Manual (see the Bibliography). The GDB documen-
tation warns that this setting alone does not allow
debugging of code produced by cfront.a

a In practice this isn’t likely to be an issue; cfront-based C++ compilers are
no longer common.

auto GDB attempts to figure out the demangling style.
gnu Use the same scheme as that of the GNU C++ compiler

(g++). This is the default.
hp Use the scheme of HP’s ANSI C++ compiler, aCC.
lucid Use the scheme from Lucid’s C++ compiler, lcc.

Summary of set and show Commands | 781

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

gnutarget

directories show directories

Print the current search path of directories that contain source files.

disassembly-
flavor

set disassembly-flavor flavor
show disassembly-flavor

The current instruction set for printing machine-level instructions.
This command is currently defined only for the Intel x86 architec-
ture. The flavor is either intel or att; the default is att.

editing set editing
show editing

Enable editing of command lines as they are typed.

environment set environment variable[=value]
show environment [variable]

Set environment variable variable to optional value or to the empty
string. With no variable, show the entire environment. Otherwise,
show the value of the given variable.

exec-done-
display

set exec-done-display
show exec-done-display

Enable notification of completion for asynchronous execution
commands.

extension-
language

set extension-language .ext lang
show extension-language

Associate filename extension .ext with programming language lang.

follow-fork-
mode

set follow-fork-mode mode
show follow-fork-mode

Choose which process GDB should continue to debug when the
debuggee creates a new process. The value of mode is parent if GDB
should follow the parent, or child if GDB should follow the child.

gnutarget set gnutarget format
show gnutarget

The current file format of the debuggee (core file, executable, .o
file). The default is auto, and is probably best left that way.

782 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

height

height set height count
show height

The number of lines GDB thinks are in a page. Use 0 to keep GDB
from pausing.

history set history feature
show history feature

Control different aspects of GDB’s command history. Values and
meanings for feature are as follows:

set history expansion, show history expansion
Use csh-style ! commands for history operations. The default
is off.

set history filename file, show history filename
Save the command history to file, and restore it from there upon
startup. This overrides the default filename, which is taken from
the value of the environment variable GDBHISTFILE if it is set.
Otherwise, the default filename is ./.gdb_history.

set history save, show history save
Enable saving/restoring of the command history.

set history size amount, show history size
Limit the number of saved history commands to amount.

input-radix set input-radix base
show input-radix

The default input radix for entering numbers. Acceptable values for
base are 8, 10, and 16. The value must be entered unambiguously
(leading 0 for octal, leading 0x or 0X for hexadecimal), or in the
current input radix.

language set language lang
show language

Set the source language to lang. Normally, GDB is able to deter-
mine the source language from information in the executable file.

listsize set listsize count
show listsize

The number of source lines GDB lists with the list command.

Summary of set and show Commands | 783

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

output-radix

logging set logging
set logging option value
show logging

With the usual on and off values, set logging enables and disables
logging of GDB command output. With an option and value, the
particular logging option is set to value.

Logging Options

file
The file to which GDB logs command output. The default is
gdb.txt.

overwrite
If set, overwrite the log file each time. Otherwise GDB
appends to it.

redirect
If set, send output to the log file only. The default outputs to
both the terminal and the log file.

max-user-call-
depth

set max-user-call-depth limit
show max-user-call-depth

Set the maximum number of recursive calls to a user-defined
command to limit. When the limit is exceeded, GDB assumes that the
command has gone into infinite recursion and aborts with an error.

opaque-type-
resolution

set opaque-type-resolution
show opaque-type-resolution

Resolve opaque struct/class/union types when loading symbols.
That is, if one file uses a type opaquely (struct foo *), find the defi-
nition for that type in the file that defines it.

osabi set osabi os-abi-type
show osabi

The Operating System/Application Binary Interface of the
debuggee. The default is auto, which means GDB figures it out
automatically. Use this if you need to override GDB’s guess.

output-radix set output-radix base
show output-radix

The default output radix for displaying numbers. Acceptable values
for base are 8, 10, and 16. The value must be entered unambigu-
ously (leading 0 for octal, leading 0x or 0X for hexadecimal), or in
the current input radix.

784 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

overload-resolution

overload-
resolution

set overload-resolution
show overload-resolution

When calling an overloaded function from GDB, search for a func-
tion whose signature matches the types of the arguments.

pagination set pagination
show pagination

Enable/disable pagination of output. Default is on.

paths show paths

Display the current search path for executable programs (the PATH
environment variable). This path is also used to find object files.

print set print print-opt
show print print-opt

GDB lets you control the printing of many different aspects of the
debuggee. Many of these options are enabled by typing either set
print option-name or set print option-name on. Using off instead of
on disables the particular printing option. You can use show print
option-name to see if the option’s printing setting is on or off. The
values for print-opt, and descriptions of GDB’s behavior when a
particular print-opt is on, are presented in the following list.

set print address, show print address
Include the program counter in stack frame information.

set print array, show print array
Prettyprint arrays. This is easier to read but takes up more
space. Default is off.

set print asm-demangle, show print asm-demangle
Demangle C++/Objective C names, even in disassembly
listings.

set print demangle, show print demangle
Demangle C++/Objective C names in output.

set print elements count, show print elements
Print no more than count elements from an array. The default
is 200; a value of 0 means “unlimited.”

set print null-stop, show print null-stop
Stop printing array elements upon encountering one set to
zero (ASCII NUL for character arrays, hence the name).
Default is off.

set print object, show print object
For a pointer, print the pointed-to object’s actual type, which is
derived from virtual function table information, instead of the
declared type. The default is off, which prints the declared type.

Summary of set and show Commands | 785

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

scheduler-locking

set print pascal_static-members
show print pascal_static-members

Print Pascal static members.

set print pretty, show print pretty
Prettyprint structures, one element per line, with indentation
to convey nesting.

set print sevenbit-strings, show print sevenbit-strings
Print 8-bit characters in strings as \nnn.

set print static-members, show print static-members
Print static members when displaying a C++ object.

set print symbol-filename, show print symbol-filename
When printing the symbolic form of an address, include the
source filename and line number.

set print union, show print union
Print unions inside structures.

set print vtbl, show print vtbl
Prettyprint C++ virtual function tables. The default is off.

set print max-symbolic-offset max
show print max-symbolic-offset

When displaying addresses, only use the symbol + offset form
if the offset is less than max. The default is 0, which means
“unlimited.”

prompt set prompt string
show prompt

Set GDB’s prompt to string, or show the prompt string. The
default prompt is (gdb).

radix set radix base
show radix

Set the input and output radixes to the same number. Acceptable
values for base are 8, 10, and 16. The value must be entered unam-
biguously (leading 0 for octal, leading 0x or 0X for hexadecimal), or
in the current input radix. See also input-radix and output-radix.

scheduler-
locking

set scheduler-locking
show scheduler-locking

On some operating systems, control the scheduling of other
threads (those not being traced) in the debuggee. The value is one
of on, off, or step. If set to off, all threads run, with the chance that
a different thread could pre-empt the debugger (hit a breakpoint,
catch a signal, etc.). When set to on, GDB only allows the current
thread to run. When set to step, the scheduler locks only during
single-stepping operations.

786 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

solib-absolute-prefix

solib-absolute-
prefix

set solib-absolute-prefix path
show solib-absolute-prefix

Use path as the prefix for any absolute paths to shared libraries.
This is mainly useful for cross-debugging, to find the target’s
shared libraries when debugging on a host.

solib-search-
path

set solib-search-path path
show solib-search-path

Search the colon separated list of directories in path to find a
shared library. GDB searches this path after trying solib-absolute-
prefix. This too is mainly useful for cross-debugging.

step-mode set step-mode
show step-mode

Set the mode of the step command. By default, step does not enter
functions that lack debugging information. Setting this variable to
on causes GDB to enter such functions, allowing you to examine
the machine-level instructions.

stop-on-solib-
events

set stop-on-solib-events
show stop-on-solib-events

Stop when a shared library event occurs. The most common such
events are the loading and unloading of a shared library.

symbol-
reloading

set symbol-reloading
show symbol-reloading

On systems that support automatic relinking (such as VxWorks),
reload the symbol table when an object file has changed.

trust-readonly-
sections

set trust-readonly-sections
show trust-readonly-sections

Believe that read-only sections will remain read-only. This allows
GDB to fetch the contents from the object file, instead of from a
possibly remote debuggee. This is useful primarily for remote
debugging.

tui set tui feature value
show tui feature

Set the TUI feature feature to value.

Summary of set and show Commands | 787

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

warranty

TUI Features

set tui active-border-mode mode
show tui active-border-mode

Choose/show the curses library attribute for the border of the
active window. Available choices are normal, standout, half,
half-standout, bold, and bold-standout.

set tui border-kind kind, show tui border-kind
Set/show the characters used to draw the border to one of the
following:

set tui border-mode mode, show tui border-mode
Choose/show the curses library attribute for the border of the
other, nonactive windows. Available choices are normal,
standout, half, half-standout, bold, and bold-standout.

values show values [valnum]
show values +

With no arguments, print the last 10 values in the value history (see
the earlier section “The Value History”). With valnum, print 10
values centered around that value history item number. With +,
print 10 more saved values following the one most recently printed.

variable set variable assignment

Ensure that assignment actually affects a program variable instead
of a GDB variable.

verbose set verbose
show verbose

Enable display of informative messages during long operations.
This reassures you that GDB is still alive.

version show version

Show the current version of GDB.

warranty show warranty

Display the “no warranty” provisions from the GNU General
Public License (GPL).

acs Draw borders using the Alternate Character Set (line
drawing characters) if the terminal supports it.

ascii Draw borders using the regular characters +, -, and |.
space Draw borders using space characters.

788 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

watchdog

watchdog set watchdog seconds
show watchdog

Wait no more than seconds seconds for a remote target to finish a
low-level stepping or continuation operation. If the timeout
expires, GDB reports an error.

width set width numchars
show width

Set the number of characters allowed in a line. Use a value of 0 to
keep GDB from wrapping long lines.

write set write
show write

Allow GDB to write into the executable and core files. The default
is off.

Summary of the info Command
The info command displays information about the state of the debuggee (as
opposed to show, which provides information about internal GDB features, vari-
ables and options). With no arguments, it provides a list of possible features
about which information is available.

info … Information displayed

address sym Information about where symbol sym is stored. This is either a
memory address or a register name.

all-registers Information about all registers, including floating-point registers.

args Information about the arguments to the current function (stack
frame).

break [bpnum] Information about breakpoint bpnum if given, or about all
breakpoints if not.

breakpoints [bpnum] Same information as the info break command.

catch Information on exception handlers active in the current frame.

classes [regexp] Information about Objective-C classes that match regexp, or
about all classes if regexp is not given.

display Information about items in the automatic display list.

extensions Information about the correspondence of filename extensions to
source code programming languages.

f [address] Same information as the info frame command.

files Information about the current debugging target, including the
current executable, core, and symbol files.

float Information about the floating-point flags and registers.

Summary of the info Command | 789

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

frame [address] With no argument, print information about the current frame.
With an address, print information about the frame containing
address, but do not make it the current frame.

functions [regexp] With no argument, print the names and types of all functions.
Otherwise, print information about functions whose names
match regexp.

handle The list of all signals and how GDB currently treats them.

line line-spec The starting and ending address for the code containing the line
specified by line-spec. See list for a description of line-spec. This
sets the default address to the starting address for the given line,
so that x/i may be used to examine instructions.

locals Information about local variables (static or automatic)
accessible from the current frame.

macro macroname Show the definition and source location for the macro
macroname.

mem Information about memory regions and their attributes.

proc [item] Information about the running debuggee. Available on systems
that supply /proc. The optional item is one of: mappings for avail-
able address ranges and how they may be accessed, times for
starting time and user and system CPU time, id for process ID
information, status for general status of the process, or all for
all of the above.

program Information about the running debuggee, such as running or
stopped, and the process ID.

registers [reg …] With no arguments, information about all machine registers
except floating-point registers. Otherwise, information about the
named registers.

s Same information as the info stack command (which is the
same as the backtrace command).

scope address Information about variables local to the scope containing address,
which can be a function name, source line, or absolute address
preceded by *.

selectors [regexp] Information about Objective-C selectors that match regexp,
or about all selectors if regexp is not given.

set Same as the show command with no arguments.

share Same as the info sharedlibrary command.

sharedlibrary Information about currently loaded shared libraries.

signal Same as the info handle command.

source Information about the source file, such as compilation directory,
programming language, and debugging information.

sources Information about all source files that have debugging informa-
tion. The output is split into two lists: those whose information
has already been read, and those whose information will be read
when needed.

stack Same information as the backtrace command.

symbol address The name of the symbol (function, variable, etc.) stored at
address address.

target Identical to the info files command.

terminal Current terminal modes settings.

threads All the program’s current threads.

info … Information displayed

790 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

add-symbol-file

Alphabetical Summary of GDB Commands
The following alphabetical summary of GDB commands includes all those that
are useful for day-to-day debugging. Esoteric commands, such as those used by
GDB’s maintainers, or to cross-debug remote systems connected via serial port or
a network, have been omitted.

Many of these commands may be abbreviated. The list of abbreviations is
provided in the earlier section “Aliases for Other Commands.”

add-symbol-file add-symbol-file file addr [-readnow]
add-symbol-file file [-s section address ...]

Read additional symbol table information from file, which was
dynamically loaded into the debuggee outside of GDB’s knowl-
edge. You must tell GDB the address at which it was loaded, since
GDB cannot determine this on its own. The -readnow option is the
same as for the file command; see file for more information. You
may use -s to name the memory starting at address with the name
section. You can provide multiple section/address pairs with
multiple -s options.

advance advance bp-spec

Continue executing until the program reaches bp-spec, which can
have any value acceptable to the break command (see break for the
details). This command is like the until command, but it does not
skip recursive function calls, and the location doesn’t have to be in
the current frame.

apropos apropos regex

Search through the built-in documentation for commands that
match the regular expression regex. Multiple words constitute a
single regular expression. GDB uses Basic Regular Expressions (see
Chapter 7); however, it also ignores case when matching.

types [regexp] Information about types that match regexp, or about all types in
the program if regexp is not given.

variables [regexp] With no argument, print the names and types of all variables
except for local variables. Otherwise, print information about
variables whose names match regexp.

watchpoints [wpnum] Information about watchpoint wpnum, or about all watchpoints
if wpnum is not given.

win The names and sizes of all displayed TUI windows.

info … Information displayed

Alphabetical Summary of GDB Commands | 791

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

break

attach attach pid

Attach to the running process pid, and use it to obtain information
about in-memory data. You must have appropriate permission in
order to attach to a running process.

awatch awatch expression

Set a watchpoint to stop when expression is either read or written.
(Compare rwatch and watch.)

backtrace backtrace [count]

Print a full list of all stack frames. With a positive count, print only
the innermost count stack frames. With a negative count, print only
the outermost count stack frames.

Example

Show a backtrace upon hitting a breakpoint:

...
Breakpoint 1, do_print (tree=0x924f9e0) at builtin.c:1573
1573 struct redirect *rp = NULL;
(gdb) backtrace
#0 do_print (tree=0x924f9e0) at builtin.c:1573
#1 0x08087bef in interpret (tree=0x924f9e0) at eval.c:784
#2 0x08086b68 in interpret (tree=0x924f980) at eval.c:453
#3 0x08072804 in main (argc=2, argv=0xbfe41bd4) at main.c:584

break break [bp-spec]
break bp-spec if condition
break bp-spec thread threadnum
break bp-spec thread threadnum if condition

Set a breakpoint. The first form sets an unconditional breakpoint;
execution of the debuggee stops when the breakpoint is reached.
The second form sets a conditional breakpoint: when the break-
point is reached, GDB evaluates the condition. If the condition is
true, execution stops. If it isn’t, the program continues. In either
case, bp-spec is one of the items given in the following section.

The third and fourth forms are similar to the first and second ones
respectively; however, they work on individual threads of control
running within the debuggee. They specify that GDB should stop
the program only when the given thread threadnum reaches the
point specified by bp-spec.

792 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

call

Breakpoint Specifications

The following list shows the different forms that the break
command can take.

break
Set a breakpoint at the next instruction in the current stack
frame. If you are not in the innermost stack frame, control
stops as soon as execution returns to that frame. This is like
the finish command, except that finish doesn’t leave a break-
point set. In the innermost frame, GDB stops when the
breakpoint is reached. This is most useful inside loop bodies.

break function
Set a breakpoint at the first instruction of function.

break linenumber
Set a breakpoint at line linenumber in the current file.

break file:line
Set a breakpoint at line number line in source file file.

break file:function
Set a breakpoint at function function in source file file.

break +offset
break -offset

Set a breakpoint at offset lines forward (+offset) or backward
(-offset) from where execution stopped in the current stack
frame.

break *address
Set a breakpoint at address. This is useful for parts of the
object file that don’t have debugging symbols available (such
as inside shared libraries).

A breakpoint set at a line or statement stops when the first instruc-
tion in that statement is reached.

Example

Set a breakpoint in the main() function:

$ gdb whizprog
GNU gdb 6.3
...
(gdb) break main
Breakpoint 1 at 0x80483c0: file whizprog.c, line 6.

call call expression

Call a function within the debuggee. expression is a function name
and parameter list. Non-void results are printed and saved in the
value history.

catch catch event

Place a catchpoint. Execution stops when the specified event occurs.

Alphabetical Summary of GDB Commands | 793

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

complete

Catchpoint Events

catch
A C++ exception is caught.

exec
The program calls execve(). This is not implemented on all
systems.

fork
The program calls fork(). This is not implemented on all
systems.

throw
A C++ exception is thrown.

vfork
The program calls vfork(). This is not implemented on all
systems.

cd cd dir

Change GDB’s working directory to dir.

clear clear [bp-spec]

Clear a breakpoint. The argument is the same as for the break
command (see break).

commands commands [bp]
... commands ...
end

Supply GDB commands that should run when the program stops at
a given breakpoint. With no bp, the list of commands is associated
with the most recent breakpoint, watchpoint, or catchpoint that
was set, not the one that was most recently executed. To clear a list
of commands, supply the commands keyword and follow it immedi-
ately with end.

Example

break myfunc if x > 42 Break myfunc if x > 42
commands List of commands
silent Don’t print GDB commands
printf "x = %d\n", x Print variable value
cont Continue execution
end End of command list

complete complete prefix

Show possible command completions for prefix. This is intended
for Emacs when running GDB in an Emacs buffer.

794 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

condition

condition condition bp
condition bp expression

Add or remove a condition to a given breakpoint. The first syntax
removes any condition associated with breakpoint number bp. The
second form adds expression as a condition for breakpoint number
bp, similar to the break … if command. See also break.

continue continue [count]

Resume execution after stopping at a breakpoint. If supplied, count
is an ignore count; see the entry for ignore.

Example

Set a breakpoint in main(). Once there, set another break point and
then continue until the new breakpoint is reached.

(gdb) break main
Breakpoint 3 at 0x8071d2e: file main.c, line 209.
(gdb) run ...
Starting program: ...

Breakpoint 3, main (argc=2, argv=0xbff59f04) at main.c:209
209 const char *optlist = "+F:f:v:W;m:D";
(gdb) break do_print
Breakpoint 4 at 0x805b239: file builtin.c, line 1573.
(gdb) continue
Continuing.

Breakpoint 4, do_print (tree=0x91589e0) at builtin.c:1573
1573 struct redirect *rp = NULL;

core-file core-file [filename]

With no argument, indicate that there is no separate core file.
Otherwise, treat filename as the file to use as a core file; that is, a
file containing a dump of memory from an executing program.

define define commandname
... commands ...
end

Create a user-defined command named commandname. The series
of commands makes up the definition of commandname. Whenever
you type commandname, GDB executes the commands. This is
similar to functions or procedures in regular programming
languages. See also document.

Alphabetical Summary of GDB Commands | 795

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

disable

Hooks

If commandname has the form hook-command, where command is a
built-in GDB command, when you enter command GDB runs
commandname before it runs command.

Similarly, if commandname has the form hookpost-command, then
GDB runs the provided sequence of commands after command
finishes. You thus have available both pre- and post-execution
hook facilities.

Finally, for the purposes of providing hooks, GDB recognizes a
pseudo-command named stop that “executes” every time the
debuggee stops. This allows you to define a hook of the form hook-
stop in order to execute a sequence of commands every time the
program stops.

delete delete [breakpoints] [range ...]
delete display dnums ...
delete mem mnums ...

For the first syntax, remove the given range of breakpoints, watch-
points, or catchpoints. With no arguments, delete all breakpoints.
(GDB may prompt for confirmation depending upon the setting of
set confirm.) The second syntax removes items from the auto-
matic display list (created with display); see display for more
information. The third syntax removes defined memory regions
created with mem; see mem for more information.

detach detach

Detach the debugger from the running process previously attached
to with attach.

directory directory [dirname ...]

Add dirname to the list of directories that GDB searches when
attempting to find source files. The directory is added to the front
of the search path. With no argument, clear the directory search
path.

disable disable [breakpoints] [range ...]
disable display dnums ...
disable mem mnums ...

With the first syntax, disable the breakpoints in range, or all
breakpoints if these are not supplied. GDB remembers disabled
breakpoints, but they do not affect execution of the debuggee.
The second syntax disables item(s) dnums in the automatic
display list; see display for more information. The third syntax
disables item(s) mnums in the list of defined memory regions; see
mem for more information.

796 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

disassemble

disassemble disassemble
disassemble pc-val
disassemble start end

Print a range of memory addresses as assembly code instructions.
With no argument, print the entire current function. One argu-
ment is assumed to be a program counter value; the function
containing this value is dumped. Two arguments specify a range of
addresses to dump, from (and including) start up to (but not
including) end.

display display
display/format expression

Add expression (usually a variable or address) to the list of values
that GDB automatically displays every time the debuggee stops.
The format is one of the format letters accepted by the x command;
see x for the full list. The trailing “/” and format immediately
follow the display command. With no arguments, print the current
values of the expressions on the display list.

document document commandname
... text ...
end

Provide documentation for the user-defined command command-
name. The documentation consists of the lines provided in text.
After executing this command, help commandname displays text. See
also define.

dont-repeat dont-repeat

This command is designed for use inside user-defined commands
(see define). It indicates that the user-defined command should not
be repeated if the user presses ENTER.

down down count

Move down count stack frames. Positive values for count move
towards more recent stack frames. See also frame and up.

down-silently down-silently count

Same as the down command, but don’t print any messages. This is
intended mainly for use in GDB scripts.

Alphabetical Summary of GDB Commands | 797

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

exec-file

echo echo strings ...

Print strings. You may use the standard C escape sequences to
generate nonprinting characters. In particular, you should use \n
for newline. Note: unlike the shell-level echo command, GDB’s
echo does not automatically supply a newline. You must explicitly
request one if you want it.

edit edit [line-spec]

Edit the lines in the source file as specified by line-spec. See list for
values for line-spec. With no argument, edit the file containing the
most recently listed line. This uses the value of $EDITOR as the
editor, or ex if that environment variable is not set.

else else

Provide an alternate list of commands to execute if the expression
in an if is false. Terminate the commands with end. See if.

enable enable [breakpoints] [range ...]
enable [breakpoints] delete range ...
enable [breakpoints] once range ...
enable display dnums ...
enable mem mnums ...

The first syntax enables breakpoints; either all breakpoints if no
range is supplied, or just the given breakpoints. The second syntax
enables the specified breakpoints so that they stop the program
when they’re encountered, but are then deleted. The third syntax
enables the specified breakpoints so that they stop the program
when encountered, but then become disabled. The fourth syntax
enables items in the automatic display list that were previously
disabled with disable; for more information see display. The fifth
syntax enables items in the list of defined memory regions; for
more information, see mem.

end end

Terminate a list of commands provided with keywords commands,
define, document, else, if, or while.

exec-file exec-file [filename]

With no argument, discard all information about the executable
file. Otherwise, treat filename as the file to execute. This command
searches $PATH to find the file if necessary.

798 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

fg

fg fg [count]

An alias for continue; see continue.

file file
file filename [-readnow]

The first syntax causes GDB to discard all its information on both
the symbol file and the executable file. The second syntax treats
filename as the file to be debugged; it is used both for symbol
table information and as the program to run for the run
command.

The -readnow option forces GDB to load symbol table information
immediately instead of waiting until information is needed.

finish finish

Continue execution until the current stack frame (function) is
about to return. This is most useful when you accidentally step into
a function (using step) that does not have debugging information
in it (such as a library function).

focus focus window

Change the focus to TUI window window. Acceptable values for
window are next, prev, src, asm, regs, and cmd.

forward-search forward-search regex

Search forward from the current line for a line that matches the
regular expression regex, and print it.

frame frame
frame frame-num
frame address

Select or print information about the current stack frame (function
invocation). Frame zero is the innermost (most recent) stack frame.
With no arguments, print the current stack frame. With a frame-
num, move to that frame. This is the most common kind of argu-
ment. An address argument may be used to select the frame at the
given address. This is necessary if the chaining of stack frames has
been damaged by a bug. Some architectures may require more than
one address.

Alphabetical Summary of GDB Commands | 799

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

help

Example

Move up the call stack toward an older function:

(gdb) where
#0 do_print (tree=0x83579e0) at builtin.c:1573
#1 0x08087bef in interpret (tree=0x83579e0) at eval.c:784
#2 0x08086b68 in interpret (tree=0x8357980) at eval.c:453
#3 0x08072804 in main (argc=2, argv=0xbfeb8584) at main.c:584
(gdb) frame 2
#2 0x08086b68 in interpret (tree=0x8357980) at eval.c:453
453 (void) interpret(tree->rnode);

generate-core-
file

generate-core-file [file]

Generate a core file from the state of the debuggee. With file, send
the core dump to file. Otherwise, use a file named core.PID.

handle handle signal keywords ...

