

Network Troubleshooting Tools

Network Troubleshooting Tools

Joseph D. Sloan

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Network Troubleshooting Tools
by Joseph D. Sloan

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editors: Robert Denn and Mike Loukides

Production Editor: Catherine Morris

Cover Designer: Emma Colby

Printing History:

August 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The association between the image of
a basilisk and network troubleshooting is a trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Sloan, Joe.
Network Troubleshooting Tools / Joe Sloan.--1st ed. p. cm.
Includes bibliographical references and index.
ISBN 0-596-00186-X
1. Computer networks--Maintenance and repair 2. Computer networks--Management.
I. Title.

TK5105.5 .S557 2001
004.6--dc21 2001035422

[C] [3/02]

v
Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Table of Contents

Preface ... ix

1. Network Management and Troubleshooting 1
General Approaches to Troubleshooting ... 2

Need for Troubleshooting Tools ... 5

Troubleshooting and Management ... 6

2. Host Configurations ... 18
Utilities .. 20

System Configuration Files .. 35

Microsoft Windows .. 42

3. Connectivity Testing .. 45
Cabling .. 45

Testing Adapters .. 52

Software Testing with ping .. 53

Microsoft Windows .. 69

4. Path Characteristics ... 71
Path Discovery with traceroute ... 71

Path Performance ... 79

Microsoft Windows .. 97

5. Packet Capture ... 100
Traffic Capture Tools ... 100

Access to Traffic ... 101

vi Table of Contents

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Capturing Data ... 103

tcpdump ... 104

Analysis Tools .. 118

Packet Analyzers .. 124

Dark Side of Packet Capture ... 129

Microsoft Windows .. 131

6. Device Discovery and Mapping .. 134
Troubleshooting Versus Management .. 134

Device Discovery ... 137

Device Identification .. 144

Scripts ... 149

Mapping or Diagramming ... 151

Politics and Security ... 156

Microsoft Windows .. 158

7. Device Monitoring with SNMP .. 160
Overview of SNMP ... 160

SNMP-Based Management Tools ... 165

Non-SNMP Approaches ... 190

Microsoft Windows .. 190

8. Performance Measurement Tools ... 194
What, When, and Where ... 194

Host-Monitoring Tools ... 196

Point-Monitoring Tools .. 197

Network-Monitoring Tools .. 205

RMON ... 216

Microsoft Windows .. 219

9. Testing Connectivity Protocols ... 224
Packet Injection Tools ... 224

Network Emulators and Simulators ... 235

Microsoft Windows .. 238

10. Application-Level Tools ... 239
Application-Protocols Tools .. 239

Microsoft Windows .. 254

Table of Contents vii

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11. Miscellaneous Tools ... 255
Communications Tools .. 255

Log Files and Auditing ... 260

NTP ... 267

Security Tools ... 269

Microsoft Windows .. 270

12. Troubleshooting Strategies .. 273
Generic Troubleshooting ... 273

Task-Specific Troubleshooting .. 277

A. Software Sources ... 289

B. Resources and References ... 305

Index .. 317

ix
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface

Preface

This book is not a general introduction to network troubleshooting. Rather, it is
about one aspect of troubleshooting—information collection. This book is a tuto-
rial introduction to tools and techniques for collecting information about com-
puter networks. It should be particularly useful when dealing with network
problems, but the tools and techniques it describes are not limited to trouble-
shooting. Many can and should be used on a regular basis regardless of whether
you are having problems.

Some of the tools I have selected may be a bit surprising to many. I strongly
believe that the best approach to troubleshooting is to be proactive, and the tools I
discuss reflect this belief. Basically, if you don’t understand how your network
works before you have problems, you will find it very difficult to diagnose prob-
lems when they occur. Many of the tools described here should be used before
you have problems. As such, these tools could just as easily be classified as net-
work management or network performance analysis tools.

This book does not attempt to catalog every possible tool. There are simply too
many tools already available, and the number is growing too rapidly. Rather, this
book focuses on the tools that I believe are the most useful, a collection that
should help in dealing with almost any problem you see. I have tried to include
pointers to other relevant tools when there wasn’t space to discuss them. In many
cases, I have described more than one tool for a particular job. It is extremely rare
for two tools to have exactly the same features. One tool may be more useful than
another, depending on circumstances. And, because of the differences in oper-
ating systems, a specific tool may not be available on every system. It is worth
knowing the alternatives.

x Preface

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The book is about freely available Unix tools. Many are open source tools cov-
ered by GNU- or BSD-style licenses. In selecting tools, my first concern has been
availability. I have given the highest priority to the standard Unix utilities. Next in
priority are tools available as packages or ports for FreeBSD or Linux. Tools
requiring separate compilation or available only as binaries were given a lower
priority since these may be available on fewer systems. In some cases, PC-only
tools and commercial tools are noted but are not discussed in detail. The bulk of
the book is specific to Ethernet and TCP/IP, but the general approach and many of
the tools can be used with other technologies.

While this is a book about Unix tools, at the end of most of the chapters I have
included a brief section for Microsoft Windows users. These sections are included
since even small networks usually include a few computers running Windows.
These sections are not, even in the wildest of fantasies, meant to be definitive. They
are provided simply as starting points—a quick overview of what is available.

Finally, this book describes a wide range of tools. Many of these tools are
designed to do one thing and are often overlooked because of their simplicity.
Others are extremely complex tools or sets of tools. I have not attempted to pro-
vide a comprehensive treatment for each tool discussed. Some of these tools can
be extremely complex when used to their fullest. Some have manuals and other
documentation that easily exceed the size of this book. Most have additional docu-
mentation that you will want to retrieve once you begin using them.

My goal is to make you aware of the tools and to provide you with enough infor-
mation that you can decide which ones may be the most useful to you and in
what context so that you can get started using the tools. Each chapter centers on a
collection of related tasks or problems and tools useful for dealing with these
tasks. The discussion is limited to features that are relevant to the problem being
discussed. Consequently, the same tool may be discussed in several places
throughout the book.

Please be warned: the suitability or behavior of these tools on your system cannot
be guaranteed. While the material in this book is presented in good faith, neither
the author nor O’Reilly & Associates makes any explicit or implied warranty as to
the behavior or suitability of these tools. We strongly urge you to assess and eval-
uate these tool as appropriate for your circumstances.

Audience
This book is written primarily for individuals new to network administration. It
should also be useful to those of you who have inherited responsibility for existing
systems and networks set up by others. This book is designed to help you acquire
the additional information you need to do your job.

Preface xi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unfortunately, the book may also appeal to crackers. I truly regret this and wish
there were a way to present this material to limit its worth to crackers. I never met
a system manager or network administrator who wasn’t overworked. Time
devoted to security is time stolen from providing new services to users or
improving existing services. There simply is no valid justification for cracking. I
can only hope that the positive uses for the information I provide will outweigh
the inevitable malicious uses to which it may be put. I would feel much better if
crackers would forego buying this book.

In writing this book, I attempted to write the sort of book I often wished I had
when I was learning. Certainly, there are others who are more knowledgeable and
better prepared to write this book. But they never seemed to get around to it.
They have written pieces of this book, a chapter here or a tutorial there, for which
I am both immensely thankful and greatly indebted.

I see this book as a work in progress. I hope that the response to it will make
future expanded editions possible. You can help by sending me your comments
and corrections. I would particularly like to hear about new tools and about how
you have used the tools described here to solve your problems. Perhaps some of
the experts who should have written this book will share their wisdom! While I
can’t promise to respond to your email, I will read it. You can contact me through
O’Reilly Book Support at booktech@oreilly.com.

Organization
There are 12 chapters and 2 appendixes in this book. The book begins with indi-
vidual network hosts, discusses network connections next, and then considers net-
works as a whole.

It is unlikely that every chapter in the book will be of equal interest to you. The
following outline will give you an overview of the book so you can select the
chapters of greatest interest and either skim or skip over the rest.

Chapter 1, Network Management and Troubleshooting
This chapter attempts to describe network management and troubleshooting in
an administrative context. It discusses the need for network analysis and
probing tools, their appropriate and inappropriate uses, professionalism in
general, documentation practices, and the economic ramifications of trouble-
shooting. If you are familiar with the general aspects of network administra-
tion, you may want to skip this chapter.

Chapter 2, Host Configurations
Chapter 2 is a review of tools and techniques used to configure or deter-
mine the configuration of a networked host. The primary focus is on built-in

xii Preface

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

utilities. If you are well versed in Unix system administration, you can safely
skip this chapter.

Chapter 3, Connectivity Testing
Chapter 3 describes tools and techniques to test basic point-to-point and end-
to-end network connectivity. It begins with a brief discussion of cabling. A dis-
cussion of ping, ping variants, and problems with ping follows. Even if you
are very familiar with ping, you may want to skim over the discussion of the
ping variants.

Chapter 4, Path Characteristics
This chapter focuses on assessing the nature and quality of end-to-end con-
nections. After a discussion of traceroute, a tool for decomposing a path into
individual links, the primary focus is on tools that measure link performance.
This chapter covers some lesser known tools, so even a seasoned network
administrator may find a few useful tools and tricks.

Chapter 5, Packet Capture
This chapter describes tools and techniques for capturing traffic on a network,
primarily tcpdump and ethereal, although a number of other utilities are briefly
mentioned. Using this chapter requires the greatest understanding of Internet
protocols. But, in my opinion, this is the most important chapter in the book.
Skip it at your own risk.

Chapter 6, Device Discovery and Mapping
This chapter begins with a general discussion of management tools. It then
focuses on a few tools, such as nmap and arpwatch, that are useful in piecing
together information about a network. After a brief discussion of network
management extensions provided for Perl and Tcl/Tk, it concludes with a dis-
cussion of route and network discovery using tkined.

Chapter 7, Device Monitoring with SNMP
Chapter 7 focuses on device monitoring. It begins with a brief review of
SNMP. Next, a discussion of NET SNMP (formerly UCD SNMP) demonstrates
the basics of SNMP. The chapter continues with a brief description of using
scotty to collect SNMP information. Finally, it describes additional features of
tkined, including network monitoring. In one sense, this chapter is a hands-on
tutorial for using SNMP. If you are not familiar with SNMP, you will definitely
want to read this chapter.

Chapter 8, Performance Measurement Tools
This chapter is concerned with monitoring and measuring network behavior
over time. The stars of this chapter are ntop and mrtg. I also briefly describe
using SNMP tools to retrieve RMON data. This chapter assumes that you have
a thorough knowledge of SNMP. If you don’t, go back and read Chapter 7.

Preface xiii

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9, Testing Connectivity Protocols
This chapter describes several types of tools for examining the behavior of
low-level connectivity protocols, protocols at the data link and network levels,
including tools for custom packet generation and load testing. The chapter
concludes with a brief discussion of emulation and simulation tools. You
probably will not use these tools frequently and can safely skim this chapter
the first time through.

Chapter 10, Application-Level Tools
Chapter 10 looks at several of the more common application-level protocols
and describes tools that may be useful when you are faced with a problem
with one of these protocols. Unless you currently face an application-level
problem, you can skim this chapter for now.

Chapter 11, Miscellaneous Tools
This chapter describes a number of different tools that are not really network
troubleshooting or management tools but rather are tools that can ease your
life as a network administrator. You’ll want to read the sections in this chapter
that discuss tools you aren’t already familiar with.

Chapter 12, Troubleshooting Strategies
When dealing with a complex problem, no single tool is likely to meet all
your needs. This last chapter attempts to show how the different tools can be
used together to troubleshoot and analyze performance. No new tools are
introduced in this chapter.

Arguably, this chapter should have come at the beginning of the book. I
included it at the end so that I could name specific tools without too many
forward references. If you are familiar with general troubleshooting tech-
niques, you can safely skip this chapter. Alternately, if you need a quick
review of troubleshooting techniques and don’t mind references to tools you
aren’t familiar with, you might jump ahead to this chapter.

Appendix A, Software Sources
This appendix begins with a brief discussion of installing software and gen-
eral software sources. This discussion is followed by an alphabetical listing of
those tools mentioned in this book, with Internet addresses when feasible.
Beware, many of the URLs in this section will be out of date by the time you
read this. Nonetheless, these URLs will at least give you a starting point on
where to begin looking.

Appendix B, Resources and References
This appendix begins with a discussion of different sources of information.
Next, it discusses books by topic, followed by an alphabetical listing of those
books mentioned in this book.

xiv Preface

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Conventions
This book uses the following typographical conventions:

Italics
For program names, filenames, system names, email addresses, and URLs and
for emphasizing new terms when first defined

Constant width
In examples showing the output from programs, the contents of files, or lit-
eral information

Constant-width italics
General syntax and items that should be replaced in expressions

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Acknowledgments
This book would not have been possible without the help of many people. First
on the list are the toolsmiths who created the tools described here. The number
and quality of the tools that are available is truly remarkable. We all owe a consid-
erable debt to the people who selflessly develop these tools.

I have been very fortunate that many of my normal duties have overlapped signifi-
cantly with tasks related to writing this book. These duties have included setting
up and operating Lander University’s networking laboratory and evaluating tools
for use in teaching. For their help with the laboratory, I gratefully acknowledge
Lander’s Department of Computing Services, particularly Anthony Aven, Mike
Henderson, and Bill Screws. This laboratory was funded in part by a National Sci-
ence Foundation grant, DUE–9980366. I gratefully acknowledge the support the
National Science Foundation has given to Lander. I have also benefited from con-
versations with the students and faculty at Lander, particularly Jim Crabtree. I

Preface xv

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

would never have gotten started on this project without the help and encourage-
ment of Jerry Wilson. Jerry, I owe you lunch (and a lot more).

This book has benefited from the help of numerous people within the O’Reilly
organization. In particular, the support given by Robert Denn, Mike Loukides, and
Rob Romano, to name only a few, has been exceptional. After talking with authors
working with other publishers, I consider myself very fortunate in working with
technically astute people from the start. If you are thinking about writing a tech-
nical book, O’Reilly is a publisher to consider.

The reviewers for this book have done an outstanding job. Thanks go to John
Archie, Anthony Aven, Jon Forrest, and Kevin and Diana Mullet. They cannot be
faulted for not turning a sow’s ear into a silk purse.

It seems every author always acknowledges his or her family. It has almost
become a cliché, but that doesn’t make it any less true. This book would not have
been possible without the support and patience of my family, who have endured
more that I should have ever asked them to endure. Thank you.

1
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1

1
Network Management

and Troubleshooting

The first step in diagnosing a network problem is to collect information. This
includes collecting information from your users as to the nature of the problems
they are having, and it includes collecting data from your network. Your success
will depend, in large part, on your efficiency in collecting this information and
on the quality of the information you collect. This book is about tools you can
use and techniques and strategies to optimize their use. Rather than trying to
cover all aspects of troubleshooting, this book focuses on this first crucial step,
data collection.

There is an extraordinary variety of tools available for this purpose, and more
become available daily. Very capable people are selflessly devoting enormous
amounts of time and effort to developing these tools. We all owe a tremendous
debt to these individuals. But with the variety of tools available, it is easy to be
overwhelmed. Fortunately, while the number of tools is large, data collection need
not be overwhelming. A small number of tools can be used to solve most prob-
lems. This book centers on a core set of freely available tools, with pointers to
additional tools that might be needed in some circumstances.

This first chapter has two goals. Although general troubleshooting is not the focus
of the book, it seems worthwhile to quickly review troubleshooting techniques.
This review is followed by an examination of troubleshooting from a broader
administrative context—using troubleshooting tools in an effective, productive, and
responsible manner. This part of the chapter includes a discussion of documenta-
tion practices, personnel management and professionalism, legal and ethical con-
cerns, and economic considerations. General troubleshooting is revisited in
Chapter 12, once we have discussed available tools. If you are already familiar
with these topics, you may want to skim or even skip this chapter.

2 Chapter 1: Network Management and Troubleshooting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

General Approaches to Troubleshooting
Troubleshooting is a complex process that is best learned through experience.
This section looks briefly at how troubleshooting is done in order to see how
these tools fit into the process. But while every problem is different, a key step is
collecting information.

Clearly, the best way to approach troubleshooting is to avoid it. If you never have
problems, you will have nothing to correct. Sound engineering practices, redun-
dancy, documentation, and training can help. But regardless of how well engi-
neered your system is, things break. You can avoid troubleshooting, but you can’t
escape it.

It may seem unnecessary to say, but go for the quick fixes first. As long as you
don’t fixate on them, they won’t take long. Often the first thing to try is resetting
the system. Many problems can be resolved in this way. Bit rot, cosmic rays, or the
alignment of the planets may result in the system entering some strange state from
which it can’t exit. If the problem really is a fluke, resetting the system may resolve
the problem, and you may never see it again. This may not seem very satisfying,
but you can take your satisfaction in going home on time instead.

Keep in mind that there are several different levels in resetting a system. For soft-
ware, you can simply restart the program, or you may be able to send a signal to
the program so that it reloads its initialization file. From your users’ perspective,
this is the least disruptive approach. Alternately, you might restart the operating
system but without cycling the power, i.e., do a warm reboot. Finally, you might
try a cold reboot by cycling the power.

You should be aware, however, that there can be some dangers in resetting a
system. For example, it is possible to inadvertently make changes to a system so
that it can’t reboot. If you realize you have done this in time, you can correct the
problem. Once you have shut down the system, it may be too late. If you don’t
have a backup boot disk, you will have to rebuild the system. These are, fortu-
nately, rare circumstances and usually happen only when you have been making
major changes to a system.

When making changes to a system, remember that scheduled maintenance may
involve restarting a system. You may want to test changes you have made,
including their impact on a system reset, prior to such maintenance to ensure that
there are no problems. Otherwise, the system may fail when restarted during the
scheduled maintenance. If this happens, you will be faced with the difficult task of
deciding which of several different changes are causing problems.

Resetting the system is certainly worth trying once. Doing it more than once is a
different matter. With some systems, this becomes a way of life. An operating

General Approaches to Troubleshooting 3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

system that doesn’t provide adequate memory protection will frequently become
wedged so that rebooting is the only option.* Sometimes you may want to limp
along resetting the system occasionally rather than dealing with the problem. In a
university setting, this might get you through exam week to a time when you can
be more relaxed in your efforts to correct the underlying problem. Or, if the system
is to be replaced in the near future, the effort may not be justified. Usually, how-
ever, when rebooting becomes a way of life, it is time for more decisive action.

Swapping components and reinstalling software is often the next thing to try. If you
have the spare components, this can often resolve problems immediately. Even if
you don’t have spares, switching components to see if the problem follows the
equipment can be a simple first test. Reinstalling software can be much more prob-
lematic. This can often result in configuration errors that will worsen problems. The
old, installed version of the software can make getting a new, clean installation
impossible. But if the install is simple or you have a clear understanding of exactly
how to configure the software, this can be a relatively quick fix.

While these approaches often work, they aren’t what we usually think of as trou-
bleshooting. You certainly don’t need the tools described in this book to do them.
Once you have exhausted the quick solutions, it is time to get serious. First, you
must understand the problem, if possible. Problems that are not understood are
usually not fixed, just postponed.

One standard admonition is to ask the question “has anything changed recently?”
Overwhelmingly, most problems relate to changes to a working system. If you can
temporarily change things back and the problem goes away, you have confirmed
your diagnosis.

Admittedly, this may not help with an installation where everything is new. But
even a new installation can and should be grown. Pieces can be installed and
tested. New pieces of equipment can then be added incrementally. When this
approach is taken, the question of what has changed once again makes sense.

Another admonition is to change only one thing at a time and then to test thor-
oughly after each change. This is certainly good advice when dealing with routine
failures. But this approach will not apply if you are dealing with a system failure.
(See the upcoming sidebar on system failures.) Also, if you do find something that
you know is wrong but fixing it doesn’t fix your problem, do you really want to
change it back? In this case, it is often better to make a note of the additional
changes you have made and then proceed with your troubleshooting.

A key element to successful debugging is to control the focus of your investiga-
tion so that you are really dealing with the problem. You can usually focus better

* Do you know what operating system I’m tactfully not naming?

4 Chapter 1: Network Management and Troubleshooting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

if you can break the problem into pieces. Swapping components, as mentioned
previously, is an example of this approach. This technique is known by several
names—problem decomposition, divide and conquer, binary search, and so on.
This approach is applicable to all kinds of troubleshooting. For example, when
your car won’t start, first decide whether you have an electrical or fuel supply
problem. Then proceed accordingly. Chapter 12 outlines a series of specific steps
you might want to consider.

System Failures
The troubleshooting I have described so far can be seen roughly as dealing
with normal failures (although there may be nothing terribly normal about
them). A second general class of problems is known as system failures. System
failures are problems that stem from the interaction of the parts of a complex
system in unexpected ways. They are most often seen when two or more sub-
systems fail at about the same time and in ways that interact. However, system
failures can result through interaction of subsystems without any ostensible
failure in any of the subsystems.

A classic example of a system failure can be seen in the movie China Syn-
drome. In one scene the reactor scrams, the pumps shut down, and the water-
level indicator on a strip-chart recorder sticks. The water level in the reactor
becomes dangerously low due to the pump shutdown, but the problem is not
recognized because the indicator gives misleading information. These two
near-simultaneous failures conceal the true state of the reactor.

System failures are most pernicious in systems with tight coupling between
subsystems and subsystems that are linked in nonlinear or nonobvious ways.
Debugging a system failure can be extremely difficult. Many of the more stan-
dard approaches simply don’t work. The strategy of decomposing the system
into subsystems becomes difficult, because the symptoms misdirect your
efforts. Moreover, in extreme cases, each subsystem may be operating cor-
rectly—the problem stems entirely from the unexpected interactions.

If you suspect you have a system failure, the best approach, when feasible, is
to substitute entire subsystems. Your goal should not be to look for a restored
functioning system, but to look for changes in the symptoms. Such changes
indicate that you may have found one of the subsystems involved. (Conversely,
if you are working with a problem and the symptoms change when a sub-
system is replaced, this is strong indication of a system failure.)

Unfortunately, if the problem stems from unexpected interaction of nonfailing
systems, even this approach will not work. These are extremely difficult prob-
lems to diagnose. Each problem must be treated as a unique, special problem.
But again, an important first step is collecting information.

Need for Troubleshooting Tools 5

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Need for Troubleshooting Tools
The best time to prepare for problems is before you have them. It may sound trite,
but if you don’t understand the normal behavior of your network, you will not be
able to identify anomalous behavior. For the proper management of your system,
you must have a clear understanding of the current behavior and performance of
your system. If you don’t know the kinds of traffic, the bottlenecks, or the growth
patterns for your network, then you will not be able to develop sensible plans. If
you don’t know the normal behavior, you will not be able to recognize a
problem’s symptoms when you see them. Unless you have made a conscious,
aggressive effort to understand your system, you probably don’t understand it. All
networks contain surprises, even for the experienced administrator. You only have
to look a little harder.

It might seem strange to some that a network administrator would need some of
the tools described in this book, and that he wouldn’t already know the details
that some of these tools provide. But there are a number of reasons why an
administrator may be quite ignorant of his network.

With the rapid growth of the Internet, turnkey systems seem to have grown in
popularity. A fundamental assumption of these systems is that they are managed
by an inexperienced administrator or an administrator who doesn’t want to be
bothered by the details of the system. Documentation is almost always minimal.
For example, early versions of Sun Microsystems’ Netra Internet servers, by default,
did not install the Unix manpages and came with only a few small manuals. Print
services were disabled by default.

This is not a condemnation of turnkey systems. They can be a real blessing to
someone who needs to go online quickly, someone who never wants to be both-
ered by such details, or someone who can outsource the management of her
system. But if at some later time she wants to know what her turnkey system is
doing, it may be up to her to discover that for herself. This is particularly likely if
she ever wants to go beyond the basic services provided by the system or if she
starts having problems.

Other nonturnkey systems may be customized, often heavily. Of course, all these
changes should be carefully documented. However, an administrator may inherit a
poorly documented system. (And, of course, sometimes we do this to ourselves.)
If you find yourself in this situation, you will need to discover (or rediscover) your
system for yourself.

In many organizations, responsibilities may be highly partitioned. One group may
be responsible for infrastructure such as wiring, another for network hardware,
and yet another for software. In some environments, particularly universities, net-

6 Chapter 1: Network Management and Troubleshooting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

works may be a distributed responsibility. You may have very little control, if any,
over what is connected to the network. This isn’t necessarily bad—it’s the way uni-
versities work. But rogue systems on your network can have annoying conse-
quences. In this situation, probably the best approach is to talk to the system
administrator or user responsible for the system. Often he will be only too happy
to discuss his configuration. The implications of what he is doing may have com-
pletely escaped him. Developing a good relationship with power users may give
you an extra set of eyes on your network. And, it is easier to rely on the system
administrator to tell you what he is doing than to repeatedly probe the network to
discover changes. But if this fails, as it sometimes does, you may have to resort to
collecting the data yourself.

Sometimes there may be some unexpected, unauthorized, or even covert changes
to your network. Well-meaning individuals can create problems when they try to
help you out by installing equipment themselves. For example, someone might try
installing a new computer on the network by copying the network configuration
from another machine, including its IP address. At other times, some “volunteer
administrator” simply has her own plans for your network.

Finally, almost to a person, network administrators must teach themselves as they
go. Consequently, for most administrators, these tools have an educational value
as well as an administrative value. They provide a way for administrators to learn
more about their networks. For example, protocol analyzers like ethereal provide
an excellent way to learn the inner workings of a protocol like TCP/IP. Often,
more than one of these reasons may apply. Whatever the reason, it is not unusual
to find yourself reading your configuration files and probing your systems.

Troubleshooting and Management
Troubleshooting does not exist in isolation from network management. How you
manage your network will determine in large part how you deal with problems. A
proactive approach to management can greatly simplify problem resolution. The
remainder of this chapter describes several important management issues. Coming
to terms with these issues should, in the long run, make your life easier.

Documentation

As a new administrator, your first step is to assess your existing resources and
begin creating new resources. Software sources, including the tools discussed in
this book, are described and listed in Appendix A. Other sources of information
are described in Appendix B.

Troubleshooting and Management 7

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The most important source of information is the local documentation created by
you or your predecessor. In a properly maintained network, there should be some
kind of log about the network, preferably with sections for each device. In many
networks, this will be in an abysmal state. Almost no one likes documenting or
thinks he has the time required to do it. It will be full of errors, out of date, and
incomplete. Local documentation should always be read with a healthy degree of
skepticism. But even incomplete, erroneous documentation, if treated as such, may
be of value. There are probably no intentional errors, just careless mistakes and
errors of omission. Even flawed documentation can give you some sense of the
history of the system. Problems frequently occur due to multiple conflicting
changes to a system. Software that may have been only partially removed can
have lingering effects. Homegrown documentation may be the quickest way to
discover what may have been on the system.

While the creation and maintenance of documentation may once have been
someone else’s responsibility, it is now your responsibility. If you are not happy
with the current state of your documentation, it is up to you to update it and
adopt policies so the next administrator will not be muttering about you the way
you are muttering about your predecessors.

There are a couple of sets of standard documentation that, at a minimum, you will
always want to keep. One is purchase information, the other a change log. Pur-
chase information includes sales information, licenses, warranties, service con-
tracts, and related information such as serial numbers. An inventory of equipment,
software, and documentation can be very helpful. When you unpack a system,
you might keep a list of everything you receive and date all documentation and
software. (A changeable rubber date stamp and ink pad can help with this last
task.) Manufacturers can do a poor job of distinguishing one version of software
and its documentation from the next. Dates can be helpful in deciding which ver-
sion of the documentation applies when you have multiple systems or upgrades.
Documentation has a way of ending up in someone’s personal library, never to be
seen again, so a list of what you should have can be very helpful at times.

Keep in mind, there are a number of ways software can enter your system other
than through purchase orders. Some software comes through CD-ROM subscrip-
tion services, some comes in over the Internet, some is bundled with the oper-
ating system, some comes in on a CD-ROM in the back of a book, some is brought
from home, and so forth. Ideally, you should have some mechanism to track soft-
ware. For example, for downloads from the Internet, be sure to keep a log
including a list identifying filenames, dates, and sources.

You should also keep a change log for each major system. Record every signifi-
cant change or problem you have with the system. Each entry should be dated.
Even if some entries no longer seem relevant, you should keep them in your log.

8 Chapter 1: Network Management and Troubleshooting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

For instance, if you have installed and later removed a piece of software on a
server, there may be lingering configuration changes that you are not aware of that
may come to haunt you years later. This is particularly true if you try to reinstall
the program but could even be true for a new program as well.

Beyond these two basic sets of documentation, you can divide the documentation
you need to keep into two general categories—configuration documentation and
process documentation. Configuration documentation statically describes a system.
It assumes that the steps involved in setting up the system are well understood
and need no further comments, i.e., that configuration information is sufficient to
reconfigure or reconstruct the system. This kind of information can usually be col-
lected at any time. Ironically, for that reason, it can become so easy to put off that
it is never done.

Process documentation describes the steps involved in setting up a device,
installing software, or resolving a problem. As such, it is best written while you are
doing the task. This creates a different set of collection problems. Here the stress
from the task at hand often prevents you from documenting the process.

The first question you must ask is what you want to keep. This may depend on
the circumstances and which tools you are using. Static configuration information
might include lists of IP addresses and Ethernet addresses, network maps, copies
of server configuration files, switch configuration settings such as VLAN parti-
tioning by ports, and so on.

When dealing with a single device, the best approach is probably just a simple
copy of the configuration. This can be either printed or saved as a disk file. This
will be a personal choice based on which you think is easiest to manage. You
don’t need to waste time prettying this up, but be sure you label and date it.

When the information spans multiple systems, such as a list of IP addresses, man-
agement of the data becomes more difficult. Fortunately, much of this information
can be collected automatically. Several tools that ease the process are described in
subsequent chapters, particularly in Chapter 6.

For process documentation, the best approach is to log and annotate the changes
as you make them and then reconstruct the process at a later time. Chapter 11
describes some of the common Unix utilities you can use to automate documenta-
tion. You might refer to this chapter if you aren’t familiar with utilities like tee,
script, and xwd.*

* Admittedly these guidelines are ideals. Does anyone actually do all of this documenting? Yes, while most
administrators probably don’t, some do. But just because many administrators don’t succeed in meeting
the ideal doesn’t diminish the importance of trying.

Troubleshooting and Management 9

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Management Practices

A fundamental assumption of this book is that troubleshooting should be proac-
tive. It is preferable to avoid a problem than have to correct it. Proper manage-
ment practices can help. While some of this section may, at first glance, seem
unrelated to troubleshooting, there are fundamental connections. Management
practices will determine what you can do and how you do it. This is true both for
avoiding problems and for dealing with problems that can’t be avoided. The
remainder of this chapter reviews some of the more important management issues.

Professionalism

To effectively administer a system requires a high degree of professionalism. This
includes personal honesty and ethical behavior. You should learn to evaluate
yourself in an honest, objective manner. (See the later sidebar “The Peter Prin-
ciple Revisited.”) It also requires that you conform to the organization’s mission
and culture. Your network serves some higher purpose within your organization.
It does not exist strictly for your benefit. You should manage the network with this
in mind. This means that everything you do should be done from the perspective
of a cost-benefit trade-off. It is too easy to get caught in the trap of doing some-
thing “the right way” at a higher cost than the benefits justify. Performance anal-
ysis is the key element.

The organization’s mind-set or culture will have a tremendous impact on how you
approach problems in general and the use of tools in particular. It will determine
which tools you can use, how you can use the tools, and, most important, what
you can do with the information you obtain. Within organizations, there is often a
battle between openness and secrecy. The secrecy advocate believes that details of
the network should be available only on a need-to-know basis, if then. She
believes, not without justification, that this enhances security. The openness advo-
cate believes that the details of a system should be open and available. This allows
users to adapt and make optimal use of the system and provides a review pro-
cess, giving users more input into the operation of the network.

Taken to an extreme, the secrecy advocate will suppress information that is
needed by the user, making a system or network virtually unusable. Openness,
taken to an extreme, will leave a network vulnerable to attack. Most people’s
views fall somewhere between these two extremes but often favor one position
over the other. I advocate prudent openness. In most situations, it makes no sense
to shut down a system because it might be attacked. And it is asinine not to pro-
vide users with the information they need to protect themselves. Openness among
those responsible for the different systems within an organization is absolutely
essential.

10 Chapter 1: Network Management and Troubleshooting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ego management

We would all like to think that we are irreplaceable, and that no one else could do
our jobs as well as we do. This is human nature. Unfortunately, some people take
steps to make sure this is true. The most obvious way an administrator may do this
is hide what he actually does and how his system works.

This can be done many ways. Failing to document the system is one approach—
leaving comments out of code or configuration files is common. The goal of such
an administrator is to make sure he is the only one who truly understands the
system. He may try to limit others access to a system by restricting accounts or
access to passwords. (This can be done to hide other types of unprofessional
activities as well. If an administrator occasionally reads other users’ email, he may
not want anyone else to have standard accounts on the email server. If he is over-
spending on equipment to gain experience with new technologies, he will not
want any technically literate people knowing what equipment he is buying.)

This behavior is usually well disguised, but it is extremely common. For example,
a technician may insist on doing tasks that users could or should be doing. The
problem is that this keeps users dependent on the technician when it isn’t neces-
sary. This can seem very helpful or friendly on the surface. But, if you repeatedly
ask for details and don’t get them, there may be more to it than meets the eye.

Common justifications are security and privacy. Unless you are in a management
position, there is often little you can do other than accept the explanations given.
But if you are in a management position, are technically competent, and still hear
these excuses from your employees, beware! You have a serious problem.

No one knows everything. Whenever information is suppressed, you lose input
from individuals who don’t have the information. If an employee can’t control her
ego, she should not be turned loose on your network with the tools described in
this book. She will not share what she learns. She will only use it to further
entrench herself.

The problem is basically a personnel problem and must be dealt with as such.
Individuals in technical areas seem particularly prone to these problems. It may
stem from enlarged egos or from insecurity. Many people are drawn to technical
areas as a way to seem special. Alternately, an administrator may see information
as a source of power or even a weapon. He may feel that if he shares the informa-
tion, he will lose his leverage. Often individuals may not even recognize the
behavior in themselves. It is just the way they have always done things and it is
the way that feels right.

Troubleshooting and Management 11

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

If you are a manager, you should deal with this problem immediately. If you can’t
correct the problem in short order, you should probably replace the employee. An
irreplaceable employee today will be even more irreplaceable tomorrow. Sooner
or later, everyone leaves—finds a better job, retires, or runs off to Poughkeepsie
with an exotic dancer. In the meantime, such a person only becomes more
entrenched making the eventual departure more painful. It will be better to deal
with the problem now rather than later.

Legal and ethical considerations

From the perspective of tools, you must ensure that you use tools in a manner that
conforms not just to the policies of your organization, but to all applicable laws as
well. The tools I describe in this book can be abused, particularly in the realm of
privacy. Before using them, you should make certain that your use is consistent
with the policies of your organization and all applicable laws. Do you have the
appropriate permission to use the tools? This will depend greatly on your role
within the organization. Do not assume that just because you have access to tools
that you are authorized to use them. Nor should you assume that any authoriza-
tion you have is unlimited.

Packet capture software is a prime example. It allows you to examine every packet
that travels across a link, including applications data and each and every header.
Unless data is encrypted, it can be decoded. This means that passwords can be
captured and email can be read. For this reason alone, you should be very circum-
spect in how you use such tools.

A key consideration is the legality of collecting such information. Unfortunately,
there is a constantly changing legal morass with respect to privacy in particular
and technology in general. Collecting some data may be legitimate in some cir-
cumstances but illegal in others.* This depends on factors such as the nature of
your operations, what published policies you have, what assurances you have
given your users, new and existing laws, and what interpretations the courts give
to these laws.

It is impossible for a book like this to provide a definitive answer to the questions
such considerations raise. I can, however, offer four pieces of advice:

• First, if the information you are collecting can be tied to the activities of an
individual, you should consider the information highly confidential and should
collect only the information that you really need. Be aware that even seem-
ingly innocent information may be sensitive in some contexts. For example,

* As an example, see the CERT Advisory CA-92.19 Topic: Keystroke Logging Banner at http://www.cert.
org/advisories/CA-1992-19.html for a discussion on keystroke logging and its legal implications.

12 Chapter 1: Network Management and Troubleshooting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

source/destination address pairs may reveal communications between individ-
uals that they would prefer not be made public.

• Second, place your users on notice. Let them know that you collect such infor-
mation, why it is necessary, and how you use the information. Remember,
however, if you give your users assurances as to how the information is used,
you are then constrained by those assurances. If your management policies
permit, make their prior acceptance of these policies a requirement for using
the system.

• Third, you must realize that with monitoring comes obligations. In many
instances, your legal culpability may be less if you don’t monitor.

• Finally, don’t rely on this book or what your colleagues say. Get legal advice
from a lawyer who specializes in this area. Beware: many lawyers will not like
to admit that they don’t know everything about the law, but many aren’t cur-
rent with the new laws relating to technology. Also, keep in mind that even if
what you are doing is strictly legal and you have appropriate authority, your
actions may still not be ethical.

Economic considerations

Solutions to problems have economic consequences, so you must understand the
economic implications of what you do. Knowing how to balance the cost of the
time used to repair a system against the cost of replacing a system is an obvious
example. Cost management is a more general issue that has important implica-
tions when dealing with failures.

One particularly difficult task for many system administrators is to come to terms
with the economics of networking. As long as everything is running smoothly, the
next biggest issue to upper management will be how cost effectively you are
doing your job. Unless you have unlimited resources, when you overspend in one
area, you take resources from another area. One definition of an engineer that I
particularly like is that “an engineer is someone who can do for a dime what a
fool can do for a dollar.” My best guess is that overspending and buying need-
lessly complex systems is the single most common engineering mistake made
when novice network administrators purchase network equipment.

One problem is that some traditional economic models do not apply in net-
working. In most engineering projects, incremental costs are less than the initial
per-unit cost. For example, if a 10,000-square-foot building costs $1 million, a
15,000-square-foot building will cost somewhat less than $1.5 million. It may make
sense to buy additional footage even if you don’t need it right away. This is justi-
fied as “buying for the future.”

Troubleshooting and Management 13

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Peter Principle Revisited
In 1969, Laurence Peter and Raymond Hull published the satirical book, The
Peter Principle. The premise of the book was that people rise to their level of
incompetence. For example, a talented high school teacher might be promoted
to principal, a job requiring a quite different set of skills. Even if ill suited for
the job, once she has this job, she will probably remain with it. She just won’t
earn any new promotions. However, if she is adept at the job, she may be pro-
moted to district superintendent, a job requiring yet another set of skills. The
process of promotions will continue until she reaches her level of incompe-
tence. At that point, she will spend the remainder of her career at that level.

While hardly a rigorous sociological principle, the book was well received
because it contained a strong element of truth. In my humble opinion, the
Peter Principle usually fails miserably when applied to technical areas such as
networking and telecommunications. The problem is the difficulty in recogniz-
ing incompetence. If incompetence is not recognized, then an individual may
rise well beyond his level of incompetence. This often happens in technical
areas because there is no one in management who can judge an individual’s
technical competence.

Arguably, unrecognized incompetence is usually overengineering. Network-
ing, a field of engineering, is always concerned with trade-offs between costs
and benefits. An underengineered network that fails will not go unnoticed. But
an overengineered network will rarely be recognizable as such. Such networks
may cost many times what they should, drawing resources from other needs.
But to the uninitiated, it appears as a normal, functioning network.

If a network engineer really wants the latest in new equipment when it isn’t
needed, who, outside of the technical personnel, will know? If this is a one-
person department, or if all the members of the department can agree on what
they want, no one else may ever know. It is too easy to come up with some
technical mumbo jumbo if they are ever questioned.

If this seems far-fetched, I once attended a meeting where a young engineer
was arguing that a particular router needed to be replaced before it became a
bottleneck. He had picked out the ideal replacement, a hot new box that had
just hit the market. The problem with all this was that I had recently taken mea-
surements on the router and knew the average utilization of that “bottleneck”
was less than 5% with peaks that rarely hit 40%.

This is an extreme example of why collecting information is the essential first
step in network management and troubleshooting. Without accurate measure-
ments, you can easily spend money fixing imaginary problems.

14 Chapter 1: Network Management and Troubleshooting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

This kind of reasoning, when applied to computers and networking, leads to
waste. Almost no one would go ahead and buy a computer now if they won’t
need it until next year. You’ll be able to buy a better computer for less if you wait
until you need it. Unfortunately, this same reasoning isn’t applied when buying
network equipment. People will often buy higher-bandwidth equipment than they
need, arguing that they are preparing for the future, when it would be much more
economical to buy only what is needed now and buy again in the future as
needed.

Moore’s Law lies at the heart of the matter. Around 1965, Gordon Moore, one of
the founders of Intel, made the empirical observation that the density of inte-
grated circuits was doubling about every 12 months, which he later revised to 24
months. Since the cost of manufacturing integrated circuits is relatively flat, this
implies that, in two years, a circuit can be built with twice the functionality with
no increase in cost. And, because distances are halved, the circuit runs at twice the
speed—a fourfold improvement. Since the doubling applies to previous dou-
blings, we have exponential growth.

It is generally estimated that this exponential growth with chips will go on for
another 15 to 20 years. In fact, this growth is nothing new. Raymond Kurzweil, in
The Age of Spiritual Machines: When Computers Exceed Human Intelligence, col-
lected information on computing speeds and functionality from the beginning of
the twentieth century to the present. This covers mechanical, electromechanical
(relay), vacuum tube, discrete transistor, and integrated circuit technologies. Kurz-
weil found that exponential growth has been the norm for the last hundred years.
He believes that new technologies will be developed that will extend this rate of
growth well beyond the next 20 years. It is certainly true that we have seen even
faster growth in disk densities and fiber-optic capacity in recent years, neither of
which can be attributed to semiconductor technology.

What does this mean economically? Clearly, if you wait, you can buy more for
less. But usually, waiting isn’t an option. The real question is how far into the
future should you invest? If the price is coming down, should you repeatedly buy
for the short term or should you “invest” in the long term?

The general answer is easy to see if we look at a few numbers. Suppose that
$100,000 will provide you with network equipment that will meet your antici-
pated bandwidth needs for the next four years. A simpleminded application of
Moore’s Law would say that you could wait and buy similar equipment for $25,000
in two years. Of course, such a system would have a useful life of only two addi-
tional years, not the original four. So, how much would it cost to buy just enough

Troubleshooting and Management 15

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

equipment to make it through the next two years? Following the same reasoning,
about $25,000. If your growth is tracking the growth of technology,* then two
years ago it would have cost $100,000 to buy four years’ worth of technology. That
will have fallen to about $25,000 today. Your choice: $100,000 now or $25,000
now and $25,000 in two years. This is something of a no-brainer. It is summarized
in the first two lines of Table 1-1.

If this argument isn’t compelling enough, there is the issue of maintenance. As a
general rule of thumb, service contracts on equipment cost about 1% of the pur-
chase price per month. For $100,000, that is $12,000 a year. For $25,000, this is
$3,000 per year. Moore’s Law doesn’t apply to maintenance for several reasons:

• A major part of maintenance is labor costs and these, if anything, will go up.

• The replacement parts will be based on older technology and older (and
higher) prices.

• The mechanical parts of older systems, e.g., fans, connectors, and so on, are
all more likely to fail.

• There is more money to be made selling new equipment so there is no incen-
tive to lower maintenance prices.

Thus, the $12,000 a year for maintenance on a $100,000 system will cost $12,000 a
year for all four years. The third and fourth lines of Table 1-1 summarize these
numbers.

* This is a pretty big if, but it’s reasonable for most users and organizations. Most users and organizations
have selected a point in the scheme of things that seems right for them—usually the latest technology
they can reasonably afford. This is why that new computer you buy always seems to cost $2500. You
are buying the latest in technology, and you are trying to reach about the same distance into the future.

Table 1-1. Cost estimates

Year 1 Year 2 Year 3 Year 4 Total

Four-year plan $100,000 $0 $0 $0 $100,000

Two-year plan $25,000 $0 $25,000 $0 $50,000

Four-year plan with
maintenance

$112,000 $12,000 $12,000 $12,000 $148,000

Two-year plan with
maintenance

$28,000 $3,000 $28,000 $3,000 $62,000

Four-year plan with
maintenance and
20% MARR

$112,000 $10,000 $8,300 $6,900 $137, 200

Two-year plan with
maintenance and
20% MARR

$28,000 $2,500 $19,500 $1,700 $51,700

16 Chapter 1: Network Management and Troubleshooting

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Yet another consideration is the time value of money. If you don’t need the
$25,000 until two years from now, you can invest a smaller amount now and
expect to have enough to cover the costs later. So the $25,000 needed in two
years is really somewhat less in terms of today’s dollars. How much less depends
on the rate of return you can expect on investments. For most organizations, this
number is called the minimal acceptable rate of return (MARR). The last two lines
of Table 1-1 use a MARR of 20%. This may seem high, but it is not an unusual
number. As you can see, buying for the future is more than two and a half times
as expensive as going for the quick fix.

Of course, all this is a gross simplification. There are a number of other important
considerations even if you believe these numbers. First and foremost, Moore’s Law
doesn’t always apply. The most important exception is infrastructure. It is not
going to get any cheaper to pull cable. You should take the time to do infrastruc-
ture well; that’s where you really should invest in the future.

Most of the other considerations seem to favor short-term investing. First, with
short-term purchasing, you are less likely to invest in dead-end technology since
you are buying later in the life cycle and will have a clearer picture of where the
industry is going. For example, think about the difference two years might have
made in choosing between Fast Ethernet and ATM for some organizations. For the
same reason, the cost of training should be lower. You will be dealing with more
familiar technology, and there will be more resources available. You will have to
purchase and install equipment more often, but the equipment you replace can be
reused in your network’s periphery, providing additional savings.

On the downside, the equipment you buy won’t have a lot of excess capacity or a
very long, useful lifetime. It can be very disconcerting to nontechnical manage-
ment when you keep replacing equipment. And, if you experience sudden unex-
pected growth, this is exactly what you will need to do. Take the time to educate
upper management. If frequent changes to your equipment are particularly disrup-
tive or if you have funding now, you may need to consider long-term purchases
even if they are more expensive. Finally, don’t take the two-year time frame pre-
sented here too literally. You’ll discover the appropriate time frame for your net-
work only with experience.

Other problems come when comparing plans. You must consider the total eco-
nomic picture. Don’t look just at the initial costs, but consider ongoing costs such
as maintenance and the cost of periodic replacement. As an example, consider the
following plans. Plan A has an estimated initial cost of $400,000, all for equip-
ment. Plan B requires $150,000 for equipment and $450,000 for infrastructure
upgrades. If you consider only initial costs, Plan A seems to be $200,000 cheaper.
But equipment needs to be maintained and, periodically, replaced. At 1% per

Troubleshooting and Management 17

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

month, the equipment for Plan A would cost $48,000 a year to maintain, com-
pared to $18,000 per year with Plan B. If you replace equipment a couple of times
in the next decade, that will be an additional $800,000 for Plan A but only
$300,000 for Plan B. As this quick, back-of-the-envelope calculation shows, the 10-
year cost for Plan A was $1.68 million, while only $1.08 million for Plan B. What
appeared to be $200,000 cheaper was really $600,000 more expensive. Of course,
this was a very crude example, but it should convey the idea.

You shouldn’t take this example too literally either. Every situation is different. In
particular, you may not be comfortable deciding what is adequate surplus capacity
in your network. In general, however, you are probably much better off thinking
in terms of scalability than raw capacity. If you want to hedge your bets, you can
make sure that high-speed interfaces are available for the router you are consid-
ering without actually buying those high-speed interfaces until needed.

How does this relate to troubleshooting? First, don’t buy overly complex systems
you don’t really need. They will be much harder to maintain, as you can expect
the complexity of troubleshooting to grow with the complexity of the systems you
buy. Second, don’t spend all your money on the system and forget ongoing main-
tenance costs. If you don’t anticipate operational costs, you may not have the
funds you need.

18
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

2
Host Configurations

The goal of this chapter is to review system administration from the perspective of
the individual hosts on a network. This chapter presumes that you have a basic
understanding of system administration. Consequently, many of the more basic
issues are presented in a very cursory manner. The intent is more to jog your
memory, or to fill an occasional gap, than to teach the fundamentals of system
administration. If you are new to system administration, a number of the books
listed in Appendix B provide excellent introductions. If, on the other hand, you
are a knowledgeable system administrator, you will probably want to skim or even
skip this chapter.

Chapter 1 lists several reasons why you might not know the details of your net-
work and the computers on it. This chapter assumes that you are faced with a net-
worked computer and need to determine or reconstruct its configuration. It should
be obvious that if you don’t understand how a system is configured, you will not
be able to change its configuration or correct misconfigurations. The tools
described in this chapter can be used to discover or change a host’s configuration.

As discussed in Chapter 1, if you have documentation for the system, begin with it.
The assumption here is that such documentation does not exist or that it is incom-
plete. The primary focus is network configuration, but many of the techniques can
easily be generalized.

If you have inherited a multiuser system that has been in service for several years
with many undocumented customizations, reconstructing its configuration can be
an extremely involved and extended process. If your system has been compro-
mised, the intruder has taken steps to hide her activity, and you aren’t running an
integrity checker like tripwire, it may be virtually impossible to discover all her
customizations. (tripwire is discussed briefly in Chapter 11.) While it may not be
feasible, you should at least consider reinstalling the system from scratch. While

Host Configurations 19

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

this may seem draconian, it may ultimately be much less work than fighting the
same battles over and over, as often happens with compromised systems. The best
way to do this is to set up a replacement system in parallel and then move
everyone over. This, of course, requires a second system.

If rebuilding the system is not feasible, or if your situation isn’t as extreme as that
just described, then you can use the techniques described in this chapter to recon-
struct the system’s configuration.

Whatever your original motivation, you should examine your system’s configura-
tion on a regular basis. If for no other reason, this will help you remember how
your system is configured. But there are other reasons as well. As you learn more,
you will undoubtedly want to revisit your configuration to correct problems,
improve security, and optimize performance. Reviewing configurations is a neces-
sary step to ensure that your system hasn’t been compromised. And, if you share
management of a system, you may be forced to examine the configuration when-
ever communications falter.

Keep a set of notes for each system, giving both the configuration and directions
for changing the configuration. Usually the best place to start is by constructing a
list of what can be found where in the vendor documentation you have. This may
seem pointless since this information is in the documentation. But the information
you need will be spread throughout this documentation. You won’t want to plow
through everything every time you need to check or change something. You must
create your own list. I frequently write key page numbers inside the front covers
of manuals and specifics in the margins throughout the manual. For example, I’ll
add device names to the manpages for the mount command, something I always
seem to need but often can’t remember. (Be warned that this has the disadvan-
tage of tying manuals to specific hardware, which could create other problems.)

When reconstructing a host’s configuration, there are two basic approaches. One is
to examine the system’s configuration files. This can be a very protracted
approach. It works well when you know what you are looking for and when you
are looking for a specific detail. But it can be difficult to impossible to find all the
details of the system, particularly if someone has taken steps to hide them. And
some parameters are set dynamically and simply can’t be discovered just from con-
figuration files.

The alternative is to use utilities designed to give snapshots of the current state of
the system. Typically, these focus on one aspect of the system, for example, listing
all open files. Collectively, these utilities can give you a fairly complete picture.
They tend to be easy to use and give answers quickly. But, because they may
focus on only one aspect of the system, they may not provide all the information
you need if used in isolation.

20 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Clearly, by itself, neither approach is totally adequate. Where you start will depend
in part on how quickly you must be up to speed and what specific problems you
are facing. Each approach will be described in turn.

Utilities
Reviewing system configuration files is a necessary step that you will have to
address before you can claim mastery of a system. But this can be a very time-
consuming step. It is very easy to overlook one or more key files. If you are under
time pressure to resolve a problem, configuration files are not the best place to
start.

Even if you plan to jump into the configuration files, you will probably want a
quick overview of the current state of the system before you begin. For this
reason, we will examine status and configuration utilities first. This approach has
the advantage of being pretty much the same from one version of Unix to the
next. With configuration files, the differences among the various flavors of Unix
can be staggering. Even when the files have the same functionality and syntax,
they can go by different names or be in different directories. Certainly, using these
utilities is much simpler than looking at kernel configuration files.

The output provided by these utilities may vary considerably from
system to system and will depend heavily on which options are
used. In practice, this should present no real problem. Don’t be
alarmed if the output on your system is formatted differently.

ps

The first thing any system administrator should do on a new system is run the ps
command. You are probably already familiar with ps so I won’t spend much time
on it. The ps command lists which processes are running on the system. Here is an
example:

bsd4# ps -aux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 6590 22.0 2.1 924 616 ?? R 11:14AM 0:09.80 inetd: chargen [2
root 1 0.0 0.6 496 168 ?? Ss Fri09AM 0:00.03 /sbin/init --
root 2 0.0 0.0 0 0 ?? DL Fri09AM 0:00.52 (pagedaemon)
root 3 0.0 0.0 0 0 ?? DL Fri09AM 0:00.00 (vmdaemon)
root 4 0.0 0.0 0 0 ?? DL Fri09AM 0:44.05 (syncer)
root 100 0.0 1.7 820 484 ?? Ss Fri09AM 0:02.14 syslogd
daemon 109 0.0 1.5 828 436 ?? Is Fri09AM 0:00.02 /usr/sbin/portmap
root 141 0.0 2.1 924 616 ?? Ss Fri09AM 0:00.51 inetd
root 144 0.0 1.7 980 500 ?? Is Fri09AM 0:03.14 cron

Utilities 21

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

root 150 0.0 2.8 1304 804 ?? Is Fri09AM 0:02.59 sendmail: accepti
root 173 0.0 1.3 788 368 ?? Is Fri09AM 0:01.84 moused -p /dev/ps
root 213 0.0 1.8 824 508 v1 Is+ Fri09AM 0:00.02 /usr/libexec/gett
root 214 0.0 1.8 824 508 v2 Is+ Fri09AM 0:00.02 /usr/libexec/gett
root 457 0.0 1.8 824 516 v0 Is+ Fri10AM 0:00.02 /usr/libexec/gett
root 6167 0.0 2.4 1108 712 ?? Ss 4:10AM 0:00.48 telnetd
jsloan 6168 0.0 0.9 504 252 p0 Is 4:10AM 0:00.09 -sh (sh)
root 6171 0.0 1.1 464 320 p0 S 4:10AM 0:00.14 -su (csh)
root 0 0.0 0.0 0 0 ?? DLs Fri09AM 0:00.17 (swapper)
root 6597 0.0 0.8 388 232 p0 R+ 11:15AM 0:00.00 ps -aux

In this example, the first and last columns are the most interesting since they give
the owners and the processes, along with their arguments. In this example, the
lines, and consequently the arguments, have been truncated, but this is easily
avoided. Running processes of interest include portmap, inetd, sendmail, telnetd,
and chargen.

There are a number of options available to ps, although they vary from implemen-
tation to implementation. In this example, run under FreeBSD, the parameters
used were -aux. This combination shows all users’ processes (-a), including those
without controlling terminals (-x), in considerable detail (-u). The options -ax will
provide fewer details but show more of the command-line arguments. Alternately,
you can use the -w option to extend the displayed information to 132 columns.
With AT&T-derived systems, the options -ef do pretty much the same thing. Inter-
estingly, Linux supports both sets of options. You will need to precede AT&T-style
options with a hyphen. This isn’t required for BSD options. You can do it either
way with Solaris. /usr/bin/ps follows the AT&T conventions, while /usr/ucb/ps sup-
ports the BSD options.

While ps quickly reveals individual processes, it gives a somewhat incomplete pic-
ture if interpreted naively. For example, the inetd daemon is one source of confu-
sion. inetd is used to automatically start services on a system as they are needed.
Rather than start a separate process for each service that might eventually be run,
the inetd daemon runs on their behalf. When a connection request arrives, inetd
will start the requested service. Since some network services like ftp, telnet, and
finger are usually started this way, ps will show processes for them only when
they are currently running. If ps doesn’t list them, it doesn’t mean they aren’t avail-
able; they just aren’t currently running.

For example, in the previous listing, chargen was started by inetd. We can see
chargen in this instance because it was a running process when ps was run. But,
this particular test system was configured to run a number of additional services
via inetd (as determined by the /etc/inetd.conf configuration file). None of these
other services show up under ps because, technically, they aren’t currently run-
ning. Yet, these other services will be started automatically by inetd, so they are
available services.

22 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

In addition to showing what is running, ps is a useful diagnostic tool. It quickly
reveals defunct processes or multiple instances of the same process, thereby
pointing out configuration problems and similar issues. %MEM and %CPU can tell
you a lot about resource usage and can provide crucial information if you have
resource starvation. Or you can use ps to identify rogue processes that are
spawning other processes by looking at processes that share a common PPID.
Once you are comfortable with the usual uses, it is certainly worth revisiting ps
periodically to learn more about its other capabilities, as this brief discussion just
scratches the surface of ps.

top

Although less ubiquitous, the top command, a useful alternative to ps, is available
on many systems. It was written by William LeFebvre. When running, top gives a
periodically updated listing of processes ranked in order of CPU usage. Typically,
only the top 10 processes are given, but this is implementation dependent, and
your implementation may let you select other values. Here is a single instance
from our test system:

15 processes: 2 running, 13 sleeping
CPU states: 0.8% user, 0.0% nice, 7.4% system, 7.8% interrupt, 84.0% idle
Mem: 6676K Active, 12M Inact, 7120K Wired, 2568K Cache, 3395K Buf, 1228K Free
Swap: 100M Total, 100M Free

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
 6590 root 35 0 924K 616K RUN 0:15 21.20% 20.75% inetd
 144 root 10 0 980K 500K nanslp 0:03 0.00% 0.00% cron
 150 root 2 0 1304K 804K select 0:03 0.00% 0.00% sendmail
 100 root 2 0 820K 484K select 0:02 0.00% 0.00% syslogd
 173 root 2 0 788K 368K select 0:02 0.00% 0.00% moused
 141 root 2 0 924K 616K select 0:01 0.00% 0.00% inetd
 6167 root 2 0 1108K 712K select 0:00 0.00% 0.00% telnetd
 6171 root 18 0 464K 320K pause 0:00 0.00% 0.00% csh
 6168 jsloan 10 0 504K 252K wait 0:00 0.00% 0.00% sh
 6598 root 28 0 1556K 844K RUN 0:00 0.00% 0.00% top
 1 root 10 0 496K 168K wait 0:00 0.00% 0.00% init
 457 root 3 0 824K 516K ttyin 0:00 0.00% 0.00% getty
 214 root 3 0 824K 508K ttyin 0:00 0.00% 0.00% getty
 213 root 3 0 824K 508K ttyin 0:00 0.00% 0.00% getty
 109 daemon 2 0 828K 436K select 0:00 0.00% 0.00% portmap

Output is interrupted with a q or a Ctrl-C. Sometimes system administrators will
leave top running on the console when the console is not otherwise in use. Of
course, this should be done only in a physically secure setting.

In a sense, ps is a more general top since it gives you all running processes. The
advantage to top is that it focuses your attention on resource hogs, and it provides

Utilities 23

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

a repetitive update. top has a large number of options and can provide a wide
range of information. For more information, consult its Unix manpage.*

netstat

One of the most useful and diverse utilities is netstat. This program reports the
contents of kernel data structures related to networking. Because of the diversity in
networking data structures, many of netstat ’s uses may seem somewhat unrelated,
so we will be revisiting netstat at several points in this book.

One use of netstat is to display the connections and services available on a host.
For example, this is the output for the system we just looked at:

bsd4# netstat -a
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 bsd4.telnet 205.153.60.247.3473 TIME_WAIT
tcp 0 17458 bsd4.chargen sloan.1244 ESTABLISHED
tcp 0 0 *.chargen *.* LISTEN
tcp 0 0 *.discard *.* LISTEN
tcp 0 0 *.echo *.* LISTEN
tcp 0 0 *.time *.* LISTEN
tcp 0 0 *.daytime *.* LISTEN
tcp 0 0 *.finger *.* LISTEN
tcp 0 2 bsd4.telnet sloan.1082 ESTABLISHED
tcp 0 0 *.smtp *.* LISTEN
tcp 0 0 *.login *.* LISTEN
tcp 0 0 *.shell *.* LISTEN
tcp 0 0 *.telnet *.* LISTEN
tcp 0 0 *.ftp *.* LISTEN
tcp 0 0 *.sunrpc *.* LISTEN
udp 0 0 *.1075 *.*
udp 0 0 *.1074 *.*
udp 0 0 *.1073 *.*
udp 0 0 *.1072 *.*
udp 0 0 *.1071 *.*
udp 0 0 *.1070 *.*
udp 0 0 *.chargen *.*
udp 0 0 *.discard *.*
udp 0 0 *.echo *.*
udp 0 0 *.time *.*
udp 0 0 *.daytime *.*
udp 0 0 *.sunrpc *.*
udp 0 0 *.syslog *.*
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
c3378e80 dgram 0 0 0 c336efc0 0 c3378f80
c3378f80 dgram 0 0 0 c336efc0 0 c3378fc0
c3378fc0 dgram 0 0 0 c336efc0 0 0
c336efc0 dgram 0 0 c336db00 0 c3378e80 0 /var/run/log

* Solaris users may want to look at process management utilities included in /usr/proc/bin.

24 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The first column gives the protocol. The next two columns give the sizes of the
send and receive queues. These should be 0 or near 0. Otherwise, you may have a
problem with that particular service. The next two columns give the socket or IP
address and port number for each end of a connection. This socket pair uniquely
identifies one connection. The socket is presented in the form hostname.service.
Finally, the state of the connection is given in the last column for TCP services.
This is blank for UDP since it is connectionless. The most common states are
ESTABLISHED for current connections, LISTEN for services awaiting a connection,
and TIME_WAIT for recently terminated connections. Any of the TCP states could
show up, but you should rarely see the others. An excessive number of SYN_
RECEIVED, for example, is an indication of a problem (possibly a denial-of-service
attack). You can safely ignore the last few lines of this listing.

A couple of examples should clarify this output. The following line shows a Telnet
connection between bsd4 and sloan using port 1082 on sloan:

tcp 0 2 bsd4.telnet sloan.1082 ESTABLISHED

The next line shows that there was a second connection to sloan that was recently
terminated:

tcp 0 0 bsd4.telnet 205.153.60.247.3473 TIME_WAIT

Terminated connections remain in this state for a couple of minutes, during which
time the socket pair cannot be reused.

Name resolution can be suppressed with the -n option if you would rather see
numeric entries. There are a couple of reasons you might want to do this. Typi-
cally, netstat will run much faster without name resolution. This is particularly true
if you are having name resolution problems and have to wait for requests to time
out. This option can help you avoid confusion if your /etc/services or /etc/hosts files
are inaccurate.

The remaining TCP entries in the LISTEN state are services waiting for a connec-
tion request. Since a request could come over any available interface, its IP
address is not known in advance. The * in the entry *.echo acts as a placeholder
for the unknown IP address. (Since multiple addresses may be associated with a
host, the local address is unknown until a connection is actually made.) The *.*
entries indicate that both the remote address and port are unknown. As you can
see, this shows a number of additional services that ps was not designed to dis-
play. In particular, all the services that are under the control of inetd are shown.

Another use of netstat is to list the routing table. This may be essential informa-
tion in resolving routing problems, e.g., when you discover that a host or a net-
work is unreachable. Although it may be too long or volatile on many systems to
be very helpful, the routing table is sometimes useful in getting a quick idea of

Utilities 25

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

what networks are communicating with yours. Displaying the routing table
requires the -r option.

There are four main ways entries can be added to the routing table—by the
ifconfig command when an interface is configured, by the route command, by an
ICMP redirect, or through an update from a dynamic protocol like RIP or OSPF. If
dynamic protocols are used, the routing table is an example of a dynamic struc-
ture that can’t be discovered by looking at configuration files.

Here is an example of a routing table from a FreeBSD system:

bsd1# netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 205.153.60.2 UGSc 0 0 xl0
127.0.0.1 127.0.0.1 UH 0 0 lo0
172.16.1/24 172.16.2.1 UGSc 0 7 xl1
172.16.2/24 link#2 UC 0 0 xl1
172.16.2.1 0:10:7b:66:f7:62 UHLW 2 0 xl1 913
172.16.2.255 ff:ff:ff:ff:ff:ff UHLWb 0 18 xl1
172.16.3/24 172.16.2.1 UGSc 0 2 xl1
205.153.60 link#1 UC 0 0 xl0
205.153.60.1 0:0:a2:c6:e:42 UHLW 4 0 xl0 906
205.153.60.2 link#1 UHLW 1 0 xl0
205.153.60.5 0:90:27:9c:2d:c6 UHLW 0 34 xl0 987
205.153.60.255 ff:ff:ff:ff:ff:ff UHLWb 1 18 xl0
205.153.61 205.153.60.1 UGSc 0 0 xl0
205.153.62 205.153.60.1 UGSc 0 0 xl0
205.153.63 205.153.60.1 UGSc 2 0 xl0

At first glance, output from other systems may be organized differently, but usu-
ally the same basic information is present. In this example, the -n option was used
to suppress name resolution.

The first column gives the destination, while the second gives the interface or next
hop to that destination. The third column gives the flags. These are often helpful
in interpreting the first two columns. A U indicates the path is up or available, an H
indicates the destination is a host rather than a network, and a G indicates a
gateway or router. These are the most useful. Others shown in this table include b,
indicating a broadcast address; S, indicating a static or manual addition; and W and
c, indicating a route that was generated as a result of cloning. (These and other
possibilities are described in detail in the Unix manpage for some versions of
netstat.) The fourth column gives a reference count, i.e., the number of active uses
for each of the routes. This is incremented each time a connection is built over the
route (e.g., a Telnet connection is made using the route) and decremented when
the connection is torn down. The fifth column gives the number of packets sent
using this entry. The last entry is the interface that will be used.

26 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

If you are familiar with the basics of routing, you have seen these tables before. If
not, an explanation of the first few lines of the table should help. The first entry
indicates the default route. This was added statically at startup. The second entry is
the loopback address for the machine. The third entry is for a remotely attached
network. The destination network is a subnet from a Class B address space. The
/24 is the subnet mask. Traffic to this network must go through 172.16.2.1, a
gateway that is defined with the next two entries. The fourth entry indicates that
the network gateway, 172.16.2.1, is on a network that has a direct attachment
through the second interface xl1. The entry that follows gives the specifics,
including the Ethernet address of the gateway’s interface.

In general, it helps to have an idea of the interfaces and how they are configured
before you get too deeply involved in routing tables. There are two quick ways to
get this information—use the -i option with netstat or use the ifconfig command.
Here is the output for the interfaces that netstat generates. This corresponds to the
routing table just examined.

bsd1# netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
xl0 1500 <Link> 00.10.5a.e3.37.0c 2123 0 612 0 0
xl0 1500 205.153.60 205.153.60.247 2123 0 612 0 0
xl1 1500 <Link> 00.60.97.92.4a.7b 478 0 36 0 0
xl1 1500 172.16.2/24 172.16.2.13 478 0 36 0 0
lp0* 1500 <Link> 0 0 0 0 0
tun0* 1500 <Link> 0 0 0 0 0
sl0* 552 <Link> 0 0 0 0 0
ppp0* 1500 <Link> 0 0 0 0 0
lo0 16384 <Link> 6 0 6 0 0
lo0 16384 127 localhost 6 0 6 0 0

For our purposes, we are interested in only the first four entries. (The other inter-
faces include the loop-back, lo0, and unused interfaces like ppp0*, the PPP inter-
face.) The first two entries give the Ethernet address and IP address for the xl0
interface. The next two are for xl1. Notice that this also gives the number of input
and output packets and errors as well. You can expect to see very large numbers
for these. The very low numbers indicate that the system was recently restarted.

The format of the output may vary from system to system, but all will provide the
same basic information. There is a lot more to netstat than this introduction shows.
For example, netstat can be run periodically like top. We will return to netstat in
future chapters.

lsof

lsof is a remarkable tool that is often overlooked. Written by Victor Abel, lsof lists
open files on a Unix system. This might not seem a particularly remarkable ser-
vice until you start thinking about the implications. An application that uses the

Utilities 27

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

filesystem, networked or otherwise, will have open files at some point. lsof offers a
way to track that activity.

The program is available for a staggering variety of Unix systems, often in both
source and binary formats. Although I will limit this discussion to networking
related tasks, lsof is more properly an operating system tool than a networking
tool. You may want to learn more about lsof than described here.

In its simplest form, lsof produces a list of all open files. You’ll probably be quite
surprised at the number of files that are open on a quiescent system. For example,
on a FreeBSD system with no one else logged on, lsof listed 564 open files.

Here is an example of the first few lines of output from lsof:

bsd2# lsof
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
swapper 0 root cwd VDIR 116,131072 512 2 /
swapper 0 root rtd VDIR 116,131072 512 2 /
init 1 root cwd VDIR 116,131072 512 2 /
init 1 root rtd VDIR 116,131072 512 2 /
init 1 root txt VREG 116,131072 255940 157 /sbin/init
...

The most useful fields are the obvious ones, including the first three—the name of
the command, the process ID, and its owner. The other fields and codes used in
the fields are explained in the manpage for lsof, which runs about 30 pages.

It might seem that lsof returns too much information to be useful. Fortunately, it
provides a number of options that will allow you to tailor the output to your
needs. You can use lsof with the -p option to specify a specific process number or
with the -c option to specify the name of a process. For example, the command
lsof -csendmail will list all the files opened by sendmail. You only need to give
enough of the name to uniquely identify the process. The -N option can be used
to list files opened for the local computer on an NFS server. That is, when run on
an NFS client, lsof shows files opened by the client. When run on a server, lsof will
not show the files the server is providing to clients.

The -i option limits output to Internet and X.25 network files. If no address is given,
all such files will be listed, effectively showing all open socket files on your network:

bsd2# lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
syslogd 105 root 4u IPv4 0xc3dd8f00 0t0 UDP *:syslog
portmap 108 daemon 3u IPv4 0xc3dd8e40 0t0 UDP *:sunrpc
portmap 108 daemon 4u IPv4 0xc3e09d80 0t0 TCP *:sunrpc (LISTEN)
inetd 126 root 4u IPv4 0xc3e0ad80 0t0 TCP *:ftp (LISTEN)
inetd 126 root 5u IPv4 0xc3e0ab60 0t0 TCP *:telnet (LISTEN)
inetd 126 root 6u IPv4 0xc3e0a940 0t0 TCP *:shell (LISTEN)
inetd 126 root 7u IPv4 0xc3e0a720 0t0 TCP *:login (LISTEN)
inetd 126 root 8u IPv4 0xc3e0a500 0t0 TCP *:finger (LISTEN)

28 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

inetd 126 root 9u IPv4 0xc3dd8d80 0t0 UDP *:biff
inetd 126 root 10u IPv4 0xc3dd8cc0 0t0 UDP *:ntalk
inetd 126 root 11u IPv6 0xc3e0a2e0 0t0 TCP *:ftp
inetd 126 root 12u IPv6 0xc3e0bd80 0t0 TCP *:telnet
inetd 126 root 13u IPv6 0xc3e0bb60 0t0 TCP *:shell
inetd 126 root 14u IPv6 0xc3e0b940 0t0 TCP *:login
inetd 126 root 15u IPv6 0xc3e0b720 0t0 TCP *:finger
lpd 131 root 6u IPv4 0xc3e0b500 0t0 TCP *:printer (LISTEN)
sendmail 137 root 4u IPv4 0xc3e0b2e0 0t0 TCP *:smtp (LISTEN)
httpd 185 root 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 198 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 199 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 200 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 201 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 202 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 10408 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 10409 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 10410 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 25233 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 25236 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
telnetd 58326 root 0u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telne
t->sloan.lander.edu:1184 (ESTABLISHED)
telnetd 58326 root 1u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telne
t->sloan.lander.edu:1184 (ESTABLISHED)
telnetd 58326 root 2u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telne
t->sloan.lander.edu:1184 (ESTABLISHED)
perl 68936 root 4u IPv4 0xc3dd8c00 0t0 UDP *:eicon-x25
ping 81206 nobody 3u IPv4 0xc3e98f00 0t0 ICMP *:*

As you can see, this is not unlike the -a option with netstat. Apart from the
obvious differences in the details reported, the big difference is that lsof will not
report connections that do not have files open. For example, if a connection is
being torn down, all files may already be closed. netstat will still report this con-
nection while lsof won’t. The preferred behavior will depend on what information
you need.

If you specify an address, then only those files related to the address will be listed:

bsd2# lsof -i@sloan.lander.edu
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
telnetd 73825 root 0u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telnet->
sloan.lander.edu:1177 (ESTABLISHED)
telnetd 73825 root 1u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telnet->
sloan.lander.edu:1177 (ESTABLISHED)
telnetd 73825 root 2u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telnet->
sloan.lander.edu:1177 (ESTABLISHED)

One minor problem with this output is the identification of the telnet user as
root—a consequence of root owning telnetd, the server’s daemon. On some sys-
tems, you can use the PID with the -p option to track down the device entry and
then use lsof on the device to discover the owner. Unfortunately, this won’t work
on many systems.

Utilities 29

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You can also use lsof to track an FTP transfer. You might want to do this to see if
a transfer is making progress. You would use the -p option to see which files are
open to the process. You can then use -ad to specify the device file descriptor
along with -r to specify repeat mode. lsof will be run repeatedly, and you can see
if the size of the file is changing.

Other uses of lsof are described in the manpage, the FAQ, and a quick-start guide
supplied with the distribution. The latter is probably the best place to begin.

ifconfig

ifconfig is usually thought of as the command used to alter the configuration of
the network interfaces. But, since you may need to know the current configura-
tion of the interfaces before you make changes, ifconfig provides a mechanism to
retrieve interface configurations. It will report the configuration of all the inter-
faces when called with the -a option or of a single interface when used with the
interface’s name.

Here are the results for the system we just looked at:

bsd1# ifconfig -a
xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 205.153.60.247 netmask 0xffffff00 broadcast 205.153.60.255
 ether 00:10:5a:e3:37:0c
 media: 10baseT/UTP <half-duplex>
 supported media: autoselect 100baseTX <full-duplex> 100baseTX <half-dupl
ex> 100baseTX 10baseT/UTP <full-duplex> 10baseT/UTP <half-duplex> 10baseT/UTP
xl1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 172.16.2.13 netmask 0xffffff00 broadcast 172.16.2.255
 ether 00:60:97:92:4a:7b
 media: 10baseT/UTP <half-duplex>
 supported media: autoselect 100baseTX <full-duplex> 100baseTX <half-dupl
ex> 100baseTX 10baseT/UTP <full-duplex> 10baseT/UTP 10baseT/UTP <half-duplex>
lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500
tun0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
sl0: flags=c010<POINTOPOINT,LINK2,MULTICAST> mtu 552
ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
 inet 127.0.0.1 netmask 0xff000000

You can see that for the interfaces xl0 and xl1, we are given a general status
report. UP indicates that the interface is operational. If UP is missing, the interface
is down and will not process packets. For Ethernet, the combination of
BROADCAST, SIMPLEX, and MULTICAST is not surprising. The mtu is the largest
frame size the interface will handle. Next, we have the IP number, address mask,
and broadcast address. The Ethernet address comes next, although some systems
(Solaris, for example) will suppress this if you aren’t running the program as root.
Finally, we see information about the physical interface connections.

30 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You can ignore the entries for lp0, tun0, sl0, and ppp0. In fact, if you don’t want
to see these, you can use the combination -au to list just the interfaces that are up.
Similarly, -d is used to list just the interfaces that are down.

While netstat allows you to get basic information on the interfaces, if your goal is
configuration information, ifconfig is a better choice. First, as you can see, ifconfig
supplies more of that sort of information. Second, on some systems, netstat may
skip interfaces that haven’t been configured. Finally, ifconfig also allows you to
change parameters such as the IP addresses and masks. In particular, ifconfig is
frequently used to shut down an interface. This is roughly equivalent to discon-
necting the interface from the network. To shut down an interface, you use the
down option. For example, ifconfig xl1 down will shut down the interface xl1, and
ifconfig xl1 up will bring it back up. Of course, you must have root privileges to
use ifconfig to change configurations.

Since ifconfig is used to configure interfaces, it is typically run automatically by
one of the startup scripts when the system is booted. This is something to look for
when you examine startup scripts. The use of ifconfig is discussed in detail in
Craig Hunt’s TCP/IP Network Administration.

arp

The ARP table on a system maps network addresses into MAC addresses. Of
course, the ARP table applies only to directly connected devices, i.e., devices on
the local network. Remote devices, i.e., devices that can be reached only by
sending traffic through one or more routers, will not be added to the ARP table
since you can’t communicate with them directly. (However, the appropriate router
interface will be added.)

Typically, addresses are added or removed automatically. If your system needs to
communicate with another system on the local network whose MAC address is
unknown, your system sends an ARP request, a broadcast packet with the destina-
tion’s IP address. If the system is accessible, it will respond with an ARP reply that
includes its MAC address. Your system adds this to its ARP table and then uses this
information to send packets directly to the destination. (A simple way to add an
entry for a directly connected device to the ARP table is to ping the device you
want added. ping is discussed in detail in Chapter 3.) Most systems are configured
to drop entries from the ARP table if they aren’t being used, although the length of
the timeout varies from system to system.

At times, you may want to examine or even change entries in the ARP table. The
arp command allows you to do this. When arp is invoked with the -a option, it

Utilities 31

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

reports the current contents of the ARP table. Here is an example from a Solaris
system:

sol1# arp -a
Net to Media Table
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
elxl0 205.153.60.1 255.255.255.255 00:00:a2:c6:0e:42
elxl0 205.153.60.53 255.255.255.255 00:e0:29:21:3c:0b
elxl0 205.153.60.55 255.255.255.255 00:90:27:43:72:70
elxl0 mail.lander.edu 255.255.255.255 00:90:27:9c:2d:c6
elxl0 sol1 255.255.255.255 SP 00:60:97:58:71:b7
elxl0 pm3.lander.edu 255.255.255.255 00:c0:05:04:2d:78
elxl0 BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:00:00:00

The format or details may vary from system to system, but the same basic informa-
tion should be provided.

For Solaris, the first column gives the interface for the connection. The next two
are the IP address and its mask. (You can get just IP numbers by using the -n
option.) There are four possible flags that may appear in the flags column. An S
indicates a static entry, one that has been manually set rather than discovered. A P
indicates an address that will be published. That is, this machine will provide this
address should it receive an ARP request. In this case, the P flag is for the local
machine, so it is natural that the machine would respond with this information.
The flags U and M are used for unresolved and multicast addresses, respectively.
The final column is the actual Ethernet address.

This information can be useful in several ways. It can be used to determine the
Ethernet hardware in this computer, as well as the hardware in directly connected
devices. The IEEE assigns to the manufacturers of Ethernet adapters unique identi-
fiers to be used as the first three bytes of their Ethernet addresses. These
addresses, known as Organizationally Unique Identifiers (OUI), can be found at
the IEEE web page at http://standards.ieee.org/regauth/oui/index.html. In other
words, the first three bytes of an Ethernet address identify the manufacturer. In this
case, by entering on this web page 00 60 97, i.e., the first three bytes of the
address 00 60 97 58 71 b7, we find that the host sol1 has a 3COM Ethernet
adapter. In the same manner we can discover that the host 205.153.60.1 is Bay
Networks equipment.

OUI designations are not foolproof. The MAC address of a device
may have been changed and may not have the manufacturer’s OUI.
And even if you can identify the manufacturer, in today’s world of
merger mania and takeovers, you may see an OUI of an acquired
company that you don’t recognize.

32 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

If some machines on your network are reachable but others aren’t, or connectivity
comes and goes, ARP problems may be the cause. (For an example of an ARP
problem, see Chapter 12.) If you think you might have a problem with IP-to-
Ethernet address resolution on your local network, arp is the logical tool to use to
diagnose the problem. First, look to see if there is an entry for the destination and
if it is correct. If it is missing, you can attempt to add it using the -s option. (You
must be root.) If the entry is incorrect, you must first delete it with the -d option.
Entries added with the -s option will not time out but will be lost on reboot. If you
want to permanently add an entry, you can create a startup script to do this. In
particular, in a script, arp can use the -f option to read entries from a file.

The usual reason for an incorrect entry in an arp table is a duplicated IP address
somewhere on your network. Sometimes this is a typing mistake. Sometimes when
setting up their computers, people will copy the configuration from other com-
puters, including the supposedly unique IP number. A rogue DHCP server is
another possibility. If you suspect one of your hosts is experiencing problems
caused by a duplicate IP number on the network, you can shut down the inter-
face on that computer or unplug it from the network. (This is less drastic than
shutting down the computer, but that will also work.) Then you can ping the IP
address in question from a second computer. If you get an answer, some other
computer is using your IP address. Your arp table should give you the Ethernet
address of the offending machine. Using its OUI will tell you the type of hard-
ware. This usually won’t completely locate the problem machine, but it is a start,
particularly for unusual hardware.*

Scanning Tools

We’ve already discussed one reason why ps may not give a complete picture of
your system. There is another much worse possibility. If you are having security
problems, your copy of ps may be compromised. Crackers sometimes will replace
ps with their own version that has been patched to hide their activities. In this
event, you may have an additional process running on your system that provides a
backdoor that won’t show up under ps.

One way of detecting this is to use a port scanner to see which ports are active on
your system. You could choose to do this from the compromised system, but you
are probably better off doing this from a remote system known to be secure. This
assumes, however, that the attacker hasn’t installed a trapdoor on the compro-
mised host that is masquerading as a legitimate service on a legitimate port.

* You can also use arp to deliberately publish a bad address. This will shut up a connection request that
won’t otherwise stop.

Utilities 33

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

There are a large number of freely available port scanners. These include pro-
grams like gtkportscan, nessus, portscan, and strobe, to name just a few. They gen-
erally work by generating a connection request for each port number in the range
being tested. If they receive a reply from the port, they add it to their list of open
ports. Here is an example using portscan:

bsd1# portscan 205.153.63.239 1 10000 -vv
This is a portscanner - Rafael Barrero, Jr.
Email me at rbarrero@polymail.calpoly.edu
For further information. Enjoy!

Port: 7 --> echo
Port: 9 --> discard
Port: 13 --> daytime
Port: 19 --> chargen
Port: 21 --> ftp
Port: 23 --> telnet
Port: 25 --> smtp
Port: 37 --> time
Port: 79 --> finger
Port: 111 --> sunrpc
Port: 513 --> login
Port: 514 --> shell

The arguments are the destination address and beginning and ending port num-
bers. The result is a list of port numbers and service names for ports that
answered.

Figure 2-1 shows another example of a port scanner running under Windows NT.
This particular scanner is from Mentor Technologies, Inc., and can be freely down-
loaded from http://www.mentortech.com/learn/tools/tools.shtml. It is written in Java,
so it can be run on both Windows and Unix machines but will require a Java
runtime environment. It can also be run in command-line mode. Beware, this
scanner is very slow when used with Windows.

Most administrators look on such utilities as tools for crackers, but they can have
legitimate uses as shown here. Keep in mind that the use of these tools has polit-
ical implications. You should be safe scanning your own system, but you are on
very shaky ground if you scan other systems. These two tools make no real effort
to hide what they are doing, so they are not difficult to detect. Stealth port scan-
ners, however, send the packets out of order over extended periods of time and
are, consequently, more difficult to detect. Some administrators consider port scans
adequate justification for cutting connections or blocking all traffic from a site. Do
not use these tools on a system without authorization. Depending on the circum-
stances, you may want to notify certain colleagues before you do a port scan even
if you are authorized. In Chapter 12, we will return to port scanners and examine
other uses, such as testing firewalls.

34 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

One last word about these tools. Don’t get caught up in using tools and overlook
simpler tests. For example, you can check to see if sendmail is running by trying
to connect to the SMTP port using telnet. In this example, the test not only tells me
that sendmail is running, but it also tells me what version of sendmail is running:

lnx1# telnet 205.153.63.239 25
Trying 205.153.63.239...
Connected to 205.153.63.239.
Escape character is '^]'.
220 bsd4.lander.edu ESMTP Sendmail 8.9.3/8.9.3; Wed, 8 Mar 2000 09:38:02 -0500
(EST)
quit
221 bsd4.lander.edu closing connection
Connection closed by foreign host.

In the same spirit:

bsd1# ipfw list
ipfw: getsockopt(IP_FW_GET): Protocol not available

clearly shows ipfw is not running on this system. All I did was try to use it. This
type of application-specific testing is discussed in greater detail in Chapter 10.

Figure 2-1. Chesapeake Port Scanner

System Configuration Files 35

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System Configuration Files
A major problem with configuration files under Unix is that there are so many of
them in so many places. On a multiuser system that provides a variety of services,
there may be scores of configuration files scattered among dozens of directories.
Even worse, it seems that every implementation of Unix is different. Even dif-
ferent releases of the same flavor of Unix may vary. Add to this the complications
that multiple applications contribute and you have a major undertaking. If you are
running a number of different platforms, you have your work cut out for you.

For these reasons, it is unrealistic to attempt to give an exhaustive list of configura-
tion files. It is possible, however, to discuss configuration files by categories. The
categories can then serve as a guide or reminder when you construct your own
lists so that you don’t overlook an important group of files. Just keep in mind that
what follows is only a starting point. You will have to discover your particular
implementations of Unix one file at a time.

Basic Configuration Files

There are a number of fairly standard configuration files that seem to show up on
most systems. These are usually, but not always, located in the /etc directory. (For
customization, you may see a number of files in the /usr/local or /usr/opt directo-
ries or their subdirectories.) When looking at files, this is clearly the first place to
start. Your system will probably include many of the following: defaultdomain,
defaultroute, ethers, gateways, host.conf, hostname, hosts, hosts.allow, hosts.equiv,
inetd.conf, localhosts, localnetworks, named.boot, netmasks, networks, nodename,
nsswitch.conf, protocols, rc, rc.conf, rc.local, resolv.conf, and services. You won’t
find all of these on a single system. Each version and release will have its own
conventions. For example, Solaris puts the host’s name in nodename.* With BSD, it
is set in rc.conf. Customizations may change these as well. Thus, the locations and
names of files will vary from system to system.

One starting point might be to scan all the files in /etc and its subdirectories, trying
to identify which ones are relevant. In the long run, you may want to know the
role of all the files in /etc, but you don’t need to do this all at once.

There are a few files or groups of files that will be of particular interest. One of
the most important is inetd.conf. While we can piece together what is probably
being handled by inetd by using ps in combination with netstat, an examination
of inetd.conf is usually much quicker and safer. On an unfamiliar system, this is

* The hostname may be used in other files as well so don’t try to change the hostname by editing these
files. Use the hostname command instead.

36 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

one of the first places you will want to look. Be sure to compare this to the
output provided by netstat. Services that you can’t match to running processes or
inetd are a cause for concern.

You will also want to examine files like host.conf, resolv.conf, and nsswitch.conf to
discover how name resolution is done. Be sure to examine files that establish trust
relationships like hosts.allow. This is absolutely essential if you are having, or want
to avoid, security problems. (There is more on some of these files in the discus-
sion of tcpwrappers in Chapter 11.)

Finally, there is one group of these files, the rc files, that deserve particular atten-
tion. These are discussed separately in the later section on startup files and scripts.

Configuration Programs

Over the years, Unix has been heavily criticized because of its terse command-line
interface. As a result, many GUI applications have been developed. System admin-
istration has not escaped this trend. These utilities can be used to display as well
as change system configurations.

Once again, every flavor of Unix will be different. With Solaris, admintool was the
torchbearer for years. In recent years, this has been superseded with Solstice
AdminSuite. With FreeBSD, select the configure item from the menu presented
when you run /stand/sysinstall. With Linux you can use linuxconf. Both the menu
and GUI versions of this program are common. The list goes on.

Kernel

It’s natural to assume that examining the kernel’s configuration might be an impor-
tant first step. But while it may, in fact, be essential in resolving some key issues,
in general, it is usually not the most productive place to look. You may want to
postpone this until it seems absolutely necessary or you have lots of free time.

As you know, the first step in starting a system is loading and initializing the
kernel. Network services rely on the kernel being configured correctly. Some ser-
vices will be available only if first enabled in the kernel. While examining the
kernel’s configuration won’t tell you which services are actually being used, it can
give some insight into what is not available. For example, if the kernel is not con-
figured to forward IP packets, then clearly the system is not being used as a
router, even if it has multiple interfaces. On the other hand, it doesn’t immediately
follow that a system is configured as a firewall just because the kernel has been
compiled to support filtering.

System Configuration Files 37

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Changes to the kernel will usually be required only when building a new system,
installing a new service or new hardware, or tuning system performance. Changing
the kernel will not normally be needed to simply discover how a system is config-
ured. However, changes may be required to use some of the tools described later
in this book. For example, some versions of FreeBSD have not, by default,
enabled the Berkeley packet filter pseudodriver. Thus, it is necessary to recompile
the kernel to enable this before some packet capture software, such as tcpdump,
can be run on these systems.

To recompile a kernel, you’ll need to consult the documentation for your oper-
ating system for the specifics. Usually, recompiling a kernel first requires editing
configuration files. This may be done manually or with the aid of a utility created
for this task. For example, with Linux, the command make config runs an interac-
tive program that sets appropriate parameters.* BSD uses a program called config.
If you can locate the configuration files used, you can see how the kernel was
configured. But, if the kernel has been rebuilt a number of times without fol-
lowing a consistent naming scheme, this can be surprisingly difficult.

As an example, on BSD-derived systems, the kernel configuration files are usually
found in the directory /sys/arch/conf/kernel where arch corresponds to the
architecture of the system and kernel is the name of the kernel. With FreeBSD,
the file might be /sys/i386/conf/GENERIC if the kernel has not been recompiled. In
Linux, the configuration file is .config in whatever directory the kernel was
unpacked in, usually /usr/src/linux/.

As you might expect, lines beginning with a # are comments. What you’ll prob-
ably want to look for are lines specifying unusual options. For example, it is not
difficult to guess that the following lines from a FreeBSD system indicate that the
machine may be used as a firewall:

...
Firewall options
options IPFIREWALL
options IPFIREWALL_VERBOSE_LIMIT=25
...

Some entries can be pretty cryptic, but hopefully there are some comments. The
Unix manpages for a system may describe some options.

Unfortunately, there is very little consistency from one version of Unix to the next
on how such files are named, where they are located, what information they may
contain, or how they are used. For example, Solaris uses the file /etc/system to

* You can also use make xconfig or make menuconfig. These are more interactive, allowing you to go
back and change parameters once you have moved on. make config is unforgiving in this respect.

38 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

hold some directives, although there is little of interest in this file for our pur-
poses. IRIX keeps its files in the /var/sysgen/system directory. For Linux, take a
look at /etc/conf.modules. The list goes on.*

It is usually possible to examine or change selected system parameters for an
existing kernel. For example, Solaris has the utilities sysdef, prtconf, and ndd. For
our purposes, ndd is the most interesting and should provide the flavor of how
such utilities work.

Specifically, ndd allows you to get or set driver configuration parameters. You will
probably want to begin by listing configurable options. Specifying the driver (i.e.,
/dev/arp, /dev/icmp, /dev/ip, /dev/tcp, and /dev/udp) with the ? option will return
the parameters available for that driver. Here is an example:

sol1# ndd /dev/arp ?
? (read only)
arp_cache_report (read only)
arp_debug (read and write)
arp_cleanup_interval (read and write)

This shows three parameters that can be examined, although only two can be
changed. We can examine an individual parameter by using its name as an argu-
ment. For example, we can retrieve the ARP table as shown here:

sol1# ndd /dev/arp arp_cache_report
ifname proto addr proto mask hardware addr flags
elxl0 205.153.060.053 255.255.255.255 00:e0:29:21:3c:0b
elxl0 205.153.060.055 255.255.255.255 00:90:27:43:72:70
elxl0 205.153.060.001 255.255.255.255 00:00:a2:c6:0e:42
elxl0 205.153.060.005 255.255.255.255 00:90:27:9c:2d:c6
elxl0 205.153.060.248 255.255.255.255 00:60:97:58:71:b7 PERM PUBLISH MYADDR
elxl0 205.153.060.150 255.255.255.255 00:c0:05:04:2d:78
elxl0 224.000.000.000 240.000.000.000 01:00:5e:00:00:00 PERM MAPPING

In this instance, it is fairly easy to guess the meaning of what’s returned. (This
output is for the same ARP table that we looked at with the arp command.) Some-
times, what’s returned can be quite cryptic. This example returns the value of the
IP forwarding parameter:

ndd /dev/ip ip_forwarding
0

It is far from obvious how to interpret this result. In fact, 0 means never forward,
1 means always forward, and 2 means forward only when two or more inter-
faces are up. I’ve never been able to locate a definitive source for this sort of
information, although a number of the options are described in an appendix to

* While general configuration parameters should be in a single file, a huge number of files are actually
involved. If you have access to FreeBSD, you might look at /sys/conf/files to get some idea of this. This
is a list of the files FreeBSD uses.

System Configuration Files 39

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

W. Richard Stevens’ TCP/IP Illustrated, vol. 1. If you want to change parameters,
you can invoke the program interactively.

Other versions of Unix will have their own files and utilities. For example, BSD
has the sysctl command. This example shows that IP forwarding is disabled:

bsd1# sysctl net.inet.ip.forwarding
net.inet.ip.forwarding: 0

The manpages provide additional guidance, but to know what to change, you may
have to delve into the source code. With AIX, there is the no utility. As I have said
before, the list goes on.

This brief description should give you a general idea of what’s involved in
gleaning information about the kernel, but you will want to go to the appropriate
documentation for your system. It should be clear that it takes a fair degree of
experience to extract this kind of information. Occasionally, there is a bit of infor-
mation that can be obtained only this way, but, in general, this is not the most
profitable place to start.

One last comment—if you are intent on examining the behavior of the kernel, you
will almost certainly want to look at the messages it produces when booting. On
most systems, these can be retrieved with the dmesg command. These can be
helpful in determining what network hardware your system has and what drivers it
uses. For hardware, however, I generally prefer opening the case and looking
inside. Accessing the CMOS is another approach for discovering the hardware that
doesn’t require opening the box.

Startup Files and Scripts

Once the kernel is loaded, the swapper or scheduler is started and then the init
process runs. This process will, in turn, run a number of startup scripts that will
start the various services and do additional configuration chores.

After the standard configuration files, these are the next group of files you might
want to examine. These will primarily be scripts, but may include configuration
files read by the scripts. In general, it is a bad idea to bury configuration parame-
ters within these scripts, but this is still done at times. You should also be pre-
pared to read fairly cryptic shell code. It is hoped that most of these will be either
in their pristine state, heavily commented, or both.

Look for three things when examining these files. First, some networking parame-
ters may be buried in these files. You will not want to miss these. Next, there
may be calls to network configuration utilities such as route or ifconfig. These are
frequently customizations, so read these with a critical eye. Finally, networking

40 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

applications such as sendmail may be started from these files. I strongly urge that
you create a list of all applications that are run automatically at startup.

For systems derived from BSD, you should look for files in /etc beginning with rc.
Be sure to look at rc.conf and any rc files with extensions indicating a networking
function of interest, e.g., rc.firewall. Realize that many of these will be templates
for services that you may not be using. For example, if you see the file rc.atm,
don’t be too disappointed when you can’t find your ATM connection.

Unix systems can typically be booted in one of several different states or run levels
that determine which services are started. For example, run level 1 is single-user
mode and is used for system maintenance. The services started by the different run
levels vary somewhat among the different flavors of Unix. If your system is
derived from System V, then the files will be in a half dozen or so directories in
/etc. These are named rc1.d, rc2.d, and so forth. The digit indicates the run level
of the system when booted. Networking scripts are usually in rc2.d. In each direc-
tory, there will be scripts starting with an S or a K and a two-digit number. The
rest of the name should give some indication of the function of the file. Files with
names beginning with an S are started in numerical order when the system is
rebooted. When the system shuts down, the files with K are run. (Some versions
of Linux, such as Red Hat, follow this basic approach but group these directories
together in the /etc/rc.d directory. Others, such as Debian, follow the System V
approach.)

There is one serious catch with all this. When versions of operating
systems change, sometimes the locations of files change. For back-
ward compatibility, links may be created to old locations. For exam-
ple, on recent versions of Solaris, the network configuration file /etc/
hosts is actually a link to /etc/inet/hosts. There are other important
network configuration files that are really in /etc/inet, not /etc. Simi-
larly, some of the startup scripts are really links to files in /etc/init.d.
If the link is somehow broken, you may find yourself editing the
wrong version of a file and wondering why the system is ignoring
your changes.

Other Files

There are several other categories of files that are worth mentioning briefly. If you
have been following the steps just described, you will already have found most of
these, but it may be worth mentioning them separately just in case you have over-
looked something.

System Configuration Files 41

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Application files

Once you have your list of applications that are started automatically, investigate
how each application is configured. When it comes to configuration files, each
application will follow its own conventions. The files may be grouped together,
reside in a couple of directories, or have some distributed structure that spans a
number of directories. For example, sendmail usually keeps configuration files
together, usually in /etc or in /etc/mail. DNS may have a couple of files in /etc to
get things started, with the database files grouped together somewhere else. A
web server like apache may have an extensive set of files distributed across a
number of directories, particularly if you consider content. But beware, your par-
ticular implementation may vary from the norm—in that case, all bets are off. You
will need to look for these on an application-by-application and a system-by-
system basis.

Security files

It is likely you will have already discovered relevant security files at this point, but
if you are having problems, this is something worth revisiting. There are several
different categories to consider:

Trust relationships
Some files such as /etc/hosts.equiv set up trust relationships with other com-
puters. You will definitely want to review these. Keep in mind that users can
establish their own trust relationships, so don’t forget the .rhost file in home
directories if you are having problems tied to specific users.

Traffic control
A number of files may be tied to general access or the control of traffic. These
include configuration files for applications like tcpwrappers or firewall configu-
ration files.

Application specific
Don’t forget that individual applications may have security files as well. For
example, the file /etc/ftpusers may be used by ftp to restrict access. These are
very easy to overlook.

Log files

One last category of files you might want to consider is log files. Strictly speaking,
these are not configuration files. Apart from an occasional startup message, these
may not tell you very much about your system’s configuration. But occasionally,
these will provide the missing puzzle piece for resolving a problem. Log files are
described in much greater detail in Chapter 11.

42 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Microsoft Windows
Networking with Windows can be quite complicated, since it may involve
Microsoft’s proprietary enhancements. Fortunately, Microsoft’s approach to TCP/IP
is pretty standard. As with Unix, you can approach the various versions of Win-
dows by looking at configuration parameters or by using utilities to examine the
current configuration. For the most part, you won’t be examining files directly
under Windows, at least for versions later than Windows for Workgroups. Rather,
you’ll use the utilities that Windows provides. (There are exceptions. For example,
like Unix, Windows has hosts, protocol, and services files.)

If you are looking for basic information quickly, Microsoft provides one of two
programs for this purpose, depending on which version of Windows you use. The
utility winipcfg is included with Windows 95/98. A command-line program,
ipconfig, is included with Windows NT and Windows 2000 and in Microsoft’s TCP/
IP stack for Windows for Workgroups. Both programs provide the same informa-
tion. winipcfg produces a pop-up window giving the basic parameters such as the
Ethernet address, the IP address, the default route, the name server’s address, and
so on (see Figure 2-2). You can invoke the program by entering the program
name from Run on the start menu or in a DOS window. The most basic parame-
ters will be displayed. Additional information can be obtained by using the /all
option or by clicking on the More Info >> button.

For ipconfig, start a DOS window. You can use the command switch /all to get the
additional details.

As in Unix, the utilities arp, hostname, and netstat are available. All require a DOS
window to run. There are a few differences in syntax, but they work basically the
same way and provide the same sorts of information. For example, arp -a will list
all the entries in the ARP table:

C:\>arp -a

Interface: 205.153.63.30 on Interface 2
 Internet Address Physical Address Type
 205.153.63.1 00-00-a2-c6-28-44 dynamic
 205.153.63.239 00-60-97-06-22-22 dynamic

The command netstat -r gives the computer’s routing table:

C:\>netstat -r

Route Table
===
Interface List
0x1 MS TCP Loopback interface
0x2 ...00 10 5a a1 e9 08 3Com 3C90x Ethernet Adapter
0x3 ...00 00 00 00 00 00 NdisWan Adapter

Microsoft Windows 43

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

===
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 205.153.63.1 205.153.63.30 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 205.153.63.0 255.255.255.0 205.153.63.30 205.153.63.30 1
 205.153.63.30 255.255.255.255 127.0.0.1 127.0.0.1 1
 205.153.63.255 255.255.255.255 205.153.63.30 205.153.63.30 1
 224.0.0.0 224.0.0.0 205.153.63.30 205.153.63.30 1
 255.255.255.255 255.255.255.255 205.153.63.30 205.153.63.30 1
===

Active Connections

 Proto Local Address Foreign Address State
 TCP jsloan:1025 localhost:1028 ESTABLISHED
 TCP jsloan:1028 localhost:1025 ESTABLISHED
 TCP jsloan:1184 205.153.60.247:telnet ESTABLISHED
 TCP jsloan:1264 mail.lander.edu:pop3 TIME_WAIT

As you can see, the format is a little different, but it supplies the same basic infor-
mation. (You can also use the command route print to list the routing table.) You
can use netstat -a to get the active connections and services. There really isn’t an

Figure 2-2. winipcfg

44 Chapter 2: Host Configurations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

option that is analogous to -i in Unix’s netstat (the option to display attached inter-
faces). For a listing of the basic syntax and available commands, try netstat /?.

While Windows does not provide ps, both Windows NT and Windows 2000 pro-
vide the Task Manager (taskmgr.exe), a utility that can be used to see or control
what is running. If you have the Windows Resource Kit, three additional utilities,
process viewer (pviewer.exe), process explode (pview.exe), and process monitor
(pmon.exe), are worth looking at. All four can be started by entering their names
at Start ➝ Run. The Task Manager can also be started by pressing Ctrl-Alt-Delete
and selecting Task Manager from the menu or by right-clicking on a vacant area
on the task bar at the bottom of the screen and selecting Task Manger from the
menu.

You won’t need NT’s administrator privileges to use the DOS-based commands
just described. If you want to reconfigure the system or if you need additional
details, you will need to turn to the utilities provided by Windows. For NT, this
will require administrator privileges. (You’ll also need administrative privileges to
make changes with arp or route.) This is available from Start ➝ Settings ➝ Control
Panel ➝ Network or by following a similar path from My Computer. Select the
appropriate tab and fields as needed.

If you are interested in port scanners, a number are available. I have already men-
tioned that the Chesapeake Port Scanner will run under Windows. Scan the
Internet for others.

Finally, for the really brave of heart, you can go into the registry. But that’s a sub-
ject for another book. (See Paul Robichaux’s Managing the Windows 2000 Reg-
istry or Steven Thomas’s Windows NT 4.0 Registry.)

45
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3

3
Connectivity Testing

This chapter describes simple tests for individual network links and for end-to-end
connectivity between networked devices. The tools described in this chapter are
used to show that there is a functioning connection between two devices. These
tools can also be used for more sophisticated testing, including the discovery of
path characteristics and the general performance measurements. These additional
uses are described in Chapter 4. Tools used for testing protocol issues related to
connectivity are described in Chapter 9. You may want to turn next to these chap-
ters if you need additional information in either of these areas.

This chapter begins with a quick review of cabling practices. If your cabling isn’t
adequate, that’s the first thing you need to address. Next, there is a lengthy discus-
sion of using ping to test connectivity along with issues that might arise when
using ping, such as security problems. Next, I describe alternatives to ping. Finally,
I discuss alternatives that run on Microsoft Windows platforms.

Cabling
For most managers, cabling is the most boring part of a network. Even administra-
tors who are normally control freaks will often jump at the opportunity to delegate
or cede responsibility for cabling to somebody else. It has none of the excitement
of new equipment or new software. It is often hidden away in wiring closets, walls,
and ceilings. When it is visible, it is usually in the way or an eyesore. The only time
most managers think about cabling is when it is causing problems. Yet, unless you
are one of a very small minority running a wireless network, it is the core of your
network. Without adequate cabling, you don’t have a network.

Although this is a book about software tools, not cabling, the topics are not unre-
lated. If you have a cabling problem, you may need to turn to the tools described

46 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

later in this chapter to pinpoint the problem. Conversely, to properly use these
tools, you can’t ignore cabling, as it may be the real source of your problems.

If a cable is damaged, it won’t be difficult to recognize the problem. But intermit-
tent cabling problems can be a nightmare to solve. The problem may be difficult
to recognize as a cabling problem. It may come and go, working correctly most of
the time. The problem may arise in cables that have been in use for years. For
example, I once watched a technician try to deal with a small classroom LAN that
had been in use for more than five years and would fail only when the network
was heavily loaded, i.e., if and only if there was a scheduled class in the room.
The problem took weeks before what proved to be a cabling problem was
resolved. In the meantime, several classes were canceled.

A full discussion of cabling practices, standards, and troubleshooting has been the
topic of several books, so this coverage will be very selective. I am assuming that
you are familiar with the basics. If not, several references in Appendix B provide a
general but thorough introduction to cabling.

With cabling, as with most things, it is usually preferable to prevent problems than
to have to subsequently deal with them. The best way to avoid cabling problems
is to take a proactive approach. While some of the following suggestions may
seem excessive, the costs are minimal when compared to what can be involved in
solving a problem.

Installing New Cabling

If you are faced with a new installation, take the time to be sure it is done cor-
rectly from the start. While it is fairly straightforward to wire a few machines
together in a home office, cabling should not generally be viewed as a do-it-your-
self job. Large cabling projects should be left to trained professionals whenever
possible.

Cabling is usually a large investment. Correcting cabling problems can be very
costly in lost time both for diagnosing the problem and for correcting the problem.
Also, cabling must conform to all applicable building and fire codes. For example,
using nonplenum cabling in plenum spaces can, in the event of a fire, greatly
endanger the safety of you and your fellow workers. (Plenum cabling is cabling
designed to be used in plenum spaces, spaces used to recirculate air in a building.
It uses materials that have low flame-spread and low smoke-producing properties.)

Cabling can also be very sensitive to its physical environment. Cable that runs too
near fluorescent lights or large motors, e.g., elevator motors, can be problematic.
Proximity to power lines can also cause problems. The network cable acts like an
antenna, picking up other nearby electrical activity and introducing unwanted sig-
nals or noise onto the network. This can be highly intermittent and very difficult to

Cabling 47

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

identify. Concerns such as these should be enough to discourage you from doing
the job yourself unless you are very familiar with the task.

Unfortunately, sometimes budget or organizational policies are such that you will
have no choice but to do the job yourself or use internal personnel. If you must
do the job yourself, take the time to learn the necessary skills before you begin.
Get formal training if at all possible. Invest in the appropriate tools and test equip-
ment to do the job correctly. And make sure you aren’t violating any building or
fire codes.

If the wiring is handled by others, you will need to evaluate whether those
charged with the task really have the skill to complete the job. Most electricians
and telephone technicians are not familiar with data cabling practices. Worse still,
many don’t realize this. So, if asked, they will reassure you they can do the job. If
possible, use an installer who has been certified in data cabling. Once you have
identified a likely candidate, follow up on her references. Ask for the names of
some past customers and call those customers. If possible, ask to see some of her
work.

When planning a project, you should install extra cable whenever feasible. It is
much cheaper to pull extra cable as you go than to go back and install new cable
or replace a faulty cable. You should also consider technologies that will support
higher speeds than you are currently using. For example, if you are using 10-Mbps
Ethernet to the desktop, you should install cable that will support 100 Mbps. In the
past it has been a common recommendation to install fiber-optic cables to the
desk as well, even if you aren’t using fiber technologies at the desk at this time.
Recent developments with copper cables have made this more of a judgment call.
Certainly, you will want to pull spare fiber to any point your backbone may even-
tually include.

If at all feasible, cabling should be certified. This means that each cable is tested to
ensure that it meets appropriate performance standards for the intended applica-
tion. This can be particularly important for spare cabling. When it is time to use
that cable, you don’t want any nasty surprises.

Adequate documentation is essential. Maintenance will be much simpler if you
follow cabling standards and use one of the more common structured cable
schemes. More information can be found in the sources given in Appendix B.

Maintaining Existing Cabling

For existing cabling, you won’t have as much latitude as with a new installation.
You certainly won’t want to go back and replace working cable just because it
does not follow some set of standards. But there are several things you can do to
make your life simpler when you eventually encounter problems.

48 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The first step in cable management is knowing which cable is which and where
each cable goes. Perhaps the most important tool for the management and trou-
bleshooting of cabling is a good label maker. Even if you weren’t around when
the cable was originally installed, you should be able, over time, to piece together
this information. You will also want to collect basic information about each cable
such as cable types and lengths.

You will want to know which of your cables don’t meet standards. If you have
one of the more sophisticated cable testers, you can self-certify your cabling plant.
You probably won’t want to do either of these tasks all at once, but you may be
able to do a little at a time. And you will definitely want to do it for any changes
or additions you make.

Labeling Cables
This should be a self-explanatory topic. Unfortunately for some, this is not the
case. I have very vivid memories of working with a wiring technician with
years of experience. The individual had worked for major organizations and
should have been quite familiar with labeling practices.

We were installing a student laboratory. The laboratory has a switch mounted
in a box on the wall. Cabling went from the box into the wall and then through
cable raceways down the length of the room. Along the raceway, it branched
into raceways built into computer tables going to the individual computers.
The problem should be clear. Once the cable disappears into the wall and race-
ways, it is impossible to match the end at the switch with the corresponding
end that emerges at the computer.

While going over what needed to be done, I mentioned, needlessly I thought,
that the cable should be clearly labeled. This was just one part of my usual
lengthy litany. He thought for a moment and then said, “I guess I can do that.”
Then a puzzled expression came over his face and he added in dead earnest,
“Which end do you want labeled?” I’d like to think he was just putting me on,
but I don’t think so.

You should use some method of attaching labels that is reasonably permanent.
It can be very discouraging to find several labels lying on the floor beneath
your equipment rack. Also, you should use a meaningful scheme for identify-
ing your cables. TIA/EIA-606 Administration Standard for Telecommunica-
tions Infrastructure of Commercial Buildings provides one possibility. (See
Appendix B for more information of TIA/EIA standards.) And, at the risk of
stating the obvious, unless you can see the entire cable at the same time, it
should be labeled at both ends.

Cabling 49

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Testing Cabling

Cable testing can be a simple, quick check for continuity or a complex set of mea-
surements that carefully characterizes a cable’s electrical properties. If you are in a
hurry to get up and running, you may be limited to simple connectivity tests, but
the more information you collect, the better prepared you will be to deal with
future problems. If you must be up quickly, make definite plans to return and
finish the job, and stick to those plans.

Link lights

Perhaps the simplest test is to rely on the network interface’s link lights. Almost all
networking equipment now has status lights that show, when lit, that you have
functioning connections. If these do not light when you make a connection, you
definitely have a problem somewhere. Keep in mind, however, a lit link light does
not necessarily indicate the absence of a problem.

Many devices have additional indicators that give you more information. It is not
uncommon to have a transmit light that blinks each time a packet is sent, a receive
light that blinks each time a packet is received, and a collision light that blinks
each time the device detects a collision. To get an idea of what is normal, look at
the lights on other computers on the same network.

Typically, you would expect to see the receive light blinking intermittently as soon
as you connect the device to an active network. Generally, anomalous behavior with
the receive light indicates a problem somewhere else on your network. If it doesn’t
ever light, you may have a problem with your connection to the network. For
example, you could be plugged into a hub that is not connected to the network. If
the light is on all or most of the time, you probably have an overloaded network.

The transmit light should come on whenever you access the network but should
remain off otherwise. You may be surprised, however, how often a computer will
access the network. It will almost certainly blink several times when your com-
puter is booted. If in doubt, try some basic networking tasks while watching for
activity. If it does not light when you try to access the network, you have prob-
lems on that computer. If it stays lit, you not only have a problem but also are
probably flooding the network with packets, thereby causing problems for others
on the network as well. You may want to isolate this machine until the problem is
resolved.

In the ideal network, from the user’s perspective at least, the collision light should
remain relatively inactive. However, excessive collision light flashing or even one
that remains on most of the time may not indicate a problem. A collision is a very
brief event. If the light only remained on for the length of the event, the flash
would be too brief to be seen. Consequently, these lights are designed to remain

50 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

on much longer than the actual event. A collision light that remains on doesn’t
necessarily mean that your network is saturated with collisions. On the other hand,
this is something you’ll want to investigate further.

For any of the cases in which you have an indication of a network overload, unless
your network is completely saturated, you should be able to get some packets
through. And you should see similar problems on every computer on that network
segment. If your network is completely saturated, then you may have a malfunc-
tioning device that is continuously transmitting. Usually, this can be easily located
by turning devices off one at a time until the problem suddenly disappears.

If you have an indication of a network overload, you should look at the overall
behavior and structure of your network. A good place to start is with netstat as
discussed in Chapter 4. For a more thorough discussion of network performance
monitoring, turn to Chapter 8.

One last word of warning—you may see anomalous behavior with
any of these lights if your interface is misconfigured or has the
wrong driver installed.

Cable testers

A wide variety of cable testers are available. Typically, you get what you pay for.
Some check little more than continuity and the cable’s pin-out (that the individual
wires are connected to the appropriate pins). Others are extremely sophisticated
and fully characterize the electrical properties of your cabling. These can easily
cost thousands of dollars. Better testers typically consist of a pair of units—the
actual tester and a termination device that creates a signal loop. These devices
commonly check the following:

Wire-map (or pin-outs)
This checks to see if the corresponding pins on each end of a cable are cor-
rectly paired. Failure indicates an improperly terminated cable, such as crossed
wires or faulty connections.

Near End Cross-Talk (NEXT)
This is a measure of how much a signal on one wire interferes with other sig-
nals on adjacent wires. High values can indicate improper termination or the
wrong type of cable or connectors.

Attenuation
This measures how much of the original signal is lost over the length of the
cable. As this is frequency dependent, this should be done at a number of dif-
ferent frequencies over the range used. It will determine the maximum data

Cabling 51

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

rates the cable can support. Problem causes include the wrong cable type,
faulty connectors, and excessive lengths.

Impedance
This is the opposition to changes in current and arises from the resistance and
the inductance of the cable. Impedance measurements may be useful for
finding an impedance mismatch that may cause reflected signals at the point
where cables are joined. It can also be useful in ascertaining whether or not
you are using the right type of cable.

Attenuation to Cross-talk Ratio (ARC)
This is a comparison of signal strength to noise. Values that are too low indi-
cate excessive cable length or poor connections.

Capacitance
This is the electrical field energy that can be stored in the cable. Anomalous
values can indicate problems with the cable such as shorts or broken wires.

Length
By timing the return of a signal injected onto the cable, the length of a cable
can be discovered. This can reveal how much cable is hidden in the walls,
allowing you to verify that cable lengths are not exceeding the maximum
allowed by the applicable standards.

The documentation with your cable tester will provide more details in under-
standing and using these tests.

The better cable testers may be preprogrammed with appropriate values for dif-
ferent types of cable, allowing you to quickly identify parameters that are out of
specification. A good tester should also allow you to print or upload measure-
ments into a database. This allows you to easily compare results over time to iden-
tify changes.

Other cable tests

In general, moving cables around is a poor way to test them. You may jiggle a
nearby poor connection, changing the state of the problem. But if you can’t afford
a cable tester, you may have little choice.

If the cable in question is not installed in the wall, you can try to test it by swap-
ping it with a cable known to be good. However, it is usually better to replace a
working cable with a questionable cable and see if things continue to work rather
than the other way around. This method is more robust to multiple failures. You
will immediately know the status of the questionable cable. If you replace a ques-
tionable cable with a good cable and you still have problems, you clearly have a
problem other than the cable. But you don’t know if it is just a different problem
or an additional problem. Of course, this approach ties up more systems.

52 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Remember, electrical connectivity does not equate to network connectivity. I’ve
seen technicians plug different subnets into the same hub and then wonder why
the computers can’t communicate.*

Testing Adapters
While most problems with adapters, such as Ethernet cards, are configuration
errors, sometimes adapters do fail. Without getting into the actual electronics, there
are generally three simple tests you can make with adapters. However, each has
its drawbacks:

• If you have some doubts about whether the problem is in the adapter or net-
work, you might try eliminating the bulk of the network from your tests. The
easiest approach is to create a two-computer network using another working
computer. If you use coaxial cable, simply run a cable known to be good
between the computers and terminate each end appropriately. For twisted
pair, use a crossover cable, i.e., a patch cable with send and receive crossed.
If all is well, the computers should be able to communicate. If they don’t, you
should have a pretty clear idea of where to look next.

The crossover cable approach is analogous to setting up a serial connection
using a null modem. You may want to first try this method with two working
computers just to verify you are using the right kind of cable. You should also
be sure IP numbers and masks are set appropriately on each computer.
Clearly, the drawbacks with this approach are shuffling computers around and
finding the right cable. But if you have a portable computer available, the
shuffling isn’t too difficult.

• A second alternative is to use the configuration and test software provided by
the adapter’s manufacturer. If you bought the adapter as a separate purchase,
you probably already have this software. If your adapter came with your com-
puter, you may have to go to the manufacturer’s web page and download the
software. This approach can be helpful, particularly with configuration errors.
For example, a combination adapter might be configured for coaxial cable
while you are trying to use it with twisted pair. You may be able to change
interrupts, DMA channels, memory locations, bus mastering configuration, and
framing types with this software.

Using diagnostic software has a couple of limitations. First, the software may
not check for some problems and may seemingly absolve a faulty card.
Second, the software may not be compatible with the operating system you

* There are also circumstances in which this will work, but mixing subnets this way is an extremely bad
idea.

Software Testing with ping 53

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

are using. This is particularly likely if you are using something like Linux or
FreeBSD on an Intel platform.

• The third alternative is to swap the card for one that is known to work. This
presumes that you have a spare card or are willing to remove one from
another machine. It also presumes that you aren’t having problems that may
damage some other component in the computer or the new card. Even though
I generally keep spare cards on hand, I usually leave this test until last when-
ever possible.

Software Testing with ping
Thus far, I have described ways to examine electrical and mechanical problems.
The tools described in this section, ping and its variants, focus primarily on the
software problems and the interaction of software with hardware. When these
tools successfully communicate with remote systems, you have established basic
connectivity. Your problem is almost certainly at a higher level in your system.

With these tools, you begin with the presumption that your hardware is working
correctly. If the link light is out on the local host, these tools will tell you nothing
you don’t already know. But if you simply suspect a hardware problem some-
where on your network, these tools may help you locate the problem. Once you
know the location of the problem, you will use the techniques previously
described to resolve it. These tools can also provide insight when your hardware is
marginal or when you have intermittent failures.

ping

While there are several useful programs for analyzing connectivity, unquestion-
ably ping is the most commonly used program. As it is required by the IP RFC, it is
almost always available as part of the networking software supplied with any
system. In addition, numerous enhanced versions of ping are available at little or
no cost. There are even web sites that will allow you to run ping from their sites.

Moreover, the basic idea has been adapted from IP networks to other protocols. For
example, Cisco’s implementation of ping has an optional keyword to check connec-
tivity among routers using AppleTalk, DECnet, or IPX. ping is nearly universal.

ping was written by Mike Muuss.* Inspired by echo location, the name comes from
sounds sonar makes. The name ping is frequently described as an acronym for
Packet InterNet Groper. But, according to Muuss’s web page, the acronym was
applied to the program after the fact by someone else.

* For more on the background of ping as well as a review of the book The Story About Ping, an alleged
allegory of the ping program, visit Muuss’s web page at http://ftp.arl.mil/~mike/ping.html.

54 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

How ping Works

It is, in essence, a simple program based on a simple idea. (Muuss describes it as a
1000-line hack that was completed in about one evening.) One network device
sends a request for a reply to another device and records the time the request was
sent. The device receiving the request sends a packet back. When the reply is
received, the round-trip time for packet propagation can be calculated. The receipt
of a reply indicates a working connection. This elapsed time provides an indica-
tion of the length of the path. Consistency among repeated queries gives an indi-
cation of the quality of the connection. Thus, ping answers two basic questions.
Do I have a connection? How good is that connection? In this chapter, we will
focus on the first question, returning to the second question in the next chapter.

Clearly, for the program to work, the networking protocol must support this
query/response mechanism. The ping program is based on Internet Control Mes-
sage Protocol (ICMP), part of the TCP/IP protocol. ICMP was designed to pass
information about network performance between network devices and exchange
error messages. It supports a wide variety of message types, including this query/
response mechanism.

The normal operation of ping relies on two specific ICMP messages, ECHO_
REQUEST and ECHO_REPLY, but it may respond to ICMP messages other than
ECHO_REPLY when appropriate. In theory, all TCP/IP-based network equipment
should respond to an ECHO_REQUEST by returning the packet to the source, but
this is not always the case.

Simple examples

The default behavior of ping will vary among implementations. Typically, imple-
mentations have a wide range of command-line options so that the behavior dis-
cussed here is generally available. For example, implementations may default to
sending a single packet, a small number of packets, or a continuous stream of
packets. They may respond with a set of round-trip transmission times or with a
simple message. The version of ping that comes with the Solaris operating system
sends, by default, a single ICMP packet. It responds that the destination is alive or
that no answer was received. In this example, an ECHO_REPLY was received:

sol1# ping 205.153.63.30
205.153.63.30 is alive
sol1#

In this example, no response was received before the program timed out:

sol1# ping www.microsoft.com
no answer from microsoft.com
sol1#

Software Testing with ping 55

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Note that ping can be used with an IP number or with a hostname, as shown by
these examples.

Other implementations will, by default, repeatedly send ECHO_REQUESTs until
interrupted. FreeBSD is an example:

bsd1# ping www.bay.com
PING www.bay.com (204.80.244.66): 56 data bytes
64 bytes from 204.80.244.66: icmp_seq=0 ttl=112 time=180.974 ms
64 bytes from 204.80.244.66: icmp_seq=1 ttl=112 time=189.810 ms
64 bytes from 204.80.244.66: icmp_seq=2 ttl=112 time=167.653 ms
^C
--- www.bay.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 167.653/179.479/189.810/9.107 ms
bsd1#

The execution of the program was interrupted with a Ctrl-C, at which point the
summary statistics were printed. Without an interrupt, the program will continue
indefinitely. With the appropriate command-line option, -s, similar output can be
obtained with Solaris.

Interpreting results

Before I go into the syntax of ping and the ways it might be used, it is worth get-
ting a clear understanding of what results might be returned by ping. The simplest
results are seen with Solaris, a message simply stating, in effect, that the reply
packet was received or was not received. With FreeBSD, we receive a great deal
more information. It repeatedly sends packets and reports results for each packet,
as well as providing a summary of results. In particular, for each packet we are
given the size and source of each packet, an ICMP sequence number, a Time-To-
Live (TTL) count, and the round-trip times. (The TTL field is explained later.) Of
these, the sequence number and round-trip times are the most revealing when
evaluating basic connectivity.

When each ECHO_REQUEST packet is sent, the time the packet is sent is recorded
in the packet. This is copied into the corresponding ECHO_REPLY packet by the
remote host. When an ECHO_REPLY packet is received, the elapsed time is calcu-
lated by comparing the current time to the time recorded in the packet, i.e., the
time the packet was sent. This difference, the elapsed time, is reported, along with
the sequence number and the TTL, which comes from the packet’s header. If no
ECHO_REPLY packet is received that matches a particular sequence number, that
packet is presumed lost. The size and the variability of elapsed times will depend
on the number and speed of intermediate links as well as the congestion on those
links.

56 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An obvious question is “What values are reasonable?” Typically, this is highly
dependent on the networks you cross and the amount of activity on those net-
works. For example, these times are taken from a PPP link with a 28.8-Kbps
modem:

64 bytes from 205.153.60.42: icmp_seq=0 ttl=30 time=225.620 ms
64 bytes from 205.153.60.42: icmp_seq=1 ttl=30 time=213.652 ms
64 bytes from 205.153.60.42: icmp_seq=2 ttl=30 time=215.306 ms
64 bytes from 205.153.60.42: icmp_seq=3 ttl=30 time=194.782 ms
64 bytes from 205.153.60.42: icmp_seq=4 ttl=30 time=199.562 ms
...

The following times were for the same link only moments later:

64 bytes from 205.153.60.42: icmp_seq=0 ttl=30 time=1037.367 ms
64 bytes from 205.153.60.42: icmp_seq=1 ttl=30 time=2119.615 ms
64 bytes from 205.153.60.42: icmp_seq=2 ttl=30 time=2269.448 ms
64 bytes from 205.153.60.42: icmp_seq=3 ttl=30 time=2209.715 ms
64 bytes from 205.153.60.42: icmp_seq=4 ttl=30 time=2493.881 ms
...

There is nothing wrong here. The difference is that a file download was in
progress on the link during the second set of measurements.

In general, you can expect very good times if you are staying on a LAN. Typically,
values should be well under 100 ms and may be less than 10 ms. Once you move
onto the Internet, values may increase dramatically. A coast-to-coast, round-trip
time will take at least 60 ms when following a mythical straight-line path with no
congestion. For remote sites, times of 200 ms may be quite good, and times up to
500 ms may be acceptable. Much larger times may be a cause for concern. Keep in
mind these are very rough numbers.

You can also use ping to calculate a rough estimate of the throughput of a con-
nection. (Throughput and related concepts are discussed in greater detail in
Chapter 4.) Send two packets with different sizes across the path of interest. This is
done with the -s option, which is described later in this chapter. The difference in
times will give an idea of how much longer it takes to send the additional data in
the larger packet. For example, say it takes 30 ms to ping with 100 bytes and 60
ms with 1100 bytes. Thus, it takes an additional 30 ms round trip or 15 ms in one
direction to send the additional 1000 bytes or 8000 bits. The throughput is roughly
8000 bits per 15 ms or 540,000 bps. The difference between two measurements is
used to eliminate overhead. This is extremely crude. It makes no adjustment for
other traffic and gives a composite picture for all the links on a path. Don’t try to
make too much out of these numbers.

It may seem that the TTL field could be used to estimate the number of hops on a
path. Unfortunately, this is problematic. When a packet is sent, the TTL field is ini-
tialized and is subsequently decremented by each router along the path. If it

Software Testing with ping 57

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

reaches zero, the packet is discarded. This imposes a finite lifetime on all packets,
ensuring that, in the event of a routing loop, the packet won’t remain on the net-
work indefinitely. Unfortunately, the TTL field may or may not be reset at the
remote machine and, if reset, there is little consistency in what it is set to. Thus,
you need to know very system-specific information to use the TTL field to esti-
mate the number of hops on a path.

A steady stream of replies with reasonably consistent times is generally an indica-
tion of a healthy connection. If packets are being lost or discarded, you will see
jumps in the sequence numbers, the missing numbers corresponding to the lost
packets. Occasional packet loss probably isn’t an indication of any real problem.
This is particularly true if you are crossing a large number of routers or any con-
gested networks. It is particularly common for the first packet in a sequence to be
lost or have a much higher elapsed time. This behavior is a consequence of the
need to do ARP resolution at each link along the path for the first packet. Since
the ARP data is cached, subsequent packets do not have this overhead. If, how-
ever, you see a large portion of the packets being lost, you may have a problem
somewhere along the path.

The program will also report duplicate and damaged packets. Damaged packets
are a cause for real concern. You will need to shift into troubleshooting mode to
locate the source of the problem. Unless you are trying to ping a broadcast
address, you should not see duplicate packets. If your computers are configured to
respond to ECHO_REQUESTs sent to broadcast addresses, you will see lots of
duplicate packets. With normal use, however, duplicate responses could indicate a
routing loop. Unfortunately, ping will only alert you to the problem; its under-
lying mechanism cannot explain the cause of such problems.

In some cases you may receive other ICMP error messages. Typically from routers,
these can be very informative and helpful. For example, in the following, an
attempt is made to reach a device on a nonexistent network:

bsd1# ping 172.16.4.1
PING 172.16.4.1 (172.16.4.1): 56 data bytes
36 bytes from 172.16.2.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5031 0 0000 fe 01 0e49 172.16.2.13 172.16.4.1

36 bytes from 172.16.2.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5034 0 0000 fe 01 0e46 172.16.2.13 172.16.4.1

^C
--- 172.16.4.1 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

58 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Since the router has no path to the network, it returns the ICMP DESTINATION_
HOST_UNREACHABLE message. In general, you will receive a Destination Host
Unreachable warning or a Destination Network Unreachable warning if the
problem is detected on the machine where ping is being run. If the problem is
detected on a device trying to forward a packet, you will receive only a
Destination Host Unreachable warning.

In the next example, an attempt is being made to cross a router that has been con-
figured to deny traffic from the source:

bsd1# ping 172.16.3.10
PING 172.16.3.10 (172.16.3.10): 56 data bytes
36 bytes from 172.16.2.1: Communication prohibited by filter
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5618 0 0000 ff 01 0859 172.16.2.13 172.16.3.10

36 bytes from 172.16.2.1: Communication prohibited by filter
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 561b 0 0000 ff 01 0856 172.16.2.13 172.16.3.10

^C
--- 172.16.3.10 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

The warning Communication prohibited by filter indicates the packets are
being discarded. Be aware that you may be blocked by filters without seeing this
message. Consider the following example:

bsd1# ping 172.16.3.10
PING 172.16.3.10 (172.16.3.10): 56 data bytes
^C
--- 172.16.3.10 ping statistics ---
6 packets transmitted, 0 packets received, 100% packet loss

The same filter was used on the router, but it was applied to traffic leaving the
network rather than inbound traffic. Hence, no messages were sent. Unfortu-
nately, ping will often be unable to tell you why a packet is unanswered.

While these are the most common ICMP messages you will see, ping may display
a wide variety of messages. A listing of ICMP messages can be found in RFC 792.
A good discussion of the more common messages can be found in Eric A. Hall’s
Internet Core Protocols: The Definitive Guide. Most ICMP messages are fairly self-
explanatory if you are familiar with TCP/IP.

Options

A number of options are generally available with ping. These vary considerably
from implementation to implementation. Some of the more germane options are
described here.

Software Testing with ping 59

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Several options control the number of or the rate at which packets are sent. The -c
option will allow you to specify the number of packets you want to send. For
example, ping -c10 would send 10 packets and stop. This can be very useful if
you are running ping from a script.

The commands -f and -l are used to flood packets onto a network. The -f option
says that packets should be sent as fast as the receiving host can handle them.
This can be used to stress-test a link or to get some indication of the comparative
performance of interfaces. In this example, the program is run for about 10 sec-
onds on each of two different destinations:

bsd1# ping -f 172.16.2.12
PING 172.16.2.12 (172.16.2.12): 56 data bytes
..^C
--- 172.16.2.12 ping statistics ---
27585 packets transmitted, 27583 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.303/0.310/0.835/0.027 ms
bsd1# ping -f 172.16.2.20
PING 172.16.2.20 (172.16.2.20): 56 data bytes
.^C
--- 172.16.2.20 ping statistics ---
5228 packets transmitted, 5227 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.535/1.736/6.463/0.363 ms

In the first case, the destination was a 200-MHz Pentium with a PCI adapter. In the
second, the destination was a 50-MHz 486 with an ISA adapter. It is not surprising
that the first computer was more than five times faster. But remember, it may not
be clear whether the limiting factor is the source or the receiver unless you do mul-
tiple tests. Clearly, use of this option could cripple a host. Consequently, the option
requires root privileges to run and may not be included in some implementations.

The -l option takes a count and sends out that many packets as fast as possible. It
then falls back to normal mode. This could be used to see how the router handles
a flood of packets. Use of this command is also restricted to root.

The -i option allows the user to specify the amount of time in seconds to wait
between sending consecutive packets. This could be a useful way to space out
packets for extended runs or for use with scripts. In general, the effect of an occa-
sional ping packet is negligible when compared to the traffic already on all but the
slowest of links. Repeated packets or packet flooding can, however, add consider-
ably to traffic and congestion. For that reason, you should be very circumspect in
using any of these options (and perhaps ping in general).

The amount and form of the data can be controlled to a limited extent. The -n
option restricts output to numeric form. This is useful if you are having DNS prob-
lems. Implementations also typically include options for more detailed output, typ-
ically -v for verbose output, and for fewer details, typically -q and -Q for quiet
output.

60 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The amount and nature of the data in the frame can be controlled using the -s and
-p options. The packet size option, -s, allows you to specify how much data to
send. If set too small, less than 8, there won’t be space in the packet for a time-
stamp. Setting the packet size can help in diagnosing a problem caused by path
Maximum Transmission Unit (MTU) settings (the largest frame size that can be
sent on the path) or fragmentation problems. (Fragmentation is dividing data
among multiple frames when a single packet is too large to cross a link. It is han-
dled by the IP portion of the protocol stack.) The general approach is to increase
packet sizes up to the maximum allowed to see if at some point you have prob-
lems. When this option isn’t used, ping defaults to 64 bytes, which may be too
small a packet to reveal some problems. Also remember that ping does not count
the IP or ICMP header in the specified length so your packets will be 28 bytes
larger than you specify.

You could conceivably see MTU problems with protocols, such as PPP, that use
escaped characters as well.* With escaped characters, a single character may be
replaced by two characters. The expansion of escaped characters increases the size
of the data frame and can cause problems with MTU restrictions or fragmentation.

The -p option allows you to specify a pattern for the data included within the packet
after the timestamp. You might use this if you think you have data-dependent prob-
lems. The FreeBSD manpage for ping notes that this sort of problem might show up
if you lack sufficient “transitions” in your data, i.e., your data is all or almost all ones
or all or almost all zeros. Some serial links are particularly vulnerable to this sort of
problem.

There are a number of other options not discussed here. These provide control
over what interfaces are used, the use of multicast packets, and so forth. The flags
presented here are from FreeBSD and are fairly standard. Be aware, however, that
different implementations may use different flags for these options. Be sure to con-
sult your documentation if things don’t work as expected.

Using ping

To isolate problems using ping, you will want to run it repeatedly, changing your
destination address so that you work your way through each intermediate device to
your destination. You should begin with your loopback interface. Use either
localhost or 127.0.0.1. Next, ping your interface by IP number. (Run ifconfig -a
if in doubt.) If either of these fails, you know that you have a problem with the host.

Next, try a host on a local network that you know is operational. Use its IP
address rather than its hostname. If this fails, there are several possibilities. If other

* Generally there are better ways to deal with problems with PPP. For more information, see Chapter 15
in Using and Managing PPP, by Andrew Sun.

Software Testing with ping 61

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

hosts are able to communicate on the local network, then you likely have prob-
lems with your connection to the network. This could be your interface, the cable
to your machine, or your connection to a hub or switch. Of course, you can’t rule
out configuration errors such as media type on the adapter or a bad IP address or
mask.

Next, try to reach the same host by name rather than number. If this fails, you
almost certainly have problems with name resolution. Even if you have this
problem, you can continue using ping to check your network, but you will need
to use IP addresses.

Try reaching the near and far interfaces of your router. This will turn up any basic
routing problems you may have on your host or connectivity problems getting to
your router.

If all goes well here, you are ready to ping remote computers. (You will need to
know the IP address of the intermediate devices to do this test. If in doubt, read
the section on traceroute in the next chapter.) Realize, of course, that if you start
having failures at this point, the problem will likely lie beyond your router. For
example, your ICMP ECHO_REQUEST packets may reach the remote machine, but
it may not have a route to your machine to use for the ICMP ECHO_REPLY
packets.

When faced with failure at this point, your response will depend on who is
responsible for the machines beyond your router. If this is still part of your net-
work, you will want to shift your tests to machines on the other side of the router
and try to work in both directions.

If these machines are outside your responsibility or control, you will need to enlist
the help of the appropriate person. Before you contact this person, however, you
should collect as much information as you can. There are three things you may
want to do. First, go back to using IP numbers if you have been using names. As
said before, if things start working, you have a name resolution problem.

Second, if you were trying to ping a device several hops beyond your router, go
back to closer machines and try to zero in on exactly where you first encountered
the problem.

Finally, be sure to probe from more than one machine. While you may have a
great deal of confidence in your local machine at this point, your discussion with
the remote administrator may go much more smoothly if you can definitely say
that you are seeing this problem from multiple machines instead of just one. In
general, this stepwise approach is the usual approach for this type of problem.

Sometimes, you may be more interested in investigating connectivity over time. For
example, you might have a connection that seems to come and go. By running

62 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

ping in the background or from a script, you may be able to collect useful informa-
tion. For example, with some routing protocols, updates have a way of becoming
synchronized, resulting in periodic loading on the network. If you see increased
delays, for example every 30 seconds, you might be having that sort of problem.
Or, if you lose packets every time someone uses the elevator, you might look at the
path your cable takes.

If you are looking at performance over a long period of time, you will almost cer-
tainly want to use the -i option to space out your packets in a more network-
friendly manner. This is a reasonable approach to take if you are experiencing
occasional outages and need to document the time and duration of the outages.
You should also be aware that over extended periods of time, you may see
changes in the paths the packets follow.

Problems with ping

Up to this point, I have been describing how ping is normally used. I now
describe some of the complications faced when using ping.

First, the program does not exist in isolation, but depends on the proper func-
tioning of other elements of the network. In particular, ping usually depends upon
ARP and DNS. As previously noted, if you are using a hostname rather than an IP
address as your destination, the name of the host will have to be resolved before
ping can send any packets. You can bypass DNS by using IP addresses.

It is also necessary to discover the host’s link-level address for each host along the
path to the destination. Although this is rarely a problem, should ARP resolution
fail, then ping will fail. You could avoid this problem, in part, by using static ARP
entries to ensure that the ARP table is correct. A more common problem is that the
time reported by ping for the first packet sent will often be distorted since it
reflects both transit times and ARP resolution times. On some networks, the first
packet will often be lost. You can avoid this problem by sending more than one
packet and ignoring the results for the first packet.

The correct operation of your network will depend on considerations that do not
affect ping. In such situations, ping will work correctly, but you will still have link
problems. For example, if there are problems with the configuration of the path
MTU, smaller ping packets may zip through the network while larger application
packets may be blocked. S. Lee Henry described a problem in which she could
ping remote systems but could not download web pages.* While her particular

* “Systems Administration: You Can’t Get There from Here,” Server/Workstation Expert, May 1999. This
article can be found in PDF format at http://sw.expert.com/C4/SE.C4.MAY.99.pdf.

Software Testing with ping 63

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

problem was highly unusual, it does point out that a connection can appear to be
working, but still have problems.

The opposite can be true as well. Often ping will fail when the connection works
for other uses. For various reasons, usually related to security, some system admin-
istrators may block ICMP packets in general or ECHO_REQUEST packets in partic-
ular. Moreover, this practice seems to be increasing. I’ve even seen a site block
ping traffic at its DNS server.

Security and ICMP

Unfortunately, ping in particular, and ICMP packets in general, have been impli-
cated in several recent denial-of-service attacks. But while these attacks have used
ping, they are not inherently problems with ping. Nonetheless, network adminis-
trators have responded as though ping was the problem (or at least the easiest
way to deal with the problem), and this will continue to affect how and even if
ping can be used in some contexts.

Smurf Attacks

In a Smurf Attack, ICMP ECHO_REQUEST packets are sent to the broadcast
address of a network. Depending on how hosts are configured on the network,
some may attempt to reply to the ECHO_REQUEST. The resulting flood of
responses may degrade the performance of the network, particularly at the desti-
nation host.

With this attack, there are usually three parties involved—the attacker who gener-
ates the original request; an intermediary, sometimes called a reflector or multi-
plier, that delivers the packet onto the network; and the victim. The attacker uses
a forged source address so that the ECHO_REPLY packets are returned, not to the
attacker, but to a “spoofed” address, i.e., the victim. The intermediary may be
either a router or a compromised host on the destination network.

Because there are many machines responding to a single request, little of the
attacker’s bandwidth is used, while much of the victim’s bandwidth may be used.
Attackers have developed tools that allow them to send ECHO_REQUESTs to mul-
tiple intermediaries at about the same time. Thus, the victim will be overwhelmed
by ECHO_REPLY packets from multiple sources. Notice also that congestion is not
limited to just the victim but may extend through its ISP all the way back to the
intermediaries’ networks.

The result of these attacks is that many sites are now blocking ICMP ECHO_
REQUEST traffic into their network. Some have gone as far as to block all ICMP
traffic. While understandable, this is not an appropriate response. First, it blocks
legitimate uses of these packets, such as checking basic connectivity. Second, it

64 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

may not be effective. In the event of a compromised host, the ECHO_REQUEST
may originate within the network. At best, blocking pings is only a temporary
solution.

A more appropriate response requires taking several steps. First, you should con-
figure your routers so they will not forward broadcast traffic onto your network
from other networks. How you do this will depend on the type of router you
have, but solutions are available from most vendors.

Second, you may want to configure your hosts so they do not respond to ECHO_
REQUESTs sent to broadcast addresses. It is easy to get an idea of which hosts on
your network respond to these broadcasts. First, examine your ARP table, then
ping your broadcast address, and then look at your ARP table again for new
entries.*

Finally, as a good network citizen, you should install filters on your access router
to prevent packets that have a source address not on your network from leaving
your network. This limits not only Smurf Attacks but also other attacks based on
spoofed addresses from originating on your network. These filters should also be
applied to internal routers as well as access routers. (This assumes you are pro-
viding forwarding for other networks!)

If you follow these steps, you should not have to disable ICMP traffic. For more
information on Smurf Attacks, including information on making these changes,
visit http://www.cert.org/advisories/CA-1998-01.html. You might also look at RFC
2827.

Ping of Death

The specifications for TCP/IP have a maximum packet size of 65536 octets or
bytes. Unfortunately, some operating systems behave in unpredictable ways if they
receive a larger packet. Systems may hang, crash, or reboot. With a Ping of Death
(or Ping o’ Death) Attack, the packet size option for ping is used to send a slightly
oversized packet to the victim’s computer. For example, on some older machines,
the command ping -s 65510 172.16.2.1 (use -l rather than -s on old Windows sys-
tems) will send a packet, once headers are added, that causes this problem to the
host 172.16.2.1. (Admittedly, I have some misgivings about giving an explicit
command, but this has been widely published and some of you may want to test
your systems.)

This is basically an operating system problem. Large packets must be fragmented
when sent. The destination will put the pieces in a buffer until all the pieces have

* At one time, you could test your site by going to http://www.netscan.org, but this site seems to have
disappeared.

Software Testing with ping 65

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

arrived and the packet can be reassembled. Some systems simply don’t do ade-
quate bounds checking, allowing memory to be trashed.

Again, this is not really a problem with ping. Any oversized packet, whether it is
an ICMP packet, TCP packet, or UDP packet, will cause the same problem in sus-
ceptible operating systems. (Even IPX has been mentioned.) All ping does is
supply a trivial way to exploit the problem. The correct way to deal with this
problem is to apply the appropriate patch to your operating system. Blocking
ICMP packets at your router will not protect you from other oversized packets.
Fortunately, most systems have corrected this problem, so you are likely to see it
only if you are running older systems.*

Other problems

Of course, there may be other perceived problems with ping. Since it can be used
to garner information about a network, it can be seen as a threat to networks that
rely on security through obscurity. It may also be seen as generating unwanted or
unneeded traffic. For these and previously cited reasons, ICMP traffic is frequently
blocked at routers.

Blocking is not the only difficulty that routers may create. Routers may assign
extremely low priorities to ICMP traffic rather than simply block such traffic. This
is particularly true for routers implementing quality of service protocols. The result
can be much higher variability in traffic patterns. Network Address Translation
(NAT) can present other difficulties. Cisco’s implementation has the router
responding to ICMP packets for the first address in the translation pool regardless
of whether it is being used. This might not be what you would have expected.

In general, blocking ICMP packets, even just ECHO_REQUEST packets, is not
desirable. You lose a valuable source of information about your network and
inconvenience users who may have a legitimate need for these messages. This is
often done as a stopgap measure in the absence of a more comprehensive
approach to security.

Interestingly, even if ICMP packets are being blocked, you can still use ping to see
if a host on the local subnet is up. Simply clear the ARP table (typically arp -ad),
ping the device, and then examine the ARP table. If the device has been added to
the ARP table, it is up and responding.

One final note about ping. It should be obvious, but ping checks only connec-
tivity, not the functionality of the end device. During some network changes, I
once used ping to check to see if a networked printer had been reconnected yet.
When I was finally able to ping the device, I sent a job to the printer. However,

* For more information on this attack, see http://www.cert.org/advisories/CA-1996-26.html.

66 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

my system kept reporting that the job hadn’t printed. I eventually got up and
walked down the hall to the printer to see what was wrong. It had been recon-
nected to the network, but someone had left it offline. Be warned, it is very easy
to read too much into a successful ping.

Alternatives to ping

Variants to ping fall into two general categories, those that add to ping’s function-
ality and those that are alternatives to ping. An example of the first is fping, and an
example of the second is echoping.

fping

Written by Roland Schemers of Stanford University, fping extends ping to support
multiple hosts in parallel. Typical output is shown in this example:

bsd1# fping 172.16.2.10 172.16.2.11 172.16.2.12 172.16.2.13 172.16.2.14
172.16.2.13 is alive
172.16.2.10 is alive
172.16.2.12 is alive
172.16.2.14 is unreachable
172.16.2.11 is unreachable

Notice that five hosts are being probed at the same time and that the results are
reported in the order replies are received.

This works the same way ping works, through sending and receiving ICMP mes-
sages. It is primarily designed to be used with files. Several command-line options
are available, including the -f option for reading a list of devices to probe from a
file and the -u option used to print only those systems that are unreachable. For
example:

bsd1# fping -u 172.16.2.10 172.16.2.11 172.16.2.12 172.16.2.13 172.16.2.14
172.16.2.14
172.16.2.11

The utility of this form in a script should be self-evident.

echoping

Several tools similar to ping don’t use ICMP ECHO_REQUEST and ECHO_REPLY
packets. These may provide an alternative to ping in some contexts.

One such program is echoping. It is very similar to ping. It works by sending
packets to one of several services that may be offered over TCP and UDP—ECHO,
DISCARD, CHARGEN, and HTTP. Particularly useful when ICMP messages are
being blocked, echoping may work where ping fails.

Software Testing with ping 67

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

If none of these services is available, echoping cannot be used. Unfortunately,
ECHO and CHARGEN have been used in the Fraggle denial of service attacks. By
sending the output from CHARGEN (a character-generation protocol) to ECHO,
the network can be flooded. Consequently, many operating systems are now
shipped with these services disabled. Thus, the program may not be as useful as
ping. With Unix, these services are controlled by inetd and could be enabled if
desired and if you have access to the destination machine. But these services have
limited value, and you are probably better off disabling them.

In this example, I have previously enabled ECHO on lnx1:

bsd1# echoping -v lnx1

This is echoping, version 2.2.0.

Trying to connect to internet address 205.153.61.177 to transmit 256 bytes...
Connected...
Sent (256 bytes)...
256 bytes read from server.
Checked
Elapsed time: 0.004488 seconds

This provides basically the same information as ping. The -v option simply pro-
vides a few more details. The program defaults to TCP and ECHO. Command-line
options allow UDP packet or the other services to be selected.

When ping was first introduced in this chapter, we saw that www.microsoft.com
could not be reached by ping. Nor can it be reached using echoping in its default
mode. But, as a web server, port 80 should be available. This is in fact the case:

bsd1# echoping -v -h /ms.htm www.microsoft.com:80

This is echoping, version 2.2.0.

Trying to connect to internet address 207.46.130.14 (port 80) to transmit 100
bytes...
Connected...
Sent (100 bytes)...
2830 bytes read from server.
Elapsed time: 0.269319 seconds

Clearly, Microsoft is blocking ICMP packets. In this example, we could just as
easily have turned to our web browser. Sometimes, however, this is not the case.

An obvious question is “Why would you need such a tool?” If you have been
denied access to a network, should you be using such probes? On the other hand,
if you are responsible for the security of a network, you may want to test your
configuration. What can users outside your network discover about your network?
If this is the case, you’ll need these tools to test your network.

68 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

arping

Another interesting and useful variant of ping is arping. arping uses ARP requests
and replies instead of ICMP packets. Here is an example:

bsd2# arping -v -c3 00:10:7b:66:f7:62
This box: Interface: ep0 IP: 172.16.2.236 MAC address: 00:60:97:06:22:22
ARPING 00:10:7b:66:f7:62
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=0
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=1
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=2

--- 00:10:7b:66:f7:62 statistics ---
3 packets transmitted, 3 packets received, 0% unanswered
2 packets transmitted, 2 packets received, 0% unanswered

In this case, I’ve used the MAC address, but the IP address could also be used. The
-v option is for verbose, while -c3 limits the run to three probes. Verbose doesn’t
really add a lot to the default output, just the first line identifying the source. If
you just want the packets sent, you can use the -q, or quiet, option.

This tool has several uses. First, it is a way to find which IP addresses are being
used. It can also be used to work backward, i.e., to discover IP addresses given
MAC addresses. For example, if you have captured non-IP traffic (e.g., IPX, etc.)
and you want to know the IP address for the traffic’s source, you can use arping
with the MAC address. If you just want to check connectivity, arping is also a
useful tool. Since ARP packets won’t be blocked, this should work even when
ICMP packets are blocked. You could also use this tool to probe for ARP entries in
a router. Of course, due to the nature of ARP, there is not a lot that this tool can
tell you about devices not on the local network.

Other programs

There are other programs that can be used to check connectivity. Two are
described later in this book. nmap is described in Chapter 6, and hping is described
in Chapter 9. Both are versatile tools that can be used for many purposes.

A number of ping variants and extended versions of ping are also available, both
freely and commercially. Some extend ping’s functionality to the point that the
original functionality seems little more than an afterthought. Although only a few
examples are described here, don’t be fooled into believing that these are all there
are. A casual web search should turn up many, many more.

Finally, don’t forget the obvious. If you are interested in checking only basic con-
nectivity, you can always try programs like telnet or your web browser. While this
is generally not a recommended approach, each problem is different, and you
should use whatever works. (For a discussion of the problems with this approach,
see the sidebar “Using Applications to Test Connectivity.”)

Microsoft Windows 69

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Microsoft Windows
The various versions of Windows include implementations of ping. With the
Microsoft implementation, there are a number of superficial differences in syntax
and somewhat less functionality. Basically, however, it works pretty much as you
might expect. The default is to send four packets, as shown in the two following
examples. In the first, we successfully ping the host www.cabletron.com:

C:\>ping www.cabletron.com

Pinging www.cabletron.com [204.164.189.90] with 32 bytes of data:

Reply from 204.164.189.90: bytes=32 time=100ms TTL=239
Reply from 204.164.189.90: bytes=32 time=100ms TTL=239

Using Applications to Test Connectivity
One all-too-common way of testing a new installation is to see if networking
applications are working. The cable is installed and connected, the TCP/IP
stack is configured, and then a web browser is started to see if the connection
is working. If you can hit a couple of web sites, then everything is alright and
no further testing is needed.

This is understandably an extremely common way to test a connection. It can
be particularly gratifying to see a web page loading on a computer you have
just connected to your network. But it is also an extremely poor way to test a
connection.

One problem is that the software stack you use to test the connection is
designed to hide problems from users. If a packet is lost, the stack will trans-
parently have the lost packet resent without any indication to the user. You
could have a connection that is losing 90% of its packets. The problem would
be immediately obvious when using ping. But with most applications, this
would show up only as a slow response. Other problems include locally
cached information or the presence of proxy servers on the network.

Unfortunately, web browsers seem to be the program of choice for testing a
connection. This, of course, is the worst possible choice. The web’s slow
response is an accepted fact of life. What technician is going to blame a slow
connection on his shoddy wiring when the alternative is to blame the slow con-
nection on the Web? What technician would even consider the possibility that
a slow web response is caused by a cable being too close to a fluorescent light?

The only thing testing with an application will really tell you is whether a con-
nection is totally down. If you want to know more than that, you will have to
do real testing.

70 Chapter 3: Connectivity Testing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reply from 204.164.189.90: bytes=32 time=110ms TTL=239
Reply from 204.164.189.90: bytes=32 time=90ms TTL=239

C:\>

In the next example, we are unable to reach www.microsoft.com for reasons previ-
ously explained:

C:\>ping www.microsoft.com

Pinging microsoft.com [207.46.130.149] with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

Note that this is run in a DOS window. If you use ping without an argument, you
will get a description of the basic syntax and a listing of the various options:

C:\>ping

Usage: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS]
 [-r count] [-s count] [[-j host-list] | [-k host-list]]
 [-w timeout] destination-list

Options:
 -t Ping the specifed host until interrupted.
 -a Resolve addresses to hostnames.
 -n count Number of echo requests to send.
 -l size Send buffer size.
 -f Set Don't Fragment flag in packet.
 -i TTL Time To Live.
 -v TOS Type Of Service.
 -r count Record route for count hops.
 -s count Timestamp for count hops.
 -j host-list Loose source route along host-list.
 -k host-list Strict source route along host-list.
 -w timeout Timeout in milliseconds to wait for each reply.

Notice that the flooding options, fortunately, are absent and that the -t option is
used to get an output similar to that used in most of our examples. The implemen-
tation does not provide a summary at the end, however.

In addition to Microsoft’s implementation of ping, numerous other versions—as
well as more generic tools or toolkits that include a ping-like utility—are avail-
able. Most are free or modestly priced. Examples include tjping, trayping, and
winping, but many more are available, including some interesting variations. For
example, trayping monitors a connection in the background. It displays a small
heart in the system tray as long as the connection is up. As availability changes fre-
quently, if you need another version of ping, search the Web.

71
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4

4
Path Characteristics

In the last chapter, we attempted to answer a fundamental question, “Do we have
a working network connection?” We used tools such as ping to verify basic con-
nectivity. But simple connectivity is not enough for many purposes. For example,
an ISP can provide connectivity but not meet your needs or expectations. If your
ISP is not providing the level of service you think it should, you will need some-
thing to base your complaints on. Or, if the performance of your local network
isn’t adequate, you will want to determine where the bottlenecks are located
before you start implementing expensive upgrades. In this chapter, we will try to
answer the question, “Is our connection performing reasonably?”

We will begin by looking at ways to determine which links or individual connec-
tions compose a path. This discussion focuses on the tool traceroute. Next, we will
turn to several tools that allow us to identify those links along a path that might
cause problems. Once we have identified individual links of interest, we will
examine some simple ways to further characterize the performance of those links,
including estimating the bandwidth of a connection and measuring the available
throughput.

Path Discovery with traceroute
This section describes traceroute, a tool used to discover the links along a path.
While this is the first step in investigating a path’s behavior and performance, it is
useful for other tasks as well. In the previous discussion of ping, it was suggested
that you work your way, hop by hop, toward a device you can’t reach to discover
the point of failure. This assumes that you know the path.

Path discovery is also an essential step in diagnosing routing problems. While you
may fully understand the structure of your network and know what path you want

72 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

your packets to take through your network, knowing the path your packets actu-
ally take is essential information and may come as a surprise.

Once packets leave your network, you have almost no control over the path they
actually take to their destination. You may know very little about the structure of
adjacent networks. Path discovery can provide a way to discover who their ISP is,
how your ISP is connected to the world, and other information such as peering
arrangements. traceroute is the tool of choice for collecting this kind of information.

The traceroute program was written by Van Jacobson and others. It is based on a
clever use of the Time-To-Live (TTL) field in the IP packet’s header. The TTL field,
described briefly in the last chapter, is used to limit the life of a packet. When a
router fails or is misconfigured, a routing loop or circular path may result. The TTL
field prevents packets from remaining on a network indefinitely should such a
routing loop occur. A packet’s TTL field is decremented each time the packet
crosses a router on its way through a network. When its value reaches 0, the
packet is discarded rather than forwarded. When discarded, an ICMP TIME_
EXCEEDED message is sent back to the packet’s source to inform the source that
the packet was discarded. By manipulating the TTL field of the original packet, the
program traceroute uses information from these ICMP messages to discover paths
through a network.

traceroute sends a series of UDP packets with the destination address of the
device you want a path to.* By default, traceroute sends sets of three packets to
discover each hop. traceroute sets the TTL field in the first three packets to a value
of 1 so that they are discarded by the first router on the path. When the ICMP
TIME_EXCEEDED messages are returned by that router, traceroute records the
source IP address of these ICMP messages. This is the IP address of the first hop
on the route to the destination.

Next, three packets are sent with their TTL field set to 2. These will be discarded
by the second router on the path. The ICMP messages returned by this router
reveal the IP address of the second router on the path. The program proceeds in
this manner until a set of packets finally has a TTL value large enough so that the
packets reach their destination.

Typically, when the probe packets finally have an adequate TTL and reach their
destination, they will be discarded and an ICMP PORT_UNREACHABLE message
will be returned. This happens because traceroute sends all its probe packets with
what should be invalid port numbers, i.e., port numbers that aren’t usually used.
To do this, traceroute starts with a very large port number, typically 33434, and

* tracert, a Windows variant of traceroute, uses ICMP rather than UDP. tracert is discussed later in this
chapter.

Path Discovery with traceroute 73

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

increments this value with each subsequent packet. Thus, each of the three
packets in a set will have three different unlikely port numbers. The receipt of
ICMP PORT_UNREACHABLE messages is the signal that the end of the path has
been reached. Here is a simple example of using traceroute:

bsd1# traceroute 205.160.97.122
traceroute to 205.160.97.122 (205.160.97.122), 30 hops max, 40 byte packets
 1 205.153.61.1 (205.153.61.1) 1.162 ms 1.068 ms 1.025 ms
 2 cisco (205.153.60.2) 4.249 ms 4.275 ms 4.256 ms
 3 165.166.36.17 (165.166.36.17) 4.433 ms 4.521 ms 4.450 ms
 4 e0.r01.ia-gnwd.Infoave.Net (165.166.36.33) 5.178 ms 5.173 ms 5.140 ms
 5 165.166.125.165 (165.166.125.165) 13.171 ms 13.277 ms 13.352 ms
 6 165.166.125.106 (165.166.125.106) 18.395 ms 18.238 ms 18.210 ms
 7 atm12-0-10-mp.r01.ia-clma.infoave.net (165.166.126.3) 18.816 ms 18.934 ms
 18.893 ms
 8 Serial5-1-1.GW1.RDU1.ALTER.NET (157.130.35.69) 26.658 ms 26.484 ms 26.855
 ms
 9 Fddi12-0-0.GW2.RDU1.ALTER.NET (137.39.40.231) 26.692 ms 26.697 ms 26.490
ms
10 smatnet-gw2.customer.ALTER.NET (157.130.36.94) 27.736 ms 28.101 ms 27.738
 ms
11 rcmt1-S10-1-1.sprintsvc.net (205.244.203.50) 33.539 ms 33.219 ms 32.446 m
s
12 rcmt3-FE0-0.sprintsvc.net (205.244.112.22) 32.641 ms 32.724 ms 32.898 ms
13 gwd1-S3-7.sprintsvc.net (205.244.203.13) 46.026 ms 50.724 ms 45.960 ms
14 gateway.ais-gwd.com (205.160.96.102) 47.828 ms 50.912 ms 47.823 ms
15 pm3-02.ais-gwd.com (205.160.97.41) 63.786 ms 48.432 ms 48.113 ms
16 user58.ais-gwd.com (205.160.97.122) 200.910 ms 184.587 ms 202.771 ms

The results should be fairly self-explanatory. This particular path was 16 hops
long. Reverse name lookup is attempted for the IP address of each device, and, if
successful, these names are reported in addition to IP addresses. Times are
reported for each of the three probes sent. They are interpreted in the same way
as times with ping. (However, if you just want times for one hop, ping is gener-
ally a better choice.)

Although no packets were lost in this example, should a packet be lost, an asterisk
is printed in the place of the missing time. In some cases, all three times may be
replaced with asterisks. This can happen for several reasons. First, the router at this
hop may not return ICMP TIME_EXCEEDED messages. Second, some older routers
may incorrectly forward packets even though the TTL is 0. A third possibility is that
ICMP messages may be given low priority and may not be returned in a timely
manner. Finally, beyond some point of the path, ICMP packets may be blocked.

Other routing problems may exist as well. In some instances traceroute will
append additional messages to the end of lines in the form of an exclamation
point and a letter. !H, !N, and !P indicate, respectively, that the host, network, or
protocol is unreachable. !F indicates that fragmentation is needed. !S indicates a
source route failure.

74 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Options

Two options control how much information is printed. Name resolution can be
disabled with the -n option. This can be useful if name resolution fails for some
reason or if you just don’t want to wait on it. The -v option is the verbose flag.
With this flag set, the source and packet sizes of the probes will be reported for
each packet. If other ICMP messages are received, they will also be reported, so
this can be an important option when troubleshooting.

Several options may be used to alter the behavior of traceroute, but most are
rarely needed. An example is the -m option. The TTL field is an 8-bit number
allowing a maximum of 255 hops. Most implementations of traceroute default to
trying only 30 hops before halting. The -m option can be used to change the max-
imum number of hops tested to any value up to 255.

As noted earlier, traceroute usually receives a PORT_UNREACHABLE message
when it reaches its final destination because it uses a series of unusually large port
numbers as the destination ports. Should the number actually match a port that
has a running service, the PORT_UNREACHABLE message will not be returned.
This is rarely a problem since three packets are sent with different port numbers,
but, if it is, the -p option lets you specify a different starting port so these ports can
be avoided.

Normally, traceroute sends three probe packets for each TTL value with a timeout
of three seconds for replies. The default number of packets per set can be
changed with the -q option. The default timeout can be changed with the -w
option.

Additional options support how packets are routed. See the manpage for details
on these if needed.

Complications with traceroute

The information traceroute supplies has its limitations. In some situations, the
results returned by traceroute have a very short shelf life. This is particularly true
for long paths crossing several networks and ISPs.

You should also recall that a router, by definition, is a computer with multiple net-
work interfaces, each with a different IP address. This raises an obvious question:
which IP address should be returned for a router? For traceroute, the answer is
dictated by the mechanism it uses to discover the route. It can report only the
address of the interface receiving the packet. This means a quite different path will
be reported if traceroute is run in the reverse direction.