Set GDB up to handle one or more signals. The signal may be a
signal number, a signal name (with or without the SIG prefix), a
range of the form low–high, or the keyword all. The keywords are
one or more of the following:

hbreak hbreak bp-spec

Set a hardware-assisted breakpoint. The argument is the same as for
the break command (see break, earlier in this list). This command is
intended for EEPROM/ROM code debugging; it allows you to set a
breakpoint at a location without changing the location. However,
not all systems have the necessary hardware for this.

help help [command]

With no arguments, print a list of subtopics for which help is avail-
able. With command, provide help on the given GDB command or
group of commands.

ignore Ignore the signal; do not let the program see it.
noignore Same as the pass command.
nopass Same as the ignore command.
noprint Do not print a message when the signal arrives.
nostop Do not stop the program when the signal arrives; let

the debuggee receive it immediately.
pass Pass the signal on through to the program.
print Print a message when the signal arrives.
stop Stop the program when the signal arrives. Normally,

only “error” signals such as SIGSEGV stop the
program.

800 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

if

if if expression
... commands1 ...
[else
... commands2 ...]
end

Conditionally execute a series of commands. If expression is true,
execute commands1. If an else is present and the expression is
false, execute commands2.

ignore ignore bp count

Set the ignore count on breakpoint, watchpoint, or catchpoint bp
to count. GDB does not check conditions as long as the ignore
count is positive.

inspect inspect print-expressions

An obsolete alias for the print command. See print for more
information.

info info [feature]

Display information about feature, which concerns the state of
the debuggee. With no arguments, provide a list of features
about which information is available. Full details are provided in
the section “Summary of the info Command,” earlier in this
chapter.

jump jump location

Continue execution at location, which is either a line-spec as for
the list command (see list), or a hexadecimal address preceded
by a *.

The continue command resumes execution where it stopped, while
jump moves to a different place. If the location is not within the
current frame, GDB asks for confirmation since GDB will not
change the current setup of the machine registers (stack pointer,
frame pointer, etc.).

kill kill

Kill the process running the debuggee. This is most useful to force
the production of a core dump for later debugging.

Alphabetical Summary of GDB Commands | 801

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

list

layout layout layout

Change the layout of the TUI windows to layout. Acceptable values
for layout are:

The command window is always displayed.

list list function
list line-spec

List lines of source code, starting at the beginning of function func-
tion (first form), or centered around the line defined by line-spec
(second form). Pressing the ENTER key repeats the last command;
for list, this shows successive lines of source text. A line-spec can
take one of the forms shown below.

Line Specifications

list number
List lines centered around line number.

list +offset
list -offset

List lines centered around the line offset lines after (first form)
or before (second form) the last line printed.

list file:line
List lines centered around line line in source file file.

list file:function
List lines centered around the opening brace of function func-
tion in source file file. This is necessary if there are multiple
functions of the same name in different source files.

list *address
List lines centered around the line containing address, which
can be an expression.

list first,last
List the lines from first to last, each of which may be any of the
previous forms for a line-spec.

list first,
List lines starting with first.

asm The assembly window only.
next The next layout.
prev The previous layout.
regs The register window only.
split The source and assembly windows.
src The source window only.

802 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

macro

list ,last
List lines ending with last.

list +
list -

List the lines just after (first form) or just before (second form)
the lines just printed.

macro macro expand expression
macro expand-once expression
macro define macro body
macro define macro(args) body
macro undefine macro

Work with C preprocessor macros. As of GDB 6.3, not all of these
are implemented.

macro expand expression
Display the result of macro expanding expression. The results
are not evaluated, thus they don’t need to be syntactically
valid. expand may be abbreviated exp.

macro expand-once expression
Expand only those macros whose names appear in expression
instead of fully expanding all macros. expand-once may be
abbreviated exp1. Not implemented as of GDB 6.3.

macro define macro body
macro define macro(args) body

Define a macro named macro with replacement text body. As
in C and C++, the first form defines a symbolic constant,
while the second form defines a macro that accepts argu-
ments. Not implemented as of GDB 6.3.

macro undefine macro
Remove the definition of the macro named macro. This
works only for macros defined with macro define; you
cannot undefine a macro in the debuggee. Not implemented
as of GDB 6.3.

make make [args]

Run the make program, passing it args. Equivalent to the shell make
args command. This is useful for rebuilding your program while
remaining within GDB.

mem mem start-addr end-addr attributes ...

Define a memory region, i.e., a portion of the address space starting
at start-addr and ending at end-addr that has particular attributes.

Alphabetical Summary of GDB Commands | 803

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

print

Memory Access Attributes

next next [count]

Run the next statement. Unlike step, a function call is treated as a
simple statement; single-stepping does not continue inside the
called function. With a count, run the next count statements. In any
case, execution stops upon reaching a breakpoint or receipt of a
signal. See also step.

nexti nexti [count]

Run the next machine instruction. Otherwise, this is similar to the
next command in that single-stepping continues past a called func-
tion instead of into it.

nosharedlibrary nosharedlibrary

Unload all shared libraries from the debuggee.

output output expression
output/format expression

Print expression, completely unadorned. No newlines are added, nor
is the value preceded by the usual $n =. Neither is the value added to
the value history. With “/” and format, output the expression using
format, which is the same as for the print command; see print.

path path dir

Add directory dir to the front of the PATH environment variable.

print print [/format] [expression]

Print the value of expression. If the first argument is “/” and format,
use the format to print the expression. Omitting expression prints
the previous expression, allowing you to use a different format to
see the same value. The allowed format values are a subset of the
format items for the x command; see also x, later in this section.

ro Memory is read-only.
rw Memory is read-write.
wo Memory is write-only.
8, 16, 32, 64 GDB should use memory accesses of the specified

width in bits. This is often needed for memory-
mapped device registers.

804 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

print-object

Print Formats

Example

Print a wide character value as a regular character:

(gdb) print tmp->sub.val.wsp
$2 = (wchar_t *) 0x99f0910
(gdb) print/c *$2
$3 = 97 'a'

print-object print-object object

Cause the Objective C object object to print information about
itself. This command may only work with Objective C libraries that
define the hook function _NSPrintForDebugger().

printf printf format-string, expressions ...

Print expressions under control of the format-string, as for the C
library printf(3) function. GDB allows only the simple, single-letter
escape sequences (such as \t and \n) to appear in format-string.

ptype ptype
ptype expression
ptype type-name

Print the full definition of a type. This differs from whatis, in that
whatis only prints type names, while ptype gives a full description.

With no argument (the first syntax), print the type of the last value in
the value history. This is equivalent to ptype $. With expression (the
second syntax), print the type of expression. Note that the expression
is not evaluated. No operators with side effects (such as ++, or a func-
tion call) execute. The third syntax prints the type of type-name,
which is either the name of a type or one of the keywords class,
enum, struct, or union, followed by a tag. See also whatis.

a Print the value as an address. The address is printed as both
an absolute (hexadecimal) address, and as an offset from
the nearest symbol.

c Print the value as a character constant.
d Print the value as a signed decimal integer.
f Print the value as a floating point number.
o Print the value as an octal integer.
t Print the value as a binary integer (t stands for “two”).
u Print the value as an unsigned decimal integer.
x Print the value as a hexadecimal integer.

Alphabetical Summary of GDB Commands | 805

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

run

pwd pwd

Print GDB’s current working directory.

quit quit

Exit GDB.

rbreak rbreak regexp

Set breakpoints on all functions matching the regular expression
regexp. The regular expression syntax used is that of grep (i.e.,
Basic Regular Expressions, see Chapter 7). This is useful for over-
loaded functions in C++.

refresh refresh

Redraw and refresh the screen for the TUI. See the earlier section
“The GDB Text User Interface” for more information.

return return [expression]

Cause the current stack frame to return to its caller. If provided,
expression is used at the return value. GDB pops the current stack
frame and any below it (functions it called) from the execution
stack, causing the returning frame’s caller to become the current
frame. Execution does not resume; the program remains stopped
until you issue a continue command.

reverse-search reverse-search regex

Search backwards from the current line for a line that matches the
regular expression regex, and print it.

run run [arguments]

Run the debuggee, optionally passing it arguments as the
command-line arguments. GDB also supports simple I/O redirec-
tions (<, >, >>); pipes are not supported. GDB remembers the last-
used arguments; thus a plain run command restarts the program
with these same arguments. (Use set args to clear or change the
argument list.)

The debuggee receives the arguments you give to the run command,
the environment as inherited by GDB and modified by set
environment, the current working directory, and the current standard
input, standard output, and standard error (unless redirected).

806 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

rwatch

rwatch rwatch expression

Set a watchpoint to stop when expression is read. (Compare awatch
and watch.)

search search regex

An alias for forward-search. See forward-search for more
information.

section section sectname address

Change the base address of sectname to address. This is a last-ditch
command, used when the executable file format doesn’t contain
data on section addresses or if the data in the file is wrong.

select-frame select-frame
select-frame frame-num
select-frame address

Same as the frame command, except that it does not print any
messages. See frame for more information.

set set [variable]

Change the setting either of GDB variables or variables in the
debuggee. See the earlier section “Summary of set and show
Commands” for more information.

sharedlibrary sharedlibrary [regexp]

With no argument, load all the shared libraries required by the
program or core file. Otherwise, load only those files whose names
match regexp.

shell shell [command args]

Run the shell command command with arguments args without
leaving GDB. With no arguments, start an interactive subshell.

Example

Run grep to find the definition of a macro:

510 return tmp_number((AWKNUM) len);
(gdb) shell grep tmp_number *.h
whizprog.h:#define tmp_number(x) mk_number((x), TEMP)
(gdb)

Alphabetical Summary of GDB Commands | 807

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

symbol-file

show show [variable]

Show the setting of internal GDB variables. See the earlier section
“Summary of set and show Commands” for more information.

signal signal sig

Continue the program running, and immediately send it signal sig.
sig may be either a signal number or a signal name. The signal
number 0 is special: if the program stops due to receipt of a signal,
sending signal 0 resumes it without delivering the original signal.

silent silent

Don’t print breakpoint-reached messages. Use this command
inside a commands list; see commands.

source source file

Read and execute the commands in file. The commands are not
printed as they are read, and an error in any one command termi-
nates execution of the file. When executing a command file,
commands that normally ask for confirmation do not do so, and
many commands that would otherwise print messages are silent.

step step [count]

Run the next statement. This differs from the next command in
that if the next statement is a function call, step steps into it and
continues single-stepping in the called function. However, next
calls the function without stepping into it. With a count, step
through count statements. In any case, execution stops upon
reaching a breakpoint or receipt of a signal. See also next.

stepi stepi [count]

Run the next machine instruction. Otherwise, this is similar to the
step command in that single-stepping continues into a called func-
tion. With a count, step through count instructions.

symbol-file symbol-file
symbol-file filename [-readnow]

With no argument, discard all symbol table information. Other-
wise, treat filename as the file to get symbol table information from,

808 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

tbreak

and as the file to execute. This command searches $PATH to find
the file if necessary. The -readnow option has the same meaning as
for the file command; see file for more information.

tbreak tbreak bp-spec

Set a temporary breakpoint. The argument is the same as for the
break command (see break, earlier in this list). The difference is
that once the breakpoint is reached, it is removed.

tcatch tcatch event

Set a temporary catchpoint. The argument is the same as for the
catch command (see catch, earlier in this list). The difference is
that once the catchpoint is reached, it is removed.

thbreak thbreak bp-spec

Set a temporary hardware-assisted breakpoint. The argument is the
same as for the hbreak command (see hbreak, earlier in this list).

thread thread threadnum
thread apply [threadnum | all] command

The first form makes threadnum the current thread, i.e., the one
that GDB works with. The second form lets you apply command to
either the specific thread threadnum or to all threads.

tty tty device

Set the debuggee’s input and output to device (typically the device
file for a terminal).

tui tui reg regkind

For the TUI, update the register window to display the register set
regkind.

Register Sets

The following are the acceptable values for regkind.

float The floating-point registers.
general The general purpose registers.
next The “next” register group. Predefined register groups

are all, float, general, restore, save, system, and
vector.

system The system registers.

Alphabetical Summary of GDB Commands | 809

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

until

undisplay undisplay dnums ...

Remove display items dnums from the automatic display list. See
display for more information.

unset unset environment variable

Remove environment variable variable from the environment
passed to the debuggee.

until until [location]

Continue execution until it reaches the next source line after the
current line. This is most useful for reaching the line after the end
of a loop body. Without a location, until uses single-stepping to
reach the next source line. With a location, it uses an internal
breakpoint to reach the next source line; this is much faster. The
location may be any form acceptable to the break command; see
break for more information.

Example

Use until to skip through the entire execution of a loop:

$ nl -ba foo.c Show source file
 1 #include <stdio.h>
 2
 3 int main(void)
 4 {
 5 int i;
 6
 7 for (i = 1; i <= 10; i++)
 8 printf("i = %d\n", i);
 9
 10 printf("all done: i = %d\n", i);
 11 }
$ gcc -g foo.c -o foo Compile it
$ gdb foo Run GDB
GNU gdb 6.3
...

(gdb) break main Set breakpoint
Breakpoint 1 at 0x8048358: file foo.c, line 7.
(gdb) run Start it running
Starting program: /tmp/foo

Breakpoint 1, main () at foo.c:7
7 for (i = 1; i <= 10; i++)
(gdb) next Next statement
8 printf("i = %d\n", i);

810 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

up

(gdb) ENTER repeats 'next'
i = 1
7 for (i = 1; i <= 10; i++)
(gdb) Same
8 printf("i = %d\n", i);
(gdb) Same
i = 2
7 for (i = 1; i <= 10; i++)
(gdb) until 9 Finish up the loop
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10
main () at foo.c:10
10 printf("all done: i = %d\n", i);
(gdb) continue Finish program
Continuing.
all done: i = 11

Program exited with code 021.
(gdb) quit

up up count

Move up count stack frames. Positive values for count move
towards less recent stack frames. See also frame and down.

up-silently up-silently count

Same as the up command, but don’t print any messages. Intended
mainly for use in GDB scripts.

update update

For the TUI, update the source window and the current execution
point.

watch watch expression

Set a watchpoint to stop when expression is written. (Compare
awatch and rwatch.)

Alphabetical Summary of GDB Commands | 811

GDB

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

x

whatis whatis [expression]

With no argument, print the type of the last value in the value
history. This is equivalent to whatis $. With expression, print the
type of expression. Note that the expression is not evaluated. No
operators with side effects (such as ++, or a function call) execute.
See also ptype.

where where [count]

Identical to the backtrace command; see backtrace for more
information.

while while expression
... commands ...
end

Repeatedly execute a series of commands. As long as expression is
true, execute commands.

winheight winheight win ±amount

For the TUI, change the height of window win by amount. Using +
increases the height; using – decreases it. The window name win
may be one of asm, cmd, regs, or src.

x x [[/NFU] addr]

Examine the data at address. Subsequent x commands without an
address move forward in memory according to the values for N, F,
and U.

The N value is a repeat count, for example, to examine a given
number of instructions. The F value is a format, indicating how to
print the data. The U value is the unit size in bytes of the items to
be displayed.

GDB stores the address printed by the x command in the $_ conve-
nience variable. It stores the contents of the address in the $__
convenience variable.

Format Values

a Print the value as an address. The address is printed as
both an absolute (hexadecimal) address and as an offset
from the nearest symbol.

c Print the value as a character constant.
d Print the value as a signed decimal integer.
f Print the value as a floating point number.
i Print the value as a machine instruction.
o Print the value as an octal integer.

812 | Chapter 17: The GDB Debugger

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

x

Unit Size Values

s Print the value as a NUL-terminated string.
t Print the value as a binary integer (t stands for “two”).
u Print the value as an unsigned decimal integer.
x Print the value as a hexadecimal integer.

b Bytes.
g Giant words, i.e., 8 bytes.
h Halfwords, i.e., 2 bytes.
w Words, i.e., 4 bytes.

813

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 18Manual Pages

18
Writing Manual Pages

The man command prints the online “manual page” for commands, system calls,
functions, devices and file formats. Developers creating new software also need to
create manual pages for their programs. This in turn requires a basic under-
standing of the Unix troff text-processing program and the man macro package.

This chapter presents the following topics:

• Introduction

• Overview of nroff/troff

• Alphabetical summary of the man macros

• Predefined strings

• Names used internally by the man macros

• Sample document

Introduction
The standard Unix text-processing tools are nroff and troff. They are not What
You See Is What You Get (WYSIWYG) word-processors. Rather, they are text
processing programs, where the input consists of a mixture of text to be formatted
and special commands that instruct the programs how to format the text.

troff is for output devices such as typesetters and high resolution laser printers
that can handle variable-width fonts and different character sizes. nroff is for
simpler devices where all characters have the same width, such as terminals or line
printers. Both programs accept the same set of commands; thus, carefully
prepared input may be used with both programs to produce reasonable results.
The original troff program worked for only one specific typesetter. The modern
version, known as “device independent troff,” or ditroff, can be tuned via
specific drivers to work on multiple output devices.

814 | Chapter 18: Writing Manual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Different commercial versions of Unix come with different versions of the troff
suite. GNU/Linux and BSD systems all use GNU troff (groff), which is an excel-
lent, full-featured implementation of ditroff and all the troff preprocessors. The
Internet starting point for groff is http://www.gnu.org/software/groff/groff.html.
We recommend downloading and building it if you intend to do serious troff-
based typesetting work.*

Knowledge of nroff and troff was once an integral part of a Unix wizard’s claims
to Unix mastery. Over time though, they have been superseded for daily docu-
ment preparation, either by WYSIWYG programs, or by TEX and LATEX. More
information about troff in general is available from http://www.troff.org/.

However, one important task where knowledge of troff is still handy is the
writing of manual pages (for the man command) to accompany software. This
chapter introduces the subset of the troff command and feature set that is useful
for writing manual pages, and then describes the man macros, concluding with a
sample manual page. See also the Writing Manual Pages appendix in Classic Shell
Scripting, cited in the Bibliography.

The canonical reference for nroff/troff is Bell Labs Computing Science Technical
Report #54, Troff User’s Manual, by J.F. Ossanna and B.W. Kernighan. It is avail-
able in PostScript from http://cm.bell-labs.com/cm/cs/cstr/54.ps.gz. You should
read it if you plan to do any serious work in nroff/troff (such as writing or modi-
fying macro packages). This document explains the ideas of diversions,
environments, fields, registers, strings, and traps. The online Info documentation
for groff explains the GNU-specific extensions that it supplies.

Overview of nroff/troff
This section is condensed from the material on troff from the third edition of this
book. It covers features available in all versions of nroff and troff, and focuses on
those features necessary for writing manual pages.

Command-Line Invocation

nroff and troff are invoked from the command line as follows:

nroff [options] [files]
troff [options] [files]

Although both formatters support a plethora of options, the following two are the
most important for everyday use.

-mname
Prepend a macro file to input files. Historically, one of /usr/lib/tmac/tmac.name
or /usr/share/lib/tmac/tmac.name were the locations of the macros for name.
Solaris uses /usr/share/lib/tmac/name. GNU troff uses something like /usr/

* groff is written in C++, so you may need a C++ compiler. In this case, you may first need to boot-
strap g++, the GNU C++ compiler from GCC (the GNU Compiler Collection).

Overview of nroff/troff | 815

M
anual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

local/share/groff/x.y.z/tmac/name.tmac. The actual location and filename(s)
vary among different Unix systems.

-Tname
Prepare output designed for printer or typesetter name. For device names, see
your specific documentation or a local expert. GNU troff provides both Post-
Script and TEX DVI output.

Example

Format a manual page for printing using groff:

$ groff -man /usr/share/man/man1/awk.1 | lpr

Conceptual Overview

This section provides a brief overview of how to prepare input for nroff and troff.
It presents the following topics:

• Requests and macros

• Common requests

• Specifying measurements

• Requests that cause a line break

• Embedded formatting controls

Requests and macros

Formatting is specified by embedding brief codes (called requests) into the text
source file. These codes act as directives to nroff and troff when they run. For
example, to center a line of text, type the following code in a file:

.ce
This text should be centered.

When formatted, the output appears centered:

 This text should be centered.

There are two types of formatting codes:

• Requests, which provide the most elementary instructions

• Macros, which are predefined combinations of requests

Requests, also known as primitives, allow direct control of almost any feature of
page layout and formatting. Macros combine requests to create a total effect. In a
sense, requests are like statements, and macros are like functions.

All nroff/troff requests are two-letter lowercase names. Macros are usually upper-
or mixed-case names. GNU troff removes the two-character restriction on the
length of names.

Specifying measurements

With some requests, the numeric argument can be followed by a scale indicator
that specifies a unit of measurement. The valid indicators and their meanings are

816 | Chapter 18: Writing Manual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

listed in the following table. Note that all measurements are internally converted
to basic units (this conversion is shown in the last column). A basic unit is the
smallest possible size on the printer device. The device resolution (e.g., 600 dots
per inch) determines the size of a basic unit. Also, T specifies the current point
size, and R specifies the device resolution.

It is worth noting that all numbers in nroff/troff are stored internally using inte-
gers. This applies even to apparently fractional values in commands such as:

.sp .5

which spaces down one-half of the current vertical spacing.

An “em” is the width of the letter “m” in the current font and point size. An “en”
is the width of the letter “n” in the current font and point size. Note that in nroff,
an “em” and an “en” are the same—the width of one character.

Requests that cause a line break

A line break occurs when nroff/troff writes the current output line, even if it is not
completely filled. Most requests can be interspersed with text without causing a
line break in the output. The following requests cause a break:

.bp .ce .fi .in .sp

.br .cf .fl .nf .ti

If you need to prevent these requests from causing a break, begin them with the
“no break” control character (normally ') instead of a dot (.). For example, .bp
flushes the current output line and starts a new page immediately. However, 'bp
starts a new page, with the current output line not being written until it is full.

Embedded formatting controls

In addition to requests and macros, which are written on their own separate lines,
you may also have formatting controls embedded within your text lines. These
typically provide the following capabilities:

Scale indicator Meaning Equivalent unit # of basic units

c Centimeter 0.394 inches R / 2.54

i Inch 6 picas or 72 points R
m Em T points R × T / 72

n En 0.5 em R × T / 144

p Point 1/72 inch R / 72

P Pica 1/6 inch R / 6

u Basic unit 1

v Vertical line
space

(Current value of line spacing
in basic units)

None Default

Overview of nroff/troff | 817

M
anual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

General formatting
Considerable formatting control is available, such as switching fonts (\f),
changing point sizes (\s), computing widths (\w), and many other things. For
example:

This text is in \fIitalic\fR, but this is in roman.
This text is \s-2VERY SMALL\s0 but this text is not.

Special characters
Predefined special typesetting characters, such as the bullet symbol \(bu (•),
the left hand \(lh (), and the right hand \(rh ().

Strings
User-defined sequences of characters, like macros, but usable inline. For
example:

.\" define a shorthand for UNIX

.ds UX the \s-1UNIX\s0 Operating System

...
Welcome to *(UX.
While *(UX may appear daunting at first,
it is immensely powerful. ...

Number registers
Like variables in programming languages, number registers store numeric
values that can be printed in a range of formats (decimal, roman, etc.).
Number registers hold integer values; fractional values are converted into the
corresponding number of basic units. Number registers can be set to auto-
increment or auto-decrement, and are particularly useful when writing macro
packages, for managing automatic numbering of headings, footnotes, figures,
and so on. For example:

.nr Cl 0 1 \" Chapter Level

.de CH

.bp
\\n+(Cl. \\$1 \\$2 \\$3
..

This creates a macro that uses register Cl as the “chapter level.” The first
three arguments to the macro (represented in the macro body by \\$1 etc.)
become the chapter title. The extra backslashes are needed inside the macro
definition to prevent too-early evaluation.

Comments in nroff/troff begin with \". Lines beginning with . that contain an
unknown request are ignored. In general, don’t put leading whitespace on your
text lines. This causes a break, and nroff and troff honor the leading whitespace
literally.

Outline of Useful Requests

The following is a list of the requests that you may see in manual pages, or that
were mentioned earlier in the chapter.

.ad Adjust margins. .ls Line spacing (e.g., single-spaced).

.bp Begin a new page. .na Don’t adjust margins.

.br Break the output line. .ne Keep lines on same page if there’s room.

818 | Chapter 18: Writing Manual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Useful Escape Sequences

This partial list of troff escape sequences provides those that are most useful.

Special Characters

Table 18-1 lists the special characters that reside in the standard fonts. troff
includes a large number of other characters that we have not described here, since
they are mostly for typesetting mathematics.

.ce Center lines. .nf Don’t fill lines.

.cf Copy raw file to output. .nr Define a number register.

.de Define a macro. .po Change page offset.

.ds Define a string. .ps Set point size.

.fi Fill lines. .so Go to a file, then return.

.fl Flush output buffer. .sp Output blank spacing.

.ft Set font. .ta Define tab settings.

.in Indent. .ti Indent next line (temporary indent).

.ll Set line length. .vs Set vertical spacing for lines.

Sequence Effect

\\ Prevent or delay the interpretation of \.

\e Printable version of the current escape character (usually \).

\- – (minus sign in the current font).

\. Period (dot).

\space Unpaddable space-size space character.

\newline Concealed (ignored) newline.

\| 1/6-em narrow space character (zero width in nroff).

\^ 1/12-em half-narrow space character (zero width in nroff).

\& Nonprinting, zero-width character.

\" Beginning of comment.

\$n Interpolate macro argument 1 ≤ n ≤ 9.

\(xx Character named xx. See the following section “Special Characters.”

*x or *(xx Interpolate string x or xx.

\fx or \f(xx or \fn Change to font named x or xx or to position n. If x is P, return to the
previous font.

\nx, \n(xx Interpolate number register x or xx.

\n+x, \n+(xx Interpolate number register x or xx, applying auto-increment.

\n-x, \n-(xx Interpolate number register x or xx, applying auto-decrement.

\sn, \s±n Change point size to n or increment by n. For example, \s0 returns to
previous point size.

\s(nn, \s±(nn Just like \s, but allow unambiguous two-character point sizes (ditroff
only).

\w'string' Interpolate width of string in basic units.

Alphabetical Summary of man Macros | 819

M
anual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

.DT

Alphabetical Summary of man Macros
Brian Kernighan describes the reason for macro packages very pithily:

Since bare troff is unusable by humans, a race of gods now gone created
macro packages for mortals to use.

Today, the man macros are the most widely used macro package. They are used
for writing program manual pages for the online manual, accessed via the man
command.

As many as six arguments may be given for all the macros that change fonts or
produce a heading. The seventh and later arguments are ignored. Use double
quotes around multiple words to get longer headings.

The .TS, .TE, .EQ, and .EN macros are not defined by the man macros. Because
nroff and troff ignore unknown requests, you can still use them in your
manpages; tbl and eqn work with no problems.

.B .B [text ...]

Set the arguments in the bold font, with a space between each argu-
ment. If no arguments are supplied, the next input line is set in bold.

.BI .BI barg iarg ...

Set alternating barg in bold and iarg in italic, with no intervening
spaces.

.BR .BR barg rarg ...

Set alternating barg in bold and rarg in roman, with no intervening
spaces.

.DT .DT

Reset the tab stops to their defaults, every 1/2 inch.

Table 18-1. Characters in the standard fonts

Input Char Character name Input Char Character name

' ’ Close quote \(hy - Hyphen

` ‘ Open quote \(bu • Bullet

\(em — Em-dash (width of “m”) \(sq ❑ Square

\(en – En-dash (width of “n”) \(rg ® Registered

\- − Minus in current font \(co © Copyright

- - Hyphen

820 | Chapter 18: Writing Manual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

.HP

.HP .HP [indent]
tag text

Start a paragraph with a “hanging” indent, one where a tag sits out to
the left side. The optional indent is how far to indent the paragraph.
The tag text follows on the next line. See the example under .TP.

.I .I [text ...]

Set the arguments in the italic font, with a space between each argu-
ment. If no arguments are supplied, the next input line is set in italic.

.IB .IB iarg barg ...

Set alternating iarg in italic and barg in bold, with no intervening
spaces.

.IP .IP tag [indent]

Start a paragraph with a hanging indent, one where a tag sits out to
the left side. Unlike .HP and .TP, the tag is supplied as an argument
to the macro. The optional indent is how far to indent the
paragraph.

Example

.IP 1.
The first point is ...
.IP 2.
The second point is ...

.IR .IR iarg rarg ...

Set alternating iarg in italic and rarg in roman, with no intervening
spaces.

.LP .LP

Start a new paragraph. Just like .PP.

.P .P

Start a new paragraph. Just like .PP.

.PD .PD [distance]

Set the interparagraph spacing to distance. With no argument, reset
it to the default. Most useful to get multiple tags for a paragraph.

Alphabetical Summary of man Macros | 821

M
anual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

.RS

Example

Show that two options do the same thing:

.PP

.I Whizprog
accepts the following options.
.TP \w'\fB\-\^\-help\fP'u+3n
.PD 0
.B \-h
.TP
.PD
.B \-\^\-help
Print a helpful message and exit.

.PP .PP

Start a new paragraph. This macro resets all the defaults, such as
point size, font, and spacing.

.RB .RB rarg barg ...

Set alternating rarg in roman and barg in bold, with no intervening
spaces.

.RE .RE

End a relative indent. Each .RE should match a preceding .RS. See
.RS for an example.

.RI .RI rarg iarg ...

Set alternating rarg in roman and iarg in italic, with no intervening
spaces.

.RS .RS [indent]

Start a relative indent. Each successive .RS increases the indent. The
optional indent is how far to indent the following text. Each .RS
should have an accompanying .RE.

Example

.PP
There are a number of important points to remember.
.RS
.IP 1.
The first point is ...
.IP 2.
The second point is ...
...
.RE
Forget these at your own risk!

822 | Chapter 18: Writing Manual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

.SB

.SB .SB arg ...

Set arguments in bold, using a smaller point size, separated by spaces.

.SH .SH arg ...

Section header. Start a new section, such as NAME or SYNOPSIS. Use
double quotes around multiple words for longer headings.

.SM .SM arg ...

Set arguments in roman, using a smaller point size, separated by
spaces.

.SS .SS arg ...

Subsection header. Start a new subsection. Use double quotes
around multiple words for longer headings.

.TH .TH title section date ...

Title heading. This is the first macro of a manpage, and sets the
header and footer lines. The title is the name of the manpage. The
section is the section the manpage should be in (a number, possibly
followed by a letter). The date is the date the manpage was last
updated. Different systems have different conventions for the
remaining arguments to this macro. For Solaris, the fourth and fifth
arguments are the left-page footer and the main (center) header.

Example

.TH WHIZPROG 1L "April 1, 2007"

.SH NAME
whizprog \- do amazing things
...

.TP .TP [indent]
tag text

Start a paragraph with a hanging indent, one where a tag sits out to
the left side. The optional indent is how far to indent the paragraph.
The tag text follows on the next line. See also the example under .PD.

Example

.TP .2i
1.
The first point is ...
.TP .2i
2.
The second point is ...

Sample Document | 823

M
anual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Predefined Strings
The following strings are predefined by the man macros; of these, only R and S are
documented.

Internal Names
The Solaris man macros use a number of macro, string, and number register names
that begin with], }, and). Such names should be avoided in your own files.

The number registers D, IN, LL, P, X, d, m, and x are used internally by the Solaris
man macros. Using .nr D 1 before calling the .TH macro generates pages with
different even and odd footers.*

Sample Document
The output of this sample document is shown in Figure 18-1.

.TH WHIZPROG 1 "April 1, 2007"

.SH NAME
whizprog \- do amazing things
.SH SYNOPSIS
.B whizprog
[
.I options
] [
.I files
\&...]
.SH DESCRIPTION
.I Whizprog
is the next generation of really
.B cool
do-it-all programs. ...
.SH OPTIONS
.PP
.I Whizprog
accepts the following options.
.TP \w'\fB\-\^\-level\fP'u+3n
.PD 0
.B \-h

String Effect in troff Effect in nroff

*(lq `` (‘‘) "

*(rq '' (’’) "

*R \(rg (®) (Reg.)

*S Restore default point size Restore default point size

* This information was gleaned by examining the actual macros. It is not documented, so Your
Mileage May Vary.

824 | Chapter 18: Writing Manual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

.TP

.PD

.B \-\^\-help
Print a helpful message and exit.
.TP
.BI \-\^\-level " level"
Set the level for the
.B \-\^\-stun
option.
.TP
.B \-\^\-stun
Stun the competition, or other beings, as needed. ...
.SH SEE ALSO
.IR "Whizprog \- The Be All and End All Program" ,
by J. Programmer.
.PP
.IR wimpprog (1)
.SH FILES
.B /dev/phaser
.br
.B /dev/telepath
.SH CAVEATS
.PP
There are a number of important points to remember.
.RS
.IP 1.
Use
.B \-\^\-help
to get help.
.IP 2.
Use
.B \-\^\-stun
with care. ...
.RE
Forget these at your own risk!
.SH BUGS
The
.B \-\^\-stun
option currently always uses
.BR "\-\^\-level 10" ,
making it rather dangerous.
.SH AUTHOR
J. Programmer,
.B jp@wizard-corp.com

Sample Document | 825

M
anual Pages

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Figure 18-1. Output of sample document

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

IV
References

Part IV contains an Appendix of ISO 8859-1 (Latin-1) characters and a Unix
Bibliography.

Appendix: ISO 8859-1 (Latin-1) Character Set

Bibliography

829

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Latin-1 Character Set

ISO 8859-1 (Latin-1)
Character Set

This appendix presents the set of ISO 8859-1 (Latin-1) characters, along with
their equivalent values in decimal, octal, and hexadecimal. This character set
suffices for English and languages that can be written using just the English
alphabet, plus the major Western European languages. The lower half of this set
of characters is identical to traditional ASCII. Table A-1 shows nonprinting char-
acters; it’s useful when you need to represent nonprinting characters in some
printed form, such as octal. For example, the echo and tr commands let you
specify characters using octal values of the form \nnn. Also, the od command can
display nonprinting characters in a variety of forms.

Table A-2 shows printing characters. This table is useful when using the previous
commands, but also when specifying a range of characters in a pattern-matching
construct. The characters from decimal 128–159 are not used in Latin-1.

Table A-1. Nonprinting characters

Decimal Octal Hex Character Remark

0 000 00 CTRL-@ NUL (Null prompt)

1 001 01 CTRL-A SOH (Start of heading)

2 002 02 CTRL-B STX (Start of text)

3 003 03 CTRL-C ETX (End of text)

4 004 04 CTRL-D EOT (End of transmission)

5 005 05 CTRL-E ENQ (Enquiry)

6 006 06 CTRL-F ACK (Acknowledge)

7 007 07 CTRL-G BEL (Bell)

8 010 08 CTRL-H BS (Backspace)

9 011 09 CTRL-I HT (Horizontal tab)

10 012 0A CTRL-J LF (Linefeed)

11 013 0B CTRL-K VT (Vertical tab)

830 | ISO 8859-1 (Latin-1) Character Set

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

12 014 0C CTRL-L FF (Formfeed)

13 015 0D CTRL-M CR (Carriage return)

14 016 0E CTRL-N SO (Shift out)

15 017 0F CTRL-O SI (Shift in)

16 020 10 CTRL-P DLE (Data link escape)

17 021 11 CTRL-Q DC1 (XON)

18 022 12 CTRL-R DC2

19 023 13 CTRL-S DC3 (XOFF)

20 024 14 CTRL-T DC4

21 025 15 CTRL-U NAK (Negative acknowledge)

22 026 16 CTRL-V SYN (Synchronous idle)

23 027 17 CTRL-W ETB (End transmission blocks)

24 030 18 CTRL-X CAN (Cancel)

25 031 19 CTRL-Y EM (End of medium)

26 032 1A CTRL-Z SUB (Substitute)

27 033 1B CTRL-[ESC (Escape)

28 034 1C CTRL-\ FS (File separator)

29 035 1D CTRL-] GS (Group separator)

30 036 1E CTRL-^ RS (Record separator)

31 037 1F CTRL-_ US (Unit separator)

127 177 7F DEL (Delete or rubout)

Table A-2. Printing characters

Decimal Octal Hex Character Remark

32 040 20 Space

33 041 21 ! Exclamation point

34 042 22 " Double quote

35 043 23 # Number sign

36 044 24 $ Dollar sign

37 045 25 % Percent sign

38 046 26 & Ampersand

39 047 27 ' Apostrophe

40 050 28 (Left parenthesis

41 051 29) Right parenthesis

42 052 2A * Asterisk

43 053 2B + Plus sign

44 054 2C , Comma

45 055 2D – Hyphen

46 056 2E . Period

47 057 2F / Slash

Table A-1. Nonprinting characters (continued)

Decimal Octal Hex Character Remark

ISO 8859-1 (Latin-1) Character Set | 831

ISO 8859-1
(Latin-1)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

48 060 30 0

49 061 31 1

50 062 32 2

51 063 33 3

52 064 34 4

53 065 35 5

54 066 36 6

55 067 37 7

56 070 38 8

57 071 39 9

58 072 3A : Colon

59 073 3B ; Semicolon

60 074 3C < Left angle bracket

61 075 3D = Equal sign

62 076 3E > Right angle bracket

63 077 3F ? Question mark

64 100 40 @ At sign

65 101 41 A

66 102 42 B

67 103 43 C

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4A J

75 113 4B K

76 114 4C L

77 115 4D M

78 116 4E N

79 117 4F O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

Table A-2. Printing characters (continued)

Decimal Octal Hex Character Remark

832 | ISO 8859-1 (Latin-1) Character Set

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

89 131 59 Y

90 132 5A Z

91 133 5B [Left square bracket

92 134 5C \ Backslash

93 135 5D] Right square bracket

94 136 5E ^ Caret

95 137 5F _ Underscore

96 140 60 ` Back quote

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

104 150 68 h

105 151 69 i

106 152 6A j

107 153 6B k

108 154 6C l

109 155 6D m

110 156 6E n

111 157 6F o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7A z

123 173 7B { Left curly brace

124 174 7C | Vertical bar

125 175 7D } Right curly brace

126 176 7E ~ Tilde

160 240 A0 Non-breaking space

161 241 A1 ¡ Inverted exclamation

162 242 A2 ¢ Cent sign

Table A-2. Printing characters (continued)

Decimal Octal Hex Character Remark

ISO 8859-1 (Latin-1) Character Set | 833

ISO 8859-1
(Latin-1)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

163 243 A3 £ Pound sign (British currency)

164 244 A4 ¤ Currency sign

165 245 A5 ¥ Yen sign

166 246 A6 Broken bar

167 247 A7 § Section symbol

168 250 A8 ¨ Umlaut or diaeresis

169 251 A9 © Copyright symbol

170 252 AA ª Feminine ordinal

171 253 AB « Left angle quotes

172 254 AC ¬ Logical not symbol

173 255 AD - Soft hyphen

174 256 AE ® Registered trademark symbol

175 257 AF - Spacing macron

176 260 B0 ° Degree sign

177 261 B1 ± Plus-minus

178 262 B2 2 Superscript 2

179 263 B3 3 Superscript 3

180 264 B4 ′ Spacing acute

181 265 B5 µ Micro sign

182 266 B6 ¶ Paragraph symbol

183 267 B7 • Middle dot

184 270 B8 ¸ Spacing cedilia

185 271 B9 ı Superscript 1

186 272 BA º Masculine ordinal

187 273 BB » Right angle quotes

188 274 BC 1⁄4 One-fourth

189 275 BD 1⁄2 One-half

190 276 BE 3⁄4 Three-fourths

191 277 BF ¿ Inverted question mark

192 300 C0 À A with grave accent

193 301 C1 Á A with acute accent

194 302 C2 Â A with circumflex

195 303 C3 Ã A with tilde

196 304 C4 Ä A with umlaut

197 305 C5 Å A with ring accent

198 306 C6 Æ AE ligature

199 307 C7 Ç C with cedilia

200 310 C8 È E with grave accent

201 311 C9 É E with acute accent

202 312 CA Ê E with circumflex

203 313 CB Ë E with umlaut

Table A-2. Printing characters (continued)

Decimal Octal Hex Character Remark

834 | ISO 8859-1 (Latin-1) Character Set

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

204 314 CC Ì I with grave accent

205 315 CD Í I with acute accent

206 316 CE Î I with circumflex

207 317 CF Ï I with umlaut

208 320 D0 Eth (Icelandic)

209 321 D1 Ñ N with tilde

210 322 D2 Ò O with grave accent

211 323 D3 Ó O with acute accent

212 324 D4 Ô O with circumflex

213 325 D5 Õ O with tilde

214 326 D6 Ö O with umlaut

215 327 D7 × Multiplication sign

216 330 D8 Ø O with slash

217 331 D9 Ù U with grave accent

218 332 DA Ú U with acute accent

219 333 DB Û U with circumflex

220 334 DC Ü U with umlaut

221 335 DD Y with acute accent

222 336 DE Thorn (Icelandic)

223 337 DF ß Sharp s

224 340 E0 à a with grave accent

225 341 E1 á a with acute accent

226 342 E2 â a with circumflex

227 343 E3 ã a with tilde

228 344 E4 ä a with umlaut

229 345 E5 å a with ring accent

230 346 E6 æ ae ligature

231 347 E7 ç c with cedilia

232 350 E8 è e with grave accent

233 351 E9 é e with acute accent

234 352 EA ê e with circumflex

235 353 EB ë e with umlaut

236 354 EC ì i with grave accent

237 355 ED í i with acute accent

238 356 EE î i with circumflex

239 357 EF ï i with umlaut

240 360 F0 eth (Icelandic)

241 361 F1 ñ n with tilde

242 362 F2 ò o with grave accent

243 363 F3 ó o with acute accent

244 364 F4 ô o with circumflex

Table A-2. Printing characters (continued)

Decimal Octal Hex Character Remark

ISO 8859-1 (Latin-1) Character Set | 835

ISO 8859-1
(Latin-1)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

245 365 F5 õ o with tilde

246 366 F6 ö o with umlaut

247 367 F7 ÷ Division sign

248 370 F8 Ø o with slash

249 371 F9 ù u with grave accent

250 372 FA ú u with acute accent

251 373 FB û u with circumflex

252 374 FC ü u with umlaut

253 375 FD y with acute accent

254 376 FE thorn (Icelandic)

255 377 FF ÿ y with umlaut

Table A-2. Printing characters (continued)

Decimal Octal Hex Character Remark

837

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

Bibliography

Many books have been written about Unix and related topics. It would be impos-
sible to list them all, nor would that be very helpful. In this chapter, we present the
“classics”—those books that the true Unix wizard has on his or her shelf. (Alas,
some of these are now out of print; thus only older Unix wizards have them.)

Because Unix has affected many aspects of computing, you will find books listed
here on things besides just the Unix operating system itself.

This chapter presents:

• Unix descriptions and programmer’s manuals

• Unix internals

• System and network administration

• Programming with the Unix mindset

• Programming languages

• TCP/IP networking

• Software development

• Emacs

• Standards

• O’Reilly books

Unix Descriptions and Programmer’s Manuals
1. The Bell System Technical Journal, Volume 57 Number 6, Part 2, July–August

1978. AT&T Bell Laboratories, Murray Hill, NJ, USA. ISSN 0005-8580. A
special issue devoted to Unix, by the creators of the system.

2. AT&T Bell Laboratories Technical Journal, Volume 63 Number 8, Part 2,
October 1984. AT&T Bell Laboratories, Murray Hill, NJ, USA. Another
special issue devoted to Unix.

838 | Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

These two volumes were republished as:

3. UNIX System Readings and Applications, Volume 1, Prentice Hall, Engle-
wood Cliffs, NJ, USA, 1987. ISBN 0-13-938532-0.

4. UNIX System Readings and Applications, Volume 2, Prentice Hall, Engle-
wood Cliffs, NJ, USA, 1987. ISBN 0-13-939845-7.

5. UNIX Time-sharing System: UNIX Programmers Manual, Seventh Edition,
Volumes 1, 2A, 2B. Bell Telephone Laboratories, Inc., January 1979.

These are the reference manuals (Volume 1), and descriptive papers
(Volumes 2A and 2B) for the landmark Seventh Edition Unix system, the
direct ancestor of all current commercial Unix systems.

They were reprinted by Holt Rinehart & Winston, but are now long out of
print. However, they are available online from Bell Labs in troff source,
PDF, and PostScript formats. See http://plan9.bell-labs.com/7thEdMan.

6. UNIX Research System: Programmer’s Manual, Tenth Edition, Volume 1,
AT&T Bell Laboratories, M.D. McIlroy and A.G. Hume editors, Holt Rine-
hart & Winston, New York, NY, USA, 1990. ISBN 0-03-047532-5.

7. UNIX Research System: Papers, Tenth Edition, Volume 2, AT&T Bell Labora-
tories, M.D. McIlroy and A.G. Hume editors, Holt Rinehart & Winston,
New York, NY, USA, 1990. ISBN 0-03-047529-5.

These are the manuals and papers for the Tenth Edition Unix system.
Although this system was not used much outside of Bell Labs, many of the
ideas from it and its predecessors were incorporated into various versions of
System V. The manuals make interesting reading, in any case.

8. 4.4BSD Manuals, Computing Systems Research Group, University of
California, Berkeley. O’Reilly Media, Inc., Sebastopol, CA, USA, 1994. ISBN
1-56592-082-1. Out of print.

The manuals for 4.4BSD.

9. Your Unix programmer’s manual. One of the most instructive things you can
do is read your manual from front to back.* (This is harder than it used to be,
as Unix systems have grown.) It is easier to do if your Unix vendor makes
printed copies of its documentation available. Otherwise, start with the
Seventh Edition manual, and then read your local documentation as needed.

10. A Quarter Century of Unix, Peter H. Salus. Addison-Wesley, Reading, MA,
USA, 1994. ISBN 0-201-54777-5.

A delightful book that tells the history of Unix, from its inception up to the
time the book was written. It reads like a good novel, except that it’s all true!

11. Linux and the Unix Philosophy, Mike Gancarz. Digital Press, Bedford, MA,
USA, 2003. ISBN 1-55558-273-7.

* One summer, while working as a contract programmer, I spent my lunchtimes reading the man-
ual for System III (yes, that long ago) from cover to cover. I don’t know that I ever learned so much
in so little time.

Bibliography | 839

Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Unix Internals
The dedicated Unix wizard knows not only how to use his or her system, but how
it works.

1. Lions’ Commentary on UNIX 6th Edition, with Source Code, John Lions.
Peer-To-Peer Communications LLC, Charlottesville, VA, USA, 2005. ISBN
1-57398-013-7. http://www.peerllc.com/.

This classic work provides the source code for the Sixth Edition Unix kernel,
with a complete exegesis of it. It set the standard for clear exposition of oper-
ating system internals.

2. The Design of the UNIX Operating System, Maurice J. Bach. Prentice Hall,
Englewood Cliffs, NJ, USA, 1986. ISBN 0-13-201799-7.

This book very lucidly describes the design of System V Release 2, with some
discussion of important features in System V Release 3, such as STREAMS
and the filesystem switch.

3. The Magic Garden Explained: The Internals of Unix System V Release 4: An
Open Systems Design, Berny Goodheart, James Cox, and John R. Mashey.
Prentice Hall, Englewood Cliffs, NJ, USA, 1994. ISBN 0-13-098138-9.

4. Unix Internals: The New Frontiers, Uresh Vahalia. Prentice Hall, Englewood
Cliffs, NJ, USA, 1996. ISBN 0-13-101908-2.

5. Solaris Internals: Core Kernel Architecture, Jim Mauro and Richard McDougall.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000. ISBN 0-13-022496-0.

6. UNIX(R) Systems for Modern Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers, Curt Schimmel. Addison-Wesley, Reading,
MA, USA, 1994. ISBN 0-201-63338-8.

7. The Design and Implementation of the 4.3BSD UNIX Operating System,
Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels and John S.
Quarterman. Addison-Wesley, Reading, MA, USA, 1989. ISBN 0-201-06196-1.

This book describes the 4.3BSD version of Unix. Many important features
found in commercial Unix systems first originated in the BSD Unix systems,
such as long filenames, job control, and networking.

8. The Design and Implementation of the 4.4 BSD Operating System, Marshall
Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman.
Addison Wesley Longman, Reading, MA, USA, 1996. ISBN 0-201-54979-4.

This book is an update of the previous one, for 4.4BSD, the last Unix system
released from UCB. To quote from the publisher’s description, the book
“details the major changes in process and memory management, describes
the new extensible and stackable filesystem interface, includes an invaluable
chapter on the new network filesystem, and updates information on
networking and interprocess communication.”

9. The Design and Implementation of the FreeBSD Operating System, Marshall
Kirk McKusick and George V. Neville-Neil. Addison-Wesley, Reading, MA,
USA, 2005. ISBN 0-201-70245-2.

An update of the previous book, focusing on the FreeBSD operating system.
It presents the state of current BSD operating system technology.

840 | Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

10. Linux Kernel Development, Second Edition, Robert Love. Novell Press, Que
Publishing, Indianapolis, IN, USA, 2005. ISBN 0-672-32720-1.

11. Understanding the Linux Kernel, Second Edition, Daniel P. Bovet, and Marco
Cesati. O’Reilly Media, Inc., Sebastopol, CA, USA, 2002. ISBN 0-596-00213-0.

12. Linux Device Drivers, Third Edition, Jonathan Corbet, Alessandro Rubini,
and Greg Kroah-Hartman. O’Reilly Media, Inc. Sebastopol, CA, USA, 2005.
ISBN 0-596-00590-3

System and Network Administration
Unix system administration is a complicated topic in its own right. In these days of
single-user workstations, even regular users also have to understand basic system
administration tasks. Besides managing the system (users, filesystems, accounting),
administrators also have to understand TCP/IP network administration.

1. UNIX System Administration Handbook, Third Edition, Evi Nemeth, Garth
Snyder, Scott Seebass, and Trent R. Hein. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000. ISBN 0-13-020601-6.

2. Linux Administration Handbook, Evi Nemeth, Garth Snyder, and Trent R. Hein.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2002. ISBN 0-13-008466-2.

A revision of the previous book focused on GNU/Linux.

3. Essential System Administration, Third Edition, Æleen Frisch. O’Reilly
Media, Inc., Sebastopol, CA, USA, 2002. ISBN 0-596-00343-9.

4. DNS and BIND, Fouth Edition, Paul Albitz and Cricket Liu. O’Reilly Media,
Inc., Sebastopol, CA, USA, 2001. ISBN 0-596-00158-4.

5. TCP/IP Network Administration, Third Edition, Craig Hunt. O’Reilly Media,
Inc., Sebastopol, CA, USA, 2002. ISBN 0-596-00297-1.