Path Discovery with traceroute 75

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Here is the output when the previous example is run again from what was origi-
nally the destination to what was originally the source, i.e., with the source and
destination exchanged:

C:\>tracert 205.153.61.178

Tracing route to 205.153.61.178 over a maximum of 30 hops

 1 132 ms 129 ms 129 ms pm3-02.ais-gwd.com [205.160.97.41]
 2 137 ms 130 ms 129 ms sprint-cisco-01.ais-gwd.com [205.160.97.1]
 3 136 ms 129 ms 139 ms 205.160.96.101
 4 145 ms 150 ms 140 ms rcmt3-S4-5.sprintsvc.net [205.244.203.53]
 5 155 ms 149 ms 149 ms sl-gw2-rly-5-0-0.sprintlink.net [144.232.184.85]
 6 165 ms 149 ms 149 ms sl-bb11-rly-2-1.sprintlink.net [144.232.0.77]
 7 465 ms 449 ms 399 ms sl-gw11-dc-8-0-0.sprintlink.net [144.232.7.198]
 8 155 ms 159 ms 159 ms sl-infonet-2-0-0-T3.sprintlink.net [144.228.220.6]
 9 164 ms 159 ms 159 ms atm4-0-10-mp.r01.ia-gnvl.infoave.net [165.166.126.
4]
 10 164 ms 169 ms 169 ms atm4-0-30.r1.scgnvl.infoave.net [165.166.125.105]
 11 175 ms 179 ms 179 ms 165.166.125.166
 12 184 ms 189 ms 195 ms e0.r02.ia-gnwd.Infoave.Net [165.166.36.34]
 13 190 ms 179 ms 180 ms 165.166.36.18
 14 185 ms 179 ms 179 ms 205.153.60.1
 15 174 ms 179 ms 179 ms 205.153.61.178

Trace complete.

There are several obvious differences. First, the format is slightly different because
this example was run using Microsoft’s implementation of traceroute, tracert. This,
however, should present no difficulty.

A closer examination shows that there are more fundamental differences. The
second trace is not simply the first trace in reverse order. The IP addresses are not
the same, and the number of hops is different.

There are two things going on here. First, as previously mentioned, traceroute
reports the IP number of the interface where the packet arrives. The reverse path
will use different interfaces on each router, so different IP addresses will be
reported. While this can be a bit confusing at first glance, it can be useful. By run-
ning traceroute at each end of a connection, a much more complete picture of the
connection can be created.

Figure 4-1 shows the first six hops on the path starting from the source for the first
trace as reconstructed from the pair of traces. We know the packet originates at
205.153.61.178. The first trace shows us the first hop is 205.153.61.1. It leaves
this router on interface 205.153.60.1 for 205.153.60.2. The second of these
addresses is just the next hop in the first trace. The first address comes from the
second trace. It is the last hop before the destination. It is also reasonable in that

76 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

we have two addresses that are part of the same class C network. With IP net-
works, the ends of a link are part of the link and must have IP numbers consis-
tent with a single network.

From the first trace, we know packets go from the 205.153.60.2 to 165.166.36.17.
From the reverse trace, we are able to deduce that the other end of the 165.166.
36.17 link is 165.166.36.18. Or, equivalently, the outbound interface for the 205.
153.60.2 router has the address 165.166.36.18.

In the same manner, the next router’s inbound interface is 165.166.36.17, and its
outbound interface is 165.166.36.34. This can be a little confusing since it appears
that these last three addresses should be on the same network. On closer examina-
tion of this link and adjacent links, it appears that this class B address is using a
subnet mask of /20. With this assumption, the addresses are consistent.

Figure 4-1. First six hops on path

205.153.61.1 (F1)
ROUTER

205.153.60.1 (R14)

205.153.60.2 (F2)
ROUTER

165.166.36.18 (R13)

165.166.36.17 (F3)
ROUTER

165.166.36.34 (R12)

165.166.36.33 (F4)
ROUTER

165.166.125.166 (R11)

165.166.125.165 (F5)
ROUTER

165.166.125.105 (R10)

165.166.125.106 (F6)
ROUTER

165.166.126.4 (R9)

F# is from the forward path trace
R# is from the reverse path trace

HOST
205.153.61.178 (R15)

Path Discovery with traceroute 77

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

We can proceed in much the same manner to discover the next few links. How-
ever, when we get to the seventh entry in the first trace (or to the eighth entry
working backward in the second trace), the process breaks down. The reason is
simple—we have asymmetric paths across the Internet. This also accounts for the
difference in the number of hops between the two traces.

In much the same way we mapped the near end of the path, the remote end can
be reconstructed as well. The paths become asymmetric at the seventh router
when working in this direction. Figure 4-2 shows the first four hops. We could
probably fill in the remaining addresses for each direction by running traceroute to
the specific machine where the route breaks down, but this probably isn’t worth
the effort.

One possible surprise in Figure 4-2 is that we have the same IP number, 205.160.
97.41, on each interface at the first hop. The explanation is that dial-in access is
being used. The IP number 205.166.97.122 is assigned to the host when the con-
nection is made. 205.160.97.41 must be the access router. This numbering
scheme is normal for an access router.

Although we haven’t constructed a complete picture of the path(s) between these
two computers, we have laid out the basic connection to our network through our

Figure 4-2. First four hops on reverse path

205.160.97.41 (R1)
ROUTER

205.160.97.41 (F15)

205.160.97.1 (R2)
ROUTER

205.160.96.102 (F14)

205.160.96.101 (R3)
ROUTER

205.244.203.13 (F13)

205.244.203.53 (R4)
ROUTER

205.244.112.22 (F12)
F# is from the forward path trace
R# is from the reverse path trace

HOST
205.166.97.122 (F16)

78 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

ISP. This is worth working out well in advance of any problems. When you sus-
pect problems, you can easily ping these intermediate routers to pinpoint the exact
location of a problem. This will tell you whether it is your problem or your ISP’s
problem. This can also be nice information to have when you call your ISP.

To construct the bidirectional path using the technique just described, you need
access to a second, remote computer on the Internet from which you can run
traceroute. Fortunately, this is not a problem. There are a number of sites on the
Internet, which, as a service to the network community, will run traceroute for
you. Often called looking glasses, such sites can provide a number of other ser-
vices as well. For example, you may be able to test how accessible your local DNS
setup is by observing how well traceroute works. A list of such sites can be found
at http://www.traceroute.org. Alternately, the search string “web traceroute” or
“traceroute looking glass” will usually turn up a number of such sites with most
search engines.

In theory, there is an alternative way to find this type of information with some
implementations of traceroute. Some versions of traceroute support loose source
routing, the ability to specify one or more intermediate hops that the packets must
go through. This allows a packet to be diverted through a specific router on its
way to its destination. (Strict source routing may also be available. This allows the
user to specify an exact path through a network. While loose source routing can
take any path that includes the specified hops, strict source routing must exactly
follow the given path.)

To construct a detailed list of all devices on a path, the approach is to use
traceroute to find a path from the source host to itself, specifying a route through
a remote device. Packets leave the host with the remote device as their initial des-
tination. When the packets arrive at the remote device, that device replaces the
destination address with the source’s address, and the packets are redirected back
to the source. Thus, you get a picture of the path both coming and going. (Of
course, source routing is not limited to just this combination of addresses.)

At least, that is how it should work in theory. In practice, many devices no longer
support source routing. Unfortunately, source routing has been used in IP
spoofing attacks. Packets sent with a spoofed source address can be diverted so
they pass through the spoofed device’s network. This approach will sometimes
slip packets past firewalls since the packet seems to be coming from the right
place.

This is shown in Figure 4-3. Without source routing, the packet would come into
the firewall on the wrong interface and be discarded. With source routing, the
packet arrives on the correct interface and passes through the firewall. Because of
problems like this, source routing is frequently disabled.

Path Performance 79

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

One final word of warning regarding traceroute—buggy or nonstandard imple-
mentations exist. Nonstandard isn’t necessarily bad; it just means you need to
watch for differences. For example, see the discussion of tracert later in this
chapter. Buggy implementations, however, can really mislead you.

Path Performance
Once you have a picture of the path your traffic is taking, the next step in testing
is to get some basic performance numbers. Evaluating path performance will mean
doing three types of measurements. Bandwidth measurements will give you an
idea of the hardware capabilities of your network, such as the maximum capacity
of your network. Throughput measurements will help you discover what capacity
your network provides in practice, i.e., how much of the maximum is actually
available. Traffic measurements will give you an idea of how the capacity is being
used.

My goal in this section is not a definitive analysis of performance. Rather, I
describe ways to collect some general numbers that can be used to see if you have
a reasonable level of performance or if you need to delve deeper. If you want to
go beyond the quick-and-dirty approaches described here, you might consider

Figure 4-3. IP source spoofing

Default path
Path with source routing

Network with true source

Firewall

Destination host

Network with spoofed source

80 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

some of the more advanced tools described in Chapter 9. The tools mentioned
here should help you focus your efforts.

Performance Measurements

Several terms are used, sometimes inconsistently, to describe the capacity or per-
formance of a link. Without getting too formal, let’s review some of these terms to
avoid potential confusion.

Two factors determine how long it takes to send a packet or frame across a single
link. The amount of time it takes to put the signal onto the cable is known as the
transmission time or transmission delay. This will depend on the transmission rate
(or interface speed) and the size of the frame. The amount of time it takes for the
signal to travel across the cable is known as the propagation time or propagation
delay. Propagation time is determined by the type of media used and the distance
involved. It often comes as a surprise that a signal transmitted at 100 Mbps will
have the same propagation delay as a signal transmitted at 10 Mbps. The first
signal is being transmitted 10 times as fast, but, once it is on a cable, it doesn’t
propagate any faster. That is, the difference between 10 Mbps and 100 Mbps is not
the speed the bits travel, but the length of the bits.

Once we move to multihop paths, a third consideration enters the picture—the
delay introduced from processing packets at intermediate devices such as routers
and switches. This is usually called the queuing delay since, for the most part, it
arises from the time packets spend in queues within the device. The total delay in
delivering a packet is the sum of these three delays. Transmission and propaga-
tion delays are usually quite predictable and stable. Queuing delays, however, can
introduce considerable variability.

The term bandwidth is typically used to describe the capacity of a link. For our
purposes, this is the transmission rate for the link.* If we can transmit onto a link
at 10 Mbps, then we say we have a bandwidth of 10 Mbps.

Throughput is a measure of the amount of data that can be sent over a link in a
given amount of time. Throughput estimates, typically obtained through measure-
ments based on the bulk transfer of data, are usually expressed in bits per second
or packets per second. Throughput is frequently used as an estimate of the band-
width of a network, but bandwidth and throughput are really two different things.
Throughput measurement may be affected by considerable overhead that is not
included in bandwidth measurements. Consequently, throughput is a more real-
istic estimator of the actual performance you will see.

* My apologies to any purist offended by my somewhat relaxed, pragmatic definition of bandwidth.

Path Performance 81

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Throughput is generally an end-to-end measurement. When dealing with multihop
paths, however, the bandwidths may vary from link to link. The bottleneck band-
width is the bandwidth of the slowest link on a path, i.e., the link with the lowest
bandwidth. (While introduced here, bottleneck analysis is discussed in greater
detail in Chapter 12.)

Additional metrics will sometimes be needed. The best choice is usually task
dependent. If you are sending real-time audio packets over a long link, you may
want to minimize both delay and variability in the delay. If you are using FTP to
do bulk transfers, you may be more concerned with the throughput. If you are
evaluating the quality of your link to the Internet, you may want to look at bottle-
neck bandwidth for the path. The development of reliable metrics is an active area
of research.

Bandwidth Measurements

We will begin by looking at ways to estimate bandwidth. Bandwidth really mea-
sures the capabilities of our hardware. If bandwidth is not adequate, you will need
to reexamine your equipment.

ping revisited

The preceding discussion should make clear that the times returned by ping,
although frequently described as propagation delays, really are the sum of the
transmission, propagation, and queuing delays. In the last chapter, we used ping
to calculate a rough estimate of the bandwidth of a connection and noted that this
treatment is limited since it gives a composite number.

We can refine this process and use it to estimate the bandwidth for a link along a
path. The basic idea is to first calculate the path behavior up to the device on the
closest end of the link and then calculate the path behavior to the device at the far
end of the link. The difference is then used to estimate the bandwidth for the link
in question. Figure 4-4 shows the basic arrangement.

Figure 4-4. Link traffic measurements

Router Router Router Router
Link of
interest

Traffic to near end of link

Traffic to far end of link

82 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

This process requires using ping four times. First, ping the near end of a link with
two different packet sizes. The difference in the times will eliminate the propaga-
tion and queuing delays along the path (assuming they haven’t changed too
much) leaving the time required to transmit the additional data in the larger
packet. Next, use the same two packet sizes to ping the far end of the link. The
difference in the times will again eliminate the overhead. Finally, the difference in
these two differences will be the amount of time to send the additional data over
the last link in the path. This is the round-trip time. Divide this number by two
and you have the time required to send the additional data in one direction over
the link. The bandwidth is simply the amount of additional data sent divided by
this last calculated time.*

Table 4-1 shows the raw data for the second and third hops along the path shown
in Figure 4-1. Packets sizes are 100 and 1100 bytes.

Table 4-2 shows the calculated results. The time difference was divided by two
(RRT correction), then divided into 8000 bits (the size of the data in bits), and then
multiplied by 1000 (milliseconds-to-seconds correction.). The results, in bps, were
then converted to Mbps. If several sets of packets are sent, the minimums of the
times can be used to improve the estimate.

Clearly, doing this manually is confusing, tedious, and prone to errors. Fortu-
nately, several tools based on this approach greatly simplify the process. These
tools also improve accuracy by using multiple packets.

* The formula for bandwidth is . The larger and smaller
packet sizes are and bytes, and are the ping times for the larger and smaller packets
to the nearer interface in seconds, and and are the ping times for the larger and smaller packets
to the distant interface in seconds. The result is in bits per second.

Table 4-1. Raw data

IP address Time for 100 bytes Time for 1100 bytes

205.153.61.1 1.380 ms 5.805 ms

205.153.60.2 4.985 ms 12.823 ms

165.166.36.17 8.621 ms 26.713 ms

Table 4-2. Calculated bandwidth

Near link Far link Time difference Estimated bandwidth

205.153.61.1 205.153.60.2 3.413 ms 4.69 Mbps

205.153.60.2 165.166.36.17 10.254 ms 1.56 Mbps

BW 16 Pl Ps–() t2l t2s t1l t1s+––()⁄×=
Pl Ps t1l t1s

t2l t2s

Path Performance 83

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

pathchar

One tool that automates this process is pathchar. This tool, written by Van
Jacobson several years ago, seems to be in a state of limbo. It has, for several
years, been available as an alpha release, but nothing seems to have been released
since. Several sets of notes or draft notes are available on the Web, but there
appears to be no manpage for the program. Nonetheless, the program remains
available and has been ported to several platforms. Fortunately, a couple of alter-
native implementations of the program have recently become available. These
include bing, pchar, clink, and tmetric.

One strength of pathchar and its variants is that they can discover the bandwidth
of each link along a path using software at only one end of the path. The method
used is basically that described earlier for ping, but pathchar uses a large number
of packets of various sizes. Here is an example of running pathchar :

bsd1# pathchar 165.166.0.2
pathchar to 165.166.0.2 (165.166.0.2)
 mtu limited to 1500 bytes at local host
 doing 32 probes at each of 45 sizes (64 to 1500 by 32)
 0 205.153.60.247 (205.153.60.247)
 | 4.3 Mb/s, 1.55 ms (5.88 ms)
 1 cisco (205.153.60.2)
 | 1.5 Mb/s, -144 us (13.5 ms)
 2 165.166.36.17 (165.166.36.17)
 | 10 Mb/s, 242 us (15.2 ms)
 3 e0.r01.ia-gnwd.Infoave.Net (165.166.36.33)
 | 1.2 Mb/s, 3.86 ms (32.7 ms)
 4 165.166.125.165 (165.166.125.165)
 | ?? b/s, 2.56 ms (37.7 ms)
 5 165.166.125.106 (165.166.125.106)
 | 45 Mb/s, 1.85 ms (41.6 ms), +q 3.20 ms (18.1 KB) *4
 6 atm1-0-5.r01.ncchrl.infoave.net (165.166.126.1)
 | 17 Mb/s, 0.94 ms (44.3 ms), +q 5.83 ms (12.1 KB) *2
 7 h10-1-0.r01.ia-chrl.infoave.net (165.166.125.33)
 | ?? b/s, 89 us (44.3 ms), 1% dropped
 8 dns1.InfoAve.Net (165.166.0.2)
8 hops, rtt 21.9 ms (44.3 ms), bottleneck 1.2 Mb/s, pipe 10372 bytes

As pathchar runs, it first displays a message describing how the probing will be
done. From the third line of output, we see that pathchar is using 45 different
packet sizes ranging from 64 to 1500 bytes. (1500 is the local host’s MTU.) It uses
32 different sets of these packets for each hop. Thus, this eight-hop run generated
11,520 test packets plus an equal number of replies.

The bandwidth and delay for each link is given. pathchar may also include informa-
tion on the queuing delay (links 5 and 6 in this example). As you can see, pathchar
is not always successful in estimating the bandwidth (see the links numbered 4 and

84 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7) or the delay (see link numbered 1). With this information, we could go back to
Figure 4-1 and fill in link speeds for most links.

As pathchar runs, it shows a countdown as it sends out each packet. It will dis-
play a line that looks something like this:

1: 31 288 0 3

The 1: refers to the hop count and will be incremented for each successive hop
on the path. The next number counts down, giving the number of sets of probes
remaining to be run for this link. The third number is the size of the current
packet being sent. Both the second and third numbers should be changing rap-
idly. The last two numbers give the number of packets that have been dropped so
far on this link and the average round-trip time for this link.

When the probes for a hop are complete, this line is replaced with a line giving
the bandwidth, incremental propagation delay, and round-trip time. pathchar uses
the minimum of the observed delays to improve its estimate of bandwidth.

Several options are available with pathchar. Of greatest interest are those that con-
trol the number and size of the probe packet used. The option -q allows the user
to specify the number of sets of packets to send. The options -m and -M control
the minimum and maximum packet sizes, respectively. The option -Q controls the
step size from the smallest to largest packet sizes. As a general rule of thumb,
more packets are required for greater accuracy, particularly on busy links. The
option -n turns off DNS resolution, and the option -v provides for more output.

pathchar is not without problems. One problem for pathchar is hidden or
unknown transmission points. The first link reports a bandwidth of 4.3 Mbps.
From traceroute, we only know of the host and the router at the end of the link.
This is actually a path across a switched LAN with three segments and two addi-
tional transmission points at the switches. The packet is transmitted onto a 10-
Mbps network, then onto a 100-Mbps backbone, and then back onto a 10 Mbps
network before reaching the first router. Consequently, there are three sets of
transmission delays rather than just one, and a smaller than expected bandwidth is
reported.

You will see this problem with store-and-forward switches, but it is not appre-
ciable with cut-through switches. (See the sidebar “Types of Switches” if you are
unfamiliar with the difference between cut-through and store-and-forward
switches.) In a test in which another switch, configured for cut-through, was
added to this network, almost no change was seen in the estimated bandwidth
with pathchar. When the switch was reconfigured as a store-and-forward switch,
the reported bandwidth on the first link dropped to 3.0 Mbps.

Path Performance 85

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

This creates a problem if you are evaluating an ISP. For example, it might appear
that the fourth link is too slow if the contract specifies T1 service. This might be
the case, but it could just be a case of a hidden transmission point. Without more
information, this isn’t clear.

Finally, you should be extremely circumspect about running pathchar. It can gen-
erate a huge amount of traffic. The preceding run took about 40 minutes to com-
plete. It was run from a host on a university campus while the campus was closed
for Christmas break and largely deserted. If you are crossing a slow link and have
a high path MTU, the amount of traffic can effectively swamp the link. Asym-
metric routes, routes in which the path to a device is different from the path back,
changing routes, links using tunneling, or links with additional padding added can
all cause problems.

bing

One alternative to pathchar is bing, a program written by Pierre Beyssac. Where
pathchar gives the bandwidth for every link along a path, bing is designed to
measure point-to-point bandwidth. Typically, you would run traceroute first if you

Types of Switches
Devices may minimize queuing delays by forwarding frames as soon as possi-
ble. In some cases, a device may begin retransmitting a frame before it has fin-
ished receiving that frame. With Ethernet frames, for example, the destination
address is the first field in the header. Once this has been read, the out interface
is known and transmission can begin even though much of the original frame
is still being received. Devices that use this scheme are called cut-through
devices.

The alternative is to wait until the entire frame has arrived before retransmitting
it. Switches that use this approach are known as store-and-forward devices.

Cut-through devices have faster throughput than store-and-forward switches
because they begin retransmitting sooner. Unfortunately, cut-through devices
may forward damaged frames, frames that a store-and-forward switch would
have discarded. The problem is that the damage may not be discovered by the
cut-through device until after retransmission has already begun. Store-and-
forward devices introduce longer delays but are less likely to transmit damaged
frames since they can examine the entire frame before retransmitting it. Store-
and-forward technology is also required if interfaces operate at different
speeds. Often devices can be configured to operate in either mode.

86 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

don’t already know the links along a path. Then you would run bing specifying
the near and far ends of the link of interest on the command line. This example
measures the bandwidth of the third hop in Figure 4-1:

bsd1# bing -e10 -c1 205.153.60.2 165.166.36.17
BING 205.153.60.2 (205.153.60.2) and 165.166.36.17 (165.166.36.17)
 44 and 108 data bytes
1024 bits in 0.835ms: 1226347bps, 0.000815ms per bit
1024 bits in 0.671ms: 1526080bps, 0.000655ms per bit
1024 bits in 0.664ms: 1542169bps, 0.000648ms per bit
1024 bits in 0.658ms: 1556231bps, 0.000643ms per bit
1024 bits in 0.627ms: 1633174bps, 0.000612ms per bit
1024 bits in 0.682ms: 1501466bps, 0.000666ms per bit
1024 bits in 0.685ms: 1494891bps, 0.000669ms per bit
1024 bits in 0.605ms: 1692562bps, 0.000591ms per bit
1024 bits in 0.618ms: 1656958bps, 0.000604ms per bit

--- 205.153.60.2 statistics ---
bytes out in dup loss rtt (ms): min avg max
 44 10 10 0% 3.385 3.421 3.551
 108 10 10 0% 3.638 3.684 3.762

--- 165.166.36.17 statistics ---
bytes out in dup loss rtt (ms): min avg max
 44 10 10 0% 3.926 3.986 4.050
 108 10 10 0% 4.797 4.918 4.986

--- estimated link characteristics ---
estimated throughput 1656958bps
minimum delay per packet 0.116ms (192 bits)

average statistics (experimental) :
packet loss: small 0%, big 0%, total 0%
average throughput 1528358bps
average delay per packet 0.140ms (232 bits)
weighted average throughput 1528358bps

resetting after 10 samples.

The output begins with the addresses and packet sizes followed by lines for each
pair of probes. Next, bing returns round-trip times and packet loss data. Finally, it
returns several estimates of throughput.*

In this particular example, we have specified the options -e10 and -c1, which limit
the probe to one cycle using 10 pairs of packets. Alternatively, you can omit these
options and watch the output. When the process seems to have stabilized, enter a
Ctrl-C to terminate the program. The summary results will then be printed. Inter-
pretation of these results should be self-explanatory.

* The observant reader will notice that bing reported throughput, not bandwidth. Unfortunately, there is
a lot of ambiguity and inconsistency surrounding these terms.

Path Performance 87

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

bing allows for a number of fairly standard options. These options allow control-
ling the number of packet sizes, suppressing name resolution, controlling routing,
and obtaining verbose output. See the manpage if you have need of these options.

Because bing uses the same mechanism as pathchar, it will suffer the same prob-
lems with hidden transmission points. Thus, you should be circumspect when
using it if you don’t fully understand the topology of the network. While bing
does not generate nearly as much traffic as pathchar, it can still place strains on a
network.

Packet pair software

One alternative approach that is useful for measuring bottleneck bandwidth is the
packet pair or packet stretch approach. With this approach, two packets that are
the same size are transmitted back-to-back. As they cross the network, whenever
they come to a slower link, the second packet will have to wait while the first is
being transmitted. This increases the time between the transmission of the packets
at this point on the network. If the packets go onto another faster link, the separa-
tion is preserved. If the packets subsequently go onto a slower link, then the sepa-
ration will increase. When the packets arrive at their destination, the bandwidth of
the slowest link can be calculated from the amount of separation and the size of
the packets.

It would appear that getting this method to work requires software at both ends of
the link. In fact, some implementations of packet pair software work this way. How-
ever, using software at both ends is not absolutely necessary since the acknowledg-
ment packets provided with some protocols should preserve the separation.

One assumption of this algorithm is that packets will stay together as they move
through the network. If other packets are queued between the two packets, the
separation will increase. To avoid this problem, a number of packet pairs are sent
through the network with the assumption that at least one pair will stay together.
This will be the pair with the minimum separation.

Several implementations of this algorithm exist. bprobe and cprobe are two exam-
ples. At the time this was written, these were available only for the IRIX operating
system on SGI computers. Since the source code is available, this may have
changed by the time you read this.

Compared to the pathchar approach, the packet pair approach will find only the
bottleneck bandwidth rather than the bandwidth of an arbitrary link. However, it
does not suffer from the hidden hop problem. Nor does it create the levels of
traffic characteristic of pathchar. This is a technology to watch.

88 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Throughput Measurements

Estimating bandwidth can provide a quick overview of hardware performance. But
if your bandwidth is not adequate, you are limited in what you can actually do—
install faster hardware or contract for faster service. In practice, it is often not the
raw bandwidth of the network but the bandwidth that is actually available that is
of interest. That is, you may be more interested in the throughput that you can
actually achieve.

Poor throughput can result not only from inadequate hardware but also from
architectural issues such as network design. For example, a broadcast domain that
is too large will create problems despite otherwise adequate hardware. The solu-
tion is to redesign your network, breaking apart or segmenting such domains once
you have a clear understanding of traffic patterns.

Equipment configuration errors may also cause poor performance. For example,
some Ethernet devices may support full duplex communication if correctly config-
ured but will fall back to half duplex otherwise. The first step toward a solution is
recognizing the misconfiguration. Throughput tests are the next logical step in
examining your network.

Throughput is typically measured by timing the transfer of a large block of data.
This may be called the bulk transfer capacity of the link. There are a number of
programs in this class besides those described here. The approach typically
requires software at each end of the link. Because the software usually works at
the application level, it tests not only the network but also your hardware and soft-
ware at the endpoints.

Since performance depends on several parts, when you identify that a problem
exists, you won’t immediately know where the problem is. Initially, you might try
switching to a different set of machines with different implementations to localize
the problem. Before you get too caught up in your testing, you’ll want to look at
the makeup of the actual traffic as described later in this chapter. In extreme cases,
you may need some of the more advanced tools described later in this book.

One simple quick-and-dirty test is to use an application like FTP. Transfer a file
with FTP and see what numbers it reports. You’ll need to convert these to a bit
rate, but that is straightforward. For example, here is the final line for a file
transfer:

1294522 bytes received in 1.44 secs (8.8e+02 Kbytes/sec)

Convert 1,294,522 bytes to bits by multiplying by 8 and then dividing by the time,
1.44 seconds. This gives about 7,191,789 bps.

Path Performance 89

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

One problem with this approach is that the disk accesses required may skew your
results. There are a few tricks you can use to reduce this, but if you need the
added accuracy, you are better off using a tool that is designed to deal with such a
problem. ttcp, for example, overcomes the disk access problem by repeatedly
sending the same data from memory so that there is no disk overhead.

ttcp

One of the oldest bulk capacity measurement tools is ttcp. This was written by Mike
Muuss and Terry Slattery. To run the program, you first need to start the server on
the remote machine using, typically, the -r and -s options. Then the client is started
with the options -t and -s and the hostname or address of the server. Data is sent
from the client to the server, performance is measured, the results are reported at
each end, and then both client and server terminate. For example, the server might
look something like this:

bsd2# ttcp -r -s
ttcp-r: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp
ttcp-r: socket
ttcp-r: accept from 205.153.60.247
ttcp-r: 16777216 bytes in 18.35 real seconds = 892.71 KB/sec +++
ttcp-r: 11483 I/O calls, msec/call = 1.64, calls/sec = 625.67
ttcp-r: 0.0user 0.9sys 0:18real 5% 15i+291d 176maxrss 0+2pf 11478+28csw

The client side would look like this:

bsd1# ttcp -t -s 205.153.63.239
ttcp-t: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp -> 205.153.63.239
ttcp-t: socket
ttcp-t: connect
ttcp-t: 16777216 bytes in 18.34 real seconds = 893.26 KB/sec +++
ttcp-t: 2048 I/O calls, msec/call = 9.17, calls/sec = 111.66
ttcp-t: 0.0user 0.5sys 0:18real 2% 16i+305d 176maxrss 0+2pf 3397+7csw

The program reports the amount of information transferred, indicates that the con-
nection is being made, and then gives the results, including raw data, throughput,
I/O call information, and execution times. The number of greatest interest is the
transfer rate, 892.71 KB/sec (or 893.26 KB/sec). This is about 7.3 Mbps, which is
reasonable for a 10-Mbps Ethernet connection. (But it is not very different from
our quick-and-dirty estimate with FTP.)

These numbers reflect the rate at which data is transferred, not the raw capacity of
the line. Relating these numbers to bandwidth is problematic since more bits are
actually being transferred than these numbers would indicate. The program reports
sending 16,777,216 bytes in 18.35 seconds, but this is just the data. On Ethernet
with an MTU of 1500, each buffer will be broken into 6 frames. The first will carry
an IP and TCP header for 40 more bytes. Each of the other 5 will have an IP

90 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

header for 20 more bytes each. And each will be packaged as an Ethernet frame
costing an additional 18 bytes each. And don’t forget the Ethernet preamble. All
this additional overhead should be included in a calculation of raw capacity.

Poor throughput numbers typically indicate congestion but that may not always be
the case. Throughput will also depend on configuration issues such as the TCP
window size for your connection. If your window size is not adequate, it will dras-
tically affect performance. Unfortunately, this problem is not uncommon for older
systems on today’s high-speed links.

The -u option allows you to check UDP throughput. A number of options give
you some control over the amount and the makeup of the information trans-
ferred. If you omit the -s option, the program uses standard input and output. This
option allows you to control the data being sent.*

The nice thing about ttcp is that a number of implementations are readily avail-
able. For example, it is included as an undocumented command in the Enterprise
version of Cisco IOS 11.2 and later. At one time, a Java version of ttcp was freely
available from Chesapeake Computer Consultants, Inc., (now part of Mentor Tech-
nologies, Inc.). This program would run on anything with a Java interpreter
including Windows machines. The Java version supported both a Windows and a
command-line interface. Unfortunately, this version does not seem to be available
anymore, but you might want to try tracking down a copy.

netperf

Another program to consider is netperf, which had its origin in the Information
Networks Division of Hewlett-Packard. While not formally supported, the pro-
gram does appear to have informal support. It is freely available, runs on a
number of Unix platforms, and has reasonable documentation. It has also been
ported to Windows. While not as ubiquitous as ttcp, it supports a much wider
range of tests.

Unlike with ttcp, the client and server are two separate programs. The server is
netserver and can be started independently or via inetd. The client is known as
netperf. In the following example, the server and client are started on the same
machine:

bsd1# netserver
Starting netserver at port 12865
bsd1# netperf
TCP STREAM TEST to localhost : histogram
Recv Send Send

* In fact, ttcp can be used to transfer files or directories between machines. At the destination, use ttcp
-r | tar xvpf - and, at the source, use tar cf - directory| ttcp -t dest_machine.

Path Performance 91

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 16384 16384 16384 10.00 326.10

This tests the loop-back interface, which reports a throughput of 326 Mbps.

In the next example, netserver is started on one host:

bsd1# netserver
Starting netserver at port 12865

Then netperf is run with the -H option to specify the address of the server:

bsd2# netperf -H 205.153.60.247
TCP STREAM TEST to 205.153.60.247 : histogram
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 16384 16384 16384 10.01 6.86

This is roughly the same throughput we saw with ttcp. netperf performs a number
of additional tests. In the next test, the transaction rate of a connection is measured:

bsd2# netperf -H 205.153.60.247 -tTCP_RR
TCP REQUEST/RESPONSE TEST to 205.153.60.247 : histogram
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 16384 1 1 10.00 655.84
16384 16384

The program contains several scripts for testing. It is also possible to do various
stream tests with netperf. See the document that accompanies the program if you
have these needs.

iperf

If ttcp and netperf don’t meet your needs, you might consider iperf. iperf comes
from the National Laboratory for Applied Network Research (NLANR) and is a very
versatile tool. While beyond the scope of this chapter, iperf can also be used to
test UDP bandwidth, loss, and jitter. A Java frontend is included to make iperf
easier to use. This utility has also been ported to Windows.

Here is an example of running the server side of iperf on a FreeBSD system:

bsd2# iperf -s -p3000
--
Server listening on TCP port 3000

92 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

TCP window size: 16.0 KByte (default)
--
[4] local 172.16.2.236 port 3000 connected with 205.153.63.30 port 1133
[ID] Interval Transfer Bandwidth
[4] 0.0-10.0 sec 5.6 MBytes 4.5 Mbits/sec
^C

Here is the client side under Windows:

C:\>iperf -c205.153.60.236
 -p3000
--
Client connecting to 205.153.60.236, TCP port 3000
TCP window size: 8.0 KByte (default)
--
[28] local 205.153.63.30 port 1133 connected with 205.153.60.236 port 3000
[ID] Interval Transfer Bandwidth
[28] 0.0-10.0 sec 5.6 MBytes 4.5 Mbits/sec

Notice the use of Ctrl-C to terminate the server side. In TCP mode, iperf is compat-
ible with ttcp so it can be used as the client or server.

iperf is a particularly convenient tool for investigating whether your TCP window
is adequate. The -w option sets the socket buffer size. For TCP, this is the window
size. Using the -w option, you can step through various window sizes and see
how they impact throughput. iperf has a number of other strengths that make it
worth considering.

Other related tools

You may also want to consider several similar or related tools. treno uses a
traceroute-like approach to calculate bulk capacity, path MTU, and minimum RTP.
Here is an example:

bsd2# treno 205.153.63.30
 MTU=8166 MTU=4352 MTU=2002 MTU=1492
Replies were from sloan.lander.edu [205.153.63.30]
 Average rate: 3868.14 kbp/s (3380 pkts in + 42 lost = 1.2%) in 10.07 s
Equilibrium rate: 0 kbp/s (0 pkts in + 0 lost = 0%) in 0 s
Path properties: min RTT was 13.58 ms, path MTU was 1440 bytes
XXX Calibration checks are still under construction, use -v

treno is part of a larger Internet traffic measurement project at NLANR. treno
servers are scattered across the Internet.

In general, netperf, iperf, and treno offer a wider range of features, but ttcp is gen-
erally easier to find.

Path Performance 93

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Evaluating Internet Service Providers
When you sign a contract with an ISP to provide a level of service, say T1
access, what does this mean? The answer is not obvious.

ISPs sell services based, in some sense, on the total combined expected usage
of all users. That is, they sell more capacity than they actually have, expecting
levels of usage by different customers to balance out. If everyone tries to use
their connection at once, there won’t be enough capacity. But the idea is that
this will rarely happen. To put it bluntly, ISPs oversell their capacity.

This isn’t necessarily bad. Telephone companies have always done this. And,
apart from Mother’s Day and brief periods following disasters, you can almost
always count on the phone system working. When you buy T1 Internet access,
the assumption is that you will not be using that line to its full capacity all the
time. If everyone used their connection to full capacity all the time, the price
of those connections would be greatly increased. If you really need some guar-
anteed level of service, talk to your ISP. They may be able to provide guaran-
tees if you are willing to pay for them.

But for the rest of us, the question is “What can we reasonably expect?” At a
minimum, a couple of things seem reasonable. First, the ISP should have a con-
nection to the Internet that well exceeds the largest connections that they are
selling. For example, if they are selling multiple T1 lines, they should have a
connection that is larger than a T1 line, e.g., a T3 line. Otherwise, if more that
one customer is using the link, then no one can operate at full capacity. Since
two customers using the link at the same time is very likely, having only a T1
line would violate the basic assumption that the contracted capacity is available.

Second, the ISP should be able to provide a path through their network to their
ISP that operates in excess of the contracted speed. If you buy T1 access that
must cross a 56-Kbps line to reach the rest of the Internet, you don’t really have
T1 access.

Finally, ISPs should have multiple peering arrangements (connections to the
global Internet) so that if one connection goes down, there is an alternative
path available.

Of course, your ISP may feel differently. And, if the price is really good, your
arrangement may make sense. Clearly, not all service arrangements are the
same. You’ll want to come to a clear understanding with your ISP if you can.
Unfortunately, with many ISPs, the information you will need is a closely
guarded secret. As always, caveat emptor.

94 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Traffic Measurements with netstat

In the ideal network, throughput numbers, once you account for overhead, will be
fairly close to your bandwidth numbers. But few of us have our networks all to
ourselves. When throughput numbers are lower than expected, which is usually
the case, you’ll want to account for the difference. As mentioned before, this could
be hardware or software related. But usually it is just the result of the other traffic
on your network. If you are uncertain of the cause, the next step is to look at the
traffic on your network.

There are three basic approaches you can take. First, the quickest way to get a
summary of the activity on a link is to use a tool such as netstat. This approach is
described here. Or you can use packet capture to look at traffic. This approach is
described in Chapter 5. Finally, you could use SNMP-based tools like ntop. SNMP
tools are described in Chapter 7. Performance analysis tools using SNMP are
described in Chapter 8.

The program netstat was introduced in Chapter 2. Given that netstat’s role is to
report network data structures, it should come as no surprise that it might be
useful in this context. To get a quick picture of the traffic on a network, use the -i
option. For example:

bsd2# netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lp0* 1500 <Link> 0 0 0 0 0
ep0 1500 <Link> 00.60.97.06.22.22 13971293 0 1223799 1 0
ep0 1500 205.153.63 bsd2 13971293 0 1223799 1 0
tun0* 1500 <Link> 0 0 0 0 0
sl0* 552 <Link> 0 0 0 0 0
ppp0* 1500 <Link> 0 0 0 0 0
lo0 16384 <Link> 234 0 234 0 0
lo0 16384 127 localhost 234 0 234 0 0

The output shows the number of packets processed for each interface since the
last reboot. In this example, interface ep0 has received 13,971,293 packets (Ipkts)
with no errors (Ierrs), has sent 1,223,799 packets (Opkts) with 1 error (Oerrs),
and has experienced no collisions (Coll). A few errors are generally not a cause
for alarm, but the percentage of either error should be quite low, certainly much
lower than 0.1% of the total packets. Collisions can be higher but should be less
than 10% of the traffic. The collision count includes only those involving the inter-
face. A high number of collisions is an indication that your network is too heavily
loaded, and you should consider segmentation. This particular computer is on a
switch, which explains the absence of collision. Collisions are seen only on shared
media.

Path Performance 95

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

If you want output for a single interface, you can specify this with the -I option.
For example:

bsd2# netstat -Iep0
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ep0 1500 <Link> 00.60.97.06.22.22 13971838 0 1223818 1 0
ep0 1500 205.153.63 bsd2 13971838 0 1223818 1 0

(This was run a couple of minutes later so the numbers are slightly larger.)

Implementations vary, so your output may look different but should contain the
same basic information. For example, here is output under Linux:

lnx1# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 7366003 0 0 0 93092 0 0 0 BMRU
eth1 1500 0 289211 0 0 0 18581 0 0 0 BRU
lo 3924 0 123 0 0 0 123 0 0 0 LRU

As you can see, Linux breaks down lost packets into three categories—errors,
drops, and overruns.

Unfortunately, the numbers netstat returns are cumulative from the last reboot of
the system. What is really of interest is how these numbers have changed recently,
since a problem could develop and it would take a considerable amount of time
before the actual numbers would grow enough to reveal the problem.*

One thing you may want to try is stressing the system in question to see if this
increases the number of errors you see. You can use either ping with the -l option
or the spray command. (spray is discussed in greater detail in Chapter 9.)

First, run netstat to get a current set of values:

bsd2# netstat -Iep0
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ep0 1500 <Link> 00.60.97.06.22.22 13978296 0 1228137 1 0
ep0 1500 205.153.63 bsd2 13978296 0 1228137 1 0

Next, send a large number of packets to the destination. In this example, 1000
UDP packets were sent:

bsd1# spray -c1000 205.153.63.239
sending 1000 packets of lnth 86 to 205.153.63.239 ...
 in 0.09 seconds elapsed time
 464 packets (46.40%) dropped
Sent: 11267 packets/sec, 946.3K bytes/sec
Rcvd: 6039 packets/sec, 507.2K bytes/sec

* System Performance Tuning by Mike Loukides contains a script that can be run at regular intervals so
that differences are more apparent.

96 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Notice that this exceeded the capacity of the network as 464 packets were
dropped. This may indicate a congested network. More likely, the host is trying to
communicate with a slower machine. When spray is run in the reverse direction,
no packets are dropped. This indicates the latter explanation. Remember, spray is
sending packets as fast as it can, so don’t make too much out of dropped packets.

Finally, rerun nestat to see if any problems exist:

bsd2# netstat -Iep0
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ep0 1500 <Link> 00.60.97.06.22.22 13978964 0 1228156 1 0
ep0 1500 205.153.63 bsd2 13978964 0 1228156 1 0

No problems are apparent in this example.

If problems are indicated, you can get a much more detailed report with the -s
option. You’ll probably want to pipe the output to more so it doesn’t disappear off
the top of the screen. The amount of output data can be intimidating but can give
a wealth of information. The information is broken down by protocol and by error
types such as bad checksums or incomplete headers.

On some systems, such as FreeBSD, a summary of the nonzero values can be
obtained by using the -s option twice, as shown in this example:

bsd2# netstat -s -s
ip:
 255 total packets received
 255 packets for this host
 114 packets sent from this host
icmp:
 ICMP address mask responses are disabled
igmp:
tcp:
 107 packets sent
 81 data packets (8272 bytes)
 26 ack-only packets (25 delayed)
 140 packets received
 77 acks (for 8271 bytes)
 86 packets (153 bytes) received in-sequence
 1 connection accept
 1 connection established (including accepts)
 77 segments updated rtt (of 78 attempts)
 2 correct ACK header predictions
 62 correct data packet header predictions
udp:
 115 datagrams received
 108 broadcast/multicast datagrams dropped due to no socket
 7 delivered
 7 datagrams output

A summary for a single protocol can be obtained with the -p option to specify the
protocol. The next example shows the nonzero statistics for TCP:

Microsoft Windows 97

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

bsd2# netstat -p tcp -s -s
tcp:
 147 packets sent
 121 data packets (10513 bytes)
 26 ack-only packets (25 delayed)
 205 packets received
 116 acks (for 10512 bytes)
 122 packets (191 bytes) received in-sequence
 1 connection accept
 1 connection established (including accepts)
 116 segments updated rtt (of 117 attempts)
 2 correct ACK header predictions
 88 correct data packet header predictions

This can take a bit of experience to interpret. Begin by looking for statistics
showing a large number of errors. Next, identify the type of errors. Typically, input
errors are caused by faulty hardware. Output errors are a problem on or at the
local host. Data corruption, such as faulty checksums, frequently occurs at routers.
And, as noted before, congestion is indicated by collisions. Of course, these are
generalizations, so don’t read too much into them.

Microsoft Windows
Most of the tools we have been discussing are available in one form or another for
Windows platforms. Microsoft’s implementation of traceroute, known as tracert,
has both superficial and fundamental differences from the original implementa-
tion. Like ping, tracert requires a DOS window to run. We have already seen an
example of its output. tracert has fewer options, and there are some superficial
differences in their flags. But most of traceroute’s options are rarely used anyway,
so this isn’t much of a problem.

A more fundamental difference between Microsoft’s tracert and its Unix relative is
that tracert uses ICMP packets rather than UDP packets. This isn’t necessarily bad,
just different. In fact, if you have access to both traceroute and tracert, you may
be able to use this to your advantage in some unusual circumstances. Its behavior
may be surprising in some cases. One obvious implication is that routers that
block ICMP messages will block tracert, while traceroute’s UDP packets will be
passed.

As noted earlier in this chapter, Mentor’s Java implementation of ttcp runs under
Windows if you can find it. Both netperf and iperf have also been ported to Win-
dows. Another freely available program worth considering is Qcheck from
Ganymede Software, Inc. This program requires that Ganymede’s Performance
Endpoints software be installed on systems at each end of the link. This software
is also provided at no cost and is available for a wide variety of systems ranging
from Windows to MVS. In addition to supporting IP, the software supports SPX

98 Chapter 4: Path Characteristics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

and IPX protocols. The software provides ping-like connectivity checks, as well as
response time and throughput measurements.

As noted in Chapter 2, Microsoft also provides its own version of netstat. The
options of interest here are -e and -s. The -e option gives a brief summary of
activity on any Ethernet interface:

C:\>netstat -e
Interface Statistics

 Received Sent

Bytes 9840233 2475741
Unicast packets 15327 16414
Non-unicast packets 9268 174
Discards 0 0
Errors 0 0
Unknown protocols 969

The -s option gives the per-protocol statistics:

C:\>netstat -s

IP Statistics

 Packets Received = 22070
 Received Header Errors = 0
 Received Address Errors = 6
 Datagrams Forwarded = 0
 Unknown Protocols Received = 0
 Received Packets Discarded = 0
 Received Packets Delivered = 22064
 Output Requests = 16473
 Routing Discards = 0
 Discarded Output Packets = 0
 Output Packet No Route = 0
 Reassembly Required = 0
 Reassembly Successful = 0
 Reassembly Failures = 0
 Datagrams Successfully Fragmented = 0
 Datagrams Failing Fragmentation = 0
 Fragments Created = 0

ICMP Statistics

 Received Sent
 Messages 20 8
 Errors 0 0
 Destination Unreachable 18 8
 Time Exceeded 0 0
 Parameter Problems 0 0
 Source Quenchs 0 0
 Redirects 0 0

Microsoft Windows 99

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

 Echos 0 0
 Echo Replies 0 0
 Timestamps 0 0
 Timestamp Replies 0 0
 Address Masks 0 0
 Address Mask Replies 0 0

TCP Statistics

 Active Opens = 489
 Passive Opens = 2
 Failed Connection Attempts = 69
 Reset Connections = 66
 Current Connections = 4
 Segments Received = 12548
 Segments Sent = 13614
 Segments Retransmitted = 134

UDP Statistics

 Datagrams Received = 8654
 No Ports = 860
 Receive Errors = 0
 Datagrams Sent = 2717

Interpretation is basically the same as with the Unix version.

100
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5

5
Packet Capture

Packet capture and analysis is the most powerful technique that will be discussed
in this book—it is the ultimate troubleshooting tool. If you really want to know
what is happening on your network, you will need to capture traffic. No other tool
provides more information.

On the other hand, no other tool requires the same degree of sophistication to
use. If misused, it can compromise your system’s security and invade the privacy
of your users. Of the software described in this book, packet capture software is
the most difficult to use to its full potential and requires a thorough understanding
of the underlying protocols to be used effectively. As noted in Chapter 1, you must
ensure that what you do conforms to your organization’s policies and any appli-
cable laws. You should also be aware of the ethical implications of your actions.

This chapter begins with a discussion of the type of tools available and various
issues involved in traffic capture. Next I describe tcpdump, a ubiquitous and pow-
erful packet capture tool. This is followed by a brief description of other closely
related tools. Next is a discussion of ethereal, a powerful protocol analyzer that is
rapidly gaining popularity. Next I describe some of the problems created by traffic
capture. The chapter concludes with a discussion of packet capture tools available
for use with Microsoft Windows platforms.

Traffic Capture Tools
Packet capture is the real-time collection of data as it travels over networks. Tools
for the capture and analysis of traffic go by a number of names including packet
sniffers, packet analyzers, protocol analyzers, and even traffic monitors. Although
there is some inconsistency in how these terms are used, the primary difference is
in how much analysis or interpretation is provided after a packet is captured.

Access to Traffic 101

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Packet sniffers generally do the least amount of analysis, while protocol analyzers
provide the greatest level of interpretation. Packet analyzers typically lie some-
where in between. All have the capture of raw data as a core function. Traffic
monitors typically are more concerned with collecting statistical information, but
many support the capture of raw data. Any of these may be augmented with addi-
tional functions such as graphing utilities and traffic generators. This chapter
describes tcpdump, a packet sniffer, several analysis tools, and ethereal, a pro-
tocol analyzer.

While packet capture might seem like a low-level tool, it can also be used to
examine what is happening at higher levels, including the application level,
because of the way data is encapsulated. Since application data is encapsulated in a
generally transparent way by the lower levels of the protocol stack, the data is basi-
cally intact when examined at a lower level.* By examining network traffic, we can
examine the data generated at the higher levels. (In general, however, it is usually
much easier to debug an application using a tool designed for that application.
Tools specific to several application-level protocols are described in Chapter 10.)

Packet capture programs also require the most technical expertise of any program
we will examine. A thorough understanding of the underlying protocol is often
required to interpret the results. For this reason alone, packet capture is a tool that
you want to become familiar with well before you need it. When you are having
problems, it will also be helpful to have comparison systems so you can observe
normal behavior. The time to learn how your system works is before you have
problems. This technique cannot be stressed enough—do a baseline run for your
network periodically and analyze it closely so you know what traffic you expect to
see on your network before you have problems.

Access to Traffic
You can capture traffic only on a link that you have access to. If you can’t get
traffic to an interface, you can’t capture it with that interface. While this might
seem obvious, it may be surprisingly difficult to get access to some links on your
network. On some networks, this won’t be a problem. For example, 10Base2 and
10Base5 networks have shared media, at least between bridges and switches.
Computers connected to a hub are effectively on a shared medium, and the traffic
is exposed. But on other systems, watch out!

Clearly, if you are trying to capture traffic from a host on one network, it will
never see the local traffic on a different network. But the problem doesn’t stop

* There are two obvious exceptions. The data may be encrypted, or the data may be fragmented among
multiple packets.

102 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

there. Some networking devices, such as bridges and switches, are designed to
contain traffic so that it is seen only by parts of the local network. On a switched
network, only a limited amount of traffic will normally be seen at any interface.*

Traffic will be limited to traffic to or from the host or to multicast and broadcast
traffic. If this includes the traffic you are interested in, so much the better. But if
you are looking at general network traffic, you will use other approaches.

Not being able to capture data on an interface has both positive and negative ram-
ifications. The primary benefit is that it is possible to control access to traffic with
an appropriate network design. By segmenting your network, you can limit access
to data, improving security and enhancing privacy.

Lack of access to data can become a serious problem, however, when you must
capture that traffic. There are several basic approaches to overcome this problem.
First, you can try to physically go to the traffic by using a portable computer to
collect the data. This has the obvious disadvantage of requiring that you travel to
the site. This may not be desirable or possible. For example, if you are addressing
a security problem, it may not be feasible to monitor at the source of the sus-
pected attack without revealing what you are doing. If you need to collect data at
multiple points simultaneously, being at different places at the same time is clearly
not possible by yourself.

Another approach is to have multiple probe computers located throughout your
network. For example, if you have computers on your network that you can reach
using telnet, ssh, X Window software, or vnc, you can install the appropriate soft-
ware on each. Some software has been designed with remote probing in mind.
For example, Microsoft’s netmon supports the use of a Windows platform as a
probe for collecting traffic. Data from the agents on these machines can be col-
lected by a central management station. Some RMON probes will also do this. (vnc
and ssh are described in Chapter 11. netmon is briefly described later in this
chapter, and RMON is described in Chapter 8.)

When dealing with switches, there are two common approaches you can take. (Sev-
eral other techniques that I can’t recommend are described later in this chapter.)
One approach is to augment the switch with a spare hub. Attach the hub to the
switch and move from the switch to the hub only the connections that need to be
examined. You could try replacing the switch with a hub, but this can be disruptive
and, since a hub inherently has a lower capacity, you may have more traffic than the
hub can handle. Augmenting the switch with a hub is a better solution.

* This assumes the switches have been running long enough to have a reasonably complete address table.
Most switches forward traffic onto all ports if the destination address is unknown. So when they are first
turned on, switches look remarkably like hubs.

Capturing Data 103

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Buying a small portable hub to use in establishing a probe point into your net-
work is certainly worth the expense. Because you will be connecting a hub to a
switch, you will be using both crossover and patch cables. Be sure you work out
the details of the cabling well before you have to try this approach on a problem-
atic network. Alternately, there are several commercially available devices
designed specifically for patching into networks. These devices include moni-
toring switches, fiber splitters, and devices designed to patch into 100-Mbps links
or links with special protocols. If your hardware dictates such a need, these
devices are worth looking into.

Here is a riddle for you—when is a hub not a hub? In recent years,
the distinction between hubs and switches has become blurred. For
example, a 10/100 autoswitching hub may be implemented, inter-
nally, as a 10-Mbps hub and a 100-Mbps hub connected by a dual-
port switch. With such a device, you may not be able to see all the
traffic. In the next few years, true hubs may disappear from the mar-
ket. You may want to keep this in mind when looking for a hub for
traffic monitoring.

A second possibility with some switches is to duplicate the traffic from one port
onto another port. If your switch supports this, it can be reconfigured dynamically
to copy traffic to a monitoring port. Other ports continue functioning normally so
the monitoring appears transparent to the rest of the switch’s operation. This tech-
nique is known by a variety of names. With Bay Network products, this is known
as conversation steering. Cisco refers to this as monitoring or using a spanning
port. Other names include port aliasing and port mirroring.

Unfortunately, many switches either don’t support this behavior or place limita-
tions on what can be done. For instance, some switches will allow traffic to be
redirected only to a high-speed port. Implementation details determining exactly
what can be examined vary greatly. Another problem is that some types of errors
will be filtered by the switch, concealing possible problems. For example, if there
are any framing errors, these will typically be discarded rather than forwarded.
Normally, discarding these packets is exactly what you want the switch to do, just
not in this context. You’ll have to consult the documentation with your switch to
see what is possible.

Capturing Data
Packet capture may be done by software running on a networked host or by
hardware/software combinations designed specifically for that purpose. Devices
designed specifically for capturing traffic often have high-performance interfaces

104 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

that can capture large amounts of data without loss. These devices will also cap-
ture frames with framing errors—frames that are often silently discarded with more
conventional interfaces. More conventional interfaces may not be able to keep up
with high traffic levels so packets will be lost. Programs like tcpdump give sum-
mary statistics, reporting the number of packets lost. On moderately loaded net-
works, however, losing packets should not be a problem. If dropping packets
becomes a problem, you will need to consider faster hardware or, better yet, seg-
menting your network.

Packet capture software works by placing the network interface in promiscuous
mode.* In normal operations, the network interface captures and passes on to the
protocol stack only those packets with the interface’s unicast address, packets sent
to a multicast address that matches a configured address for the interface, or
broadcast packets. In promiscuous mode, all packets are captured regardless of
their destination address.

While the vast majority of interfaces can be placed in promiscuous mode, a few
are manufactured not to allow this. If in doubt, consult the documentation for your
interface. Additionally, on Unix systems, the operating system software must be
configured to allow promiscuous mode. Typically, placing an interface in promis-
cuous mode requires root privileges.

tcpdump
The tcpdump program was developed at the Lawrence Berkeley Laboratory at the
University of California, Berkeley, by Van Jacobson, Craig Leres, and Steven
McCanne. It was originally developed to analyze TCP/IP performance problems. A
number of features have been added over time although some options may not be
available with every implementation. The program has been ported to a wide
variety of systems and comes preinstalled on many systems.

For a variety of reasons, tcpdump is an ideal tool to begin with. It is freely avail-
able, runs on many Unix platforms, and has even been ported to Microsoft Win-
dows. Features of its syntax and its file format have been used or supported by a
large number of subsequent programs. In particular, its capture software, libpcap,
is frequently used by other capture programs. Even when proprietary programs
with additional features exist, the universality of tcpdump makes it a compelling
choice. If you work with a wide variety of platforms, being able to use the same
program on all or most of the platforms can easily outweigh small advantages pro-
prietary programs might have. This is particularly true if you use the programs on

* On a few systems you may need to manually place the interface in promiscuous mode with the ifconfig
command before running the packet capture software.

tcpdump 105

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

an irregular basis or don’t otherwise have time to fully master them. It is better to
know a single program well than several programs superficially. In such situa-
tions, special features of other programs will likely go unused.

Since tcpdump is text based, it is easy to run remotely using a Telnet connection.
Its biggest disadvantage is a lack of analysis, but you can easily capture traffic,
move it to your local machine, and analyze it with a tool like ethereal. Typically, I
use tcpdump in text-only environments or on remote computers. I use ethereal in
a Microsoft Windows or X Window environment and to analyze tcpdump files.

Using tcpdump

The simplest way to run tcpdump is interactively by simply typing the program’s
name. The output will appear on your screen. You can terminate the program by
typing Ctrl-C. But unless you have an idle network, you are likely to be over-
whelmed by the amount of traffic you capture. What you are interested in will
likely scroll off your screen before you have a chance to read it.

Fortunately, there are better ways to run tcpdump. The first question is how you
plan to use tcpdump. Issues include whether you also plan to use the host on
which tcpdump is running to generate traffic in addition to capturing traffic, how
much traffic you expect to capture, and how you will determine that the traffic
you need has been captured.

There are several very simple, standard ways around the problem of being over-
whelmed by data. The Unix commands tee and script are commonly used to allow
a user to both view and record output from a Unix session. (Both tee and script
are described in Chapter 11.) For example, script could be started, tcpdump run,
and script stopped to leave a file that could be examined later.

The tee command is slightly more complicated since tcpdump must be placed in
line mode to display output with tee. This is done with the -l option. The syntax
for capturing a file with tee is:

bsd1# tcpdump –l | tee outfile

Of course, additional arguments would probably be used.

Using multiple Telnet connections to a host or multiple windows in an X Window
session allows you to record in one window while taking actions to generate traffic
in another window. This approach can be very helpful in some circumstances.

An alternative is to use telnet to connect to the probe computer. The session could
be logged with many of the versions of telnet that are available. Be aware, how-
ever, that the Telnet connection will generate considerable traffic that may become
part of your log file unless you are using filtering. (Filtering, which is discussed

106 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

later in this chapter, allows you to specify the type of traffic you want to examine.)
The additional traffic may also overload the connection, resulting in lost packets.

Another alternative is to run tcpdump as a detached process by including an & at
the end of the command line. Here is an example:

bsd1# tcpdump -w outfile &
[1] 70260
bsd1# tcpdump: listening on xl0

The command starts tcpdump, prints a process number, and returns the user
prompt along with a message that tcpdump has started. You can now enter com-
mands to generate the traffic you are interested in. (You really have a prompt at
this point; the message from tcpdump just obscures it.) Once you have generated
the traffic of interest, you can terminate tcpdump by issuing a kill command using
the process number reported when tcpdump was started. (You can use the ps
command if you have forgotten the process number.)

bsd1# kill 70260
153 packets received by filter
0 packets dropped by kernel
[1] Done tcpdump -w outfile

You can now analyze the capture file. (Running tcpdump as a detached process
can also be useful when you are trying to capture traffic that might not show up
for a while, e.g., RADIUS or DNS exchanges. You might want to use the nohup
command to run it in the background.)

Yet another approach is to use the -w option to write the captured data directly to
a file. This option has the advantage of collecting raw data in binary format. The
data can then be replayed with tcpdump using the -r option. The binary format
decreases the amount of storage needed, and different filters can be applied to the
file without having to recapture the traffic. Using previously captured traffic is an
excellent way of fine-tuning filters to be sure they work as you expect. Of course,
you can selectively analyze data captured as text files in Unix by using the many
tools Unix provides, but you can’t use tcpdump filtering on text files. And you can
always generate a text file from a tcpdump file for subsequent analysis with Unix
tools by simply redirecting the output. To capture data you might type:

bsd1# tcpdump –w rawfile

The data could be converted to a text file with:

bsd1# tcpdump –r rawfile > textfile

This approach has several limitations. Because the data is being written directly to
a file, you must know when to terminate recording without actually seeing the
traffic. Also, if you limit what is captured with the original run, the data you
exclude is lost. For these reasons, you will probably want to be very liberal in

tcpdump 107

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

what you capture, offsetting some of the storage gains of the binary format.
Clearly, each approach has its combination of advantages and disadvantages. If
you use tcpdump very much, you will probably need each from time to time.

tcpdump Options

A number of command-line options are available with tcpdump. Roughly
speaking, options can be separated into four broad categories—commands that
control the program operations (excluding filtering), commands that control how
data is displayed, commands that control what data is displayed, and filtering com-
mands. We will consider each category in turn.

Controlling program behavior

This class of command-line options affects program behavior, including the way
data is collected. We have already seen two examples of control commands, -r
and -w. The -w option allows us to redirect output to a file for later analysis,
which can be extremely helpful if you are not sure exactly how you want to ana-
lyze your data. You can subsequently play back capture data using the -r option.
You can repeatedly apply different display options or filters to the data until you
have found exactly the information you want. These options are extremely helpful
in learning to use tcpdump and are essential for documentation and sharing.

If you know how many packets you want to capture or if you just have an upper
limit on the number of packets, the -c option allows you to specify that number.
The program will terminate automatically when that number is reached, elimi-
nating the need to use a kill command or Ctrl-C. In the next example, tcpdump
will terminate after 100 packets are collected:

bsd1# tcpdump –c100

While limiting packet capture can be useful in some circumstances, it is generally
difficult to predict accurately how many packets need to be collected.

If you are running tcpdump on a host with more than one network interface, you
can specify which interface you want to use with the -i option. Use the command
ifconfig -a to discover what interfaces are available and what networks they corre-
spond to if you aren’t sure. For example, suppose you are using a computer with
two class C interfaces, xl0 with an IP address of 205.153.63.238 and xl1 with an
IP address of 205.153.61.178. Then, to capture traffic on the 205.153.61.0 net-
work, you would use the command:

bsd1# tcpdump –i xl1

Without an explicitly identified interface, tcpdump defaults to the lowest num-
bered interface.

108 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The -p option says that the interface should not be put into promiscuous mode.
This option would, in theory, limit capture to the normal traffic on the interface—
traffic to or from the host, multicast traffic, and broadcast traffic. In practice, the
interface might be in promiscuous mode for some other reason. In this event, -p
will not turn promiscuous mode off.

Finally, -s controls the amount of data captured. Normally, tcpdump defaults to
some maximum byte count and will only capture up to that number of bytes from
individual packets. The actual number of bytes depends on the pseudodevice
driver used by the operating system. The default is selected to capture appro-
priate headers, but not to collect packet data unnecessarily. By limiting the
number of bytes collected, privacy can be improved. Limiting the number of bytes
collected also decreases processing and buffering requirements.

If you need to collect more data, the -s option can be used to specify the number
of bytes to collect. If you are dropping packets and can get by with fewer bytes, -s
can be used to decrease the number of bytes collected. The following command
will collect the entire packet if its length is less than or equal to 200 bytes:

bsd1# tcpdump –s200

Longer packets will be truncated to 200 bytes.

If you are capturing files using the -w option, you should be aware that the
number of bytes collected will be what is specified by the -s option at the time of
capture. The -s option does not apply to files read back with the -r option. What-
ever you captured is what you have. If it was too few bytes, then you will have to
recapture the data.

Controlling how information is displayed

The -a, -n, -N, and -f options determine how address information is displayed. The
-a option attempts to force network addresses into names, the -n option prevents
the conversion of addresses into names, the -N option prevents domain name
qualification, and the -f option prevents remote name resolution. In the following,
the remote site www.cisco.com (192.31.7.130) is pinged from sloan.lander.edu
(205.153.63.30) without an option, with -a, with -n, with -N, and with -f, respec-
tively. (The options -c1 host 192.31.7.130 restricts capture to one packet to or
from the host 192.31.7.130.)

bsd1# tcpdump -c1 host 192.31.7.130
tcpdump: listening on xl0
14:16:35.897342 sloan.lander.edu > cio-sys.cisco.com: icmp: echo request
bsd1# tcpdump -c1 -a host 192.31.7.130
tcpdump: listening on xl0
14:16:14.567917 sloan.lander.edu > cio-sys.cisco.com: icmp: echo request
bsd1# tcpdump -c1 -n host 192.31.7.130
tcpdump: listening on xl0

tcpdump 109

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14:17:09.737597 205.153.63.30 > 192.31.7.130: icmp: echo request
bsd1# tcpdump -c1 -N host 192.31.7.130
tcpdump: listening on xl0
14:17:28.891045 sloan > cio-sys: icmp: echo request
bsd1# tcpdump -c1 -f host 192.31.7.130
tcpdump: listening on xl0
14:17:49.274907 sloan.lander.edu > 192.31.7.130: icmp: echo request

Clearly, the -a option is the default.

Not using name resolution can eliminate the overhead and produce terser output.
If the network is broken, you may not be able to reach your name server and will
find yourself with long delays, while name resolution times out. Finally, if you are
running tcpdump interactively, name resolution will create more traffic that will
have to be filtered out.

The -t and -tt options control the printing of timestamps. The -t option suppresses
the display of the timestamp while -tt produces unformatted timestamps. The fol-
lowing shows the output for the same packet using tcpdump without an option,
with the -t option, and with the -tt option, respectively:

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF)

sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394 win 8647 (DF)

934303014.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF)

The -t option produces a more terse output while the -tt output can simplify sub-
sequent processing, particularly if you are writing scripts to process the data.

Controlling what’s displayed

The verbose modes provided by -v and -vv options can be used to print some
additional information. For example, the -v option will print TTL fields. For less
information, use the -q, or quiet, option. Here is the output for the same packet
presented with the -q option, without options, with the -v option, and with the -vv
option, respectively:

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: tcp 0 (DF)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF) (ttl 128, id 45836)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF) (ttl 128, id 45836)

110 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

This additional information might be useful in a few limited contexts, while the
quiet mode provides shorter output lines. In this instance, there was no difference
between the results with -v and -vv, but this isn’t always the case.

The -e option is used to display link-level header information. For the packet from
the previous example, with the -e option, the output is:

12:36:54.772066 0:10:5a:a1:e9:8 0:10:5a:e3:37:c ip 60:
sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394 win 8647 (DF)

0:10:5a:a1:e9:8 is the Ethernet address of the 3Com card in sloan.lander.edu,
while 0:10:5a:e3:37:c is the Ethernet address of the 3Com card in 205.153.63.238.
(We can discover the types of adapters used by looking up the OUI portion of
these addresses, as described in Chapter 2.)

For the masochist who wants to decode packets manually, the -x option provides
a hexadecimal dump of packets, excluding link-level headers. A packet displayed
with the -x and -vv options looks like this:

13:57:12.719718 bsd1.lander.edu.1657 > 205.153.60.5.domain: 11587+ A? www.
microsoft.com. (35) (ttl 64, id 41353)
 4500 003f a189 0000 4011 c43a cd99 3db2
 cd99 3c05 0679 0035 002b 06d9 2d43 0100
 0001 0000 0000 0000 0377 7777 096d 6963
 726f 736f 6674 0363 6f6d 0000 0100 01

Please note that the amount of information displayed will depend on how many
bytes are collected, as determined by the -s option. Such hex listings are typical of
what might be seen with many capture programs.

Describing how to do such an analysis in detail is beyond the scope of this book,
as it requires a detailed understanding of the structure of packets for a variety of
protocols. Interpreting this data is a matter of taking packets apart byte by byte or
even bit by bit, realizing that the interpretation of the results at one step may
determine how the next steps will be done. For header formats, you can look to
the appropriate RFC or in any number of books. Table 5-1 summarizes the anal-
ysis for this particular packet, but every packet is different. This particular packet
was a DNS lookup for www.microsoft.com. (For more information on decoding
packets, see Eric A. Hall’s Internet Core Protocols: The Definitive Guide.)

Table 5-1. Packet analysis summary

Raw data in hex Interpretation

IP header

First 4 bits of 45 IP version—4

Last 4 bits of 45 Length of header multiplier—5 (times 4 or 20 bytes)

tcpdump 111

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

This analysis was included here primarily to give a better idea of how packet anal-
ysis works. Several programs that analyze packet data from a tcpdump trace file
are described later in this chapter. Unix utilities like strings, od, and hexdump can

00 Type of service

00 3f Packet length in hex—63 bytes

a1 89 ID

First 3 bits of 00 000—flags, none set

Last 13 bits of 00 00 Fragmentation offset

40 TTL—64 hops

11 Protocol number in hex—UDP

c4 3a Header checksum

cd 99 3d b2 Source IP—205.153.61.178

cd 99 3c 05 Destination IP—205.153.60.5

UDP header

06 79 Source port

00 35 Destination port—DNS

00 2b UDP packet length—43 bytes

06 d9 Header checksum

DNS message

2d 43 ID

01 00 Flags—query with recursion desired

00 01 Number of queries

00 00 Number of answers

00 00 Number of authority RRs

00 00 Number of additional RRs

Query

03 Length—3

77 77 77 String—“www”

09 Length—9

6d 69 63 72 6f 73 6f 66 74 String—“microsoft”

03 Length—3

63 6f 6d String—“com”

00 Length—0

00 01 Query type—IP address

00 01 Query class—Internet

Table 5-1. Packet analysis summary (continued)

Raw data in hex Interpretation

112 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

also make the process easier. For example, in the following example, this makes it
easier to pick out www.microsoft.com in the data:

bsd1# hexdump -C tracefile
00000000 d4 c3 b2 a1 02 00 04 00 00 00 00 00 00 00 00 00 |................|
00000010 c8 00 00 00 01 00 00 00 78 19 06 38 66 fb 0a 00 |........x..8f...|
00000020 4d 00 00 00 4d 00 00 00 00 00 a2 c6 0e 43 00 60 |M...M........C.`|
00000030 97 92 4a 7b 08 00 45 00 00 3f a1 89 00 00 40 11 |..J{..E..?....@.|
00000040 c4 3a cd 99 3d b2 cd 99 3c 05 06 79 00 35 00 2b |.:..=...<..y.5.+|
00000050 06 d9 2d 43 01 00 00 01 00 00 00 00 00 00 03 77 |..-C...........w|
00000060 77 77 09 6d 69 63 72 6f 73 6f 66 74 03 63 6f 6d |ww.microsoft.com|
00000070 00 00 01 00 01 |.....|
00000075

The -vv option could also be used to get as much information as possible.

Hopefully, you will have little need for the -x option. But occasionally you may
encounter a packet that is unknown to tcpdump, and you have no choice. For
example, some of the switches on my local network use a proprietary implementa-
tion of a spanning tree protocol to implement virtual local area networks (VLANs).
Most packet analyzers, including tcpdump, won’t recognize these. Fortunately,
once you have decoded one unusual packet, you can usually easily identify sim-
ilar packets.

Filtering

To effectively use tcpdump, it is necessary to master the use of filters. Filters
permit you to specify what traffic you want to capture, allowing you to focus on
just what is of interest. This can be absolutely essential if you need to extract a
small amount of traffic from a massive trace file. Moreover, tools like ethereal use
the tcpdump filter syntax for capturing traffic, so you’ll want to learn the syntax if
you plan to use these tools.

If you are absolutely certain that you are not interested in some kinds of traffic,
you can exclude traffic as you capture. If you are unclear of what traffic you want,
you can collect the raw data to a file and apply the filters as you read back the
file. In practice, you will often alternate between these two approaches.

Filters at their simplest are keywords added to the end of the command line. How-
ever, extremely complex commands can be constructed using logical and rela-
tional operators. In the latter case, it is usually better to save the filter to a file and
use the -F option. For example, if testfilter is a text file containing the filter host
205.153.63.30, then typing tcpdump -Ftestfilter is equivalent to typing the
command tcpdump host 205.153.63.30. Generally, you will want to use this fea-
ture with complex filters only. However, you can’t combine filters on the com-
mand line with a filters file in the same command.

tcpdump 113

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Address filtering. It should come as no surprise that filters can select traffic based
on addresses. For example, consider the command:

bsd1# tcpdump host 205.153.63.30

This command captures all traffic to and from the host with the IP address 205.
153.63.30. The host may be specified by IP number or name. Since an IP address
has been specified, you might incorrectly guess that the captured traffic will be
limited to IP traffic. In fact, other traffic, such as ARP traffic, will also be collected
by this filter. Restricting capture to a particular protocol requires a more complex
filter. Nonintuitive behavior like this necessitates a thorough testing of all filters.

Addresses can be specified and restricted in several ways. Here is an example that
uses the Ethernet address of a computer to select traffic:

bsd1# tcpdump ether host 0:10:5a:e3:37:c

Capture can be further restricted to traffic flows for a single direction, either to a
host or from a host, using src to specify the source of the traffic or dst to specify
the destination. The next example shows a filter that collects traffic sent to the host
at 205.153.63.30 but not from it:

bsd1# tcpdump dst 205.153.63.30

Note that the keyword host was omitted in this example. Such omissions are OK in
several instances, but it is always safer to include these keywords.

Multicast or broadcast traffic can be selected by using the keyword multicast or
broadcast, respectively. Since multicast and broadcast traffic are specified differ-
ently at the link level and the network level, there are two forms for each of these
filters. The filter ether multicast captures traffic with an Ethernet multicast address,
while ip multicast captures traffic with an IP multicast address. Similar qualifiers
are used with broadcast traffic. Be aware that multicast filters may capture broad-
cast traffic. As always, test your filters.

Traffic capture can be restricted to networks as well as hosts. For example, the fol-
lowing command restricts capture to packets coming from or going to the 205.153.
60.0 network:

bsd1# tcpdump net 205.153.60

The following command does the same thing:

bsd1# tcpdump net 205.153.60.0 mask 255.255.255.0

Although you might guess otherwise, the following command does not work
properly due to the final .0:

bsd1# tcpdump net 205.153.60.0

Be sure to test your filters!

114 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protocol and port filtering. It is possible to restrict capture to specific protocols
such as IP, Appletalk, or TCP. You can also restrict capture to services built on top
of these protocols, such as DNS or RIP. This type of capture can be done in three
ways—by using a few specific keywords known by tcpdump, by protocol using
the proto keyword, or by service using the port keyword.

Several of these protocol names are recognized by tcpdump and can be identified
by keyword. The following command restricts the traffic captured to IP traffic:

bsd1# tcpdump ip

Of course, IP traffic will include TCP traffic, UDP traffic, and so on.

To capture just TCP traffic, you would use:

bsd1# tcpdump tcp

Recognized keywords include ip, igmp, tcp, udp, and icmp.

There are many transport-level services that do not have recognized keywords. In
this case, you can use the keywords proto or ip proto followed by either the name
of the protocol found in the /etc/protocols file or the corresponding protocol
number. For example, either of the following will look for OSPF packets:

bsd1# tcpdump ip proto ospf
bsd1# tcpdump ip proto 89

Of course, the first works only if there is an entry in /etc/protocols for OSPF.

Built-in keywords may cause problems. In these examples, the keyword tcp must
either be escaped or the number must be used. For example, the following is fine:

bsd#1 tcpdump ip proto 6

On the other hand, you can’t use tcp with proto.

bsd#1 tcpdump ip proto tcp

will generate an error.

For higher-level services, services built on top of the underlying protocols, you
must use the keyword port. Either of the following will collect DNS traffic:

bsd#1 tcpdump port domain
bds#1 tcpdump port 53

In the former case, the keyword domain is resolved by looking in /etc/services.
When there may be ambiguity between transport-layer protocols, you may further
restrict ports to a particular protocol. Consider the command:

bsd#1 tcpdump udp port domain

This will capture DNS name lookups using UDP but not DNS zone transfers using
TCP. The two previous commands would capture both.

tcpdump 115

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Packet characteristics. Filters can also be designed based on packet characteristics
such as packet length or the contents of a particular field. These filters must
include a relational operator. To use length, the keyword less or greater is used.
Here is an example:

bsd1# tcpdump greater 200

This command collects packets longer than 200 bytes.

Looking inside packets is a little more complicated in that you must understand
the structure of the packet’s header. But despite the complexity, or perhaps
because of it, this technique gives you the greatest control over what is captured.
(If you are charged with creating a firewall using a product that requires speci-
fying offsets into headers, practicing with tcpdump could prove invaluable.)

The general syntax is proto [expr : size]. The field proto indicates which
header to look into—ip for the IP header, tcp for the TCP header, and so forth.
The expr field gives an offset into the header indexed from 0. That is, the first byte
in a header is number 0, the second byte is number 1, and so forth. Alternately,
you can think of expr as the number of bytes in the header to skip over. The size
field is optional. It specifies the number of bytes to use and can be 1, 2, or 4.

bsd1# tcpdump "ip[9] = 6"

looks into the IP header at the tenth byte, the protocol field, for a value of 6.
Notice that this must be quoted. Either an apostrophe or double quotes should
work, but a backquote will not work.

bsd1# tcpdump tcp

is an equivalent command since 6 is the protocol number for TCP.

This technique is frequently used with a mask to select specific bits. Values should
be in hex. Comparisons are specified using the syntax & followed by a bit mask. The
next example extracts the first byte from the Ethernet header (i.e., the first byte of
the destination address), extracts the low-order bit, and makes sure the bit is not 0:*

bsd1# tcpdump 'ether[0] & 1 != 0'

This will match multicast and broadcast packets.

With both of these examples, there are better ways of matching the packets. For a
more realistic example, consider the command:

bsd1# tcpdump "tcp[13] & 0x03 != 0"

* The astute reader will notice that this test could be more concisely written as =1 rather than !=0. While
it doesn’t matter for this example, using the second form simplifies testing in some cases and is a com-
mon idiom. In the next command, the syntax is simpler since you are testing to see if multiple bits are
set.

116 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

This filter skips the first 13 bytes in the TCP header, extracting the flag byte. The
mask 0x03 selects the first and second bits, which are the FIN and SYN bits. A
packet is captured if either bit is set. This will capture setup or teardown packets
for a TCP connection.

It is tempting to try to mix in relational operators with these logical operators.
Unfortunately, expressions like tcp src port > 23 don’t work. The best way of
thinking about it is that the expression tcp src port returns a value of true or false,
not a numerical value, so it can’t be compared to a number. If you want to look
for all TCP traffic with a source port with a value greater than 23, you must extract
the port field from the header using syntax such as “tcp[0:2] & 0xffff > 0x0017”.

Compound filters. All the examples thus far have consisted of simple commands
with a single test. Compound filters can be constructed in tcpdump using logical
operator and, or, and not. These are often abbreviated &&, ||, and ! respec-
tively. Negation has the highest precedence. Precedence is left to right in the
absence of parentheses. While parentheses can be used to change precedence,
remember that they must be escaped or quoted.

Earlier it was noted that the following will not limit capture to just IP traffic:

bsd1# tcpdump host 205.153.63.30

If you really only want IP traffic in this case, use the command:

bsd1# tcpdump host 205.153.63.30 and ip

On the other hand, if you want all traffic to the host except IP traffic, you could
use:

bsd1# tcpdump host 205.153.63.30 and not ip

If you need to capture all traffic to and from the host and all non-IP traffic, replace
the and with an or.

With complex expressions, you have to be careful of the precedence. Consider the
two commands:

bsd1# tcpdump host lnx1 and udp or arp
bsd1# tcpdump "host lnx1 and (udp or arp)"

The first will capture all UDP traffic to or from lnx1 and all ARP traffic. What you
probably want is the second, which captures all UDP or ARP traffic to or from
lxn1. But beware, this will also capture ARP broadcast traffic. To beat a dead
horse, be sure to test your filters.

I mentioned earlier that running tcpdump on a remote station using telnet was one
way to collect data across your network, except that the Telnet traffic itself would
be captured. It should be clear now that the appropriate filter can be used to

tcpdump 117

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

avoid this problem. To eliminate a specific TCP connection, you need four pieces
of information—the source and destination IP addresses and the source and desti-
nation port numbers. In practice, the two IP addresses and the well-known port
number is often enough.

For example, suppose you are interested in capturing traffic on the host lnx1, you
are logged onto the host bsd1, and you are using telnet to connect from bsd1 to
lnx1. To capture all the traffic at lnx1, excluding the Telnet traffic between bsd1
and lnx1, the following command will probably work adequately in most cases:

lnx1# tcpdump –n "not (tcp port telnet and host lnx1 and host bsd1)"

We can’t just exclude Telnet traffic since that would exclude all Telnet traffic
between lnx1 and any host. We can’t just exclude traffic to or from one of the
hosts because that would exclude non-Telnet traffic as well. What we want to
exclude is just traffic that is Telnet traffic, has lnx1 as a host, and has bsd1 as a
host. So we take the negation of these three requirements to get everything else.

While this filter is usually adequate, this filter excludes all Telnet sessions between
the two hosts, not just yours. If you really want to capture other Telnet traffic
between lnx1 and bsd1, you would need to include a fourth term in the negation
giving the ephemeral port assigned by telnet. You’ll need to run tcpdump twice,
first to discover the ephemeral port number for your current session since it will
be different with every session, and then again with the full filter to capture the
traffic you are interested in.

One other observation—while we are not reporting the traffic, the traffic is still
there. If you are investigating a bandwidth problem, you have just added to the
traffic. You can, however, minimize this traffic during the capture if you write out
your trace to a file on lnx1 using the -w option. This is true, however, only if you
are using a local filesystem. Finally, note the use of the -n option. This is required
to prevent name resolution. Otherwise, tcpdump would be creating additional net-
work traffic in trying to resolve IP numbers into names as noted earlier.

Once you have mastered the basic syntax of tcpdump, you should run tcpdump on
your own system without any filters. It is worthwhile to do this occasionally just to
see what sorts of traffic you have on your network. There are likely to be a
number of surprises. In particular, there may be router protocols, switch topology
information exchange, or traffic from numerous PC-based protocols that you aren’t
expecting. It is very helpful to know that this is normal traffic so when you have
problems you won’t blame the problems on this strange traffic.

This has not been an exhaustive treatment of tcpdump, but I hope that it ade-
quately covers the basics. The manpage for tcpdump contains a wealth of addi-
tional information, including several detailed examples with explanations. One
issue I have avoided has been how to interpret tcpdump data. Unfortunately, this

118 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

depends upon the protocol and is really beyond the scope of a book such as this.
Ultimately, you must learn the details of the protocols. For TCP/IP, Richard W.
Stevens’ TCP/IP Illustrated, vol. 1, The Protocols has extensive examples using
tcpdump. But the best way to learn is to use tcpdump to examine the behavior of
working systems.

Analysis Tools
As previously noted, one reason for using tcpdump is the wide variety of support
tools that are available for use with tcpdump or files created with tcpdump. There
are tools for sanitizing the data, tools for reformatting the data, and tools for pre-
senting and analyzing the data.

sanitize

If you are particularly sensitive to privacy or security concerns, you may want to
consider sanitize, a collection of five Bourne shell scripts that reduce or condense
tcpdump trace files and eliminate confidential information. The scripts renumber
host entries and select classes of packets, eliminating all others. This has two pri-
mary uses. First, it reduces the size of the files you must deal with, hopefully
focusing your attention on a subset of the original traffic that still contains the
traffic of interest. Second, it gives you data that can be distributed or made public
(for debugging or network analysis) without compromising individual privacy or
revealing too much specific information about your network. Clearly, these scripts
won’t be useful for everyone. But if internal policies constrain what you can
reveal, these scripts are worth looking into.

The five scripts included in sanitize are sanitize-tcp, sanitize-syn-fin, sanitize-udp,
sanitize-encap, and sanitize-other. Each script filters out inappropriate traffic and
reduces the remaining traffic. For example, all non-TCP packets are removed by
sanitize-tcp and the remaining TCP traffic is reduced to six fields—an unformatted
timestamp, a renumbered source address, a renumbered destination address, the
source port, a destination address, and the number of data bytes in the packet.

934303014.772066 205.153.63.30.1174 > 205.153.63.238.23: . ack 3259091394 win 8647
(DF)
 4500 0028 b30c 4000 8006 2d84 cd99 3f1e
 cd99 3fee 0496 0017 00ff f9b3 c241 c9c2
 5010 21c7 e869 0000 0000 0000 0000

would be reduced to 934303014.772066 1 2 1174 23 0. Notice that the IP
numbers have been replaced with 1 and 2, respectively. This will be done in a
consistent manner with multiple packets so you will still be able to compare

Analysis Tools 119

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

addresses within a single trace. The actual data reported varies from script to
script. Here is an example of the syntax:

bsd1# sanitize-tcp tracefile

This runs sanitize-tcp over the tcpdump trace file tracefile. There are no arguments.

tcpdpriv

The program tcpdpriv is another program for removing sensitive information from
tcpdump files. There are several major differences between tcpdpriv and sanitize.
First, as a shell script, sanitize should run on almost any Unix system. As a com-
piled program, this is not true of tcpdpriv. On the other hand, tcpdpriv supports
the direct capture of data as well as the analysis of existing files. The captured
packets are written as a tcpdump file, which can be subsequently processed.

Also, tcpdpriv allows you some degree of control over how much of the original
data is removed or scrambled. For example, it is possible to have an IP address
scrambled but retain its class designation. If the -C4 option is chosen, an IP
address such as 205.153.63.238 might be replaced with 193.0.0.2. Notice that
address classes are preserved—a class C address is replaced with a class C address.

There are a variety of command-line options that control how data is rewritten,
several of which are mandatory. Many of the command-line options will look
familiar to tcpdump users. The program does not allow output to be written to a
terminal, so it must be written directly to a file or redirected. While a useful pro-
gram, the number of required command-line options can be annoying. There is
some concern that if the options are not selected properly, it may be possible to
reconstruct the original data from the scrambled data. In practice, this should be a
minor concern.

As an example of using tcpdpriv, the following command will scramble the file
tracefile:

bsd1# tcpdpriv -P99 -C4 -M20 –r tracefile –w outfile

The -P99 option preserves (doesn’t scramble) the port numbers, -C4 preserves the
class identity of the IP addresses, and -M20 preserves multicast addresses. If you
want the data output to your terminal, you can pipe the output to tcpdump:

bsd1# tcpdpriv -P99 -C4 -M20 -r tracefile -w- | tcpdump -r-

The last options look a little strange, but they will work.

tcpflow

Another useful tool is tcpflow, written by Jeremy Elson. This program allows you
to capture individual TCP flows or sessions. If the traffic you are looking at

120 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

includes, say, three different Telnet sessions, tcpflow will separate the traffic into
three different files so you can examine each individually. The program can recon-
struct data streams regardless of out-of-order packets or retransmissions but does
not understand fragmentation.

tcpflow stores each flow in a separate file with names based on the source and
destination addresses and ports. For example, SSH traffic (port 22) between 172.
16.2.210 and 205.153.63.30 might have the filename 172.016.002.210.00022-
205.153.063.030.01071, where 1071 is the ephemeral port created for the session.

Since tcpflow uses libpcap, the same packet capture library tcpdump uses, capture
filters are constructed in exactly the same way and with the same syntax. It can be
used in a number of ways. For example, you could see what cookies are being
sent during an HTTP session. Or you might use it to see if SSH is really encrypting
your data. Of course, you could also use it to capture passwords or read email, so
be sure to set permissions correctly.

tcp-reduce

The program tcp-reduce invokes a collection of shell scripts to reduce the packet
capture information in a tcpdump trace file to one-line summaries for each con-
nection. That is, an entire Telnet session would be summarized by a single line.
This could be extremely useful in getting an overall picture of how the traffic over
a link breaks down or for looking quickly at very large files.

The syntax is quite simple.

bsd1# tcp-reduce tracefile > outfile

will reduce tracefile, putting the output in outfile. The program tcp-summary,
which comes with tcp-reduce, will further summarize the results. For example, on
my system I traced a system briefly with tcpdump. This process collected 741
packets. When processed with tcp-reduce, this revealed 58 TCP connections. Here
is an example when results were passed to tcp-summary :

bsd1# tcp-reduce out-file | tcp-summary

This example produced the following five-line summary:

proto # conn KBytes % SF % loc % ngh
----- ------ ------ ---- ----- -----
www 56 35 25 0 0
telnet 1 1 100 0 0
pop-3 1 0 100 0 0

In this instance, this clearly shows that the HTTP traffic dominated the local net-
work traffic.

Analysis Tools 121

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

tcpshow

The program tcpshow decodes a tcpdump trace file. It represents an alternative to
using tcpdump to decode data. The primary advantage of tcpshow is much nicer
formatting for output. For example, here is the tcpdump output for a packet:

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack
3259091394 win 8647 (DF) b

Here is corresponding output from tcpshow for the same packet:

Packet 1
TIME: 12:36:54.772066
LINK: 00:10:5A:A1:E9:08 -> 00:10:5A:E3:37:0C type=IP
 IP: sloan -> 205.153.63.238 hlen=20 TOS=00 dgramlen=40 id=B30C
 MF/DF=0/1 frag=0 TTL=128 proto=TCP cksum=2D84
 TCP: port 1174 -> telnet seq=0016775603 ack=3259091394
 hlen=20 (data=0) UAPRSF=010000 wnd=8647 cksum=E869 urg=0
DATA: <No data>

The syntax is:

bsd1# tcpshow < trace-file

There are numerous options.

tcpslice

The program tcpslice is a simple but useful program for extracting pieces or
merging tcpdump files. This is a useful utility for managing larger tcpdump files.
You specify a starting time and optionally an ending time for a file, and it extracts
the corresponding records from the source file. If multiple files are specified, it
extracts packets from the first file and then continues extracting only those packets
from the next file that have a later timestamp. This prevents duplicate packets if
you have overlapping trace files.

While there are a few options, the basic syntax is quite simple. For example, con-
sider the command:

bsd1# tcpslice 934224220.0000 in-file > out-file

This will extract all packets with timestamps after 934224220.0000. Note the use
of an unformatted timestamp. This is the same format displayed with the -tt option
with tcpdump. Note also the use of redirection. Because it works with binary files,
tcpslice will not allow you to send output to your terminal. See the manpage for
additional options.

122 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

tcptrace

This program is an extremely powerful tcpdump file analysis tool. The program
tcptrace is strictly an analysis tool, not a capture program, but it works with a
variety of capture file formats. The tool’s primary focus is the analysis of TCP con-
nections. As such, it is more of a network management tool than a packet analysis
tool. The program provides several levels of output or analysis ranging from very
brief to very detailed.

While for most purposes tcptrace is used as a command-line tool, tcptrace is
capable of producing several types of output files for plotting with the X Window
program xplot. These include time sequence graphs, throughput graphs, and graphs
of round-trip times. Time sequence graphs (-S option) are plots of sequence num-
bers over time that give a picture of the activity on the network. Throughput
graphs (-T option), as the name implies, plot throughput in bytes per second
against time. While throughput gives a picture of the volume of traffic on the net-
work, round-trip times give a better picture of the delays seen by individual con-
nections. Round-trip time plots (-R option) display individual round-trip times over
time. For other graphs and graphing options, consult the documentation.

For normal text-based operations, there are an overwhelming number of options
and possibilities. One of the most useful is the -l option. This produces a long
listing of summary statistics on a connection-by-connection basis. What follows is
an example of the information provided for a single brief Telnet connection:

TCP connection 2:
 host c: sloan.lander.edu:1230
 host d: 205.153.63.238:23
 complete conn: yes
 first packet: Wed Aug 11 11:23:25.151274 1999
 last packet: Wed Aug 11 11:23:53.638124 1999
 elapsed time: 0:00:28.486850
 total packets: 160
 filename: telnet.trace
 c->d: d->c:
 total packets: 96 total packets: 64
 ack pkts sent: 95 ack pkts sent: 64
 pure acks sent: 39 pure acks sent: 10
 unique bytes sent: 119 unique bytes sent: 1197
 actual data pkts: 55 actual data pkts: 52
 actual data bytes: 119 actual data bytes: 1197
 rexmt data pkts: 0 rexmt data pkts: 0
 rexmt data bytes: 0 rexmt data bytes: 0
 outoforder pkts: 0 outoforder pkts: 0
 pushed data pkts: 55 pushed data pkts: 52
 SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
 mss requested: 1460 bytes mss requested: 1460 bytes
 max segm size: 15 bytes max segm size: 959 bytes
 min segm size: 1 bytes min segm size: 1 bytes

Analysis Tools 123

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

 avg segm size: 2 bytes avg segm size: 23 bytes
 max win adv: 8760 bytes max win adv: 17520 bytes
 min win adv: 7563 bytes min win adv: 17505 bytes
 zero win adv: 0 times zero win adv: 0 times
 avg win adv: 7953 bytes avg win adv: 17519 bytes
 initial window: 15 bytes initial window: 3 bytes
 initial window: 1 pkts initial window: 1 pkts
 ttl stream length: 119 bytes ttl stream length: 1197 bytes
 missed data: 0 bytes missed data: 0 bytes
 truncated data: 1 bytes truncated data: 1013 bytes
 truncated packets: 1 pkts truncated packets: 7 pkts
 data xmit time: 28.479 secs data xmit time: 27.446 secs
 idletime max: 6508.6 ms idletime max: 6709.0 ms
 throughput: 4 Bps throughput: 42 Bps

This was produced by using tcpdump to capture all traffic into the file telnet.trace
and then executing tcptrace to process the data. Here is the syntax required to pro-
duce this output:

bsd1# tcptrace -l telnet.trace

Similar output is produced for each TCP connection recorded in the trace file.
Obviously, a protocol (like HTTP) that uses many different sessions may over-
whelm you with output.

There is a lot more to this program than covered in this brief discussion. If your
primary goal is analysis of network performance and related problems rather than
individual packet analysis, this is a very useful tool.

trafshow

The program trafshow is a packet capture program of a different sort. It provides a
continuous display of traffic over the network, giving repeated snapshots of traffic.
It displays the source address, destination address, protocol, and number of bytes.
This program would be most useful in looking for suspicious traffic or just getting
a general idea of network traffic.

While trafshow can be run on a text-based terminal, it effectively takes over the
display. It is best used in a separate window of a windowing system. There are a
number of options, including support for packet filtering using the same filter
format as tcpdump.

xplot

The xplot program is an X Windows plotting program. While it is a general pur-
pose plotting program, it was written as part of a thesis project for TCP analysis by
David Clark. As a result, some support for plotting TCP data (oriented toward net-
work analysis) is included with the package. It is also used by tcptrace. While a

124 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

powerful and useful program, it is not for the faint of heart. Due to the lack of
documentation, the program is easiest to use with tcptrace rather than as a stand-
alone program.

Other Packet Capture Programs

We have discussed tcpdump in detail because it is the most widely available
packet capture program for Unix. Many implementations of Unix have proprietary
packet capture programs that are comparable to tcpdump. For example, Sun
Microsystems’ Solaris provides snoop. (This is a replacement for etherfind, which
was supplied with earlier versions of the Sun operating system.)

Here is an example of using snoop to capture five packets:

sol1> snoop -c5
Using device /dev/elxl (promiscuous mode)
172.16.2.210 -> sol1 TELNET C port=28863
 sol1 -> 172.16.2.210 TELNET R port=28863 /dev/elxl (promiscuo
172.16.2.210 -> sol1 TELNET C port=28863
172.16.2.210 -> sloan.lander.edu TCP D=1071 S=22 Ack=143990 Seq=3737542069
Len=60 Win=17520
sloan.lander.edu -> 172.16.2.210 TCP D=22 S=1071 Ack=3737542129 Seq=143990
Len=0 Win=7908
snoop: 5 packets captured

As you can see, it is used pretty much the same way as tcpdump. (Actually, the
output has a slightly more readable format.) snoop, like tcpdump, supports a wide
range of options and filters. You should have no trouble learning snoop if you
have ever used tcpdump.

Other systems will provide their own equivalents (for example, AIX provides
iptrace). While the syntax is different, these tools are used in much the same way.

Packet Analyzers
Even with the tools just described, the real limitation with tcpdump is interpreting
the data. For many uses, tcpdump may be all you need. But if you want to
examine the data within packets, a packet sniffer is not enough. You need a
packet analyzer. A large number of packet analyzers are available at tremendous
prices. But before you start spending money, you should consider ethereal.

ethereal

ethereal is available both as an X Windows program for Unix systems and as a
Microsoft Windows program. It can be used as a capture tool and as an analysis
tool. It uses the same capture engine and file format as tcpdump, so you can use

Packet Analyzers 125

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

the same filter syntax when capturing traffic, and you can use ethereal to analyze
tcpdump files. Actually, ethereal supports two types of filters, capture filters based
on tcpdump and display filters used to control what you are looking at. Display fil-
ters use a different syntax and are described later in this section.

Using ethereal

Usually ethereal will be managed entirely from a windowing environment. While it
can be run with command-line options, I’ve never encountered a use for these.
(There is also a text-based version, tethereal.) When you run ethereal, you are pre-
sented with a window with three initially empty panes. The initial screen is sim-
ilar to Figure 5-1 except the panes are empty. (These figures are for the Windows
implementation of ethereal, but these windows are almost identical to the Unix
version.) If you have a file you want to analyze, you can select File ➝ Open. You
can either load a tcpdump file created with the -w option or a file previously saved
from ethereal.

To capture data, select Capture ➝ Start. You will be presented with a Capture Pref-
erences screen like the one shown in Figure 5-2. If you have multiple interfaces,
you can select which one you want to use with the first field. The Count: field is

Figure 5-1. ethereal

126 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

used to limit the number of packets you will collect. You can enter a capture filter,
using tcpdump syntax, in the Filter: field. If you want your data automatically
saved to a file, enter that in the File: field. The fifth field allows you to limit the
number of bytes you collect from the packet. This can be useful if you are inter-
ested only in header information and want to keep your files small. The first of the
four buttons allows you to switch between promiscuous and nonpromiscuous
mode. With the latter, you’ll collect only traffic sent to or from your machine rather
than everything your machine sees. Select the second button if you want to see
traffic as it is captured. The third button selects automatic scrolling. Finally, the last
button controls name resolution. Name resolution really slows ethereal down.
Don’t enable name resolution if you are going to display packets in real time!
Once you have everything set, click on OK to begin capturing data.

While you are capturing traffic, ethereal will display a Capture window that will
give you counts for the packets captured in real time. This window is shown in
Figure 5-3. If you didn’t say how many frames you wanted to capture on the last
screen, you can use the Stop button to end capture.

Once you have finished capturing data, you’ll want to go back to the main screen
shown in Figure 5-1. The top pane displays a list of the captured packets. The
lower panes display information for the packet selected in the top pane. The
packet to be dissected is selected in the top pane by clicking on it. The second
pane then displays a protocol tree for the packet, while the bottom pane displays

Figure 5-2. ethereal Capture Preferences

Packet Analyzers 127

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

the raw data in hex and ASCII. The layout of ethereal is shown in Figure 5-1.
You’ll probably want to scroll through the top pane until you find the traffic of
interest. Once you have selected a packet, you can resize the windows as needed.
Alternately, you can select Display ➝ Show Packet in New Window to open a sep-
arate window, allowing you to open several packets at once.

The protocol tree basically displays the structure of the packet by analyzing the
data and determining the header type and decoding accordingly. Fields can be
expanded or collapsed by clicking on the plus or minus next to the field, respec-
tively. In the figure, the Internet Protocol header has been expanded and the
Type-Of-Service (TOS) field in turn has been expanded to show the various values
of the TOS flags. Notice that the raw data for the field selected in the second pane
is shown in bold in the bottom pane. This works well for most protocols, but if
you are using some unusual protocol, like other programs, ethereal will not know
what to do with it.

ethereal has several other useful features. For example, you can select a TCP
packet from the main pane and then select Tools ➝ Follow TCP Stream. This tool
collects information from all the packets in the TCP session and displays the infor-
mation. Unfortunately, while convenient at times, this feature makes it just a little
too easy to capture passwords or otherwise invade users’ privacy.

The Tools ➝ Summary gives you the details for data you are looking at. An
example is shown in Figure 5-4.

There are a number of additional features that I haven’t gone into here. But what I
described here is more than enough for most simple tasks.

Figure 5-3. ethereal Capture

128 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Display filters

Display filters allow you to selectively display data that has been captured. At the
bottom of the window shown in Figure 5-1, there is a box for creating display fil-
ters. As previously noted, display filters have their own syntax. The ethereal docu-
mentation describes this syntax in great detail. In this case, I have entered http to
limit the displayed traffic to web traffic. I could just as easily enter any number of
other different protocols—ip, udp, icmp, arp, dns, etc.

The real power of ethereal ’s display filters comes when you realize that you don’t
really need to understand the syntax of display filters to start using them. You can
select a field from the center pane and then select Display ➝ Match Selected, and
ethereal will construct and apply the filter for you. Of course, not every field is
useful, but it doesn’t take much practice to see what works and what doesn’t work.

The primary limitation of this approach comes in constructing compound filters. If
you want to capture all the traffic to or from a computer, you won’t be able to
match a single field. But you should be able to discover the syntax for each of
the pieces. Once you know that ip.src==205.153.63.30 matches all IP traffic

Figure 5-4. ethereal Summary

Dark Side of Packet Capture 129

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

with 205.153.63.30 as its source and that ip.dst==205.153.63.30 matches all
IP traffic to 205.153.63.30, it isn’t difficult to come up with the filter you need,
ip.src==205.153.63.30 or ip.dst==205.153.63.30. Display filters are really
very intuitive, so you should have little trouble learning how to use them.

Perhaps more than any other tool described in this book, ethereal is constantly
being changed and improved. While this book was being written, new versions
were appearing at the rate of about once a month. So you should not be sur-
prised if ethereal looks a little different from what is described here. Fortunately,
ethereal is a well-developed program that is very intuitive to use. You should have
little trouble going on from here.

Dark Side of Packet Capture
What you can do, others can do. Pretty much anything you can discover through
packet capture can be discovered by anyone else using packet capture in a sim-
ilar manner. Moreover, some technologies that were once thought to be immune
to packet capture, such as switches, are not as safe as once believed.

Switch Security

Switches are often cited as a way to protect traffic from sniffing. And they really do
provide some degree of protection from casual sniffing. Unfortunately, there are
several ways to defeat the protection that switches provide.

First, many switches will operate as hubs, forwarding traffic out on every port,
whenever their address tables are full. When first initialized, this is the default
behavior until the address table is built. Unfortunately, tools like macof, part of the
dsniff suite of tools, will flood switches with MAC addresses overflowing a switch’s
address table. If your switch is susceptible, all you need to do to circumvent secu-
rity is run the program.

Second, if two machines have the same MAC address, some switches will forward
traffic to both machines. So if you want copies of traffic sent to a particular
machine on your switch, you can change the MAC address on your interface to
match the target devices’ MAC address. This is easily done on many Unix com-
puters with the ifconfig command.

A third approach, sometimes called ARP poisoning, is to send a forged ARP packet
to the source device. This can be done with a tool like arpredirect, also part of
dsniff. The idea is to substitute the packet capture device’s MAC address for the
destination’s MAC address. Traffic will be sent to a packet capture device, which
can then forward the traffic to its destination. Of course, the forged ARP packets
can be sent to any number of devices on the switch.

130 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The result, with any of these three techniques, is that traffic will be copied to a
device that can capture it. Not all switches are susceptible to all of these attacks.
Some switches provide various types of port security including static ARP assign-
ments. You can also use tools like arpwatch to watch for suspicious activities on
your network. (arpwatch is described in Chapter 6.) If sniffing is a concern, you
may want to investigate what options you have with your switches.

While these techniques could be used to routinely capture traffic as part of normal
management, the techniques previously suggested are preferable. Flooding the
address table can significantly degrade network performance. Duplicating a MAC
address will allow you to watch traffic only to a single host. ARP poisoning is a lot
of work when monitoring more than one host and can introduce traffic delays.
Consequently, these aren’t really techniques that you’ll want to use if you have a
choice.

Protecting Yourself

Because of the potential for abuse, you should be very circumspect about who has
access to packet capture tools. If you are operating in a Unix-only environment,
you may have some success in restricting access to capture programs. packet cap-
ture programs should always be configured as privileged commands. If you want
to allow access to a group of users, the recommended approach is to create an
administrative group, restrict execution of packet capture programs to that group,
and give group membership only to a small number of trusted individuals. This
amounts to setting the SUID bit for the program, but limiting execution to the
owner and any group members.

With some versions of Unix, you might even consider recompiling the kernel so
the packet capture software can’t be run on machines where it isn’t needed. For
example, with FreeBSD, it is very straightforward to disable the Berkeley packet
filter in the kernel. (With older versions of FreeBSD, you needed to explicitly
enable it.) Another possibility is to use interfaces that don’t support promiscuous
mode. Unfortunately, these can be hard to find.

There is also software that can be used to check to see if your interface is in pro-
miscuous mode. You can do this manually with the ifconfig command. Look for
PROMISC in the flags for the interface. For example, here is the output for one
interface in promiscuous mode:

bsd2# ifconfig ep0
ep0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
 inet 172.16.2.236 netmask 0xffffff00 broadcast 172.16.2.255
 inet6 fe80::260:97ff:fe06:2222%ep0 prefixlen 64 scopeid 0x2
 ether 00:60:97:06:22:22
 media: 10baseT/UTP
 supported media: 10baseT/UTP

Microsoft Windows 131

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Of course, you’ll want to check every interface.

Alternately, you could use a program like cpm, check promiscuous mode from
CERT/CC. lsof, described in Chapter 11, can be used to look for large open files
that might be packet sniffer output. But if you have Microsoft Windows com-
puters on your network or allow user-controlled computers on your network, this
approach isn’t enough.

While it may appear that packet capture is a purely passive activity that is unde-
tectable, this is often not the case. There are several techniques and tools that can
be used to indicate packet capture or to test remote interfaces to see if they are in
promiscuous mode. One of the simplest techniques is to turn your packet capture
software on, ping an unused IP address, and watch for DNS queries trying to
resolve that IP address. An unused address should be ignored. If someone is trying
to resolve the address, it is likely they have captured a packet.

Another possibility is the tool antisniff from L0pht Heavy Industries. This is a com-
mercial tool, but a version is available for noncommercial uses. There are subtle
changes in the behavior of an interface when placed in promiscuous mode. This
tool is designed to look for those changes. It can probe the systems on a network,
examine their responses, and usually determine which devices have an interface in
promiscuous mode.

Another approach is to restructure your network for greater security. To the extent
you can limit access to traffic, you can reduce the packet capture. Use of virtual
LANs can help, but no approach is really foolproof. Ultimately, strong encryption
is your best bet. This won’t stop sniffing, but it will protect your data. Finally, it is
always helpful to have clearly defined policies. Make sure your users know that
unauthorized packet capture is not acceptable.

Microsoft Windows
In general, it is inadvisable to leave packet capture programs installed on Win-
dows systems unless you are quite comfortable with the physical security you pro-
vide for those machines. Certainly, packet capture programs should never be
installed on publicly accessible computers using consumer versions of Windows.

The programs WinDump95 and WinDump are ports of tcpdump to Windows 95/98
and Windows NT, respectively. Each requires the installation of the appropriate
drivers. They are run in DOS windows and have the same basic syntax as tcpdump.
As tcpdump has already been described, there is little to add here.

ethereal is also available for Windows and, on the whole, works quite well. The
one area in which the port doesn’t seem to work is in sending output directly to a

132 Chapter 5: Packet Capture

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

printer. However, printing to files works nicely so you can save any output you
want and then print it.

One of the more notable capture programs available for Windows platforms is
netmon (Network Monitor), a basic version of which is included with Windows NT
Server. The netmon program was originally included with Windows NT 3.5 as a
means of collecting data to send to Microsoft’s technical support. As such, it was
not widely advertised. Figure 5-5 shows the packet display window.

The basic version supplied with Windows NT Server is quite limited in scope. It
restricts capture to traffic to or from the server and severely limits the services it
provides. The full version is included as part of the Systems Management Server
(SMS), part of the BackOffice suite, and is an extremely powerful program. Of
concern with any capture and analysis program is what protocols can be effec-
tively decoded. As might be expected, netmon is extremely capable when dealing
with Microsoft protocols but offers only basic decoding of Novell protocols. (For
Novell protocols, consider Novell’s LANalyzer.)

One particularly nice feature of netmon is the ability to set up collection agents on
any Windows NT workstation and have them collect data remotely. The collected
data resides with the agent until needed, thus minimizing traffic over the network.

Figure 5-5. netmon for Windows

Microsoft Windows 133

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The program is, by default, not installed. The program can be added as a service
under network configuration in the setup window. It is included under Administra-
tive Tools (Common). The program, once started, is very intuitive and has a strong
help system.

134
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 6

6
Device Discovery
and Mapping

The earlier chapters in this book focused on collecting information on the smaller
parts of a network, such as the configuration of an individual computer or the
path between a pair of computers. Starting with this chapter, we will broaden our
approach and look at tools more suited to collecting information on IP networks
as a whole. The next three closely related chapters deal with managing and trou-
bleshooting devices distributed throughout a network. This chapter focuses on
device discovery and mapping. Additional techniques and tools for this purpose
are presented in Chapter 7, once Simple Network Management Protocol (SNMP)
has been introduced. Chapter 8 focuses on the collection of information on traffic
patterns and device utilization throughout the network.

This chapter begins with a brief discussion of the relationship between network
management and troubleshooting. This is followed by a discussion of ways to map
out the IP addresses that are being used on your network and ways to find which
IP addresses correspond to which hosts. This is followed by a description of ways
to discover more information on these hosts based on the network services they
support and other forensic information. The chapter briefly discusses scripting
tools, then describes the network mapping and monitoring tool, tkined. The
chapter concludes with a brief description of related tools for use with Microsoft
Windows platforms.

Troubleshooting Versus Management
Some of the tools in the next few chapters may seem only marginally related to
troubleshooting. This is not a totally unfair judgment. Of course, troubleshooting is
an unpredictable business, and any tools that can provide information may be
useful in some circumstances. Often you will want to use tools that were designed
with another purpose in mind.

Troubleshooting Versus Management 135

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

But these tools were not included just on the off chance they might be useful.
Many of the tools described here, while typically used for management, are just as
useful for troubleshooting. In a very real sense, troubleshooting and management
are just different sides of the same coin. Ideally, management deals with problems
before they happen, while troubleshooting deals with problems after the fact. With
this in mind, it is worth reviewing management software with an eye on how it
can be used as troubleshooting software.

Characteristics of Management Software

Everyone seems to have a different idea of exactly what management software
should do. Ideally, network management software will provide the following:

Discovery and mapping
Discovery includes both the automatic detection of all devices on a network
and the collection of basic information about each device, such as the type of
each device, its MAC address and IP address, the type of software being used,
and, possibly, the services it provides. Mapping is the creation of a graphical
representation of the network showing individual interconnections as well as
overall topology.

Event monitoring
Once a picture of the network has been created, each device may be moni-
tored to ensure continuous operation. This can be done passively, by waiting
for the device to send an update or alert, or by actively polling the device.

Remote configuration
You should be able to connect to each device and then examine and change
its configuration. It should also be possible to collectively track configuration
information, such as which IP addresses are in use.

Metering and performance management
Information on resource utilization should be collected. Ideally, this informa-
tion should be available in a usable form for purposes such as trend analysis
and capacity planning.

Software management
Being able to install and configure software remotely is rapidly becoming a
necessity in larger organizations. Being able to track licensing can be essential
to avoid legal problems. Version management is also important.

Security and accounting
Depending on the sensitivity of data, the organization’s business model, and
access and billing policies, it may be necessary to control or track who is
using what on the network.

136 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

It doesn’t take much imagination to see how most of these functions relate to trou-
bleshooting. This chapter focuses on discovery and mapping. Chapter 7 will dis-
cuss event monitoring and the remote configuration of hardware and software.
Metering and performance management are discussed in Chapter 8. Security is dis-
cussed throughout the next three chapters as appropriate.

Discovery and Mapping Tools

A wide range of tools is available. At the low end are point tools—tools designed
to deal with specific tasks or closely related tasks. Several of the tools we will
examine, such as arpwatch and nmap, fall in this category. Such tools tend to be
well focused and do their job well. Typically, they are very easy to learn to use
and are usually free or quite inexpensive.

Also found at the low end are toolkits and scripting languages for creating your
own applications. Unlike most prebuilt tools, these can be extremely difficult to
both learn and use, but they often give you the greatest degree of control. The
quality of the final tool will ultimately depend on how much effort and skill you
put into its creation. The initial outlay may be modest, but the development time
can be extremely costly. Nonetheless, some people swear by this approach. The
idea is that time is spent once to develop a tool that saves time each time it is
used. We will look very briefly at the scripting language Tcl and its extensions.
The primary goal here will be to describe the issues and provide information on
how to get started.

At the middle of the range are integrated packages. This type of software
addresses more than one aspect of network management. They typically include
network discovery, mapping, and monitoring programs but may include other
functionality as well. Typically they are straightforward to use but don’t perform
well with very large, diverse networks.

Finally, at the high end are frameworks. Roughly, these are packages that can be
easily extended. Since you can extend functionality by adding modules, frame-
works are better suited for larger, diverse networks. But be warned, dividing lines
among these last categories are not finely drawn.

Unfortunately, at the time of this writing, there aren’t many freely available pack-
ages at these higher levels. The leading contenders are really works in progress.
tkined is described in this chapter and the next because it seemed, at the time this
was written, to be further along and fairly stable. But there are at least two other
projects making rapid progress in this area that are worth considering. The work
of Open Network Management Systems (http://www.opennms.org) is truly out-
standing and making terrific progress. The other is the GxSNMP SNMP Manager

Device Discovery 137

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

(http://www.gxsnmp.org), a part of the GNOME project. Both are open source
(http://opensource.org) projects, and both appear to have a committed base of sup-
porters and are likely to be successful. At the time this was written, both had
begun to release viable tools, particularly the Open Network Management Sys-
tems folks. (Linux users may want to also consider Cheops.)

Selecting a Product

It may seem strange that a book devoted to noncommercial software would recom-
mend buying software, but network management is one area in which you should
at least consider the possibility. Commercial products are not without problems,
but noncommercial mapping and management tools are relatively scarce.
Depending on the size of the network you are dealing with, you may have little
choice but to consider commercial products at this time.

The key factors are the size of your network, the size of your budget, and the cost
of a nonfunctioning network. With point tools, you will be forced to put the
pieces together. Certainly, this is something you can do with a small network. If
you are responsible for a single LAN or small number of LANs and if you can tol-
erate being down for a few hours at a time, then you can probably survive with
the noncommercial tools described here. But if you are responsible for a larger
network or one that is rapidly changing, then you should consider commercial
tools. While these may be quite expensive, they may be essential for a large net-
work. And if you are really dealing with a large number of machines, the cost per
machine may not be that high.

Even if you feel compelled to buy commercial management software, you should
read the rest of this chapter. Several of the point tools described here can be used
in conjunction with commercial tools. Some of these tools, because they are
designed for a single function, will perform better than commercial tools that
attempt to do everything. In a few instances, noncommercial tools address issues
not addressed by commercial tools.

Device Discovery
The first step in managing a network is discovering which devices are on the net-
work. There are some fairly obvious reasons why this is important. You will need
to track address usage to manage services such as DNS. You may need this infor-
mation to verify licensing information. From a security perspective, you will want
to know if there are any devices on your network that shouldn’t be there. And one
particularly compelling reason for a complete picture of your network is IP
address management.

138 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

IP Address Management

Management of IP addresses is often cited as the most common problem faced in
the management of an IP network. There are two goals in IP management—
keeping track of the addresses in use so you know what is available and keeping
track of the devices associated with each assigned IP address.

Several developments over the last few years have helped to lessen the problems
of IP management. First, DHCP servers, systems that automatically allocate and
track IP addresses, help when dynamic allocation is appropriate. But there are a
number of reasons why a system may require a static IP address. Any resource or
server—time server, name server, and so on—should be given a static address.
Network devices like switches and routers require static addresses. Some sites
require reverse DNS lookup before allowing access. The easiest way to provide
this is with a static IP address and with an appropriate DNS entry.* Even when
such issues don’t apply, the cost and complexity of DHCP services may prevent
their use. And even if you use DHCP, there is nothing to prevent a user from
incorrectly assigning a static IP address in the middle of the block of addresses
you have reserved for DNS assignment.

Another development that has helped is automatic testing of newly assigned
addresses. While earlier implementations of TCP/IP stacks sometimes neglected to
test whether an IP address was being used, most systems, when booted, now first
check to see if an IP address is in use before using it. The test, known as gratu-
itous ARP, sends out an ARP request for the IP address about to be used. If
anyone replies, the address must already be in use. Of course, this test works only
when the other machine is turned on. You may set up a machine with everything
appearing to work correctly, only to get a call later in the day. Once such a
problem has been detected, you will need to track it down.

While these and similar developments have gone a long way toward lessening the
problems of IP management and duplicate IP addresses, IP management remains a
headache on many networks. Ideally, you will keep careful records as IP
addresses are assigned, but mistakes are unavoidable. Thus, an automated
approach is often desirable.

The simplest way to collect MAC/IP address pairs is to ping the address and then
examine your ARP table. The ping is necessary since most ARP tables are flushed
frequently. At one time, it was possible to ping a broadcast address and get a
number of replies at once. Most hosts are now configured to ignore ICMP requests
sent to broadcast addresses. (See the discussion of Smurf Attacks in Chapter 3.)

* Strictly speaking, static addresses are not mandatory in every case. Support for dynamic DNS, or DDNS,
has been available for several years. With DDNS, DNS entries can be mapped to dynamically assigned
IP addresses. Unfortunately, many sites still do not use it.

Device Discovery 139

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You will need to repeat ping scans very frequently if you want to get a picture
over time. It is a simple matter to create a script that automates the process of
pinging a range of IP addresses, particularly if you use a tool like fping. You’ll
need the output from the arp command if you want the MAC addresses. And you
certainly will want to do some cleanup with sort or sed.

Fortunately, there is a class of tools that simplifies this process—IP scanner or ping
scanner. These are usually very simple tools that send ICMP ECHO_REQUEST
packets in a systematic manner to each IP address in a range of IP addresses and
then record any replies. (These tools are not limited to using just ECHO_REQUEST
packets.)

nmap

The program nmap is a multifunction tool that supports IP scanning. It also pro-
vides port scanning and stack fingerprinting. (Stack fingerprinting is described later
in this chapter.) nmap is an extremely feature-rich program with lots of versatility.
For many of its uses, root privileges are required, although some functions work
without root privileges.

nmap certainly could have been described in Chapter 2, when port scanners were
introduced. But if all you want is a port scan for a single machine, using nmap is
overkill.* Nonetheless, if you only want as few programs as possible and you need
some of the other functionality that nmap provides, then you can probably get by
with just nmap.

To use nmap as a port scanner, the only information you need is the IP address or
hostname of the target:

bsd1# nmap sol1

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Interesting ports on sol1.lander.edu (172.16.2.233):
Port State Protocol Service
21 open tcp ftp
23 open tcp telnet
25 open tcp smtp
37 open tcp time
111 open tcp sunrpc
515 open tcp printer
540 open tcp uucp
6000 open tcp X11

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

* There are also reasons, as will become evident, why you might not want nmap too freely available on
your network.

140 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The results should be self-explanatory. You can specify several IP addresses or
you can span a segment by specifying an address with a mask if you want to scan
multiple devices or addresses. The next example will scan all the addresses on the
same subnet as the lnx1 using a class C network mask:

bsd1# nmap lnx1/24

While nmap skips addresses that don’t respond, this can still produce a lot of output.

Fortunately, nmap will recognize a variety of address range options. Consider:

bsd1# nmap 172.16.2.230-235,240

This will scan seven IP addresses—those from 172.16.2.230 through 172.16.2.235
inclusive and 172.16.2.240. You can use 172.16.2.* to scan everything on the
subnet. Be warned, however, that the shell you use may require you to use an
escape sequence for the * to work correctly. For example, with C-shell, you could
use 172.16.2.*. You should also note that the network masks do not have to
align with a class boundary. For example, /29 would scan eight hosts by working
through the possibilities generated by changing the three low-order bits of the
address.

If you want to just do an IP scan to discover which addresses are currently in use,
you can use the -sP option. This will do a ping-like probe for each address on the
subnet:

bsd1# nmap -sP lnx1/24

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Host (172.16.2.0) seems to be a subnet broadcast address (returned 3 extra
pings). Skipping host.
Host cisco.lander.edu (172.16.2.1) appears to be up.
Host (172.16.2.12) appears to be up.
Host (172.16.2.230) appears to be up.
Host bsd2.lander.edu. (172.16.2.232) appears to be up.
Host sol1.lander.edu (172.16.2.233) appears to be up.
Host lnx1.lander.edu (172.16.2.234) appears to be up.
Host (172.16.2.255) seems to be a subnet broadcast address (returned 3 extra
pings). Skipping host.
Nmap run completed -- 256 IP addresses (6 hosts up) scanned in 1 second

You should be warned that this particular scan uses both an ordinary ICMP packet
and a TCP ACK packet to port 80 (HTTP). This second packet will get past routers
that block ICMP packets. If an RST packet is received, the host is up and the
address is in use. Unfortunately, some intrusion detection software that will ignore
the ICMP packet will flag the TCP ACK as an attack. If you want to use only ICMP
packets, use the -PI option. For example, the previous scan could have been done
using only ICMP packets with the command:

bsd1# nmap -sP -PI lnx1/24

Device Discovery 141

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

In this case, since the devices are on the same subnet and there is no intervening
firewall, the same machines are found.

Unfortunately, nmap stretches the limits of what might be considered appropriate
at times. In particular, nmap provides a number of options for stealth scanning.
There are two general reasons for using stealth scanning. One is to probe a
machine without being detected. This can be extremely difficult if the machine is
actively watching for such activity.

The other reason is to slip packets past firewalls. Because firewall configuration
can be quite complex and because it can be very difficult to predict traffic pat-
terns, many firewalls are configured in ways that allow or block broad, generic
classes of traffic. This minimizes the number of rules that need to be applied and
improves the throughput of the firewall. But blocking broad classes of traffic also
means that it may be possible to sneak packets past such firewalls by having them
look like legitimate traffic. For example, external TCP connections may be blocked
by discarding the external SYN packets used to set up a connection. If a SYN/ACK
packet is sent from the outside, most firewalls will assume the packet is a response
for a connection that was initiated by an internal machine. Consequently, the fire-
wall will pass the packet. With these firewalls, it is possible to construct such a
packet and slip it through the firewall to see how an internal host responds.

nmap has several types of scans that are designed to do stealth probes. These
include -sF, -sX, and -sN. (You can also use the -f option to break stealth probes
into lots of tiny fragments.) But while these stealth packets may slip past firewalls,
they should all be detected by any good intrusion detection software running on
the target. You may want to try these on your network just to see how well your
intrusion detection system works or to investigate how your firewall responds. But
if you are using these to do clandestine scans, you should be prepared to be
caught and to face the consequences.

Another questionable feature of nmap is the ability to do decoy scans. This option
allows you to specify additional forged IP source addresses. In addition to the
probe packets that are sent with the correct source address, other similar packets
are sent with forged source addresses. The idea is to make it more difficult to pin-
point the real source of the attack since only a few of the packets will have the
correct source address. Not only does this create unnecessary network traffic, but
it can create problems for hosts whose addresses are spoofed. If the probed site
automatically blocks traffic from probing sites, it will cut off the spoofed sites as
well as the site where the probe originated. Clearly, this is not what you really
want to do. This calls into question any policy that simply blocks sites without fur-
ther investigation. Such systems are also extremely vulnerable to denial-of-service
attacks. Personally, I can see no legitimate use for this feature and would be
happy to see it dropped from nmap.

142 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

But while there are some questionable options, they are easily outnumbered by
useful options. If you want your output in greater detail, you might try the -v or
the -d option. If information is streaming past you on the screen too fast for you to
read, you can log the output to a file in human-readable or machine-parseable
form. Use, respectively, the -o or -m options along with a filename. The -h option
will give a brief summary of nmap’s many options. You may want to print this to
use while you learn nmap.

If you are using nmap to do port scans, you can use the -p option to specify a
range of ports. Alternatively, the -F, or fast scan option, can be used to limit scans
to ports in your services file. You’ll certainly want to consider using one or the
other of these. Scanning every possible port on a network can take a lot of time
and generate a lot of traffic. A number of other options are described in nmap’s
documentation.

Despite the few negative things I have mentioned, nmap really is an excellent
tool. You will definitely want to add it to your collection.

arpwatch

Active scans, such as those we have just seen with nmap, have both advantages
and disadvantages. They allow scans of remote networks and give a good snap-
shot of the current state of the network. The major disadvantage is that these scans
will identify only machines that are operational when you do the scan. If a device
is on for only short periods at unpredictable times, it can be virtually impossible to
catch by scanning. Tools that run constantly, like arpwatch, provide a better pic-
ture of activity over time.

For recording IP addresses and their corresponding MAC addresses, arpwatch is
my personal favorite. It is a very simple tool that does this very well. Basically,
arpwatch places an interface in promiscuous mode and watches for ARP packets.
It then records IP/MAC address pairs. The primary limitation to arpwatch comes
from being restricted to local traffic. It is not a tool that can be used across net-
works. If you need to watch several networks, you will need to start arpwatch on
each of those networks.

The information can be recorded in one of four ways. Data may be written directly
to the system console, to the system’s syslog file, or to a user-specified text file, or
it can be sent as an email to root. (syslog is described in Chapter 11.) Output to the
console or the syslog file is basically the same. An entry will look something like:

Mar 30 15:16:29 bsd1 arpwatch: new station 172.16.2.234 0:60:97:92:4a:6

Of course, with the syslog file, these messages will be interspersed with many
other messages, but you can easily use grep to extract them. For example, to write

Device Discovery 143

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

all the messages from arpwatch that were recorded in /var/log/messages into the
file /temp/arp.data, you can use the command:

bsd1# grep arpwatch /var/log/messages > /tmp/arp.list

If your syslog file goes by a different name or you want output in a different
output file, you will need to adjust names accordingly. This approach will include
other messages from arpwatch as well, but you can easily delete those that are not
of interest.

Email looks like:

From: arpwatch (Arpwatch)
To: root
Subject: new station (lnx1.lander.edu)

 hostname: lnx1.lander.edu
 ip address: 172.16.2.234
 ethernet address: 0:60:97:92:4a:6
 ethernet vendor: 3Com
 timestamp: Thursday, March 30, 2000 15:16:29 -0500

Email output has the advantage of doing name resolution for the IP address, and it
gives the vendor for the MAC address. The vendor name is resolved using infor-
mation in the file ethercodes.dat. This file, as supplied with arpwatch, is not partic-
ularly complete or up-to-date, but you can always go to the IEEE site as described
in Chapter 2 if you need this data for a particular interface. If you do this, don’t
forget to update the ethercodes.dat file on your system.

arpwatch can also record raw data to a file. This is typically the file arp.dat, but
you can specify a different file with the -f option. The default location for arp.dat
seems to vary with systems. The manpage for arpwatch specifies /usr/operator/
arpwatch as the default home directory, but this may not be true for some ports. If
you use an alternative file, be sure to give its full pathname. Whether you use arp.
dat or another file, the file must exist before you start arpwatch. The format is
pretty sparse:

0:60:97:92:4a:6 172.16.2.234 954447389 lnx1

Expect a lot of entries the first few days after you start arpwatch as it learns your
network. This can be a little annoying at first, but once most machines are
recorded, you shouldn’t see much traffic—only new or changed addresses. These
should be very predictable. Of particular concern are frequently changing
addresses. The most likely explanation for a single address change is that a com-
puter has been replaced by another. Although less likely, a new adapter would
also explain the change.

Frequent or unexplained changes deserve greater scrutiny. It could simply mean
someone is using two computers. Perhaps a user is unplugging his desktop

144 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

machine in order to plug in his portable. But it can also mean that someone is
trying to hide something they are doing. On many systems, both the MAC and IP
addresses can be easily changed. A cracker will often change these addresses to
cover her tracks. Or a cracker could be using ARP poisoning to redirect traffic.

Here is an example of an email report for an address change:

From: arpwatch (Arpwatch)
To: root
Subject: changed ethernet address

 hostname: <unknown>
 ip address: 205.153.63.55
 ethernet address: 0:e0:29:21:88:83
 ethernet vendor: <unknown>
old ethernet address: 0:e0:29:21:89:d9
 old ethernet vendor: <unknown>
 timestamp: Monday, April 3, 2000 4:57:16 -0400
 previous timestamp: Monday, April 3, 2000 4:52:33 -0400
 delta: 4 minutes

Notice that the subject line will alert you to the nature of the change. This change
was followed shortly by another change as shown here:

From: arpwatch (Arpwatch)
To: root
Subject: flip flop

 hostname: <unknown>
 ip address: 205.153.63.55
 ethernet address: 0:e0:29:21:89:d9
 ethernet vendor: <unknown>
old ethernet address: 0:e0:29:21:88:83
 old ethernet vendor: <unknown>
 timestamp: Monday, April 3, 2000 9:40:47 -0400
 previous timestamp: Monday, April 3, 2000 9:24:07 -0400
 delta: 16 minutes

This is basically the same sort of information, but arpwatch labels the first as a
changed address and subsequent changes as flip-flops.

If you are running DHCP and find arpwatch’s output particularly annoying, you
may want to avoid arpwatch. But if you are having problems with DHCP,
arpwatch might, in limited circumstances, be useful.

Device Identification
At times it can be helpful to identify the operating system used on a remote
machine. For example, you may need to identify systems vulnerable to some
recently disclosed security hole. Or if you are faced with a duplicate IP address,
identifying the type of machine is usually the best first step in locating it. Using

Device Identification 145

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

arp to discover the type of hardware may be all that you will need to do. If you
have identified the interface as a Cisco interface and you have only a half dozen
Cisco devices on your network, you should be able to easily find the one with the
duplicate address. If, on the other hand, you can identify it only as one of several
hundred PCs, you’ll want more information. Knowing the operating system on the
computer may narrow your search.

The obvious, simple strategies are usually the best place to start, since these are
less likely to offend anyone. Ideally, you will have collected additional informa-
tion as you set systems up, so all you’ll need to do is consult your database, DHCP
records, or DNS files or, perhaps, give the user a call. But if your records are
incomplete, you’ll need to probe the device.

Begin by using telnet to connect to the device to check for useful banners. Often
login banners are changed or suppressed, so don’t restrict yourself to just the
Telnet port. Here is an example of trying the SMTP port (25):

bsd1# telnet 172.16.2.233 25
Trying 172.16.2.233...
Connected to 172.16.2.233.
Escape character is '^]'.
220 sol1. ESMTP Sendmail 8.9.1b+Sun/8.9.1; Fri, 2 Jun 2000 09:02:45 -0400 (EDT)
quit
221 sol1. closing connection
Connection closed by foreign host.

This simple test tells us the host is sol1, and it is using a Sun port of sendmail. The
most likely ports to try are FTP (21), Telnet (23), SNMP (25), HTTP (80), POP2
(109), POP3 (110), and NTTP (119), but, depending on the systems, others may be
informative as well.

Often, you don’t even have to get the syntax correct to get useful information.
Here is an example of an ill-formed GET request (the REQUEST_URI is omitted)
sent using telnet:

bsd1# telnet 172.16.2.230 80
Trying 172.16.2.230...
Connected to 172.16.2.230.
Escape character is '^]'.
GET HTTP/1.0
HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/4.0
...

Additional output has been omitted, but the system has been identified in the last
line shown. (See Chapter 10 for other examples.)

Port scanning is one of the tools described in Chapter 2 that can also be used
here. To do the tests described in Chapter 2, you need change only the host
address. The interpretation of the results is the same. The only thing you need

146 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

worry about is the possibility that some of the services you are testing may be
blocked by a firewall. Of course, the presence or absence of a service may pro-
vide insight into the role of the device. An obvious example is an open HTTP port.
If it is open, you are looking at a web server (or, possibly, a machine misconfig-
ured as a web server) and can probably get more information by using your web
browser on the site.

When these obvious tests fail, as they often will, you’ll need a more sophisticated
approach such as stack fingerprinting.

Stack Fingerprinting

The standards that describe TCP/IP stack implementations are incomplete in the
sense that they sometimes do not address how the stack should respond in some
degenerate or pathological situations. For example, there may be no predefined
way for dealing with a packet with contradictory flags or with a meaningless
sequence of inconsistent packets. Since these situations should not normally arise,
implementers are free to respond in whatever manner they see fit. Different imple-
mentations respond in different ways.

There are also optional features that stack implementers may or may not choose to
implement. The presence or absence of such support is another useful clue to the
identity of a system. Even when behavior is well defined, some TCP/IP stacks do
not fully conform to standards. Usually, the differences are minor inconsistencies
that have no real impact on performance or interoperability. For example, if an
isolated FIN packet is sent to an open port, the system should ignore the packet.
Microsoft Windows, among others, will send a RESET instead of ignoring the
packet. This doesn’t create any problems for either of the devices involved, but it
can be used to distinguish systems.

Collectively, these different behaviors can be exploited to identify which oper-
ating system (OS) is being used on a remote system. A carefully chosen set of
packets is sent and the responses are examined. It is necessary only to compare
the responses seen against a set of known behaviors to deduce the remote system.
This technique is known as stack fingerprinting or OS fingerprinting.

A fingerprinting program will be successful only if it has a set of anomalies or, to
mix metaphors, a signature that distinguishes the device of interest from other
devices. Since devices change and new devices are introduced, it is not
uncommon for a stack fingerprinting program not to know the signature for some
devices. Ideally, the program will have a separate signature file or database so that
it can be easily updated. From the user’s perspective, it may also be helpful to
have more than one program since each may be able to identify devices unknown
to the other. Consequently, both queso and the stack fingerprinting option for
nmap are described here.

Device Identification 147

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

It should also be noted that passive fingerprinting is possible. With passive finger-
printing, the idea is to examine the initialization packets that come into your
machine. Of course, this will only identify systems that try to contact you, but this
can be a help in some circumstances, particularly with respect to security. In some
ways, this approach is more reliable. When a remote machine sends the first
packet, it must fill in all the fields in the headers. When you probe a remote
machine, many of the fields in the headers in the reply packet will have been
copied directly from your probe packets. If you are interested in this approach,
you might want to look at siphon or p0f.

When using stack fingerprinting, whether active or passive, you must
realize that you are fingerprinting the machine you are actually com-
municating with. Normally, that is exactly what you want. But if
there is a proxy server between your machine and the target, you
will fingerprint the proxy server, not the intended target.

queso

A number of programs do stack fingerprinting. One simple program that works
well is queso. Its sole function is stack fingerprinting. The syntax is straightforward:

bsd1# queso 172.16.2.230
172.16.2.230:80 * Windoze 95/98/NT

By default, queso probes the HTTP port (80). If that port is not in use, queso will
tell you to try another port:

bsd1# queso 172.16.2.1
172.16.2.1:80 *- Not Listen, try another port

You can do this with the -p option. In this example, the Telnet port is being
checked:

bsd1# queso -p23 172.16.2.1
172.16.2.1:23 * Cisco 11.2(10a), HP/3000 DTC, BayStack Switch

This is not a definitive answer, but it has certainly narrowed down the field.

You can call queso with multiple addresses by simply putting all the addresses on
the command line. You can also use subnet masks, as shown in the following:

bsd1# queso -p23 172.16.2.232/29
172.16.2.233:23 * Solaris 2.x
172.16.2.234:23 * Linux 2.1.xx
172.16.2.235:23 *- Not Listen, try another port
172.16.2.236:23 * Dead Host, Firewalled Port or Unassigned IP
172.16.2.237:23 * Dead Host, Firewalled Port or Unassigned IP
172.16.2.238:23 * Dead Host, Firewalled Port or Unassigned IP

148 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Notice from this example that mask selection doesn’t have to fall on a class boundary.

queso maintains a separate configuration file. If it doesn’t recognize a system, it
will prompt you to update this file:

bsd1# queso -p23 205.153.60.1
205.153.60.1:23 *- Unknown OS, pleez update /usr/local/etc/queso.conf

You can update this file with the -w option. queso can identify a hundred or so
different systems. It is not a particularly fast program but gives acceptable results.
It can take several seconds to scan each machine on the same subnet. If you
invoke queso without any argument, it will provide a brief summary of its options.

nmap Revisited

You can also do stack fingerprinting with nmap by using the -O option:

bsd1# nmap -O 172.16.2.230

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
WARNING: OS didn't match until the 2 try
Interesting ports on (172.16.2.230):
Port State Protocol Service
21 open tcp ftp
80 open tcp http
135 open tcp loc-srv
139 open tcp netbios-ssn
443 open tcp https
1032 open tcp iad3
6666 open tcp irc-serv
7007 open tcp afs3-bos

TCP Sequence Prediction: Class=trivial time dependency
 Difficulty=0 (Trivial joke)
Remote operating system guess: Windows NT4 / Win95 / Win98

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

You can suppress most of the port information by specifying a particular port. For
example:

bsd1# nmap -p80 -O 172.16.2.230

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Interesting ports on (172.16.2.230):
Port State Protocol Service
80 open tcp http

TCP Sequence Prediction: Class=trivial time dependency
 Difficulty=0 (Trivial joke)
Remote operating system guess: Windows NT4 / Win95 / Win98

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

Scripts 149

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You will probably want to do this if you are scanning a range of machines to save
time. However, if you don’t restrict nmap to a single port, you are more likely to
get a useful answer.

Results can be vague at times. This is what nmap returned on one device:

...
Remote OS guesses: Cisco Catalyst 1900 switch or Netopia 655-U/POTS ISDN Router,
 Datavoice TxPORT PRISM 3000 T1 CSU/DSU 6.22/2.06, MultiTech CommPlete Controlle
r, IBM MVS TCP/IP stack V. 3.2, APC MasterSwitch Network Power Controller, AXIS
or Meridian Data Network CD-ROM server, Meridian Data Network CD-ROM Server (V4.
20 Nov 26 1997), WorldGroup BBS (MajorBBS) w/TCP/IP

The correct answer is none of the above. A system that may not be recognized by
nmap may be recognized by queso or vice versa.

Scripts
Since most networks have evolved over time, they are frequently odd collections
of equipment for which no single tool may be ideal. And even when the same tool
can be used, differences in equipment may necessitate minor differences in how
the tool is used. Since many of the tasks may need to be done on a regular basis,
it should come as no surprise that scripting languages are a popular way to auto-
mate these tasks. Getting started can be labor intensive, but if your current
approach is already labor intensive, it can be justified.

You will want to use a scripting language with extensions that support the collec-
tion of network data. To give an idea of this approach, Tcl and its extensions are
briefly described here. Even if you don’t really want to write your own tools, you
may want to consider one of the tools based on Tcl that are freely available, most
notably tkined.

Tcl was selected because it is provides a natural introduction to tkined. Of course,
there are other scripting languages that you may want to consider. Perl is an
obvious choice. Several packages and extensions are available for system and net-
work administration. For example, you may want to look at spidermap. This is a set
of Perl scripts that do network scans. For SNMP-based management, you’ll prob-
ably want to get Simon Leinen’s SNMP extensions SNMP_Session.pm and BER.pm.
(Other tools you might also look at include mon and nocol.)

Tcl/Tk and scotty

Tool Command Language, or Tcl (pronounced “tickle”), is a scripting language
that is well suited for network administration. Tcl was developed in the late 1980s
by John Ousterhout, then a faculty member at UC Berkeley. Tcl was designed to

150 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

be a generic, embeddable, and extensible interpreted language. Users frequently
cite studies showing Tcl requires one-tenth the development time required by C/
C++. Its major weakness is that it is not well suited for computationally intensive
tasks, but that shouldn’t pose much of a problem for network management. You
can also write applets or tclets (pronounced “tik-lets”) in Tcl.

Tcl can be invoked interactively using the shell tclsh (pronounced “ticklish”) or
with scripts. You may need to include a version number as part of the name. Here
is an example:

bsd2# tclsh8.2
%

This really is a shell. You can change directories, print the working directory, copy
files, remove files, and so forth, using the usual Unix commands. You can use the
exit command to leave the program.

One thing that makes Tcl interesting is the number and variety of extensions that
are available. Tk is a set of extensions that provides the ability to create GUIs in an
X Window environment. These extensions make it easy to develop graphical inter-
faces for tools. Tk can be invoked interactively using the windowing shell wish.
Both Tcl and Tk are implemented as C library packages that can be included in
programs if you prefer.

scotty, primarily the work of Jürgen Schönwälder, adds network management
extensions to Tcl/Tk. The tnm portion of scotty adds network administration sup-
port. The tkined portion of scotty, described in the next section, is a graphical net-
work administration program. What tnm adds is a number of network
management commands. These include support for a number of protocols
including ICMP, UDP, DNS, HTTP, Sun’s RPC, NTP, and, most significantly, SNMP.
In addition, there are several sets of commands that simplify writing network
applications. The netdb command gives access to local network databases such as
/etc/hosts, the syslog command supports sending messages to the system logging
facilities, and the job command simplifies scheduling tasks. A few examples should
give an idea of how these commands could be used.

You can invoke the scotty interpreter directly as shown here. In this example, the
netdb command is used to list the /etc/host table on a computer:

bsd4# scotty
% netdb hosts
{localhost.lander.edu 1.0.0.127} {bsd4.lander.edu 239.63.153.205} {bsd4.lander.e
du. 239.63.153.205} {bsd1.lander.edu 231.60.153.205} {sol1.lander.edu 233.60.153
.205} {lnx1.lander.edu 234.60.153.205}
% exit

Mapping or Diagramming 151

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The results are returned with each entry reduced to the canonical name and IP
address in brackets. Here is the host table for the same system:

bsd4# cat /etc/hosts
127.0.0.1 localhost.lander.edu localhost
205.153.63.239 bsd4.lander.edu bsd4
205.153.63.239 bsd4.lander.edu.
205.153.60.231 bsd1.lander.edu bsd1
205.153.60.233 sol1.lander.edu sol1
205.153.60.234 lnx1.lander.edu lnx1

Note that there is not a separate entry for the alias bsd4.

Here are a few examples of other commands. In the first example, the name of the
protocol with a value of 1 is looked up in /etc/protocols using the netdb command:

% netdb protocols name 1
icmp

In the second example, a reverse DNS lookup is done for the host at 205.153.63.30:

% dns name 205.153.63.30
sloan.lander.edu

Finally, an ICMP ECHO_REQUEST is sent to www.cisco.com:

% icmp echo www.cisco.com
{www.cisco.com 321}

The response took 321 ms. Other commands, such as snmp, require multiple steps
to first establish a session and then access information. (Examples are given in
Chapter 7.) If you are interested in using these tools in this manner, you will first
want to learn Tcl. You can then consult the manpages for these extensions. A
number of books and articles describe Tcl, some of them listed in Appendix B.
The source is freely available for all these tools.

Mapping or Diagramming
At this point, you should have a good idea of how to find out what is on your net-
work. The next step is to put together a picture of how everything interconnects.
This is usually referred to as mapping but may go by other names such as net-
work drawing or diagramming. This can be absolutely essential if you are dealing
with topology-related problems.

A wide spectrum of approaches may be taken. At one extreme, you could simply
use the collected data and some standard drawing utility to create your map.
Clearly, some graphics software is better suited than others for this purpose. For
example, special icons for different types of equipment are particularly nice. But
almost any software should be usable to a degree. I have even put together pass-
able diagrams using the drawing features in Microsoft Excel.

152 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Manual diagramming is usually practical only for a single segment or a very small
network. But there might be times when this will be desirable for larger net-
works—for example, you may be preparing graphics for a formal presentation.
This, however, should be an obvious exception, not a routine activity.

In the middle of the spectrum are programs that will both discover and draw the
network. When using tools with automatic discovery, you will almost certainly
want to clean up the graphics. It is extremely hard to lay out a graph in an aes-
thetically pleasing manner when doing it manually. You can forget about a com-
puter doing a good job automatically.

Another closely related possibility is to use scripting tools to update the files used
by a graphing utility. The graphic utility can then display the new or updated map
with little or no additional interaction. While this is a wonderful learning opportu-
nity, it really isn’t a practical solution for most people with real time constraints.

At the other extreme, mapping tools are usually part of more comprehensive man-
agement packages. Automatic discovery is the norm for these. Once the map is cre-
ated, additional management functions—including basic monitoring to ensure that
devices and connections still work and to collect performance data—are performed.

Ideally, these programs will provide a full graphic display that is automatically
generated, includes every device on the network, provides details of the nature
and state of the devices, updates the map in real time, and requires a minimum of
user input. Some tools are well along the path to this goal.

There are problems with automatic discovery. First, you’ll want to be careful when
you specify the networks to be analyzed and keep an eye on things whenever you
change this. It is not that uncommon to make an error and find that you are map-
ping devices well beyond your network. And, as explained later in this chapter,
not everyone will be happy about this.

Also, many mapping programs do a poor job of recognizing topology. For
example, in a virtual LAN, a single switch may be logically part of two different
networks. Apart from proprietary tools, don’t expect many map programs to recog-
nize and handle these devices correctly. Each logical device may be drawn as a
separate device. If you are relying solely on ICMP ECHO_REQUEST packets,
unmanaged hubs and switches will not be recognized at all, while managed hubs
and switches will be drawn as just another device on the network without any
indication of the role they play in the network topology.

Even with automatic discovery, network mapping and management tools may pre-
suppose that you know the basic structure of your network. At a minimum, you
must know the address range for your network. It seems very unlikely that a legiti-
mate administrator would not have this information. If for some bizarre reason you

Mapping or Diagramming 153

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

don’t have this information, you might begin by looking at the routing tables and
NAT tables in your router, DNS files, DHCP configurations, or Internic registration
information. You might also use traceroute to identify intermediate segments and
routers.

tkined

An excellent example of a noncommercial, open source mapping program is
tkined. This is a network editor that can be used as a standalone tool or as a
framework for an extensible network management system. At its simplest, it can
be used to construct a network diagram. Figure 6-1 is an example of a simple net-
work map that has been constructed using tkined tools. (Actually, as will be
explained, this map was “discovered” rather than drawn, but don’t worry about
this distinction for now.)

Drawing maps with tkined

Manually drawing a map like this is fairly straightforward, although somewhat
tedious for all but the smallest networks. You begin by starting tkined under an X
Window session. (This discussion assumes you are familiar with using an X
Window application.) You should see the menu bar across the top window just
under the titlebar, a toolbar to the left, and a large, initially blank work area called
the canvas.

Figure 6-1. A network map constructed with tkined

154 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

To create a map, follow these steps:

1. Add the devices to the canvas. Begin by clicking* on the machine icon on the
toolbar on the left. This is the icon with the question mark in the middle. With
this tool selected, each time you click over the canvas, a copy of this icon will
be inserted on the canvas at the cursor.

You can change the appearance of each of these icons to reflect the type of
device it represents. First, click on Select on the toolbar (not Select on the
menu). Next, select the icon or icons you want to change. You select single
icons by clicking on them. Multiple icons can be selected by Shift-clicking on
each in turn. As you select devices, small boxes are displayed at the corners of
the icon. Once you have selected the icons of interest, go to the icon pull-
down menu and select the icon you want from the appropriate submenu.
Notice that the icon on the toolbar changes. (You could make this change
before inserting devices if you wish and insert the selected icon that way.)

2. Label each device. Right-click on each device in turn. From the pop-up menu,
select Edit All Attributes…, enter the appropriate name and IP address for each
device, and then select Set Values. Once you have done this, right-click on the
icon again and select Label with Attribute…, select either name or address
depending on your preference, and then click on Accept.

3. Add the networks. This is done with the tool below the machine icon (the thick
bar). Select this tool by clicking on it. Click where you want the bar to begin on
the canvas. Move the mouse to where you want the network icon to end and
click a second time. You can label networks in the same way you label nodes.

4. Connect devices to the networks. You can join devices to a network using the
next tool on the toolbar, the thin line with little boxes at either end. Select this
tool, click on the device you want to join to the network, and then click on
the appropriate network icon. As you move the mouse, a line from the icon to
the mouse pointer will be shown. When you click on the network, the line
should be attached to both the device and the network. If it disappears, your
aim was off. Try again.

At this point, you will probably want to rearrange your drawing to tidy things
up. You can move icons by dragging them with the middle mouse button. (If
your mouse doesn’t have three buttons, try holding down both the left and
right buttons simultaneously.)

5. Group devices and networks. This allows you to collapse a subnet into a
single icon. You can open whichever subnets you need to work with at the
moment and leave the rest closed. For large networks, this is essential. Other-
wise, the map becomes too cluttered to use effectively.

* Unless otherwise noted, clicking means clicking with the left mouse button.

Mapping or Diagramming 155

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

To combine devices, use the Select tool to select the devices and the net-
work. Then select Structure ➝ Group. You can use this same menu to select
Ungroup, Expand, and Collapse for your groups. You can edit the group label
as desired in the previously discussed manner.

Autodiscovery with tkined

For a small network, manually drawing a diagram doesn’t take very long. But for
large networks, this can be a very tedious process. Fortunately, tkined provides
tools for the automatic discovery of nodes and the automatic layout of maps.

You begin with Tools ➝ IP-Discover. What this does is add the IP Discover menu
to the menu bar. The first two items on this menu are Discover IP Network and
Discover Route. These tools will attempt to discover either the devices on a net-
work or the routers along a path to a remote machine. When one of these is
selected, a pop-up box queries you for the network number or remote device of
interest. Unfortunately, tkined seems to support only class-based discovery, so you
must specify a class B or a class C address (although you can specify a portion of
a class B network by giving a class C style subnet address, e.g., 172.16.1.0). It also
tends to be somewhat unpredictable or quirky when trying to discover multiple
networks. If you are using subnets on a class B address, what seems to work best
is to run separate discovery sessions and then cut and paste the results together.
This is a little bit of a nuisance, but it is not too bad. This was what was actually
done to create Figure 6-1.

Figure 6-2 shows the output generated in discovering a route across the network
and one of the subnets for the network shown in Figure 6-1. This window is auto-
matically created by tkined and shows its progress during the discovery process.
Note that it is sending out a flood of ICMP ECHO_REQUEST packets in addition to
the traceroute-style discovery packets, the ICMP network mask queries, and the
SNMP queries shown here.

If you do end up piecing together a network map, other previously discussed
tools, such as traceroute, can be very helpful. You might also want to look at your
routing tables with netstat.

There are a couple of problems in using tkined. Foremost is the problem of get-
ting everything installed correctly. You will need to install Tcl, then Tk, and then
scotty. scotty can be very particular about which version of Tcl and Tk are installed.
You will also need to make sure everything is in the default location or that the
environmental variables are correctly set. Fortunately, packages are available for
some systems, such as Linux, that take care of most of these details automatically.
Also, tkined will not warn you if you exit without saving any changes you have
made.

156 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Politics and Security
You should have a legitimate reason and the authority to use the tools described
here. Some of these tools directly probe other computers on the network. Even
legitimate uses of these tools can create surprises for users and may, in some
instances, result in considerable ill will and mistrust. For example, doing security
probes to discover weaknesses in your network may be a perfectly reasonable
thing to do, provided that is your responsibility. But you don’t want these scans to
come as a surprise to your users. I, for one, strongly resent unexpected probing of
my computer regardless of the reason. Often, a well-meaning individual has
scanned a network only to find himself with a lot of explaining to do. The list of
people who have made this mistake includes several big names in the security
community.

With the rise of personal firewalls and monitoring tools, more and more users are
monitoring what is happening on their local networks and at their computers. Not
all of these users really understand the results returned by these tools, so you
should be prepared to deal with misunderstandings. Reactions can be extreme,
even from people who should know enough to put things in context.

The first time I used CiscoWorks for Windows, the program scanned the network
with, among others, CMIP packets. This, of course, is a perfectly natural thing to
do. Unfortunately, another machine on the network had been configured in a

Figure 6-2. Route and network discovery with tkined

Politics and Security 157

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

manner that, when it saw the packet, it began blocking all subsequent packets
from the management station. It then began logging all subsequent traffic from the
management station as attacks. This included the System Messaged Blocks (SMB)
that are a normal part of the network background noise created by computers run-
ning Microsoft Windows. A couple of days later I received a very concerned email
regarding a 10-page log of attacks originating from the management station. To
make matters worse, the clock on the “attacked” computer was off a couple of
hours. The times recorded for the alleged attacks didn’t fall in the block of time I
had run CiscoWorks. It did include, however, blocks of times I knew the manage-
ment station was offline. Before it was all sorted out, my overactive imagination
had turned it into a malicious attack with a goal of casting blame on the manage-
ment station when it was nothing more than a misunderstanding.*

It is best to deal with such potential problems in advance by clearly stating what
you will be doing and why. If you can’t justify it, then perhaps you should recon-
sider exactly why you are doing it. A number of sites automatically block net-
works or hosts they receive scans from. And within some organizations,
unauthorized scanning may be grounds for dismissal. You should consider devel-
oping a formal policy clearly stating when and by whom scanning may and may
not be done.

This leads to an important point: you really should have a thorough under-
standing of how scanning tools work before you use them. For example, some
SNMP tools have you enter a list of the various SNMP passwords (community
strings) you use on your network. In the automatic discovery mode, it will probe
for SNMP devices by trying each of these passwords in turn on each machine on
the network. This is intended to save the network manager from having to enter
this information for each individual device. However, it is a simple matter for
scanned machines to capture these passwords. Tools like dsniff are designed spe-
cifically for that purpose. I strongly recommend watching the behavior of what-
ever scanning tools you use with a tool like tcpdump or ethereal to see what it is
actually doing.

Unfortunately, some of the developers of these tools can’t seem to decide whether
they are writing for responsible users or crackers. As previously noted, some tools
include questionable features, such as support stealth scans or forged IP addresses.
In general, I have described only those features for which I can see a legitimate
use. However, sometimes there is no clear dividing line. For example, forged IP
addresses can be useful in testing firewalls. When I have described such features, I
assume that you will be able to distinguish between appropriate and inappro-
priate uses.

* This problem could have been lessened if both had been running NTP. NTP is discussed in Chapter 11.

158 Chapter 6: Device Discovery and Mapping

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Microsoft Windows
Traditionally, commercial tools for network management have typically been
developed for Unix platforms rather than Windows. Those available under Win-
dows tended not to scale well. In the last few years this has been changing rap-
idly, and many of the standard commercial tools are now available for Windows
platforms.

A number of packages support IP scanning under Windows. These include free-
ware, shareware, and commercial packages. Generally, these products are less
sophisticated than similar Unix tools. For example, stealth scanning is usually
lacking under Windows. (Personally, I’m not sure this is something to complain
about.)

Nonetheless, there are a number of very impressive noncommercial tools for Win-
dows. In fact, considering the quality and functionality of some of these free pack-
ages, it is surprising that the commercial packages are so successful. But free
software, particularly in network management, seems to have a way of becoming
commercial software over time—once it has matured and developed a following.

Cyberkit

One particularly impressive tool is Luc Neijens’ cyberkit. The package works well,
has a good help system, and implements a wide range of functions in one
package. In addition to IP scanning, the program includes, among others, ping,
traceroute, finger, whois, nslookup, and NTP synchronization.

With cyberkit, you can scan a range of addresses within an address space or you
can read a set of addresses from a file. Figure 6-3 shows an example of such a
scan.

Here you can see how to specify a range of IP addresses. The button to the right
of the Address Range field will assist you in specifying an address range or
entering a filename. If you want to use a file, you need enter only the path and
name of a text file containing a set of addresses, one address per line. Notice that
you can use the same tab to resolve addresses or do port scans of each address.
There are a number of other tools you might consider. getif, which makes heavy
use of SNMP, is described in Chapter 7. You might also want to look at Sam
Spade. (Sam Spade is particularly helpful when dealing with spamming and other
email related problems.)

Microsoft Windows 159

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Other Tools for Windows

The good news is that Tcl, Tk, scotty, and tkined are all available for Windows
platforms. Tcl and Tk seem to be pretty stable ports. tkined is usually described as
an early alpha port but seems to work fairly well. You’ll want a three-button
mouse. The interface is almost identical to the Unix version, and I have moved
files between Windows and Unix platforms without problems. For example, you
could create maps on one and move them to another for monitoring. Moreover,
the tnm extensions have been used as the basis for additional tools available for
Windows.

If you use Microsoft Exchange Server, a topology diagramming tool called emap
can be downloaded from Microsoft. It will read an Exchange directory and auto-
matically generate a Visio diagram for your site topology. Of course, you’ll need
Visio to view the results.

Finally, if you are using NetBIOS, you might want to look at the nbtstat utility.
This command displays protocol statistics and current TCP connections using Net-
BIOS over TCP/IP (NBT). You can use this command to poll remote NetBIOS
name tables among other things. The basic syntax is returned if you call the pro-
gram with no options.

Figure 6-3. IP scan with cyberkit

160
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7

7
Device Monitoring
with SNMP

This chapter is about monitoring devices with Simple Network Management Pro-
tocol (SNMP). It describes how SNMP can be used to retrieve information from
remote systems, to monitor systems, and to alert you to problems. While other net-
work management protocols exist, SNMP is currently the most commonly used.
While SNMP has other uses, our primary focus will be on monitoring systems to
ensure that they are functioning properly and to collect information when they
aren’t. The material in this chapter is expanded upon in Chapter 8.

This chapter begins with a brief review of SNMP. This description is somewhat
informal but should serve to convey enough of the basic ideas to get you started if
you are unfamiliar with SNMP. If you are already familiar with the basic concepts
and vocabulary, you can safely skip over this section. Next I describe NET
SNMP—a wonderful tool for learning about SNMP that can be used for many
simple tasks. Network monitoring using tkined is next, followed by a few pointers
to tools for Microsoft Windows.

Overview of SNMP
SNMP is a management protocol allowing a management program to communi-
cate, configure, or control remote devices that have embedded SNMP agents. The
basic idea behind SNMP is to have a program or agent running on the remote
system that you can communicate with over the network. This agent then can
monitor systems and collect information. Software on a management station sends
messages to the remote agent requesting information or directing it to perform
some specific task. While communication is usually initiated by the management
station, under certain conditions the agent may send an unsolicited message or
trap back to the management station.

Overview of SNMP 161

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

SNMP provides a framework for network management. While SNMP is not the
only management protocol or, arguably, even the best management protocol,
SNMP is almost universal. It has a small footprint, can be implemented fairly
quickly, is extensible, is well documented, and is an open standard. It resides at
the application level of the TCP/IP protocol suite. On the other hand, SNMP, par-
ticularly Version 1, is not a secure protocol; it is poorly suited for real-time applica-
tions, and it can return an overwhelming amount of information.

SNMP is an evolving protocol with a confusing collection of abbreviations desig-
nating the various versions. Only the major versions are mentioned here. Under-
standing the major distinctions among versions can be important, because there
are a few things you can’t do with earlier versions and because of differences in
security provided by the different versions. However, the original version,
SNMPv1, is still widely used and will be the primary focus of this chapter. Gener-
ally, the later versions are backward compatible, so differences in versions
shouldn’t cause too many operational problems.

The second version has several competing variants. SNMPv2 Classic has been
superseded by community-based SNMPv2 or SNMPv2c. Two more secure super-
sets of SNMPv2c are SNMPv2u and SNMPv2*. SNMPv2c is the most common of the
second versions and is what is usually meant when you see a reference to
SNMPv2. SNMPv2 has not been widely adopted, but its use is growing. SNMP-NG
or SNMPv3 attempts to resolve the differences between SNMPv2u and SNMPv2*. It
is too soon to predict how successful SNMPv3 will be, but it also appears to be
growing in popularity.

Although there are usually legitimate reasons for the choice of terms, the nomen-
clature used to describe SNMP can be confusing. For example, parameters that are
monitored are frequently referred to as objects, although variables might have
been a better choice and is sometimes used. Basically, objects can be thought of
as data structures.

Sometimes, the specialized nomenclature doesn’t seem to be worth the effort. For
example, SNMP uses community strings to control access. In order to gain access
to a device, you must give the community string. If this sounds a lot like a pass-
word to you, you are not alone. The primary difference is the way community
strings are used. The same community strings are often shared by a group or com-
munity of devices, something frowned upon with passwords. Their purpose is
more to logically group devices than to provide security.

162 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An SNMP manager, software on a central management platform, communicates
with an SNMP agent, software located in the managed device, through SNMP mes-
sages. With SNMPv1 there are five types of messages. GET_REQUEST, GET_NEXT_
REQUEST, and SET_REQUEST are sent by the manager to the agent to request an
action. In the first two cases, the agent is asked to supply information, such as the
value of an object. The SET_REQUEST message asks the agent to change the value
of an object.

The remaining messages, GET_RESPONSE and TRAP, originate at the agent. The
agent replies to the first three messages with the GET_RESPONSE message. In
each case, the exchange is initiated by the manager. With the TRAP message, the
action is initiated by the agent. Like a hardware interrupt on a computer, the TRAP
message is the agent’s way of getting the attention of the manager. Traps play an
essential role in network management in that they alert you to problems needing
attention. Knowing that a device is down is, of course, the first step to correcting
the problem. And it always helps to be able to tell a disgruntled user that you are
aware of the problem and are working on it. Traps are as close as SNMP gets to
real-time processing. Unfortunately, for many network problems (such as a
crashed system) traps may not be sent. Even when traps are sent, they could be
discarded by a busy router. UDP is the transport protocol, so there is no error
detection for lost packets. Figure 7-1 summarizes the direction messages take
when traveling between the manager and agent.

For a management station to send a packet, it must know the IP address of the
agent, the appropriate community string or password used by the agent, and the
name of the identifier for the variable or object referenced. Unfortunately, SNMPv1
is very relaxed about community strings. These are sent in clear text and can easily
be captured by a packet sniffer. One of the motivating factors for SNMPv2 was to
provide greater security. Be warned, however, SNMPv2c uses plain text commu-
nity strings.

Figure 7-1. SNMP messages

GET_REQUEST

GET_RESPONSE

GET_NEXT_REQUEST

SET_NEXT

TRAP

Management Station
(Manager)

Managed Device
(Agent)

Overview of SNMP 163

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Most systems, by default, use public for the read-only community
string and private for the read/write community string. When you
set up SNMP access on a device, you will be given the opportunity
to change these. If you don’t want your system to be reconfigurable
by anyone on the Internet, you should change these. When commu-
nicating with devices, use read-only community strings whenever
possible and read/write community strings only when necessary. Use
filters to block all SNMP traffic into or out of your network. Most
agents will also allow you to restrict which devices you can send
and receive SNMP messages to and from. Do this! For simplicity and
clarity, the examples in this chapter have been edited to use public
and private. These are not the community strings I actually use.