6. Linux Network Administrator’s Guide, Third Edition, Tony Bautts, Terry
Dawson, and Gregor N. Purdy. O’Reilly Media, Inc. Sebastopol, CA, USA,
2005. ISBN 0-596-00548-2.

Programming with the Unix Mindset
Any book written by Brian Kernighan deserves careful reading, usually several
times. The first two books present the Unix “toolbox” programming method-
ology. They will help you learn how to “think Unix.” The third book continues
the process, with a more explicit Unix focus. The fourth and fifth are about
programming in general, and also very worthwhile.

1. Software Tools, Brian W. Kernighan and P. J. Plauger. Addison-Wesley,
Reading, MA, USA, 1976. ISBN 0-201-03669-X.

A wonderful book* that presents the design and code for programs equivalent
to Unix’s grep, sort, ed, and others. The programs use RATFOR (Rational
FORTRAN), a preprocessor for FORTRAN with C-like control structures.

* One that changed my life forever.

Bibliography | 841

Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

2. Software Tools in Pascal, Brian W. Kernighan and P. J. Plauger. Addison-
Wesley, Reading, MA, USA, 1981. ISBN 0-201-10342-7.

A translation of the previous book into Pascal. Still worth reading; Pascal
provides many things that FORTRAN does not.

3. The Unix Programming Environment, Brian W. Kernighan and Rob Pike.
Prentice Hall, Englewood Cliffs, NJ, USA, 1984. ISBN 0-13-937699-2 (hard-
cover), 0-13-937681-X (paperback).

This books focuses explicitly on Unix, using the tools in that environment. In
particular, it adds important material on the shell, awk, and the use of lex and
yacc. See http://cm.bell-labs.com/cm/cs/upe.

4. The Elements of Programming Style, Second Edition, Brian W. Kernighan and
P. J. Plauger. McGraw-Hill, New York, NY, USA, 1978. ISBN 0-07-034207-5.

Modeled after Strunk & White’s famous The Elements of Style, this book
describes good programming practices that can be used in any environment.

5. The Practice of Programming, Brian W. Kernighan and Rob Pike. Addison
Wesley Longman, Reading, MA, USA, 1999. ISBN 0-201-61586-X.

Similar to the previous book, with a somewhat stronger technical focus. See
http://cm.bell-labs.com/cm/cs/tpop.

6. The Art of UNIX Programming, Eric S. Raymond. Addison-Wesley, Reading,
MA, USA, 2003. ISBN 0-13-124085-4.

We don’t agree with everything the author says, but this book is still worth reading.

7. Writing Efficient Programs, Jon Louis Bentley. Prentice Hall, Englewood Cliffs,
NJ, USA, 1982. ISBN 0-13-970251-2 (hardcover), 0-13-970244-X (paperback).

Although not related to Unix, this is an excellent book for anyone interested
in programming efficiently.

8. Programming Pearls, Second Edition, Jon Louis Bentley. Addison-Wesley,
Reading, MA, USA, 2000. ISBN 0-201-65788-0.

9. More Programming Pearls: Confessions of a Coder, Jon Louis Bentley.
Addison-Wesley, Reading, MA, USA, 1988. ISBN 0-201-11889-0.

These two excellent books, to quote Nelson H. F. Beebe, “epitomize the Unix
mindset, and are wonderful examples of little languages, algorithm design,
and much more.” These should be on every serious programmer’s bookshelf.

10. Advanced Programming in the UNIX Environment, Second Edition, W.
Richard Stevens and Stephen Rago. Addison-Wesley, Reading, MA, USA,
2005. ISBN 0-201-43307-9.
A thick but excellent work on how to use the wealth of system calls in
modern Unix systems.

11. Linux Programming by Example: The Fundamentals, Arnold Robbins. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2004. ISBN 0-13-142964-7.
This book is more selective than the one by Stevens and Rago, focusing on
the core systems calls and library functions used by most standard applica-
tions. Wherever possible, it uses example code from both V7 Unix and GNU
software for demonstration.

12. Advanced UNIX Programming, Second Edition, Marc J. Rochkind, Addison-
Wesley, Reading, MA, USA, 2004. ISBN 0-13-141154-3.

842 | Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Programming Languages
A number of important programming languages were first developed under Unix.
Note again the books written by Brian Kernighan.

1. The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie.
Prentice Hall, Englewood Cliffs, NJ, USA, 1978. ISBN 0-13-110163-3.

The original “bible” on C. Dennis Ritchie invented C and is one of the two
“fathers” of Unix. This edition is out of print.

2. The C Programming Language, Second Edition, Brian W. Kernighan and
Dennis M. Ritchie. Prentice Hall, Englewood Cliffs, NJ, USA, 1988. ISBN
0-13-110362-8.

This revision of the original covers the 1990 version of Standard C. It retains
and improves upon the high qualities of the first edition. See http://cm.bell-
labs.com/cm/cs/cbook.

3. C: A Reference Manual, Fifth Edition, Samuel P. Harbison III and Guy L. Steele.
Prentice Hall, Upper Saddle River, NJ, USA, 2002. ISBN 0-13-089592-X.

An excellent discussion of the details for those who need to know. This
edition covers everything from the original, pre-Standard C, through the 1999
version of Standard C.

4. The C++ Programming Language, Special Third Edition, Bjarne Stroustrup.
Addison-Wesley, Reading, MA, USA, 2000. ISBN 0-201-70073-5.

The definitive statement on C++ by the language’s inventor and the ANSI
C++ committee chair. See http://www.awl.com/cseng/titles/0-201-70073-5/.

5. The C++ Standard Library—A Tutorial and Reference, Nicolai M. Josuttis.
Addison-Wesley, Reading, MA, USA, 1999. ISBN 0-201-37926-0.

6. C++ Primer, Third Edition, Stanley B. Lippman and Josée Lajoie. Addison
Wesley Longman, Reading, MA, USA, 1998. ISBN 0-201-82470-1.

This is an excellent introduction to C++. See http://www.awl.com/cseng/titles/
0-201-82470-1/.

7. The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Strous-
trup. Addison-Wesley, Reading, MA, USA, 1990. ISBN 0-201-51459-1.

The first attempt to rigorously define the C++ language. This book became one
of the base documents for the ANSI C++ standardization committee. It is now
of mostly historical interest. See http://www.awl.com/cseng/titles/0-201-51459-1/.

8. The Java Programming Language, Third Edition, Ken Arnold, James Gosling
and David Holmes. Addison-Wesley, Reading, MA, USA, 2000. ISBN 0-201-
70433-1.

This book is intended for learning Java. The first two authors are two of the
designers of the language.

9. The Java Language Specification, Second Edition, James Gosling, Bill Joy,
Guy L. Steele Jr. and Gilad Bracha. Addison-Wesley, Reading, MA, USA,
2000. ISBN 0-201-31008-2.

Bibliography | 843

Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

10. The AWK Programming Language, Alfred V. Aho, Brian W. Kernighan, and
Peter J. Weinberger. Addison-Wesley, Reading, MA, USA, 1987. ISBN 0-201-
07981-X.

The original definition for the awk programming language. Extremely worth-
while. See http://cm.bell-labs.com/cm/cs/awkbook.

11. Effective awk Programming, Third Edition, Arnold Robbins. O’Reilly Media,
Inc., Sebastopol, CA, USA, 2001. ISBN 0-596-00070-7.

A more tutorial treatment of awk that covers the POSIX standard for awk. It
also serves as the user’s guide for gawk.

12. Tcl and the Tk Toolkit, John K. Ousterhout. Addison-Wesley, Reading, MA,
USA, 1994. ISBN 0-201-63337-X.

The first book on Tcl/Tk. this book is now out of date, although it was
written by the creator of Tcl/Tk.

13. Practical Programming in Tcl & Tk, Fourth Edition, Brent B. Welch, Ken
Jones, and Jeffry Hobbs. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2003. ISBN 0-13-038560-3

14. Effective Tcl/Tk Programming: Writing Better Programs in Tcl and Tk, Mark
Harrison and Michael J. McLennan. Addison-Wesley, Reading, MA, USA,
1997. ISBN 0-201-63474-0.

15. The New Kornshell Command and Programming Language, Morris I. Bolsky
and David G. Korn. Prentice Hall, Englewood Cliffs, NJ, USA, 1995. ISBN
0-13-182700-6.

The definitive work on the Korn shell, by its author.

16. Hands-On KornShell 93 Programming, Barry Rosenberg. Addison Wesley
Longman, Reading, MA, USA, 1998. ISBN 0-201-31018-X.

17. Compilers—Principles, Techniques, and Tools, Alfred V. Aho and Ravi Sethi
and Jeffrey D. Ullman. Addison Wesley Longman, Reading, MA, USA, 1986.
ISBN 0-201-10088-6.

This is the famous “dragon book” on compiler construction. It provides
much of the theory behind the operation of lex and yacc.

TCP/IP Networking
The books by Comer are well-written; they are the standard descriptions of the
TCP/IP protocols. The books by Stevens are also very highly regarded.

1. Internetworking with TCP/IP Volume 1: Principles, Protocols, and Architec-
ture, Fourth Edition, Douglas E. Comer. Prentice Hall, Upper Saddle River,
NJ, USA, 2000. ISBN 0-13-018380-6.

2. Internetworking With TCP/IP Volume 2: ANSI C Version: Design, Implementa-
tion, and Internals, Third Edition, Douglas E. Comer and David L. Stevens.
Prentice Hall, Englewood Cliffs, NJ, USA, 1998. ISBN 0-13-973843-6.

3. Internetworking With TCP/IP Volume 3: Client-Server Programming and
Applications: Linux/Posix Sockets Version, Second Edition, Douglas E. Comer,
David L. Stevens, Marshall T. Rose, and Michael Evangelista. Prentice-Hall,
Englewood Cliffs, NJ, USA, 2000. ISBN 0-13-032071-4.

844 | Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

4. TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens. Addison
Wesley Longman, Reading, MA, USA, 1994. ISBN 0-201-63346-9.

5. TCP/IP Illustrated, Volume 2: The Implementation, W. Richard Stevens and
Gary R. Wright. Addison Wesley Longman, Reading, MA, USA, 1995. ISBN
0-201-63354-X.

6. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the
Unix Domain Protocols, W. Richard Stevens. Addison Wesley Longman,
Reading, MA, USA, 1996. ISBN 0-201-63495-3.

7. Unix Network Programming, Volume 1: The Sockets Networking API, Third
Edition W. Richard Stevens, Bill Fenner and Andrew M. Rudoff. Addison-
Wesley, Reading, MA, USA, 2003. ISBN 0-13-141155-1.

8. Unix Network Programming, Volume 2: Interprocess Communications, Second
Edition, W. Richard Stevens. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1998. ISBN 0-13-081081-9.

Software Development
1. Applying RCS and SCCS, Don Bolinger and Tan Bronson. O’Reilly Media,

Inc., Sebastopol, CA, USA, 1995. ISBN 1-56592-117-8.

2. Open Source Development with CVS, Third Edition, Karl Fogel and Moshe
Bar. Paraglyph Press, Phoenix, AZ, USA, 2003. ISBN 1932111816.

This book is available online: see http://cvsbook.red-bean.com/.

3. Essential CVS, Jennifer Vesperman. O’Reilly Media, Inc., Sebastopol, CA,
USA, 2003. ISBN 0-596-00459-1.

4. Version Control With Subversion, Ben Collins-Sussman, Brian W. Fitzpatrick
and C. Michael Pilato. O’Reilly Media, Inc., Sebastopol, CA, USA, 2004.
ISBN 0-596-00448-6.

5. GNU Make: A Program for Directing Recompilation, Richard M. Stallman,
Roland McGrath, and Paul D. Smith. The Free Software Foundation,
Cambridge, MA, USA, 2004. ISBN 1-882114-83-3.

6. Managing Projects with GNU make, Third Edition, Robert Mecklenburg,
Andy Oram, and Steve Talbott. O’Reilly Media, Inc., Sebastopol, CA, USA,
2005. ISBN 0-596-00610-1.

7. Debugging with GDB: The GNU Source-Level Debugger, Richard M.
Stallman, Roland Pesch, Stan Shebs, et al. The Free Software Foundation,
Cambridge, MA, USA, 2002. ISBN 1-882114-88-4.

8. The Cathedral and the Bazaar, Eric S. Raymond, O’Reilly Media, Inc., Sebas-
topol, CA, USA, 2001. ISBN 0-596-00131-2 (hardback), 0-596-00108-8
(paperback).

Bibliography | 845

Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Emacs
1. GNU Emacs Manual, for Version 21, Fifteenth Edition, Richard M. Stallman.

The Free Software Foundation, Cambridge, MA, USA, 2002. ISBN 1-882114-
85-X.

2. An Introduction to Programming in Emacs Lisp, Revised Second Edition,
Robert J. Chassell. The Free Software Foundation, Cambridge, MA, USA,
2004. ISBN 1-882114-56-6

3. GNU Emacs Lisp Reference Manual (in two volumes), Bil Lewis, Dan LaLib-
erte, Richard Stallman, and the GNU Manual Group. The Free Software
Foundation, Cambridge, MA, USA, 2000. ISBN 1-882114-73-6. Out of print.

4. Learning GNU Emacs, Third Edition, Debra Cameron, James Elliott, and
Marc Loy. O’Reilly Media, Inc., Sebastopol, CA, USA, 2005. ISBN 0-596-
00648-9.

5. Writing GNU Emacs Extensions, Bob Glickstein. O’Reilly Media, Inc., Sebas-
topol, CA, USA, 1997. ISBN 1-56592-261-1.

6. GNU Emacs: UNIX Text Editing and Programming, Michael A. Schoonover,
John S. Bowie, and William R. Arnold. Addison-Wesley, Reading, MA, USA,
1992. ISBN 0-201-56345-2.

Standards
There are a number of “official” standards for the behavior of portable applica-
tions among Unix and Unix-like systems. The first entry is the current POSIX
standard. The rest are the formal standards for the C and C++ programming
languages.

1. IEEE Standard 1003.1-2004: Standard for information Technology—Portable
Operating System Interface (POSIX®). IEEE, New York, NY, USA, 2004.

This is the POSIX standard. It combines both the system call interface stan-
dard and the shell and utilities standard in one document. The standard
consists of several volumes: Base Definitions (Volume 1), System Interfaces
(Volume 2), Shell and Utilities (Volume 3), and Rationale (Volume 4).

The standard may be ordered from http://www.standards.ieee.org on CD-
ROM (Product number SE95238, ISBN 0-7381-4049-X) or as PDF (Product
number SS95238, ISBN 0-7381-4048-1).

2. X3 Secretariat: Standard—The C Language. X3J11/90-013. ISO Standard
ISO/IEC 9899. Computer and Business Equipment Manufacturers Associa-
tion. Washington DC, USA, 1990.

3. International Standard: Programming Languages—C. ISO Standard ISO/IEC
9899:1999(E). Information Technology Industry Council, Washington DC,
USA, 1999.

These two documents are the 1990 and 1999 standards for the C language. It
generally takes five or more years from when a language standard is
published until compilers for that version become widely available.

846 | Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

4. X3 Secretariat: International Standard—The C++ Language. X3J16-14882.
Information Technology Council (NSITC). Washington DC, USA, 1998.

This is the initial standard for the C++ programming language, used by most
C++ compilers as of this writing.

5. International Standard: Programming Languages—C++. ISO Standard ISO/
IEC 14882-2003. Information Technology Industry Council, Washington
DC, USA, 2003.

A revision of the previous document.

O’Reilly Books
Here is a list of O’Reilly Media books cited throughout this book. There are, of
course, many other O’Reilly books relating to Unix. See http://www.oreilly.com/
catalog.

1. Advanced Perl Programming, Second Edition, Simon Cozens. O’Reilly Media,
Inc., Sebastopol, CA, USA, 2005. ISBN 0-596-00456-7

2. Checking C Programs with lint, Ian F. Darwin. O’Reilly Media, Inc., Sebas-
topol, CA, USA, 1988. ISBN 0-937175-30-7.

3. Classic Shell Scripting, Arnold Robbins and Nelson H.F. Beebe. O’Reilly
Media, Inc., Sebastopol, CA, USA, 2005. ISBN 0-596-00595-4.

4. Learning Perl, Third Edition, Randal L. Schwartz and Tom Phoenix. O’Reilly
Media, Inc., Sebastopol, CA, USA, 2001. ISBN 0-596-00132-0.

5. Learning the bash Shell, Third Edition, Cameron Newham and Bill Rosenblatt.
O’Reilly Media, Inc., Sebastopol, CA, USA, 2005. ISBN 0-596-00965-8.

6. Learning the Korn Shell, Second Edition, Bill Rosenblatt and Arnold Robbins.
O’Reilly Media, Inc., Sebastopol, CA, USA, 2002. ISBN 0-596-00195-9.

7. Learning Python, Second Edition, Mark Lutz and David Ascher. O’Reilly
Media, Inc., Sebastopol, CA, USA, 2003. ISBN: 0-596-00281-5.

8. Learning the Unix Operating System, Fifth Edition, Jerry Peek, Grace Todino,
and John Strang. O’Reilly Media, Inc., Sebastopol, CA, USA, 2001. ISBN
0-596-00261-0.

9. Learning the vi Editor, Sixth Edition, Linda Lamb and Arnold Robbins.
O’Reilly Media, Inc., Sebastopol, CA, USA, 1998. ISBN 1-56592-426-6.

10. lex & yacc, Second Edition, John Levine, Tony Mason, and Doug Brown.
O’Reilly Media, Inc., Sebastopol, CA, USA, 1992. ISBN 1-56592-000-7.

11. Linux in a Nutshell, Fifth Edition, Ellen Siever, Aaron Weber, Stephen
Figgins, Robert Love, and Arnold Robbins. O’Reilly Media, Inc., Sebastopol,
CA, USA, 2005. ISBN 0-596-00482-6.

12. Mac OS X Panther in a Nutshell, Second Edition, Jason McIntosh, Chuck
Toporek, and Chris Stone. O’Reilly Media, Inc., Sebastopol, CA, USA, 2004.
ISBN 0-596-00606-3.

13. Mastering Regular Expressions, Second Edition, Jeffrey E. F. Friedl. O’Reilly
Media, Inc., Sebastopol, CA, USA, 2002. ISBN 0-596-00289-0.

Bibliography | 847

Bibliography

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

14. PGP: Pretty Good Privacy, Simson Garfinkel. O’Reilly Media, Inc., Sebas-
topol, CA, USA, 1994. ISBN 1-56592-098-8.

15. Programming Perl, Third Edition, Larry Wall, Tom Christiansen, and Jon
Orwant. O’Reilly Media, Inc., Sebastopol, CA, USA, 2000. ISBN 0-596-
00027-8.

16. Programming Python, Second Edition, Mark Lutz. O’Reilly Media, Inc.,
Sebastopol, CA, USA, 2001. ISBN: 0-596-00085-5.

17. sed & awk, Second Edition, Dale Dougherty and Arnold Robbins. O’Reilly
Media, Inc., Sebastopol, CA, USA, 1997. ISBN 1-56592-225-5.

18. SSH, The Secure Shell, The Definitive Guide, Second Edition, Daniel J. Barrett,
Richard E. Silverman, and Robert G. Byrnes. O’Reilly Media, Inc., Sebas-
topol, CA, USA, 2005. ISBN: 0-596-00895-3.

19. Using csh & tcsh, Paul DuBois. O’Reilly Media, Inc., Sebastopol, CA, USA,
1995. ISBN 1-56592-132-1.

849

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

2
Index

Symbols
< > (angle brackets)

< > redirection operator, Bash and
ksh, 352, 355

{ } (braces)
groups of commands, 354
ksh93 variable names containing

 . (dot), 360
search pattern metacharacters, 536
string expansion characters,

tcsh, 420
Unix metacharacter, 538

[] (brackets), 353
[[]] command (Bash and ksh), 375
[[=c=]] notation, matching characters

with same weight, 352
[[.c.]] notation, specifying collating

sequences, 352
enclosing array elements, Bash and

ksh, 364
filename metacharacters, tcsh, 419,

420
Unix metacharacters, 536, 538

() (parentheses)
command grouping, Bash and

ksh, 352, 354
command grouping, tcsh, 420, 421
enclosing make utility macro

names, 755
Unix metacharacter, 537, 538

" " (quotation marks, double)
quoting in Bash and ksh, 353
quoting in tcsh, 420, 421

' ' (quotation marks, single)
quoting in Bash and ksh, 353
quoting in tcsh, 420, 421

& (ampersand)
&= (assignment) operator, 367, 435
&& (logical AND) operator, 354,

367, 421, 435, 618
background execution, Bash and

ksh, 352, 354
background execution, tcsh, 420,

421
bitwise AND operator, 367, 435
ex command, 593
redirection symbol, Bash and

ksh, 352
redirection symbol, tcsh, 420
replacement pattern

metacharacter, 537
* (asterisk)

*= (assignment) operator, 367, 435,
618

** exponentiation operator, 367, 618
filename metacharacter, Bash and

ksh, 353
filename metacharacter, tcsh, 419,

420

850 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

* (asterisk) (continued)
multiplication operator, 367, 435,

618
Unix metacharacter, 536, 538

@ (at command)
ex, 593
tcsh, 437, 446

@ (at sign)
array operator, 772
filename metacharacter, Bash and

ksh, 353
` (backquote)

command substitution in Bash and
ksh, 353

command substitution in tcsh, 420,
421

\ (backslash)
filename metacharacter, 352
line continuation in makefile, 749
quoting in Bash and ksh, 353
quoting in tcsh, 420, 421
replacement pattern

metacharacter, 537
search pattern metacharacter, 536,

538
^ (caret)

^= (assignment) operator, 367, 435,
618

bitwise exclusive OR operator, 367,
435

exponentiation operator, 618
filename metacharacter, tcsh, 419,

420
quick substitution, tcsh, 420
search pattern metacharacter, 536
Unix metacharacter, 538

: (colon)
ex commands, 562, 579
null command, Bash and ksh, 374
sed command, 601
tcsh command, 447

, (comma) operator, 367
$ (dollar sign)

$" ", quoting in Bash and Korn
shells, 353

$' ', quoting in Bash and Korn
shells, 353

${ … } syntax, referencing
arrays, 364

built-in Bash and Korn shell variable
names, 359

field reference operator, 618
GDB convenience variable

names, 771
GDB value history, 771
make utility, in command lines, 762
make utility macro names, 755
search pattern metacharacter, 536,

538
variable substitution in Bash and

ksh, 353
variable substitution in tcsh, 420

. (dot)
Bash and ksh command, 375
ksh93 variable names

containing, 360
Unix metacharacter, 536, 538

. (dot) command, used with function
function, 357

. (dot) files, 664
= (equal sign)

=~ string equality, tcsh, 436
== equality operator, 367, 436, 618
assignment operator, 367, 435, 618
ex command, 593
sed command, 601

! (exclamation mark)
!= (inequality) operator, 367, 436,

618
!~ regular expression nonmatch,

awk, 618
!~ string inequality, tcsh, 436
ex command, 593
expanded to current command

number in Korn shell, 365
filename metacharacter, Bash and

ksh, 352, 353
history substitution, tcsh, 420
negating pipeline, ksh and Bash, 374
negation in sed, 598
NOT operator, 354, 366, 435
redirection symbol, tcsh, 420

(hash mark)
#! command, invoking named

shell, 374
#! command, invoking tcsh

shell, 447
comments

awk, 624
Bash and ksh, 374
sed, 601
tcsh, 446

Index | 851

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

- (hyphen)
-= (assignment) operator, 367, 435,

618
-- (auto-decrement) operator, 366,

435, 618
filename metacharacter, Bash and

ksh, 353
negation operator, 366
subtraction operator, 367, 435, 618
tag names and (cvs), 684

< (left angle bracket)
<<= (assignment) operator, 367
<< bitwise left shift operator, 367,

435
<& (file descriptor), Bash and

ksh, 355
<= (less than or equal to)

operator, 367, 436, 618
<< redirection operator, 355, 422
<<< redirection operator, 355
ex command, 594
less than operator, 367, 436, 618
redirection operator, 354, 420, 422

% (percent)
%= (assignment) operator, 367, 435,

618
modulus operator, 367, 435, 618
pattern rules in makefile lines, 750
replacement pattern metacharacter

(ed), 538
| (pipe character)

|= (assignment) operator, 367, 435
|| (logical OR) operator, 354, 367,

421, 435, 618
|& (execute coprocesses in ksh), 356
|& (multiple redirection), 422
Bash and ksh, 352
bitwise OR operator, 367, 435
in syntax descriptions, xvi
redirecting command output, 354,

421, 422
tcsh shell, 420
Unix metacharacter, 537, 538

+ (plus sign)
+= (assignment) operator, 367, 435,

618
++ (auto-increment) operator, 366,

435, 618
addition operator, 367, 435, 618
filename metacharacter, Bash and

ksh, 353
unary operator, 366

Unix metacharacter, 537, 538
? (question mark)

?: (inline conditional
evaluation), 367, 618

C shell secondary prompt, xvi
filename metacharacter, Bash and

ksh, 353
filename metacharacter, tcsh, 419,

420
search pattern metacharacter, 537,

538
> (right angle bracket)

>>= (assignment) operator, 367
>> bitwise right shift operator, 367,

435
>= (greater than or equal to)

operator, 367, 436, 618
>& (multiple redirection), 355, 422
>&! (multiple redirection), 422
>>& (multiple redirection), 422
>>&! (multiple redirection), 422
>! redirection operator, 422
>> redirection operator, 354, 422
>>! redirection operator, 422
>| redirection operator, 355
Bourne or Korn shell secondary

prompt, xvi
ex command, 594
greater than operator, 367, 436, 618
redirection operator, 354, 420, 422