Another advantage to SNMPv2 is that two additional messages have been added.
GET_BULK_REQUEST will request multiple pieces of data with a single query,
whereas GET_REQUEST generates a separate request for each piece of data. This
can considerably improve performance. The other new message, INFORM_
REQUEST, allows one manager to send unsolicited information to another.

Collectively, the objects are variables defined in the Management Information Base
(MIB). Unfortunately, MIB is an overused term that means slightly different things
in different contexts. There are some formal rules for dealing with MIBs—MIB for-
mats are defined by Structure of Management Information (SMI), the syntax rules
for MIB entries are described in Abstract Syntax Notation One (ASN.1), and how
the syntax is encoded is given by Basic Encoding Rules (BER). Unless you are plan-
ning to delve into the implementation of SNMP or decode hex dumps, you can
postpone learning SMI, ASN.1, and BER. And because of the complexity of these
rules, I advise against looking at hex dumps. Fortunately, programs like ethereal do
a good job of decoding these packets, so I won’t discuss these rules in this book.

The actual objects that are manipulated are identified by a unique, authoritative
object identifier (OID). Each OID is actually a sequence of integers separated by
decimal points, sometimes called dotted notation. For example, the OID for a
system’s description is 1.3.6.1.2.1.1.1. This OID arises from the standardized orga-
nization of all such objects, part of which is shown in Figure 7-2. The actual
objects are the leaves of the tree. To eliminate any possibility of ambiguity among
objects, they are named by giving their complete path from the root of the tree to
the leaf.

As you can see from the figure, nodes are given both names and numbers. Thus,
the OID can also be given by specifying the names of each node or object
descriptor. For example, iso.org.dod.internet.mgmt.mib-2.system.sysDescr is the
object descriptor that corresponds to the object identifier 1.3.6.1.2.1.1.1. The more

164 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

concise numerical names are used within the agents and within messages. The
nonnumeric names are used at the management station for the convenience of
users. Objects are coded directly into the agents and manipulated by object
descriptors. While management stations can mechanically handle object descrip-
tors, they must be explicitly given the mappings between object descriptors and
object identifiers if you want to call objects by name. This is one role of the MIB
files that ship with devices and load onto the management station. These files also
tell the management station which identifiers are valid.

As you might guess from Figure 7-2, this is not a randomly created tree. Through
the standardization process, a number of identifiers have been specified. In partic-
ular, the mib-2 subtree has a number of subtrees or groups of interest. The system
group, 1.3.6.1.2.1.1, has nodes used to describe the system such as sysDescr(1),
sysObjectID(2), sysUpTime(3), and so on. These should be pretty self-explanatory.
Although not shown in the figure, the ip(4) group has a number of objects such as
ipForwarding(1), which indicates whether IP packets will be forwarded, and
ipDefaultTTL(2), which gives the default TTL when it isn’t specified by the trans-
port layer. The ip group also has three tables including the ipRouteTable(20).
While this information can be gleaned from RFC 1213, which defines the MIB, sev-
eral books that present this material in a more accessible form are listed in
Appendix B. Fortunately, there are tools that can be used to investigate MIBs
directly.

Figure 7-2. Partial OID structure

ccitt(0) joint-iso-ccitt(2)
iso(1)

org(3)

dod(6)

internet(1)

directory(1) mgmt(2) experimental(3) private(4)

enterprise(1)

cisco(9) apc(318) ucdavis(2021) oreilly(2035)

enterprise(1)

system(1) interfaces(2) at(3) rmon(16)

sysObjectID(2)sysDescr(1) sysUpTimes(3) ifNumber(1) ifTable(2)

ifEntry(1)

ifDesc(2)ifIndex(1) ifType(3)

SNMP-Based Management Tools 165

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

In addition to standard entries, companies may register private or enterprise MIBs.
These have extensions specific to their equipment. Typically, these MIBs must be
added to those on the management station if they are not already there. They are
usually shipped with the device or can be downloaded over the Internet. Each
company registers for a node under the enterprises node (1.3.6.1.4.1). These
extensions are under their respective registered nodes.

If you are new to SNMP, this probably seems pretty abstract. Appendix B also lists
and discusses a number of sources that describe the theory and architecture of
SNMP in greater detail. But you should know enough at this point to get started.
The best way to come to terms with SNMP and the structure of managed objects is
by experimentation, and that requires tools. I will try to clarify some of these con-
cepts as we examine SNMP management tools.

SNMP-Based Management Tools
There are several extremely powerful and useful noncommercial SNMP tools.
Tools from the NET SNMP project, scotty, and tkined are described here.

NET SNMP (UCD SNMP)

The University of California at Davis implementation of SNMP (UCD SNMP) has its
origin in a similar project at Carnegie Mellon University under Steve Waldbusser
(CMU SNMP). In the mid-nineties, the CMU project languished. During this period,
the UCD project was born. The UCD project has greatly expanded the original
CMU work and is flourishing, thanks to the work of Wes Hardaker. The CMU
project reemerged for a while with a somewhat different focus and has seen a lot
of support in the Linux community. Both are excellent. While only UCD SNMP will
be described here, the basics of each are so similar that you should have no
problem using CMU SNMP once you are familiar with UCD SNMP. Very recently,
UCD SNMP has been renamed NET SNMP to reflect some organizational changes.

NET SNMP is actually a set of tools, a SNMP library, and an extensible agent. The
source code is available and runs on a number of systems. Binaries are also avail-
able for some systems, including Microsoft Windows. NET SNMP supports
SNMPv1, SNMPv2c, and SNMPv3.

Admittedly, the NET SNMP toolset is not ideal for the routine management of a
large network. But it is ideal for learning about SNMP, is not an unreasonable
toolset for occasional tasks on smaller networks, and can be particularly useful in
debugging SNMP problems, in part because it separates SNMP functions into indi-
vidual utilities. The agent software is a logical choice for systems using Linux or
FreeBSD and is extensible. Most, but not all, of the utilities will be described.

166 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

snmpget

In the last section, it was stated that there are three messages that can be sent by a
management station: GET_REQUEST, GET_NEXT_REQUEST, and SET_REQUEST.
NET SNMP provides utilities to send each of these messages—snmpget,
snmpgetnext, and snmpset, respectively. In order to retrieve the value of an object,
it is necessary to specify the name or IP address of the remote host, a community
string for the host, and the OID of the object. For example:

bsd4# snmpget 172.16.1.5 public .1.3.6.1.2.1.1.1.0
system.sysDescr.0 = "APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod: AP9
605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)"

There are a couple of points to make about the OID. First, notice the 0 at the end.
This is an offset into the data. It is a common error to omit this. If you are looking
at a table, you would use the actual offset into the table instead of a 0. For
example, the description of the third interface in the interface table would have
the OID ifDescr.3.

Second, the leading dot is important. NET SNMP will attempt to attach a prefix to
any OIDs not beginning with a dot. By default, the prefix is 1.3.6.1.2.1, but
you can change this by setting the environment variable PREFIX. In this example,
we have specified the OID explicitly. Without the leading dot, snmpget would
have added the prefix to what we had, giving an OID that was too long. On the
other hand, you could just use 1.1.0 without the leading dot and you would get
the same results. Initially, using the prefix can be confusing, but it can save a lot of
typing once you are used to it.

Of course, you can also use names rather than numbers, provided the appropriate
MIB is available. This is shown in the next two examples:

bsd4# snmpget 172.16.1.5 public iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0
system.sysDescr.0 = "APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod: AP9
605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)"
bsd4# snmpget 172.16.1.5 public system.sysDescr.0
system.sysDescr.0 = "APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod: AP9
605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)"

In the first case, the full path was given, and in the second the prefix was used.
(Don’t forget the trailing 0.) Numbers and names can be mixed:

bsd4# snmpget 172.16.1.5 public .1.3.6.internet.2.1.system.1.0
system.sysDescr.0 = "APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod: AP9
605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)"

(Frankly, I can’t see much reason for doing this.)

SNMP-Based Management Tools 167

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Also, if the MIB is known, you can do a random-access lookup for unique node
names:

bsd4# snmpget 172.16.1.5 public upsBasicIdentModel.0
enterprises.apc.products.hardware.ups.upsIdent.upsBasicIdent.upsBasicIdentModel.
0 = "APC Smart-UPS 700 "

In this example, only the final identifier in the OID, upsBasicIdentMode.0, is
given, and the MIB is searched to construct the full OID. This can be particularly
helpful if you want to query several objects with a single snmpget. You can also
use multiple OIDs in the same snmpget command to retrieve the values of several
objects.

Configuration and options

Before we look further at the NET SNMP commands, let’s discuss configuration and
options. For the most part, these tools share the same configuration files and
options. (A few exceptions will be noted when appropriate.) The general configura-
tion file is snmp.conf and is typically in the /usr/local/share/snmp, /usr/local/lib/
snmp, or $HOME/.snmp directory. This search path can be overridden by setting the
SNMPCONFPATH environment variable. Further documentation can be found in the
snmp.conf Unix manpage. This manpage also describes environment variables.

One particular concern in configuring the software is the proper installation of
MIBs. As noted earlier, use of the name form of OIDs works only if the appro-
priate MIB* is loaded. Devices may have more than one MIB associated with them.
In the examples just presented, we have been interacting with an SNMP-controlled
uninterruptible power supply (UPS) manufactured by APC Corp. With this device,
we can use the standard default MIB-II defined in RFC 1213. This standard MIB
defines objects used by most devices. If you have correctly installed the software,
this MIB should be readily available. There are two additional MIBs that may be
installed for this particular device. The first is the IETF MIB, which defines a
generic UPS. This is the UPS-MIB defined by RFC 1628. The third MIB, PowerNet-
MIB, contains APC Corp.’s custom extensions. These last two MIBs came on a dis-
kette with the SNMP adapter for this particular UPS.

To install these MIBs, the files are first copied to the appropriate directory, /usr/
local/share/snmp in this case. (You may also want to rename them so that all your
MIB files have consistent names.) Next, the environment variable MIBS is set so
the MIBs will be loaded. This can be a colon-delimited list of individual MIB
names, but setting MIBS to ALL is usually simpler. On a Windows computer, use
the command:

C:\usr\bin>set MIBS=ALL

* When a MIB is loaded, it becomes part of the MIB. Don’t say I didn’t warn you.

168 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

On a Unix system using the Bash shell, you would use:

export MIBS=ALL

For the C-shell, use:

setenv MIBS ALL

Of course, this may vary depending on the shell you use.

Alternately, you can use the environment variable MIBFILES to specify filenames.
There is also a command-line option with most of these utilities, -m, to load spe-
cific MIBs. If the MIBs are not installed correctly, you will not be able to use
names from the MIB, but you can still access objects by their numerical OIDs.

The NET SNMP commands use the same basic syntax and command-line options.
For example, the earlier discussion on OID usage applies to each command. This
is described in the variables manpage. The manpages for the individual com-
mands are a little sparse. This is because the descriptions of the options have been
collected together on the snmpcmd manpage. Options applicable to a specific
command can be displayed by using the -h option.

Let’s return to snmpget and look at some of the available options. The -O options
control how output is formatted. The default is to print the text form of the OID:

bsd4# snmpget 172.16.1.5 public .1.3.6.1.4.1.318.1.1.1.1.1.1.0
enterprises.apc.products.hardware.ups.upsIdent.upsBasicIdent.upsBasicIdentModel.
0 = "APC Smart-UPS 700 "

-On forces the OID to be printed numerically:

bsd4# snmpget -On 172.16.1.5 public .1.3.6.1.4.1.318.1.1.1.1.1.1.0
.1.3.6.1.4.1.318.1.1.1.1.1.1.0 = "APC Smart-UPS 700 "

Sometimes the value of an object will be a cryptic numerical code. By default, a
description will be printed. For example:

bsd4# snmpget 172.16.1.5 public ip.ipForwarding.0
ip.ipForwarding.0 = not-forwarding(2)

Here, the actual value of the object is 2. This description can be suppressed with
the -Oe option:

bsd4# snmpget -Oe 172.16.1.5 public ip.ipForwarding.0
ip.ipForwarding.0 = 2

This could be useful in eliminating any confusion about the actual stored value,
particularly if you are going to use the value subsequently with a SET command.

Use the -Os, -OS, and -Of commands to control the amount of information
included in the OID. The -Os option displays the final identifier only:

bsd4# snmpget -Os 172.16.1.5 public enterprises.318.1.1.1.1.1.1.0
upsBasicIdentModel.0 = "APC Smart-UPS 700 "

SNMP-Based Management Tools 169

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The -OS option is quite similar to -Os except that the name of the MIB is placed
before the identifier:

sd4# snmpget -OS 172.16.1.5 public enterprises.318.1.1.1.1.1.1.0
PowerNet-MIB::upsBasicIdentModel.0 = "APC Smart-UPS 700 "

-Of forces the display of the full OID:

bsd4# snmpget -Of 172.16.1.5 public enterprises.318.1.1.1.1.1.1.0
.iso.org.dod.internet.private.enterprises.apc.products.hardware.ups.upsIdent.
upsBasicIdent.upsBasicIdentModel.0 = "APC Smart-UPS 700 "

This leaves no question about what you are looking at.

There are a number of additional options. The -V option will return the program’s
version. The version of SNMP used can be set with the -v option, either 1, 2c, or 3.
The -d option can be used to dump all SNMP packets. You can set the number of
retries and timeouts with the -r and -t options. These few options just scratch the
surface. The syntax for many of these options has changed recently, so be sure to
consult the snmpcmd manpage for more options and details for the version you use.

snmpgetnext, snmpwalk, and snmptable

Sometimes you will want to retrieve several related values that are stored together
within the agent. Several commands facilitate this sort of retrieval. The
snmpgetnext command is very similar to the snmpget command. But while
snmpget returns the value of the specified OID, snmpgetnext returns the value of
the next object in the MIB tree:

bsd4# snmpget -Os 172.16.1.5 public sysDescr.0
sysDescr.0 = APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod: AP9605, Mfg
 08/10/96, SN: WA9632270847, Agent Loader v1.0)
bsd4# snmpgetnext -Os 172.16.1.5 public sysDescr.0
sysObjectID.0 = OID: smartUPS700
bsd4# snmpgetnext -Os 172.16.1.5 public sysObjectID.0
sysUpTime.0 = Timeticks: (77951667) 9 days, 0:31:56.67
bsd4# snmpgetnext -Os 172.16.1.5 public sysUpTime.0
sysContact.0 = Sloan

As you can see from this example, snmpgetnext can be used to walk through a
sequence of values. Incidentally, this is one of the few cases in which it is OK to
omit the trailing 0. This command can be particularly helpful if you don’t know
the next identifier.

If you want all or most of the values of adjacent objects, the snmpwalk command
can be used to retrieve a subtree. For example:

bsd4# snmpwalk 172.16.1.5 public system
system.sysDescr.0 = APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod:
AP9605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)
system.sysObjectID.0 = OID: enterprises.apc.products.system.smartUPS.smartUPS700
system.sysUpTime.0 = Timeticks: (78093618) 9 days, 0:55:36.18

170 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

system.sysContact.0 = Sloan
system.sysName.0 = Equipment Rack APC
system.sysLocation.0 = Network Laboratory
system.sysServices.0 = 72

Be prepared to be overwhelmed if you don’t select a small subtree. You probably
wouldn’t want to walk the mib-2 or enterprises subtree:

bsd4# snmpwalk 172.16.2.1 public enterprises | wc
 3320 10962 121987

In this example, the enterprises subtree is 3320 lines long. Nonetheless, even with
large subtrees this can be helpful to get a quick idea of what is out there. For
example, you might pipe output from a subtree you aren’t familiar with to head or
more so you can skim it.

Some objects are stored as tables. It can be painful to work with these tables one
item at a time, and once you have them, they can be almost unreadable.
snmptable is designed to address this need. Here is an example of a small route
table from a Cisco 3620 router:

bsd4# snmptable -Cb -Cw 80 172.16.2.1 public ipRouteTable
SNMP table: ip.ipRouteTable

 Dest IfIndex Metric1 Metric2 Metric3 Metric4 NextHop Type
 0.0.0.0 0 0 -1 -1 -1 205.153.60.2 indirect
 172.16.1.0 2 0 -1 -1 -1 172.16.1.1 direct
 172.16.2.0 3 0 -1 -1 -1 172.16.2.1 direct
 172.16.3.0 4 0 -1 -1 -1 172.16.3.1 direct
 205.153.60.0 1 0 -1 -1 -1 205.153.60.250 direct
 205.153.61.0 0 0 -1 -1 -1 205.153.60.1 indirect
 205.153.62.0 0 0 -1 -1 -1 205.153.60.1 indirect
 205.153.63.0 0 0 -1 -1 -1 205.153.60.1 indirect

SNMP table ip.ipRouteTable, part 2

 Proto Age Mask Metric5 Info
 local 33 0.0.0.0 -1 .ccitt.nullOID
 local 0 255.255.255.0 -1 .ccitt.nullOID
 local 0 255.255.255.0 -1 .ccitt.nullOID
 local 0 255.255.255.0 -1 .ccitt.nullOID
 local 0 255.255.255.0 -1 .ccitt.nullOID
 local 33 255.255.255.0 -1 .ccitt.nullOID
 local 33 255.255.255.0 -1 .ccitt.nullOID
 local 33 255.255.255.0 -1 .ccitt.nullOID

Even with snmptable, it can be a little tricky to get readable output. In this case, I
have used two options to help. -Cb specifies a brief header. -Cw 80 defines a max-
imum column width of 80 characters, resulting in a multipart table. You can also
specify the column delimiter with the -Cf option, and you can suppress headers
altogether with the -CH option. (There are also a snmpbulkget and a
snmpbulkwalk if you are using SNMPv2.)

SNMP-Based Management Tools 171

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

snmpset

The snmpset command is used to change the value of objects by sending SET_
REQUEST messages. The syntax of this command is a little different from previous
commands since you must also specify a value and a type for the value. You will
also need to use a community string that provides read/write access:

bsd4# snmpset 172.16.1.5 private sysContact.0 s "el Zorro"
system.sysContact.0 = el Zorro

In this example, the system contact was set using a quote-delimited string. Legiti-
mate types include integers (i), strings (s), hex strings (x), decimal strings (d), null
objects (n), object ID (o), time ticks (t), and IP addresses (a), among others.

People often think of SNMP as being appropriate only for collecting information,
not as a general configuration tool, since SNMP only allows objects to be retrieved
or set. However, many objects are configuration parameters that control the opera-
tion of the system. Moreover, agents can react to changes made to objects by run-
ning scripts, and so on. With the appropriate agent, virtually any action can be
taken.* For example, you could change entries in an IP routing table, enable or
disable a second interface on a device, or enable or disable IP forwarding. With an
SNMP-controlled UPS, you could shut off power to a device. What you can do,
and will want to do, will depend on both the device and the context. You will
need to study the documentation for the device and the applicable MIBs to know
what is possible on a case-by-case basis.

snmptranslate

In all the preceding examples, I have specified an OID. An obvious question is
how did I know the OID? Available OIDs are determined by the design of the
agent and are described by its MIB. There are several different approaches you
can take to discover the contents of a MIB. The most direct approach is to read the
MIB. This is not a difficult task if you don’t insist on understanding every detail.
You’ll be primarily interested in the object definitions.

Here is an example of the definition of the system contact (sysContact) taken from
MIB-II (RFC 1213):

sysContact OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION

* In an extremely interesting interview of John Romkey by Carl Malamud on this topic, Romkey describes
an SNMP-controlled toaster. The interview was originally on the Internet radio program Geek of the Week
(May 29, 1993). At one time, it was available on audio tape from O’Reilly & Associates (ISBN 1-56592-
997-7). Visit http://town.hall.org/radio/Geek and follow the link to Romkey.

172 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

 "The textual identification of the contact person
 for this managed node, together with information
 on how to contact this person."
 ::= { system 4 }

The object name is in the first line. The next line says the object’s type is a string
and specifies its maximum size. The third line tells us that this can be read or
written. In addition to read-write, an object may be designated read-only or not-
accessible. While some objects may not be implemented in every agent, this object
is required, as shown in the next line. Next comes the description. The last line
tells where the object fits into the MIB tree. This is the fourth node in the system
group.

With an enterprise MIB, there is usually some additional documentation that
explains what is available. With standard MIBs like this one, numerous descrip-
tions in books on SNMP describe each value in detail. These can be very helpful
since they are usually accompanied by tables or diagrams that can be scanned
quickly. See Appendix B for specific suggestions.

NET SNMP provides two tools that can be helpful. We have already discussed
snmpwalk. Another useful tool is snmptranslate. This command is designed to
present a MIB in a human-readable form. snmptranslate can be used in a number
of different ways. First, it can be used to translate between the text and numeric
form of an object. For example:

bsd4# snmptranslate system.sysContact.0
.1.3.6.1.2.1.1.4.0

We can get the numeric form with the -On option as shown in the next two
examples:

bsd4# snmptranslate -On .1.3.6.1.2.1.1.4.0
system.sysContact.0

bsd4# snmptranslate -Ofn system.sysContact.0
.iso.org.dod.internet.mgmt.mib-2.system.sysContact.0

snmptranslate can be a little particular about prefixes. In the previous example,
sysContact.0 would not have been sufficient. You can get around this with the -IR
option. (This is usually the default for most NET SNMP commands.)

bsd4# snmptranslate -IR sysContact.0
.1.3.6.1.2.1.1.4.0

You can also use regular expression matching. For example:

bsd4# snmptranslate -On -Ib 'sys.*ime'
system.sysUpTime

Notice the use of single quotes. (This option can return a few surprises at times as
well.)

SNMP-Based Management Tools 173

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You get extended information by using the -Td option:

bsd4# snmptranslate -Td system.sysContact
.1.3.6.1.2.1.1.4
sysContact OBJECT-TYPE
 -- FROM SNMPv2-MIB, RFC1213-MIB
 -- TEXTUAL CONVENTION DisplayString
 SYNTAX OCTET STRING (0..255)
 DISPLAY-HINT "255a"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "The textual identification of the contact person for this
 managed node, together with information on how to contact
 this person. If no contact information is known, the value
 is the zero-length string."
::= { iso(1) org(3) dod(6) internet(1) mgmt(2) mib-2(1) system(1) 4 }

This is basically what we saw in the MIB but in a little more detail. (By the way,
the lines starting with -- are just comments embedded in the MIB.)

We can use snmptranslate to generate a tree representation for subtrees by using
the -Tp option. For example:

bsd4# snmptranslate -Tp system
+--system(1)
 |
 +-- -R-- String sysDescr(1)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -R-- ObjID sysObjectID(2)
 +-- -R-- TimeTicks sysUpTime(3)
 +-- -RW- String sysContact(4)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -RW- String sysName(5)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -RW- String sysLocation(6)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -R-- Integer sysServices(7)
 +-- -R-- TimeTicks sysORLastChange(8)
 | Textual Convention: TimeStamp
 |
 +--sysORTable(9)
 |
 +--sysOREntry(1)
 |
 +-- ---- Integer sysORIndex(1)
 +-- -R-- ObjID sysORID(2)
 +-- -R-- String sysORDescr(3)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -R-- TimeTicks sysORUpTime(4)
 Textual Convention: TimeStamp

174 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Don’t forget the final argument or you’ll get the entire MIB. There are also options
to print all objects in labeled form (-Tl), numeric form (-To), or symbolic form (-
Tt), but frankly, I’ve never found much use for these. These options simply give
too much data. One last word of warning: if you have trouble using
snmptranslate, the first thing to check is whether your MIBs are correctly loaded.

snmpnetstat

snmpnetstat is an SNMP analog to netstat. Using SNMP, it will provide netstat-like
information from remote systems. Many of the major options are the same as with
netstat. A few examples will show how this tool is used.

The -an option will show the sockets in open mode:

bsd4# snmpnetstat 172.16.2.234 public -an
Active Internet (tcp) Connections (including servers)
Proto Local Address Foreign Address (state)
tcp *.ftp *.* LISTEN
tcp *.telnet *.* LISTEN
tcp *.smtp *.* LISTEN
tcp *.http *.* LISTEN
tcp *.sunrpc *.* LISTEN
tcp *.printer *.* LISTEN
tcp *.659 *.* LISTEN
tcp *.680 *.* LISTEN
tcp *.685 *.* LISTEN
tcp *.690 *.* LISTEN
tcp *.1024 *.* LISTEN
tcp 172.16.2.234.telnet sloan.1135 ESTABLISHED
Active Internet (udp) Connections
Proto Local Address
udp *.sunrpc
udp *.snmp
udp *.who
udp *.657
udp *.668
udp *.678
udp *.683
udp *.688
udp *.1024
udp *.nfsd

Notice that with snmpnetstat, the options are listed at the end of the command.

The -r option gives the route table. Here is a route table from a Cisco 3620 router:

bsd4# snmpnetstat 172.16.2.1 public -rn
Routing tables
Destination Gateway Flags Interface
default 205.153.60.2 UG if0
172.16.1/24 172.16.1.1 U Ethernet0/1
172.16.2/24 172.16.2.1 U Ethernet0/2
172.16.3/24 172.16.3.1 U Ethernet0/3

SNMP-Based Management Tools 175

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

205.153.60 205.153.60.250 U Ethernet0/0
205.153.61 205.153.60.1 UG if0
205.153.62 205.153.60.1 UG if0
205.153.63 205.153.60.1 UG if0

In each of these examples, the -n option is used to suppress name resolution.

Here are the packet counts for the interfaces from the same router:

bsd4# snmpnetstat 172.16.2.1 public -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Queue
Ethernet0/1 1500 172.16.1/24 172.16.1.1 219805 0 103373 0 0
Ethernet0/0 1500 205.153.60 205.153.60.250 406485 0 194035 0 0
Ethernet0/2 1500 172.16.2/24 172.16.2.1 177489 1 231011 0 0
Ethernet0/3 1500 172.16.3/24 172.16.3.1 18175 0 97954 0 0
Null0 1500 0 0 0 0 0

As with netstat, the -i option is used.

As a final example, the -s option is used with the -P option to get general statistics
with output restricted to a single protocol, in this case IP:

bsd4# snmpnetstat 172.16.2.1 public -s -P ip
ip:
 533220 total datagrams received
 0 datagrams with header errors
 0 datagrams with an invalid destination address
 231583 datagrams forwarded
 0 datagrams with unknown protocol
 0 datagrams discarded
 301288 datagrams delivered
 9924 output datagram requests
 67 output datagrams discarded
 4 datagrams with no route
 0 fragments received
 0 datagrams reassembled
 0 reassembly failures
 0 datagrams fragmented
 0 fragmentation failures
 0 fragments created

This should all seem very familiar to netstat users.

snmpstatus

The snmpstatus command is a quick way to get a few pieces of basic information
from an agent:

bsd4# snmpstatus 172.16.2.1 public
[172.16.2.1]=>[Cisco Internetwork Operating System Software
IOS (tm) 3600 Software (C3620-IO3-M), Version 12.0(7)T, RELEASE SOFTWARE (fc2)
Copyright (c) 1986-1999 by Cisco Systems, Inc.
Compiled Wed 08-Dec-99 10:08 by phanguye] Up: 11 days, 1:31:43.66
Interfaces: 5, Recv/Trans packets: 1113346/629074 | IP: 533415/9933

176 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

It gets the IP address, text description, time since the system was booted, total
received and transmitted packets, and total received and transmitted IP packets.

Agents and traps

In addition to management software, NET SNMP also includes the agent snmpd.
As with any agent, snmpd responds to SNMP messages, providing basic manage-
ment for the host on which it is run. snmpd uses the snmpd.conf configuration file
(not to be confused with snmp.conf, the configuration file for the utilities). snmpd
functionality will depend, in part, on what is enabled by its configuration file. The
distribution comes with the MIB UCD-SNMP-MIB.txt and the file EXAMPLE.conf, an
example configuration file that is fairly well documented. The manpage for snmpd.
conf provides additional information.

At a minimum, you’ll want to edit the security entries. The com2sec entry is used
to set the community names for a host or network. The group entry defines an
access class. For example, consider these three lines from a configuration file:

com2sec local 172.16.2.236 private
...
group MyRWGroup v1 local
...
access MyRWGroup "" any noauth prefix all all none

The first line sets the community string to private for the single host 172.16.2.
236. The last two establish that this host is using SNMPv1 and has both read and
write privileges.

Even without further editing of the configuration file, the agent provides a number
of useful pieces of information. These include things like information on pro-
cesses (prTable), memory usage (memory), processor load (laTable), and disk
usage (dskTable). For example, here is the disk information from a Linux system:

bsd4# snmpwalk 172.16.2.234 public dskTable
enterprises.ucdavis.dskTable.dskEntry.dskIndex.1 = 1
enterprises.ucdavis.dskTable.dskEntry.dskPath.1 = /
enterprises.ucdavis.dskTable.dskEntry.dskDevice.1 = /dev/sda1
enterprises.ucdavis.dskTable.dskEntry.dskMinimum.1 = 10000
enterprises.ucdavis.dskTable.dskEntry.dskMinPercent.1 = -1
enterprises.ucdavis.dskTable.dskEntry.dskTotal.1 = 202182
enterprises.ucdavis.dskTable.dskEntry.dskAvail.1 = 133245
enterprises.ucdavis.dskTable.dskEntry.dskUsed.1 = 58497
enterprises.ucdavis.dskTable.dskEntry.dskPercent.1 = 31
enterprises.ucdavis.dskTable.dskEntry.dskErrorFlag.1 = 0
enterprises.ucdavis.dskTable.dskEntry.dskErrorMsg.1 =

Most of the entries are just what you would guess. The dskPath entry says we are
looking at the root partition. The dskDevice gives the path to the partition being
examined, /dev/sda1. The next two items are parameters for triggering error mes-
sages. The dskTotal entry is the size of the partition in kilobytes. This partition is

SNMP-Based Management Tools 177

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202MB. The next two entries, dskAvail and dskUsed, give the amount of available
and used space; 31% of the disk is in use. Here is the output from df for the same
system:

lnx1# df -k /
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 202182 58497 133245 31% /

The last two entries are objects used to signal errors. By editing the configuration
file, you can get information on other partitions. Brief descriptions for each object
are included within the MIB, UCD-SNMP-MIB.txt. Directions for changing the con-
figuration file are given in the example file.

It is also possible to extend the agent. This will allow you to run external pro-
grams or scripts. The output, in its simplest form, is limited to a single line and an
exit code that can be retrieved as an MIB object. For example, the following line
could be added to the configuration file:

exec datetest /bin/date -j -u

Here, exec is a keyword, datetest is a label, /bin/date is the command, and the rest
of the line is treated as a set of arguments and parameters to the command. The -j
option prevents a query to set the date, and -u specifies Coordinated Universal
time. The command is run by the agent each time you try to access the object. For
example, snmpwalk could be used to retrieve the following information:

bsd4# snmpwalk 172.16.2.236 private extTable
enterprises.ucdavis.extTable.extEntry.extIndex.1 = 1
enterprises.ucdavis.extTable.extEntry.extNames.1 = datetest
enterprises.ucdavis.extTable.extEntry.extCommand.1 = /bin/date -j -u
enterprises.ucdavis.extTable.extEntry.extResult.1 = 0
enterprises.ucdavis.extTable.extEntry.extOutput.1 = Mon Jun 26 14:10:50 GMT 2000
enterprises.ucdavis.extTable.extEntry.extErrFix.1 = 0
enterprises.ucdavis.extTable.extEntry.extErrFixCmd.1 =

You should be able to recognize the label, command with options, exit code, and
output in this table. The command will be run each time you retrieve a value from
this table.

Running snmpd on a system is straightforward. As root, type snmpd, and it will
immediately fork and return the prompt. There are several options you can use. If
you don’t want it to fork, you can use the -f option. This is useful with options
that return additional runtime information. I’ve found that it is also useful when
testing the configuration file. I’ll start snmpd in one window and test the configu-
ration in another. When I’m ready to change configurations, I jump back to the
original window and kill and restart the process. Of course, you can always use ps
to look up the process and then send the process a -HUP signal. Or you could use

178 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

snmpset to set the OID versionUpdateConfig to 1 to force a reload of the configu-
ration file:

bsd4# snmpset 172.16.2.236 private versionUpdateConfig.0 i 1
enterprises.ucdavis.version.versionUpdateConfig.0 = 1

Take your pick, but you must reload the file before changes will take effect.

It is possible to use snmpd options in a couple of ways to trace packet exchanges.
You can use the options -f, -L, and -d, respectively, to prevent forking, to redirect
messages to standard output, and to dump packets. Here is an example:

bsd4# snmpd -f -L -d
UCD-SNMP version 4.1.2

Received 49 bytes from 205.153.63.30:1055
0000: 30 82 00 2D 02 01 00 04 06 70 75 62 6C 69 63 A0 0..-.....public.
0016: 82 00 1E 02 02 0B 78 02 01 00 02 01 00 30 82 00 x......0..
0032: 10 30 82 00 0C 06 08 2B 06 01 02 01 01 06 00 05 .0.....+........
0048: 00 .

Received SNMP packet(s) from 205.153.63.30
 GET message
 -- system.sysLocation.0
 >> system.sysLocation.0 = 303 Laura Lander Hall

Sending 70 bytes to 205.153.63.30:1055
0000: 30 82 00 42 02 01 00 04 06 70 75 62 6C 69 63 A2 0..B.....public.
0016: 82 00 33 02 02 0B 78 02 01 00 02 01 00 30 82 00 ..3...x......0..
0032: 25 30 82 00 21 06 08 2B 06 01 02 01 01 06 00 04 %0..!..+........
0048: 15 33 30 33 20 4C 61 75 72 61 20 4C 61 6E 64 65 .303 Laura Lande
0064: 72 20 48 61 6C 6C r Hall

This is probably more information than you want. As previously noted, you prob-
ably don’t want to delve into the hex. You can replace the -d option with the -V
option to get a verbose display but without the dump:

bsd4# snmpd -f -L -V
UCD-SNMP version 4.1.2
Received SNMP packet(s) from 205.153.63.30
 GET message
 -- system.sysLocation.0
 >> system.sysLocation.0 = 303 Laura Lander Hall

This should give you an adequate idea of what is going on for most trouble-
shooting needs. See the manpage for other options.

NET SNMP also includes two applications for dealing with traps. snmptrapd starts
a daemon to receive and respond to traps. It uses the configuration file
snmptrapd.conf. The snmptrap is an application used to generate traps. While
these can be useful in troubleshooting, their use is arcane to say the least. You will

SNMP-Based Management Tools 179

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

need to edit the appropriate MIB files before using these. There are simpler ways
to test traps.

scotty

scotty was introduced in Chapter 6. Now that we’ve talked a little about SNMP,
here are a few more examples of using scotty. These are based on examples given
in one of the README files that comes with scotty. Since you will have to install
scotty to get tkined, it is helpful to know a few scotty commands to test your
setup. These scotty commands also provide a quick-and-dirty way of getting a few
pieces of information.

To use SNMP with scotty, you must first establish an SNMP session:

lnx1# scotty
% set s [snmp session -address 172.16.1.5 -community private]
snmp0

Once you have a session, you can retrieve a single object, multiple objects, the
successor of an object, or subtrees. Here are some examples:

% $s get sysDescr.0
{1.3.6.1.2.1.1.1.0 {OCTET STRING} {APC Embedded PowerNet SNMP Agent (SW v2.2, HW
 vB2, Mod: AP9605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)}}
% $s get "sysDescr.0 sysContact.0"
{1.3.6.1.2.1.1.1.0 {OCTET STRING} {APC Embedded PowerNet SNMP Agent (SW v2.2, HW
 vB2, Mod: AP9605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)}} {1.3.6.1
.2.1.1.4.0 {OCTET STRING} {Sloan <jsloan@lander.edu>}}
% $s getnext sysUpTime.0
{1.3.6.1.2.1.1.4.0 {OCTET STRING} {Sloan <jsloan@lander.edu>}}
% $s getnext [mib successor system]
{1.3.6.1.2.1.1.1.0 {OCTET STRING} {APC Embedded PowerNet SNMP Agent (SW v2.2, HW
 vB2, Mod: AP9605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)}} {1.3.6.1
.2.1.1.2.0 {OBJECT IDENTIFIER} PowerNet-MIB!smartUPS700} {1.3.6.1.2.1.1.3.0 Time
Ticks {4d 22:27:07.42}} {1.3.6.1.2.1.1.4.0 {OCTET STRING} {Joe Sloan}} {1.3.6.1.
2.1.1.5.0 {OCTET STRING} {APC UPS}} {1.3.6.1.2.1.1.6.0 {OCTET STRING} {214 Laura
 Lander Hall, Equipment Rack}} {1.3.6.1.2.1.1.7.0 INTEGER 72} {1.3.6.1.2.1.2.1.0
 INTEGER 1} {1.3.6.1.2.1.2.1.0 INTEGER 1}

Once you know the syntax, it is straightforward to change the value of objects as
can be seen here:

% $s set [list [list sysContact.0 "OCTET STRING" "Joe Sloan"]]
{1.3.6.1.2.1.1.4.0 {OCTET STRING} {Joe Sloan}}
% $s get sysContact.0
{1.3.6.1.2.1.1.4.0 {OCTET STRING} {Joe Sloan}}

Notice that after the object is set, I have retrieved it to verify the operation. I
strongly recommend doing this each time you change something.

180 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

If you aren’t familiar with Tcl, then defining a trap handler will seem arcane. Here
is an example:

% % proc traphandler {ip list} {
 set msg "SNMP trap from $ip:"
 foreach vb $list {
 append msg " [mib name [lindex $vb 0]]=\"[lindex $vb 2]\""
 }
 puts stderr $msg
 }
% set t [snmp session -port 162]
snmp1
% $t bind "" trap {traphandler %A "%V"}

Once the trap handler is defined, we can test it by interrupting the power to the
UPS by unplugging the UPS.* This test generated the following trap messages:

% SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:50.44" snmpTrapOID.0="PowerNe
t-MIB!upsOnBattery" smartUPS700="57:41:52:4E:49:4E:47:3A:20:54:68:65:20:55:50:53
:20:6F:6E:20:73:65:72:69:61:6C:20:70:6F:72:74:20:31:20:69:73:20:6F:6E:20:62:61:7
4:74:65:72:79:20:62:61:63:6B:75:70:20:70:6F:77:65:72:2E" snmpTrapEnterprise.0="a
pc"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:50.55" snmpTrapOID.0="1.3.6.1.2
.1.33.2.0.1" upsEstimatedMinutesRemaining="31" upsSecondsOnBattery="0" upsConfig
LowBattTime="2" snmpTrapEnterprise.0="upsTraps"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:50.66" snmpTrapOID.0="1.3.6.1.2
.1.33.2.0.3" upsAlarmId="12" upsAlarmDescr="UPS-MIB!upsAlarmInputBad" snmpTrapEn
terprise.0="upsTraps"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:55.27" snmpTrapOID.0="1.3.6.1.2
.1.33.2.0.4" upsAlarmId="11" upsAlarmDescr="UPS-MIB!upsAlarmOnBattery" snmpTrapE
nterprise.0="upsTraps"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:55.38" snmpTrapOID.0="1.3.6.1.2
.1.33.2.0.4" upsAlarmId="12" upsAlarmDescr="UPS-MIB!upsAlarmInputBad" snmpTrapEn
terprise.0="upsTraps"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:55.50" snmpTrapOID.0="PowerNet-
MIB!powerRestored" smartUPS700="49:4E:46:4F:52:4D:41:54:49:4F:4E:3A:20:4E:6F:72:
6D:61:6C:20:70:6F:77:65:72:20:68:61:73:20:62:65:65:6E:20:72:65:73:74:6F:72:65:64
:20:74:6F:20:74:68:65:20:55:50:53:20:6F:6E:20:73:65:72:69:61:6C:20:70:6F:72:74:2
0:31:2E" snmpTrapEnterprise.0="apc"

From this example, you can see a sequence of traps as the power is lost and
restored. Most messages should be self-explanatory, and all are explained in the
UPS documentation.

Generating traps is much simpler. In this example, a session is started and a trap is
sent to that session:

% set u [snmp session -port 162 -address 172.16.2.234]
snmp2
% $u trap coldStart ""

* This is OK with this particular UPS. In fact, it’s suggested in the documentation. However, you don’t
want to do this with just any UPS. While UPSs are designed to deal with power interruptions, some are
not necessarily designed to deal with the ground being removed, as happens when you unplug a UPS.

SNMP-Based Management Tools 181

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You can terminate a session without exiting scotty with the destroy command:

% $u destroy

If you are thinking about writing Tcl scripts, this should give you an idea of the
power of the tnm extensions supplied by scotty.

If you aren’t familiar with the syntax of Tcl, these examples will seem fairly
opaque but should give you an idea of what is possible. You could try these on
your system as presented here, but if you are really interested is doing this sort of
thing, you’ll probably want to learn some Tcl first. Several sources of information
are given in Appendix B.

tkined

tkined was introduced in the last chapter. Here we will look at how it can be used
to retrieve information and do basic monitoring. tkined is a versatile tool, and only
some of the more basic features will be described here. This should be enough to
get you started and help you decide if tkined is the right tool for your needs. A
small test network is shown in Figure 7-3. (We will be looking at this network,
along with minor variations, in the following examples.)

ICMP monitoring

ICMP monitoring periodically sends an ECHO_REQUEST packet to a remote
device to see if the connection is viable. (We’ve seen examples of this before.)

Figure 7-3. Demo network

182 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

SNMP monitoring is superior when available since it can be used to retrieve addi-
tional information. But if the device doesn’t support SNMP, or if you don’t have
SNMP access, ICMP monitoring may be your only option. Your ISP, for example,
probably won’t give you SNMP access to their routers even though you depend on
them.

To use ICMP monitoring with tkined, use Tools ➝ IP-Monitor. This will add an IP-
Monitor menu to the menu bar. Next, select a device on your map by clicking on
the Select tool and then the device’s icon. Now, use IP-Monitor ➝ Check Reach-
ability. (See Figure 7-4.) Since the idea of monitoring is to alert you to problems, if
your device is reachable, you shouldn’t see any changes. If the device is nearby
and it won’t create any problems, you can test your setup by disconnecting the
device from the network. The device’s icon should turn red and start flashing. A
message will also be displayed on the map under the icon.

If the device is in a collapsed group, the icon for the group will flash. Thus, you
don’t have to have an icon displayed for every device you are monitoring. You
could start a monitor on each device of interest, put related devices into a group,
and collapse the group. By creating a number of groups, all collapsed, you can

Figure 7-4. IP-Monitor menu

SNMP-Based Management Tools 183

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

monitor a large number of machines from a small, uncluttered map and still be
able to drill down on a problem.

When you reconnect the device, the icon should turn black and then stop flashing.
It may take a minute to see these changes. By default, the system polls devices
every 60 seconds. You can check which devices are being monitored by selecting
IP-Monitor ➝ Monitor Job Info. A pop-up box will display a list of the monitors
that are running.

If you want to change parameters, select IP-Monitor ➝ Modify Monitor Job. This
will bring up a box displaying a list of running jobs. Select the job of interest by
clicking on it, then click on the Modify button. The box listing jobs will be
replaced by a box giving job parameters, as shown in Figure 7-5.

You can reset the polling rate by changing the Intervaltime field. The next two
radio buttons allow you to suspend or restart a suspended job. The two Threshold
fields allow you to establish limits on response times. If your system normally
responds within, say, 100ms, you could set Rising Threshold to 200ms. If the
quality of the connection degrades so that response time rises above 200ms, the
system will alert you. The Threshold Action buttons allow you to say how you
want to be notified when thresholds are crossed. Finally, you can commit to the
changes, terminate the job, or cancel any changes.

If you are really interested in tracking how response time is changing, you can
select IP-Monitor ➝ Round Trip Time. A small box will appear on the map, par-
tially obscuring the icon. (You can drag it to a more convenient location.) This is
called a stripchart and will plot round-trip times against time. You can change
parameters using IP-Monitor ➝ Modify Monitor Job. You can change labels and
scale by right-clicking on the chart.

Figure 7-5. Monitor job parameters

184 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Figure 7-6 shows two stripcharts. The chart in the upper right really isn’t very
revealing since the device is on the local network and everything is working OK.
The latest round-trip time is displayed below the stripchart and is updated dynami-
cally. A device does not have to be integrated into the map. The site www.infoave.
net, an ISP at the bottom of the figure, has been added to the site and is being
monitored. This icon is partially obscured by a slider used to adjust the scale.
Other ICMP monitoring options, shown in Figure 7-4, are available.

SNMP traps

Before you begin using tkined for SNMP-based monitoring, you want to make sure
the appropriate MIBs are installed. These will usually be located in a common mibs
directory under the tnm library directory, e.g., /usr/lib/tnm2.1.10/mibs or /usr/
local/lib/tnm2.1.10/mibs. You will want to copy any enterprise MIB you plan to use
to that directory. Next, you should verify that the files are compatible. Try loading
them into scotty with the mib load command, e.g., mib load toaster.mib. If the file
loads without comment, you are probably OK. Finally, you will want to edit the
init.tcl file to automatically load the MIBs. Ideally, you will have a site-specific ver-
sion of the file for changes, but you can edit the standard default file. You will want
to add a line that looks something like lappend tnm(mibs) toaster.mib. You
are now ready to start tkined and do SNMP-based monitoring.

The first step is to go to Tools ➝ SNMP-Monitor. This will add the SNMP-Monitor
menu to the menu bar. This menu is shown in Figure 7-7. To receive traps, select

Figure 7-6. Map with stripcharts

SNMP-Based Management Tools 185

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

SNMP-Monitor ➝ Trap Sink. A pop-up box will give you the option of listening to
or ignoring traps. Select the Listen button and click on Accept to start receiving
traps. At this point, the station is now configured to receive traps.

To test that this is really working, we need to generate some traps for the system
to receive. If you are a scotty user, you might use the code presented in the last
section. For this example, a UPS that was being monitored was unplugged.
Regardless of how the trap is generated, tkined responds in the same way. The
device icon blinks, a message is written on the map, and a new window, shown in
Figure 7-8, is displayed with the trap messages generated by the UPS. Note that
the duration of this problem was under 5 seconds. It is likely this event would
have been missed with polling.

Examining MIBs

Tools ➝ SNMP Tree provides one way of examining MIBs. Or, if you prefer, you
can use Tools ➝ SNMP-Browser. The SNMP Tree command displays a graphical
representation of a subtree of the MIB. This is shown in Figure 7-9.

Menu items allow you to focus in on a particular subtree. For example, the MIB-2
menu shows the various subtrees under the MIB-2 node. The Enterprises menu
shows various enterprise MIBs that have been loaded. You simply select the MIB of
interest from the menu, and it will be displayed in the window. You can click on
an item on the tree and a pop-up window will give you the option of displaying a
description of the item, retrieving its value, changing its value, or displaying just the

Figure 7-7. SNMP-Monitor menu

186 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

subtree of the node in question. Of course, you will need to select a system before
you can retrieve system-specific information.

The SNMP-Browser option provides much the same functionality but displays
information in a different format. If you select SNMP-Browser ➝ MIB Browser, you
will be given a text box listing the nodes below the internet node (.1.3.6.1) of the
MIB tree. If you click on any of these nodes, the text box will be replaced with
one of the nodes under the selected node. In this manner, you can move down
the MIB tree. After the first box, you will also be given the option to move up the
tree or, if appropriate, to the previous or next node in the subtree. If you reach a
leaf, you will be given a description of the object, as shown in Figure 7-10. If the
object can be changed, you will be given that choice as well.

Figure 7-8. SNMP monitor report

Figure 7-9. SNMP tree

SNMP-Based Management Tools 187

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You are also given the option to walk a subtree. This option will attempt to
retrieve all the object values for leaves under the current node. This can be quite
lengthy depending on where you are in the tree. Figure 7-11 shows the last few
entries under ip. Most of the values have scrolled off the window.

SNMP Tree provides a nice visual display, but it can be a little easier to move
around with the MIB Browser. Take your choice.

Figure 7-10. MIB Browser

Figure 7-11. Walk for IP

188 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring SNMP objects

In much the same way you monitor devices, you can monitor SNMP objects. First,
you will need to identify the object you want to monitor. This can be done using
the techniques just described. With MIB Browser you can select monitoring at a
leaf. Alternately, you can select SNMP-Monitor ➝ Monitor Variable. This is a little
easier if you already know the name of the object you want to monitor. A pop-up
box will request the name of the object to monitor. Type in the name of the object
and click on Start. (Don’t forget to select a system first.) A stripchart will be cre-
ated on your map displaying the values for the monitored object.

Other commands

Tools ➝ SNMP Trouble installs the SNMP-Trouble menu. The name is somewhat
misleading. Generally, the SNMP-Trouble menu provides quick ways to collect
common, useful information. First, it can be used to locate SNMP-aware devices on
your network. By selecting multiple devices on the map and then choosing SNMP-
Trouble ➝ SNMP Devices, tkined will poll each of the devices. The output for the
test network is shown in Figure 7-12.

Please note that noResponse does not necessarily mean that the device is down or
that it doesn’t support SNMP. For example, it may simply mean that you are not
using the correct community string.

The SNMP-Trouble menu also provides menu options that will return some of the
more commonly needed pieces of information such as system information, ARP
tables, IP routing tables, interface information, or TCP connections. A few of these
reports are shown in Figure 7-13.

Caveats

tkined is a fine program, but it does have a couple of problems. As noted in the
last chapter, it will let you exit without saving changes. Another problem is that it
doesn’t recover well from one particular type of user error. When you are through

Figure 7-12. SNMP devices

SNMP-Based Management Tools 189

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

with a window or display, you should shrink the window rather than closing it. If
you close the window, tkined will not automatically reopen it for you. When you
later use a command that needs the closed window, it will appear that tkined has
simply ignored your command. Usually, you can simply unload and then reload
the menu that contains the selection used to initially create the window. Typically,
the last item on a menu (for example, see Figure 7-4 and Figure 7-7) will remove
or delete the menu and unload the subsystem. Then go to the Tools menu and
reload the menu. The appropriate subsystem will be reloaded, correcting the
problem. This can be very frustrating when you first encounter it, but it is easy to
work around or avoid once you know to look for it.

One other problem with tkined is that it uses a single community string when
talking with devices. This can be changed with Set SNMP Parameters, which is
available on several menus. But if you are using different community strings within
your network or prefer using read-only strings most of the time but occasionally
need to change something, changing the community string can be a nuisance.
Overall, these few problems seem to be minor inconveniences for an otherwise
remarkably useful program. The program has a number of additional features—
such as sending reports to the syslog system—that were not discussed here. You
should, however, have a pretty good idea of how to get started using tkined from
this discussion.

Figure 7-13. SNMP-Trouble reports

190 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Non-SNMP Approaches
Of course, SNMP is not the only way to retrieve information or monitor systems.
For example, a number of devices now have small HTTP servers built in that allow
remote configuration and management. These can be particularly helpful in
retrieving information. With Unix, it is possible to remotely log on to a system using
telnet or ssh over a network connection and reconfigure the host. There is prob-
ably very little I can say about using these approaches that you don’t already know
or that isn’t obvious. There is one thing that you undoubtedly know, but that is all
too easy to forget—don’t make any changes that will kill your connection.*

Some remote-access programs provide a greater degree of control than others. In a
Microsoft Windows environment, where traditionally there is only one user on a
system, a remote control program may take complete control of the remote
system. On a multiuser system such as a Unix-based system, the same software
may simply create another session on the remote host. Although these programs
are not specifically designed with network management in mind, they work well
as management tools.

While these approaches will allow you to actively retrieve information or recon-
figure devices, the remote systems are basically passive entities. There are, how-
ever, other monitoring tools that you could consider. Big Brother (bb) is one
highly regarded package. It is a web-based, multiplatform monitor. It is available
commercially and, for some uses, noncommercially.

Microsoft Windows
SNMP is implemented as a Win32 service. It is available for the more recent ver-
sions of Windows but must be installed from the distribution CD-ROM. Installa-
tion and setup is very straightforward but varies from version to version.

Windows SNMP Setup

With NT, SNMP is installed from the Network applet under the Control Panel.
Select Add under the Services tab, then select SNMP Services from the Select Net-
work Service pop-up box. You will then be prompted for your distribution CD-
ROM. Once it is installed, a pop-up box called Microsoft SNMP Properties will
appear. You use the three tabs on this box to configure SNMP. The Agent tab is
used to set the contact and location. The Traps tab is used to set the Community

* One precaution that some administrators use is connecting the console port of crucial devices to another
device that should remain reachable—a port on a terminal server, a modem, or even a serial port on a
nearby server. If you take this “milking-machine” approach, be sure this portal is secure.

Microsoft Windows 191

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

name and address of the management station that will receive the traps. Use the
Add button in the appropriate part of the box. The Security tab is used to set the
community strings, privileges, and addresses for the management stations. Be sure
to select the radio button Accept SNMP Packets for These Hosts if you want to
limit access. If you experience problems running SNMP, try reinstalling the latest
service pack from Microsoft.

Installation with Windows 98 is similar, but at the Select Network Service prompt,
you must click Have Disk. The SNMP agent can be found in the \Tools\Reskit\
Netadmin\SNMP\ directory on the installation disk. SNMP is not included with the
original distribution of Windows 95 but can be installed from the Resource Kit or
downloaded from Microsoft. On later releases, it can be found on the distribution
disk in \Admin\Ntools\SNMP.

With Windows 2000, instead of using the Network applet, you will use the Add/
Remove Programs applets. Select Add/Remove Windows Components. From the
Windows Components Wizard, select Management and Monitoring Tools. Click on
Next to install SNMP. To configure SNMP, start the Administrative Tools applet,
and select Services and then SNMP Services. You’ll be given more choices, but you
can limit yourself to the same three tabs as with Windows NT.

For further details on installation and configuration of SNMP on Windows plat-
forms, look first to the Windows help system. You might also look at James D.
Murray’s Windows NT SNMP.

SNMP Tools

NET SNMP is available both in source and binary form for Windows. With the
binary version I downloaded, it was necessary to move all the subdirectories up to
C:\usr to get things to work. Although the program still needs a little polish, it
works well enough. As noted in Chapter 6, tkined is also available under Windows.

One very nice freeware program for Windows, written by Philippe Simonet, is
getif. This provides both SNMP services as well as other basic network services. It
is intuitively organized as a window with a tab for each service.

To begin using getif, you must begin with the Parameters tab. You identify and set
the community strings for the remote host here. Having done this, clicking on Start
will retrieve the basic information contained in the system group. This is shown in
Figure 7-14. Even if you know this information, it is a good idea to get it again just
to make sure everything is working correctly.

Once this has been done, many of the other services simply require selecting the
appropriate tab and clicking on Start. For example, you can retrieve the device’s
interface, address, routing, and ARP tables this way.

192 Chapter 7: Device Monitoring with SNMP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Reachability tab will allow you to send an ICMP ECHO_REQUEST and will
also test if several common TCP ports, such as HTTP, TELNET, SMTP, and so on,
are open. The Traceroute tab does both a standard ICMP traceroute and an SNMP
traceroute. An SNMP traceroute constructs the route from the route tables along
the path. Of course, all the intervening routers must be SNMP accessible using the
community strings set under the Parameters tab. The NSLookup tab does a name
service lookup. The IP Discovery tab does simple IP scanning.

The MBrowser tab provides a graphical interface to NET SNMP. This is shown in
Figure 7-15. In the large pane in the upper left, the MIB tree is displayed. You can
expand and collapse subtrees as needed. You can select a subtree by clicking on
its root node. If you click on Walk, all readable objects in the subtree will be que-
ried and displayed in the lower pane. You can also use this display to set objects.

The Graph tab will be discussed in Chapter 8.

Other Options

Apart from SNMP, there are a number of remote administration options including
several third-party commercial tools. If remote access is the only consideration,
vnc is an excellent choice. In particular, the viewer requires no installation. It is
under 200KB so it can be run from a floppy disk. It provides a very nice way to
access an X Window session on a Unix system from a PC even if you don’t want
to use it for management. Installation of the server binary is very straightforward.
However, vnc will not provide multiuser access to Windows and can be sluggish

Figure 7-14. getif Parameters tab

Microsoft Windows 193

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

over low-bandwidth connections such as dial-up lines. Under these circum-
stances, you might consider Microsoft Terminal Server, Microsoft Corporation’s thin
client architecture, which supports remote access. (See Chapter 11 for more infor-
mation on vnc.)

For other administrative tasks, there are a number of utilities that are sold as part
of Microsoft’s Resource Kits. While not free, these are generally modestly priced,
and many of the tools can be downloaded from the Web at no cost. Some tools,
while not specifically designed for remote troubleshooting, can be used for that
purpose if you are willing to allow appropriate file sharing. These include the
System Policy Editor, Registry Editor, System Monitor, and Net Watcher, among
others. These are all briefly described by the Windows help system and more thor-
oughly in Microsoft published documentation.

Figure 7-15. getif MBrowser tab

194
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 8

8
Performance
Measurement Tools

Everything on your network may be working, but using it can still be a frustrating
experience. Often, a poorly performing system is worse than a broken system. As a
user on a broken system, you know when to give up and find something else to do.
And as an administrator, it is usually much easier to identify a component that isn’t
working at all than one that is still working but performing poorly. In this chapter,
we will look at tools and techniques used to evaluate network performance.

This chapter begins with a brief overview of the types of tools available. Then we
look at ntop, an excellent tool for watching traffic on your local network. Next, I
describe mrtg, rrd, and cricket—tools for collecting traffic data from remote
devices over time. RMON, monitoring extensions to SNMP, is next. We conclude
with tools for use on Microsoft Windows systems.

Don’t overlook the obvious! Although we will look at tools for measuring traffic,
user dissatisfaction is probably the best single indicator of the health of your net-
work. If users are satisfied, you needn’t worry about theoretical problems. And if
users are screaming at your door, then it doesn’t matter what the numbers prove.

What, When, and Where
Network performance will depend on many things—on the applications you are
using and how they are configured, on the hosts running these applications, on
the networking devices, on the structure and design of the network as a whole,
and on how these pieces interact with one another. Even though the focus of this
chapter is restricted to network performance, you shouldn’t ignore the other pieces
of the puzzle. Problems may arise from the interaction of these pieces, or a
problem with one of the pieces may look like a problem with another piece. A
misconfigured or poorly designed application can significantly increase the amount

What, When, and Where 195

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

of traffic on a network. For example, Version 1.1 of the HTTP protocol provides
for persistent connections that can significantly reduce traffic. Not using this partic-
ular feature is unlikely to be a make or break issue. My point is, if you look only
at the traffic on a network without considering software configurations, you may
seem to have a hardware capacity problem when a simple change in software
might lessen the problem and, at a minimum, buy you a little more time.

This chapter will focus on tools used to collect information on network perfor-
mance. The first step in analyzing performance is measuring traffic. In addition to
problem identification and resolution, this should be done as part of capacity plan-
ning and capacity management (tuning). Several books listed in Appendix B pro-
vide general discussions of application and host performance analysis.

Of the issues related to measuring network traffic, the most important ones are
what to measure, how often, and where. Although there are no simple answers to
any of these questions, what to measure is probably the hardest of the three. It is
extremely easy to end up with so much data that you don’t have time to analyze
it. Or you may collect data that doesn’t match your needs or that is in an unus-
able format. If you keep at it, eventually you will learn from experience what is
most useful. Take the time to think about how you will use the data before you
begin. Be as goal directed as possible. Just realize that, even with the most careful
planning, when faced with a new, unusual problem, you’ll probably think of
something you wish you had been measuring.

If you are looking at the performance of your system over time, then data at just
one point in time will be of little value. You will need to collect data periodically.
How often you collect will depend on the granularity or frequency of the events
you want to watch. For many tasks, the ideal approach is one that periodically
condenses and eventually discards older data.

Unless your network is really unusual, the level of usage will vary with the time of
day, the day of the week, and the time of the year. Most performance related
problems will be most severe at the busiest times. In telephony, the hour when
traffic is heaviest is known as the busy hour, and planning centers around traffic at
this time. In a data network, for example, the busy hour may be first thing in the
morning when everyone is logging on and checking their email, or it could be at
noon when everyone is web surfing over their lunch hour.

Knowing usage patterns can simplify data collection since you’ll need to do little
collecting when the network is underutilized. Changes in usage patterns can indi-
cate fundamental changes in your network that you’ll want to be able to identify
and explain. Finally, knowing when your network is least busy should give you an
idea of the most convenient times to do maintenance.

196 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

I have divided traffic-measurement tools into three rough categories based on
where they are used within a network. Tools that allow you to capture traffic
coming into or going out of a particular machine are called host-monitoring tools.
Tools that place an interface in promiscuous mode and allow you to capture all
the traffic at an interface are called point-monitoring tools. Finally, tools that build
a global picture of network traffic by querying other hosts (which are in turn run-
ning either host-monitoring or point-monitoring tools) are called network-
monitoring tools. Both host monitoring and point monitoring should have a min-
imal impact on network traffic. With the exception of DNS traffic, they shouldn’t
be generating additional traffic. This is not true for network-monitoring tools.

Because of their roles within a network, devices such as switches and routers don’t
easily fit into this classification scheme. If a single switch interconnects all devices
in a subnet, then it will see all the local traffic. If, however, multiple switches are
used and you aren’t mirroring traffic, each switch will see only part of the traffic.
Routers will see only traffic moving between networks. While this is ideal for mea-
suring traffic between local and remote devices, it is not helpful in understanding
strictly local traffic. The problem should be obvious. If you monitor the wrong
device, you may easily miss bottlenecks or other problems. Before collecting data,
you need to understand the structure of your network so you can understand what
traffic is actually being seen. This is one reason the information in Chapter 6, is
important.

Finally, you certainly won’t want to deal with raw data on a routine basis. You will
want tools that present the data in a useful manner. For time-series data, graphs
and summary statistics are usually the best choice.

Host-Monitoring Tools
We have already discussed host-monitoring tools in several different parts of this
book, particularly Chapter 2 and Chapter 4. An obvious example of a host-
monitoring tool is netstat. You will recall that the -i option will give a cumulative
picture of the traffic into and out of a computer.

Although easy to overlook, any tool that logs traffic is a host-monitoring tool of
sorts. These are generally not too useful after the fact, but you may be able to
piece together some information from them. A better approach is to configure the
software to collect what you need. Don’t forget applications, like web servers, that
collect data. Accounting tools and security tools provide other possibilities. Tools
like ipfw, ipchains, and tcpwrappers all support logging. (Log files are discussed in
greater detail in Chapter 11.)

Point-Monitoring Tools 197

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Host-monitoring tools can be essential in diagnosing problems related to host per-
formance, but they give very little information about the performance of the net-
work as a whole. Of course, if you have this information for every host, you’ll
have the data you need to construct a complete picture. Constructing that picture
is another story.

Point-Monitoring Tools
A point-monitoring tool puts your network interface in promiscuous mode and
allows you to collect information on all traffic seen at the computer’s interface.
The major limitation to point monitoring is it gives you only a local view of your
network. If your focus is on host performance, this is probably all that you will
need. Or, if you are on a shared media network such as a hub, you will see all of
the local traffic. But, if you are on a switched network, you will normally be able
to see only traffic to or from the host or broadcast traffic. And as more and more
networks shift to switches for efficiency, this problem will worsen.

The quintessential point-monitoring tools are network sniffers. In Chapter 5, we
saw several utilities that capture traffic and generate traffic summaries. These
included tcp-reduce, tcptrace, and xplot. In general, sniffers are not really designed
for traffic measurement—they are too difficult to use for this purpose, provide too
much information, and provide information in a format ill-suited to this purpose.
But if you really want to understand a problem, packet capture gives you the most
complete picture, if you can wade through all the data.

ntop

ntop, the work of Luca Deri, is an excellent example of just how useful a point-
monitoring tool can be. ntop is usually described as the network equivalent of the
Unix utility top. Actually, it is a lot more.

ntop is based on the libpcap library that originated at the Lawrence Berkeley
National Laboratory and on which tcpdump is based. It puts the network interface
in promiscuous mode so that all traffic at the interface is captured. It will then
begin to collect data, periodically creating summary statistics. (It will also use lsof
and other plug-ins to collect data if available.)

ntop can be run in two modes: as a web-based utility using a built-in web server
or in interactive mode, i.e., as a text-based application on a host. It closely resem-
bles top when run in interactive mode. This was the default mode with earlier ver-
sions of ntop but is now provided by a separate command, intop. Normally, you
will want to use a separate window when using interactive mode.

198 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interactive mode

Here is an example of the output with intop :

$<50> intop 0.0.1 (Sep 19 2000) listening on [eth0]
379 Pkts/56.2 Kb [IP 50.5 Kb/Other 5.7 Kb] Thpt: 6.1 Kbps/24.9 Kbps
 Host Act -Rcv-Rcvd- Sent TC-TCP- UDP IC$
 sloan B 69.0% 16.7% 38.8 Kb 0 0
 lnx1a B 16.7% 69.4% 9.4 Kb 0 0
 rip2-routers.mcast.net R 3.7% 0.0% 0 2.1 Kb 0
 172.16.3.1 B 2.1% 6.5% 0 0 0
 Cisco CDPD/VTP [MAC] I 4.7% 0.0% 0 0 0
 172.16.3.3 B 2.2% 6.1% 0 0 0

Interpretation of the data is straightforward. The top two lines show the program
name and version, date, interface, number of packets, total traffic, and throughput.
The first column lists hosts by name or IP number. The second column reflects
activity since the last update—Idle, Send, Receive, or Both. The next two columns
are the amount of traffic sent and received, while the last two columns break
traffic down as TCP, UPD, or ICMP traffic.

intop should be started with the -i option to specify which interface to use. For
example:

lnx1# intop -i eth0

If your computer is multihomed, you can specify several interfaces on the com-
mand line, each with a separate -i. Once started, it prints an annoying 20 lines or
so of general information about the program and then gives you a prompt. At this
point, you can enter ? to find out what services are available:

intop@eth0> ?
Commands enclosed in '<>' are not yet implemented.
Commands may be abbreviated. Commands are:

 ? <warranty> filter swap nbt
 help <copying> sniff top <dump>
 exit history uptime lsdev <last>
 quit open <hash> hosts <nslookup>
 prompt <close> info arp
intop@eth0>

As you can see, a number of commands are planned but had not been imple-
mented at the time this was written. Most are exactly what you would expect. You
use the top command to get a display like the one just shown. The info command
reports the interface and number of packets captured. With the filter command,
you can set packet-capture filters. You use the same syntax as explained in
Chapter 5 with tcpdump. (Filters can also be specified on the command line when
intop is started.) The lsdev command lists interfaces. The swap command is used to
jump between data collection on two different interfaces.

Point-Monitoring Tools 199

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You can change how the data is displayed on-the-fly using your keyboard. For
example, the d key will allow you to toggle between showing all hosts or only
active hosts. The l key toggles between showing or not showing only local hosts.
The p key can be used to show or suppress showing data as percentages. The y
key is used to change the sorting order among the columns. The n key is used to
toggle between hostnames and IP addresses. The r key can be used to reset or
zero statistics. The q key is used to stop the program.

Web mode

Actually, you’ll probably prefer web mode to interactive mode, as it provides con-
siderably more information and a simpler interface. Since ntop uses a built-in web
server, you won’t need to have a separate web server running on your system. By
default, ntop uses port 3000, so this shouldn’t interfere with any existing web
servers. If it does, or if you are paranoid about using default ports, you can use
the -w option to select a different port. The only downside is that the built-in web
server uses frames and displays data as tables, which still seems to confuse some
browsers, particularly when printing.

There are a number of options, some of which are discussed next, but the defaults
work well enough to get you started. Once you start ntop, point your browser to
the machine and port it runs on. Figure 8-1 shows what the initial screen looks
like.

As you can see, on startup ntop provides you with a brief description of the pro-
gram in the larger frame to the right. The real area of interest is the menu on the
left. By clicking on the triangles, each menu expands to give you a number of
choices. This is shown to the left in Figure 8-2.

Figure 8-2 shows the All Protocols page, which groups traffic by protocol and
host. This is available for both received and transmitted data. A number of statis-
tics for other protocols—such as AppleTalk, OSPF, NetBIOS, and IGMP—have
scrolled off the right of this window. You can click on the column header to sort
the data based on that column. By default, this screen will be updated every two
minutes, but this can be changed.

The IP option displays received or transmitted data grouped by individual IP pro-
tocols such as FTP, HTTP, DNS, and Telnet. The Throughput option gives a table
organized by host and by throughput, average throughput, and peak throughput
for both bits and packets.

200 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Stats submenu offers a number of options. Multicast gives a table of multicast
traffic. Traffic provides you with a number of tables and graphs showing how
traffic breaks down. Figure 8-3 shows one of these graphs.

Figures and tables break down traffic by broadcast versus unicast versus multicast
packets, by packet size categories, by IP versus non-IP traffic, by protocol cate-
gory such as TCP versus UDP versus AppleTalk versus Other, and by application
protocols such as FTP versus Telnet. Either bar graphs or pie charts are used to
display the data. The tables give the data in both kilobytes and percentages. These
graphs can save you a lot of work in analyzing data and discovering how your
network is being used.

Figure 8-1. ntop’s home page

Point-Monitoring Tools 201

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Host option under Stats gives basic host information including hostnames, IP
addresses, MAC addresses for local hosts, transmit bandwidth, and vendors for
MAC addresses when known. By clicking on a hostname, additional data will be
displayed as shown in Figure 8-4.

The host shown here is on a different subnet from the host running ntop, so less
information is available. For example, there is no way for ntop to discover the
remote host’s MAC address or to track traffic to or from the remote host that
doesn’t cross the local network. Since this displays connections between hosts, its
use has obvious privacy implications.

Figure 8-2. ntop’s All Protocols page

202 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Throughput option gives a graph of the average throughput over the last
hour. Domain gives a table of traffic grouped by domain. Plug-ins provide a way
to extend the functionality of ntop by adding other applications. Existing plug-ins
provide support for such activities as tracking new ARP entries, NFS traffic, and
WAP traffic and tracking and classifying ICMP traffic.

An important issue in capacity planning is what percentage of traffic is purely local
and what percentage has a remote network for its source or destination (see the
sidebar “Local Versus Remote Traffic”). The IP Traffic menu gives you options to
collect this type of information. The Distribution option on the IP Protocols menu
gives you plots and tables for local and remote IP traffic. For example, Figure 8-5

Figure 8-3. ntop’s Traffic page under Stats

Point-Monitoring Tools 203

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

shows a graph and tables for local and remote-to-local traffic. There is a local-to-
remote table that is not shown. The Usage option shows IP subnet usage by port.
Sessions shows active TCP sessions, and Routers identifies routers on the local
subnet.

The last menu, Admin, is used to control the operation of ntop. Switch NIC allows
you to capture on a different interface, and Reset Stats zeros all cumulative statistics.
Shutdown shuts down ntop. Users and URLs allow you to control access to ntop.

A number of command-line options allow you to control how ntop runs. These can
be listed with the -h option. As noted previously, -w is used to change the port it lis-
tens to, and -i allows you to specify which interface to listen to. -r sets the delay

Figure 8-4. Host information

204 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

between screen updates in seconds. The -n option is used to specify numeric IP
addresses rather than hostnames. Consult the documentation for other options.

ntop has other features not discussed here. It can be used as a lightweight intru-
sion detection system. It provides basic access control and can be used with
secure HTTP. It also provides facilities to log data, including logging to a SQL
database.

As previously noted, the real problem with point monitoring is that it doesn’t really
work well with segmented or switched networks. Unless you are mirroring all
traffic to your test host, many of these numbers can be meaningless. If this is the
case, you’ll want to collect information from a number of sources.

Figure 8-5. Measuring local and remote traffic

Network-Monitoring Tools 205

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network-Monitoring Tools
It should come as no surprise that SNMP can be used to collect performance infor-
mation. We have already seen simple examples in Chapter 7. Using the raw statis-
tics gathered with a tool like NET SNMP or even the stripcharts in tkined is alright
if you need only a little data, but in practice you will want tools designed to deal
specifically with performance data. Which tool you use will depend on what you
want to do. One of your best choices from this family of tools is mrtg. (Although it
is not discussed here, you also may want to look at scion. This is from Merit Net-
works, Inc., and will run under Windows as well as Unix.)

mrtg

mrtg (Multirouter Traffic Grapher) was originally developed by Tobias Oetiker
with the support of numerous people, most notably Dave Rand. This tool uses
SNMP to collect statistics from network equipment and creates web-accessible
graphs of the statistics. It is designed to be run periodically to provide a picture of
traffic over time. mrtg is ideally suited for identifying busy-hour traffic. All you
need to do is scan the graph looking for the largest peaks.

Local Versus Remote Traffic
Before the Internet became popular, most network traffic stayed on the local
network. This was often summarized as the 90-10 Rule (or sometimes the 80-
20 Rule), a heuristic that says that roughly 90% of network traffic will stay on
the local network. The Internet has turned the old 90-10 Rule on its head by
providing a world of reasons to leave the local network; now most traffic does
just that. Today the 90-10 Rule says that 90% of traffic on the local network will
have a remote site as its source or destination.

Clearly, the 90-10 Rule is nothing more than a very general rule of thumb. It
may be an entirely inappropriate generalization for your network. But knowing
the percentage of local and remote traffic can be useful in understanding your
network in a couple of ways. First, whatever the numbers, they really shouldn’t
be changing a lot over time unless something fundamental is changing in the
way your network is being used. This is something you’ll want to know about.

Second, local versus remote traffic provides a quick sanity check for network
design. If 90% of your traffic is entering or leaving your network over a 1.544-
Mbps T1 line, you should probably think very carefully about why you need
to upgrade your backbone to gigabit speeds.

206 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

mrtg is most commonly used to graph traffic through router interfaces but can be
configured for other uses. For example, since NET SNMP can be used to collect
disk usage data, mrtg could be used to retrieve and graph the amount of free
space on the disk drive over time for a system running snmpd. Because the graphs
are web-accessible, mrtg is well suited for remote measurement. mrtg uses SNMP’s
GET command to collect information. With the current implementation, collection
is done by a Perl module supplied as part of mrtg. No separate installation of
SNMP is needed.

mrtg is designed to be run regularly by cron, typically every five minutes. How-
ever, mrtg can be run as a standalone program, or the sampling interval can be
changed. Configuration files, generally created with the cfgmaker utility, deter-
mine the general appearance of the web pages and what data is collected. mrtg
generates graphs of traffic in GIF format and HTML pages to display these graphs.
Typically, these will be made available by a web server running on the same com-
puter as mrtg, but the files can be viewed with a web browser running on the
same computer or the files can be moved to another computer for viewing. This
could be helpful when debugging mrtg since the web server may considerably
complicate the installation, particularly if you are not currently running a web
server or are not comfortable with web server configuration.

Figure 8-6 shows a typical web page generated by mrtg. In this example, you can
see some basic information about the router at the top of the page and, below it,
two graphs. One shows traffic for the last 24 hours and the other shows traffic for
the last two weeks, along with summary statistics for each. The monthly and
yearly graphs have scrolled off the page. This is the output for a single interface.
Input traffic is shown in green and output traffic is shown in blue, by default, on
color displays.

It is possible to have mrtg generate a summary web page with a graph for each
interface. Each graph is linked to the more complete traffic report such as the one
shown in Figure 8-6. The indexmaker utility is used to generate this page once the
configuration file has been created.

mrtg configuration file

To use mrtg, you will need a separate configuration file for each device. Each con-
figuration file will describe all the interfaces within the device. Creating these files
is the first step after installation. While a sample configuration file is supplied as
part of the documentation, it is much easier to use the cfgmaker script. An SNMP
community string and hostname or IP number must be supplied as parts to a com-
pound argument:

bsd2# cfgmaker public@172.16.2.1 > mrtg.cfg

Network-Monitoring Tools 207

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Since the script writes the configuration to standard output, you’ll need to redirect
your output to a file. If you want to measure traffic at multiple devices, then you
simply need to create a different configuration file for each. Just give each a dif-
ferent (but meaningful) name.

Once you have a basic configuration file, you can further edit it as you see fit. As
described next, this can be an involved process. Fortunately, cfgmaker does a rea-
sonable job. In many cases, this will provide all you need, so further editing won’t
be necessary.

Here is the first part of a fairly typical configuration file. (You may want to com-
pare this to the sample output shown in Figure 8-6.)

Figure 8-6. mrtg interface report

208 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Add a WorkDir: /some/path line to this file
WorkDir: /usr/local/share/doc/apache/mrtg

##
Description: Cisco Internetwork Operating System Software IOS (tm) 3600
 Software (C3620-IO3-M), Version 12.0(7)T, RELEASE SOFTWARE (fc2) Copyright (c)
1986-1999 by cisco Systems, Inc. Compiled Wed 08-Dec-99 10:08 by phanguye
Contact: "Joe Sloan"
System Name: NLRouter
Location: "LL 214"
#...

Target[C3600]: 1:public@172.16.2.1
MaxBytes[C3600]: 1250000
Title[C3600]: NLRouter (C3600): Ethernet0/0
PageTop[C3600]: <H1>Traffic Analysis for Ethernet0/0
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/0 (1)</TD></TR>
 <TR><TD>IP:</TD><TD>C3600 (205.153.60.250)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>

#---

Target[172.16.2.1.2]: 2:public@172.16.2.1
MaxBytes[172.16.2.1.2]: 1250000
Title[172.16.2.1.2]: NLRouter (No hostname defined for IP address): Ethernet0/1
PageTop[172.16.2.1.2]: <H1>Traffic Analysis for Ethernet0/1
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/1 (2)</TD></TR>
 <TR><TD>IP:</TD><TD>No hostname defined for IP address (172.16.1.1)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>

#---

As you can see from the example, the general format of a directive is
Keyword[Label]: Arguments. Directives always start in the first column of the
configuration file. Their arguments may extend over multiple lines, provided the
additional lines leave the first column blank. In the example, the argument to the
first PageTop directive extends for 10 lines.

In this example, I’ve added the second line—specifying a directory where the
working files will be stored. This is a mandatory change. It should be set to a

Network-Monitoring Tools 209

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

directory that is accessible to the web server on the computer. It will contain log
files, home pages, and graphs for the most recent day, week, month, and year for
each interface. The interface label, explained shortly, is the first part of a filename.
Filename extensions identify the function of each file.

Everything else, including the files just described, is automatically generated. As
you can see, cfgmaker uses SNMP to collect some basic information from the
device, e.g., sysName, sysLocation, and sysContact, for inclusion in the configura-
tion file. This information has been used both in the initial comment (lines begin-
ning with #) and in the HTML code under the PageTop directive. As you might
guess, PageTop determines what is displayed at the top of the page in Figure 8-6.

cfgmaker also determines the type of interface by retrieving ifType and its max-
imum operating speed by retrieving ifSpeed, ethernetCsmacd and 125.0
kBytes/s in this example. The interface type is used by the PageTop directive.
The speed is used by both PageTop and the MaxBytes directive. The MaxBytes
directive determines the maximum value that a measured variable is allowed to
reach. If a larger number is retrieved, it is ignored. This is given in bytes per
second, so if you think in bits per second, don’t be misled.

cfgmaker collects information on each interface and creates a section in the config-
uration file for each. Only two interfaces are shown in this fragment, but the
omitted sections are quite similar. Each section will begin with the Target direc-
tive. In this example, the first interface is identified with the directive
Target[C3600]: 1:public@172.16.2.1. The interface was identified by the ini-
tial scan by cfgmaker. The label was obtained by doing name resolution on the IP
address. In this case, it came from an entry in /etc/hosts.* If name resolution fails,
the IP and port numbers will be used as a label. The argument to Target is a com-
bination of the port number, SNMP community string, and IP address of the inter-
face. You should be aware that adding or removing an interface in a monitored
device without updating the configuration file can lead to bogus results.

The only other directive in this example is Title, which determines the title dis-
played for the HTML page. These examples are quite adequate for a simple page,
but mrtg provides both additional directives and additional arguments that pro-
vide a great deal of flexibility.

By default, mrtg collects the SNMP objects ifInOctets and ifOutOctets for each
interface. This can be changed with the Target command. Here is an example of a
small test file (the recommended way to test mrtg) that is used to collect the
number of unicast and nonunicast packets at an interface.

* In this example, a different system name and hostname are used to show where each is used. This is
not recommended.

210 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

bsd2# cat test.cfg
WorkDir: /usr/local/share/doc/apache/mrtg

Target[Testing]: ifInUcastPkts.1&ifInNUcastPkts.1:public@172.16.2.1
MaxBytes[Testing]: 1250000
Title[Testing]: NLRouter: Ethernet0/0
PageTop[Testing]: <H1>Traffic Analysis for Ethernet0/0
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/0 (1)</TD></TR>
 <TR><TD>IP:</TD><TD>C3600 (205.153.60.250)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>

mrtg knows a limited number of OIDs. These are described in the mibhelp.txt file
that comes with mrtg. Fortunately, you can use dotted notation as well, so you
aren’t limited to objects with known identifiers. Nor do you have to worry about
MIBs. You can also use an expression in the place of an identifier, e.g., the sum of
two OIDs, or you can specify an external program if you wish to collect data not
available through SNMP. There are a number of additional formats and options
available with Target.

Other keywords are available that will allow you to customize mrtg’s behavior. For
example, you can use the Interval directive to change the reported frequency of
sampling. You’ll also need to change your crontab file to match. If you don’t want
to use cron, you can use the RunAsDaemon directive, in conjunction with the
Interval directive to set mrtg up to run as a standalone program. Interval takes an
argument in minutes; for example, Interval: 10 would sample every 10 minutes.
To enable mrtg to run as a stand-alone program, the syntax is RunAsDaemon: yes.

Several directives are useful for controlling the appearance of your graphs. If you
don’t want all four graphs, you can suppress the display of selected graphs with
the Suppress directive. For example, Suppress[Testing]: my will suppress the
monthly and yearly graphs. Use d and w for daily and weekly graphs. You may
use whatever combination you want.

One annoyance with mrtg is that it scales each graph to the largest value that has
to be plotted. mrtg shouldn’t be faulted for this; it is simply using what informa-
tion it has. But the result can be graphs with some very unusual vertical scales and
sets of graphs that you can’t easily compare. This is something you’ll definitely
want to adjust.

You can work around this problem with several of the directives mrtg provides, but
the approach you choose will depend, at least in part, on the behavior of the data
you are collecting. The Unscaled directive suppresses automatic scaling of data. It

Network-Monitoring Tools 211

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

uses the value from MaxBytes as maximum on the vertical scale. You can edit
MaxBytes if you are willing to have data go off the top of the graph. If you change
this, you should use AbsMax to set the largest value that you expect to see.

Other commands allow you to change the color, size, shape, and background of
your graphs. You can also change the directions that graphs grow. Here is an
example that changes the display of data to bits per second, has the display grow
from left to right, displays only the daily and weekly graphs, and sets the vertical
scale to 4000 bits per second:

Options[Testing]: growright,bits
Suppress[Testing]: my
MaxBytes[Testing]: 500
AbsMax[Testing]: 1250000
Unscaled[Testing]: dw

Notice that you still need to give MaxBytes and AbsMax in bytes.

Many more keywords are available. Only the most common have been described
here, but these should be more than enough to meet your initial needs. See the
mrtg sample configuration file and documentation for others.

Once you have the configuration file, use indexmaker to create a main page for all
the interfaces on a device. In its simplest form, you merely give the configuration
file and the destination file:

bsd2# indexmaker mrtg.cfg > /usr/local/www/data/mrtg/index.html

You may specify a router name and a regular expression that will match a subset
of the interfaces if you want to limit what you are looking at. For example, if you
have a switch with a large number of ports, you may want to monitor only the
uplink ports.

You’ll probably want to run mrtg manually a couple of times. Here is an example
using the configuration file test.cfg:

bsd2# mrtg test.cfg
Rateup WARNING: .//rateup could not read the primary log file for testing
Rateup WARNING: .//rateup The backup log file for testing was invalid as well
Rateup WARNING: .//rateup Can't remove testing.old updating log file
Rateup WARNING: .//rateup Can't rename testing.log to testing.old updating log f
ile

The first couple of runs will generate warning messages about missing log files and
the like. These should go away after a couple of runs and can be safely ignored.

Finally, you’ll want to make an appropriate entry in your contab file. For example,
this entry will run mrtg every five minutes on a FreeBSD system:

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /usr/ports/net/mrtg/work/mrtg-2.8.12/r
un/mrtg /usr/ports/net/mrtg/work/mrtg-2.8.12/run/mrtg.cfg > /dev/null 2>&1

212 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

This should be all on a single line. The syntax is different on some systems, such
as Linux, so be sure to check your local manpages.

rrd and the Future of mrtg

The original version of mrtg had two deficiencies, a lack of both scalability and
portability. Originally, mrtg was able to support only about 20 routers or switches.
It used external utilities to perform SNMP queries and create GIF images—snmpget
from CMU SNMP and pnmtogif from the PBM package, respectively.

These issues were addressed by MRTG-2, the second and current version of mrtg.
Performance was improved when Dave Rand contributed rateup to the project.
Written in C, rateup improved both graph generation and handling of the log files.

The portability problem was addressed by two changes. First, Simon Leinen’s Perl
script for collecting SNMP is now used, eliminating the need for CMU SNMP.
Second, Thomas Boutell’s GD library is now used to directly generate graphics. At
this point, mrtg is said to reasonably support querying 500 ports on a regular
basis.

As an ongoing project, the next goal is to further improve performance and flexi-
bility. Toward this goal, Tobias Oetiker has written rrd (Round Robin Database), a
program to further optimize the database and the graphing portion of mrtg.
Although MRTG-3, the next version of mrtg, is not complete, rrd has been com-
pleted and is available as a standalone program. MRTG-3 will be built on top of rrd.

rrd is designed to store and display time-series data. It is written in C and is avail-
able under the GNU General Public License. rrd stores data in a round-robin
fashion so that older data is condensed and eventually discarded. Consequently,
the size of the database stabilizes and will not continue to grow over time.

cricket

A number of frontends are available for rrd, including Jeff Allen’s cricket. Allen,
working at WebTV, was using mrtg but found that it really wasn’t adequate to sup-
port the 9000 targets he needed to manage. Rather than wait for MRTG-3, he
developed cricket. At least superficially, cricket has basically the same uses as
mrtg. But cricket has been designed to be much more scalable. cricket is orga-
nized around the concept of a configuration tree. The configuration files for
devices are organized in a hierarchical manner so the general device properties
can be defined once at a higher level and inherited, while exceptions can be
simply defined at a lower level of the hierarchy. This makes cricket much more
manageable for larger organizations with large numbers of devices. Since it is
designed around rrd, cricket is also much more efficient.

Network-Monitoring Tools 213

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

cricket does a very nice job of organizing the pages that it displays. To access the
pages, you will begin by executing the grapher.cgi script on the server. For
example, if the server were at 172.16.2.236 and CGI scripts were in the cgi-bin
directory, you would point your browser to the URL http://172.16.2.236/cgi-bin/
grapher.cgi. This will present you with a page organized around types of devices,
e.g., routers, router interfaces, switches, along with descriptions of each. From this
you will select the type of device you want to monitor. Depending on your
choice, you may be presented with a list of monitored devices items or with
another subhierarchy such as that shown in Figure 8-7.

Figure 8-7. cricket router interfaces

214 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You can quickly drill down to the traffic graph for the device of interest.
Figure 8-8 shows an example of a traffic graph for a router interface on a router
during a period of very low usage (but you get the idea, I hope).

As you can see, this looks an awful lot like the graphs from mrtg. Unlike with
mrtg, you have some control over which graphs are displayed from the web page.
Short-Term displays both hourly and daily graphs, Long-Term displays both

Figure 8-8. Traffic on a single interface

Network-Monitoring Tools 215

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

weekly and monthly graphs, and Hourly, Daily, and All are just what you would
expect.*

Of course, you will need to configure each option for mrtg to work correctly. You
will need to go through the hierarchy and identify the appropriate targets, set
SNMP community strings, and add any descriptions that you want. Here is the
interfaces file in the router-interfaces subdirectory of the cricket-config directory,
the directory that contains the configuration tree. (This file corresponds to the
output shown in Figure 8-8.)

target --default--
 router = NLCisco
 snmp-community=public

target Ethernet0_0
 interface-name = Ethernet0/0
 short-desc = "Gateway to Internet"

target Ethernet0_1
 interface-name = Ethernet0/1
 short-desc = "172.16.1.0/24 subnet"

target Ethernet0_2
 interface-name = Ethernet0/2
 short-desc = "172.16.2.0/24 subnet"

target Ethernet0_3
 interface-name = Ethernet0/3
 short-desc = "172.16.3.0/24 subnet"

target Null0
 interface-name = Null0
 short-desc = ""

While this may look simpler than an mrtg configuration file, you’ll be dealing with
a large number of these files. If you make a change to the configuration tree, you
will need to recompile the configuration tree before you run cricket. As with mrtg,
you will need to edit your crontab file to execute the collector script on a regular
basis.

On the whole, cricket is considerably more difficult to learn and to configure than
mrtg. One way that cricket gains efficiency is by using CGI scripts to generate web
pages only when they are needed rather than after each update. The result is that
the pages are not available unless you have a web server running on the same
computer that cricket is running on. Probably the most difficult part of the cricket
installation is setting up your web server and the cricket directory structure so that

* mrtg uses Daily to mean an hour-by-hour plot for 24 hours. cricket uses Hourly to mean the same thing.
This shouldn’t cause any problems.

216 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

the scripts can be executed by the web server without introducing any security
holes. Setting up a web server and web security are beyond the scope of this
book.

Unless you have such a large installation that mrtg doesn’t meet your needs, my
advice would be to start with mrtg. It’s nice to know that cricket is out there. And
if you really need it, it is a solid package worth learning. But mrtg is easier to get
started with and will meet most people’s needs.

RMON
As we saw in the last chapter, SNMP can be used to collect network traffic at an
interface. Unfortunately, SNMP is not a very efficient mechanism in some circum-
stances. Frequent collection of data over an overused, low-bandwidth WAN link
can create the very problems you are using SNMP to avoid. Even after you have
the data, a significant amount of processing may still be needed before the data is
in a useful form.

A better approach is to do some of the processing and data reduction remotely
and retrieve data selectively. This is one of the ideas behind the remote moni-
toring (RMON) extensions to SNMP. RMON is basically a mechanism to collect and
process data at the point of collection. RMON provides both continuous and
offline data collection. Some implementation can even provide remote packet cap-
ture. The RMON mechanism may be implemented in software on an existing
device, in dedicated hardware such as an add-on card for a device, or even as a
separate device. Hardware implementations are usually called RMON probes.

Data is organized and retrieved in the same manner as SNMP data. Data organiza-
tion is described in an RMON MIB, identified by OIDs, and retrieved with SNMP
commands. To the users, RMON will seem to be little more than an expanded or
super MIB. To implementers, there are significant differences between RMON and
traditional SNMP objects, resulting from the need for continuous monitoring and
remote data processing.

Originally, RMON data was organized in nine groups (RFCs 1271 and 1757) and
later expanded to include a tenth group (RFC 1513) for token rings:

Statistics group
Offers low-level utilization and error statistics

History group
Provides trend analysis data based on the data from the statistics group

RMON 217

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Alarm group
Provides for the user to configure alarms

Event group
Logs and generates traps for user-defined rising thresholds, falling thresholds,
and matched packets

Host group
Collects statistics based on MAC addresses

Top N Hosts group
Collects host statistics for the busiest hosts

Packet Capture group
Controls packet capture

Traffic Matrix group
Collects and returns errors and utilization data based on pairs of addresses

Filter group
Collects information based on definable filters

Token-ring group
Collects low-level token-ring statistics

RMON implementations are often limited to a subset of these groups. This isn’t
unrealistic, but you should be aware of what you are getting when paying the pre-
mium prices often required for RMON support.

Provided you have the RMON MIB loaded, you can use snmptranslate to explore
the structure of these groups. For example, here is the structure of the statistics
group:

bsd2# snmptranslate -Tp rmon.statistics
+--statistics(1)
 |
 +--etherStatsTable(1)
 |
 +--etherStatsEntry(1)
 |
 +-- -R-- Integer etherStatsIndex(1)
 | Range: 1..65535
 +-- -RW- ObjID etherStatsDataSource(2)
 +-- -R-- Counter etherStatsDropEvents(3)
 +-- -R-- Counter etherStatsOctets(4)
 +-- -R-- Counter etherStatsPkts(5)
 +-- -R-- Counter etherStatsBroadcastPkts(6)
 +-- -R-- Counter etherStatsMulticastPkts(7)
 +-- -R-- Counter etherStatsCRCAlignErrors(8)
 +-- -R-- Counter etherStatsUndersizePkts(9)
 +-- -R-- Counter etherStatsOversizePkts(10)
 +-- -R-- Counter etherStatsFragments(11)
 +-- -R-- Counter etherStatsJabbers(12)

218 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

 +-- -R-- Counter etherStatsCollisions(13)
 +-- -R-- Counter etherStatsPkts64Octets(14)
 +-- -R-- Counter etherStatsPkts65to127Octets(15)
 +-- -R-- Counter etherStatsPkts128to255Octets(16)
 +-- -R-- Counter etherStatsPkts256to511Octets(17)
 +-- -R-- Counter etherStatsPkts512to1023Octets(18)
 +-- -R-- Counter etherStatsPkts1024to1518Octets(19)
 +-- -RW- String etherStatsOwner(20)
 | Textual Convention: OwnerString
 +-- -RW- EnumVal etherStatsStatus(21)
 Textual Convention: EntryStatus
 Values: valid(1), createRequest(2), underCreation(3), invalid(
4)

You retrieve the number of Ethernet packets on each interface exactly as you
might guess:

bsd2# snmpwalk 172.16.1.9 public rmon.1.1.1.5
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.1 = 36214
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.2 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.3 = 3994
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.4 = 242
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.5 = 284
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.6 = 292
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.7 = 314548
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.8 = 48074
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.9 = 36861
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.10 = 631831
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.11 = 104
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.12 = 457157
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.25 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.26 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.27 = 0

(This is data from a recently installed 12 port switch. The last three interfaces are
currently unused uplink ports.)

The primary problem with RMON, as described, is that it is limited to link-level
traffic. This issue is being addressed with RMON2 (RFC 2021), which adds another
10 groups. In order to collect network-level information, however, it is necessary
to delve into packets. This is processing intensive, so it is unlikely that RMON2
will become common in the near future. For most purposes, the first few RMON
groups should be adequate.

One final word of warning. While RMON may lessen network traffic, RMON can
be CPU intensive. Make sure you aren’t overloading your system when collecting
RMON data. It is ironic that tools designed to analyze traffic to avoid poor perfor-
mance can actually cause that performance. To make truly effective use of an
RMON probe, you should consider using a commercial tool designed specifically
for your equipment and goals.

Microsoft Windows 219

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Microsoft Windows
Apart from the basic text-based tools such as netstat, Microsoft doesn’t really
include many useful utilities with the consumer versions of Windows. But if you
are using Windows NT or Windows 2000, you have more options. The netmon
tool is included with the server versions. A brief description of how this tool can
be used to capture traffic was included in Chapter 5. netmon can also be used to
capture basic traffic information.

Figure 8-9 shows netmon’s basic capture screen. The upper-left pane shows five
basic graphs for real-time traffic—network utilization, frames per second, bytes per
second, broadcasts per second, and multicasts per second. The second pane on
the left lists current connections between this and other hosts. The details of these
connections are provided in the bottom pane. The pane on the right gives overall
network statistics. To use netmon in this fashion, just start the program and select
Capture ➝ Start. In standalone mode, netmon functions as a point-monitoring tool,
but as noted in Chapter 5, it can be used with agents to collect traffic throughout
the network.

For general systems monitoring, perfmon (Performance Monitor) is a better choice.
It is also supplied with both the workstation and server versions. perfmon is a gen-

Figure 8-9. netmon traffic monitoring

220 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

eral performance-monitoring tool, not just a network-monitoring tool. You can use
it to measure system performance (including CPU utilization) and I/O perfor-
mance, as well as basic network performance. If appropriately configured, it will
also monitor remote machines.

Data collected is organized by object type, e.g., groups of counters. For example,
with the UDP object, there are counters for the number of datagrams sent per
second, datagrams received per second, datagrams received errors, etc. For net-
work monitoring, the most interesting objects include ICMP, IP, Network Inter-
face, RAS Ports, RAS Total, TCP, and UDP.

perfmon provides four views—alert, chart, log, and report. With alert view you can
set a threshold and be notified when a counter exceeds or drops below it. Chart
view gives a real-time graph for selected counters. You can customize the sam-
pling rate and scale. Log view logs all the counters for an object to a file periodi-
cally. Finally, report view displays numerical values in a window for selected
counters. Each view is independent of the others. Figure 8-10 shows the process
of adding a monitored object to the chart view for the Windows NT version.

The Windows 2000 version has received a slight face-lift but seems to be the same
basic program. perfmon can be particularly useful if you aren’t sure whether you
have a host problem or a network problem. Both netmon and perfmon are

Figure 8-10. Windows NT perfmon

Microsoft Windows 221

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

described in the Windows help files as well as several books described in
Appendix B.

ntop, mrtg, and cricket on Windows

All three major packages described in this chapter—ntop, mrtg, and cricket—are
available for Windows systems.

The developers of ntop have provided you with two choices. You can compile it
yourself for free. Both the Unix and Windows versions share the same source tree.
Or, if you can’t easily compile it, you can buy a precompiled binary directly from
them. Since ntop is basically a point-monitoring tool, you’ll likely want to run it on
multiple machines if you have a switched network or multiple subnetworks.

Since mrtg and cricket are primarily written in Perl, it is not surprising that they
will run under Windows. You’ll find mrtg fairly straightforward to set up. While
cricket is said to work, at the time this was written there were no published direc-
tions on how to set it up, and the Unix directions don’t generalize well.

Setting up mrtg for Windows is not that different from setting it up under Unix. To
get mrtg running, you’ll need to download a copy of mrtg with the binary for
rateup. This was included with the copy of mrtg I downloaded, but the mrtg web
page for NT has a separate link should you need it. You will need a copy of Perl
along with anything else you may need to get Perl running. The mrtg site has links
to the Active Perl site. Installing Active Perl requires an updated version of the
Windows Installer, available at their site. You’ll need to provide some mechanism
for running mrtg on a regular basis. The file fiveminute.zip provided a program to
add mrtg to the Windows NT scheduler. Finally, you’ll want to provide some
mechanism to view the output from mrtg. This could be a web server or, at a min-
imum, a web browser.

Once you have unpacked everything, you’ll need to edit the mrtg script so that NT
rather than Unix is the operating system. This amounts to commenting out the
fourth line of the script and uncommenting the fifth:

#$main::OS = 'UNIX';
$main::OS = 'NT';

Also, make sure rateup is in the same directory as mrtg.

Creating the configuration file and running the script is basically the same as with
the Unix version. You’ll want to run cfgmaker and indexmaker. And, as with the
Unix version, you’ll need to edit the configuration file to set WorkDir:. You will

222 Chapter 8: Performance Measurement Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

need to invoke Perl explicitly and use explicit paths with these scripts. For
example, here are the commands to run indexmaker and mrtg on my system:

D:\mrtg\run>perl d:\mrtg\run\indexmaker d:\mrtg\run\mrtg.cfg > d:\apache\htdocs\
mrtg
D:\mrtg\run>perl d:\mrtg\run\mrtg d:\mrtg\run\mrtg.cfg

On my system, D:\mrtg\run is the directory where mrtg is installed and D:\apache\
htdocs\mrtg is where the output is put so it can be accessed by the web server.

Finally, you’ll need to make some provision to run mrtg periodically. As noted,
you can use supplied code to add it to the scheduler. Alternately, you can edit the
configuration file to have it run as a daemon. For example, you could add the fol-
lowing to your configuration file:

RunAsDaemon: yes
Interval: 5

You’ll want to add mrtg to the startup group so that it will be run automatically
each time the system is rebooted.

getif revisited

In Chapter 7, we introduced getif but did not discuss the graph tab. Basically, the
graph tab provides for two types of graphs—graphs of ping round-trip delays and
graphs of SNMP objects. The latter allows us to use getif as a traffic-monitoring
tool.

Graphing SNMP objects is a three-step process. First, you’ll need to go back to the
Parameters tab and identify the remote system and set its SNMP community
strings. Next, you’ll need to visit the MBrowser tab and select the objects you want
to graph. Locate the objects of interest by working your way down the MIB tree in
the large pane on the upper left of the window. Visit the object by clicking the
Walk button. The object and its value should be added to the large lower pane.
Finally, select the item from the large pane and click on the Add to Graph button.
(Both of these tabs were described in Chapter 7.)

You can now go to the Graph tab. Each of the selected variables should have
been added to the legend to the right of the chart. You can begin collecting data
by clicking on the Start button. Figure 8-11 shows one such graph.

Microsoft Windows 223

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The controls along the bottom of the page provide some control over the appear-
ance of the chart and over the sampling rate.

Figure 8-11. getif graph

224
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9

9
Testing Connectivity
Protocols

This chapter and the next describe tools used to investigate protocol-specific
behavior. In this chapter, I describe tools used to explore connectivity protocols,
protocols that work at the network and transport levels to provide connectivity.
Chapter 10 focuses on tools used in testing protocols at the application level.

I begin with a description of packet generation tools. Custom packet generators,
like hping and nemesis, will allow you to create custom packets to test protocols.
Load generators, like MGEN, will let you flood your network with packets to see
how your network responds to the additional traffic. We conclude with a brief dis-
cussion of network emulators and simulators.

Many of the tools described in this chapter and the next are not tools that you will
need often, if ever. But should the need arise, you will want to know about them.
Some of these tools are described quite briefly. My goal is to familiarize you with
the tools rather than to provide a detailed introduction. Unless you have a specific
need for one of these tools, you’ll probably want to just skim these chapters ini-
tially. Should the need arise, you’ll know the appropriate tool exists and can turn
to the references for more information.

Packet Injection Tools
This first group of tools generates and injects packets into your network. Basi-
cally, there are two different purposes for generating packets, each with its own
general approach and its own set of tools.

First, to test software configuration and protocols, it may be necessary to control
the content of individual fields within packets. For example, customized packets
can be essential to test whether a firewall is performing correctly. They can also be
used to investigate problems with specific protocols or to collect information such

Packet Injection Tools 225

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

as path MTU. They are wonderful learning tools, but using them can be a lot of
work and will require a very detailed knowledge of the relevant protocols.

The second reason for generating packets is to test performance. For this purpose,
you typically generate a large number of packets to see how your network or
devices on the network respond to the increased load. We have already done some
of this. In Chapter 4, we looked at tools that generated streams of packets to analyze
link and path performance. Basically, any network benchmark will have a packet
generator as a component. Typically, however, you won’t have much control over
this component. The tools described here give you much greater control over the
number, size, and spacing of packets. Unlike custom packet generators, load genera-
tors typically won’t provide much control over the contents of the packets.

These two uses are best thought of as extremes on a continuum rather than mutu-
ally exclusive categories. Some programs lie somewhere between these two
extremes, providing a moderate degree of control over packet contents and the
functionality to generate multiple packets. There is no one ideal tool, so you may
want to become familiar with several, depending on your needs.

Custom Packets Generators

A number of different programs will construct custom packets for you. The utili-
ties vary considerably in the amount of control you actually have. As all require a
thorough understanding of the underlying protocols, none of these tools are par-
ticularly easy to use. All of the ones I am familiar with are command-line pro-
grams. This is really a plus since, if you find yourself using these programs heavily,
you will want to call them from scripts.

Two programs, hping and nemesis, are briefly described here. A number of addi-
tional tools are cited at the end of this section in case these utilities don’t provide
the exact functionality you want or aren’t easily ported to your system. Of the two,
hping is probably the better known, but nemesis has features that recommend it.
Neither is perfect.

Generally, once you have the idea of how to use one of these tools, learning
another is simply a matter of identifying the options of interest. Most custom
packet generators have a reasonable set of defaults that you can start with.
Depending on what you want to do, you select the appropriate options to change
just what is necessary—ideally as little as possible.

Custom packet tools have a mixed reputation. They are extremely powerful tools
and, as such, can be abused. And some of their authors seem to take great pride
in this potential. These are definitely tools that you should use with care. For some
purposes, such as testing firewalls, they can be indispensable. Just make sure it is
your firewall, and not someone else’s, that you are testing.

226 Chapter 9: Testing Connectivity Protocols

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

hping

hping, or hping2 as it is sometimes called, was written by Salvatore Sanfilippo.
The documentation is a little rough at times and suggests uses that are inappro-
priate. Nonetheless, it is a powerful, versatile program.

When run with the default parameters, it looks a lot like ping and is useful for
checking connectivity:

lnx1# hping 205.153.63.30
eth0 default routing interface selected (according to /proc)
HPING 205.153.63.30 (eth0 205.153.63.30): NO FLAGS are set, 40 headers + 0 data
bytes
46 bytes from 205.153.63.30: flags=RA seq=0 ttl=126 id=786 win=0 rtt=4.4 ms
46 bytes from 205.153.63.30: flags=RA seq=1 ttl=126 id=1554 win=0 rtt=4.5 ms
46 bytes from 205.153.63.30: flags=RA seq=2 ttl=126 id=2066 win=0 rtt=4.6 ms
46 bytes from 205.153.63.30: flags=RA seq=3 ttl=126 id=2578 win=0 rtt=5.5 ms
46 bytes from 205.153.63.30: flags=RA seq=4 ttl=126 id=3090 win=0 rtt=4.5 ms

--- 205.153.63.30 hping statistic ---
5 packets tramitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 4.4/4.7/5.5 ms

At first glance, the output looks almost identical to ping’s. Actually, by default,
hping does not send ICMP packets. It sends TCP packets to port 0. (You can
change ports with the -p option.) Since this port is almost never used, most sys-
tems will reply with a RESET message. Consequently, hping will sometimes get
responses from systems that block ping. On the other hand, it may trigger intru-
sion detection systems as well. If you want to mimic ping, you can use the -1
argument, which specifies ICMP. Or, if you prefer, you can use -2 to send UDP
packets.

When using ICMP, this is what one of the replies from the output looks like:

46 bytes from 205.153.63.30: icmp_seq=0 ttl=126 id=53524 rtt=2.2 ms

Otherwise, the output will be almost identical to the default behavior.

If you want more information, you can use -V for verbose mode. Here is what a
reply looks like with this option:

46 bytes from 172.16.2.236: flags=RA seq=0 ttl=63 id=12961 win=0 rtt=1.0 ms
 tos = 0 len = 40
 seq = 0 ack = 108515096
 sum = a5bc urp = 0

There is also a debug mode if you are having problems with hping.

Other options that control the general behavior of hping include -c to set the
number of packets to send, -i to set the time between packets, -n for numeric

Packet Injection Tools 227

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

output (no name resolution), and -q for quiet output (just summary lines when
done).

Another group of options allows you to control the contents of the packet header.
For example, the -a option can be used to specify an arbitrary source address for a
packet. Here is an example:

lnx1# hping2 -a 205.153.63.30 172.16.2.236
eth0 default routing interface selected (according to /proc)
HPING 172.16.2.236 (eth0 172.16.2.236): NO FLAGS are set, 40 headers + 0 data
bytes

--- 172.16.2.236 hping statistic ---
4 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

In this case, the packet has been sent from a computer whose actual source
address is 172.16.3.234. The packet, however, will have 205.153.63.30 in its IP
header as the source address. Of course, any reply from the destination will go
back to the spoofed source address, not the actual source address. If this a valid
address that belongs to someone else, they may not look kindly on your testing.

Spoofing source addresses can be useful when testing router and firewall setup,
but you should do this in a controlled environment. All routers should be config-
ured to drop any packets with invalid source addresses. That is, if a packet claims
to have a source that is not on the local network or that is not from a device for
which the local network should be forwarding a packet, then the source address is
illegal and the packet should be dropped. By creating packets with illegal source
addresses, you can test your routers to be sure they are, in fact, dropping these
packets. Of course, you need to use a tool like ethereal or tcpdump to see what is
getting through and what is blocked.*

The source port can be changed with the -s option. The TTL field can be set with
the -t option. There are options to set the various TCP flags: -A for ACK, -F for
FIN, -P for PUSH, -R for RST, -S for SYN, and -U for URG. Oddly, although you
can set the urgent flag, there doesn’t seem to be a way to set the urgent pointer.
You can set the packet size with the -d option, set the TCP header length with the
-O option, and read the packet’s data from a file with the -E option. Here is an
example of sending a DNS packet using data in the file data.dns:

bsd2# hping -2 -p 53 -E data.dns -d 31 205.153.63.30

hping generated an error on my system with this command, but the packet was
sent correctly.

* If this is all you are testing, you may prefer to use a specialized tool like egressor.

228 Chapter 9: Testing Connectivity Protocols

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Be warned, constructing a usable data file is nontrivial. Here is a crude C program
that will construct the data needed for this DNS example:

#include <stdio.h>
main()
{
FILE *fp;

fp=fopen("data.dns", "w");
fprintf(fp, "%c%c%c%c", 0x00, 0x01, 0x01, 0x00);
fprintf(fp, "%c%c%c%c", 0x00, 0x01, 0x00, 0x00);
fprintf(fp, "%c%c%c%c", 0x00, 0x00, 0x00, 0x00);
fprintf(fp, "%c%s", 0x03, "www");
fprintf(fp, "%c%s", 0x05, "cisco");
fprintf(fp, "%c%s%c", 0x03, "com", 0x00);
fprintf(fp, "%c%c%c%c", 0x00, 0x01, 0x00, 0x01);
fclose(fp);
}

Even if you don’t use C, it should be fairly clear how this works. The fopen com-
mand creates the file, and the fprintf commands write out the data. %c and %s are
used to identify the datatype when formatting the output. The remaining argu-
ments are the actual values for the data. (I’m sure there are cleaner ways to create
this data, but this will work.)

Finally, hping can also be put in dump mode so that the contents of the reply
packets are displayed in hex:

bsd2# hping -c 1 -j 172.16.2.230
HPING 172.16.2.230 (ep0 172.16.2.230): NO FLAGS are set, 40 headers + 0 data
bytes
46 bytes from 172.16.2.230: flags=RA seq=0 ttl=128 id=60017 win=0 rtt=2.1 ms
 0060 9706 2222 0060 088f 5f0e 0800 4500
 0028 ea71 0000 8006 f26b ac10 02e6 ac10
 02ec 0000 0a88 0000 0000 1f41 a761 5014
 0000 80b3 0000 0000 0000 0000

--- 172.16.2.230 hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 2.1/2.1/2.1 ms

Numerous other options are described in hping’s documentation. You can get a
very handy summary of options if you run hping with the -h option. I strongly rec-
ommend you print this to use while you are learning the program.

nemesis

nemesis, whose author is identified only as Obecian in the documentation, is actu-
ally a family of closely related command-line tools designed to generate packets.
They are nemesis-arp, nemesis-dns, nemesis-icmp, nemesis-igmp, nemesis-ospf,
nemesis-rip, nemesis-tcp, and nemesis-udp. Each, as you might guess, is designed

Packet Injection Tools 229

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

to construct and send a particular type of packet. The inclusion of support for pro-
tocols like OSPF or IGMP really sets nemesis apart from similar tools.

Here is an example that sends a TCP packet:

bsd2# nemesis-tcp -v -D 205.153.63.30 -S 205.153.60.236

TCP Packet Injection -=- The NEMESIS Project 1.1
(c) 1999, 2000 obecian <obecian@celerity.bartoli.org>

205.153.63.30
[IP] 205.153.60.236 > [Ports] 42069 > 23
[Flags]
[TCP Urgent Pointer] 2048
[Window Size] 512
[IP ID] 0
[IP TTL] 254
[IP TOS] 0x18
[IP Frag] 0x4000
[IP Options]
Wrote 40 bytes

TCP Packet Injected

The -v option is for verbose mode. Without this option, the program sends the
packet but displays nothing on the screen. Use this option to test your commands
and then omit it when you embed the commands in scripts. The -S and -D options
give the source and destination addresses. You can use the -x and -y to set source
and destination ports. If you want to specify flags, you can use the -f option. For
example, if you add -fS -fA to the command line, the SYN and ACK flags will be
set. (Many firewalls will block packets with some combinations of SYN and ACK
flags but will pass packets with different combinations. Being able to set the SYN
and ACK flags can be useful in testing these firewalls.)

Here is an example setting the SYN and ACK flags and the destination port:

bsd2# nemesis-tcp -S 172.16.2.236 -D 205.153.63.30 -fS -fA -y 22

Notice the program performs silently without the -v option. A number of addi-
tional options are described in the Unix manpages.

The other programs in the nemesis suite work pretty much the same way. Here is
an example for sending an ICMP ECHO REQUEST:

bsd2# nemesis-icmp -v -S 172.16.2.236 -D 205.153.63.30 -i 8

ICMP Packet Injection -=- The NEMESIS Project 1.1
(c) 1999, 2000 obecian <obecian@celerity.bartoli.org>

[IP] 172.16.2.236 > 205.153.63.30
[Type] ECHO REQUEST
[Sequence number] 0

230 Chapter 9: Testing Connectivity Protocols

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

[IP ID] 0
[IP TTL] 254
[IP TOS] 0x18
[IP Frag] 0x4000

Wrote 48 bytes

ICMP Packet Injected

The -i option specifies the type field in the ICMP header. In this case, the 8 is the
code for an ECHO_REQUEST message. The destination should respond with an
ECHO_REPLY.

The -P option can be used to read the data for the packet from a file. For
example, here is the syntax to send a DNS query.

bsd2# nemesis-dns -v -S 172.16.2.236 -D 205.153.63.30 -q 1 -P data.dns

DNS Packet Injection -=- The NEMESIS Project 1.1
(c) 1999, 2000 obecian <obecian@celerity.bartoli.org>

[IP] 172.16.2.236 > 205.153.63.30
[Ports] 42069 > 53

[# Questions] 1
[# Answer RRs] 0
[# Authority RRs] 0
[# Additional RRs] 0

[IP ID] 420
[IP TTL] 254
[IP TOS] 0x18
[IP Frag] 0x4000
[IP Options]

00 01 01 00 00 01 00 00 00 00 00 00 03 77 77ww
77 05 63 69 73 63 6F 03 63 6F 6D 00 00 01 00 w.cisco.com....
01 .

Wrote 40 bytes

DNS Packet Injected

Although it appears the data has been sent correctly, I have seen examples when
the packets were not correctly sent despite appearances. So, be warned! It is
always a good idea to check the output of a packet generator with a packet sniffer
just to make sure you are getting what you expect.

Other tools

There are a number of other choices. ipfilter is a suite of programs for creating
firewalls. Supplied with some operating systems, including FreeBSD, ipfilter has

Packet Injection Tools 231

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

been ported to a number of other platforms. One of the tools ipfilter includes is
ipsend. Designed for testing firewalls, ipsend is yet another tool to construct
packets. Here is an example:

bsd2# ipsend -v -i ep0 -g 172.16.2.1 -d 205.153.63.30
Device: ep0
Source: 172.16.2.236
Dest: 205.153.63.30
Gateway: 172.16.2.1
mtu: 1500

ipsend is not the most versatile of tools, but depending on what system you are
using, you may already have it installed.

Yet another program worth considering is sock. sock is described in the first
volume of Richard W. Stevens’ TCP/Illustrated and is freely downloadable. While
sock doesn’t give the range of control some of these other programs give, it is a
nice pedagogical tool for learning about TCP/IP. Beware, there are other totally
unrelated programs called sock.

Finally, some sniffers and analyzers support the capture and retransmission of
packets. Look at the documentation for the sniffer you are using, particularly if it is
a commercial product. If you decide to use this feature, proceed with care. Retrans-
mission of traffic, if used indiscriminately, can create some severe problems.

Load Generators

When compared to custom packet generators, load generators are at the opposite
extreme of the continuum for packet injectors. These are programs that generate
traffic to stress-test a network or devices on a network. These tools can help you
judge the performance of your network or diagnose problems. They can also pro-
duce a considerable strain on your network. You should use these tools to test
systems offline, perhaps in a testing laboratory prior to deployment or during
scheduled downtime. Extreme care should be taken before using these tools on a
production network. Unless you are absolutely convinced that what you are doing
is safe and reasonable, don’t use these tools on production networks.

Almost any application can be used to generate traffic. A few tools, such as ping
and ttcp, are particularly easy to use for this purpose. For example, by starting
multiple ping sessions in the background, by varying the period between packets
with the -i option, and by varying the packet sizes with the -s option, you can
easily generate a wide range of traffic loads. Unfortunately, this won’t generate the
type of traffic you may need for some types of tests. Two tools, spray and mgen,
are described here. The better known of these is probably spray. (It was intro-
duced in Chapter 4.) It is also frequently included with systems so you may
already have a copy. mgen is one of the most versatile.

232 Chapter 9: Testing Connectivity Protocols

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

spray

spray is useful in getting a rough idea of a computer’s network performance, par-
ticularly its interface. spray, on the local computer, communicates with the rpc.
sprayd daemon on the remote system being tested. (You’ll need to make sure this
is running on the remote system.) It effectively floods the remote system with a
large number of fixed-length UDP packets. The remote daemon, generally started
by inetd, receives and counts these packets. The local copy of spray queries the
remote daemon to determine the number of packets that were successfully

socket and netcat
While they don’t fit cleanly into this or the next category, netcat (or nc) and
Juergen Nickelsen’s socket are worth mentioning. (The netcat documentation
identifies only the author as Hobbit.) Both are programs that can be used to
establish a connection between two machines. They are useful for debugging,
moving files, and exploring and learning about TCP/IP. Both can be used from
scripts.

You’ll need to start one copy as a server (in listen mode) on one computer:

bsd1# nc -l -p 2000

Then start another as a client on a second computer:

bsd2# nc 172.16.2.231 2000

Here is the equivalent command for socket as a server:

bsd1# socket -s 2000

Here is the equivalent command for a client:

bsd2# socket 172.16.2.231 2000

In all examples 2000 is an arbitrarily selected port number.

Here is a simple example using nc to copy a file from one system to another.
The server is opened with output redirected to a file:

bsd1# nc -l -p 2000 > tmp

Then the file is piped to the client:

bsd2# cat README | nc 172.16.2.231 2000
^C punt!

Finally, nc is terminated with a Ctrl-C. The contents of README on bsd1 have
been copied to the file tmp on bsd2. These programs can be cleaner than telnet
in some testing situations since, unlike telnet, they don’t attempt any session
negotiations when started. Play with them, and you are sure to find a number
of other uses.

Packet Injection Tools 233

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

received. By comparing the number of packets sent to the number received, spray
can calculate the number of packets lost.

Here is an example of spray using default values:

bsd2# spray sol1
sending 1162 packets of lnth 86 to 172.16.2.233 ...
 in 0.12 seconds elapsed time
 191 packets (16.44%) dropped
Sent: 9581 packets/sec, 804.7K bytes/sec
Rcvd: 8006 packets/sec, 672.4K bytes/sec

Command-line options allow you to set the number of packets sent (-c), the length
of the packets sent (-l), and a delay between packets in microseconds (-d).

You should not be alarmed that packets are being dropped. The idea is to send
packets as fast as possible so that the interface will be stressed and packets will be
lost. spray is most useful in comparing the performance of two machines. For
example, you might want to see if your server can keep up with your clients. To
test this, you’ll want to use spray to send packets from the client to the server. If
the number of packets dropped is about the same, the machines are fairly evenly
matched. If a client is able to overwhelm a server, then you may have a potential
problem.

In the previous example, spray was run on bsd2, flooding sol1. Here are the
results of running spray on sol1, flooding bsd2 :

sol1# spray bsd2
sending 1162 packets of length 86 to 172.16.2.236 ...
 610 packets (52.496%) dropped by 172.16.2.236
 36 packets/sec, 3144 bytes/sec

Clearly, sol1 is faster than bsd2 since bsd2 is dropping a much larger percentage of
packets.

Unfortunately, while spray can alert you to a problem, it is unable to differentiate
among the various reasons why a packet was lost—collision, slow interface, lack
of buffer space, and so on. The obvious things to look at are the speed of the
computer and its interfaces.

MGEN

The Multi-Generator Toolset or MGEN is actually a collection of tools for gener-
ating traffic, receiving traffic, and analyzing results. The work of Brian Adamson at
the Naval Research Laboratory, this sophisticated set of tools will give you a high
degree of control over the shape of the traffic you generate. However, you aren’t
given much control over the actual UDP packets the utility sends—that’s not the
intent of the tool. For its intended uses, however, you have all the control you are
likely to need.

234 Chapter 9: Testing Connectivity Protocols

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The traffic generation tool is mgen. It can be run in command-line mode or by
using the -g option in graphical mode. At its simplest, it can be used with
command-line options to generate traffic. Here is a simple example:

bsd2# mgen -i ep0 -b 205.153.63.30:2000 -r 10 -s 64 -d 5

MGEN: Version 3.1a3
MGEN: Loading event queue ...
MGEN: Seeding random number generator ...
MGEN: Beginning packet generation ...
 (Hit <CTRL-C> to stop)Trying to set IP_TOS = 0x0
MGEN: Packets Tx'd : 50
MGEN: Transmission period: 5.018 seconds.
MGEN: Ave Tx pkt rate : 9.964 pps.
MGEN: Interface Stats : ep0
 Frames Tx'd : 55
 Tx Errors : 0
 Collisions : 0
MGEN: Done.

In this case, 10 packets per second for 5 seconds yields 50 packets.

Other options for mgen include setting the interface (-i), the destination address
and port (-b), the packet rate (-r), the packet size (-s), and the duration of the flow
in seconds (-d). There are a number of other options described in the documenta-
tion, such as the type of service and TTL fields.

The real strength of mgen comes when you use it with a script. Here is a very
simple example of a script called demo :

START NOW
00001 1 ON 205.153.63.30:5000 PERIODIC 5 64
05000 1 MOD 205.153.63.30:5000 POISSON 20 64
15000 1 OFF

The first line tells mgen to start generating traffic as soon as the program is started.
(An absolute start time can also be specified.) The second line creates a flow with
an ID of 1 that starts 1 millisecond into a run that has port 5000 on 205.153.63.30
as its destination. The traffic is 5 packets per second, and each packet is 64 bytes
in length. The third line tells mgen to modify the flow with ID 1. 5000 millisec-
onds (or 5 seconds) into the flow, packet generation should switch to a Poission
distribution with a rate of 20 packets per second. The last line terminates the flow
at 15,000 milliseconds. While this script has only one flow, a script can contain
many.

Here is an example of the invocation of mgen with a script:

bsd2# mgen -i ep0 demo

MGEN: Version 3.1a3
MGEN: Loading event queue ...

Network Emulators and Simulators 235

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

MGEN: Seeding random number generator ...
MGEN: Beginning packet generation ...
MGEN: Packets Tx'd : 226
MGEN: Transmission period: 15.047 seconds.
MGEN: Ave Tx pkt rate : 15.019 pps.
MGEN: Interface Stats : ep0
 Frames Tx'd : 234
 Tx Errors : 0
 Collisions : 0
MGEN: Done.

Since a Poisson distribution was used for part of the flow, we can’t expect to see
exactly 225 packets in exactly 15 seconds.

For many purposes, mgen is the only tool from the MGEN tool set that you will
need. But for some purposes, you will need more. drec is a receiver program that
can log received data. mgen and drec can be used with RSVP (with ISI’s rsvpd).
You will recall that with RSVP, the client must establish the session. drec has this
capability. Like mgen, drec has an optional graphical interface. In addition to
mgen and drec, the MGEN tool set includes a number of additional utilities that
can be used to analyze the data collected by drec.

One last note on load generators—software load generators assume that the sys-
tems they run on are fast enough to generate enough traffic to adequately load the
system being tested. In some circumstances, this will not be true. For some appli-
cations, dedicated hardware load generators must be used.

Network Emulators and Simulators
Basically, an emulator is a device that sits on a network and mimics the behavior
of network devices or the behavior of part of a system, e.g., subnets. Actual traffic
measurements are made on a network whose behavior is controlled, in part, by
the emulator. Simulators are software systems that model with software the
behavior of the system or networks. A simulator is a totally artificial or synthetic
environment.

At best, network emulators and simulators are very unlikely troubleshooting tools.
But for the extremely ambitious (or desperate), it is possible to investigate the
behavior of a network using these tools. Neither of these approaches is for the
fainthearted or novice. Generally an expensive and complex proposition, there are
two projects that are making these approaches more accessible. If you are really
interested in making the investment in time and effort needed to use emulators or
simulators, read on.

There is a continuum of approaches to investigating the behavior of a network,
ranging from direct measurement at one extreme through emulation to simula-
tion at the opposite extreme. It’s not unusual for emulators to provide limited

236 Chapter 9: Testing Connectivity Protocols

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

simulation features or for simulators to have emulation features. This is certainly
true for the two tools briefly described here.

We have already discussed measurement techniques. But while real measure-
ments have an unquestionable authenticity, a number of problems are associated
with real measurements. Lack of reproducibility is one problem. Scale problems,
such as the cost of increasing the size of the test network, are another concern. If
you are considering implementation issues, then direct measurement can only be
done late in the development cycle, compounding the cost of mistakes. Emulation
and simulation offer lower-cost alternatives.

Simulators have the advantages of being relatively cheap, providing highly repro-
ducible results, scaling very well and inexpensively, and giving results quickly. It is
generally very straightforward to customize the degree of detail in reports so you
can focus on just what is of interest. Simulations vary in degree of abstraction. The
greater the degree of abstraction, the easier it is to focus on what is of interest at
the cost of lost realism. However, if a simulation is poorly designed, the results
can have little basis in reality. Also, some simulators may be implemented prima-
rily for one type of use and may not be appropriate for other uses. From a trouble-
shooting perspective, you might use a simulator to further investigate a hypothesis.
Simulators would provide a way to closely examine behavior to confirm or refute
the hypothesis without creating problems on a production network.

Emulators lie between simulators and live systems. They allow controlled experi-
ments with a high degree of reproducibility. They make it much easier to create
the type of traffic or events of interest. They also provide a mechanism to test real
systems effectively. For example, an emulator might duplicate or approximate the
behavior of an attached device or network. A router emulator might drop traffic or
inject traffic into the actual test network. On the downside, some emulators tend to
be very specialized and are usually platform specific. For troubleshooting, an emu-
lator could be used to stress a network.

NISTNet

NIST Network Emulation Tool (NISTNet) is a general purpose tool that can be used
to emulate the dynamics in an IP network. It was developed by the National Insti-
tute of Standards and Technology (NIST) and is implemented as an extension to
the Linux operating system through a kernel module. Unlike many emulators,
NISTNet supports a fairly heterogeneous approach to emulation. And since it will
run on a fairly standard platform, it is remarkably inexpensive to set up and use.

NISTNet allows you to use a Linux system configured as a router, through an X
Window interface, to model or emulate a number of different scenarios. For
example, you can program both fixed and variable packet delays and random

Network Emulators and Simulators 237

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

reordering of packets. Packets can be dropped either randomly (uniform distribu-
tion) or based on congestion.* Random duplication of packets, bandwidth limita-
tions, or asymmetric bandwidth can all be programmed into NISTNet. You can also
program in jitter and do basic quality-of-service measurements. NISTNet can be
driven by traces from measurements from existing networks. User-defined packet
handlers can be added to the system to add timestamps, do data collection, gen-
erate responses for emulated clients, and so forth.

ns and nam

If you want to consider simulations, you should first look into a pair of programs,
ns and nam. ns is a network simulator, while nam is a network visualization tool.
Both are under development by the Virtual InterNetwork Testbed (VINT) project, a
DARPA-funded research project whose goal is to produce a simulator for studying
scale and protocol interactions. VINT is a collaborative project that involves USC,
Xerox PARC, LBNL, and UCB.

ns is derived from earlier simulation projects such as REAL and has gone through a
couple of incarnations. The kernel is written in C++, while user scripts are written
in MIT’s Object Tool Command Language (OTCL), an object-oriented version of
Tcl. With any simulation software, you should expect a steep learning curve, and
ns is no exception. You’ll need to learn how to use the product, and you will also
need a broad knowledge of simulations in general. To use ns, you’ll need to learn
how to write scripts in OTCL.

Fortunately, the ns project provides a wealth of documentation. The Unix
manpage is more than 30 pages and displays the typical unreadable terseness
associated with Unix manual pages—great for looking up something you already
know (arguably the intended use) but abysmal for learning something new. There
is also a downloadable manual that runs more than 300 pages. However, the best
place to start is with Marc Greis’s tutorial. It is a more manageable 50 pages and
introduces the scripting language in a series of readable examples.

One problem with simulations is that they can produce an overwhelming amount
of information. Even worse, simulation results describe dynamic events that are dif-
ficult to interpret when viewed statically. nam is a visualization tool that animates
network simulations. It is hard to convey the real flavor of nam from a single
black-and-white snapshot, but Figure 9-1 should give you some idea of its value.

This is output from one of the sample scripts that comes with the program. The
basic topology of the network should be obvious. Packets are drawn as colored rect-
angles. Different colors are used for different sources. As the animation is played,

* Gateway emulators that support this kind of behavior are sometimes less charitably called flakeways.

238 Chapter 9: Testing Connectivity Protocols

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

you see the packets generated, queued at devices, move across the network, and
occasionally, dropped from the network. Node 6 in the figure shows a stack of
packets that have been queued and one packet below the node that has been
dropped. (Dropped packets fall to the bottom of the screen.) The control buttons at
the top are used just as you would expect—to play, stop, or rewind the animation.

NISTNet, ns, and nam are all described as ongoing projects. But all three are more
polished than many completed projects.

Microsoft Windows
Few of the tools described in this chapter are available for Windows. Those that
are available include some of the more ambitious tools, however. In particular, ns
and nam have downloadable binaries for Windows. According to the mgen docu-
mentation, a Windows “version may appear shortly.” (netcat has also been ported
to Windows.)

If you are interested in traffic generation for loading purposes, you might look to
ipload. This is a very simple program that will flood a remote device with UDP
packets. You can specify the destination address, destination port, packet rate, and
packet payload. As the program runs, it will display a window with the elapsed
time, the number of packets sent, the packet rate, and the number of bytes per
second. ipload comes from BTT Software in the U.K. and requires no installation.

Several network-oriented benchmark programs available for Windows might also
be of interest. In particular, you may want to look at NetBench, which can be
downloaded from Ziff Davis’s web site, http://www.zdnet.com/etestinglabs/filters/
benchmarks. It is designed to test client/server performance. You’ll need to down-
load both client and server versions of the software.

Figure 9-1. nam example

239
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 10

10
Application-Level Tools

This chapter briefly surveys some additional tools that might be of interest. You
will not need tools that are useful when setting up and debugging programs using
application-level protocols. The chapter is organized around different application
protocols. You will not need the tools described here often. The goal of this
chapter is to make you aware of what is available should the need arise, and the
approach described here may be more useful than the specific tools mentioned.
Unless you have a specific problem, you’ll probably want to just skim this chapter
the first time through.

Application-Protocols Tools
Many network applications are built upon application-level protocols rather than
being built directly upon network- or transport-level protocols. For example, email
readers typically use SMTP to send email and POP2, POP3, or IMAP to receive
email. For some applications, it is difficult to distinguish the application from the
underlying protocol. NFS is a prime example. But when an implementation sepa-
rates the application from its underlying protocol, a number of advantages can be
realized. First, the separation helps to ensure interoperability. A client developed
on one platform can communicate effectively with server software running on a
different system. For example, your web browser can communicate with any web
server because it uses a standardized protocol—HTTP. Tools based on the under-
lying protocol can be used to obtain basic information regardless of the specific
application being used.

Most of the tools described in this chapter collect information at the protocol level.
While it is unlikely that any of these tools will provide the detailed information
you would want for a problem with a specific application, they should help you

240 Chapter 10: Application-Level Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

identify where the problem lies and will help if the problem is with the protocol.
Most applications will have their own approaches to solving problems, e.g., debug
modes, and log files. But you’ll want to be sure the problem is with the applica-
tion before you start with these. If the problem is with the application, you’ll need
to consult the specific documentation for the application.

If you are having trouble setting up a network application for the first time, you
are probably better off rereading the documentation than investing time learning a
new tool. But if you’ve read the directions three or four times in several different
books or if you have used an application many times and it has suddenly stopped
working, then it’s probably time to look at tools. For many of the protocols, you’ll
have a number of choices. You won’t need every tool, so pick the most appro-
priate, convenient tool and start there.

Providing a detailed description of all available tools is beyond the scope of any
reasonable book. This would require both a detailed review of the protocol as
well as a description of the tool. For example, Hal Stern’s 400-page book, Man-
aging NFS and NIS, has three chapters totaling about 125 pages on tools, debug-
ging, and tuning NIS and NFS. What I’m trying to do here is provide you with
enough information to get started and handle simple problems. If you need more
information, you should consider looking at one of the many books, like Stern’s,
devoted to the specific protocol in question. A number of such books are
described in Appendix B.

Generally, these applications are based on a client/server model. The approach
you’ll take in debugging a client may be different from that used to debug a
server. The first step, in general, is to decide if the problem is with the client appli-
cation, the server application, or the underlying protocols. If any client on any
machine can connect to a server, the server and protocols are probably operating
correctly. So when communications fail, the first thing you may want to try is a dif-
ferent client program or a similar client on a different computer. With many proto-
cols, you don’t even need a client program. Many protocols are based on the
exchange of commands in NVT ASCII* over a TCP connection. You can interact
with these servers using any program that can open a TCP connection using NVT
ASCII. Examples include telnet and netcat.

Email

Email protocols such as SMTP, POP2, and POP3 are perfect examples of protocols
where telnet is the optimal tool to begin with. Here is an example using telnet to

* Network Virtual Terminal (NVT) ASCII is a 7-bit U.S. variant of the common ASCII character code. It is
used throughout the TCP/IP protocol. It uses 7 bits to encode a character that is transmitted as an 8-bit
byte with the high-order bit set to 0.

Application-Protocols Tools 241

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

send a brief message via SMTP. (Depending on your system, you may need to
enable local echoing so that what you type will be visible.)

bsd2# telnet mail.lander.edu 25
Trying 205.153.62.5...
Connected to mail.lander.edu.
Escape character is '^]'.
220 mail.lander.edu ESMTP Sendmail 8.9.3/8.9.3; Wed, 22 Nov 2000 13:22:15 -0500
helo 205.153.60.236
250 mail.lander.edu Hello [205.153.60.236], pleased to meet you
mail from:<jsloan@205.153.60.236>
250 <jsloan@205.153.60.236>... Sender ok
rcpt to:<jsloan@lander.edu>
250 jsloan@lander.edu... Recipient ok
data
354 Enter mail, end with "." on a line by itself
This is the body of a message.
.
250 NAA28089 Message accepted for delivery
quit
221 mail.lander.edu closing connection
Connection closed by foreign host.

The process is very simple. telnet is used to connect to port 25, the SMTP port, on
the email server in question. The next four lines were returned by the server. At
this point, we can see that the server is up and that we are able to communicate
with it. To send email, use the commands helo to identify yourself, mail from: to
specify the email source, and rcpt to: to specify the destination. Use names, not IP
addresses, to specify the destination. Notice that no password is required to send
email. (The server is responding with the lines starting with numbers or codes.)
The data command was used to signal the start of the body of the message. The
body is one line long here but can be as long as you like. When you are done
entering the body, it is terminated with a new line that has a single period on it.
The session was terminated with the quit command. Clearly the server is up and
can be reached in this example. Any problems you may be having must be with
your email client.

As noted, you had a pretty good idea the server was working as soon as it replied
and could have quit at this point. There are a couple of reasons for going through
the process of sending a message. First, it gives a nice warm feeling seeing that
everything is truly working. More important, it confirms that the recipient is known
to the server. For example, consider the following:

rcpt to:<jsloane@lander.edu>
550 <jsloane@lander.edu>... User unknown

This reply lets us know that the user is unknown to the system. If you have
doubts about a recipient, you can use the vrfy and expand commands. The vrfy

242 Chapter 10: Application-Level Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

command will confirm the recipient address is valid, as shown in the following
example:

vrfy jsloan
250 Joseph Sloan <jsloan@mail.lander.edu>
vrfy freddy
550 freddy... User unknown

expn fully expands an alias, giving a list of all the recipients named in the alias. Be
warned, expn and vrfy are often seen as security holes and may be disabled. (Pru-
dence would dictate using vrfy and expn only on your own systems.) There are
other commands, but these are enough to verify that the server is available.

Another reason for sending the email is that it gives you something to retrieve, the
next step in testing your email connection. The process of retrieving email with
telnet is similar, although the commands will vary with the specific protocol being
used. Here is an example using a POP3 server:

bsd2# telnet mail.lander.edu 110
Trying 205.153.62.5...
Connected to mail.lander.edu.
Escape character is '^]'.
+OK POP3 mail.lander.edu v7.59 server ready
user jsloan
+OK User name accepted, password please
pass xyzzy
+OK Mailbox open, 1 messages
retr 1
+OK 347 octets
Return-Path: <jsloan@205.153.60.236>
Received: from 205.153.60.236 ([205.153.60.236])
 by mail.lander.edu (8.9.3/8.9.3) with SMTP id NAA28089;
 Wed, 22 Nov 2000 13:23:14 -0500
Date: Wed, 22 Nov 2000 13:23:14 -0500
From: jsloan@205.153.60.236
Message-Id: <200011221823.NAA28089@mail.lander.edu>
Status:

This is the body of a message.
.
dele 1
+OK Message deleted
quit
+OK Sayonara
Connection closed by foreign host.

As you can see, telnet is used to connect to port 110, the POP3 port. As soon as
the first message comes back, you know the server is up and reachable. Next, you
identify yourself using the user and pass commands. This is a quick way to make
sure that the account exists and you have the right password. Often, email readers
give cryptic error messages when you use a bad account or password. The system

Application-Protocols Tools 243

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

has informed us that there is one message waiting for this user. Next, retrieve that
message with the retr command. The argument is the message number. This is the
message we just sent. Delete the message and log off with the dele and quit com-
mands, respectively. (As an aside, sometimes mail clients will hang with overlarge
attachments. You can use the dele command to delete the offending message.)

Of course, this is how a system running POP3 or SMTP is supposed to work. If it
works this way, any subsequent problems are probably with the client, and you
need to turn to the client documentation. You can confirm this with packet cap-
ture software. If your system doesn’t work properly, the problem could be with
the server software or with communications. You might try logging onto the server
and verifying that the appropriate software is listening, using ps, or, if it is started
by inetd, using netstat. Or you might try using telnet to connect to the server
directly from the server, i.e., telnet localhost 25. If this succeeds, you may
have routing problems, name service problems, or firewall problems. If it fails,
then look to the documentation for the software you are using on the server.

The commands used by most email protocols are described in the relevant RFCs.
For SMTP, see RFC 821; for POP2, see RFC 937; for POP3, see REF 1939; and for
IMAP, see RFC 1176.

HTTP

HTTP is another protocol that is based on commands in NVT ASCII sent over a
TCP session. It can be fairly complicated to figure out the correct syntax, but even
an error message will tell you that the server is running and the connection works.
Try typing HEAD / HTTP / 1.0 followed by two carriages returns. Here is an
example:

bsd2# telnet localhost http
Trying 127.0.0.1...
Connected to localhost.lander.edu.
Escape character is '^]'.
HEAD / HTTP / 1.0

HTTP/1.1 200 OK
Date: Sun, 22 Apr 2001 13:27:32 GMT
Server: Apache/1.3.12 (Unix)
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Last-Modified: Tue, 29 Aug 2000 09:14:16 GMT
ETag: "a4cd3-55a-39ab7ee8;3a4a1b39"
Accept-Ranges: bytes
Content-Length: 1370
Connection: close
Content-Type: text/html
Content-Language: en

244 Chapter 10: Application-Level Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Expires: Sun, 22 Apr 2001 13:27:32 GMT

Connection closed by foreign host.

In this example, I’ve checked to see if the server is responding from the server
itself. In general, however, using telnet is probably not worth the effort since it is
usually very easy to find a working web browser that you can use somewhere on
your network.

Most web problems, in my experience, stem from incorrectly configured security
files or are performance problems. For security configuration problems, you’ll
need to consult the appropriate documentation for your software. For a quick per-
formance profile of your server, you might visit Patrick Killelea’s web site, http://
patrick.net. If you have problems, you probably want to look at his book, Web
Performance Tuning.

FTP and TFTP

FTP is another protocol that uses NVT ASCII and can be checked, to a very lim-
ited extent, with telnet. Here is a quick check to see if the server is up and can be
reached:

lnx1# telnet bsd2 ftp
Trying 172.16.2.236...
Connected to bsd2.lander.edu.
Escape character is '^]'.
220 bsd2.lander.edu FTP server (Version 6.00LS) ready.
user jsloan
331 Password required for jsloan.
pass xyzzy
230 User jsloan logged in.
stat
211- bsd2.lander.edu FTP server status:
 Version 6.00LS
 Connected to 172.16.3.234
 Logged in as jsloan
 TYPE: ASCII, FORM: Nonprint; STRUcture: File; transfer MODE: Stream
 No data connection
211 End of status
quit
221 Goodbye.
Connection closed by foreign host.

Once you know the server is up, you’ll want to switch over to a real FTP client.
Because FTP opens a reverse connection when transferring information, you are
limited with what you can do with telnet. Fortunately, this is enough to verify that
the server is up, communication works, and you can successfully log on to the
server.

Application-Protocols Tools 245

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unlike FTP, TFTP is UDP based. Consequently, TCP-based tools like telnet are not
appropriate. You’ll want to use a TFTP client to test for connectivity. Fortunately,
TFTP is a simple protocol and usually works well.

Name Services

Since name resolution is based primarily on UDP, you won’t be able to debug it
with telnet. Name resolution can be a real pain since problems are most likely to
show up when you are using other programs or services. Name service applica-
tions are applications that you’ll want to be sure are working on your system. For
clients, it is one of the easiest protocols to test. For servers, however, ferreting out
that last error can be a real chore. Fortunately, there are a number of readily avail-
able tools, particularly for DNS.

If you suspect name resolution is not working on a client, try using ping, alter-
nating between hostnames and IP addresses. If you are consistently able to reach
remote hosts with IP addresses but not with names, then you are having a
problem with name resolution. If you have a problem with name resolution on the
client side, start by reviewing the configuration files. It is probably easiest to start
with /etc/hosts and then look at DNS. Leave NIS until last.

nslookup and dig

There are several tools, such as nslookup, dig, dnsquery, and host, that are used to
query DNS servers. These are most commonly used to retrieve basic domain infor-
mation such as what name goes with what IP address, aliases, or how a domain is
organized. With this information, you can map out a network, for example, at least
to the extent the DNS entries reflect the structure of the network. When trouble-
shooting on the client side, it can be used to ensure the client can reach the
appropriate DNS server. The real value for troubleshooting, however, is being able
to examine the information returned by servers. This allows you to check this
information for consistency, correctness, and completeness.

For most purposes, there is not much difference among these programs. Your
choice will largely be a matter of personal preference. However, you should be
aware that some other programs may be built on top of dig, so be sure to keep it
around even if you prefer one of the other tools.

Of these, nslookup, written by Andrew Cherenson, is the most ubiquitous and the
most likely to be installed by default. It is even available under Windows. It can be
used either in command-line mode or interactively. In command-line mode, you
use the name or IP address of interest as an argument:

sol1# nslookup 205.153.60.20
Server: lab.lander.edu

246 Chapter 10: Application-Level Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Address: 205.153.60.5

Name: ntp.lander.edu
Address: 205.153.60.20

bsd2# nslookup www.lander.edu
Server: lab.lander.edu
Address: 205.153.60.5

Name: web.lander.edu
Address: 205.153.60.15
Aliases: www.lander.edu

As you can see, it returns both the name and IP address of the host in question,
the identity of the server supplying the information, and, in the second example,
that the queried name is an alias. You can specify the server you want to use as
well as other options on the command line. You should be aware, however, that it
is not unusual for reverse lookups to fail, usually because the DNS database is
incomplete.

Earlier versions of nslookup required a special format for finding the names associ-
ated with IP addresses. For example, to look up the name associated with 205.
153.60.20, you would have used the command nslookup 20.60.153.205.in-
addr.arpa. Fortunately, unless you are using a very old version of nslookup, you
won’t need to bother with this.

While command-line mode is adequate for an occasional quick query, if you want
more information, you’ll probably want to use nslookup in interactive mode. If you
know the right combination of options, you could use command-line options. But
if you are not sure, it is easier to experiment step-by-step in interactive mode.

Interactive mode is started by typing nslookup without any arguments:

sol1# nslookup
Default Server: lab.lander.edu
Address: 205.153.60.5

>

As you can see, nslookup responds with the name of the default server and a
prompt. A ? will return a list of available options. You can change the server you
want to query with the server command. You can get a listing of all machines in a
domain with the ls command. For example, ls netlab.lander.edu would list all the
machines in the netlab.lander.edu domain. Use the ls command with caution—it
can return a lot of information. You can use the -t option to specify a query type,
i.e., a particular type of record. For example, ls -t mx lander.edu will return the
mail entries from lander.edu. Query types can include cname to list canonical
names for aliases, hinfo for host information, ns for name servers for named

Application-Protocols Tools 247

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

zones, soa for zone authority record, and so on. For more information, start with
the manpage for nslookup.

One useful trick is to retrieve the soa record for local and authoritative servers.
Here is part of one such record retrieved in interactive mode:

> ls -t soa lander.edu
[lab.lander.edu]
$ORIGIN lander.edu.
@ 1D IN SOA lab root (
 960000090 ; serial

The entry labeled serial is a counter that should be incremented each time the
DNS records are updated. If the serial number on your local server, when com-
pared to the authoritative server, is off by more than 1 or 2, the local server is not
updating its records in a timely manner. One possible cause is an old version of
bind.

Many administrators prefer dig to nslookup. While not quite as ubiquitous as
nslookup, it is included as a tool with bind and is also available as a separate tool.
dig is a command-line tool that is quite easy to use. It seems to have a few more
options and, since it is command line oriented, it is more suited for shell scripts.
On the other hand, using nslookup interactively may be better if you are groping
around and not really sure what you are looking for.

dig, short for Domain Internet Groper, was written by Steve Hotz. Here is an
example of using dig to do a simple query:

bsd2# dig @lander.edu www.lander.edu

; <<>> DiG 8.3 <<>> @lander.edu www.lander.edu
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, ADDITIONAL: 1
;; QUERY SECTION:
;; www.lander.edu, type = A, class = IN

;; ANSWER SECTION:
www.lander.edu. 1D IN CNAME web.lander.edu.
web.lander.edu. 1D IN A 205.153.60.15

;; AUTHORITY SECTION:
lander.edu. 1D IN NS lander.edu.

;; ADDITIONAL SECTION:
lander.edu. 1D IN A 205.153.60.5

;; Total query time: 9 msec
;; FROM: bsd2.lander.edu to SERVER: lander.edu 205.153.60.5

248 Chapter 10: Application-Level Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

;; WHEN: Tue Nov 7 10:26:42 2000
;; MSG SIZE sent: 32 rcvd: 106

The first argument, in this case @lander.edu, is optional. It gives the name of the
name server to be queried. The second argument is the name of the host you are
looking up.

As you can see, a simple dig provides a lot more information, by default at least,
than does nslookup. It begins with information about the name server and resolver
flags used. (The flags are documented in the manpage for bind ’s resolver.) Next
come the header fields and flags followed by the query being answered. These are
followed by the answer, authority records, and additional records. The format is
the domain name, TTL field, type code for the record, and the data field. Finally,
summary information about the exchange is included.

You can also use dig to get other types of information. For example, the -x option
is used to do a reverse name lookup:

bsd2# dig -x 205.153.63.30

; <<>> DiG 8.3 <<>> -x
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; QUERY SECTION:
;; 30.63.153.205.in-addr.arpa, type = ANY, class = IN

;; ANSWER SECTION:
30.63.153.205.in-addr.arpa. 1D IN PTR sloan.lander.edu.

;; AUTHORITY SECTION:
63.153.205.in-addr.arpa. 1D IN NS lander.edu.

;; ADDITIONAL SECTION:
lander.edu. 1D IN A 205.153.60.5

;; Total query time: 10 msec
;; FROM: bsd2.lander.edu to SERVER: default -- 205.153.60.5
;; WHEN: Mon Nov 6 10:54:17 2000
;; MSG SIZE sent: 44 rcvd: 127

The mx option (no hyphen) will return mail records, the soa option will return
zone authority records, and so on. See the manpage for details.

nslookup and dig are not unique. For example, host and dnsquery are other alter-
natives you may want to look at. host is said to be designed as a successor for
nslookup and dig. But it does everything online and can generate a lot of traffic as
a result. While very useful tools, all of them rely on your ability to go back and
analyze the information returned. There are other tools that help to fill this gap.

Application-Protocols Tools 249

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

doc, dnswalk, and lamers

doc is one such tool. It was originally written by Steve Hotz and Paul Mockapetris
with later modifications by Brad Knowles. Built on top of dig, doc is a script that
attempts to validate the consistency of information within a domain:

bsd2# doc lander.edu.
Doc-2.1.4: doc lander.edu.
Doc-2.1.4: Starting test of lander.edu. parent is edu.
Doc-2.1.4: Test date - Mon Nov 6 11:55:07 EST 2000
;; res_nsend to server g.root-servers.net. 192.112.36.4: Operation timed out
DIGERR (UNKNOWN): dig @g.root-servers.net. for SOA of parent (edu.) failed
Summary:
 ERRORS found for lander.edu. (count: 3)
 WARNINGS issued for lander.edu. (count: 1)
Done testing lander.edu. Mon Nov 6 11:55:40 EST 2000

The results are recorded in a log file; in this case log.lander.edu. is the filename.
(Note its trailing period.)

dnswalk, written by David Barr, is a similar tool. It is a Perl script that does a zone
transfer and checks the database for internal consistency. (Be aware that more and
more systems are disabling zone transfers from unknown sites.)

bsd2# dnswalk lander.edu.
Checking lander.edu.
BAD: lander.edu. has only one authoritative nameserver
Getting zone transfer of lander.edu. from lander.edu...done.
SOA=lab.lander.edu contact=root.lander.edu
WARN: bookworm.lander.edu A 205.153.62.205: no PTR record
WARN: library.lander.edu A 205.153.61.11: no PTR record
WARN: wamcmaha.lander.edu A 205.153.62.11: no PTR record
WARN: mrtg.lander.edu CNAME elmer.lander.edu: unknown host
0 failures, 4 warnings, 1 errors.

Be sure to include the period at the end of the domain name. This can produce a
lot of output, so you may want to redirect output to a file. A number of options
are available. Consult the manpage.

You’ll want to take the output from these tools with a grain of salt. Even though
these tools do a lot of work for you, you’ll need a pretty good understanding of
DNS to make sense of the error messages. And, as you can see, for the same
domain, one found three errors and one warning while the other found one error
and four warnings for a fully functional DNS domain. There is no question that
this domain’s database, which was being updated when this was run, has a few
minor problems. But it does work. The moral is, don’t panic when you see an
error message.

Another program you might find useful is lamers. This was written by Bryan
Beecher and requires both doc and dig. It is used to find lame delegations, i.e., a

250 Chapter 10: Application-Level Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

name server that is listed as authoritative for a domain but is not actually per-
forming that service for the listed domain. This problem most often arises when
name services are moved from one machine to another, but the parent domain is
not updated. lamers is a simple script that can be used to identify this problem.

Other tools

In addition to these debugging tools, there are a number of additional tools that
are useful in setting up DNS in the first place. Some, such as make-zones, named-
bootconf, and named-xfer, come with bind. Be sure to look over your port care-
fully. Others, often scripts or collections of scripts, are available from other
sources. Examples include h2n and dnsutl. There are a number of good tools out
there, so be sure to look around.

NIS and NIS+

NIS and its variants bring their own set of difficulties. If you are running both DNS
and NIS, the biggest problem may be deciding where the problem lies. Unfortu-
nately, there is no easy way to do this that will work in every case. The original
implementation of nslookup completely bypasses NIS. If it failed, you could look
to DNS. If it succeeded, your problems were probably with NIS. Unfortunately, the
new, “improved” version of nslookup now queries NIS so this simple test is unreli-
able. (For other suggestions, see Managing NFS and NIS by Hal Stern or DNS and
BIND by Liu et al.)

If you are setting up NIS, your best strategy is to fully test DNS first. If you are
having problems with NIS, there are a number of simple utilities supplied with
NIS. ypcat lists an entire map, ypmatch matches a single key and prints an entry,
and ypwhich identifies client bindings. But if you have read the NIS documenta-
tion, you are already familiar with these.

Routing

If you are having routing problems, e.g., receiving error messages saying the host
or network is unreachable, then the first place to look is at the routing tables. On
the local machine, you’ll use the netstat -r command as previously discussed. For
remote machines, you can use SNMP if you have SNMP access.

If you are using RIP, rtquery and ripquery are two tools that can be used to
retrieve routing tables from remote systems. rtquery is supplied as part of the
routed distribution, while ripquery comes with gated. The advantage of these tools
is that they use the RIP query and response mechanism to retrieve the route infor-
mation. Thus, you can use either of these tools to confirm that the RIP exchange
mechanism is really working, as well as to retrieve the routing tables to check for
correctness.

Application-Protocols Tools 251

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

It really doesn’t matter which of these you use, as the output from the two is basi-
cally the same. Here is the output from ripquery:

bsd2# ripquery 172.16.2.1
84 bytes from NLCisco.netlab.lander.edu(172.16.2.1) to 172.16.2.236 version 2:
 172.16.1.0/255.255.255.0 router 0.0.0.0 metric 1 tag
0000
 172.16.3.0/255.255.255.0 router 0.0.0.0 metric 1 tag
0000
 172.16.5.0/255.255.255.0 router 0.0.0.0 metric 2 tag
0000
 172.16.7.0/255.255.255.0 router 0.0.0.0 metric 2 tag
0000

Here is the output from rtquery :

bsd2# rtquery 172.16.2.1
NLCisco.netlab.lander.edu (172.16.2.1): RIPv2 84 bytes
 172.16.1.0/24 metric 1
 172.16.3.0/24 metric 1
 172.16.5.0/24 metric 2
 172.16.7.0/24 metric 2

You’ll notice that these are not your usual routing tables. Rather, these are the
tables used by RIP’s distance vector algorithm. They give reachable networks and
the associated costs. Of course, you could always capture a RIP update with
tcpdump or ethereal or use SNMP, but the tools discussed here are a lot easier to
use.

If you are using Open Shortest Path First (OSPF) (regretfully I don’t at present),
gated provides ospf_monitor. This interactive program provides a wealth of statis-
tics, including I/O statistics and error logs in addition to OSPF routing tables. (For
more information on routing protocols, you might consult Routing in the Internet
by Christian Huitema or Interconnections by Radia Perlman.)

NFS

With time, Network File System (NFS) has become fairly straightforward to set up.
At one time, there were a number of utilities for debugging NFS problems, but
finding current ports has become difficult. At the risk of repeating myself, if you
are having trouble setting up NFS, reread your documentation. Keep in mind that
the various implementations of NFS all seem to be different, sometimes a lot dif-
ferent. By itself, generic directions for NFS don’t work—be sure to consult the spe-
cific documentation for your operating system!

Unlike most other protocols where a single process is started, NFS relies on a
number of different programs or daemons that vary from client to server and, to
some extent, from system to system. If you are having problems with NFS, the first
step is to consult your documentation to determine which daemons need to be

252 Chapter 10: Application-Level Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

running on your system. Next, make sure they are running. Be warned, the dae-
mons you need and the names they go by vary from operating system to oper-
ating system. For example, on most systems, mountd and nfsd, respectively,
mount filesystems and access files. On some systems they go by the names rpc.
mountd and rpc.nfsd. Since these rely on portmap, sometimes called rpcbind,
you’ll need to make sure it is running as well. (NFS daemons are typically based
on RPC and use the portmapper daemon to provide access information.) The list of
daemons will be different for the client and the server. For example, nfsiod (or
biod) will typically be running on the client but not the server. Keep in mind,
however, that a computer may be both a client and a server.

There are a couple of ways to ensure the appropriate processes are available. You
could log on to both machines and use ps to discover what is running. This has
the advantage of showing you everything that is running. Another approach is to
use rpcinfo to do a portmapper dump. Here is an example of querying a server
from a client:

bsd2# rpcinfo -p bsd1
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100005 3 udp 1023 mountd
 100005 3 tcp 1023 mountd
 100005 1 udp 1023 mountd
 100005 1 tcp 1023 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs
 100024 1 udp 1011 status
 100024 1 tcp 1022 status

This has the advantage of showing that these services are actually reachable across
the network.

Once you know that everything is running, you should check the access files, typi-
cally /etc/dfs/dfstab or /etc/exports, to make sure the client isn’t being blocked. You
can’t just edit these files and expect to see the results immediately. Consult your
documentation on how to inform your NFS implementation of the changes. Be
generous with privileges if you are having problems, but don’t forget to tighten
security once everything is working.

Finally, check your syntax. Make sure the mount point exists and has appropriate
permissions. Mount the remote system manually and verify that it is mounted with
the mount command. You should see something recognizable. Here are mount
table entries returned, respectively, by FreeBSD, Linux, and Solaris:

Application-Protocols Tools 253

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

bsd1:/ on /mnt/nfs type nfs (rw,addr=172.16.2.231,addr=172.16.2.231)
172.16.2.231:/ on /mnt/nfs (nfs)
/mnt/nfs on 172.16.2.231:/usr read/write/remote on Thu Nov 30 09:49:52 2000

While they are not too similar, you should see a recognizable change to the mount
table before and after mounting a remote filesystem.

If you are having intermittent problems or if you suspect performance problems,
you might want to use the nfsstat command. It provides a wealth of statistics
about your NFS connection and its performance. You can use it to query the
client, the server, or both. When called without any options, it queries both client
and server. With the -c option, it queries the client. With the -s option, it queries
the server. Here is an example of querying a client:

bsd2# nfsstat -c
Client Info:
Rpc Counts:
 Getattr Setattr Lookup Readlink Read Write Create Remove
 0 0 33 2 0 21 4 0
 Rename Link Symlink Mkdir Rmdir Readdir RdirPlus Access
 0 0 0 0 0 8 0 66
 Mknod Fsstat Fsinfo PathConf Commit GLease Vacate Evict
 0 13 3 0 2 0 0 0
Rpc Info:
 TimedOut Invalid X Replies Retries Requests
 0 0 0 0 152
Cache Info:
Attr Hits Misses Lkup Hits Misses BioR Hits Misses BioW Hits Misses
 232 36 74 33 0 0 0 21
BioRLHits Misses BioD Hits Misses DirE Hits Misses
 13 2 18 8 13 0

Unfortunately, it seems that every operating system has its own implementation of
nfsstat and each implementation returns a different set of statistics labeled in a dif-
ferent way. What you’ll be most interested in is the number of problems in relation
to the total number of requests. For example, a large number of timeouts is no
cause for concern if it is a small percentage of a much larger number of total
requests. If the timeouts are less than a couple of percent, they are probably not a
cause for concern. But if the percent of timeouts is large, you need to investigate.
You’ll need to sort out the meaning of various numbers returned by your particular
implementation of nfsstat. And, unfortunately, the labels aren’t always intuitive.

Several other NFS tools were once popular but seem to have languished in recent
years. You probably won’t have much luck in finding these or getting them run-
ning. Two of the ones that were once more popular are nhfsstone and nfswatch.
nhfsstone is a benchmark tool for NFS, which seems to have been superseded with
the rather pricey SFS tool in SPEC. nfswatch is a tool that allows you to watch NFS
traffic. tcpdump or ethereal, when used with the appropriate filters, provide a
workable alternative to nfswatch.

254 Chapter 10: Application-Level Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Microsoft Windows
Many of the services described in this chapter are traditionally provided by Unix
systems. While more and more are becoming available, there aren’t a lot of tools
that currently run under Windows. One exception is nslookup, which is nearly
identical to its Unix counterpart. Of course, the telnet-based testing will work as
shown. And you can always test a Windows server from a Unix client. If you want
Windows-based tools, the best place to start looking is in the appropriate Win-
dows Resource Kit from Microsoft.

255
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 11

11
Miscellaneous Tools

This chapter contains odds and ends that don’t really fit any of the categories
described in previous chapters. Most of the software presented here isn’t really
designed with network troubleshooting in mind, but it is, nonetheless, quite
useful. These are tools that will make your life easier. With a few notable excep-
tions, you should already be familiar with most of the tools described here. Conse-
quently, the descriptions of the tools are, for the most part, fairly brief. Feel free to
jump around in this chapter as needed.

Communications Tools
If you are going to effectively administer remote systems, you will need to log on
remotely. Even with small networks, it isn’t reasonable to jump up and run to the
remote system every time you need to do this. This section has three subsections.
First, a quick review of techniques you can use to record or log your activities
when using familiar tools like telnet, rlogin, and X Windows. Next comes a discus-
sion of vnc, a tool that allows you to view a computer’s graphical display
remotely. Then I briefly discuss security concerns for these tools including a short
description of ssh.

Automating Documentation

This book has assumed that you are familiar with tools like telnet, rlogin, and X
Windows. To use these tools effectively, you’ll want to be able to record or log
your activities from time to time. Arguably, one reason documentation is so often
flawed is that it is usually written after the fact. This is often done from memory or
an incomplete set of notes several days after changes have been made. While the
best time to write documentation is as you go, often this simply isn’t possible.

256 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

When your network is down and management is calling every five minutes asking
if it’s fixed yet, you probably won’t be pausing to write much down.

There are a few things you can do to help simplify writing documentation after the
fact. First, get copious printouts at every stage, preferably with some kind of time
and date stamp. When a production system is down, it is not the time to worry
about the cost of paper. Several commands you are probably already familiar with
may be easy to overlook with the stress of dealing with a dead system.

If you are using X Windows, you can use the xwd command to capture windows.
To use this command, in an xterm window, type:

bsd1# xwd -out xwdfile

You can then click on the window you want to capture. In this example, the file
xwdfile will be created in the current directory. The file can be examined later or
printed using tools such as xv or gimp. Be sure to give these files meaningful
names so that you can sort things out later.