; (semicolon) command separator, 352,
354, 420, 421

/ (slash)
/= (assignment) operator, 367, 435,

618
division operator, 367, 435, 618

~ (tilde)
binary inversion operator, 435
bitwise negation operator, 366
ex command, 594
filename metacharacter, Bash and

ksh, 353
filename metacharacter, tcsh, 420
home directories in Bash and

ksh, 351
home directories in tcsh, 420, 442
home directory in CVS, 673
regular expression match

operator, 618
replacement pattern

metacharacter, 538
_ (underscore), tag names and, 684

852 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

A
a command (sed), 601
abbreviate command (ex), 580
abbreviations commands (Emacs), 548
ABI (Application Binary Interface), 780
access mode for files, changing, 35
access time for files, updating, 217
aclocal command, 16
actions, awk, 614, 615

simple pattern-action examples, 616
active processes, reports on, 252
Ada programming language,

compiling, 95
add command

CVS, 674
svn, 710

addresses for ex commands, 579
addresses for sed commands, 598
add-symbol-file command (GDB), 790
admin command (CVS), 674–677
advance command (GDB), 790
Advanced Package Tool (see APT)
alias command

Bash and Korn shells, 375
tcsh, 447

aliases (command)
removing, 415
special, for tcsh commands, 441

aliasing variables, 359
alloc command (tcsh), 447
alnum character class, 352
alpha character class, 352
Alt key (Emacs commands), 544
and function (gawk), 624
AND operator

& (bitwise AND), 367, 435
&& (logical AND), 354, 367, 421,

435
annotate command (CVS), 677
annotation processing tool (apt), 321
ANSI/VT100 terminal emulation,

enabling (screen), 180–181
Apache 2.0 httpd web server, use with

Subversion, 743
append command (ex), 580
appending to files, 16, 31
appletviewer Java command, 321
Application Binary Interface (ABI), 780
application defaults on Mac OS

X, 306–308
apply Mac OS command, 304

apropos command
GDB, 790
Unix, 16

APT (Advanced Package Tool), 469
apt- commands, options, 496
apt Java command, 321
apt-cache command, 496–499
apt-cdrom command, 499
apt-config command, 499
apt-extracttemplates command, 500
apt-ftparchive command, 500
apt-get command, 469, 502–505
aptitude command, 469, 505–508
apt-sortpkgs command, 505
ar command, 16
arbitrary-precision arithmetic,

performing with bc, 26
Arch (source code management

system), 641
archives

copying, 42
disassembling, 244
Java

adding digital signature, 323
jar command, 322

maintenance (ar), 16
Portable Archive Exchange

(pax), 166–169
removing information from

(strip), 196
shell archive, producing, 319
tar (tape archive), 205–213
zip command, 238
ZIP format, printing information

about, 240
args command (ex), 581
arguments

Bash and Korn shells, 350
tcsh shell, 419

arithmetic expressions
Bash and ksh, 366
tcsh shell, 435

arithmetic operators
awk, 618, 623
Bash and ksh, 366
tcsh, 435

array constants, 772
array operator (@), 772
arrays

in awk, 618
Bash and Korn shells, 364
tcsh shell, 427

Index | 853

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

arrow keys, navigating ksh command
history, 438

as command, 18
ASCII character set, 829
asort function (gawk), 624
asorti function (gawk), 624
aspell command, 189, 260
assembly language processing

as command, 18
cc command, 32

assignment operators
awk, 618
Bash and ksh, 367
tcsh, 435

associative arrays, 365
awk, 618

at (@) command (ex), 593
at command, 18–20
atan2 function (awk), 624
atomic commits, 699
atq command, 20
atrm command, 20
AT&T Research, ksh93, 347
attach command (GDB), 791
authentication agent

adding RSA or DSA identities, 193
allowing/disabling forwarding of

connection, 191
ssh-agent command, 193

authentication keys, generating for
ssh, 194

author command (svnlook), 738
autoconf command, 21

aclocal command and, 16
autoheader, 22

Autoconf software suite, 6
autoheader command, 22
autoload command (ksh), 376
automake command, 23
awatch command (GDB), 791
awk command, 24
awk programming language, 611–634

actions, 615
command-line syntax, 613
features, 612
functions and commands,

alphabetical
summary, 623–632

functions and commands, group
listing, 623

gawk command, 277

implementation limits, 622
nawk command, 154, 251
new and old versions, 611
operators, 617
pattern-action examples, 616
patterns, 615
patterns and actions, 614
printf formats, 633
redirections, 633
source code for four versions and

GNU gettext, 634
user-defined functions, 619
variable and array assignment, 618

escape sequences, 619
variables, built-in, 616

B
b command (sed), 602
background processes, waiting for

completion of, 229
backtrace command (GDB), 791
banner command, 24
basename command, 24
Bash (Bourne-Again shell), 343

arithmetic expressions, 366
bash command, 25
command execution, 372
command history, 368–372

line-edit mode, 368
programmable

completion, 369–372
command syntax, 354
commands, built-in, 374–416
features differing from ksh and

tcsh, 345
features in common with ksh and C

shells, 344
filename metacharacters, 351
functions, 357
history of, 347
invoking, 349–350

arguments, 350
as sh, 349
common options, 349
options unique to Bash, 350

job control, 372
overview of features, 348
prompts, xvi
quoting, 352

characters used for, 353
redirection syntax, 354–356

854 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Bash (Bourne-Again shell) (continued)
setting restrictions on, 373
syntax, 350–356

special files, 351
variables, 358–366

arrays, 364
built-in, 359–362
other shell variables, 362–364
special prompt settings, 365
variable substitution, 358

version 3, 348
batch command, 25
batch execution

printing queued jobs, 20
removing queued jobs, 20
at specified date/time, 46

bc command, 26
bdelete command (ex), 581
Berkeley C shell (see csh)
Berkeley Software Distribution (see BSD)
bg command

Bash and Korn shells, 377
tcsh shell, 446, 448

biff command, 27
bind command (Bash), 376
bindkey command (tcsh), 448
bindtextdomain function (gawk), 624
/bin/ksh, 347
/bin/sh (Bourne shell), 343
/bin/sh, link to Bash, 349
bison command, 27
bitwise operators (tcsh), 435
blame command (svn), 711
blank character class, 352
blank lines in makefiles, 749
block size (characters), 55
bootstrapping problem with

Subversion, 703
Bourne family of shells, 10
Bourne shell, 343

history of, 347
prompts, xvi

branch, 638, 698
branching and tagging improvements,

Subversion, 699
branching commands (sed), 600
break command

awk, 624
Bash and Korn shells, 377
GDB, 791
tcsh, 449

breakpoints, 767

breaksw command (tcsh), 449
BSD (Berkeley Software Distribution), 3

printing commands, 9
“r” commands, 173

BSD Compatibility Package (Solaris), 3
bt (backtrace) command (GDB), 773
buffer command (ex), 581
buffer-manipulation commands

(Emacs), 549
buffers command (ex), 581
buffers (Emacs), 544
build process for software, 6
builtin command

Bash, 377
ksh, 378

built-in shell variables
Bash and ksh, 359–362
tcsh, 426–432

sample .tcshrc file, 433
built-ins command (tcsh), 449
bundling commands, 233
bunzip2 command (see bzip2 command)
byacc Linux command, 237
bye command (tcsh), 449
bzcat command (see bzip2 command)
bzip2 command, 28
bzip2recover command (see bzip2

command)

C
c command (sed), 602
C and C++ languages

call-graph profile data, 100
compilers, 5
compiling source files, 32
compiling with gcc, 95–98
extracting messages from, 234
lexical analysis program for C

statements, 119
c (continue) command (GDB), 773
c, d, and y editing operators (vi), 565,

570
C shells, 10

features in common with Korn and
Bash shells, 344

prompts, xvi
tcsh, 214
(see also csh; tcsh)

cal command, 30
calculator commands

bc command, 26
dc command, 54

Index | 855

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Caldera package manager, 470
calendar command, 30
calendars, 30
call command (GDB), 792
caller command (Bash), 378
call-graph profile data, C programs, 100
cancel command, 31
canceling commands (Emacs), 547
capitalization commands (Emacs), 548
case command

Bash and Korn shells, 378
tcsh, 449

case-sensitivity
flags, 55
Mac OS X filesystem and, 4
setting for GDB, 779

cat command, 31
svn, 711
svnlook, 738

catch command (GDB), 792
catchpoints, 767
cc command, 32
cd command, 34

Bash and Korn shells, 379
ex, 581
GDB, 793
tcsh, 449

cdda2wav Linux command, 260–263
CDE (Common Desktop

Environment), 241
cdparanoia Linux command, 263–266
cdrdao Linux command, 266–269
cdrecord Linux command, 269–276
CD-ROM, ejecting, 74
cdrw Solaris command, 242
center command (ex), 581
centering commands (Emacs), 550
certificate management utility

(keytool), 334
change command (ex), 581
changed command (svnlook), 738
changing directory, 34
channels, 489
character classes

listed, 537
matching in Bash and Korn

shells, 352
character sets

ASCII, 829
converting, 109
ISO 8859-1 (Latin-1), 829–835

characters
buffer block size, 55
converting DOS to ISO, 66
converting ISO to DOS, 224
counting in files, 229

chdir command (tcsh), 449
checking in files, 638

CVS, 660, 679
RCS, 644, 649
Subversion, 698

checking out files, 638
CVS, 660, 677
RCS, 644, 651
from Subversion, 698

checkout command
CVS, 677
RCS, 651
svn, 712

checksums
MD5, computing or checking, 282
SHA1, computing or checking, 292

check-update command (yum), 486
chflags Mac OS command, 304
chfn Mac OS command, 305
chgrp command, 34
chkey Solaris command, 243
chmod command, 35
chown command, 37
chpass Mac OS command, 305
chsh Mac OS command, 306
ci command (RCS), 644, 649
cksum command, 38
[[:class:]] (character classes), 352
class files (Java), disassembling, 332
classifying files by data type, 83
clean command (yum), 486
cleanup command (svn), 713
clear command, 38

GDB, 793
clearing the screen, 173
client environment variables (CVS), 665
client/server networking, source code

management, 639
close command (ex), 582
close function (awk), 624
cmp command, 39
cntrl character class, 352
co command (RCS), 644, 651
Codeville (version control system), 641
collating sequences, specified

by [[.c.]], 352

856 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

columns
merging file lines into, 162
selecting from files, 50

combining files, 31
comm command, 39
command command, 380
command history

GDB, 782
ksh and Bash shells, 368–372

line-edit mode, 368
tcsh shell, 438–441

command interpreters (see shells)
command line

invoking nroff/troff, 814
manipulation in Bash and

ksh, 368–372
manipulation in tcsh, 442–445

command line macros (make),
overriding, 756

command-line options, xvi
command lines (makefile), 751

writing, 762
command mode (telnet), 214
command mode (vi), 565
command substitution

Bash and ksh, 353, 354, 366
tcsh, 438

examples, 439
command-line editor

Bash and ksh, 368
tcsh, 442

command-line interface (CLI),
GDB, 766

commands
aliases for, 375, 415, 447
awk

alphabetical summary, 623–632
group listing, 623

Bash and Korn shells, 374–416
forms of, 354
job control, 372

basic, listing of, 8–11
bundled arguments, 233
covered in the quick reference, 7
CVS, 674–696
Debian Package Manager, 496–520
descriptions of, displaying, 230
Emacs editor

Control and Meta keys, 544
essential, listing of, 545
listed by category, 546–551

listed by key, 552–555
listed by name, 555–559

ex editor, 580–594
executing

after logout, 158, 396, 458
Bash and Korn shells, 372
wait between, 186

GDB
alphabetical summary, 790–812
set and show

commands, 777–788
summarized by

category, 773–777
GNU/Linux, alphabetical

summary, 260–304
Java, summary of, 321–340
lower priority, executing, 154
Mac OS X, summary of, 304–321
RCS, 649–658

overview, 643
running repeatedly (watch), 300
sed editor

alphabetical listing, 601–610
by category, 600
syntax, 598–599

Solaris
alphabetical summary, 241–259
compliant with POSIX

standard, 11
package management, 522–531

Solaris 10 installs, 5
Subversion

svn subcommands, 710–733
svnadmin, 734–737
svnlook, 738–742

tcsh shell, 446–465
forms of, 421
job control, 446

type, showing, 412, 415
Unix, summary of common, 15–340
vi editor, 567–574

status line, 566
syntax, 565

yum, 486–489
commands command (GDB), 793
comments

awk, 624
Bash and Korn shells, 374
makefiles, 749
nroff/troff, 817
sed editor, 601
tcsh shell, 446

Index | 857

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

commit command
CVS, 679
svn, 713

commits, atomic, 699
committing changes, 698
Common Desktop Environment

(CDE), 241
common synonyms (CVS

subcommands), 674
Common Unix Printing System (see

CUPS)
communication commands, 8
Compact Disc audio files, reading as

WAV, AIFF, AIFF-C, or raw
format files, 263–266

Compact Disc Digital Audio (CDDA),
converting to WAV, 260–263

comparison commands, 8
cmp, 39
comm, 39
diff, 58–63, 679

svn, 716
svnlook, 739

diff3, 63
dircmp, 244
RCS, 644
rcsdiff, 656
rdiff, 688
sdiff, 182
vimdiff, 228

comparison operators
awk, 618
Bash and ksh, 367
tcsh, 436

compgen command (Bash), 380
compilers, 5

bc, 26
gcc, 95–98
javac, 326
rmic (Java), 337

compiling C source files, 32
compl function (gawk), 625
complete command

Bash, 380
GDB, 793
tcsh, 449

completion facilities
Bash, 369–372, 380–382
tcsh shell, 442

compression
commands for Zip files, 105–107
gunzip command, 105

gzip command, 105
uncompressing files with zcat, 238
unzip command, 225
zip command, 238

Concurrent Versions System (see CVS)
condition command (GDB), 794
conditional statements (makefile), 750,

753
configuration

autoconf command, 21
RCS commands for, 644

configuration files
rpm command, 472
vi, 562

configuration variables, system, 99
configure shell script, 6
conflicts, source code changes, 639, 698

resolution methods in CVS, 660
cont (continue) command (GDB), 773
continue command

awk, 625
Bash and Korn shells, 382
GDB, 794
tcsh, 450

control assignments (terminal), 200
control modes (terminal), 197
Control-key commands (Emacs), 544,

552–554
convenience variables, 771, 780
conversation between users, 205
converting

character sets, 109
characters

DOS to ISO, 66
ISO to DOS, 224
spaces to tabs, 222
tabs to spaces, 78

files into tables, 237
number units, 223

Coordinated Universal Time
(UTC), 647

coprocesses
gawk, 620
Korn shell, 356

copy command
ex, 582
svn, 714

copy, modify, merge model
CVS, 659
Subversion, 698
version control systems, 639

858 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

copying
file archives, 42
files, 40

remotely, 94
hotcopy command, svnadmin, 735
standard input, 214

core file, 766
core images, creating, 98
core-file command (GDB), 794
cos function (awk), 625
cp command, 40
cpio command, 42
CRCs (cyclic redundancy checks), 38
create command (svnadmin), 734
crontab command, 46
csh (C shell), 46, 343, 347

(see also tcsh)
.cshdirs file (tcsh), 419
csh.login file (tcsh), 419
csh.logout file (tcsh), 419
.cshrc file (tcsh), 419
csplit command, 46
CSSC (source code management

system), 641
ctags command, 48
CTRL-x, xvi
CTRL-Z command

Bash and ksh, 372
tcsh, 446

CUPS (Common Unix Printing System)
cancel command, 31
lp command, 126
lpq command, 126
lpr command, 127
lprm command, 128
lpstat command, 129

curl command, 6, 49–50
current date/time, 51
current system name, 221
cursor-movement commands

(Emacs), 546
cut and paste

Emacs, 544
sed editor, 600
vi editor, 571

cut command, 50
CVS (Concurrent Versions

System), 640, 659–696
command-line syntax and

options, 661–664

common subcommand
options, 663

commands, alphabetical
summary, 674–696

commands, quick start guide, 660
copy, modify, merge model, 639,

659
CVSROOT variables, 672–673

environment variables, 673
internal variables, 673
shell variables in files, 673

dates, 669–671
legal date keywords, 670

dot files, 664
environment variables, 665–667

client, 665
server, 666

keywords and keyword
modes, 667–669

stickiness, 660
time zones, 671
wrappers, 660

.cvsignore file (CVS), 664

.cvspass file (CVS), 665

.cvsrc file (CVS), 665

.cvswrappers file (CVS), 665
cyclic redundancy checks (CRCs), 38

D
D command (sed), 603
d (delete) command

ex, 582
GDB, 773
sed, 602

d editing operator (vi), 565, 570
DAO (disk-at-once) mode, 266
data classification of files, 83
dates and times

access time and modification
timestamp, 217

at command, 18–20
calendars, 30
crontab command, 46
CVS dates, 669–671
CVS time zones, 671
date command, 51
date command (svnlook), 739
leave command, 310
sleep command, 186
specifying on RCS check-ins, 647
time command, 216, 410, 463

Index | 859

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

timex command, system usage
information, 254

uptime command, 227
dc command, 54
dcgettext function (gawk), 625
dcngettext function (gawk), 625
dd command, 55–56
ddd (Data Display Debugger), 768
Debian Package Manager, 467, 492–520

command summary, 496–520
files, 493
package flags, 494
package names, 468
package priorities, 493
package/selection states, 494
shell and Perl scripts, 495
tools, listed, 492

debugger, defined, 765
debugging tools

GNU Debugger (see GDB)
gprof, 100
jdb (Java debugger), 333
ltrace Linux command, 279
patch command, 163
strace Linux command, 298–300

declare command (Bash), 382
decrypt Solaris command, 244
default command (tcsh), 451
defaults Mac OS command, 306–308
define command (GDB), 794
#define statements (C), generating

template file of, 22
defining functions, Bash and Korn

shells, 357
delete command

awk, 625
ex, 582
GDB, 795
svn, 715

deleting directories, 174
deletion commands (Emacs), 547
deltify command (svnadmin), 734
demangling names, 766, 780
dependencies, 468

GNU make, 746, 751–753
listing dynamic (ldd command), 115

dependency lines (makefile), 749
desk calculator program (dc), 54
Desktop Korn shell, 343
detach command (GDB), 795
Developer Tools, Mac OS X, 308

development branch, 698
development tools, Mac OS X, 5
df command, 56
dgettext function, 151
diff command, 58–63

CVS, 679
svn, 716
svnlook, 739

diff3 command, 63
dig command, 64
digest Solaris command, 244
digit character class, 352
digital signature, adding to a .jar

file, 323
dir command

GDB, 773
Linux, 276

dircmp Solaris command, 244
dircolors Linux command, 276
directories

changing, 34
comparing contents with

dircmp, 244
copying with ditto, 308
creating, 139
deleting, 174
listing contents of (dir), 276
moving or renaming, 152
navigating, 379, 449
printing full pathname of

current, 173
printing names of, 66
Solaris commands, 14
synchronizing between different

computer systems, 175–178,
246–248

directory command (GDB), 795
directory versioning, 698
dirname command, 66
dirs command

Bash, 383
tcsh, 451

dirs-changed command (svnlook), 739
dis (disable) command (GDB), 773
dis Solaris command, 244
disable command (GDB), 795
disassemble command (GDB), 796
disassembling Java class files, 332
disassembling object files, 244
discipline functions (ksh93), 365
disk-at-once (DAO) mode, 266

860 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

disks
copying archive files, 42
ejecting, 74
formatting, 81
free space, reporting on (df), 56
usage information (du), 66

disown command (Bash), 383
disown command (ksh93), 384
display command (GDB), 796
ditroff program, 813
ditto Mac OS command, 308
DNS (Domain Name Service), querying

servers with dig, 64
do command

awk, 625
GDB, 773

do (shell keyword), 384
DocBook/XML file, converting to

formatted file, 303
document command (GDB), 796
documentation

accessing with info command, 111
Java language, 327
looking up commands in manpages

with whatis, 230
done (shell keyword), 384
dont-repeat command (GDB), 796
dos2unix command, 66
dot (.) files, 664
down command (GDB), 796
down-silently command (GDB), 796
dpkg command, 469, 508–513

actions, 508
actions, dpkg-deb, 510
options, 511–513
query actions, 511

dpkg-deb command, 470, 513
dpkg-query command, 515
dpkg-split command, 516
DSA identities, adding to authentication

agent, 193
dselect command, 470, 517–519
du command, 66
dump command (svnadmin), 734
dumps, octal, 158
dvdrecord Linux command, 277
dynamic dependencies, listing

(ldd), 115

E
e command (sed), 603
e (edit) command (GDB), 773
echo command, 69

Bash, 384
GDB, 797
Korn shell, 385
tcsh, 451

echotc command (tcsh), 451
ed text editor, 70
edit command

CVS, 680
ex, 582
GDB, 797

editing, keyboard shortcuts for, 368
editors

stream (sed), 183
tcsh command-line editor, 442
text

Emacs, 543–559
ex, 579–594
vi, 228, 561–578
(see also Emacs editor; vi editor)

editors command (CVS), 681
egrep command, 70–73

pattern-matching
metacharacters, 538

quoting regular expressions, 539
eject command, 74
ellipsis tcsh shell variable, 428
else command (GDB), 797
else (shell keyword), 394, 452
elvis text editor, 561
emacs command, 75
Emacs editor, 543–559

Bash and ksh command-line editing
mode, 368

bindings, compared to vi
bindings, 442

buffer and window, 544
command-line syntax, 545
commands

essential, listing of, 545
summary by category, 546–551
summary by key, 552–555
summary by name, 555–559

keys and keystrokes for
commands, 544

Index | 861

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

kill and yank, 544
modes, 543
point and mark, 544
tcsh command-line editing

mode, 443
email messages

automatic replies to, 257
mail notification, 27
reading and sending, 135

enable command
Bash, 386
GDB, 797

encoded files, recreating original
file, 227

encrypt Solaris command, 245
end command (GDB), 797
end (tcsh reserved word), 452
endif (tcsh reserved word), 452
end-of-file character (EOF), xvi
endsw (tcsh reserved word), 452
enhance Solaris command, 246
ENTER command (ex), 594
$ENV file (read by Korn and Bash shells

at startup), 351
env command, 75
environment, displaying, 75
environment variables

CVS, 665–667
client, 665
server, 666

CVSROOT directory, 673
modifying values, 75
printing values of, 172
RCS, 648
tcsh shell, 433

EOF (end-of-file character), xvi
equal sign

=- last entry in directory stack
(tcsh), 420

esac (shell keyword), 386
Escape key (Emacs commands), 544
escape sequences

awk strings and regular expression
constants, 619

Bash processing of PS1, PS2, and PS4
values, 365

echo command, 69
GNU utilities, 537
text quoted with $' ', 353
troff, 818
valid anywhere, 599
valid only in regular expressions, 599

etags command, 75
/etc/bash_completion file, 371
/etc/passwd file, 343

Bash and ksh, 351
tcsh, 419

/etc/profile file, 351
eval command

Bash and Korn shells, 386
tcsh, 452

evaluating arguments and
expressions, 79–81

evim command, 78
ex editor, 78, 562, 579–594

addresses for commands, 579
command options, 580
command syntax, 579
commands, alphabetical summary

of, 580–594
pattern-matching

metacharacters, 538
search-and-replace examples, 540
starting vi from, 564

exec command
Bash and Korn shells, 387
tcsh, 452

exec file (GDB), 766
exec-file command (GDB), 797
executable files, shared objects for, 115
executable object module, combining

object files into, 114
executing commands

after logout, 158
of lower priority, 154
wait between, 186

executing Java bytecode, 325
exit command

awk, 625
Bash and Korn shells, 387
tcsh, 453

exit status, 216
commands, 219

exp function (awk), 626
expand command, 78
export command, 387

CVS, 681
svn, 717

exporting make utility macros, 755
expr command, 79–81
expressions

Bash and ksh, 366, 375, 395
evaluating, 79–81
GDB, 771

862 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

expressions (continued)
tcsh shell, 435–437

@ command examples, 437
if and while statements

(examples), 437
operators, 435–437

.exrc file (vi), 562
example, 578

extension function (gawk), 626
extracting columns/fields from files, 50
Exuberant ctags, 48

F
f (frame) command (GDB), 773
factor command, 81
false command, 81, 388
Fast Lexical Analyzer Generator (flex)

command, 92
fc command, 369, 388
fdformat command, 81
fflush function (gawk), 626
fg command

Bash and Korn shells, 389
GDB, 798
tcsh shell, 446, 453

fgrep command, 82
fi (shell keyword), 389
figlet program, 24
file command, 83

ex, 582
GDB, 798

file creation mode mask, 220
file descriptors, 355
file flags, changing, 304
file inclusion facility, gawk, 621
file inquiry operators (tcsh), 436
file management commands, 8

chgrp, 34
chmod, 35
chown, 37
csplit, 46
Emacs, 546
GDB, 774
split, 190
vi, 571

file properties (Subversion), 700–702
file resolution (GDB), 772
filename command, 416
filename metacharacter, Bash and

ksh, 353
.#filename.revision file, 664

filenames
metacharacters, 535

Bash and Korn shells, 351
pattern matching vs., 535
tcsh, 419

reducing pathnames to, 24
stripping from pathnames, 66
temporary, generating for use in

script, 149
.#file.revision, 694
files

access and modification times,
updating, 217

access modes, changing (chmod), 35
archives (see archives)
calculating checksum, 38
checking in (see checking in files)
checking out (see checking out files)
classifying by data type, 83
comparing, 39

comm command, 39
diff command, 58–63
diff3 command, 63
sdiff command, 182
vimdiff command, 228

compiling, 32
compression (see compression)
converting

character sets, 109
DOS to ISO, 66
ISO to DOS, 224

converting into tables with yacc, 237
copying, 40

ditto command, 308
remotely, 94
securely between network

hosts, 179
to or from tape, 205–213

counting words/characters/lines
of, 229

crontab files, 46
deleting with rm, 174
disassembling, 244
display format options