If you are using a text-based interface and are interested in capturing the output of
a single command, you may be able to use the tee command. This command
allows you to send output from a command to both the screen and a file. For
example, the following command will display the output of the command arp -a
on the screen and write it to the file outfile:

bsd1# arp -a | tee outfile

The tee command may require special measures to work. For example, you must
use the option -l with tcpdump if you want to use tee. An example was given in
Chapter 5. As with xwd, you should be careful to use meaningful filenames, partic-
ularly if you are capturing windows on the fly.

An alternative to tee is script. It can be used to capture the output of a single com-
mand or a series of commands. To capture a series of commands, you start script
and then issue the commands of interest. For example, the following command
will create the file scriptfile and return to the system prompt:

bsd1# script scriptfile
Script started, output file is scriptfile

Everything that is displayed on your terminal will be logged to the file scriptfile.
One advantage of logging a series of commands is that you can embed documen-
tation into the file as you go. Simply type the comment character for your shell,
and everything else you type on the line will be ignored. For example, with the
Bourne shell, you might type something like:

bsd1# #Well, the foo program didn't work. \
>Let's try the bar program.

Communications Tools 257

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The “\” character was used to continue the comment on a new line.

When you are done logging a session, type exit or press Ctrl+D as in:

bsd1# exit

Script done, output file is scriptfile

You can now print or edit the file as desired.

One option that is often overlooked is to include a command with the script com-
mand. For example:

bsd1# script scriptfile ifconfig -a

will run the program ifconfig -a, writing the output to the file scriptfile and dis-
playing the output on the screen as well. This file will include two time and date
stamps, one at the beginning and one at the end of the file.

You should be aware of a few problems with using script. First, the file can get
very big very quickly. This shouldn’t be much of a problem unless you are pressed
for disk space, but it can be painful to read after the fact. Second, it is all too easy
to lose the file. For example, if a system crashes or is halted, the file may be lost in
the process. Third, commands that directly control the screen such as vi tend to fill
the output file with garbage. Finally, since a new shell is started by script, environ-
mental changes made while script is running may be lost.

If you are connecting to a remote system using a variant of telnet, you may be
able to log the session or print the screen. This is particularly true for PC imple-
mentations of telnet. See the documentation for the version you are using.

vnc

vnc, short for virtual network computing, was developed by what is now the AT&T
Laboratories at Cambridge. vnc is actually a pair of programs. One is a server,
which generates and sends the local display’s contents to another computer. The
other is a viewer, which reconstructs the server’s display. You use the computer
running the viewer program to control the remote computer running the server
program. An application, for example, would actually be running on the server’s
CPU but controlled by the station running the viewer.

The program’s implementation is based on the concept of a remote frame buffer
(i.e., remote video display memory). The server maintains the frame buffer, a pic-
ture of the server’s display, and sends it to the viewer. The viewer recreates the
display on the local host. The updates to the remote frame buffer may be the
complete contents of the frame buffer or, to minimize the impact on bandwidth,
just what has changed since the last update.

258 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

In a Unix environment, vnc provides a way to deliver an X Windows session to a
host that may not support a native X Windows connection. On the surface, a vnc
connection probably seems a lot like an X Windows connection. There are, how-
ever, some fundamental differences. vnc is designed so the viewer is a very thin
client. Unlike an X Windows, almost no work is done at the viewer, and the client
software is stateless. And vnc is freely available on some non-Unix systems where
X Window isn’t.

vnc can run in one of two modes. In view only mode, the screen is displayed, but
the viewer is not given control of the server’s mouse or keyboard. If view only
mode is not selected, the viewer will share control of the mouse and keyboard.
Please note, the mouse and keyboard will not necessarily be disabled at the
server.

To use vnc in a Unix environment, telnet to the remote computer and start the vnc
server with the vncserver command. The first time you run it, it will create a .vnc
directory under your home directory and will query you for a connection pass-
word that will be used for all future sessions. (You can change this with the
vncpasswd command.)

lnx1$ vncserver

You will require a password to access your desktops.

Password:
Verify:

New 'X' desktop is lnx1.lander.edu:1

Creating default startup script /home/jsloan/.vnc/xstartup
Starting applications specified in /home/jsloan/.vnc/xstartup
Log file is /home/jsloan/.vnc/lnx1.lander.edu:1.log

The command returns an address or hostname and a display number for the newly
created display, in this instance lnx1.lander.edu:1. (Alternately, you could start
the vnc server while seated at the machine and then go to the client. This will be
necessary if you want to run the server on a Microsoft Windows platform.)

Next, connect a viewer to the display. To start the viewer on a Unix system, start
an X Window session and then use the vncviewer command with the host and dis-
play number returned by the viewer program as an argument to the command. By
default, vncserver uses the twm X Window manager, but this can be reconfigured.*

If you are used to all the clutter that usually comes with gnome or something sim-
ilar, the display may seem a little austere at first but will perform better. The basic

* To change the window manager, edit the file xstartup in the .vnc directory. For example, if you use
gnome, you would change twm to exec gnome-session.

Communications Tools 259

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

functionality you need will be there, and you will be able to run whichever X pro-
grams you need.

vnc starts a number of processes; you’ll want to be sure that they are all stopped
when you are done. You can stop vnc with the -kill option as shown here:

lnx1$ vncserver -kill :1
Killing Xvnc process ID 6171

Note that you need to specify only the display number, in this case :1. You
should also be aware that this sometimes misses a process on some systems. You
may need to do a little extra housekeeping now and then.

Once running, vnc supports sending special keystroke combinations such as Ctrl-
Alt-Del. If both systems support it, you can cut and paste ASCII data between
windows.

vnc also provides a reasonable level of security. Once the password has been set,
it is not transmitted over the network. Rather, a challenge response system is used.
In addition to the password, the Microsoft Windows version of vncserver can be
configured to accept connections from only a specific list of hosts. It can also be
configured to use a secure shell (SSH) session. The default port can be reassigned
to simplify configuration with firewalls.

The viewer and server can be on the same or different machines or can even be
used on different architectures. vnc will run on most platforms. In particular, the
viewer will run on just about any Microsoft Windows machine including Windows
CE. It will run under an X Window session, on Macintoshes, and as plug-ins for
web browsers. vnc is available in Java, and the server contains a small web server
that can be accessed by some Java-aware browsers. To do this, you simply add
5800 to the window number for the HTTP port number. In the previous example,
the window was :1, so the HTTP port number would be :5801, and the URL
would be http://lnx1.lander.edu:5801.

There is substantial documentation available at the AT&T Laboratories web site,
http://www.uk.research.att.com/vnc.

ssh

One of the problems with telnet, rlogin, rsh, and the like is a lack of security. Pass-
words are sent in clear text and can be easily captured by any computer they
happen to pass. And with the r-services, it can be very easy to mimic a trusted
system. Attach a laptop to the network, set the IP address appropriately, and there
is a good chance you can mimic a trusted host.

One alternative is ssh, written by Tatu Ylönen, a replacement for the r-services that
uses encryption. While the original version is free, with Version 2 ssh has evolved

260 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

into a commercial product, marketed by SSH Communications Security, Inc. How-
ever, Version 2 is freely available for academic and noncommercial use. Recently,
the OpenSSH project, a spin-off of the OpenBSD project, released a free port that
is compatible with both versions of ssh and is covered by the standard BSD
license.

ssh is actually a set of programs that uses encryption to both authenticate users
and provide encrypted sessions. It provides four levels of authentication, ranging
from trusted users and systems, like rsh and rlogin, to RSA-based authentication.
By doing host authentication as well as user authentication, DNS, IP, and route
spoofing attacks can be circumvented.

On the downside, ssh provides minimal protection once your systems have been
compromised. Version 1 of the SSH protocol has also been compromised by man-
in-the-middle attacks when incorrectly configured. Also, some of its authentication
methods can be relatively insecure. ssh is not trivial to configure correctly, but for-
tunately, there is a fair amount of documentation available for ssh, including two
books devoted exclusively to ssh. If you need particularly robust security, pay
close attention to how you configure it or consider Version 2.

The legality of ssh is yet another question. Since encryption is sometimes the sub-
ject of peculiar laws in some countries, using or exporting ssh may not be legal.
The OpenBSD and OpenSSH projects avoid some of these problems by devel-
oping code outside of the United States. Consequently, the distribution of their
code is not subject to the United States’ peculiar munitions export laws since it can
be obtained outside the United States.

Despite these concerns, ssh is something you should definitely consider if security
is an issue.

Log Files and Auditing
A primary source of information on any system is its log files. Of course, log files
are not unique to networking software. They are simply another aspect of general
systems management that you must master.

Some applications manage their own log files. Web servers and accounting soft-
ware are prime examples. Many of these applications have specific needs that
aren’t well matched to a more general approach. In dealing with these, you will
have to consult the documentation and deal with each on a case-by-case basis.
Fortunately, most Unix software is now designed to use a central logging service,
syslog, which greatly simplifies management.

Log Files and Auditing 261

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

syslog

You are probably already familiar with syslog, a versatile logging tool written by
Eric Allman. What is often overlooked is that syslog can be used across networks.
You can log events from your Cisco router to your Unix server. There are even a
number of Windows versions available. Here is a quick review of syslog.

An early and persistent criticism of Unix was that every application seemed to have
its own set of log files hidden away in its own directories. syslog was designed to
automate and standardize the process of maintaining system log files. The main
program is the daemon syslogd, typically started as a separate process during
system initialization. Messages can be sent to the daemon either through a set of
library routines or by a user command, logger. logger is particularly useful for log-
ging messages from scripts or for testing syslog, e.g., checking file permissions.

Configuring syslog

syslogd ’s behavior is initialized through a configuration file, which by default is
/etc/syslog.conf. An alternative file can be specified with the -f option when the
daemon is started. If changes are made to the configuration file, syslogd must be
restarted for the changes to take effect. The easiest way to do this is to send it a
HUP signal using the kill command. For example:

bsd1# kill -HUP 127

where 127 is the PID for syslogd, found using the ps command. (Alternately, the
PID is written to the file /var/run/syslogd.pid on some systems.)

The configuration file is a text file with two fields separated by tabs, not spaces!
Blank lines are ignored. Lines beginning with # in the first column are comments.
The first field is a selector, and the second is an action. The selector identifies the
program or facility sending the message. It is composed of both a facility name
and a security level. The facility names must be selected from a short list of facili-
ties defined for the kernel. You should consult the manpage for syslogd for a com-
plete list and description of facilities, as these vary from implementation to
implementation. The security level is also taken from a predefined list: emerg,
alert, crit, err, warning, notice, info, or debug. Their meanings are just what you
might guess. emerg is the most severe. You can also use * for all or none for
nothing. Multiple facilities can be combined on a single line if you separate them
with commas. Multiple selectors must be separated with semicolons.

The Action field tells where to send the messages. Messages can be sent to files,
including device files such as the console or printers, logged-in users, or remote
hosts. Pathnames must be absolute, and the file must exit with the appropriate
permissions. You should be circumspect in sending too much to the console. Oth-
erwise, you may be overwhelmed by messages when you are using the console,

262 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

particularly when you need the console the most. If you want multiple actions,
you will need multiple lines in the configuration file.

Here are a few lines from a syslog.conf file that should help to clarify this:

mail.info /var/log/maillog
cron.* /var/log/cron
security.* @loghost.netlab.lander.edu
*.notice;news.err root
*.err /dev/console
*.emerg *

The first line says that all informational messages from sendmail and other mail
related programs should be appended to the file /var/log/maillog. The second line
says all messages from cron, regardless of severity, should be appended to the file
/var/log/cron. The next line says that all security messages should be sent to a
remote system, loghost.netlab.lander.edu. Either a hostname or an IP address can
be used. The fourth line says that all notice-level messages and any news error
messages should be sent to root if root is logged on. The next to last line says that
all error messages, including news error messages, should be displayed on the
system console. Finally, the last line says emergency messages should be sent to
all users. It is easy to get carried away with configuration files, so remember to
keep yours simple.

One problem with syslog on some systems is that, by default, the log files are
world readable. This is a potential security hole. For example, if you log mail
transactions, any user can determine who is sending mail to whom—not neces-
sarily something you want.

Remote logging

For anything but the smallest of networks, you really should consider remote log-
ging for two reasons. First, there is simply the issue of managing and checking
everything on a number of different systems. If all your log files are on a single
system, this task is much easier. Second, should a system become compromised,
one of the first things crackers alter are the log files. With remote logging, future
entries to log files may be stopped, but you should still have the initial entries for
the actual break-in.

To do remote logging, you will need to make appropriate entries in the configura-
tion files for two systems. On the system generating the message, you’ll need to
specify the address of the remote logging machine. On the system receiving the
message, you’ll need to specify a file for the messages. Consider the case in which
the source machine is bsd1 and the destination is bsd2. In the configuration file for
bsd1, you might have an entry like:

local7.* @bsd2.netlab.lander.edu

Log Files and Auditing 263

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

bsd2 ’s configuration file might have an entry like:

local7.* /var/log/bsd1

Naming the file for the remote system makes it much easier to keep messages
straight. Of course, you’ll need to create the file and enable bsd2 to receive remote
messages from bsd1.

You can use the logger command to test your configuration. For example, you
might use the following to generate a message:

bsd1# logger -p local7.debug "testing"

This is what the file looks like on bsd2:

bsd2# cat bsd1
Dec 26 14:22:08 bsd1 jsloan: testing

Notice that both a timestamp and the source of the message have been included in
the file.

There are a number of problems with remote logging. You should be aware that
syslog uses UDP. If the remote host is down, the messages will be lost. You will
need to make sure that your firewalls pass appropriate syslog traffic. syslog mes-
sages are in clear text, so they can be captured and read. Also, it is very easy to
forge a syslog message.

It is also possible to overwhelm a host with syslog messages. For this reason, some
versions of syslog provide options to control whether information from a remote
system is allowed. For example, with FreeBSD the -s option can be used to enter
secure mode so logging requests are ignored. Alternately, the -a option can be
used to control hosts from which messages are accepted. With some versions of
Linux, the -r option is used to enable a system to receive messages over the net-
work. While you will need to enable your central logging systems to receive mes-
sages, you should probably disable this on all other systems to avoid potential
denial-of-service attacks. Be sure to consult the manpage for syslogd to find the
particulars for your system.

Both Linux and FreeBSD have other enhancements that you may want to con-
sider. If security is a major concern, you may want to investigate secure syslog
(ssyslog) or modular syslog (msyslog). For greater functionality, you may also want
to look at syslog-ng.

Log File Management

Even after you have the log files, whether created by syslog or some other pro-
gram, you will face a number of problems. The first is keeping track of all the
files so they don’t fill your filesystem. It is easy to forget fast-growing files, so I

264 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

recommend keeping a master list for each system. You’ll want to develop a
policy of what information to keep and how long to keep it. This usually comes
down to some kind of log file rotation system in which older files are discarded
or put on archival media. Be aware that what you save and for how long may
have legal implications, depending on the nature of your organization.

Another issue is deciding how much information you want to record in the first
place. Many authors argue, with some justification, that you should record any-
thing and everything that you might want, no matter how remote the possibility. In
other words, it is better to record too much than to discover, after the fact, that you
don’t have something you need. Of course, if you start with this approach, you can
cut back as you gain experience.

The problem with this approach is that you are likely to be so overwhelmed with
data that you won’t be able to find what you need. syslog goes a long way toward
addressing this problem with its support for different security levels—you can send
important messages one place and everything else somewhere else. Several utili-
ties are designed to further simplify and automate this process, each with its own
set of strengths. These utilities may condense or display log files, often in real
time. They can be particularly useful if you are managing a number of devices.

Todd Atkins’ swatch (simple watcher) is one of the best known. Designed with
security monitoring in mind, the program is really suitable to monitor general
system activity. swatch can be run in three different ways—making a pass over a
log file, monitoring messages as they are appended to a log file, or examining the
output from a program. You might scan a log file initially to come up-to-date on
your system, but the second usage is the most common.

swatch’s actions include ignoring the line, echoing the line on the controlling ter-
minal, ringing the bell, sending the message to someone by write or mail, or exe-
cuting a command using the line as an argument. Behavior is determined based on
a configuration file composed of up to four tab-separated fields. The first and
second fields, the pattern expression and actions, are the most interesting. The pat-
tern is a regular expression used to match messages. swatch is written in Perl, so
the syntax used for the regular expressions is fairly straightforward.

While it is a powerful program, you are pretty much on your own in setting up the
configuration files. Deciding what you will want to monitor is a nontrivial task that
will depend on what you think is important. Since this could be almost anything—
errors, full disks, security problems such as privilege violations—you’ll have a lot
of choices if you select swatch. The steps are to decide what is of interest, identify
the appropriate files, and then design your filters.

swatch is not unique. xlogmaster is a GTK+ based program for monitoring log
files, devices, and status-gathering programs. It was written by Georg Greve and is

Log Files and Auditing 265

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

available under the GNU General Public License. It provides filtering and displays
selected events with color and audio. Although xlogmaster is no longer being
developed, it is a viable program that you should consider. Its successor is GNU
AWACS. AWACS is new code, currently under development, that expands on the
capabilities of xlogmaster.

Another program worth looking at is logcheck. This began as a shell script written
by Craig Rowland. logcheck is now available under the GNU license from Psionic
Software, Inc., a company founded by Rowland. logcheck can be run by cron
rather than continuously.

You should be able to find a detailed discussion of log file management in any
good book on Unix system administration. Be sure to consult Appendix B for
more information.

Other Approaches to Logging

Unfortunately, many services traditionally don’t do logging, either through the
syslog facility or otherwise. If these services are started by inetd, you have a
couple of alternatives.

Some implementations of inetd have options that will allow connection logging.
That is, each time a connection is made to one of these services, the connection is
logged. With inetd on Solaris, the -t option traces all connections. On FreeBSD,
the -l option records all successful connections. The problem with this approach is
that it is rather indiscriminate.

One alternative is to replace inetd with Panos Tsirigotis’s xinetd. xinetd is an
expanded version of inetd that greatly expands inetd ’s functionality, particularly
with respect to logging. Another program to consider is tcpwrappers.

tcpwrappers

The tcpwrappers program was developed to provide additional security, including
logging. Written by Wietse Venema, a well-respected security expert, tcpwrappers
is a small program that sits between inetd (or inetd-like programs) and the ser-
vices started by inetd. When a service is requested, inetd calls the wrapper pro-
gram, tcpd, which checks permission files, logs its actions, and then, if
appropriate, starts the service. For example, if you want to control access to telnet,
you might change the line in /etc/inetd.conf that starts the telnet daemon from:

telnet stream tcp nowait root /usr/libexec/telnetd telnetd

to:

telnet stream tcp nowait root /usr/sbin/tcpd telnetd

266 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Now, the wrapper daemon tcpd is started initially instead of telnetd, the telnet
daemon. You’ll need to make similar changes for each service you want to con-
trol. If the service is not where tcpd expects it, you can give an absolute path as
an argument to tcpd in the configuration file.

Actually, there is an alternative way of configuring tcpwrappers. You
can leave the inetd configuration file alone, move each service to a
new location, and replace the service at its default location with
tcpd. I strongly discourage this approach as it can create mainte-
nance problems, particularly when you upgrade your system.

As noted, tcpwrappers is typically used for two functions—logging and access con-
trol.* Logging is done through syslog. The particular facility used will depend on
how tcpwrappers is compiled. Typically, mail or local2 is used. You will need to
edit /etc/syslog.conf and recompile tcpwrappers if you want to change how log-
ging is recorded.

Access is typically controlled through the file /etc/hosts.allow, though some systems
may also have an /etc/hosts.deny file. These files specify which systems can access
which services. These are a few potential rules based on the example configuration:

ALL : localhost : allow
sendmail : nice.guy.example.com : allow
sendmail : .evil.cracker.example.com : deny
sendmail : ALL : allow

tcpwrappers uses a first match wins approach. The first rule allows all services from
the local machine without further testing. The next three rules control the sendmail
program. The first rule allows a specific host, nice.guy.example.com. All hosts on
the domain .evil.cracker.example.com are blocked. (Note the leading dot.) Finally,
all other hosts are permitted to use sendmail.

There are a number of other forms for rules that are permitted, but these are all
pretty straightforward. The distribution comes with a very nice example file. But,
should you have problems, tcpwrappers comes with two utilities for testing config-
uration files. tcpdchk looks for general syntax errors within the file. tcpdmatch can
be used to check how tcpd will respond to a specific action. (Kudos to Venema
for including these!)

The primary limitation to tcpwrappers is that, since it disappears after it starts the
target service, its control is limited to the brief period while it is running. It pro-
vides no protection from attacks that begin after that point.

* tcpwrappers provides additional functionality not described here, such as login banners.

NTP 267

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

tcpwrappers is a ubiquitous program. In fact, it is installed by default on many
Linux systems. Incidentally, some versions of inetd now have wrappers tech-
nology built-in. Be sure to review your documentation.

NTP
One problem with logging events over a network is that differences in system
clocks can make correlating events on different systems very difficult. It is not
unusual for the clock on a system to have drifted considerably. Thus, there may be
discrepancies among timestamps for the same events listed in different log files.
Fortunately, there is a protocol you can use to synchronize the clocks on your
system.

Network Time Protocol (NTP) provides a mechanism so that one system can com-
pare and adjust its clock to match another system’s clock. Ideally, you should have
access to a very accurate clock as your starting point. In practice, you will have
three choices. The best choice is an authoritative reference clock. These devices
range from atomic clocks to time servers that set their clocks based on time sig-
nals from radios or GPS satellites.

The next best source is from a system that gets its clock setting from one of these
reference clocks. Such systems are referred to as stratum 1 servers. If you can’t get
your signal from a stratum 1 server, the next best choice is to get it from a system
that does, a stratum 2 server. As you might guess, there is a whole hierarchy of
servers with the stratum number incrementing with each step you take away from
a reference clock. There are public time servers available on the Internet with
fairly low stratum numbers that you can coordinate to occasionally, but courtesy
dictates that you ask before using these systems.

Finally, if you are not attached to the Internet, you can elect to simply designate
one of your systems as the master system and coordinate all your other systems to
that system. Your clocks won’t be very accurate, but they will be fairly consistent,
and you will be able to compare system logs.

NTP works in one of several ways. You can set up a server to broadcast time mes-
sages periodically. Clients then listen for these broadcasts and adjust their clocks
accordingly. Alternately, the server can be queried by the client. NTP uses UDP,
typically port 123. Over the years, NTP has gone through several versions. Ver-
sion 4 is the current one, but Version 3 is probably more commonly used at this
point. There is also a lightweight time protocol, Simple Network Time Protocol
(SNTP), used by clients that need less accuracy. SNTP is interoperable with NTP.

For Unix systems, the most common implementation is ntpd, formerly xntpd,
which is described here. This is actually a collection of related programs including

268 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

the daemon ntpd and support programs such as ntpq, ntpdate, and ntptrace.
You’ll want to start ntpd automatically each time you boot your system. ntpd uses
a configuration file, /etc/ntp.conf, to control its operation. This configuration file
can get quite complicated depending on what you want to do, but a basic configu-
ration file is fairly simple. Here is a simple three-line example:

server 205.153.60.20
logconfig =syncevents +peerevents +sysevents +allclock
driftfile /etc/ntp.drift

The first line identifies the server. This is the minimum you’ll need. The second
establishes which events will be logged. The last line identifies a drift file. This is
used by ntpd to store information about how the clock on the system drifts. If
ntpd is stopped and restarted, it can use the old drift information to help keep the
clock aligned rather than waiting to calculate new drift information.

One minor warning about ntpd is in order. If your clock is too far off, ntpd will
not reset it. (Among other things, this prevents failures from propagating
throughout a network.) This is rarely a problem with computers, but it is not
unusual to have a networking device whose clock has never been set. Just
remember that you may need to manually set your clock to something reasonable
before you run ntpd.

ntpdate can be used to do a onetime clock set:

bsd2# ntpdate 205.153.60.20
 4 Jan 10:07:36 ntpdate[13360]: step time server 205.153.60.20 offset 11.567081
sec

ntpdate cannot be used if ntpd is running, but there shouldn’t be any need for it if
that is the case.

ntpq can be used to query servers about their state:

bsd2# ntpq -p 172.16.2.1
 remote refid st t when poll reach delay offset jitter
==
*ntp.lander.edu .GPS. 1 u 18 64 173 5.000 -1.049 375.210
 CHU_AUDIO(1) CHU_AUDIO(1) 7 - 34 64 177 0.000 0.000 125.020
 172.16.3.3 0.0.0.0 16 - - 64 0 0.000 0.000 16000.0
 172.16.2.2 0.0.0.0 16 u - 64 0 0.000 0.000 16000.0

In this example, we have queried a system for a list of its peers.

ntptrace can be used to discover the chain of NTP servers, i.e., who gets their
signal from whom:

bsd2# ntptrace 172.16.2.1
NLCisco.netlab.lander.edu: stratum 2, offset 0.009192, synch distance 0.00526
ntp.lander.edu: stratum 1, offset 0.007339, synch distance 0.00000, refid 'GPS '

Security Tools 269

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Only two servers were involved in this example, but you should get the basic
idea.

Each of these tools has other features that are documented in their manpages. NTP
can be an involved protocol if used to its fullest. Fortunately, a lot of documenta-
tion is available. Whatever you want—information, software, a list of public NTP
servers—the best place to start is at http://www.eecis.udel.edu/~ntp. The work of
Dave Mills and others, this is a remarkable site.

Security Tools
A final group of tools that should not be overlooked is security tools. Security, of
course, is an essential part of systems management. While this isn’t a book on net-
work security, security is so broad a topic that there is considerable overlap with it
and the issues addressed in this book. Strictly speaking, a number of the tools
described in this book (such as portscan, nmap, and tcpwrappers) are frequently
described as security tools.

Basically, any tool that provides information about a network has both security
implications and management potential. So don’t overlook the tools in your secu-
rity toolbox when addressing other networking problems. For example, security
scanners like satan, cops, and iss can tell you a lot about how your system is
configured.

One particularly useful group of tools is system integrity checkers. This class of
programs tracks the state of your system and allows you to determine what is
changing—such as files, permissions, timestamps. While the security implications
should be obvious, management and troubleshooting implications should also be
clear. Often described as tools to identify files that intruders have changed, they
can be used to identify files that have been changed or corrupted for any reason.
For example, they can be used to determine exactly what is changed when you
install a new program.

The best known of these is tripwire. It is a considerable stretch to call tripwire a
networking tool, but it is an administrative tool that can make managing a system,
whether networked or not, much easier.

tripwire

tripwire was originally written by Eugene Spafford and Gene Kim. It is another
product that has evolved into a commercial product. It is now marketed by Trip-
wire, Inc. The original free version is still available at the company’s web site as
the Academic Source Release. The current version, in a slightly modified form, is

270 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

also available for free download for Linux. The current version is much easier to
use, but the older version is usable if you are willing to take the time to learn it.

tripwire creates a database of information about files on the system including cryp-
tographic checksums. A configuration file is used to determine what information is
collected and for which files it is collected. If security is a concern, the collected
information should be stored offline to prevent tampering.

As a security tool, tripwire is used to identify any changes that have been made to
a compromised host. It doesn’t prevent an attack, but it shows the scope to the
attack and changes to the system. As a troubleshooting tool, it can be used to track
any changes to a system, regardless of the cause—hacker, virus, or bit rot. It can
also be used to verify the integrity of transferred files or the consistency of config-
urations for multiple installations.

If all you want is a checksum, you might consider just using the siggen program,
which comes with tripwire. siggen will generate a number of checksums for a file.
Here is an example:

bsd2# siggen siggen
sig0: nullsig : 0
sig1: md5 : 0EpNJLBbf7JJgh1yUdAPgZ
sig2: snefru : 25I3DS:thJ3N:16UchVdNR
sig3: crc32 : 0jeUpK
sig4: crc16 : 00056o
sig5: md4 : 02x6dNiYw7GwjSssW7IeLW
sig6: md2 : 30s7ugrC1gLhk129Zo1BXW
sig7: sha : EWed2qYLHGcK.i7P7bVDO2mtKvr
sig8: haval : 1cqs7t9CwipMcuWPM3eRF1
sig9: nullsig : 0

You can use an optional argument to limit which checksums you want. For
example, the option -13 will calculate just the first and third checksums, the MD5
digest and the 32-bit CRC checksum.

I certainly wouldn’t recommend that you install tripwire just for troubleshooting.
But if you have installed it as a security tool, something I would strongly recom-
mend, then don’t forget that you can use it for these other purposes. Incidentally,
with some systems, such as OpenBSD, integrity checking is an integral part of the
system.

Microsoft Windows
When documenting problems with Windows, the usual approach is to open a
word processing file and copy and paste as needed. Unfortunately, some tools,
such as Event Viewer, will not allow copying. If this is the case, you should look

Microsoft Windows 271

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

to see if there is a Save option. With Event Viewer, you can save the messages to a
text file and then copy and paste as needed.

If this is not possible, you can always get a screen dump. Unfortunately, the way
to do this seems to change with every version of Windows. Typically, if an indi-
vidual window is selected, only that window is captured. If a window is not
selected, the screen is copied. For Windows 95 and NT, Shift-PrintScreen (or Ctrl-
PrintScreen) will capture the contents of the screen, while Alt-PrintScreen will cap-
ture just the current window. For Windows 98, use Alt-PrintScreen. The screen is
copied on the system’s clipboard. It can be viewed with ClipBook Viewer. While it
is included with the basic Windows distribution, ClipBook Viewer may not be
installed on all systems. You may need to go to your distribution disks to install it.
With Windows NT, be sure to select Clipboard on the Windows menu. Unfortu-
nately, this gives a bitmapped copy of the screen that is difficult to manipulate, but
it is better than nothing.

As previously noted, vnc is available for Windows. The viewer is a very small pro-
gram—an executable will fit on a floppy so it is very easy to take with you.

There are a number of implementations of ssh for Windows. You might look at
Metro State College of Denver’s mssh, Simon Tatham’s putty, or Robert O’Cal-
lahan’s ttssh extensions to Takashi Teranishi’s teraterm communications program.
If these don’t meet your need, there are a number of similar programs available
over the Web.

Although I have not used them, there are numerous commercial, shareware, and
freeware versions of syslog for Windows. Your best bet is to search the Web for
such tools. You might look at http://www.loop-back.com/syslog.htm or search for
kiwis_syslogd.exe.

ntpd can be compiled for Windows NT. Binaries, however, don’t seem to be gen-
erally available. If you just want to occasionally set your clock, you might also
consider cyberkit. cyberkit was described in Chapter 6. Go to the Time tab, fill in
the address of your time server, select the radio button SNTP, make sure the Syn-
chronize Local Clock checkbox is selected, and click on the Go button. The output
will look something like this:

Time - Thursday, December 28, 2000 09:02:59
Generated by CyberKit Version 2.5
Copyright © 1996-2000 by Luc Neijens

Time Server: ntp.netlab.lander.edu
Protocol: SNTP Protocol
Synchronize Local Clock: Yes

Leap Indicator 0, NTP Version 1, Mode 4
Stratum Level 1 (Primary reference, e.g. radio clock)

272 Chapter 11: Miscellaneous Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Poll Interval 6 (64 seconds), Precision -8 (3.90625 ms)
Root Delay 0.00 ms, Root Dispersion 0.00 ms
Reference Identifier GPS
Time server clock was last synchronized on Thursday, December 28, 2000 09:02:38

Server Date & Time: Thursday, December 28, 2000 09:02:38
Delta (Running slow): 1.590 ms
Round Trip Time 29 ms

Local clock synchronized with time server

The last line is the one of interest. It indicates that synchronization was successful.
The help system includes directions for creating a shortcut that you can click on to
automatically update your clock. Go to the index and look under tips and tricks
for adding cyberkit to the startup menu and under command-line parameters for
time client parameters.

A commercial version of tripwire is available for Windows NT.

273
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Chapter 12

12
Troubleshooting

Strategies

While many of the tools described in this book are extremely powerful, no one
tool does everything. If you have been downloading and installing these tools as
you have read this book, you now have an extensive, versatile set of tools. When
faced with a problem, you should be equipped to select the best tool or tools for
the particular job, augmenting your selection with other tools as needed.

This chapter outlines several strategies that show how these tools can be used
together. When troubleshooting, your approach should be to look first at the spe-
cific task and then select the most appropriate tool(s) based on the task. I do not
describe the details of using the tools or show output in this chapter. You should
already be familiar with these from the previous chapters. Rather, this chapter
focuses on the selection of tools and the overall strategy you should take in using
them. If you feel confident in your troubleshooting skills, you may want to skip
this chapter.

Generic Troubleshooting
Any troubleshooting task is basically a series of steps. The actual steps you take
will vary from problem to problem. Later steps in the process may depend on the
results from earlier steps. Still, it is worth thinking about and mapping out the
steps since doing this will help you remain focused and avoid needless steps. In
watching others troubleshoot, I have been astonished at how often people per-
form tests with no goal in mind. Often the test has no relation to the problem at
hand. It is just something easy to do. When your car won’t start, what is the point
of checking the air pressure of the tires?

274 Chapter 12: Troubleshooting Strategies

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

For truly difficult problems, you will need to become formal and systematic. A
somewhat general, standard series of steps you can go through follows, along with
a running example. Keep in mind, this set of steps is only a starting point.

1. Document. Before you do anything else, start documenting what you are
doing. This is a real test of willpower and self-discipline. It is extremely diffi-
cult to force yourself to sit down and write a problem description or take
careful notes when your system is down or crackers are running rampant
through your system.* This is not just you; everyone has this problem. But it is
an essential step for several reasons.

Depending on your circumstances, management may require a written report.
Even if this isn’t the usual practice, if an outage becomes prolonged or if there
are other consequences, it might become necessary. This is particularly true if
there are some legal consequences of the problem. An accurate log can be
essential in such cases.

If you have a complex problem, you are likely to forget at some point what
you have actually done. This often means starting over. It can be particularly
frustrating if you appear to have found a solution, but you can’t remember
exactly what you did. A seemingly insignificant step may prove to be a key
element in a solution.

2. Collect information and identify symptoms. Actually, this step is two inter-
twined steps. But they are often so intertwined that you usually can’t sepa-
rate them. You must collect information while filtering that information for
indications of anomalous behavior. These two steps will be repeated
throughout the troubleshooting process. This is easiest when you have a clear
sense of direction.

As you identify symptoms, try to expand and clarify the problem. If the
problem was reported by someone else, then you will want to try to recreate
the problem so that you can observe the symptoms directly. Keep in mind, if
you can’t recognize normal behavior, you won’t be able to recognize anoma-
lous behavior. This has been a recurring theme in this book and a reason you
should learn how to use these tools before you need them.

As an example, the first indication of a problem might be a user complaining
that she cannot telnet from host bsd1 to host lnx1. To expand and clarify the
problem, you might try different applications. Can you connect using ftp? You
might look to see if bsd1 and lnx1 are on the same network or different net-

* Compromised hosts are a special problem requiring special responses. Documentation can be abso-
lutely essential, particularly if you are contemplating legal action or have liability concerns. Documen-
tation used in legal actions has special requirements. For more information you might look at Simson
Garfinkel and Gene Spafford’s Practical UNIX & Internet Security or visit http://www.cert.org/nav/
recovering.html.

Generic Troubleshooting 275

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

works. You might see if lnx1 can reach bsd1. You might include other local
and remote hosts to see the extent of the problem.

3. Define the problem. Once you have a clear idea, you can begin coming to
terms with the problem. This is not the same as identifying the symptoms but
is the process of combining the symptoms and making generalizations. You
are looking for common elements that allow you to succinctly describe the
anomalous behavior of a system.

Your problem definition may go through several refinements. Continuing with
the previous problem, you might, over time, generate the following series of
problem definitions:

• bsd1 can’t telnet to lnx1.

• bsd1 can’t connect to lnx1.

• bsd1 can’t connect to lnx1, but lnx1 can connect to other hosts including
bsd1.

• Hosts on the same network as lnx1 can’t connect to lnx1.

• Hosts on the same network as lnx1 can’t connect to lnx1, but hosts on
remote networks can connect to lnx1.

(Yes, this was a real problem, and no, I didn’t get that last one backward.)

It is natural to try to define the problem as quickly as possible, but you
shouldn’t be too tied to your definition. Try to keep an open mind and be
willing to redefine your problem as your information changes.

4. Identify systems or subsystems involved. As you collect information, as seen in
the previous example, you will define and refine not only the nature of the
problem, but also the scope of the problem. This is the step in which we
divide and hopefully conquer our problem.

In this example, we have worked outward from one system to include a
number of systems. Usually troubleshooting tries to narrow the scope of the
problem, but as seen from this example, in networking just the opposite may
happen. You must discover the full scope of the problem before you can
narrow your focus. In this running example, realizing that remote connections
could connect was a key discovery.

5. Develop a testable hypothesis. Of course, what you can test will depend on
what tools you have, the rationale for this book. But don’t let tools drive your
approach. With the definition of the problem and continual refinement comes
the generation of the hypotheses as to the cause or nature of the problem. Such
generalizations are relatively worthless unless they can be verified. (Remember
those lectures on the scientific method in high school?) In this sense, devel-
oping a set of tests is more important than having an exact definition of a

276 Chapter 12: Troubleshooting Strategies

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

problem. In many instances, if you know the source of the problem, you can
correct it without fully understanding the problem. For example, if you know
an Ethernet card is failing, you can replace it without ever worrying about
which chip on the card malfunctioned. I’m not suggesting that you don’t want
to understand the problem, but that there are levels of understanding. Your
hypotheses must be guided by what you can test. As in science, an untestable
hypothesis is worthless.

In general, you want tests that will reduce the size of the search space (i.e.,
identify subsystem involved), that are easy to apply, that do not create further
problems, and so on.

In our running example, a necessary first step in making a connection is doing
address resolution. This suggests that there might be some problem with the
ARP mechanism. Notice that this is not a full hypothesis, but rather a point of
further investigation. Having expanded the scope of the problem, we are
attempting to focus in on subsystems to reduce the problem. Also notice that I
haven’t used any fancy tools up to this point. Keep it simple as long as you
can.

6. Select and apply tests. Not all tests are created equally. Some will be much
easier to apply, while others will provide more information. Determining the
optimal order for a set of tests is largely a judgment call. Clearly, the simple
tests that answer questions decisively are the best.

Returning to our example, there are several ways we could investigate
whether the ARP mechanism is functioning correctly. One way would be to
use tcpdump or ethereal to capture traffic on the network to see if the ARP
requests and responses are present. A simpler test, however, is to use the arp
command to see if the appropriate entries are in the ARP cache on the hosts
that are trying to connect to lnx1. In this instance, it was observed that the
entries were missing from all the hosts attempting to connect to lnx1. The
exception was the router on the network that had a much longer cache
timeout than did the local hosts. This also explained why remote hosts could
connect but local hosts could not connect. The remote hosts always went
through the router, which had cached the Ethernet address bypassing the ARP
mechanism. Note that this was not a definitive test but was done first because
it was much easier.

7. Assess results. As you perform tests, you will need to assess the results, refine
your tests, and repeat the process. You will want new tests that confirm your
results. This is clearly an iterative process.

With our extended example, two additional tests were possible. One was to
manually add the address of lnx1 to bsd1’s ARP table using the arp com-
mand. When this was done, connectivity was restored. When the entry was

Task-Specific Troubleshooting 277

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

deleted, connectivity was lost. A more revealing but largely unnecessary test
using packet-capture software to watch the exchange of packets between the
bsd1 and lnx1 revealed that bsd1’s ARP requests were being ignored by lnx1.

8. Develop and assess solutions. Once you have clearly identified the problem,
you must develop and assess possible solutions. With many problems, there
will be several possible solutions to consider. You should not hastily imple-
ment a solution until you have thought out the consequences. With lnx1, solu-
tions ranged from rebooting the system to reinstalling software. I chose the
simplest first and rebooted the system.

9. Implement and evaluate your solution. Once you have decided on a solution
and have implemented it, you should confirm the proper operation of your
system. Depending on the scope of the changes needed, this may mean exten-
sive testing of the system and all related systems.

With our running problem, this was not necessary. Connectivity was fully
restored when the system was rebooted. What caused the problem? That was
never fully resolved, but since the problem never recurred, it really isn’t an
issue.

If restarting the system hadn’t solved the problem, what would have been the
next step? In this case, the likely problem was corrupted system software. If
you are running an integrity checker like tripwire, you might try locating any-
thing that has changed and do a selective reinstallation. Otherwise, you may
be faced with reinstalling the operating system.

One last word of warning. It is often tempting to seize on an overly complex
explanation and ignore simpler explanations. Frequently, problems really are com-
plex, but not always. It is worth asking yourself if there is a simpler solution.
Often, this will save a tremendous amount of time.

Task-Specific Troubleshooting
The guidelines just given are a general or generic overview of troubleshooting. Of
course, each problem will be different, and you will need to vary your approach
as appropriate. The remainder of this chapter consists of guidelines for a number
of the more common troubleshooting tasks you might face. It is hoped that these
will give you further insight into the process.

Installation Testing

Ironically, one of the best ways to save time and avoid troubleshooting is to take
the time to do a thorough job of testing when you install software or hardware.
You will be testing the system when you are most familiar with the installation

278 Chapter 12: Troubleshooting Strategies

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

process, and you will avoid disruptions to service that can happen when a
problem isn’t discovered until the software or hardware is in use.

This is a somewhat broad interpretation of troubleshooting, but in my experience,
there is very little difference between the testing you will do when you install soft-
ware and the testing you will do when you encounter a problem. Overwhelm-
ingly the only difference for most people is the scope of the testing done. Most
people will test until they believe that a system is working correctly and then stop.
Failures, particularly multiple failures, may leave you skeptical, while some people
tend to be overly optimistic when installing new software.

Firewall testing

Because of the complexities, firewall testing is an excellent example of the prob-
lems that installation testing may present. Troubleshooting a firewall is a
demanding task for several reasons. First, to avoid disruptions in service, initial
firewall testing should be done in an isolated environment before moving on to a
production environment.

Second, you need to be very careful to develop an appropriate set of tests so that
you don’t leave gaping holes in your security. You’ll need to go through a firewall
rule by rule. You won’t be able to check every possibility, but you should be able
to test each general type of traffic. For example, consider a rule that passes HTTP
traffic to your web server. You will want to pass traffic to port 80 on that server. If
you are taking the approach of denying all traffic that is not explicitly permitted,
potentially, you will want to block traffic to that host at all other ports. You will
also want to block traffic to port 80 on other hosts.* Thus, you should develop a
set of three tests for this one action. Although there will be some duplicated tests,
you’ll want to take the same approach for each rule. Developing an explicit set of
tests is the key step in this type of testing.

The first step in testing a firewall is to test the environment in which the firewall
will function without the firewall. It can be extraordinarily frustrating to try to
debug anomalous firewall behavior only to discover that you had a routing
problem before you began. Thus, the first thing you will want to do is turn off any
filtering and test your routing. You could use tools like ripquery to retrieve routing
tables and examine entries, but it is probably much simpler to use ping to check
connectivity, assuming ICMP ECHO_REQUEST packets aren’t being blocked. (If
this is the case, you might try tools like nmap or hping.)

You’ll also what to verify that all concomitant software is working. This will
include all intrusion detection software, accounting and logging software, and

* If you doubt the need for this last test, read RFC 3093, a slightly tongue-in-cheek description of how to
use port 80 to bypass a firewall.

Task-Specific Troubleshooting 279

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

testing software. For example, you’ll probably use packet capture software like
tcpdump or ethereal to verify the operation of your firewall and will want to make
sure the firewall is working properly. I hate to admit it, but I’ve started packet cap-
ture software on a host that I forgot was attached to a switch and banged my head
wondering why I wasn’t seeing anything. Clearly, if I had used this setup to make
sure packets were blocked without first testing it, I could have been severely
misled.

Test the firewall in isolation. If you are adding filtering to a production router,
admittedly this is going to be a problem. The easiest way to test in isolation is to
connect each interface to an isolated host that can both generate and capture
packets. You might use hping, nemesis, or any of the other custom packet genera-
tion software discussed in Chapter 9. Work through each of your tests for each
rule with the rule disabled and enabled. Be sure you explicitly document all your
tests, particularly the syntax.

Once you are convinced that the firewall is working, it is time to move it online. If
you can schedule offline testing, that is the best approach. Work through your
tests again with and without the filters enabled. If offline testing isn’t possible, you
can still go through your tests with the filters enabled.

Finally, don’t forget to come back and go through these tests periodically. In par-
ticular, you’ll want to reevaluate the firewall every time you change rules.

Performance Analysis and Monitoring

If a system simply isn’t working, then you know troubleshooting is needed. But in
many cases, it may not be clear that you even have a problem. Performance anal-
ysis is often the first step to getting a handle on whether your system is func-
tioning properly. And it is often the case that careful performance analysis will
identify the problem so that no further troubleshooting is needed.

Performance analysis is another management task that hinges on collecting infor-
mation. It is a task that you will never complete, and it is important at every stage
in the system’s life cycle. The most successful network administrator will take a
proactive approach, addressing issues before they become problems. Chapter 7
and Chapter 8 discussed the use of specific tools in greater detail.

For planning, performance analysis is used to compare systems, establish system
requirements, and do capacity planning and forecasting. For management, it pro-
vides guidance in configuring and tuning the system. In particular, the identifica-
tion of bottlenecks can be essential for management, planning, and
troubleshooting.

280 Chapter 12: Troubleshooting Strategies

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

There are three general approaches to performance analysis—analytical mod-
eling, simulations, and measurement. Analytical models are mathematical models
usually based on queuing theory. Simulations are computer models that attempt to
mimic the behavior of the system through computer programs. Measurement is, of
course, the collection of data from an existing network. This book has focused pri-
marily on measurement (although simulation tools were mentioned in Chapter 9).

Each approach has its role. In practice, there can be a considerable overlap in
using these approaches. Analytical models can serve as the basis for simulations,
or direct measurements may be needed to supply parameters used with analytical
models or simulations.

Measurement has its limitations. Obviously, the system must exist before measure-
ments can be made so it may not be a viable tool for planning. Measurements
tend to produce the most variable results. And many things can go wrong with
measurements. On the positive side, measurement carries a great deal of authority
with most people. When you say you have measured something, this is treated as
irrefutable evidence by many, often unjustifiably.

General steps

Measuring performance is something of an art. It is much more difficult to decide
what to measure and how to make the actual measurements than it might appear
at first glance. And there are many ways to waste time collecting data that will not
be useful for your purposes.

What follows is a fairly informal description of the steps involved in performance
analysis. As I said before, listing the steps can be very helpful in focusing atten-
tion on some parts of the process that might otherwise be ignored.* Of course,
every situation is different, so these steps are only an approximation. Designing
performance analysis tests is an iterative process. You should go back through
these steps as you proceed, refining each step as needed.

1. State your goal. This is the question you want to answer. At this point, it may
be fairly vague, but you will refine it as you progress. You need a sense of
direction to get started. A common mistake is to allow a poorly defined goal
to remain vague throughout the process, so be sure to revisit this step often.
Also, try to avoid goals that bias your approach. For instance, set out to com-
pare systems rather than show that one system is better than another.

As an example, a network administrator might ask if the network backbone is
adequate to support current levels of traffic. While an extremely important

* If you would like a more complete discussion of the steps in performance analysis, you should get Raj
Jain’s exceptional book, The Art of Computer Systems Performance Analysis. Jain’s book considers per-
formance analysis from a broader perspective than this book.

Task-Specific Troubleshooting 281

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

question, it is quite vague at this point. But stating the goal allows you to start
focusing on the problem. For example, formally stating this problem may lead
you to ask what adequate really means. Or you might go on to consider what
the relevant time frame is, i.e., what current means.

2. Define your system. The definition of your system will vary with your goal.
You will need to decide what parts of the system to include and in what
detail. You may want to exclude those parts outside your control. If you are
interested in server performance, you will undoubtedly want to consider the
various subsystems of the server separately—such as disks, memory, CPU, and
network interfaces.

With the backbone example, what exactly is the backbone? Certainly it will
include equipment such as routers and switches, but does it include servers? If
you do include servers, you will want to view the server as a single entity, a
source or sink for network traffic perhaps, but not component by component.

3. Identify possible outcomes. This step consists of identifying possible answers
to the question you want to answer. This is a refinement of Step 1 but should
be addressed after the parts of the system are identified. Identifying outcomes
establishes the level of your interest, how much detail you might need, and
how much work you are going to have to do. You are determining the granu-
larity of your measurements with this step.

For example, possible outcomes for the question of backbone performance
might be that performance is adequate, that the system suffers minor conges-
tion during the periods of heaviest load, or that the system is usually suffering
serious congestion with heavy packet loss. For many purposes, just selecting
one of these three answers might be adequate. However, in some cases, you
may want a much more descriptive answer. For example, you may want some
estimation of the average utilization, maximum utilization, percent of time at
maximum utilization, or number of lost packets. Ultimately, the degree of
detail required by the answer will determine the scope of the project. You
need to make this decision early, or you may have to repeat the project to
gather additional information.

4. Identify and select what you will measure. Metrics are those system character-
istics that can be quantitatively measured. The choice of a metric will depend
on the services you are examining. Be careful in your selection. It is often
tempting to go with metrics based on how easy the data is to collect rather
than on how relevant the data is to the goal. For a network backbone, this
might include throughput, delay, utilization, number of packets sent, number
of packets discarded, or average packet size.

282 Chapter 12: Troubleshooting Strategies

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5. If appropriate, identify test parameters and factors.* Parameters and factors are
characteristics of the system that affect performance that can be changed.
You’ll change these to see what effect they have on the system. Parameters
include both system and load (or traffic) parameters. Try to be as systematic as
possible in identifying and evaluating parameters to avoid arbitrary decisions.
It is very easy to overlook relevant parameters or include irrelevant ones.

For a network backbone, system parameters may include interface speeds and
link speeds or the use of load sharing. For traffic, you might use a tool like
mgen to add an additional load. But for simple performance measurement,
you may elect to change nothing.

6. Select tools. Once you have a clear picture of what you want to do, it is time
to select the tools of interest. It is all too easy to do this too soon. Don’t let the
tools you have determine what you are going to do. Tools for backbone per-
formance might include using ntop on a link or SNMP-based tools.

7. Establish measurement constraints. On a production network, establishing
constraints usually means deciding when and where to make your measure-
ments. You will also need to decide on the frequency and duration of your
measurements. This is often more a matter of intuition than engineering. This
is something that you will have to do iteratively, adjusting your approach
based on the results you get. Unless you have a very compelling reason, mea-
surements should be taken under representative conditions.

For backbone performance, for example, router interfaces are the obvious
places to look. Server interfaces are another reasonable choice. You may also
need to look at individual links as well, particularly in a switched network.
You will also need to sample at different times, including in particular those
times when the load is heaviest. (Use mrtg or cricket to determine this.) You
will need to ensure that your measurements have the appropriate level of
detail. If you have isochronous applications, such as video conferencing, that
are extremely sensitive to delay, five-minute averages will not provide ade-
quate information.

8. Review your experimental design. Once you have decided what you want to
measure and how, you should look back over the process before you begin.
Are there any optimizations you can make to minimize the amount of work
you will have to do? Will the measurements you make really answer your
questions? It is wise to review these questions before you invest large amounts
of time.

* Further distinctions between parameters and factors are sometimes made but don’t seem relevant when
considered solely from the perspective of measurements.

Task-Specific Troubleshooting 283

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9. Collect data. The single most important consideration in collecting data is that
you adequately document what you are doing. It is an all too common experi-
ence to discover that you have a wonderful collection of data, but you don’t
fully know or remember the circumstances surrounding its collection. Conse-
quently, you don’t know how to interpret it. If this happens, the only thing you
can do is discard the data and start over. Remember, collecting data is an itera-
tive process. You must examine your results and make adjustments as needed.
It is too easy to continue collecting worthless data when even a cursory exami-
nation of your data would have revealed you were on the wrong track.

10. Analyze data. Once the data is collected, you must analyze, interpret, and act
upon your results. This analysis will, of course, depend heavily on the con-
text and goals of the investigation. But an essential element is to condense the
data and extract the needed information, presenting it in a concise form. It is
often the case that measurements will create massive amounts of data that are
meaningless until carefully analyzed.

Don’t get too carried away. Often the simplest analyses are of greater value
than overly complex analyses. Simple analyses can often be more easily
understood. But whatever you conclude, you’ll need to do it all again. System
performance analysis is a never-ending task.

Bottleneck analysis

Since networks are composed of a number of pieces, if the pieces are not well
matched, poor performance may depend on the behavior of a single component.
Bottleneck analysis is the process of identifying this component.

When looking at performance, you’ll need to be sure you get a complete picture.
Generally, one bottleneck will dominate performance statistics. Many systems, how-
ever, will have multiple bottlenecks. It’s just that one bottleneck is a little worse
than the others. Correcting one bottleneck will simply shift the problem—the bot-
tleneck will move from one component to another. When doing performance mon-
itoring, your goal should be to discover as many bottlenecks as possible.

Often identifying a bottleneck is easy. Once you have a clear picture of your net-
work’s architecture, topology, and uses, bottlenecks will be obvious. For example,
if 90% of your network traffic is to the Internet and you have a gigabit backbone
and a 56-Kbps WAN connection, you won’t need a careful analysis to identify your
bottleneck.

Identifying bottlenecks is process dependent. What may be a bottleneck for one
process may not be a problem for another. For example, if you are moving small
files, the delay in making a connection will be the primary bottleneck. If you are
moving large files, the speed of the link may be more important.

284 Chapter 12: Troubleshooting Strategies

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Bottleneck analysis is essential in planning because it will tell you what improve-
ments will provide the greatest benefit to your network. The only real way to
escape bottlenecks is to grossly overengineer your network, not something you’ll
normally want to do. Thus, your goal should not be to completely eliminate bottle-
necks but to minimize their impact to the point that they don’t cause any real
problems. Upgrading the network in a way that doesn’t address bottlenecks will
provide very little benefit to the network. If the bottlenecks on your network are a
slow WAN connection and slow servers, upgrading from Fast Ethernet to Gigabit
Ethernet will be a foolish waste of money. The key consideration here is utiliza-
tion. If you are seeing 25% utilization with Fast Ethernet, don’t be surprised to see
utilization drop below 3% with Gigabit Ethernet. But you should be aware that
even if the utilization is low, increasing the capacity of a line will shorten down-
load times for large files. Whether this is worthwhile will depend on your organi-
zation’s mission and priorities.

Here is a rough outline of the steps you might go through to identify a bottleneck:

1. Map your network. The first step is to develop a clear picture of your net-
work’s topology. To do this, you can use the tools described in Chapter 6.
tkined might be a good choice. Often potential bottlenecks are obvious once
you have a clear picture of your network. At the very least, you may be able
to distinguish the parts of the network that are likely to have bottlenecks from
parts that don’t need to be examined, reducing the work you will have to do.

2. Identify time-dependent behavior. The problems bottlenecks cause, unless they
are really severe, tend to come and go. The next logical step is to locate the
most heavily used devices and the times when they are in greatest use. You’ll
want to use a tool like mrtg or cricket to identify time-dependent behavior.
(Understanding time-dependent behavior can also be helpful in identifying
when you can work on the problem with the least impact on users.)

3. Pinpoint the problems. At this point, you should have narrowed your focus to
a few key parts of the network and a few key times. Now you will want to
drill down on specific devices and links. ntop is a likely choice at this point,
but any SNMP-based tool may be useful.

4. Select the tool. How you will proceed from here will depend on what you
have discovered. It is likely that you will be able to classify the problem as
stemming from an edge device, such as a server or a path between devices.
Doing so will simplify the decision of what to do next.

If you believe the problem lies with a path, you can use the tools described in
Chapter 4 to drill down to a specific device or single link. You’ll probably
want to get an idea of the nature of the traffic over the link. ntop is one

Task-Specific Troubleshooting 285

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

choice, or you could use a tool like tcpdump, ethereal, or one of the tools that
analyzes tcpdump traffic.

For a link device like a router or switch, you’ll need to look at basic perfor-
mance. SNMP-based tools are the best choice here.

For end devices, you need to look at the performance of the device at each
level of the communications architecture. You could use spray to examine the
interface performance. For the stack, you might compare the time between
SYN and ACK packets with the time between application packets. (Use
ethereal or tcpdump to collect this information.) The setup times should be
independent of the application, depending only on the stack. If the stack
responds quickly and the application doesn’t, you’ll need to focus on the
application.

5. Fix the problem. Once you have an idea of the source of the problem, you
can then decide how to deal with it. For poor link performance, you have sev-
eral choices. You can upgrade the link bandwidth or alter the network
topology to change the load on the link. Adding interfaces to a server is one
very simple solution. Attaching a server to multiple subnets is a quick way to
decrease traffic between those subnets. Policy-based routing is yet another
approach. You can use routing priorities to ensure that important traffic is han-
dled preferentially.

For an edge device such as an attached server, you’ll want to distinguish
among hardware problems, operating system problems, and application prob-
lems, then upgrade accordingly.

Bottleneck analysis is something you should do on an ongoing basis. The urgency
will depend on user perceptions. If users are complaining, it doesn’t matter what
the numbers say, you have a problem. If users aren’t complaining, your analysis is
less pressing but should still be done.

Capacity planning

Capacity planning is an extremely important task. Done correctly, it is also an
extremely complex and difficult task, both to learn and to do. But this shouldn’t
keep you from attempting it. The description here can best be described as a
crude, first-order approximation of capacity planning. But it will give you a place
to start while you are learning.

Capacity planning is really an umbrella that describes several closely related activi-
ties. Capacity management is the process of allocating resources in a cost-efficient
way. It is concerned with the resources that you currently have. (As you might
guess, this is closely related to bottleneck analysis.) Trend analysis is the process
of looking at system performance over time, trying to identify how it has changed

286 Chapter 12: Troubleshooting Strategies

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

in the past with the goal of predicting future changes. Capacity planning attempts
to combine capacity management and trend analysis. The goal is to predict future
needs to provide for effective planning.

The basic steps are fairly straightforward to describe, just difficult to carry out.
First, decide what you need to measure. That means looking at your system in
much the same way you did with bottleneck analysis but augmenting your anal-
ysis with anything you know about the future growth of your system. You’ll need
to think about your system in context to do this.

Next, select appropriate tools to collect the information you’ll need. (mrtg and
cricket are the most obvious tools among those described in this book, but there
are a number of other viable tools if you are willing to do the work to archive the
data.) With the tools in place, begin monitoring your system, recording and
archiving appropriate data. Deciding what to keep and how to organize it is a tre-
mendously difficult problem. Every situation is different. Each situation is largely a
question of balancing the amount of work involved in keeping the data in an
organized and accessible manner with the likelihood that you will actually use it.
This can come only from experience.

Once you have the measurements, you will need to analyze them. In general,
focus on areas that show the greatest change. Collecting and analyzing data will
be an iterative process. If little is different from one measurement to the next, then
collect data less frequently. When there is high variability, collect more often.

Finally, you’ll make your predictions and adjust your system accordingly.

There are a number of difficulties in capacity planning. Perhaps the greatest diffi-
culty comes with unanticipated, fundamental changes in the way your network is
used. If you will be offering new services, predictions based on trends that pre-
date these services will not adequately predict new needs. For example, if you are
introducing new technologies such as Internet telephony or video, trend analysis
before the fact will be of limited value. There is a saying that you can’t predict
how many people will use a bridge by counting how many people are currently
swimming across the river. If this is the case, about the best you can do is look to
others who have built similar bridges over similar rivers.

Another closely related problem is differential growth. If your network, like most,
provides a variety of different services, then they are probably growing at dif-
ferent rates. This makes it very difficult to predict aggregate performance or need
if you haven’t adequately collected data to analyze individual trends.

Yet another difficulty is motivation. The key to trend analysis is keeping adequate
records, i.e., measuring and recording information in a way that makes it acces-
sible and usable. This is difficult for many people since the records won’t have

Task-Specific Troubleshooting 287

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

much immediate utility. Their worth comes from being able to look back at them
over time for trends. It is difficult to invest the time needed to collect and main-
tain this data when there will be no immediate return on the effort and when fun-
damental changes can destroy the utility of the data.

You should be aware of these difficulties, but you should not let them discourage
you. The cost of not doing capacity planning is much greater.

289
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Appendix A

A
Software Sources

This appendix begins with a brief discussion of retrieving and installing software
tools. It then provides a list of potential sources for the software. First I describe
several excellent general sources for tools, then I list specific sources.

Much of this software requires root privileges and could contain dangerous code.
Be sure you get your code from reliable sources. Considerable effort has been
made to provide canonical sources, but no guarantee can be made for the trust-
worthiness of the code or the sources listed here. Most of these programs are
available as FreeBSD ports or Linux packages. I have used them, when available,
for testing for this book.

Installing Software
I have not tried to describe how to install individual tools in this book. First, in my
experience, a set of directions that is accurate for one version of the software may
not be accurate for the next version. Even more likely, directions for one oper-
ating system may fail miserably for another. This is frequently true even for dif-
ferent versions of the same operating system. Consequently, trying to develop a
reasonable set of directions for each tool for a variety of operating systems was
considered unfeasible. In general, the best source of information, i.e., the only
information that is likely to be reliable, is the information that comes with the soft-
ware itself. Read the directions!

Having said this, I have tried to give some generic directions for installing soft-
ware. At best, these are meant to augment the existing directions. They may help
clarify matters when the included directions are a little too brief. These instruc-
tions are not meant as replacements.

290 Appendix A: Software Sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Installing software has gotten much easier in the last few years, thanks in part to
several developments. First, GNU configure and build tools have had a tremen-
dous impact in erasing the differences created by different operating systems.
Second, there have been improvements in file transfer and compression tools as
well as increased standardization of the tools used. Finally, several operating sys-
tems now include mechanisms to automate the process. If you can use these, your
life will be much simpler. I have briefly described three here—the Solaris package
system, the Red Hat package manager, and the FreeBSD port system. Please con-
sult the appropriate documentation for the details for each.

Generic Installs

Here is a quick review of basic steps you will go through in installing a program.
Not every step will be needed in every case. If you have specific directions for a
product, use those directions, not these! (Although slightly dated, a very compre-
hensive discussion can be found in Porting Unix Software by Greg Lehey.)

1. Locate a reliable, trustworthy source for both the software and directions. Usu-
ally, the best sources are listed on a web page managed by the author or her
organization.

2. If you can locate directions before you begin, read them first. Typically, basic
directions can be found at the software’s home page. Frequently, however, the
most complete directions are included with the software distribution, so you
may need to retrieve and unpack the software to get at these.

3. Download the tool using FTP. You may be able to do this with your web
browser. Be certain you use a binary transfer if you are doing this manually.

4. Uncompress the software if needed. If the filename ends with .tgz or .gz, use
gunzip. These are the two most common formats, but there are other possibil-
ities. Lehey’s book contains a detailed list of possibilities and appropriate
tools.

5. Use tar to unpack the software if needed, i.e., if the filename ends with .tar.
Typically, I use the -xvf options.

6. Read any additional documentation that was included with the distribution.

7. If the file is a precompiled binary, you need only move it to the correct loca-
tion. In general, it is safer to download the source code and compile it your-
self. It is much harder to hide Trojan horses in source code (but not
impossible).

8. If you have a very simple utility, you may need to compile it directly. This
means calling the compiler with the appropriate options. But for all but the

Installing Software 291

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

simplest programs, a makefile should be provided. If you see a file named
Makefile, you will use the make command to build the program. It may be
necessary to customize the Makefile before you can proceed. If you are lucky,
the distribution will include a configure script, a file that, when executed, will
automatically make any needed changes to the Makefile. Look for this script
first. If you don’t find it, look back over your directions for any needed
changes. If you don’t find anything, examine the makefile for embedded direc-
tions. If all else fails, you can try running make without making any changes.

9. Finally, you may also need to run make with one or more arguments to finish
the installation, e.g., make install to move the files to the appropriate directo-
ries or make clean to remove unused files such as object modules after
linking. Look at your directions, or look for comments embedded in the make-
file.

Hopefully each of these steps will be explained in detail in the documentation
with the software.

Solaris Packages

In Solaris, packages are directories of the files needed to build or run a program.
This is the mechanism Sun Microsystems uses to distribute software. If you are
installing from a CD-ROM, the files will typically be laid out just the way you need
them. You will only need to mount the CD-ROM so you can get to them. If you
are downloading packages, you will typically need to unpack them first, usually
with the tar command. You may want to do this under the default directory /var/
spool/pkg, but you can override this location with command options when
installing the package.

Once you have the appropriate package on your system, you can use one of sev-
eral closely related commands to manage it. To install a package, use the pkgadd
command. Without any arguments, pkgadd will list the packages on your system
and give you the opportunity to select the package of interest. Alternately, you can
name the package you want to install. You can use the -d option to specify a dif-
ferent directory.

Other commands include the pkgrm command to remove a package, the pkginfo
command to display information on which packages are already installed on your
system, and pkgchk to check the integrity of the package.

For other software in package format, you might begin by looking at http://
sunfreeware.com or searching the Web for Sun’s university alliance software
repositories. Use the string “sunsite” in your search.

292 Appendix A: Software Sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Red Hat Package Manager

Different versions of Linux have taken the idea of packages and expanded on it.
Several different package formats are available, but the Red Hat format is probably
the most common. There are several programs for the installation of software in the
RPM format. Of these, the Red Hat Package Manager (rpm) is what I generally use.
Two other package management tools that provide GUIs include glint and gnorpm.

First, download the package in question. Then, to install a package, call rpm with
the options -ivh and the name of the package. If all goes well, that is all there is to
it. You can use the -e option to remove a package.

A variety of packages come with many Linux distributions. Numerous sites on the
Web offer extensive collections of Linux software in RPM format. If you are using
Red Hat Linux, try http://www.redhat.com. Many of the repositories will provide
you with a list of dependencies, which you’ll need to install first.

FreeBSD Ports

Another approach to automating software installation is the port collection
approach used by FreeBSD. This, by far, is the easiest approach to use and has
been adapted to other systems including OpenBSD and Debian Linux. The
FreeBSD port collection is basically a set of directions for installing software. Liter-
ally thousands of programs are available.

Software is grouped by category in subdirectories in the /usr/ports directory. You
change to the appropriate directory for the program of interest and type make
install. At that point, you sit back and watch the magic. The port system will
attempt to locate the appropriate file in the /usr/ports/distfiles directory. If the file
is not there, it will then try downloading the file from an appropriate site via FTP.
Usually the port system knows about several sites so, if it can’t reach one, it will
try another. Once it has the file, it will calculate and verify a checksum for the file.
It next applies appropriate patches and checks dependencies. It will automatically
install other ports as needed. Once everything is in place, it will compile the soft-
ware. Finally, it installs the software and documentation. When it works, which is
almost always, it is simply extraordinary. The port collection is an installation
option with FreeBSD. Alternately, you can visit http://www.freebsd.org. The pro-
cess is described in the FreeBSD Handbook.

When evaluating a new piece of software, I have the luxury of testing the soft-
ware on several different platforms. In general, I find the FreeBSD port system the
easiest approach to use. If I have trouble with a FreeBSD port, I’ll look for a Linux
package next. If that fails, I generally go to a generic source install. In my experi-
ence, Solaris packages tend to be hard to find.

Licenses 293

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generic Sources
The Cooperative Association for Internet Data Analysis (CAIDA) maintains an
extensive listing of measurement tools on the Web. The page at http://www.caida.
org/tools/measurement has a number of tables grouping tools by function. Brief
descriptions of each tool, including links to relevant sites, follow the tables. This
listing includes both free and commercial tools and seems to be updated on a reg-
ular basis. Another CAIDA page, http://www.caida.org/tools/taxonomy/, provides a
listing of tools by taxonomy.

Another web site maintaining a list of network-monitoring tools is http://www.slac.
stanford.edu/xorg/nmtf/nmtf-tools.html. In general, there are several collaborative
Internet measurement projects that regularly introduce or discuss measurement
tools. These include CAIDA and the Stanford Linear Accelerator Center (SLAC),
among others.

Other sites that you might want to look at include those that develop tools, such
as http://moat.nlanr.net, http://www-nrg.ee.lbl.gov/, and http://www.merit.edu.
Don’t forget special purpose sites. Security sites like http://www.cert.org and http://
www.ciac.org/ciac/ may have links to useful tools. Keep your eyes open.

Finally, several RFCs discuss tools. The most comprehensive is RFC 1470. Unfortu-
nately, it is quite dated. RFC 1713, also somewhat dated, deals with DNS tools, and
RFC 2398 deals with tools for testing TCP implementation.

Licenses
Although some commercial software has been mentioned, this book has over-
whelmingly focused on freely available software. But “freely available” is a very
vague expression that covers a lot of ground.

At one extreme is software that is released without any restrictions whatsoever. You
can use it as you see fit, modify it, and, in some cases, even try to sell your
enhanced versions. Most of the software described here, however, comes with
some limitations on what you can do with it, particularly with respect to reselling it.

Some of this software is freely available to some classes of users but not to others.
For example, some software distinguishes between commercial and noncommer-
cial users or between commercial and academic users. For some of the tools, bina-
ries are available, but source code is either not available or requires a license.
Some of the software exists in multiple forms. For example, there may be both
free and commercial versions of a tool. Other tools restrict what you do with them.
For example, you may be free to use the tool, but you may be expected to share
any improvements you make.

294 Appendix A: Software Sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

You should also be aware that licensing may change over time. It is not
uncommon for a tool to move from the free category to the commercial category,
particularly as new, improved versions are released. This seems to be a fairly
common business model.

I have not attempted to describe the licensing for individual tools. I am not a
lawyer and do not fully understand all the subtleties of license agreements. Dif-
ferent licenses will apply to different organizations in different ways. In some
cases, such as when encryption is involved, different countries have laws that
impact licenses in unusual ways. Finally, license agreements change so frequently,
anything I write could be inaccurate by the time you read this.

The bottom line, then, is that you should be sure to check appropriate licensing
agreements whenever you retrieve any software. Ultimately, it is your responsi-
bility to ensure that your use of these tools is permissible.

Sources for Tools
This section gives basic information on each tool discussed in this book. I have
not included built-in tools like ps. The tools are listed alphabetically. I have tried
to make a note of which tools are specific to Windows, but I did not list Windows
tools separately, since many tools are available for both Unix and Windows.

A few tools discussed in the book, particularly older tools, seem to have no real
home but may be available in some archives. This is generally an indication that
the tool is fading into oblivion and should be used as a last alternative. (Some of
these tools, however, are alive and well as Linux packages or FreeBSD ports.)
While I was writing this book, a number of home pages for tools changed. Also,
several of the sites seem to be down more than they are up. I have supplied the
most recent information I have, but many of the tools will have moved.

These URLs are nothing more than starting points. If you can’t find
the tool at the URL given here, consider doing an Internet search. In
fact, I really recommend doing your own search over using this list. I
find that I have the most luck with searches if I do a compound
search with the tool’s name and the author’s last name.

That one version of a tool is safe, stable, and useful doesn’t mean
the next version won’t have severe problems. New programs are
introduced on an almost daily basis. So keep your eyes open.

Sources for Tools 295

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Analyzer—Piero Viano
This is a protocol analyzer for Windows. (Directions are available only in
Italian.) http://netgroup-serv.polito.it/analyzer/

argus—Carter Bullard
This is a generic IP network transaction auditing tool. ftp://ftp.sei.cmu.edu/pub/
argus-1.5

arping—marvin@nss.nu
This ping-like program uses ARP requests to check reachability. http://synscan.
nss.nu/programs.php

arpwatch—Lawrence Berkeley National Laboratory
This tool watches for new or changed MAC addresses. ftp://ftp.ee.lbl.gov/
arpwatch.tar.Z

AWACS—Georg Greve
This is log management software currently under development. http://www.
gnu.org/software/awacs/awacs.html

bb—BB4 Technologies, Inc.
This is web-based monitoring software. http://www.bb4.com/

bind—University of California at Berkeley and the Internet Software Consortium
This is the Berkeley Internet Name Daemon, i.e., domain name server soft-
ware. It includes a number of testing tools. http://www.isc.org/products/BIND/

bing—Pierre Beyssac
This tool measures point-to-point bandwidth. http://www.freenix.fr/freenix/
logiciels/bing.html

bluebird—Shane O’Donnell et al.
This is a general network management applications framework. http://www.
opennms.org/

bprobe and cprobe
These tools measure the bandwidth at the slowest link on a path. ftp://cs-www.
bu.edu/carter/probes.tar.Z

cheops—Mark Spencer
This is a Linux-based network management platform. http://www.marko.net/
cheops/

Chesapeake port scanner—Mentor Technologies
This is a simple port scanner for Windows. http://www.mentortech.com/learn/
tools/pscan.shtml

clink—Allen Downey
This is another pathchar variant, a tool for measuring the bandwidth of links
on a path. http://www.cs.colby.edu/~downey/clink/

296 Appendix A: Software Sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

CMU SNMP—Carnegie Mellon University
This set of SNMP tools has largely been superseded by NET SNMP. They are
still commonly available for Linux. http://www.gaertner.de/snmp/

cpm—CERT at Carnegie Mellon University
This tool checks to see if any interfaces are in promiscuous mode. ftp://info.
cert.org/pub/tools/cpm.tar.Z

cricket—Jeff Allen
This tool queries devices, collecting information over time, typically router
traffic, and graphs the collected information. http://cricket.sourceforge.net/

cyberkit—Luc Neijens
This multipurpose Windows-based tool includes ping, traceroute, scanning,
and SNMP. It is postcardware. http://www.cyberkit.net

dig
Part of the bind distribution. This tool retrieves domain name information
from a server.

dnsquery
Part of the bind distribution. This tool retrieves domain name information
from a server.

dnsutl—Peter Miller
This is a tool to simplify DNS configuration. http://www.pcug.org.au/~millerp/
dnsutl/dnsutl.html

dnswalk—David Barr
This tool retrieves and analyzes domain name information from a server. http://
www.cis.ohio-state.edu/~barr/dnswalk/

doc—Steve Hotz, Paul Mockapetris, and Brad Knowles
This tool retrieves and analyzes domain name information from a server.

dsniff—Dug Song
This is a set of utilities that can be used to test or breach the security on your
system. http://naughty.monkey.org/~dugsong/dsniff/

echoping—Stéphane Bortzmeyer
This is an alternative to ping that uses protocols other than ICMP. ftp://ftp.
internatif.org/pub/unix/echoping/

egressor—Mitre
This tool set verifies that your router will not forward packets with spoofed
addresses. http://www.packetfactory.net/Projects/Egressor/

ethereal—Gerald Combs et al.
This is a protocol analyzer that runs under X Window and Windows. It
requires GTK+, which in turn requires GLIB. http://www.ethereal.com

Sources for Tools 297

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

fping—Roland J. Schemers
This is a ping variant that can check multiple systems in parallel. http://www.
fping.com

fressh—FreSSH Organization
This is another alternative to ssh. http://www.fressh.org/

getif—Philippe Simonet
This is a multipurpose Windows tool that uses SNMP. http://www.geocities.
com/SiliconValley/Hills/8260/

gimp
This is an image manipulation program. It is also available for Windows. http://
www.gimp.org/

GTK+—Peter Mattis, Spencer Kimball, and Josh MacDonald
This is a GUI development toolkit. Its libraries may be needed by other tools.
http://www.gtk.org/

gtkportscan—Rafael Barrero
This is a port scanner that is written in GTK+. The last reported site was http://
armageddon.splorg.org/gtkportscan/.

GxSNMP
This is a network management applications framework. http://www.gxsnmp.org/

h2n
This Perl tool translates a host table to name server file format. ftp://ftp.uu.net/
published/oreilly/nutshell/dnsbind/dns.tar.Z

host
Part of the bind distribution. This tool retrieves domain name information
from a server.

hping
Salvatore Sanfilippo. This tool sends custom packets and displays responses.
http://www.kyuzz.org/antirez/software.html

iperf—Mark Gates and Alex Warshavsky
This is a tool for measuring TCP and UDP bandwidth. http://dast.nlanr.net/
Projects/Iperf/

ipfilter—Darren Reed
This is a set of programs to filter TCP/IP packets. It includes ipsend, a tool to
send custom packets. http://coombs.anu.edu.au/~avalon/ip-filter.html

ipload—BTT Software
This is a load generator for Windows. http://www.bttsoftware.co.uk/ipload.html

298 Appendix A: Software Sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

ipsend—Darren Reed
This tool is part of the ipfilter package. http://coombs.anu.edu.au/~avalon/ip-
filter.html

lamers—Bryan Beecher
This tool checks for lame delegations in a DNS database. Its current official
location is unknown. The last reported official site: ftp://terminator.cc.umich.
edu/dns/lame-delegations. I found links to copies at http://www.dns.net/dnsrd/
tools.html.

logcheck—Craig Rowland
This log management tool is suitable for use with syslog files. http://www.
psionic.com/abacus/logcheck/

lsof—Victor Abell
This tool lists open files on a Unix system. ftp://vic.cc.purdue.edu/pub/tools/
unix/lsof/

MGEN—Brian Adamson and Naval Research Laboratory
This tool set generates and receives traffic. It is used primarily for load testing.
http://manimac.itd.nrl.navy.mil/MGEN/

mon—Jim Trocki
This is a general purpose resource-monitoring system for host and service
availability. http://www.kernel.org/software/mon/

mrtg—Tobias Oetiker and Dave Rand
This tool queries devices, collects information over time (typically router
traffic) and graphs collected information. http://ee-staff.ethz.ch/~oetiker/
webtools/mrtg/

mssh—Metro State College of Denver
This is a version of ssh for Windows. http://cs.mscd.edu/MSSH/index.html

msyslog—Core SDI
This is modular syslog, a replacement for secure syslog. http://www.core-sdi.
com/english/freesoft.html

nam—Steven McCanne and VINT
This is a Tcl/Tk-based network visualization and animation tool. http://www.isi.
edu/nsnam/nam/

nemesis—obecian@celerity.bartoli.org
This tool generates a wide variety of custom IP packets. http://www.
packetninja.net/nemesis/

nessus—Jordan Hrycij and Renaud Deraison
This is a security scanning and auditing tool. http://www.nessus.org/

Sources for Tools 299

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

NET SNMP—Wes Hardaker
This is an updated version of CMU SNMP. It is postcardware. http://net-snmp.
sourceforge.net/

netcat—hobbit@avian.org
This simple utility reads and writes data across network connections. It is
available for both Unix and Windows. http://www.canonware.com/canonware/
and http://www.l0pht.com/~weld/netcat/

netmon
Supplied with Microsoft NT Server. This is network-monitoring software. A
basic, stripped-down version of the netmon.exe program is supplied with
Microsoft NT Server. The full version is part of Microsoft’s System Manage-
ment Server.

netperf—Hewlett-Packard
This is network benchmarking and performance measurement software. http://
www.netperf.org/netperf/NetperfPage.html

nfswatch—Dave Curry and Jeff Mogul
This is a tool for watching NFS traffic. The last known site was ftp://ftp.cerias/
purdue.edu/pub/tools/unix/netutils/nfswatch/.

nhfsstone—Legato Systems
This is a tool for benchmarking NFS traffic. Current availability is unknown,
but it was originally from www.legato.com.

NIST Net—National Institute of Standards and Technology
This is a network emulation package that runs on Linux. http://is2.antd.nist.
gov/itg/nistnet/

nmap—fyodor@dhp.com
This is a general scanning and probing tool with lots of functionality including
OS fingerprinting. http://www.insecure.org/nmap

nocol—Netplex Technologies, Inc.
This is system- and network-monitoring software. http://www.netplex-tech.com/
software/nocol/

ns—Steven McCanne, Sally Floyd, and VINT
This is a network simulator for protocol performance and scaling. http://www.
isi.edu/nsnam/ns/

nslookup
Part of the bind distribution. This tool retrieves domain name information
from a server.