(hexdump), 108
displaying by page, 149
dot files, 664
editing (see text editors)
encoded, recreating original file, 227
extracting columns/fields with

cut, 50

Index | 863

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

formatting lines in, 93
formatting with pr

command, 170–172
joining similar lines of, 112
linking, 119
listing

for current directory, 129
those to be executed, 230

listing shared objects for, 115
merging lines into columns, 162
moving or renaming, 152
name list (symbol table),

printing, 156–158
numbering lines in, 154
object files, displaying profile data

for, 100
overwriting to make

unrecoverable, 293
ownership of, 34

changing (chown), 37
paging, 149
printing

appending to, 31
initial lines of, 107
last lines of, 203
lp command, 125–126

pseudonyms (links) for, 120
removing duplicate lines, 222
removing information from, 196
removing with srm, 320
renaming, 292
retrieving from Internet

curl command, 6, 49–50
wget command, 6, 301–303

searching for with find, 84–91
searching (see search commands;

pattern matching; regular
expressions)

size of, 185
sorting, 186–188
splitting into multiple files, 46

based on size, 190
synchronizing across network

connection, 175–178,
246–248

uncompressing with zcat, 238
filesync Solaris command, 246–248
filesystem-related parameters, 99
filesystems

ISO 9660/Joliet/HFS
filesystem, 140–149

mount command, 250

mounting, 150
GNU/Linux, 283–285, 311
Mac OS X, 311
Solaris, 250

Unix, serving to Windows
systems, 178

unmounting, 222, 257
GNU/Linux umount, 300
Mac OS X, 320
Solaris, 257

filetest command (tcsh), 453
find command, 84–91
finger command, 91
finish command (GDB), 798
Fink package manager, 520

Aqua-based GUI, 521
flags

changing file flags, 304
Debian packages, 494
format specifiers for printf and

sprintf, 633
flex (Fast Lexical Analyzer Generator)

command, 92
floppy disks

ejecting, 74
formatting, 81

fmt command, 93
fo (forward-search) command (GDB), 773
focus command (GDB), 798
fold command (ex), 583
foldclose command (ex), 583
foldopen command (ex), 583
for command (awk), 626
for loop, 390
for shell keyword, 389
foreach command (tcsh), 453
format specifiers for printf and

sprintf, 633
formatting disks and memory cards, 81
formatting files with pr

command, 170–172
formatting text (fmt command), 93
Fortran programming language,

compiling (gcc), 95
forward-search command (GDB), 798
frame command (GDB), 798
free disk space, reporting, 56
freshen options (rpm), 473
ftp command, 94
FTP (File Transfer Protocol), secure

transfer using ssh (sftp), 184
function command (awk), 626

864 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

function (shell keyword), 390
functions, 357

awk
alphabetical summary, 623–632
group listing, 623

built-in mathematical functions
(ksh93), 367

discipline functions (ksh93), 365
GNU make, for text

manipulation, 758–761
listing names (ctags), 48
user-defined, in awk, 619

functions command (ksh), 390

G
G command (sed), 603
g command (sed), 603
g++ command, 95
gawk Linux command, 277
gawk programming language, 612

features, 612
features specific to, 620–622

coprocesses and sockets, 620
file inclusion, 621
internationalization, 622
profiling, 621

format specifiers for printf and
sprintf, 633

important options, 614
octal and hexadecimal

constants, 619
source code URLs, 634
variables, built-in, 617

GCC (GNU Compiler Collection), 5,
95–98

general options, 96
linker options, 98
preprocessor options, 97

gcore command, 98
gcore (generate-core-file) command

(GDB), 773
gdb command, 99
GDB (GNU Debugger), 765–812

C preprocessor macros, 766
command-line syntax, 768
commands, alphabetical

summary, 790–812
commands, listed by

category, 773–777
aliases for other commands, 773
examining data, 774

examining the stack, 776
file manipulation, 774
frequently used commands, 777
running a program, 775
status inquiries, 776
support facilities, 776
Text User Interface

commands, 777
expressions, 771

special expressions, 772
files specified when doing

debugging, 766
info command, 788–790
initialization files, 770
program stoppers, 767
set and show commands, 777–788
source code URLs, 768
Text User Interface (TUI), 773
user interfaces, 766

.gdbinit file (GDB), 770
generate-core-file command (GDB), 799
generate-rss command (yum), 486
gensub function (gawk), 627
getconf command, 99

ksh93, 390
getline command (awk), 627
getopts command, 99, 391
getpwnam() function, 351
getpwuid() function, 351
gettext and dgettext functions, 151
gettext command, 99

source code URL, 634
gettextize Linux command, 277
ghostscript command, 100
GhostScript, gs command, 103
glob command (tcsh), 454
global command (ex), 583
GNU Mac OS X Public Archive

(OSXGNU), 521
GNU utilities

Arch, 641
awk (see gawk programming

language)
Compiler Collection (see GCC)
Debugger (see GDB)
Emacs (see Emacs editor)
escape sequences, 537
gettext, 634
make (see make utility)
makefiles (see makefiles)

Index | 865

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

sed
addresses for commands, 598
options, 597
regular expression

extensions, 599
(see also sed editor)

troff (groff), 814
GNU/Linux, xiii

command summary, 260–304
compilers, 5
Fedora, 4
Fedora distribution, 4
finding commands, 15
package management, 492–521

goto command (tcsh), 454
gpatch Solaris command, 248
gprof command, 100
graph character class, 352
Graphical User Interfaces (see GUIs)
grep command, 103

pattern-matching
metacharacters, 538

quoting regular expressions, 539
groff command, 103
groff (GNU troff), 814
groupinfo command (yum), 487
groupinstall command (yum), 487
grouplist command (yum), 487
groupremove command (yum), 487
groups

file ownership for, 34
id command, 110

groups command, 103
groupupdate command (yum), 487
gs command, 103
gsub function (awk), 627
GUIs (Graphical User Interfaces)

python program with, 318
shells vs., 341

gunzip command, 105
gvimdiff command, 228
gzcat command, 105
gzip command, 105

H
H command (sed), 604
h command (sed), 604
h (help) command (GDB), 773
hackability of Subversion, 699
handle command (GDB), 799

hangups, command immunity to, 158
hash command

Bash, 391
ksh, 392

hashstat command (tcsh), 454
hbreak command (GDB), 799
head command, 107
headers (Java code), 331
help

Emacs commands for, 551
manpage keyword lookup, 16
online manual (see manpages)

help command
Bash, 392
GDB, 799
svn, 718
svnadmin, 735
svnlook, 739

here document, 355
here string, 355
hexadecimal constants (gawk), 619
hexadecimal digits, matched by xdigit

character class, 352
hexdump command, 108
HFS filesystem, generating, 140–149
hide command (ex), 583
hist command (ksh93), 369, 392
history command

Bash, 393
CVS, 682–684
Korn shells, 393
svnlook, 740
tcsh, 454

history, command (see command
history)

.history file (tcsh), 419
hostname command, 109
hotcopy command (svnadmin), 735
hup command (tcsh), 455

I
i command (sed), 604
i (info) command (GDB), 773
iconv command, 109
id command, 110
ident command (RCS), 652
if command

awk, 627
GDB, 800
tcsh, 455

if (shell keyword), 393

866 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

if statements (tcsh), 437
igawk program, 277, 621
ignore command (GDB), 800
import command

CVS, 684
svn, 718

@include statements, gawk, 621
include statements (makefile), 751
indentation commands (Emacs), 550

basic, 551
index function (awk), 628
indirect variables, 359
info command, 111

GDB, 788–790, 800
svn, 719
svnlook, 740
yum, 487

InfoZIP format, 238
init command (CVS), 685
initialization files (GDB), 770
inodes, reporting on, 56
input mode (telnet), 214
input modes (terminal), 198
.inputrc file, 770
insert command (ex), 583
insert mode (vi), 565
Insight, 768
inspect command (GDB), 800
install command (yum), 487
installation options (rpm), 473–475
installf Solaris command, 522
instruction-level debuggers, 766
int function (awk), 628
integer command (ksh), 394
interactive conversation, 205
interactive use of shells, 342
internationalization, 99

gawk features, 622
locale command, 121–122

I/O processing commands (sed), 600
ISO 8601 date format, 669
ISO 8859-1 (Latin-1) character

set, 829–835
ISO 9660/Joliet/HFS filesystem,

generating, 140–149
ispell command, 189, 278

J
jar Java command, 322
jarsigner Java command, 323

Java
command summary, 321–340
compiling with gcc, 95

java Java command, 325
javac Java command, 326
javadoc Java command, 327
javah Java command, 331
javap Java command, 332
jdb Java command, 333
job control

Bash and Korn shells, 372
tcsh shell, 445

jobID argument, 372
tcsh job control commands, 446

jobs command
Bash and Korn shells, 394
tcsh, 446, 455

join command, 112
ex, 584

jump command (GDB), 800
jumps command (ex), 584

K
k command (ex), 584
keyboard shortcuts for editing, 368
keylogin Solaris command, 248
keylogout Solaris command, 248
keys (authentication), generating for

ssh, 194
keytool Java command, 334
keyword substitutions, 638

CVS, 667–669
RCS, 645

example, 646
Subversion, 702

keywords
CVS, 667–668

date keywords, 670
expr, 80
RCS, listed, 646
Subversion, 700, 702

kill command, 113
Bash and Korn shells, 394
Emacs, 544
GDB, 800
tcsh shell, 446, 456

Korn shell (see ksh)
kserver command (CVS), 685
ksh (Korn shell), 343

arithmetic expressions, 366
command execution, 372

Index | 867

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

command history, 368–369
line-edit mode, 368

command syntax, 354
commands, built-in, 374–416
coprocesses, 356
features differing from Bash and

tcsh, 345
features in common with Bash and

tcsh, 344
filename metacharacters, 351
functions, 357
history of, 347
invoking, 349–350

arguments, 350
common options, 349

job control, 372
overview of features, 348
prompts, xvi
Public Domain Korn shell

(pdksh), 287, 344
quoting, 352
redirection syntax, 354–356
restricted version (rksh), 253
setting restrictions on, 373
syntax, 350–356

special files, 351
variables, 358–366

arrays, 364
built-in, 359–362
discipline functions, 365
other shell variables, 362–364
special prompt settings, 365
variable substitution, 358

ksh88, 347
ksh93, 347

associative arrays, 365
built-in mathematical functions, 367
built-in shell variables, 360
capabilities differing from

ksh88, 349

L
l command (sed), 605
l (list) command (GDB), 773
lam Mac OS command, 310
Latin-1 character set, 829–835
layout command (GDB), 801
ld command, 114
ldd command, 115
leave Mac OS command, 310
left command (ex), 584

Lempel-Ziv (LZ77) coding, 105
length function (awk), 628
less program, 116–119
let command, 366, 395
lex command, 119

(see also flex command)
lexical analysis programs,

generating, 119
library calls, tracing (ltrace), 279
library dependencies (GNU make), 751
limit command (tcsh), 456
line breaks, nroff/troff requests and, 816
line information commands (sed), 600
line Solaris command, 249
line-edit mode (command history), 368
lines

counting in files, 229
formatting in files, 93
numbering in files, 154
reading from standard input, 249

link command, 119
links, creating for files, 120
lint command, secure (splint), 295–298
Linux

package management, 467–520
(see also GNU/Linux)

list command
ex, 584
GDB, 801
svn, 720
yum, 487

list dynamic dependencies (ldd
command), 115

list-dblogs command (svnadmin), 735
listing files

in archives, 16
to be executed, 230
for current directory, 129

list-unused-dblogs command
(svnadmin), 735

listusers Solaris command, 249
ln command, 120
load command (svnadmin), 736
loader (ld command), 114
loading and executing Java

bytecode, 325
local command (Bash), 395
local modes (terminal), 199
locale command, 121–122
localinstall command (yum), 488
localization of strings, 99

868 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

localupdate command (yum), 488
locate command, 122
lockfile that can be used from shell

scripts, 319
locking/unlocking files, 639
log command

CVS, 685–687
svn, 720
svnlook, 740
tcsh, 457

log function (awk), 628
logged-in users

displaying with users, 227
listing with who, 231

logger command, 122
logging

checking in edited source code, 638
GDB command output, 783
rlog command, 645

logging in
as another user, 202
displaying login name, 124
slogin command, 191

logical operators, 79
awk, 618
Bash and ksh, 354, 366, 367
tcsh, 435

login command, 123
CVS, 687
ksh, 395
tcsh, 457

.login file (tcsh), 419
login sessions (see sessions)
logname command, 124
.logout file (tcsh), 419
logout command

Bash, 395
CVS, 688
tcsh, 457

look command, 124
lower character class, 352
lowercase (see case-sensitivity)
lp command, 125–126
lpq command, 126
lpr command, 127
lprm command, 128
lpstat command, 128
ls command, 129

color options, setting, 276
ls-F command (tcsh), 457
lshift function (gawk), 628

lstxns command (svnadmin), 736
ltrace Linux command, 279
lynx Linux command, 281

M
M- commands (emacs), 554
m4 command, 133
mac command, 249
Mac OS X, xiii

command summary, 304–321
compilers, 5
finding commands, 15
ksh93 from AT&T Research, 347
package management, 520–521

Mac OS X 10.4 (Tiger), 4
Mac OS X Developer Tools, 308
mac2unix Linux command, 282
machine faults, tracing, 255
machine registers, accessing with

GDB, 771
Macintosh OS 9 files, converting to

Unix, 282
macro command (GDB), 802
macro commands (Emacs), 550
macros, 471

definitions (makefile), 751
Emacs, 550
listing names (ctags), 48
m4 processor, 133
make utility, 754–761

defining, 746, 754
exporting, 755
internal, 756
macro values, 755
modifiers, 757
text manipulation, 758–761
with special handling, 757

man, 819–822
nroff/troff, 815
vi editor, 573

mail command, 134
mail notification, 27
Mail User Agent (MUA) program

(mutt), 285
mailx command, 135
make command, 137

GDB, 802
make utility, 745–763

command-line syntax, 746–749
options, 746–749

macro modifiers, 757

Index | 869

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

macros, 754–761
defining, 754
exporting, 755
internal, 756
macro values, 755
overriding command line

macros, 756
text manipulation, 758–761
with special handling, 757

makefile lines, 749–753
conditional input, 753
special dependencies, 751–753

special target names, 761
versions other than GNU make, 746
writing command lines, 762
writing Makefile files, 762

makecache command (yum), 488
makefile files, writing, 762
makefile lines (make), 749
Makefile, tuned for target system, 6
makefiles, 746

overriding, 137
man command, 137
man macros, 819–822

internal names, 823
predefined strings, 823
sample document output, 823–825

mangled names (C++ and Objective
C), 766

manpages
displaying, 137
displaying command descriptions

in, 230
for a program, xvi
keyword lookup, 16

manual pages, writing, 813–825
man macros

internal names, 823
summary of, 819–822

overview of nroff/troff, 814–819
sample document, 823–825
strings predefined by man

macros, 823
map command (ex), 584
mark command (ex), 585
mark (Emacs), 544
marks command (ex), 585
match function (awk), 628
mathematical functions (ksh93), 367
md5sum Linux command, 282
measurements for nroff/troff, 815

mem command (GDB), 802
merge command

RCS, 653
svn, 722

merging changes to source code, 638
mesg command, 139
message authentication code

(MAC), 249
message digests (PKCS#11), computing

for files, 244
metacharacters, 535, 536–538

Bash and Korn shell filenames, 351
filenames vs. patterns, 535
listed by Unix program, 538
replacement pattern, 537
searching and replacing in sed and

ex, 540
tcsh filenames, 419

metadata, versioned, 699
Meta-key commands (Emacs), 544, 554
mkdir command, 139

svn, 723
mkexrc command (ex), 585
mkisofs command, 140–149
mktemp command, 149
mktime function (gawk), 628
mod_dav_svn plug-in (Subversion), 743
modes

Emacs editor, 543
telnet, 214
vi editor, 562, 565

modification timestamp for files,
updating, 217

monotone version control system, 642
more command, 149
mount command, 150

Linux, 283–285
Mac OS, 311
Solaris, 250

move command
ex, 585
svn, 723

moving directories and files, 152
msgfmt command, 151
MUA (Mail User Agent) program

(mutt), 285
multiline input processing (sed), 601
multiple redirection, 355
mutt Linux command, 285
mv command, 152

870 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

N
N command (sed), 605
n command (sed), 605
n (next) command (GDB), 773
name() function, 375
name demangling, 766, 780
name list (symbol table), printing for

object files, 156–158
nameref command (ksh93), 395
names

current Unix system name,
printing, 221

directories, printing, 66
files (see filenames)
functions and macros, listing

(ctags), 48
paths (see pathnames)

nano Mac OS command, 312
native methods, implementing in

Java, 331
nawk command, 154, 251
nawk programming language, 611
network layers, choice with

Subversion, 699
networks, securing remote connections

cryptographically
(ssh), 190–195

new command (ex), 585
newgrp command (tcsh), 457
newlines

word separators in Bash and
ksh, 353

word separators in tcsh, 420
next command

awk, 628
ex, 585
GDB, 803

nextfile command (awk), 629
nexti command (GDB), 803
ni (nexti) command (GDB), 773
nice command, 154

tcsh, 458
nl command, 154
nm command, 156–158
nohlsearch command (ex), 586
nohup command, 158

Korn shells, 396
tcsh, 458

nonprinting characters (Latin-1
character set), 829

nosharedlibrary command (GDB), 803
NOT operator (!), 354
notify command (tcsh), 446, 458
nroff/troff

command-line invocation, 814
comments, 817
eliminating .so requests, 186
embedded formatting controls, 816
escape sequences, 818
input files, preprocessing, 186
man macros, 819–822
measurements, specifying, 815
requests and macros, 815
requests that cause a line break, 816
special characters, 818

null command, 219, 447
number command (ex), 586
number registers (man macros), 823
numbering lines in files, 154
numbers

converting from one base to
another, 26

converting units of, 223
prime factors, 81
printing in sequence, 292

nvi text editor, 561

O
oawk programming language (see awk

programming language)
object files

combining into single executable
object module, 114

generating, 18
portable, translation into loadable

message files, 151
removing information from, 196

Objective C programming language,
compiling (gcc), 95

octal and hexadecimal constants
(gawk), 619

octal dump (od) command, 158
od (octal dump) command, 158
onintr command (tcsh), 458
online manual (see manpages)
only command (ex), 586
ooffice Linux command, 286
open command (ex), 586
Open Office office productivity

suite, 286

Index | 871

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

OpenSSH, 190–195
scp command, 179
sftp command, 184
ssh command, 190

OpenWindows Graphical Tools, 252
open-x11 Mac OS command, 314
Operating System/Application Binary

Interface (OSABI), 783
operators

awk, 617
Bash and ksh, 366
tcsh shell, 435–437

optimization around the network
(Subversion), 699

Option key (Emacs commands), 544
or function (gawk), 629
OR operator

^ (bitwise exclusive OR), 367
| (bitwise OR), 367, 435
|| (logical OR), 354, 367, 421, 618

order-only prerequisites (GNU make
dependencies), 752

OS X Package Manager, 521
OSXGNU (GNU Mac OS X Public

Archive), 521
output command (GDB), 803
output modes (terminal), 199
output processing commands (sed), 600
overloaded procedure names (C++ and

Objective C), 766
ownership of files, 37

changing, 34

P
P command (sed), 606
p (print) command

GDB, 773
sed, 606

package management, 467–531
Linux, 467–520

Debian Package
Manager, 492–520

Red Hat Package
Manager, 470–484

Red Hat Update Agent
(up2date), 489–492

Yum (Yellowdog Updater
Modified), 484–489

Mac OS X, 520–521
Solaris, 521–531

page command, 252

paging commands
less, 116–119
more, 149

paging files, 149
paragraph commands (Emacs), 547
parser (bison), 27
passwd command, 160
passwd file, 343

Bash and ksh, 351
tcsh, 419
user database stored in, 351

passwords
changing, 243
creating or changing, 160
prompting for, 248

paste command, 162
pasting text in Emacs, 544
patch command, 163–165
path command (GDB), 803
pathchk command, 166
pathnames

checking for acceptability, 166
searching for files, 84–91
stripping filenames from, 66

pattern matching, 535–541
awk, 24
ex addresses, 580
fgrep, 82
metacharacters, 536–538

listed by Unix program, 538
replacement patterns, 537
search patterns, 536

searching and replacing (examples),
in sed or ex, 540

searching, examples of, 539
(see also awk programming language)

pattern rules (makefile), 750
patterns, awk, 614, 615

simple pattern-action examples, 616
pax command, 166–169
pbcopy Mac OS command, 314
pbpaste Mac OS command, 315
PCMCIA memory cards, formatting, 81
PDF (Portable Document Format)

language
converting PostScript input file

to, 318
ghostscript command, 100
gs command, 103

pdksh Linux command, 287
pdksh (Public Domain Korn shell), 344

872 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

perl command, 170
Perl scripts, Debian package

management, 495
permissions (file), changing, 35
pgawk (profiling gawk), 621
pico Mac OS command, 315
PKCS#11 message authentication

code, 249
PKCS#11 message digest, computing for

files, 244
pkgadd Solaris command, 5, 523
pkgadm Solaris command, 524–526
pkgask Solaris command, 526
pkgchk Solaris command, 526
pkginfo Solaris command, 527
pkgmk Solaris command, 528
pkgparam Solaris command, 529
pkgproto Solaris command, 530
pkgrm Solaris command, 530
.plan file, 91
.po files, 151
po (print-object) command (GDB), 773
point (Emacs), 544
popd command

Bash, 396
tcsh, 459

Portable Archive Exchange program
(pax), 166–169

portable object files (.po files),
translation into loadable
message files, 151

positional specifier (gawk), 633
POSIX standard

character classes, listed, 537
make utility, 746
Solaris systems, command

versions, 11
PostScript language

converting input file to PDF, 318
ghostscript command, 100
gs command, 103

pr command, 170–172
precision (format specifiers for printf

and sprintf), 634
precompiled packages from Sun

Microsystems, 5
predefined shell variables

Bash and ksh, 359–362
tcsh, 426–432

sample .tcshrc file, 433
prerequisites (make utility), 746

preserve command (ex), 586
previous command (ex), 586
prime factors, 81
print character class, 352
print command

awk, 629
output redirection, 632

ex, 586
GDB, 803

value history, 771
ksh, 396

print working directory (see pwd
command)

printenv command, 172
tcsh, 459

printf command, 172
awk, 629

output redirection, 632
Bash and Korn shells, 397
GDB, 804

printing
all lines that begin with a string, 124
archive files, 16
banners, 24
BSD commands, 9
cancelling print requests, 31, 128
current system name, 221
environment variable values, 172
file contents (see files, printing)
file creation mode mask, 220
files, 31

lines specified, 203
sending files to printer with

lp, 125–126
sending files to printer with lpr, 127
to standard output, 69
strings, using specified formats, 172
system configuration variables, 99
system usage information, 227
System V commands, 9
terminal device name, 220

printing commands
cancel, 31
lp, 125–126
lpq, checking spool queue, 126
lpr, 127
lprm, removing jobs from the

queue, 128
lpstat, printing queue status, 128

print-object command (GDB), 804
procedures, awk, 615

Index | 873

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

process status (see ps command)
processes

active, reports on, 252
ps command, 287–291, 315

core images of, 98
sending signal or resetting

priority, 293
terminating IDs, 113

.profile file, 351
shell variables, Bash and ksh, 362

profile data, displaying, 100
profiling in gawk, 621
programmable completion (Bash), 360,

369–372
programming commands, 10
programming languages

compiling with gcc, 95–98
GDB support for, 766
source files, listing function and

macro names, 48
(see also listings under individual

language names)
programming lint (splint

command), 295–298
programs

GDB commands for running, 775
getting description of, 220

.project file, 91
prompts, xvi

GDB, 785
special prompt strings, Bash and

Korn shells, 365
tcsh, 432

propdel command (svn), 724
propedit command (svn), 725
properties, Subversion files, 700–702
propget command

svn, 725
svnlook, 740

proplist command
svn, 726
svnlook, 741

propset command (svn), 726
provides command (yum), 488
ps (process status) command, 172

Linux, 287–291
Mac OS, 315
Solaris, 252

PS1–PS4 variables, 365
pserver command (CVS), 688

pstopdf Mac OS command, 318
ptype command (GDB), 804
Public Domain Korn Shell (pdksh), 287
punct character class, 352
pushd command

Bash, 398
tcsh, 459

put command (ex), 586
putting and yanking commands

Emacs, 544
sed, 600
vi, 586, 592

pwd (print working directory)
command, 173

Bash and ksh, 397
GDB, 805

python command, 173
pythonw Mac OS command, 318

Q
Q command (sed), 606
q command (sed), 606
qall command (ex), 587
query options (rpm), 475
queued jobs

listing jobs created by at
command, 20

removing, 20
quit command

ex, 587
GDB, 805

quoting
bash and ksh shells, 352
tcsh shell, 420

R
R command (sed), 607
“r” (remote) commands, 173
r command

ksh, 398
sed, 607

r (run) command (GDB), 773
rand function (awk), 629
ranges, matching, 419
rannotate command (CVS), 688
rbreak command (GDB), 805
rcp command, 173
rcs command, 173

svn, 653

874 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

RCS (Revision Control System), 640,
643–658

basic operation, 644
check out with locking model, 639
commands, overview, 643
commands, summarized

alphabetically, 649–658
date and time of check-in, 647
keyword substitution, 645

example, 646
keywords, listed, 646
options and environment

variables, 648
revision numbers, 647
revision states, 648

rcsclean command (RCS), 655
rcsdiff command (RCS), 645, 656
rcsfreeze command (RCS), 656
RCSINIT environment variable, 648
rcsmerge command (RCS), 657
rdiff command (CVS), 688
read command

Bash and Korn shells, 398
ex, 587

reading email messages, 135
readline library, 770
readonly command, 399
recover command

ex editor, 587
svnadmin, 736

recursion, Bash and Korn shell
functions, 357

Red Hat Network Notification Tool
(rhn-applet), 489

Red Hat Package Manager (see RPM)
Red Hat Update Agent (see up2date)
redirect command (ksh93), 399
redirections

awk, print and printf output, 632
Bash and ksh forms for, 354–356
tcsh, 420, 422

redo command (ex), 587
referencing arrays, 364
refresh command (GDB), 805
region commands (Emacs), 547
regular expressions, 535–541

egrep command, 70–73
GNU sed, extended, 599
grep command, 103
lexical analysis program, 119
metacharacters, 535, 536–538
not supported by fgrep, 82

search pattern metacharacters, 536
searching, examples of, 539
sed command addresses, 598

rehash command (tcsh), 459
relational operators, 79

awk, 618
Bash and ksh, 367
tcsh, 436

release command (CVS), 690
releases, Subversion, 702
remote file transfer, 94
Remote Method Invocation compiler for

Java (rmic), 337
remote object registry (Java), 340
remote (r) commands, 173
remote systems, copying files

between, 94
scp, 179

removable media
checking if inserted, 259
ejecting, 74

remove command
CVS, 690
yum, 488

removef Solaris command, 531
removing directories (rmdir), 174
removing files

rm command, 174
srm command, 320

rename Linux command, 292
renaming directories and files, 152
repeat command (tcsh), 460
replacement patterns

metacharacters, 537
Unix program metacharacters, 539

replacing files in archives, 16
replacing text in sed or ex, examples

of, 540
repository, 637

access to (svnserve tool), 742
administration (svnadmin

tool), 733–737
options, 733
subcommands, 734–737

converting from CVS to
Subversion, 700

examining (svnlook tool), 737–742
options, 738
subcommands, 738–742

filtering files from dump
(svndumpfilter), 743

Index | 875

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

requests (nroff/troff), 815
causing a line break, 816
useful requests, 817

reset command, 173
resize command (ex), 587
resolved command (svn), 727
restricted shells, 373
return command, 357

awk, 630
Bash and Korn shells, 400
GDB, 805

reverse-search command (GDB), 805
revert command (svn), 728
Revision Control System (see RCS)
revision control systems

CVS, 659–696
RCS, 643–658
Subversion, 697–744

rewind command (ex), 587
RFC 1123 time format, 670
RFC 822 time format, 670
rhn-applet, 489
.rhosts file, 665
right command (ex), 588
rksh Solaris command, 253
rlog command

CVS, 691
RCS, 645, 657

rlogin command, 173
rm command, 174
rmdir command, 174
RMI (remote method invocation)

compiler, 337
rmic Java command, 337
rmid Java command, 339
rmiregistry Java command, 340
rmtxns command (svnadmin), 736
rpm command, 471–482

database rebuild options, 480
downloading packages off the

Internet, 472
examples, 482
FTP/HTTP options, 482
general options, 472
information selection options, 477
install, upgrade, and freshen

options, 473–475
miscellaneous options, 481
package selection options, 475
query options, 475
signature check options, 481

uninstall options, 478
verify options, 479

RPM (Red Hat Package Manager), 467,
470–484

package concepts, 471
package names, 468
rpm command, 471–482
rpmbuild command, 482–484

rpmbuild command, 482–484
RSA or DSA identities, adding to

authentication agent, 193
rsh command, 173, 665
rshift function (gawk), 630
rsync command, 175–178
rtag command (CVS), 691
rules (GNU make), 746
run command (GDB), 805
running programs (GDB

commands), 775
rwatch command (GDB), 806

S
s command (sed), 607
s (step) command (GDB), 773
Samba software suite, 178
sandbox, 638, 698

dot files in CVS, 664
say command (Mac OS), 318
sbnext command (ex), 588
sbuffer command (ex), 588
SCCS (Source Code Control

System), 640
check out with locking model, 639

sched command (tcsh), 460
scp (secure copy) command, 179
script command, 181
scripts, 471

Debian package management, 495
shell (see shell scripts)

sdiff command, 182
search command

GDB, 806
yum, 488

search commands, 10
egrep, 70–73
Emacs, 548
fgrep, 82
find, 84–91
grep, 103
locate, 122
look, 124

876 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

search commands (continued)
slocate, 294
strings, 195
vi, 539

search patterns
metacharacters, 536
Unix metacharacters, 538

searching
by pattern matching, 24
regular expressions, using, 539
search-and-replace examples, sed and

ex, 540
in vi editor, 568

secret keys
decrypting, 248
deleting, 248
encrypting, 243

section command (GDB), 806
secure copy (scp) command, 179
secure ftp (sftp) command, 184
secure network services

computing PKCS#11 MAC for given
files, 249

decrypting secret keys in, 248
deleting secret keys in, 248
encrypt Solaris command, 245
encrypting secret key, 243
(see also Secure Shell)

Secure Shell (SSH), 190–195
ssh command, 190–193
ssh-add command, 193
ssh-agent command, 193

sed editor, 183, 595–610
command syntax, 598–599

GNU sed extended regular
expressions, 599

pattern addressing, 598
command-line syntax, 596

GNU sed options, 597
standard options, 596

commands
summary, listed

alphabetically, 601–610
commands by category, 600

basic editing, 600
branching, 600
input/output processing, 600
line information, 600
multiline input processing, 601
yanking and putting, 600

operation, 596

pattern-matching
metacharacters, 538

search-and-replace examples, 540
typical uses of, 596

select (shell keyword), 400
select-frame command (GDB), 806
selection states (Debian packages), 494
sending email messages, 135
seq Linux command, 292
server command (CVS), 692
server environment variables (CVS), 666
sessions

control by shell, 342
recording, 181

:set command (vi), 574–578
set and show commands

(GDB), 777–788
annotate, 778
architecture, 778
args, 778
auto-solib-add, 778
auto-solib-limit, 778
backtrace, 778
breakpoint, 779
can-use-hw-watchpoints, 779
case-sensitive, 779
coerce-float-to-double, 779
commands, 779
complaints, 779
confirm, 780
convenience, 780
copying, 780
cp-abi, 780
debug-file-directory, 780
demangle-style, 780
directories, 781
disassembly-flavor, 781
editing, 781
environment, 781
exec-done-display, 781
follow-fork-mode, 781
gnutarget, 781
height, 782
history, 782
input-radix, 782
language, 782
listsize, 782
logging, 783
max-user-cal-depth, 783
opaque-type-resolution, 783
osabi, 783

Index | 877

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

output radix, 783
overload-resolution, 784
pagination, 784
paths, 784
print, 784
prompt, 785
radix, 785
scheduler-locking, 785
solib-absolute-prefix, 786
solib-search-path, 786
step mode, 786
stop-on-solib-events, 786
symbol-reloading, 786
tui, 786
values, 787
variable, 787
verbose, 787
version, 787
warranty, 787
watchdog, 788
width, 788
write, 788

set command
Bash and Korn shells, 400–404
ex, 588
GDB, 806
tcsh, 460

setenv command (tcsh), 461
setlog command (svnadmin), 737
setpgrp Solaris command, 254
settc command (tcsh), 461
setty command (tcsh), 461
sftp (secure ftp) command, 184
sh command, 185
sh, invoking Bash as, 349
SHA1 160-bit checksums, 292
sha1sum Linux command, 292
shar Mac OS command, 319
share command (GDB), 773
shared object libraries, tracing calls into/

out of, 254
sharedlibrary command (GDB), 806
shell archive (shar) command, 319
shell characters, special (Emacs), 549
shell command

ex, 588
GDB, 806

shell functions, 357
shell programming commands, 10

shell scripts, 342
for background processes, 229
Debian package management, 495
lockfile used from, 319
reading from terminal, 249

shell variables (see variables)
shells, 341–346

choosing your shell, 343
commands, 10
csh command, 46
differing features, Bash, ksh, and

tcsh, 345
introduction to, 341
invoking Bash and Korn

shells, 349–350
restricted, 373
source code, URLs for, 344
tcsh shell, 214
Tenex C shell (see tcsh)
types (flavors) of, 343
uses of, 342

customizing Unix session, 342
interactive use, 342

shift command
Bash and Korn shells, 407
tcsh, 461

shlock Mac OS command, 319
shopt command (Bash), 404
show command (GDB), 807
show commands (GDB) (see set and

show commands)
shred Linux command, 293
si (stepi) command (GDB), 773
signal command (GDB), 807
signals, tracing, 255
signature verification for packages, 468
signature-checking options (rpm), 481
silent command (GDB), 807
sin function (awk), 630
size command, 185
skill Linux command, 293
sleep command, 186
sleep command (ksh93), 407
slocate Linux command, 294
slogin command, 191
snext command (ex), 588
snice Linux command, 293
.so requests, eliminating in nroff or troff

files, 186
sockets, use with gawk coprocesses, 620
soelim command, 186

878 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

software, building, 6
Solaris

command summary, 241–259
finding commands, 14
package management, 521–531

command summary, 522–531
POSIX standard, programs compliant

with, 11
Solaris 10, xiii, 4

compilers, 5
sort command, 186–188
sorting files

joining lines of sorted files, 112
removing duplicate lines, 222

sotruss Solaris command, 254
source code

awk versions and GNU gettext,
URLs, 634

building software from, 6, 521
management, 637–642

CVS (Concurrent Versions
System), 659–696

RCS (Revision Control
System), 643–658

Subversion, 697–744
systems for Unix, 640
terminology, 637
usage models for systems, 639

Source Code Control System (see SCCS)
source command

Bash, 408
ex, 589
GDB, 807
tcsh, 462

source-level debuggers, 766
space and tab characters, xvi
space character class, 352
spaces

expanding tab characters into, 78
word separators in Bash and

ksh, 353
word separators in tcsh, 420

special characters
tcsh, 420
troff, 818

spell command, 189
splint Linux command, 295–298
split command, 190

ex, 589
split function (awk), 630
splitting files, 46

sprevious command (ex), 589
sprintf function (awk), 630

format specifiers, 633
sqrt function (awk), 630
srand function (awk), 630
srm Mac OS command, 320
ssh (Secure Shell) command, 190–193
ssh-add command, 193
ssh-agent command, 193
ssh-keygen command, 194
stack examination commands

(GDB), 776
standard input, output, and error

GNU sed, 601
STDIN, copying, 214, 217
STDOUT, printing to, 69

startup files (tcsh), 419
state, RCS revisions, 648
status command

CVS, 692
svn, 728–731

status inquiry commands (GDB), 776
step command (GDB), 807

mode, setting, 786
stepi command (GDB), 807
stickiness, CVS files, 660
stop command

ex, 589
Korn shells, 408
tcsh, 446, 462

stopping commands (Emacs), 547
storage commands, 11
strace Linux command, 298–300
stream editor, 183
strftime function (gawk), 630
string searches with apropos, 16
strings

comparing and searching with
expr, 79–81

localizing, 99
printing, using specified

formats, 172
substituting characters in, 217

strings command, 195
strip command, 196
strtonum function (gawk), 619, 631
stty command, 196–202
su command, 202
sub function (awk), 631
subcommands (CVS), common

synonyms, 674

Index | 879

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

substitute command (ex), 589
substitutions, PS1–PS4 variables, 366
substr function (awk), 631
Subversion, 641, 697–744

basic version control operations, 698
converting repository from CVS, 700
“copy, modify, merge” model, 639
file properties, special, 700–702
improvements on CVS design, 698
obtaining, 702–704

features in next version, 703
releases, 702
source code, 703

svn (command line client), 706–733
options, 706–710
subcommands, 710–733

svnadmin (repository
administration), 733–737

options, 733
subcommands, 734–737

svnlook (repository,
examining), 737–742

options, 738
subcommands, 738–742

svnserve command, 742
svnversion command, 744
svndumpfilter command, 743
using for version control, 704–706

suffix rules (makefile), 750
Sun Desktop commands, 241
suspend command

Bash and Korn shells, 408
ex, 590
tcsh, 462

sview command (ex), 590
svn (Subversion command line

client), 706–733
options, 706–710
subcommands, 710–733

svnadmin (Subversion repository
administration), 733–737

options, 733
subcommands, 734–737

svndumpfilter command
(Subversion), 743

svnlook (Subversion repository,
examining), 737–742

options, 738
subcommands, 738–742

svnserve (Subversion repository
access), 742

SVR4 (System V Release 4), 3
switch command

svn, 731
tcsh, 462

symbol file, 766
symbol tables (name list), printing for

files, 156–158
symbol-file command (GDB), 807
synaptic Linux command, 470, 519
synchronizing files across a network

connection, 175–178,
246–248

syntax on command line, xvi
system calls, tracing, 255

strace Linux command, 298–300
system configuration variables,

printing, 99
system dictionary, adding to, 189
system function (awk), 631
system name, current, 221
system status commands, 11
system usage information, 216

printing, 227
timex (Solaris) command, 254
w command, 228

System V
Bourne shell, 347
printing commands, 9
Release 4 (SVR4), 3

systime function (gawk), 631

T
T command (sed), 609
t command

ex, 590
sed, 608

tab characters, xvi
converting spaces to, 222
expanding to spaces, 78

tabs
word separators in Bash and

ksh, 353
tabs, word separators in tcsh, 420
tag command (CVS), 693
tag command (ex), 590
tag files, creating with ctags, 48
tagging improvements, Subversion, 699
tags command (ex), 590
tags, naming source code files, 638
tail command, 203
talk command, 205

880 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

TAO (track-at-once) mode, 266
tape files, copying/restoring, 42,

205–213
tar command, 205–213
targets, GNU make, 746

special names, 761
tbreak command (GDB), 808
tcatch command (GDB), 808
tcsh command, 214
tcsh (Tenex C shell), 343, 417–465

arithmetic, 435
command history, 438–441

command substitution, 438
history modifiers, 440
special aliases, 441
word substitution, 439

command-line
manipulation, 442–445

completion, 442
editing the command

line, 442–445
commands, built-in, 446–465
expressions, 435–437

@ command examples, 437
if and while statement

examples, 437
operators, 435–437

features differing from Bash and
ksh, 345

features in common with Bash and
ksh, 344

filename metacharacters, 419
invocation, options and

arguments, 418
job control, 445
prompts, 432
quoting, 420

characters used for, 421
special characters, 420
special files, 419
syntax, 419–423

command forms, 421
redirection, 422

variables, 423–434
environment variables, 433
modifiers, 424
predefined shell

variables, 426–432
sample .tcshrc file, 433
variable substitution, 423

.tcshrc file, 419
example, 433

tee command, 214
telltc command (tcsh), 463
telnet command, 214
template file of C #define

statements, 22
temporary filename, generating, 149
temporary files (RCS), 649
Tenex C shell (see tcsh)
terminal emulators, ANSI/

VT100, 180–181
terminal sessions, recording

(script), 181
terminals

clearing displays, 38
clearing with reset, 173
device name, printing, 220
setting I/O options for current

device, 196–202
setting modes, 219

terminating process IDs, 113
termination status for background

processes, 229
termname command (tcsh), 463
test command, 216, 408
text

converting spaces into tabs, 222
expanding tabs into spaces, 78
formatting with fmt command, 93
ISO Latin-1 character set, 829–830
manipulation with make

utility, 758–761
pattern matching (see regular

expressions)
searching for (see search commands)

text editors
ed, 70
emacs (see Emacs editor)
Emacs vs. vi, 442
ex (see ex editor)
nano, 312
pico, 315
regular expression delimiters, 539
Unix metacharacters, 538
vi (see vi editor)
vim (see vim editor)

“text mode” browser (lynx), 281
text processing programs (see nroff/

troff)
text processing commands, 11
text to speech synthesizer (say), 318

Index | 881

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Text User Interface (TUI), 766, 773
GDB commands for, 777

thbreak command (GDB), 808
thread command (GDB), 808
Tiger (see Mac OS X 10.4)
time command, 216

Bash and Korn shells, 410
tcsh, 463

time zones, 671
times command, 410
times command (ksh93), 410
timestamps, RCS, 647
timex Solaris command, 254
tolower function (awk), 632
touch command, 217
toupper function (awk), 632
tr command, 217
tracing system calls (strace), 298–300
track-at-once (TAO) mode, 266
translating strings (see localization of

strings)
transposing words (sed), 541
transposition commands (Emacs), 547
trap command, 411
traps, sharing (Bash and ksh), 357
tree command (svnlook), 741
trigger scriptlets, 472
troff program

command-line invocation, 814
eliminating .so requests, 186
escape sequences, 818
preprocessing of input files, 186
special characters, 818
troff command, 218

true command, 219, 412
truss Solaris command, 255–257
tset command, 219
tty command, 220

GDB, 808
tui command (GDB), 808
TUI (Text User Interface), 766, 773

GDB commands for, 777
type command, 220

Bash, 412
ksh, 412

type-safe linkage, 766
typeset command, 412

-A (creating associative arrays), 365
-n (indirect variable referencing), 359

U
u (until) command (GDB), 773
ulimit command, 414
umask command, 220

Bash and Korn shells, 414
tcsh, 463

umount command, 222
Linux, 300
Mac OS, 320
Solaris, 257

unabbreviate command (ex), 590
unalias command

Bash and Korn shells, 415
tcsh, 463

uname command, 221
uncomplete command (tcsh), 463
uncompressing files, 238
undisplay command (GDB), 809
undo command (ex), 590
undoing commands (Emacs), 547
unedit command (CVS), 694
unexpand command, 222
unhash command (tcsh), 464
unhide command (ex), 590
uninstall options (rpm), 478
uniq command, 222
units command, 223
units of measurements (nroff/troff), 815
Unix

shells (see shells)
summary of common

commands, 15–340
versions of, 3

unix2dos command, 224
unlimit command (tcsh), 464
unmap command (ex), 591
unset command, 415

GDB, 809
tcsh, 464

unsetenv command (tcsh), 464
until command (GDB), 809
until (shell keyword), 415
unzip command, 225
up command (GDB), 810
up2date (Red Hat Update Agent), 470,

489–492
update command

CVS, 694
GDB, 810
svn, 732
yum, 489

882 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

upgrade command (yum), 489
upgrade options (rpm), 473–475
upper character class, 352
uppercase (see case-sensitivity)
up-silently command (GDB), 810
uptime command, 227
URLs

Arch (source code management
system), 641

aspell, 260
autoconf, 21
automake, 23
awk source code and GNU

gettext, 634
awka, 634
Bash, 25, 348
Bash completion, 371
Bash Debugger, 360
Bash source code, 344
Bash source code patches, 344
bc language (and compiler), 26
bison, 27
bzip, 29
cdrdao (Sourceforge), 266
Codeville (version control

system), 641
CSSC (free clone of SCCS), 641
ctags, 48
CUPS (Common Unix Printing

System), 31
curl, 49
ddd (Data Display Debugger), 768
diff, 58
ed, 70
Emacs editor, 543
Figlet, 24
Fink Commander, 521
Fink project, 520
flex, 92
gawk, 634
gcc, 96
GCC and precompiled packages

(Sun), 5
GDB (GNU Debugger), 768
gettext, 100, 634
gettextize, 277
gprof (GNU), 100
groff (GNU troff), 814
gs (ghostscript), 103
gzip, 105
info, 111

Insight debugger, 768
ispell, 278
Korn shell, 348
Korn shell, Public Domain

(pdksh), 287, 344
ksh93 source code, 344
less, 116
lynx (text mode) browser, 281
m4 (macro processor), 133
make program, 745
mawk, 634
Monotone (version control

system), 642
mutt (Mail User Agent

program), 285
nano editor, 312
nroff/troff, 814
Open Office, 286
OpenSSH, 191
OSXGNU (GNU Mac OS X Public

Archive), 521
patch, 163
perl, 170
python, 173
rsync (Samba), 175
Samba, 178
screen, 180
shells, source code, 344
slocate, 294
Solaris patches, support, 5
Solaris, Sun freeware, 6
splint, 295
srm (Sourceforge), 320
Subversion project site, 702
sudo, 203
tar, 206
tcsh source code, 344
tcshrc, 419
troff, 814
vim editor, 78, 562
wget, 301
xgettext, 234
Z shell source code, 344
ZIP, 238
ZIP (unzip), 225

usage information, 216
disk blocks used by directory and

subdirectories, 66
timex (Solaris) command, 254
w command, 228

Index | 883

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

user interfaces (GDB), 766
Text User Interface (TUI), 773

users
changing information for with

chpass, 305
displaying data about, 91
displaying group membership, 103
id command, 110
information on those logged in, 228
listing, 249
logged-in, displaying list, 231
username for user ID, printing, 232

users command, 227
/usr/lib/rpm/rpmrc file, 472
UTC (Coordinated Universal

Time), 647
uudecode command, 227
uuid command (svnlook), 742

V
v command

ex, 591
sed, 609

vacation Solaris command, 257
value history, 771
variable substitution, 358
variables

awk
assignment, 618
built-in, 616

Bash and Korn shells, 358–366
arrays, 364
built-in, 359–362
discipline functions (ksh93), 365
other, 362–364
special prompt settings, 365

convenience variables (GDB), 771
CVSROOT directory, 672–673

environment variables, 673
internal variables, 673
shell variables in files, 673

setting, Bash and Korn
shells, 400–404

system configuration, printing, 99
tcsh shell, 423–434

command-line manipulation, 442
environment variables, 433
predefined shell

variables, 426–432

prompt variable, formatting, 432
sample .tcshrc file, 433
variable modifiers, 424
variable substitution, 423

(see also make utility, macros)
verify command (svnadmin), 737
verify options (rpm), 479
version command

CVS, 695
ex, 591

version control systems
CVS, 659–696
other, 641
RCS, 643–658
Subversion, 697–744
for Unix, 640

version history, true history in
Subversion, 698

versioned metadata, 699
versions of Unix, 3
vi editor, 228, 561–578

bindings, compared to Emacs
bindings, 442

command mode, 565
command syntax, 565
command-line syntax, 562–565

options, 562–565
commands, 567–574
configuration, 574–578

.exrc file, 562

.exrc file (example), 578
:set command, 574
:set command options, 574–578

edit commands, 570–571
changing and deleting text, 570
copying and moving text, 571

ex commands in, 579
ex (see ex editor)
insert mode, 565
interacting with the system, 572
line-edit mode, Bash and ksh, 368
macros, 573
miscellaneous commands, 573
movement commands, 567

character, 567
line numbering, 568
lines, 567
marking position, 569
screens, 568
searching, 568
text, 567

884 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

vi editor (continued)
multiple files, accessing, 571
operating modes, 562
pattern-matching

metacharacters, 538
saving and exiting, 571
starting ex from, 564
status line commands, 566
tcsh command-line editing

mode, 444
user-defined commands, characters

for, 573
window commands, 572

view command, 228
ex, 591

vile text editor, 561
vim editor, 562

command-line options, 562
evim command, 78
vim command, 228
vimdiff command, 228
visual mode, 566

vimdiff command, 228
visual command (ex), 591
volcheck Solaris command, 259
vpath statements (makefile), 751
vsplit command (ex), 591
VT100 terminal emulation,

enabling, 180–181

W
W command (sed), 610
w command, 228

sed, 609
wait command, 229

Bash and Korn shells, 415
tcsh, 464

wall command (ex), 591
watch command

CVS, 695
GDB, 810
Linux, 300

watchers command (CVS), 696
watchlog command (tcsh), 464
watchpoints, 767
WAV format, converting CDDA

to, 260–263
wc (word count) command, 229
wget Linux command, 6, 301–303

whatis command, 230
GDB, 811

whatis database, searching with apropos
command, 16

whatprovides command (yum), 489
whence command (ksh), 415
where command

GDB, 773, 811
tcsh, 464

which command, 230
tcsh, 464

while command
awk, 632
Bash and Korn shells, 416
GDB, 811
tcsh, 437, 465

whitespace
converting spaces into tabs

(unexpand), 222
expanding tabs into spaces, 78
space character class, 352

who command, 231
whoami command, 232
whocalls Solaris command, 259
width (format specifiers), 634
window commands (Emacs), 549
window (Emacs), 544
window size, setting for terminal, 202
Windows systems, serving Unix

filesystems to, 178
winheight command (GDB), 811
wnext command (ex), 591
word character class, 352
word count (wc) command, 229
word separators

Bash and ksh, 353
tcsh, 420

word substitution (tcsh), 439
word-abbreviation commands

(Emacs), 548
wordlist files, 189
words, automatic completion

in Bash, 369–372
in tcsh, 442

wq command (ex), 592
wqall command (ex), 592
write command (ex), 592
writing to standard output, 69

Index | 885

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

X
x command

GDB, 811
sed, 610

X command (ex), 592
^x (control character), xvi
X11 applications under Mac OS X, 314
xargs command, 233
Xcode Tools package, 5
xdigit character class, 352
xgettext command, 234
xit command (ex), 592
xmlto Linux command, 303
xor function (gawk), 632

Y
y command (sed), 610
y editing operator (vi), 565, 570
yacc command, 27, 237
yank command

Emacs, 544
ex, 592

yanking and putting commands
(sed), 600

Yellow Dog Linux package updater (see
Yum)

youngest command (svnlook), 742
Yum (Yellowdog Updater

Modified), 484–489
command summary, 486–489
yum command, 470, 484–486

Z
z command (ex), 593
Z shell (see zsh)
zcat command, 238
zip command, 238
ZIP format archives, extracting or

printing information
about, 225

zipinfo command, 240
zsh (Z shell), 344

About the Author

Arnold Robbins, an Atlanta native, is a professional programmer and technical
author. He is also a happy husband, the father of four very cute children, and an
amateur Talmudist (Babylonian and Jerusalem). Since late 1997, he and his family
have been living in Israel.

Arnold has been working with Unix systems since 1980, when he was introduced
to a PDP-11 running a version of Sixth Edition Unix. His experience also includes
multiple commercial Unix systems, from Sun, IBM, HP, and DEC. He has been
working with GNU/Linux systems since 1996, and for this book was introduced
to the joys of the Macintosh. (iTunes is now his current favorite “killer app.”)

Arnold has also been a heavy awk user since 1987, when he became involved with
gawk, the GNU project’s version of awk. As a member of the POSIX 1003.2
balloting group, he helped shape the POSIX standard for awk. He is currently the
maintainer of gawk and its documentation.

In previous incarnations he has been a systems administrator and a teacher of
Unix and networking Continuing Education classes. He has also had more than
one poor experience with start-up software companies, which he prefers not to
think about anymore. These days he writes high-end Command and Control–
related software for a leading Isreali software compnay. One day he hopes to put
up his own web site at http://www.skeeve.com.

O’Reilly has been keeping him busy; he is author and/or coauthor of these best-
selling titles: Learning the vi Editor, Effective awk Programming, sed & awk,
Classic Shell Scripting, and several pocket references.

Colophon

Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of Unix in a Nutshell, Fourth Edition, is a tarsier, a
nocturnal mammal related to the lemur. Its generic name, Tarsius, is derived from
the animal’s very long ankle bone, the tarsus. The tarsier is a native of the East
Indies jungles from Sumatra to the Philippines and Sulawesi, where it lives in the
trees, leaping from branch to branch with extreme agility and speed.

A small animal, the tarsier’s body is only 6 inches long, followed by a 10-inch
tufted tail. It is covered in soft brown or grey silky fur, has a round face, and huge
eyes. Its arms and legs are long and slender, as are its digits, which are tipped with
rounded, fleshy pads to improve the tarsier’s grip on trees. Tarsiers are active only
at night, hiding during the day in tangles of vines or in the tops of tall trees. They
subsist mainly on insects, and though very curious animals, tend to be loners.

,AUTHOR.COLO.13098 Page 1 Tuesday, August 22, 2006 4:53 PM

Colleen Gorman was the production editor and the copyeditor for Unix in a
Nutshell, Fourth Edition. Genevieve d’Entremont and Mary Brady provided
quality control. Ellen Troutman wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Karen Montgomery produced the
cover layout with Adobe InDesign CS using Adobe’s ITC Garamond font. The
back cover illustration is by J.D. “Illiad” Frazer.

David Futato designed the interior layout. This book was converted by Keith
Fahlgren to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technolo-
gies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed. The
illustrations that appear in the book were produced by Robert Romano, Jessamyn
Read, and Lesley Borash using Macromedia FreeHand MX and Adobe Photoshop
CS. The tip and warning icons were drawn by Christopher Bing. This colophon
was written by Michael Kalantarian.

,AUTHOR.COLO.13098 Page 2 Tuesday, August 22, 2006 4:53 PM

	Table of Contents
	Preface
	Audience
	Scope of This Book
	Conventions
	Using Code Examples
	Safari® Enabled
	How to Contact Us
	Acknowledgments

	I
	Introduction
	Unix in the 21st Century
	Obtaining Compilers
	Solaris
	GNU/Linux
	Mac OS X

	Building Software
	What’s in the Quick Reference
	Beginner’s Guide
	Communication
	Comparisons
	File Management
	Miscellaneous
	Printing (BSD Commands)
	Printing (System V Commands)
	Programming
	Searching
	Shells
	Shell Programming
	Storage
	System Status
	Text Processing

	Solaris: Standard Compliant Programs

	Unix Commands
	Introduction
	Finding Commands on Solaris
	Finding Commands on GNU/Linux and Mac OS X

	Alphabetical Summary of Common Commands
	aclocal
	apropos
	ar
	as
	at
	atq
	atrm
	autoconf
	autoheader
	automake
	awk
	banner
	basename
	bash
	batch
	bc
	biff
	bison
	bzip2
	cal
	calendar
	cancel
	cat
	cc
	cd
	chgrp
	chmod
	chown
	cksum
	clear
	cmp
	comm
	cp
	cpio
	crontab
	csh
	csplit
	ctags
	curl
	cut
	date
	dc
	dd
	df
	diff
	diff3
	dig
	dirname
	dos2unix
	du
	echo
	ed
	egrep
	eject
	emacs
	env
	etags
	evim
	ex
	expand
	expr
	factor
	false
	fdformat
	fgrep
	file
	find
	finger
	flex
	fmt
	ftp
	g++
	gcc
	gcore
	gdb
	getconf
	getopts
	gettext
	ghostscript
	gprof
	grep
	groff
	groups
	gs
	gunzip
	gzcat
	gzip
	head
	hexdump
	hostname
	iconv
	id
	info
	join
	kill
	ksh
	ld
	ldd
	less
	lex
	link
	ln
	locale
	locate
	logger
	login
	logname
	look
	lp
	lpq
	lpr
	lprm
	lpstat
	ls
	m4
	mail
	mailx
	make
	man
	mesg
	mkdir
	mkisofs
	mktemp
	more
	mount
	msgfmt
	mv
	nawk
	nice
	nl
	nm
	nohup
	nroff
	od
	passwd
	paste
	patch
	pathchk
	pax
	perl
	pr
	printenv
	printf
	ps
	pwd
	python
	r Commands
	rcs
	reset
	rm
	rmdir
	rsync
	samba
	scp
	screen
	script
	sdiff
	sed
	sftp
	sh
	size
	sleep
	soelim
	sort
	spell
	split
	ssh
	ssh-add
	ssh-agent
	ssh-keygen
	strings
	strip
	stty
	su
	tail
	talk
	tar
	tcsh
	tee
	telnet
	test
	time
	touch
	tr
	troff
	true
	tset
	tty
	type
	umask
	uname
	umount
	unexpand
	uniq
	units
	unix2dos
	unzip
	uptime
	users
	uudecode
	vi
	view
	vim
	vimdiff
	w
	wait
	wc
	whatis
	which
	who
	whoami
	xargs
	xgettext
	yacc
	zcat
	zip
	zipinfo

	Alphabetical Summary of Solaris Commands
	cde
	cdrw
	chkey
	decrypt
	digest
	dircmp
	dis
	encrypt
	enhance
	filesync
	gpatch
	keylogin
	keylogout
	line
	listusers
	mac
	mount
	nawk
	openwin
	page
	ps
	rksh
	setpgrp
	sotruss
	timex
	truss
	umount
	vacation
	volcheck
	whocalls

	Alphabetical Summary of GNU/Linux Commands
	aspell
	cdda2wav
	cdparanoia
	cdrdao
	cdrecord
	dir
	dircolors
	dvdrecord
	gawk
	gettextize
	igawk
	ispell
	ltrace
	lynx
	mac2unix
	md5sum
	mount
	mutt
	ooffice
	pdksh
	ps
	rename
	seq
	sha1sum
	shred
	skill
	slocate
	splint
	strace
	umount
	watch
	wget
	xmlto

	Alphabetical Summary of Mac OS X Commands
	apply
	chflags
	chfn
	chpass
	chsh
	defaults
	developer
	ditto
	lam
	leave
	mount
	nano
	open-x11
	pbcopy
	pbpaste
	pico
	ps
	pstopdf
	pythonw
	say
	shar
	shlock
	srm
	umount

	Alphabetical Summary of Java Commands
	appletviewer
	apt
	jar
	jarsigner
	java
	javac
	javadoc
	javah
	javap
	jdb
	keytool
	rmic
	rmid
	rmiregistry

	The Unix Shell: An Overview
	Introduction to the Shell
	Purpose of the Shell
	Interactive Use
	Customization of Your Unix Session
	Programming

	Shell Flavors
	Which Shell Do I Want?

	Shell Source Code URLs
	Common Features
	Differing Features

	The Bash and Korn Shells
	Overview of Features
	Invoking the Shell
	Options
	Common options
	Bash options

	Arguments

	Syntax
	Special Files
	Filename Metacharacters
	Examples

	Quoting
	Examples

	Command Forms
	Examples

	Redirection Forms
	Simple redirection
	Redirection using file descriptors
	Multiple redirection
	Examples

	Coprocesses
	Examples

	Functions
	Variables
	Variable Substitution
	Examples

	Built-in Shell Variables
	Other Shell Variables
	Arrays
	Discipline Functions (ksh93 Only)
	Special Prompt Strings

	Arithmetic Expressions
	Operators
	Built-in Mathematical Functions (ksh93 Only)
	Examples

	Command History
	Line-Edit Mode
	Common editing keystrokes

	The fc and hist Commands
	Examples

	Programmable Completion (Bash Only)
	Examples

	Job Control
	Command Execution
	Restricted Shells
	Built-in Commands (Bash and Korn Shells)
	!
	#
	#!shell
	:
	.
	[[�]]
	name�(�)
	alias
	autoload
	bind
	bg
	break
	builtin
	builtin
	caller
	case
	cd
	command
	compgen
	complete
	continue
	declare
	dirs
	disown
	disown
	do
	done
	echo
	echo
	enable
	esac
	eval
	exec
	exit
	export
	false
	fc
	fc
	fg
	fi
	for
	for
	function
	functions
	getconf
	getopts
	hash
	hash
	help
	hist
	history
	history
	if
	integer
	jobs
	kill
	let
	local
	login
	logout
	nameref
	nohup
	popd
	print
	printf
	pwd
	pushd
	r
	read
	readonly
	redirect
	return
	select
	set
	shopt
	shift
	sleep
	source
	stop
	suspend
	test
	time
	times
	times
	trap
	true
	type
	type
	typeset
	ulimit
	umask
	unalias
	unset
	until
	wait
	whence
	while
	filename

	tcsh: An Extended C Shell
	Overview of Features
	Invoking the Shell
	Options
	Arguments

	Syntax
	Special Files
	Filename Metacharacters
	Examples

	Quoting
	Examples

	Command Forms
	Examples

	Redirection Forms
	Simple redirection
	Multiple redirection
	Examples

	Variables
	Variable Substitution
	Examples

	Variable Modifiers
	Examples using pathname modifiers
	Examples using quoting modifiers

	Predefined Shell Variables
	Formatting for the Prompt Variable
	Sample .tcshrc File
	Environment Variables

	Expressions
	Operators
	Assignment operators
	Arithmetic operators
	Bitwise and logical operators
	Comparison operators
	File inquiry operators

	Examples

	Command History
	Command Substitution
	Command Substitution Examples
	Word Substitution
	Word Substitution Examples
	History Modifiers
	Printing, substitution, and quoting
	Truncation

	History Modifier Examples
	Special Aliases
	Examples

	Command-Line Manipulation
	Completion
	Related Shell Variables
	Related Command-Line Editor Commands
	Related Shell Built-ins
	Command-Line Editing
	Emacs mode
	vi mode

	Job Control
	Built-in Commands
	@
	#
	#!
	:
	alias
	alloc
	bg
	bindkey
	break
	breaksw
	built-ins
	bye
	case
	cd
	chdir
	complete
	continue
	default
	dirs
	echo
	echotc
	else
	end
	endif
	endsw
	eval
	exec
	exit
	fg
	filetest
	foreach
	glob
	goto
	hashstat
	history
	hup
	if
	jobs
	kill
	limit
	log
	login
	logout
	ls-F
	newgrp
	nice
	nohup
	notify
	onintr
	popd
	printenv
	pushd
	rehash
	repeat
	sched
	set
	setenv
	settc
	setty
	shift
	source
	stop
	suspend
	switch
	telltc
	termname
	time
	umask
	unalias
	uncomplete
	unhash
	unlimit
	unset
	unsetenv
	wait
	watchlog
	where
	which
	while

	Package Management
	Linux Package Management
	The Red Hat Package Manager
	RPM Package Concepts
	The rpm Command
	General options
	Install, upgrade, and freshen options
	Query options
	Uninstall options
	Verify options
	Database rebuild options
	Signature check options
	Miscellaneous options
	FTP/HTTP options

	RPM Examples
	The rpmbuild Command
	rpmbuild options

	Yum: Yellowdog Updater Modified
	The yum Command
	General options

	Yum Command Summary
	check-update
	clean
	generate-rss
	groupinfo
	groupinstall
	grouplist
	groupremove
	groupupdate
	info
	install
	list
	localinstall
	localupdate
	makecache
	provides
	remove
	search
	update
	upgrade
	whatprovides

	up2date: Red Hat Update Agent
	Options

	The Debian Package Manager
	Files
	Package Priorities
	Package and Selection States
	Package Flags
	Scripts
	Debian Package Manager Command Summary
	apt-cache
	apt-cdrom
	apt-config
	apt- extracttemplates
	apt-ftparchive
	apt-get
	apt-sortpkgs
	aptitude
	dpkg
	dpkg-deb
	dpkg-query
	dpkg-split
	dselect
	synaptic

	Mac OS X Package Management
	Fink and Fink Commander
	The GNU Mac OS X Public Archive
	Building from Source

	Solaris Package Management
	Solaris Package Management Command Summary
	installf
	pkgadd
	pkgadm
	pkgask
	pkgchk
	pkginfo
	pkgmk
	pkgparam
	pkgproto
	pkgrm
	removef

	II
	Pattern Matching
	Filenames Versus Patterns
	Metacharacters
	Search Patterns
	Replacement Patterns

	Metacharacters, Listed by Unix Program
	Examples of Searching
	Examples of Searching and Replacing

	The Emacs Editor
	Conceptual Overview
	Modes
	Buffer and Window
	Point and Mark
	Kill and Yank
	Notes on the Tables
	Absolutely Essential Commands

	Command-Line Syntax
	Summary of Commands by Group
	File-Handling Commands
	Cursor-Movement Commands
	Deletion Commands
	Paragraphs and Regions
	Stopping and Undoing Commands
	Transposition Commands
	Search Commands
	Capitalization Commands
	Word-Abbreviation Commands
	Buffer-Manipulation Commands
	Window Commands
	Special Shell Characters
	Indentation Commands
	Centering Commands
	Macro Commands
	Basic Indentation Commands
	Detail Information Help Commands
	Help Commands

	Summary of Commands by Key
	Control-Key Sequences
	Meta-Key Sequences

	Summary of Commands by Name

	The vi, ex, and vim Editors
	Conceptual Overview
	Command-Line Syntax
	Command-Line Options

	Review of vi Operations
	Command Mode
	Insert Mode
	Syntax of vi Commands
	Examples
	Visual mode (vim only)

	Status-Line Commands

	vi Commands
	Movement Commands
	Character
	Text
	Lines
	Screens
	Searches
	Line numbering
	Marks

	Insert Commands
	Edit Commands
	Changing and deleting text
	Copying and moving

	Saving and Exiting
	Accessing Multiple Files
	Window Commands (vim)
	Interacting with the System
	Macros
	Miscellaneous Commands

	vi Configuration
	The :set Command
	Options Used by :set
	Example .exrc File

	ex Basics
	Syntax of ex Commands
	Addresses
	Address Symbols
	Options

	Alphabetical Summary of ex Commands
	abbreviate
	append
	args
	bdelete
	buffer
	buffers
	cd
	center
	change
	close
	copy
	delete
	edit
	file
	fold
	foldclose
	foldopen
	global
	hide
	insert
	join
	jumps
	k
	left
	list
	map
	mark
	marks
	mkexrc
	move
	new
	next
	nohlsearch
	number
	only
	open
	preserve
	previous
	print
	put
	qall
	quit
	read
	read
	recover
	redo
	resize
	rewind
	right
	sbnext
	sbuffer
	set
	shell
	snext
	source
	split
	sprevious
	stop
	substitute
	suspend
	sview
	t
	tag
	tags
	unabbreviate
	undo
	unhide
	unmap
	v
	version
	view
	visual
	visual
	vsplit
	wall
	wnext
	write
	write
	wq
	wqall
	X
	xit
	yank
	z
	&
	@
	=
	!
	<�>
	~
	address
	ENTER

	The sed Editor
	Conceptual Overview
	Typical Uses of sed
	sed Operation

	Command-Line Syntax
	Standard Options
	GNU sed Options

	Syntax of sed Commands
	Pattern Addressing
	Examples
	GNU sed Regular Expression Extensions

	Group Summary of sed Commands
	Basic Editing
	Line Information
	Input/Output Processing
	Yanking and Putting
	Branching Commands
	Multiline Input Processing

	Alphabetical Summary of sed Commands
	#
	:
	=
	a
	b
	c
	d
	D
	e
	g
	G
	h
	H
	i
	l
	n
	N
	p
	P
	q
	Q
	r
	R
	s
	t
	T
	v
	w
	W
	x
	y

	The awk Programming Language
	Conceptual Overview
	Command-Line Syntax
	Standard Options
	Important gawk Options

	Patterns and Procedures
	Patterns
	Procedures
	Simple Pattern-Action Examples

	Built-in Variables
	Operators
	Variable and Array Assignment
	Escape Sequences
	Octal and Hexadecimal Constants in gawk

	User-Defined Functions
	Gawk-Specific Features
	Coprocesses and Sockets
	Profiling
	File Inclusion
	Internationalization

	Implementation Limits
	Group Listing of awk Functions and Commands
	Alphabetical Summary of awk Functions and�Commands
	#
	and
	asort
	asorti
	atan2
	bindtextdomain
	break
	close
	compl
	continue
	cos
	dcgettext
	dcngettext
	delete
	do
	exit
	exp
	extension
	fflush
	for
	for
	function
	gensub
	getline
	gsub
	if
	index
	int
	length
	log
	lshift
	match
	mktime
	next
	nextfile
	or
	print
	printf
	rand
	return
	rshift
	sin
	split
	sprintf
	sqrt
	srand
	strftime
	strtonum
	sub
	substr
	system
	systime
	tolower
	toupper
	while
	xor

	Output Redirections
	printf Formats

	Source Code

	III
	Source Code Management: An�Overview
	Introduction and Terminology
	Usage Models
	Unix Source Code Management Systems
	Other Source Code Management Systems

	The Revision Control System
	Overview of Commands
	Basic Operation
	General RCS Specifications
	Keyword Substitution
	Keywords
	Example Values
	Revision Numbering
	Specifying the Date
	Specifying States
	Standard Options and Environment Variables

	Alphabetical Summary of Commands
	ci
	co
	ident
	merge
	rcs
	rcsclean
	rcsdiff
	rcsfreeze
	rcsmerge
	rlog

	The Concurrent Versions System
	Conceptual Overview
	CVS Wrappers
	Stickiness

	Command-Line Syntax and Options
	cvs Options
	Common Subcommand Options

	Dot Files
	Environment Variables
	Client Environment Variables
	Server Environment Variables

	Keywords and Keyword Modes
	Dates
	Legal Date Formats
	ISO 8601
	RFC 822 and RFC 1123

	Legal Date Keywords
	Time Zones

	CVSROOT Variables
	Environment Variables in CVSROOT Files
	Internal Variables in CVSROOT Files
	Shell Variables in CVSROOT Files

	Alphabetical Summary of Commands
	add
	admin
	annotate
	checkout
	commit
	diff
	edit
	editors
	export
	history
	import
	init
	kserver
	log
	login
	logout
	pserver
	rannotate
	rdiff
	release
	remove
	rlog
	rtag
	server
	status
	tag
	unedit
	update
	version
	watch
	watchers

	The Subversion Version Control System
	Conceptual Overview
	Basic Version Control Operations
	Building a Better CVS
	Converting a Repository from CVS to Subversion
	Special File Properties

	Obtaining Subversion
	Subversion Releases
	A View Down the Road
	Source Code

	Using Subversion: A Quick Tour
	The Subversion Command Line Client: svn
	svn Options
	svn Subcommands
	add
	blame
	cat
	checkout
	cleanup
	commit
	copy
	delete
	diff
	export
	help
	import
	info
	list
	log
	merge
	mkdir
	move
	propdel
	propedit
	propget
	proplist
	propset
	resolved
	revert
	status
	switch
	update

	Repository Administration: svnadmin
	svnadmin Options
	svnadmin Subcommands
	create
	deltify
	dump
	help
	hotcopy
	list-dblogs
	list-unused- dblogs
	load
	lstxns
	recover
	rmtxns
	setlog
	verify

	Examining the Repository: svnlook
	svnlook Options
	svnlook Subcommands
	author
	cat
	changed
	date
	diff
	dirs-changed
	help
	history
	info
	log
	propget
	proplist
	tree
	uuid
	youngest

	Providing Remote Access: svnserve
	svnserve Options

	Other Subversion Components
	svndumpfilter
	svnversion

	The GNU make Utility
	Conceptual Overview
	Command-Line Syntax
	Options

	Makefile Lines
	Special Dependencies
	Conditional Input

	Macros
	Creating and Using Macros
	Defining macros
	Macro values
	Exporting macros
	Overriding command-line macros

	Internal Macros
	Macro Modifiers
	Macros with Special Handling
	Text Manipulation with Macros and Functions

	Special Target Names
	Writing Command Lines

	The GDB Debugger
	Conceptual Overview
	Source Code Locations

	Command-Line Syntax
	Initialization Files
	The .gdbinit File
	The .inputrc File

	GDB Expressions
	The Value History
	Convenience Variables and Machine Registers
	Special Expressions

	The GDB Text User Interface
	Group Listing of GDB Commands
	Aliases for Other Commands
	Breakpoints
	Examining Data
	Controlling and Examining Files
	Running a Program
	Examining the Stack
	Status Inquiries
	Support Facilities
	Text User Interface Commands
	Frequently Used Commands

	Summary of set and show Commands
	annotate
	architecture
	args
	auto-solib-add
	auto-solib-limit
	backtrace
	breakpoint
	can-use-hw- watchpoints
	case-sensitive
	coerce-float-to- double
	commands
	complaints
	confirm
	convenience
	copying
	cp-abi
	debug-file- directory
	demangle-style
	directories
	disassembly- flavor
	editing
	environment
	exec-done- display
	extension- language
	follow-fork- mode
	gnutarget
	height
	history
	input-radix
	language
	listsize
	logging
	max-user-call- depth
	opaque-type- resolution
	osabi
	output-radix
	overload- resolution
	pagination
	paths
	print
	prompt
	radix
	scheduler- locking
	solib-absolute- prefix
	solib-search- path
	step-mode
	stop-on-solib- events
	symbol- reloading
	trust-readonly- sections
	tui
	values
	variable
	verbose
	version
	warranty
	watchdog
	width
	write

	Summary of the info Command
	Alphabetical Summary of GDB Commands
	add-symbol-file
	advance
	apropos
	attach
	awatch
	backtrace
	break
	call
	catch
	cd
	clear
	commands
	complete
	condition
	continue
	core-file
	define
	delete
	detach
	directory
	disable
	disassemble
	display
	document
	dont-repeat
	down
	down-silently
	echo
	edit
	else
	enable
	end
	exec-file
	fg
	file
	finish
	focus
	forward-search
	frame
	generate-core- file
	handle
	hbreak
	help
	if
	ignore
	inspect
	info
	jump
	kill
	layout
	list
	macro
	make
	mem
	next
	nexti
	nosharedlibrary
	output
	path
	print
	print-object
	printf
	ptype
	pwd
	quit
	rbreak
	refresh
	return
	reverse-search
	run
	rwatch
	search
	section
	select-frame
	set
	sharedlibrary
	shell
	show
	signal
	silent
	source
	step
	stepi
	symbol-file
	tbreak
	tcatch
	thbreak
	thread
	tty
	tui
	undisplay
	unset
	until
	up
	up-silently
	update
	watch
	whatis
	where
	while
	winheight
	x

	Writing Manual Pages
	Introduction
	Overview of nroff/troff
	Command-Line Invocation
	Example

	Conceptual Overview
	Requests and macros
	Specifying measurements
	Requests that cause a line break
	Embedded formatting controls

	Outline of Useful Requests
	Useful Escape Sequences
	Special Characters

	Alphabetical Summary of man Macros
	.B
	.BI
	.BR
	.DT
	.HP
	.I
	.IB
	.IP
	.IR
	.LP
	.P
	.PD
	.PP
	.RB
	.RE
	.RI
	.RS
	.SB
	.SH
	.SM
	.SS
	.TH
	.TP

	Predefined Strings
	Internal Names
	Sample Document

	IV
	ISO 8859-1 (Latin-1) Character�Set
	Bibliography
	Unix Descriptions and Programmer’s Manuals
	Unix Internals
	System and Network Administration
	Programming with the Unix Mindset
	Programming Languages
	TCP/IP Networking
	Software Development
	Emacs
	Standards
	O’Reilly Books

	Index