300 Appendix A: Software Sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

ntop—Luca Deri
This is a versatile tool for monitoring network usage. http://www.ntop.org/ntop.
html

ntpd—David Mills
This is a collection of tools to set and coordinate system clocks using NTP.
http://www.eecis.udel.edu/~ntp/

openssh
This is another version of ssh. http://www.openssh.com/

p0f—Michal Zalewski
This is a passive stack fingerprinting system. http://lcamtuf.hack.pl/p0f-1.7.tgz

pathchar—Van Jacobson
This program measures the bandwidth of the links along a network path. ftp://
ftp.ee.lbl.gov/ or http://ee.lbl.gov/

pchar—Bruce Mah
This tool is a reimplementation of pathchar. http://www.employees.org/~bmah/
Software/pchar/

portscan—Tennessee Carmel-Veilleux
This is a simple port scanner. http://www.ameth.org/~veilleux/portscan.html

putty—Simon Tatham
This is a Windows implementation of ssh. http://www.chiark.greenend.org.uk/
~sgtatham/putty/

Qcheck—Ganymede
This is a Windows network benchmarking tool. http://www.qcheck.net

queso—savage@apostols.org
This is an OS fingerprinting tool. http://savage.apostols.org/projects.html

ripquery
Part of the gated distribution. This tool retrieves the routing table from a
system running RIP. http://www.gated.org/

rrd—Tobias Oetiker
This is a round-robin database system useful for collecting and archiving data
over time. http://ee-staff.ethz.ch/~oetiker/webtools/rrdtool/

rtquery
Part of the routed distribution. This is a tool for retrieving the routing table
from a system running RIP.

samspade—Steve Atkins
This is a multipurpose Windows tool with a wide range of features. http://
samspade.org/ssw/

Sources for Tools 301

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sanitize—Vern Paxson
This is a set of Bourne scripts that use the standard Unix utilities sed and awk.
It is used to clean up tcpdump traces to ensure privacy. http://ita.ee.lbl.gov/
html/contrib/sanitize.html

scion—Merit Networks, Inc.
This is network statistics collection and reporting software (also called
NetSCARF.) It is also available for Windows. http://www.merit.edu/internet/net-
research/netscarf/

scotty—Jürgen Schönwälder
This provides network management extension to the Tcl/Tk language. http://
wwwhome.cs.utwente.nl/~schoenw/scotty/

SFS—SPEC
This is a commercial (but nonprofit) NFS benchmark. http://www.spec.org

siphon—Subterrain Security Group
This is a passive OS fingerprinter. The last known site was http://www.
subterrain.net/projects/siphon/.

sl4nt—Franz Krainer
This is a Windows replacement for syslogd. http://www.netal.com/SL4NT03.htm

SNMP for Perl 5—Simon Leinen
This is a package of Perl 5 modules providing SNMP support. http://www.
switch.ch/misc/leinen/snmp/perl/

sock—W. Richard Stevens
This is a tool for generating traffic. It is a companion tool for Steven’s book,
TCP/IP Illustrated, vol. 1, The Protocols. ftp://ftp.uu.net/published/books/stevens.
tcpipiv1.tar.Z

socket—Juergen Nickelsen
This program creates a TCP socket connected to stdin and stdout. http://home.
snafu.de/jn/socket/

spidermap—H. D. Moore
This is a set of Perl scripts for network scanning. http://www.secureaustin.com

spray
This tool sends a burst of packets for load testing typically included with many
systems.

ssh—Tatu Ylönen
This is a secure replacement for r-services. http://www.ssh.com/

ssyslog—Core SDI
This is a secure replacement for syslog. It has been replaced by modular
syslog. http://www.core-sdi.com/english/freesoft.html

302 Appendix A: Software Sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

strobe—Julian Assange
This program locates all listening TCP ports on a remote machine. The last
known official site was ftp://suburbia.net/pub/strobe.tgz.

swatch—Todd Atkins
This log management tool is suitable for use with syslog files. http://www.
stanford.edu/~atkins/swatch/

syslog-ng—BalaBit IT Ltd.
This is an enhanced syslog that features filtering and sorting logs to different
destinations. http://www.balabit.hu/en/products/syslog-ng/

Tcl/Tk—John Ousterhout
This is a general scripting language that has been extended to support many
network management tasks. http://dev.scriptics.com

tcpdpriv—Greg Minshall
This program sanitizes tcpdump trace files. http://ita.ee.lbl.gov/html/contrib/
tcpdpriv.html

tcpdump—Van Jacobson, Craig Leres, and Steven McCanne
This is command-line–based packet capture program. http://ee.lbl.gov/, http://
www.tcpdump.org, or ftp://ftp.ee.lbl.gov/tcpdump.tar.Z

tcpflow—Jeremy Elson
This is a capture program that separates traffic into individual flows. http://
www.circlemud.org/~jelson/software/tcpflow

tcp-reduce—Vern Paxson
The program tcp-reduce and its companion program tcp-summary are Bourne
shell scripts used to selectively extract information from tcpdump trace files.
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

tcpshow—Mike Ryan
This program reads and decodes tcpdump files. The official home for this is
unknown, but it is available in several archives such as http://www.cerias.
purdue.edu/coast/archive/.

tcpslice—Vern Paxson
This tool is used to create subsets of tcpdump trace files. ftp://ftp.ee.lbl.gov/
tcpslice.tar.Z or http://www.tcpdump.org/related.html

tcp-summary—Vern Paxson
The program tcp-reduce and its companion program tcp-reduce are Bourne
shell scripts used to selectively extract information from tcpdump trace files.
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

tcptrace—Shawn Ostermann
This is a tcpdump trace analysis program. http://www.tcptrace.org

Sources for Tools 303

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

tcpwrappers—Wietse Venema
This daemon sits between user and services to log and manage connections.
ftp://ftp.porcupine.org/pub/security/index.html

teraterm—T. Teranishi
This is a Windows telnet client that can be extended to support SSH. (See also
TTSSH.) http://hp.vector.co.jp/authors/VA002416/teraterm.html

tjping—Top Jimmy
This is a ping and traceroute program for Windows. http://www.topjimmy.net/
tjs/

tkined—Jürgen Schönwälder
This provides a network management program based on scotty and Tcl/Tk.
http://wwwhome.cs.utwente.nl/~schoenw/scotty/

tmetric—Michael Bacarella
This tool finds available bandwidth. http://netgraft.com/downloads/tmetric/

top—William LeFebvre
This displays the most active processes on a system. http://www.groupsys.com/
top/about.html

traceroute—Van Jacobson
This reconstructs the route taken by packets over a network. It is probably
supplied with your system. ftp://ftp.ee.lbl.gov/ or http://ee.lbl.gov/

trafshow—Vladimir Vorobyev
This full screen traffic capture program gives a continuous update on network
traffic. Its last reported site was http://www.rinetsoft.nsk.su/trafshow/index_en.
html.

trayping—Mike Gleason
This is a Windows tool that monitors connectivity using ping. http://www.
ncftpd.com/winstuff/trayping/

treno—Matt Mathis
This is a tool to measure the bulk transfer capacity. ftp://ftp.psc.edu/pub/net_
tools/

tripwire—Eugene Spafford and Gene Kim
This is a system integrity checker. http://www.tripwire.com or http://www.
tripwire.org

ttcp—Mike Muuss
This is a load testing program for TCP. ftp://ftp.arl.mil/pub/ttcp/ttcp.c

TTSSH
This is a set of SSH extensions for Windows telnet program, teraterm. http://
www.zip.com.au/~roca/ttssh.html

304 Appendix A: Software Sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

vnc—AT&T Laboratories, Cambridge
This tool displays X Window and Windows desktops on remote systems. http://
www.uk.research.att.com/vnc/

WinDump and WinDump95—Loris Degioanni, Piero Viano, and Fulvio Risso
These are ports of tcpdump to Windows NT and Windows 95/98. http://
netgroup-serv.polito.it/windump/

winping—Rich Morgan
This is another ping utility for Windows. http://www.cheap-price.com/winping/

xinetd—Panos Tsirigotis
This is a secure replacement for the inetd utility. http://www.synack.net/xinetd/

xlogmaster—Georg Greve
This is Greve’s older log management software. You may want to check on
the status of AWACS before using it. http://www.gnu.org/software/xlogmaster/

xplot—David Clark
A tool for graphing data in an X Window environment. There are several pro-
grams with this name, so be sure you have the right one. ftp://mercury.lcs.mit.
edu/pub/shep/

xv—John Bradley
This is a modestly priced shareware program for the interactive display of
images from an X Window system. You should probably try gimp first. ftp://
ftp.cis.upenn.edu/pub/xv

305
This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Appendix B

B
Resources and

References

A good network administrator is part librarian. Anyone who thinks he can learn
everything he needs in this profession from a single book, or even a couple of
dozen books, is lost in a fantasy world. This appendix is designed to get you up to
speed quickly, but professional growth is a never-ending task. I am not attempting
to be exhaustive or definitive here. I’m just trying to give some starting places that
have worked for me. This is a personal overview of my favorites.

Sources of Information
While this appendix is devoted primarily to books, there is a variety of other
obvious resources. You should already be familiar with most, but the following
checklist may be useful in jogging your memory. It is in no particular order.

User groups
These seem less popular than they once were, but they still exist. For system
administrators, USENIX at http://www.usenix.org and SAGE at http://www.sage.
org are two good places to start.

Mailing lists
There are thousands of these. Finding ones that are helpful can be painful. Be
prepared to subscribe, lurk, and then unsubscribe to a number of different lists
(or visit their archives). Follow a list for a while before you start posting to the
list.

Newsgroups
Keep in mind that you may find an answer in related groups. Your Solaris
problem may be answered in a Linux newsgroup posting. A quick search of
Deja News can sometimes be helpful.

306 Appendix B: Resources and References

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Vendor web sites
In networking and telecommunication, a vendor that doesn’t maintain a rea-
sonable web site probably should be avoided. This is the most obvious way to
disseminate information about their products. Some vendors have excellent
problem resolution sites, such as Microsoft’s TechNet. Other sites, like Cisco’s,
contain such a staggering amount of information that whatever you want is
there, but it can take forever to find it. Be prepared to spend a lot of time
searching wherever you go.

Software web sites
Don’t forget the home pages for software, particularly operating systems. It is
easy to forget about sites like http://www.linux.org and http://www.freebsd.org.
And even minor tools may have a site devoted exclusively to them.

Chatrooms
Frankly, I don’t have time for chatrooms, but some people find them useful,
particularly those devoted to specific pieces of software.

FAQ list
This is often an excellent starting point, particularly when you are installing
new software. Keep in mind these may change frequently, so make sure you
are looking at a current list.

README files
In the rush to get things running, many people skip these. If everything
appears to work, they never go back. Don’t forget to look at these even if you
don’t have a problem.

Comments in makefiles and source code
This is a long shot, but if you are using open source software, there is an off
chance you can find something of value.

Service contracts
For some reason, some timid people seem reluctant to use their service con-
tracts. If you have paid for a service contract, you should not be intimidated
from placing reasonable calls.

I always try to get an idea of what resources the technicians are using to
answer my questions. I’ve had technicians send me some truly remarkable
“internal” documents. Before I hang up, I always try to ask how I could have
resolved the question without calling them. Most technicians seem delighted
to answer that question.

Formal training
This could be from the vendor or from a third party. This is a big business,
particularly with the recent trend toward certification. Short courses can be
very focused-providing exactly what you need. Beware, these courses can be

Sources of Information 307

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

quite expensive and what you learn can become dated very quickly. Some
companies, e.g., Microsoft and Novell, now cancel certification if you don’t
recertify within an established time limit.

Formal courses at colleges and universities tend to be more general and, con-
sequently, often remain relevant for a much longer period of time. I would
recommend a formal degree over certification any day, but I’m biased. Some
potential employers may have different biases.

Printed and online vendor documentation
The undeniable trend is toward putting as much online as possible. This
reduces costs and allows the user to search the material. With Unix, online
manpages accessible through the man command are universally available.
Recently, there has been a movement toward alternatives such as info pages,
HOWTOs, AnswerBooks, and web-based documentation. Use whatever is
appropriate to your system, but consider buying printed copies. I kill a lot of
trees printing online documentation. I want something I can read in comfort
and something I can write on. And then when I can’t find what I’ve printed, I
print it again, and again, and

Diagnostic software
This is often provided by the vendor with the initial purchase of their soft-
ware or equipment or as downloads from their web site. It can supply the
answer to your question. However, diagnostic software is often limited in what
it can test. A clean bill of health from diagnostic software does not necessarily
mean that there isn’t a problem with the vendor’s product.

Helpdesks
Keep in mind that many people use these in place of reading the documenta-
tion. The first person you talk to probably won’t be very helpful (unless you
didn’t read the documentation). With perseverance, it is usually possible to get
your call escalated a couple of times so that you end up talking to someone
who is helpful. Be prepared to be on the phone for a while. And be polite!

Magazines and journals
For me, these are most useful for tutorials on new topics and for product
reviews. I read NetworkWorld for general news and NetworkMagazine and
IEEE Computer for articles with a little more depth. Cisco’s Internet Protocol
Journal is also a favorite. I also enjoy Wired. (Just don’t believe everything
you read in it.) Don’t overlook business magazines. Knowing what company is
about to fold can save you from making a costly mistake. Both the ACM and
IEEE have online searches for registered users. For less technical information,
Computer Select is an excellent (but expensive) source of information.

308 Appendix B: Resources and References

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

e-magazines and magazine web sites
There are a number of magazines or similar sites published online that you
should not forget. These include http://www.bsdtoday.com, http://www.
linuxgazette.com, and http://www.oreillynet.com/meerkat/ among others. Also,
many print magazines have web sites with back issues online. These sites,
since the content has been edited and reviewed, are my first choice when
searching the Web. Try http://sw.expert.com, http://www.sunworld.com, http://
www.networkworld.com, and http://www.networkmagazine.com for starters.
Microsoft Windows users might try http://www.zdnet.com/pcmag/. There are
many, many more.

Trade shows
While the first person you’re likely to talk to will be a sales rep, there is prob-
ably a technical person lurking somewhere in the background to help out
when the rep discovers she is out of her depth. This may be your only real
chance to meet face-to-face with someone technically involved in a product.

Friends, colleagues, and teachers
Ask yourself who you know who might be able to help. But remember this is
a two-way street, so be prepared to help others in the future. Always
remember, even the best expert will sometimes provide poor advice.

Other network managers and administrators
People at similar institutions are often willing to share information. It’s better,
of course, to build a network of contacts before you need them. In particular,
your predecessor, if he left on good terms, can be an ideal contact.

While these might be obvious resources, it is not uncommon to overlook one or
more of them when trying to solve some hairy problem. You may want to high-
light this list and add to it in the margin. Many of these sources have standards of
etiquette that should be observed. Don’t abuse them! Even if you are paying for
the call and your contact can’t answer your question, try to remain pleasant. Save
your hostilities for calls from telemarketers.

References by Topic
This section describes books grouped by topic. Full bibliographical citations
follow. Online sites like http://www.amazon.com and http://www.bn.com have
replaced Books in Print for me. They make it easy to find out what is available for
whatever topic I’m interested in. Bookstores and libraries are the best ways to see
if a book is really useful. Even well-intentioned advertisements and reviews can be
very misleading.

Often there is a lot of consistency, for better or worse, among books from the
same publisher, so you may want to visit their web sites as well. For example, the

References by Topic 309

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

majority of the books mentioned here are O’Reilly books because O’Reilly & Asso-
ciates has specialized in Unix tool books longer than anyone else. Addison Wesley
Longman does a very good job with some of the more theoretical treatments of
protocols. Prentice Hall is a reliable source for textbooks on network related
topics.

System Management

This book assumes that you understand the basics of system administration. If this
isn’t the case, you should consider several books. My top choices are Unix System
Administration Handbook by Nemeth et al. and Essential System Administration
by Frisch. Both provide extensive overviews of the tasks system administrators
face. For general tools, you may want to look at Unix Power Tools by Peek, et al.

TCP/IP

You aren’t going to get very far dealing with TCP/IP without a thorough under-
standing of the protocols. There are actually several approaches you can take,
depending on your goal. The definitive treatments are in the relevant RFCs. These
are probably too terse for most readers. They are certainly not where you will
want to start if you are new to TCP/IP. (If you do use them, be sure to check the
RFC-INDEX so that you are using the current version.)

If your goal is TCP/IP administration, then there are two paths you can take. TCP/
IP Network Administration by Craig Hunt is an excellent general introduction. (PC
users should look at Networking Personal Computers with TCP/IP by Hunt.) Alter-
natively, you might want to go to vendor-specific documentation for the operating
system you are dealing with. These won’t teach you the theory, but they will tell
you enough to get something done.

If you want a general introduction to the TCP/IP protocol, there are several rea-
sonable books. One good choice is Eric Hall’s Internet Core Protocols: The Defini-
tive Guide. This will give you a fairly complete picture that should meet your
needs for quite a while. The book comes with Shomiti’s Surveyor Lite on a CD-
ROM in the back. This is a good place to start for most network administrators.

If you want a treatment with all the details of the protocols, and you are willing to
put out the effort needed, there are two sets of books you should consider. Inter-
networking with TCP/IP by Douglas Comer et al. and TCP/IP Illustrated by W.
Richard Stevens et al. Both are multi-volume sets running about 2000 pages per
set. You’ll get a pretty complete picture if you just read the first volume of either.
Comer is somewhat more descriptive of general behavior and gives a better sense
of history. His book is also a little more current. Stevens takes a hands-on, experi-
mental approach, looking closely at the behavior of the protocols. You’ll see more

310 Appendix B: Resources and References

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

of the details in his book. Because of the sheer size of these, you’ll need a high
degree of commitment to make it through either.

Finally, if you want a good overview of routing algorithms, take a look at Per-
lman’s Interconnections or Huitema’s Routing in the Internet. Both are consider-
ably more theoretical than most of the books listed here, but quite worthwhile.

Specific Protocols

When it comes to specific protocols, there are a number of books on each and
every protocol. Here a few suggestions to get you started:

DNS
For name services, DNS and BIND by Liu et al. is the standard.

Ethernet
For a complete overview of Ethernet, the place to start is Spurgeon’s Ethernet:
The Definitive Guide. For Fast Ethernet and Gigabit Ethernet, you may want to
add Gigabit Etherenet by Kadambi et al. to your collection.

Email
Basic administration is discussed in the books listed under system administra-
tion and will probably meet your needs. The most commonly cited book on
sendmail is sendmail by Costales et al. For IMAP, you might consider Man-
aging IMAP by Mullet and Mullet.

NFS
For NFS, you have a couple of choices. If you want to understand the inner
working, consider Callaghan’s NFS Illustrated. If you want to get NFS working,
consider Stern’s Managing NFS and NIS.*

PPP
PPP Design and Debugging by Carlson is the best book on the internals. Sun’s
Using & Managing PPP is the place to turn to get PPP up and running.

SNMP
There are a number of books on SNMP, none perfect. I think Held’s LAN Man-
agement with SNMP and RMON and Network Management: A Practical Per-
spective by Leinwand and Conroy are readable introductions. Udupa’s Network
Management Systems Essentials does a very nice job of describing the stan-
dard MIB objects but is awfully dry reading. You may also want to visit http://
www.simple-times.org/, an online magazine devoted to SNMP. If you are using
Windows, you’ll want to consider Murry’s Windows NT SNMP.

* At the time this was written, the current version of Stern’s book was quite dated but a second edition
was in the works and is probably now available.

References by Topic 311

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

SSH
Get Barrett and Silverman’s SSH, the Secure Shell: The Definitive Guide.

Web protocols
For an overview of a number of web services, consider getting Managing
Internet Information Services by Liu et al.

There are a lot of other books out there, so keep your eyes open.

Performance

Performance is a difficult area to master and requires a lot of practical experience.
Jain’s The Art of Computer Systems Performance Analysis is a truly outstanding
introduction to the theory and practice of performance analysis. But it won’t
supply you with much information on the tools you’ll need. As a network adminis-
trator, you’ll need to know the basics of system administration. For a practical
introduction, you’ll want to get Loukides’ System Performance Tuning. This is pri-
marily oriented to system administrators rather than network administrators, but it
is a good place to start.

Troubleshooting

The definitive book on troubleshooting has yet to be written. I doubt it ever will
be considering the breadth of the subject. One of the goals of this book is to intro-
duce you to tools you can use in troubleshooting. But this is only one aspect of
troubleshooting. There are other tool books, most notably Maxwell’s Unix Net-
work Management Tools. There is considerable overlap between this book and
Maxwell’s. This book covers considerably more tools, but Maxwell’s provides
greater depth and a different perspective on some of the tools. Both are worth
having.

There are several other worthwhile books. Haugdahl’s Network Analysis and Trou-
bleshooting is a good overview, but more details would have been nice. Miller has
several useful books. Two you might want to consider are LAN Troubleshooting
Handbook and Troubleshooting TCP/IP.

Wiring

While this is a little off topic for this book, you won’t get very far without good
wiring. For a general introduction, look at LAN Wiring: An Illustrated Guide to
Network Cabling by Trulove or, my personal favorite, Cabling: The Complete
Guide to Network Wiring by Groth and McBee. For a more formal treatment, the
TIA/EIA standards for cabling are available from Global Engineering Documents
(http://www.global.ihs.com/). The two that are most useful are TIA/EIA–606,

312 Appendix B: Resources and References

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

which discusses labeling and TIA/EIA–568–A, which discusses infrastructure.
These standards are not easy reading. Visit your local library before you buy, as
they are quite expensive.

Security

For general Unix security, nothing even comes close to Practical UNIX & Internet
Security by Garfinkel and Spafford. This is a must-have for any Unix system
administrator. For firewalls, you have several excellent choices. For general treat-
ments, consider Firewalls and Internet Security by Cheswick and Bellovin or
Building Internet Firewalls by Zwicky et al. If you are using Linux or OpenBSD,
you might consider Building Linux and OpenBSD Firewalls by Sonnernreich and
Yates. Don’t forget security organizations like CERT at http://www.cert.org or CIAC
at http://www.ciac.org/ciac/.

Scripting

Quite a few scripting languages are available for Unix. Apart from standard shell
scripts, I use only Tcl and Perl, so I can’t comment on the others. For Perl, I began
with Schwartz’s Learning Perl and now use Programming Perl by Wall et al. as a
reference. For more detailed guidance with system administration tasks, you might
also consider Perl for System Administration by Blank-Edelman.

For Tcl, Ousterhout’s Tcl and the Tk Toolkit, while not necessarily the best, is the
standard introduction. He did invent the language. For network applications, you
might consider Building Networking Management Tools with Tcl/Tk by Zeltserman
and Puoplo. If you just want a quick overview of Perl or Tcl, there are a number
of tutorials on the Web.

Microsoft Windows

For Windows, you might begin by looking at Frisch’s Essential Windows NT System
Administration or the appropriate Windows Resource Kit from Microsoft. Frisch is
more readable and doesn’t always follow the Microsoft party line. The Microsoft
documentation can be quite comprehensive. There are different versions for each
flavor of Windows.

References
Barrett, Daniel, and Richard Silverman. SSH, the Secure Shell: The Definitive Guide.

Sebastopol, CA: O’Reilly & Associates, Inc., 1999.

Blank-Edelman, David. Perl for System Administration. Sebastopol, CA: O’Reilly &
Associates, Inc., 1999.

References 313

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Callaghan, Brent. NFS Illustrated. Reading, MA: Addison Wesley Longman, 1998.

Carasik, Anne. Unix Secure Shell. New York, NY: McGraw-Hill, 1999.

Carlson, James. PPP Design and Debugging. Reading, MA: Addison Wesley
Longman, 1998.

Cheswick, William, and Steven Bellovin. Firewalls and Internet Security. Reading,
MA: Addison Wesley Longman, 1994.

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and Architec-
tures, vol. 1, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2000.

Costales, Bryan et al. sendmail, 2d ed. Sebastopol, CA: O’Reilly & Associates, Inc.,
1997.

Frisch, Æleen. Essential System Administration. Sebastopol, CA: O’Reilly & Associ-
ates, Inc., 1991.

———. Essential Windows NT System Administration. Sebastopol, CA: O’Reilly &
Associates, Inc., 1998.

Garfinkel, Simson, and Gene Spafford. Practical UNIX & Internet Security. Sebas-
topol, CA: O’Reilly & Associates, Inc., 1990.

Groth, David, and Jim McBee. Cabling: The Complete Guide to Network Wiring.
Alameda, CA: Sybex, 2000.

Hall, Eric A. Internet Core Protocols: The Definitive Guide. Sebastopol, CA: O’Reilly
& Associates, Inc., 2000.

Haugdahl, J. Scott. Network Analysis and Troubleshooting. Reading, MA: Addison
Wesley Longman, 2000.

Held, Gilbert. LAN Management with SNMP and RMON. New York, NY: John
Wiley & Sons, 1996.

Huitema, Christian. Routing in the Internet, 2d ed. Upper Saddle River, NJ: Pren-
tice Hall, 2000.

Hunt, Craig. Networking Personal Computers with TCP/IP, 2d ed. Sebastopol, CA:
O’Reilly & Associates, Inc., 1995.

———. TCP/IP Network Administration, 2d ed. Sebastopol, CA: O’Reilly & Associ-
ates, Inc., 1998.

Jain, Raj. The Art of Computer Systems Performance Analysis. New York, NY: John
Wiley & Sons, 1991.

Kadambi, Jayant, Ian Crayford, and Mohan Kalkunte. Gigabit Ethernet: Migrating to
High-Bandwidth LANs. Upper Saddle River, NJ: Prentice Hall, 1998.

Killelea, Patrick. Web Performance Tuning. Sebastopol, CA: O’Reilly & Associates,
Inc., 1998.

314 Appendix B: Resources and References

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Kurtzweil, Ray. The Age of Spiritual Machines: When Computers Exceed Human
Intelligence. New York, NY: Viking Penguin, 1999.

Lehey, Greg. Porting Unix Software. Sebastopol, CA: O’Reilly & Associates, Inc.,
1995.

Leinwand, Allan, and Karen Conroy. Network Management: A Practical Perspec-
tive, 2d ed. Reading, MA: Addison Wesley Longman, 1996.

Liu, Cricket et al. Managing Internet Information Services. Sebastopol, CA: O’Reilly
& Associates, Inc., 1994.

Liu, Cricket, Paul Albitz, and Mike Loukides. DNS and BIND, 4th ed. Sebastopol,
CA: O’Reilly & Associates, Inc., 1998.

Loukides, Mike. System Performance Tuning. Sebastopol, CA: O’Reilly & Associ-
ates, Inc., 1990.

Maxwell, Steve. Unix Network Management Tools. New York, NY: McGraw-Hill,
1999.

Miller, Mark. LAN Troubleshooting Handbook, 2d ed. New York, NY: M&T Books,
1993.

———. Troubleshooting TCP/IP, 2d ed. New York, NY: M&T Books, 1996.

Mullet, Dianna, and Kevin Mullet. Managing IMAP. Sebastopol, CA: O’Reilly &
Associates, Inc., 2000.

Murry, James. Windows NT SNMP. Sebastopol, CA: O’Reilly & Associates, Inc., CA,
1998.

Nemeth, Evi et al. Unix System Administration Handbook, 3d ed. Upper Saddle
River, NJ: Prentice Hall, 2001.

Ousterhout, John K. Tcl and the Tk Toolkit. Reading, MA: Addison Wesley
Longman, 1994.

Peek, Jerry, Tim O’Reilly, and Mike Loukides. Unix Power Tools, 2d ed. Sebas-
topol, CA: O’Reilly & Associates, Inc., 1998.

Perlman, Radia. Interconnections, 2d ed. Reading, MA: Addison Wesley Longman,
2000.

Peter, Laurence, and Raymond Hull. The Peter Principle. New York, NY: W. Morrow,
1969.

Robichaux, Paul. Managing the Windows 2000 Registry. Sebastopol, CA: O’Reilly &
Associates, Inc., 2000.

Schwartz, Randal. Learning Perl. Sebastopol, CA: O’Reilly & Associates, Inc., 1993.

Sonnernreich, Wes, and Tom Yates. Building Linux and OpenBSD Firewalls. New
York, NY: John Wiley & Sons, 2000.

References 315

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Spurgeon, Charles. Ethernet: The Definitive Guide. Sebastopol, CA: O’Reilly &
Associates, Inc., 2000.

Stern, Hal. Managing NFS and NIS. Sebastopol, CA: O’Reilly & Associates, Inc.,
1991.

Stevens, W. Richard. TCP/IP Illustrated, vol. 1, The Protocols. Reading, MA: Add-
ison Wesley Longman, 1994.

Sun, Andrew. Using & Managing PPP. Sebastopol, CA: O’Reilly & Associates, Inc.,
1999.

Thomas, Steven. Windows NT 4.0 Registry: A Professional Reference. New York,
NY: McGraw-Hill, 1998.

TIA/EIA. Administration Standard for the Telecommunications Infrastructure of
Commercial Buildings (TIA/EIA–606). Englewood, CO: Global Engineering
Documents, 1993.

———. Commercial Building Telecommunications Cabling Standard (TIA/EIA–
568–A). Englewood, CO: Global Engineering Documents, 1995.

Trulove, James. LAN Wiring: An Illustrated Guide to Network Cabling. New York,
NY: McGraw-Hill, 1997.

Udupa, Divakara. Network Management Systems Essentials. New York, NY:
McGraw-Hill, 1996.

Wall, Larry, Tom Christiansen, and Randal Schwartz. Programming Perl, 3d ed.
Sebastopol, CA: O’Reilly & Associates, Inc., 2000.

Zeltserman, Dave, and Gerard Puoplo. Building Networking Management Tools
with Tcl/Tk. Upper Saddle River, NJ: Prentice Hall, 1998.

Zwicky, Elizabeth, Simon Cooper, and D. Brent Chapman. Building Internet Fire-
walls, 2d ed. Sebastopol, CA: O’Reilly & Associates, Inc., 2000.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

317

 We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

&& operator, 116
* (asterisk) wildcard, 140
! operator, 116
|| operator, 116

Numbers
80-20 and 90-10 Rules, 205

A
Abstract Syntax Notation One (ANS.1), 163
access classes (SNMP), 176
access control (tcpwrappers), 266
access files (NFS), 252
access routers, 77
accounting, network management software

and, 135
ACK packets, as attacks, 140
active hosts, 199
Active Perl web site, 221
active TCP sessions, 202
adapters, 52, 53
address filtering, 113
address masks (see subnet masks)
addresses (see IP addresses)
adequacy of systems, defining, 280
administering networks (see network

management)
admintool configuration tool, 36

agents
extensible agents, 165, 177
in Microsoft Windows, 190
retrieving information from, 175
security entries, 176
SNMP agents, 160, 162
traps and, 176–179

AIX systems, 39, 124
alerts from log files, 264
analysis in performance measurement, 283
analysis tools

bottlenecks in performance, 283–285
capacity planning and

measurements, 286
packet analysis summary, 110
packet capture, 118–124
steps in analyzing performance, 279–287

analytical modeling, 280
Analyzer protocol analysis tool, 295
animating network simulations, 237
anomalies in device responses, 146
ANS.1 (Abstract Syntax Notation One), 163
antisniff interface tool, 131
application data in protocol stack, 101
application-level protocols

email protocols, 240–243
FTP, 244
HTTP, 243
Microsoft Windows tools, 254

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 Index

application-level protocols (continued)
name services, 245–250
NFS troubleshooting, 251–253
ntop results, 200
routing, 250
TFTP, 244
troubleshooting, 239

applications
configuration files, 41
security files, 41
testing connectivity with, 69

arbitrary source addresses, 227
ARC (Attenuation to Cross-talk Ratio), 51
archiving log files, 263
argus auditing tool source web site, 295
ARP (Address Resolution Protocol)

ARP poisoning, 129, 143
arpwatch tool, 142–144
filters and, 113
forwarding, 38
gratuitous ARP, 138
lost packets and, 57
nemesis tool and, 228
ntop plugins for, 202
tables, 30

adding entries, 30
MAC/IP address pairs, 138
retrieving with getif, 191
retrieving with ndd, 38
retrieving with tkined, 188
static entries, 31
unresolved entries, 31

arp command, 30, 42
arping tool, 68
identifying hardware, 144
ping and, 62, 65

arping reachability tool, 68, 295
arpredirect packet tool, 129
arpwatch address tool, 130, 136, 142–144,

295
writing data to files, 142

ASCII capture, 126
assessing solutions in troubleshooting, 277
asterisks (*), 140
attachments to email, 242
attenuation, testing, 50
Attenuation to Cross-Talk Ratio (ARC), 51
autodiscovery and classes of devices, 155
automatic discovery tools, 152, 155

automating documentation of
systems, 255–260

autoswitching hubs, 103
AWACS logging tool, 264, 295

B
backward compatibility of operating

systems, 40
bandwidth measurements, 79, 80, 81–87

bing tool, 85–87
bottleneck bandwidth, 81, 87
emulators and, 236
Microsoft Windows, 97
ntop results, 201
packet pair software, 87
pathchar tool, 83–85
ping and, 81
point-to-point bandwidth, 85

banners at login, 145
basic configuration files, 35
Basic Encoding Rules (BER), 163
bb monitoring tool, 190, 295
benchmark tools, 238, 253
BER (Basic Encoding Rules), 163
BER.pm extension, 149
Berkeley Internet Name Daemon (see bind

testing tools), 295
Berkeley packet filter, disabling, 130
bibliography of resources, 308–315
Big Brother monitoring tool (bb), 190, 295
binary search technique, 3
bind testing tools

name service tools, 247, 299
serial counters and, 247
source web site, 295, 297

bing bandwidth tool, 83, 85–87, 295
biod daemon, 251
bit masks (see subnet masks)
blinking lights on devices, 49
blocking

CMIP packets, 156
filtering packets, 58
ICMP packets, 63, 65
illegal packets, 227
testing firewalls, 278

bluebird management framework source
web site, 295

books and resources, 308–315
booting systems, 39, 40

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 319

bottleneck analysis in performance
measurement, 283–285

bottleneck bandwidth, 81, 87
bottlenecks, time-dependent behavior, 284
bprobe bandwidth tool, 87, 295
bridges, traffic capture and, 101
broadcast addresses

configuring ICMP responses, 64
duplicate packets and, 57
filtering, 113
in interfaces, 29
matching in filters, 115
ntop results, 200
in routing tables, 25

BSD systems
changing kernel configuration, 39
configuration files, 35
rc files, 40
recompiling kernel, 37
(see also FreeBSD systems, OpenBSD

systems)
bulk transfer capacity, 88, 92
bus mastering, 52
busy hours, 195, 205

C
cable testers, 48, 50
cabling

books and resources, 311
connectivity tests, 45–52
costs of, 16
installation, 46
intermittent problems, 46
labels, 48
lengths of, 51
maintenance and management, 47
physical environment, 46
power lines, 46
swapping, 51
termination, 50
testers, 48, 50
testing, 49–52

CAIDA (Cooperative Association for
Internet Data Analysis), 293

calls to network utilities, 39
capacitance, 51
capacity planning, 285

capacity management, 285
difficulties in, 286

local or remote traffic, 202
performance measurement in, 135
raw capacity of networks, 17
traffic measurement, 195

capturing packets (see packet capture)
capturing screens, 256, 271
cards, 52, 53
CERT Coordination Center web site, 293
certified cable installers, 47
cfgmaker utility (mrtg), 206, 221
CGI scripts, 215
challenge response systems, 259
change logs, 7
changes to systems

kernel configuration, 37
logging, 7
testing, 2
tracking to resolve problems, 3
unexpected or unauthorized changes, 6

characteristics of packets, filtering by, 115
CHARGEN service, 67
charting traffic data, 122, 123, 200

cricket tool, 213
getif tool, 222
mrtg tool, 206
netmon tool, 219

chatrooms, 306
checksums

checksum errors, 97
cryptographic, 270
siggen tool and, 270
tripwire tool and, 270

Cheops management tool, 136, 295
Chesapeake Port Scanner tool, 33, 44, 295
CIAC (Computer Incident Advisory

Center), 293
Cisco IOS, 90
CiscoWorks, 156
clandestine scanning, 141
classes of IP addresses, 119
clients

checking recipient addresses, 241
client bindings, 250
debugging, 240
displaying remote sessions on, 258
listing open files, 27
name services, 245
NFS and, 251

clink bandwidth tool, 83, 295

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 Index

ClipBook Viewer, 271
clocks, synchronizing, 267
cloned routes in routing tables, 25
CMIP packets, 156
CMOS configuration information, 39
CMU SNMP tools, 165, 212, 296
coaxial cable, 52
cold reboots, 2
collecting data

packet capture (see packet capture)
in performance measurement, 283
privacy issues, 11
as step in troubleshooting, 1, 274
(see also device discovery)

collector script (cricket), 215
collisions

collision lights, 49
netstat results, 94, 97

comments
in makefiles and code, 306
in syslog configuration, 261

commercial network management
software, 137

commercial tools, 293
communications tools, 255
community strings (SNMP), 157, 161

access classes, 176
clear text and, 162
in Microsoft Windows, 190
setting values and, 171
tkined usage of, 189

community-based SNMPv2, 161
compiling source code for tools, 290
complex filters, 116, 128
components, swapping, 3
compound filters, 116, 128
compressed software tools, 290
compromised systems, 18
Computer Incident Advisory Center

(CIAC), 293
configuration

adapters, 52
configuration programs, 36
documenting, 8, 19
host machines (see host configuration)
NET SNMP, 167–169
remote configuration, 135
SNMP capabilities, 171
throughput and, 88

configuration files, 35–41
application files, 41
configuration programs, 36
kernel configuration, 36–39
log files, 41
mrtg files, 206
security files, 41
startup files and scripts, 39
testing, 266

configure command (FreeBSD), 36
confirming results in troubleshooting, 276
connections

connecting two machines, 232
connection logging, 265
connection-by-connection statistics, 122
displaying for hosts, 23
drawing in maps, 154

connectivity protocols, 224
connectivity testing

adapters, 52
with applications, 69
cabling, 45–52
connectivity vs. functionality, 65
electrical vs. network, 52
emulators and simulators, 235–238
Microsoft Windows tools, 69, 238
over time, 61
packet injection tools, 224–235
ping, 53–69
software tools, 53
throughput tests, 56

constraints in performance
measurement, 282

controlling terminals, 21
conversation steering, 103
cookies, capturing, 120
Cooperative Association for Internet Data

Analysis (CAIDA), 293
copper cable, 47
cops security tool, 269
copying traffic to other devices, 130
corrupted data, 97
cost management, 12–17

cabling, 46
cost estimations and comparisons, 14
infrastructure costs, 16
initial costs, 16
overengineering and, 13
rates of return, 16

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 321

courses, 307
cpm, check promiscuous mode tool, 131
cpm mode-checking tool, 131, 296
cprobe bandwidth tool, 87, 295
CPU usage, 22, 219
crackers, xi

log files and, 262
ping and, 63
port scanners and, 33
questionable tool features and, 157

cricket graphing tool
capacity planning and, 286
Microsoft Windows, 221
source web site, 296
uses, 212–216

cron tool, 206, 210
crontab file, 211, 215
crossed wires, 50
crossover cables, 52, 103
cryptographic checksums, 270
current time frames, defining, 280
custom packets generators, 225–231

capture and retransmission of
packets, 231

hping tool, 226–228
injecting packets, 224
ipfilter tool, 230
ipsend tool, 230
nemesis tools, 228–230
using packet sniffers with, 230
sock tool, 231

customized network systems, 5
customized systems, identifying

configuration, 18
cut-through switches, 84, 85
cyberkit tools, 158, 271, 296

D
damaged packets, 57
data cabling (see cabling)
data collection (see collecting data)
data corruption, 97
data streams, capturing, 119
data-dependent problems, 60
datagrams, tracking, 220
date stamps

on tools and documentation, 7
on troubleshooting printouts, 256

DDNS (dynamic DNS), 138
Debian Linux systems, 40, 292
debugging (see troubleshooting)
decimal dotted notation (OIDs), 163, 166,

210
decoding

packets manually, 110
tcpdump files, 121

decompressing software tools, 290
decoy scanning, 141
default routes in routing tables, 26
defining problems in troubleshooting, 275
defunct processes, 22
deleting

data from captured packets, 119
email attachments, 242
packages, 291

denial-of-service attacks, 24, 63, 67
dependency in users, 10
designing performance measurement

test, 282
destination addresses

filtering, 113
MGEN settings, 234
nemesis settings, 229
in routing tables, 25, 26

detailed output (see verbose output)
detecting

intruders, 204
packet sniffers, 131

device discovery
automatic discovery problems, 152
IP address management and, 138
in network management software, 135
network mapping, 151–155
politics and security, 156
tools, 137–144

arpwatch tool, 142–144
nmap tool, 139–142
scripting tools, 149–151
tkined tool, 155
types of, 136

device monitoring
Microsoft Windows, 190–193
NET SNMP tool, 165–179
ports, 103
scotty tool, 179–181
switches in path devices, 103

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 Index

device monitoring (continued)
tkined tool, 181–189
with non-SNMP applications, 190
with SNMP (see SNMP)

device type identification, 146–149
devices

adding to maps, 154
as bottlenecks, 284
configuring with SNMP, 171
discovering (see device discovery)
emulators, 235
identifying types of, 144–149
MIBs for, 167
monitoring (see device monitoring, with

SNMP)
mrtg information, 209
polling with tkined, 188
troubleshooting installation, 277
unreachable, 182

DHCP (Dynamic Host Configuration
Protocol)

arpwatch tool and, 144
identifying address ranges, 152
IP address management and, 138
rogue servers, 32

diagnostic tools, 52, 307
dial-in access, traceroute and, 77
differential growth in networks, 286
dig domain name tool, 247–248, 296
direct measurements vs. emulation or

simulation, 236
disabling Berkeley packet filter, 130
discovering devices (see device discovery)
discovering paths, 71
disk usage information, retrieving, 176
display filters in ethereal, 128
divide and conquer technique, 3
DMA channels in adapter settings, 52
dmesg command, 39
DNS (domain name system)

books and resources, 310
device discovery and, 137
dnsutl tool, 250
dynamic DNS, 138
filtering, 114
generating packets with nemesis, 228
h2n tool, 250
identifying address ranges, 152

make-zones tool, 250
named-bootconf tool, 250
names-xfer tool, 250
NIS and NIS+, 250
ntop traffic results, 199
ping dependence on, 62
ping numeric output, 59
static addresses and, 138
tcpdump capture of exchanges, 106
troubleshooting, 245–250

dnsquery domain name tool, 245, 296
dnsutl configuration tool, 250, 296
dnswalk domain name tool, 249, 296
doc domain name tool, 249, 296
documentation, vendor, 307
documenting

cabling, 47
networks, 6–8

configuration, 8, 19
failure to document, 10
process documentation, 8
trend analysis and, 286

troubleshooting
screen captures, 256
steps, 255–260, 274

Domain Internet Groper tool, 247–248, 296
domains

graphing traffic measurements in, 202
listing machines in, 246

DOS attacks (denial of service), 24, 63, 67
dotted notation, 163, 166, 210
drec log tool, 235
drift files (time settings), 268
driver configuration parameters, 38
dropped packets in measurements, 233
dsniff security tools, 129, 157, 296
dual-port switches, 103
duplicate IP addresses, 32, 138
duplicate packets, 57
duplicating traffic on ports, 103
dynamic address allocation, 138
dynamic DNS, 138

E
echoping reachability tool, 66, 296
ego management, 10
egressor router tool, 227, 296

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 323

electrical connectivity versus network
connectivity, 52

e-magazines, 308
email

attachments, deleting, 242
dig tool mail records, 248
listing servers with nslookup, 246
protocol books and resources, 310
receiving arpwatch messages, 143
troubleshooting protocols, 240–243
(see also sendmail)

email accounts, verifying, 242
emap diagramming tool, 159
emulators, 235–238

benefits, 236
gateway emulators, 237
NISTNet, 236

encryption
capturing, 120
packet sniffing and, 131
in ssh tool, 260

end-to-end connectivity, testing, 45
enterprise MIBs, 165, 172, 185
ephemeral ports, 117, 120
equipment (see devices; hardware)
error statistics (RMON), 216
escaped characters, MTU problems and, 60
ethercodes.dat file, 143
ethereal analysis tool, 124–129

bottleneck analysis, 284
Capture window, 126
capturing RIP updates, 251
Microsoft Windows, 131
source web site, 296
watching NFS traffic, 253
writing data to files, 125

etherfind analysis tool, 124
Ethernet

addresses in ARP tables, 31
addresses in interfaces, 26, 29
books and resources, 310
configuration information in

interfaces, 29
filtering addresses, 113
Organizationally Unique Identifier

(OUI), 31
RMON capture, 218
testing adapters, 52

ethical considerations
behavior in network management, 9
use of network tools, 11

evaluating solutions to problems, 277
event monitoring in network management

software, 135
Event Viewer, 270
excluding data (see filtering)
expanding subnets in diagrams, 155
experimental design of performance

measurement, 282
expn command (telnet), 242
exponential growth in computing

speeds, 14
expression matching, 172
extensible agents, 165, 177

F
factors in performance measurement, 282
failure to document systems, 10
FAQ lists, 306
fiber splitters in patch devices, 103
fiber-optic cables, 47
files

arpwatch data in, 142
command line output in, 256
decoding tcpdump files, 121
extracting data from, 121
filter files, 112
IP scans, 142
log files, 260–267
name resolution results in, 249
tcpdump files, 105, 106
writing data to packets, 230
(see also configuration files)

filtering
address filtering, 113
blocking packets, 58
compound filters, 116, 128
display filters, 128
ethereal tool, 125, 128
ntop traffic capture, 198
operators in filters, 116
packet characteristics, 115
port filtering, 114
preventing Smurf attacks, 64
protocol filtering, 114
sanitize tool, 118

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 Index

filtering (continued)
SNMP traffic, 163
tcpdump tool

applying filters to data files, 106
filtering collected data, 107
options, 112–118
output, 105

testing filters, 113
finding tools and software, 293
finger tool (cyberkit suite), 158
fingerprinting programs (see stack

fingerprinting)
fire codes, cabling and, 46
firewalls

books and resources, 312
configuration files, 41
flags and, 229
personal firewalls, 156
stealth scanning and, 141
syslog remote logging and, 263
testing with ipsend tool, 230
testing with spoofed addresses, 227

flags
in ARP tables, 31
nemesis settings, 229
ping flags, 60
in routing tables, 25

flakeways, 237
flashing icons in tkined, 182
flooding networks

hosts with syslog messages, 263
load generators, 231–235
packet injection tools, 225
ping tools, 59
switches, 129

fluorescent lights, cabling and, 46
following TCP streams, 127
forged ARP packets, 129
forged IP addresses (see spoofed

addresses)
forged syslog messages, 263
fping packet tool, 66, 297
Fraggle denial-of-service attacks, 67
fragmentation

diagnosing fragmentation problems, 60
fragmented stealth packets, 141
packet capture and, 119
traceroute and, 73

frame buffers, 257

frames
capturing, 103
framing errors, 103
interface frame size capabilities, 29
performance measurements, 80
ping frame size options, 60

framework packages for network
management, 136

framing types, adapters, 52
FreeBSD systems

configuration programs, 36
disabling Berkeley packet filter, 130
NET SNMP, 165
nonzero values in netstat, 96
ping flags, 60
ping tools, 55
port collections, 292
recompiling kernel, 37

“freely available” tools, 293
fressh ssh tool, 297
FTP (file transfer protocol), 29, 88, 145, 199

G
gated distribution, 250, 300
gateway emulators, 237
gateways in routing tables, 25
GD library, 212
generating packets (see load generators)
generic troubleshooting strategies, 273–277
GET_BULK_REQUEST messages

(SNMP), 163
getif SNMP tool, 191, 222, 297
GET_NEXT_REQUEST messages

(SNMP), 162, 166, 169
GET_REQUEST messages (SNMP), 162, 166
GET_RESPONSE messages (SNMP), 162
GIF images of traffic patterns, 206
gimp image tool, 256, 297
glint package management tool, 292
GNOME project, 136
gnorpm package management tool, 292
GNU AWACS logging tool, 264, 295
goals of performance measurement, 280
grapher.cgi script (cricket), 213
graphing MIB trees, 185
graphing traffic data, 200

cricket tool, 213
getif tool, 222
mrtg tool, 206

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 325

netmon tool, 219
xplot tool, 122, 123

gratuitous ARP, 138
grep command, 142
groups

in MIBs, 164
RMON, 216
SNMP access classes, 176
in tkined network display, 154, 182

growth in networks, 286
GTK+ development toolkit, 297
gtkportscan scanning tool, 33, 297
GUI configuration applications, 36
gunzip decompression tool, 290
GxSNMP SNMP Manager, 136, 297
.GZ files, 290

H
h2n name server tool, 250, 297
hardware

discovering (see device discovery)
emulators, 235
hardware errors, 97
identifying, 144–149
inventories, 7
load generator devices, 235
monitoring (see device monitoring)
swapping, 3

headers
capturing, 108, 125
displaying in packets, 127
hping settings, 227
structure of, 115

hexadecimal capture, 110, 126, 228
hexdump analysis tool, 111
hidden transmission points, 84, 87
higher-level services, filtering, 114
hops

limiting number in traceroute, 74
pathchar results, 84
in route discovery, 72
in routing tables, 25
TTL counts and, 56

host configuration
Microsoft Windows, 42–44
system configuration files, 35–41
utilities, 20–34

host domain name tool, 245, 297
hostname configuration tool, 42

hosts
configuration (see host configuration)
connectivity, 60
displaying remote X Windows sessions

on, 258
host authentication, 260
host-monitoring tools, 196, 219
link-level addresses, 62
listing information with nslookup, 246
ntop results, 199, 201
pinging multiple hosts, 66
sorting traffic display by, 199
traffic capture and, 101

hping packet tool
custom packet generation, 225
source web site, 297
testing connectivity with, 226–228
testing firewalls with, 279

hping2 packet tool, 226–228
HTML pages of traffic patterns, 206
HTTP (Hypertext Transfer Protocol)

monitoring devices with HTTP
servers, 190

ntop traffic results, 199
performance and security problems, 244
ports, 140, 145
secure HTTP, 204
stack fingerprinting ports and, 147
troubleshooting, 243

hubs
compared to switches, 103
point-monitoring tools and, 197
security and, 129
traffic capture and, 102
unmanaged hubs, 152

HUP command, using with snmpd, 177
hypotheses in troubleshooting, 275

I
ICMP (Internet Control Message Protocol)

alternatives to ping, 66
blocking traffic, 63
DOS attacks and, 63
error messages, 57
filtering traffic, 114
low priorities for traffic, 65
monitoring with tkined, 181–184
ntop plugins for, 202
ping tools and, 54

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 Index

ICMP (continued)
port scanning and, 140
sending packets with hping tool, 226
sending packets with nemesis, 228
sequence numbers in ping results, 55
tracert tool and, 97

identifying hardware types, 146–149
identifying network nodes (see device

discovery)
identifying paths, 71
IEEE web site, 31
ifconfig tool, 29, 39
IGMP packets, 114, 228
IMAP (Internet Message Access

Protocol), 310
impedance, testing, 51
indexmaker script (mrtg), 206, 211, 221
inetd daemon, 21, 24, 265
inetd.conf file, 35
information sources for

troubleshooting, 305–315
INFORM_REQUEST message (SNMP), 163
infrastructure costs, 16
init process in startup sequence, 39
initial costs, 16
injecting packets (see packet injection

tools)
installation

cabling, 46
firewalls, 278
managing installations, 135
MIBs, 167, 184
port collections, 292
reinstalling software to resolve

problems, 3
SNMP on Microsoft Windows, 190
tools and software, 289–292
tracking software installations, 7
troubleshooting strategies, 277

integrated network management tools, 136
integrity checking, 18, 269, 270
interfaces

in ARP tables, 31
capturing traffic data, 101, 107, 125
changing parameters, 30
configuration information, 26
configuration retrieval, 29
discovering, 107, 209

ethereal data capture, 125
graphing traffic, 206
lights on, 49
measuring traffic on, 95
MGEN settings, 234
mrtg configuration files, 206
mrtg discovery, 209
multihomed computers, 198
ntop tool settings, 198, 203
ping and, 60
point-monitoring tools, 196, 197–204
promiscuous mode and, 104, 108, 125,

130, 142, 197
in routing tables, 25
shutting down, 30
snmpnetstat packet counts, 175
speed, 80
switching in ntop, 203
tkined retrieval results, 188

intermediaries in Smurf attacks, 63
intermittently blinking lights, 49
Internet connections

bottleneck bandwidth, 81
effects on traffic patterns, 205
listing open files for, 27
ping results and, 56
protocol books and resources, 311
public time servers, 267
running traceroute over, 78

Internet Control Message Protocol (see
ICMP)

Internet Message Access Protocol
(IMAP), 310

Internet Service Providers (see ISPs,
evaluating)

Internic registration information, 152
interrupt settings, 52
intrusion detection, 204, 226
I/O performance, 219
IP addresses

address resolution problems, 32
ARP tables, 31, 32, 138
arping tool and, 68
arpwatch tool and, 142–144
classes, 119
displaying for connections, 24
duplicated addresses, 32, 77, 138
dynamic allocation, 138

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 327

filtering, 113, 116
frequent changes in, 143
getif and, 191
headers, 89
identifying, 68
in interface configurations, 26, 29
in-use addresses, 140
management of, 138
mapping, 30
nemesis and, 229
ntop and, 199, 201
packet sniffer detection, 131
ping and, 60
ranges of, 152
reverse name lookup, 73
RMON data, 217
for routers, 74
scanning (see IP scanning)
scrambling, 119
for SNMP agents, 176
static addresses, 138
tcpdump tool and, 108
testing, 138
traceroute and, 77
troubleshooting name services, 246

IP forwarding parameter, 38
IP scanning, 139

getif tool, 192
Microsoft Windows tools, 158
nmap tool, 139–142

ipchains log tool, 196
ipconfig configuration tool, 42
iperf bandwidth tool, 91, 97, 297
ipfilter TCP tools, 230, 297
ipfw log tool, 196
ipload load generator tool, 238, 297
ipsend filtering tool, 230, 297
iptrace capture tool, 124
IRIX systems, 37, 87
isolation, testing devices in, 279
ISPs, evaluating, 93
iss security tool, 269

J
Java implementations

iperf tool, 91
ttcp tool, 90
vnc tool, 259

jitter, 91, 236
job command (scotty), 150

K
kernel

configuration, 36–39
contents of data structures, 23
recompiling to prevent packet

capture, 130
system parameters in, 38

Kurzweil, Raymond, 14

L
labeled form of SNMP output, 174
labeling

cables, 48
interfaces in mrtg graphs, 209
label makers, 48
map devices, 154

lame delegations, 249
lamers DNS tool, 249, 298
LANalyzer tool, 132
LANs

mapping tools and, 152
network management and, 137
ping results and, 56
virtual LANs, 131, 152

large packets, 64
Lawrence Berkeley National Laboratory

Network Research Group, 293
legal issues

ssh tool, 260
use of network tools, 11

lengths
of cables, 51
of packets, 115

levels of service, ISP, 93
levels of usage, variations in, 195
libpcap library, 104, 120, 197
licensing, 7, 135, 293
lights on interfaces, 49
line mode (tcpdump), 105
link lights, 49
link-level traffic

addresses for hosts, 62
fixing performance, 285
header information, 110

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

328 Index

link-level traffic (continued)
links as bottlenecks, 284
RMON and, 218

Linux systems
configuration programs, 36
Debian Linux, 40, 292
NET SNMP, 165
network management tools, 136
packages, 292
recompiling kernel, 37
startup and shutdown scripts, 40
traffic results with netstat, 95

linuxconf command (Linux), 36
listing

all devices on paths, 78
domain machines, 246
interfaces, 198
name servers, 246
open files on systems, 26
packages, 291
ranked processes, 22
routing tables, 24
running processes, 20

lists of software tools, 293
load generators, 231–235

hardware generators, 235
MGEN tools, 233–235
Microsoft Windows, 238
ping tools, 59
spray tool, 232

loading MIBs, 167, 184
local area networks (see LANs)
local hosts in ntop results, 199
local traffic, 202, 205
log files and logging

connection logging, 265
drec tool, 235
host traffic, 196
information in log files, 41
managing and tracking files, 263
Microsoft Windows, 271
mrtg files, 208
netmon tool, 220
NTP events, 268
other approaches to logging, 265
remote logging files, 262
saving data to SQL databases, 204
saving screen display to files, 256
syslog files, 261–263

tcpwrappers tool, 265
telnet sessions, 257
tracking troubleshooting steps, 255–260
using files in troubleshooting, 260–267

logcheck management tool, 265, 298
logger command (syslog), 261
logging changes (see change logs)
logging on

login banners, 145
remotely, 255–260

logical and operator (&&), 116
logical not operator (!), 116
logical operators in filters, 112, 116
logical or operator (||), 116
login banners, 145
looking glass sites, 78
loopback addresses, 26
loopback interfaces, 60
loose source routing, 78
loss, testing, 91
lost packets

bing results, 86
packet capture results, 103
ping and, 57
spray tool calculations, 232
traceroute indicators, 73

lsof open file tool
listing commands, 27
ntop tool and, 197
packet sniffer detection, 131
source web site, 298
uses, 26–29

M
MAC addresses

ARP tables, 30, 138
arping tool, 68
arpwatch tool, 142–144
ntop results, 201
OUIs and, 31
RMON statistics, 217
switches and, 129

Macintosh version of vnc tool, 259
macof flooding tool, 129
mail (see email)
mailing lists, 305
maintenance

cabling, 47
costs, 15

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 329

makefiles, 290, 306
make-zones DNS tool, 250
managed hubs and switches, 152
Management Information Bases (see MIBs)
managers, SNMP, 160, 162, 163
man-in-the-middle attacks, 260
manual entries

in ARP tables, 31
in routing tables, 25

manufacturers (see vendors)
mapping

devices and networks, 151–155
bottleneck analysis and, 284
features in network management

software, 135
manually drawing maps, 153
Microsoft Windows software, 159
network addresses, 30
tkined tool, 153–155
types of tools, 136

MIB trees, 185
traffic, 122, 123

cricket tool, 213
getif tool, 222
mrtg tool, 206
netmon tool, 219
patterns, 200

MARR (minimal acceptable rate of
return), 16

masks (see subnet masks)
matched packets (RMON), 217
matching patterns in log files, 264
maximum number of hops, 74
Maximum Transmission Unit (MTU), 60
measuring performance (see performance

measurement)
memory locations in adapter settings, 52
memory usage in SNMP agent

information, 176
Mentor Technologies, Inc., 33
Merit Network Inc., 293
messages

boottime, 39
SNMP messages, 162
syslog messages, 261

metering in network management
software, 135

metrics in performance measurement, 281
MGEN traffic tool set, 233–235, 238, 298

MIBs (Management Information Bases)
browsing with tkined, 185–187
charting, 185
displaying with getif, 192, 222
examining in tkined, 185–187
groups in, 164
installation, 167, 184
lists of OIDs in, 171
name lookups, 167
private or enterprise MIBs, 165, 172, 185
RMON MIB, 216
SNMP usage, 163

Microsoft Exchange Server, 159
Microsoft Terminal Server, 193
Microsoft Visio, 159
Microsoft Windows systems

application-level protocol tools, 254
books and resources, 312
connectivity testing, 69, 238
device monitoring tools, 190–193
documenting troubleshooting steps

in, 270
host configuration, 42–44
inconsistent or contradictory packets

and, 146
integrity checkers, 272
load generators, 238
logging applications, 271
NET SNMP, 165
network benchmark programs, 238
network management tools, 158–159
packet analysis, 124
packet capture tools, 104, 131
performance measurement, 97, 219–222
ping tools, 69
point-monitoring tools, 219–222
screen captures, 271
SNMP options, 190–193
ssh tool, 271
syslog versions, 271
tcpdump tool, 104
time synchronization, 271
tracert tool, 75
vnc tool, 259

minimal acceptable rate of return
(MARR), 16

modeling system performance, 280
modular syslog tool, 263, 298
mon monitoring tool, 149, 298

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330 Index

monitoring devices (see device monitoring)
Moore’s Law, 14
motors, cabling and, 46
mount points (NFS), 252
mount table entries, 252
mountd daemon, 251
mrtg (Multirouter Traffic Grapher)

background of graphs, 211
capacity planning and, 286
colors in graphs, 211
configuration files, 206, 221
home pages graphs, 208
interval settings, 206, 210
Microsoft Windows, 221
MRTG-2 and -3 tools, 212
rrd and, 212
source web site, 298
uses, 205–212

mssh ssh tool, 271, 298
msyslog logging tool, 263, 298
MTU (Maximum Transmission Unit)

calculating, 92
escaped characters and, 60
in interface configuration, 29
ping functions and, 62

multicast traffic
addresses in ARP tables, 31
filtering, 113, 115
ntop results, 200

Multi-Generator tool set (see MGEN traffic
tool set)

multihomed computers, 198
multipliers in Smurf attacks, 63
Multirouter Traffic Grapher (see mrtg)

N
nam animation tool, 237, 238, 298
name resolution

arpwatch tool, 143
bing options, 87
configuration files, 36
disabling in pathchar, 84
ethereal tool, 125
failure of reverse name lookup, 246
getif tool, 192
hping tool, 226
MIB name lookup, 167
mrtg tool, 209
netstat options, 24, 25

ntop results, 199
OID numbers and names, 171–174
ping and, 61, 62
reverse name lookup, 73, 246
SNMP object descriptors, 163
snmpnetstat options, 175
tcpdump tool, 108, 117
traceroute tool, 74
troubleshooting, 249

dig tool, 247–248
doc tool, 249
lamers tool, 249
name services, 245–250
NIS and NIS+, 250
nslookup tool, 245–247
other DNS tools, 250

name services
dig tool, 247–248
dnswalk tool, 249
doc tool, 249
lame delegations, 249
lamers tool, 249
listing name servers, 246
NIS and NIS+, 250
nslookup tool, 245–247
other DNS tools, 250
troubleshooting, 245–250

named-bootconf DNS tool, 250
named-xfer DNS tool, 250
NAT (Network Address Translation), 65,

152
National Laboratory for Applied Network

Research (NLANR), 293
NBT (NetBIOS over TCP/IP), 159
nbtstat NetBIOS tool, 159
nc connection tool, 232
ndd kernel tool, 38
Near End Cross-Talk (NEXT), 50
nemesis packet tools, 225, 228–230, 279,

298
nessus security tool, 33, 298
NET SNMP, 165–179

agents and traps, 176–179
command line options, 168
configuration and options, 167–169
Microsoft Windows version, 191
snmpget utility, 166
snmpgetnext utility, 169–170
snmpnetstat utility, 174

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 331

snmpset utility, 171
snmpstatus utility, 175
snmptable utility, 169–170
snmptranslate utility, 171–174
snmptrap utility, 178
snmptrapd utility, 178
snmpwalk utility, 169–170
source web site, 299

Net Watcher tool, 193
NetBench tool, 238
NetBIOS, 159
netcat TCP tool, 232, 238, 299
netdb command (scotty), 150
netmon monitoring tool, 102, 132, 219, 299

interval settings, 220
netperf benchmarking tool, 90, 97, 299
NetSCARF statistics tool, 301
netserver measurement program, 90
netstat tool

comparing to inetd.conf file, 35
displaying connections and

services, 23–26
as host-monitoring tool, 196
listing routing tables, 24
Microsoft Windows, 42, 98
SNMP version, 174
traffic measurements, 94–97
troubleshooting routing tables, 250
using with tkined, 155

Network Address Translation (NAT), 65,
152

network benchmark software, 225, 238
network connectivity (see connectivity

testing)
network emulators

benefits, 236
gateway emulators, 237
NISTNet, 236
uses, 235–238

Network File System (see NFS)
network-level protocols (see names of

specific protocols)
network management

books and resources, 309
cabling, 45
costs and economic

considerations, 12–17
documenting networks, 6–8

drawing network diagrams, 154
ego management, 10
heavily customized systems, 5
identifying portions for performance

measurement, 281
identifying systems in

troubleshooting, 275
implementing troubleshooting

practices, 6
IP addresses, 138
legal and ethical considerations, 11
log file management, 263
management software tools, 135
partitioned responsibilities in

organizations, 5
performance (see performance

measurement)
personnel problems, 10
politics and, 156
professionalism and, 9
scalability vs. capacity, 17
security and protection, 130, 156
segmented network benefits, 102
selecting commercial products, 137
tools

device discovery, 137–144, 156
device type identification, 144–149
mapping tools, 151–155
Microsoft Windows tools, 158–159
NET SNMP tool, 165–179
network-monitoring tools, 205–216
RMON, 216–218
scotty tool, 179–181
scripting tools, 149–151
sniffers, 197
tkined tool, 153–155, 181–189

troubleshooting vs.
management, 134–137

understanding current behavior of
systems, 5

network managers as sources of
information, 308

Network Monitor tool, 132
network-monitoring tools, 205–216

cricket tool, 212–216
lists of, 293
Microsoft Windows, 219–222
mrtg tool, 205–212

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332 Index

network-monitoring tools (continued)
RMON, 216–218
rrd tool, 212

Network Research Group (Lawrence
Berkeley National Laboratory), 293

network simulators
animating, 237
benefits, 236
ns and nam tools, 237
uses, 235–238

network sniffers, 197
Network Time Protocol (NTP), 158, 267,

271
Network Virtual Terminal (NVT) ASCII, 240
networking scripts, 40
newsgroups, 305
NEXT (Near End Cross-Talk), 50
NFS (Network File System)

benchmark tools, 253
books and resources, 310
daemons, 251
ntop plugins for, 202
timeouts, 253
tools, 253
troubleshooting, 251–253

nfsd daemon, 251
nfsiod daemon, 251
nfsstat command (NFS), 253
nfswatch monitoring tool, 253, 299
nhfsstone benchmarking tool, 253, 299
NIS and NIS+, 250
NISTNet emulation package, 236, 299
NLANR (National Laboratory for Applied

Network Research), 293
nmap scanning tool

as point-monitoring tool, 136
as security tool, 269
device discovery, 139–142
fast scan option, 142
source web site, 299
stack fingerprinting, 148

nocol monitoring tool, 149, 299
noncommercial tools, 293
nonplenum cabling, 46
nonzero values in netstat, 96
normal failures, 4
not-accessible SNMP objects, 172

Novell protocols, 132
NRG (LBNL Network Research Group), 293
ns simulator tool, 237, 238, 299
nslookup domain name tool

cyberkit suite, 158
Microsoft Windows, 254
NIS and, 250
source web site, 299
uses, 245–247

ntop monitoring tool
device troubleshooting, 284
interactive mode, 198
Microsoft Windows, 221
plugins, 202
sorting results, 199
source web site, 300
updating results, 199, 203
uses, 197–204
web mode, 199

NTP (Network Time Protocol), 158, 267,
271

ntpd clock tools, 267, 300
ntpdate clock tool, 267
ntpq clock tool, 267
ntptrace clock tool, 267
NTTP ports, 145
numeric output

netstat results, 24
ping results, 59
SNMP results, 174

NVT ASCII, 240

O
object identifiers (SNMP) (see OIDs)
Object Tool Command Language

(OCL), 237
objects

definitions in OIDs, 171
examining MIBs in tkined, 185–187
in MIBs, 163
monitoring with tkined, 188
object descriptors, 163
retrieving with scotty, 179
SNMP objects, 161
tables of, 170

OCL (Object Tool Command
Language), 237

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 333

od analysis tool, 111
offsets in packet headers, 115
OIDs (object identifiers in SNMP)

contents, 163
display options in SNMP, 168
mrtg usage of, 210
object descriptors for, 163
syntax, 166
translating names and numbers, 171–174

open files, listing for systems, 26
Open Network Management Systems, 136
open source network management

tools, 136
OpenBSD project, 260
OpenBSD systems, 270, 292
OpenSSH project, 259, 260
openssh ssh tool, 300
operating speeds of interfaces, 209
operating systems

identifying for devices, 144–149
inconsistent or contradictory packets

and, 146
known behaviors, 146
NFS daemons and, 251
OS fingerprinting, 146–149

operational costs, 17
operators in filters, 112, 116
Organizationally Unique Identifier

(OUI), 31
OS fingerprinting (see stack fingerprinting)
OSPF (Open Shortest Path First), 114, 228,

251
ospf_monitor tool, 251
OUI (Organizationally Unique

Identifier), 31
outcomes of performance

measurement, 281
out-of-order packets, 119
output

hping output, 228
plotting with xplot, 122
SNMP formatted output, 168
SNMP redirected output, 178
SNMP tables, 170
tcpdump files, 105, 121

overengineering networks, 13, 284
overloaded networks, 50
oversized packets, 64
owners of processes, listing, 27

P
p0f fingerprinting tool, 147, 300
packages

installed package information, 291
installing in Solaris, 291
integrity, 291
Red Hat Package Manager, 292
removing, 291

packet analyzers, 124–129
(see also packet capture)

packet capture
access to traffic, 101
analysis tools, 118–124, 124–129
checking email clients, 243
ethereal tool, 125
host-monitoring tools, 196
Microsoft Windows tools, 131
network-monitoring tools, 196, 205–216
point-monitoring tools, 196, 197–204
promiscuous mode and, 104
remote packet capture, 216
restricting tools and privileges, 130
retransmitting captured packets, 231
security and privacy issues, 100, 129–131
SNMP agents, 176, 178
snmpnetstat tool, 175
snoop tool, 124
tcpdump tool, 104–118
techniques, 103
traffic capture tools, 100

packet injection tools, 224–235
custom packets generators, 225–231
emulators, 236
load generators, 231–235
using packet sniffers with, 230

Packet InterNet Groper (see ping tools)
packet pair software, 87
packet sniffers, 100

capture and retransmission, 231
detecting, 131
SNMP messages and, 162
switches and, 129
using with packet generators, 230
(see also tcpdump tool; traffic capture

tools)
packet stretch measurements, 87
packets

analysis summary, 110
blocking, 58

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 Index

packets (continued)
capturing (see packet capture)
characteristics, 115
customized packets, 224, 225–231
damaged, 57
dropped, 233
duplicate, 57
fields in, 224
filters, 58, 115
flooding networks with, 59
forged ARP packets, 129
fragmentation, 60
headers in, 115, 227
hexadecimal, 110, 126, 228
intervals between, 59
length, 64, 115
limiting capture, 108
listing number sent, 25
load generators, 224–235
lost packets, 57, 73, 86, 103, 232
number captured, 107, 125, 198
number sent, 59, 74, 84, 226, 233
offsets in headers, 115
out-of-order, 119
oversized packets, 64
path discovery, 72
patterns for data, 60
performance measurements, 80
ping and, 54, 57
protocol trees for, 126
rate of sending, 59
retransmitting after capture, 231
round-trip times, 54
setup or teardown, 116
size, 60, 64, 84, 87, 200, 227, 233, 234
sniffing (see packet sniffers)
SNMP packets, 169
spray tool, 233
timeouts for, 74
timestamps in, 60
truncating, 108
TTL field, 72

parameters
in performance measurement, 282
SNMP objects as, 161

passive fingerprinting, 147
passwords

SNMP community strings, 157, 161
verifying for email accounts, 242

patch cabling, 52, 103
patch devices, 103
pathchar bandwidth tools, 83–85, 295, 300
paths

available paths in routing tables, 25
characteristics

listing all devices on paths, 78
performance, 79–97
traceroute discovery, 71–79

counting hops on, 56
discovery, 74, 75
ISP network access, 93
performance

bandwidth measurements, 81–87
measurements, 80
Microsoft Windows, 97
throughput measurement, 88–92
traffic measurements, 94–97

unreachable networks, 58
pattern expression in log files, 264
patterns

for packet data, 60
of usage, 195

pchar bandwidth tool, 83, 300
peering arrangements, 72, 93
perfmon monitoring tool, 219
performance analysis

analytical modeling, 280
measurement, 280
simulations, 280
steps in, 279–287

Performance Endpoints software, 97
performance management in network

management software, 135
performance measurement

bandwidth, 79, 81–87
books and resources, 311
bottleneck analysis, 283–285
in capacity planning, 285
choosing tools, 282
emulators and simulators, 235–238
host-monitoring tools, 196
ISPs, 93
load generators, 231–235
Microsoft Windows, 97, 219–222
mrtg and varieties, 205–216
network-monitoring tools, 205–216
over time, 195
packet injection, 225

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 335

path performance, 79–97
ping tools, 59
point-monitoring tools, 197–204
reproducibility, 236
RMON, 216–218
steps in, 280–283
terminology, 80
throughput, 79, 88–92
traffic measurement, 79, 94–97, 195
types of data collection, 194–196
understanding current behavior, 5
web servers, 244
(see also performance analysis)

Performance Monitor tool, 219
periodic replacement costs, 16
Perl

Active Perl web site, 221
books and resources, 312
cricket and, 221
mrtg and, 212, 221
scripting with, 149

permissions, tcpwrappers tool and, 265
personal firewalls, 156
Peter Principle, 13
Ping of Death Attack, 64
ping scanners, 139
ping tools

alternatives to, 66–69
bandwidth measurements, 81
checking client name resolution, 245
cyberkit suite, 158
detecting packet sniffers with, 131
discovering MAC/IP address pairs, 138
DOS attacks and, 63
examples, 54
functions, 54–58
generating loads with, 231
graphing round-trip delays, 222
hping tool, 226
interpreting results, 55
Microsoft Windows, 69
options, 58
Ping of Death Attack, 64
problems with, 62–66
running, 60
source web site, 296
testing connectivity with, 53–69
versions, 53

pkgadd command (Solaris), 291

pkgchk command (Solaris), 291
pkginfo package command (Solaris), 291
pkgrm command (Solaris), 291
playing back captured tcpdump data, 107
plenum cabling, 46
plotting traffic data (see graphing traffic

data)
plugins for ntop tool, 202
pmon.exe tool, 44
point-monitoring tools, 196, 197–204

Microsoft Windows, 219–222
ntop, 197–204

point tools, 136
point-to-point bandwidth, 85
Poisson distribution, 235
polling with tkined, 183, 188
POP2 and POP3 protocols, 145, 240
port 0, 226
port collections, 292
port scanners, 32–34

identifying hardware with, 145
Microsoft Windows tools, 44
nmap tool, 139

portmap NFS daemon, 251
portmapper NFS daemon, 251
ports

aliasing, 103
displaying numbers for connections, 24
duplicating traffic on, 103
ephemeral, 117, 120
filtering, 114, 116
getif results, 192
graphing usage by, 202
MGEN packet settings, 234
mirroring, 103
mrtg setting, 212
nemesis settings, 229
ntop selection, 199
preserving numbers in data, 119
scanning (see port scanners)
telnet information at login, 145
traceroute starting ports, 74

portscan scanning tool, 33, 269, 300
PPP (Point-to-Point Protocol), 60, 310
precedence in operators, 116
precompiled binary files, 290
printing

screen shots of windows, 256
troubleshooting details, 256

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 Index

priorities for traffic, 65
privacy issues

egos and, 10
limiting bytes captured and, 108
packet capture and, 100
sanitize tool, 118
segmented networks and, 102
TCP streams and, 127
tcpdpriv tool, 119
use of network tools and, 11

private MIBs (enterprise), 165, 172, 185
proactive nature of troubleshooting, ix
probe computers, 102
process explode tool, 44
process monitor tool, 44
process viewer tool, 44
processes

bottlenecks in, 283
defunct processes, 22
listing, 21, 27, 44
listing users’ processes, 21
lsof tool, 27
Microsoft Windows, 44
multiple instances, 22
ranking in order of CPU usage, 22
resource-hogging, 22
rogue processes, 22
run levels and, 40
SNMP agent information, 176

processor loads in SNMP agent
information, 176

promiscuous mode
arpwatch tool, 142
checking interfaces, 130
disabling in tcpdump, 108
ethereal settings, 125
ntop tool, 197
packet capture and, 104

propagation delays or times, 80, 81, 82
protecting networks (see security issues)
protocol analyzers, 100

(see also ethereal analysis tool; traffic
capture tools)

protocol stack, application data in, 101
protocols

application-level (see application-level
protocols)

capturing traffic with snmpnetstat, 175

connectivity protocols (see connectivity
protocols)

displaying traffic by, 199
displaying with netstat, 24
filtering, 114
network-level (see names of specific

protocols)
packet capture and, 101
transport-level (see names of specific

protocols), 239
tree display in ethereal, 126

proxy servers, stack fingerprinting and, 147
ps command, 20, 32, 177
published addresses in ARP tables, 31
purchasing software, 137
putty ssh tool, 271, 300
pviewer.exe process tool, 44
pview.exe process tool, 44

Q
Qcheck benchmarking tool, 97, 300
quality of service measurements, 236
queso fingerprinting tool, 147, 300
queuing delays or times, 80, 82, 83, 85

R
r-services, replacing with ssh, 259
RADIUS exchanges, 106
rates

of load generation, 234
of return, 16

rateup mrtg tool, 212, 221
rc files, 40
readings and references, 308–315
README files, 306
read-only community strings, 163
read-only SNMP objects, 172
read/write community strings, 163
read/write SNMP objects, 172
REAL simulation project, 237
real time capture counts, 126
Realtime Transport Protocol, 92
rebooting

netstat results and, 95
as quick fix, 2

receive lights, 49
receive queues, 24
recompiling kernels, 37, 130

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 337

recording
command sequences in

troubleshooting, 256
troubleshooting steps, 255–260

Red Hat Linux systems, 40, 292
reference clocks, 267
reference counts in routing tables, 25
references and readings, 305–315
reflectors in Smurf attacks, 63
Registry Editor tool, 193
registry (Microsoft Windows), 44
regular expression matching, 172
reinstalling software, 3
relational operators in filters, 112, 115, 116
remote frame buffers, 257
remote logging with syslog tool, 262
remote logon tools, 255–260
remote monitoring probes

(RMON), 216–218
remote networks

monitoring devices, 190
ping and, 61
remote configuration in management

software, 135
in routing tables, 26
traffic capture, 102

remote traffic, 202, 205
remote video display memory, 257
removing (see deleting)
replaying captured tcpdump data, 107
reports

documenting troubleshooting in, 274
netmon, 220

reproducibility of performance
measurements, 236

required objects in SNMP, 172
resetting

clocks, 268
ntop statistics, 199, 203
systems as quick fix, 2

resolver flags, 248
Resource Reservation Protocol (RSVP), 235
resource starvation, 22
resource utilization, 135
resource-hogging processes, 22
resources and references, 305–315
retransmitting packets after capture, 231
reverse address lookup, 138
reverse name lookups, 73, 246, 248

reviewing design in performance
measurement, 282

RFC tool descriptions, 293
RIP packets, 114, 228, 250
ripquery routing table tool, 250, 300
rlogin authentication, 260
RMON probes, 102, 216–218

thresholds, 217
RMON2, 218
rogue DHCP servers, 32
rogue processes, 22
Round Robin Database (rrd), 212, 212–216
round-trip times

bing results, 86
calculating, 82
getif tool, 222
graphing, 122
packets, 54
ping results, 55
tkined results, 183

route tool, calls to, 39
routed distribution, 250, 300
routers

autodiscovery, 155
emulators, 236
IP addresses for, 74
ntop results, 202
ping and, 61
prioritizing traffic, 65
in routing tables, 25
static addresses and, 138
testing with spoofed addresses, 227
traffic monitoring and, 196

routing
bing options, 87
traceroute, 71–79
troubleshooting, 250

routing tables
adding entries to, 25
address ranges in, 152
getif results, 191
Microsoft Windows, 42
netstat listing, 24
SNMP retrieval, 170
snmpnetstat results, 174
static entries, 25
tkined results, 188
troubleshooting, 250

rpcbind daemon, 251

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 Index

rpcinfo command (NFS), 252
rpc.mountd daemon, 251
rpc.nfsd daemon, 251
rpc.sprayd daemon, 232
rpm (Red Hat Package Manager), 292
rrd monitoring tool, 212, 212–216, 300
RSA-based authentication, 260
rsh authentication, 260
RSVP (Resource Reservation Protocol), 235
RTP (Realtime Transport Protocol), 92
rtquery routing table tool, 250, 300
rules in tcpwrappers tool, 266
run levels, booting into, 40

S
SAGE user group, 305
samspade tool, 300
Sanitize privacy scripts, 118, 301
satan scanning tool, 269
scaling

graphs, 210
scalability vs. raw capacity, 17
test networks, 236

scanners, security, 269
scanning tools

Microsoft Windows tools, 44
security and politics, 157
uses, 32–34

scheduler in initialization, 39
scion statistics tool, 205, 301
scotty management tool

Microsoft Windows, 159
SNMP usage, 179–181
source web site, 301
tkined requirements, 155

scrambling addresses in data, 119
screen captures, 256, 271
script command file output, 105, 256
scripts

books and resources, 312
extensible SNMP agents, 177
languages for device discovery, 136
MGEN and, 234
scripting tools

network management, 149–151
network maps and, 152

startup, 39
secure HTTP, 204
secure mode in syslog, 263

secure syslog tool, 263, 298
security configuration files, 41
security issues

books and resources, 312
challenge response systems, 259
compromised ps command, 32
discovery tools and, 156
egos and, 10
expn and vrfy telnet commands, 242
levels in syslog, 261
Microsoft Windows and packet capture

tools, 131
network management software, 135
packet capture and, 100
packet capture tools and, 129–131
ping and DOS attacks, 63
protecting networks, 130
secrecy and, 9
security tools, 269

cops, 269
iss, 269
nmap, 269
portscan, 269
sanitize, 118
satan, 269
system integrity checkers, 269
tcpdpriv tool, 119
tcpwrappers, 265, 269
tripwire, 269

segmented networks and, 102
Smurf attacks, 63
SNMP security, 161
ssh tools, 259
switches and, 129
syslog files, 262
TCP streams and, 127
testing firewalls, 278
web server configuration, 244

segmenting networks, 102
selector fields in syslog configuration, 261
send queues, displaying with netstat, 24
sendmail

books and resources, 310
configuration files, 41
starting with scripts, 39
testing, 34
(see also email)

serial connections with crossover
cables, 52

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 339

serial counters in servers, 247
servers

checking email servers, 241
checking FTP performance, 244
checking HTTP servers, 243
debugging, 240
listing open files, 27
name servers, 246, 249
NFS and, 251
serial counters, 247
stack fingerprinting and, 147
stratum 1 and 2 servers, 267
synchronizing clocks on, 267
troubleshooting name services, 245
vnc servers, 257, 258
zone authority records, 247, 248

service contracts, 7, 15, 306
services

automatically starting services, 21
differential growth and, 286
displaying for hosts, 23
filtering traffic, 114
protecting with tcpwrappers tool, 266
run levels and, 40
types of in packets, 127
waiting for connection requests, 24

SET_REQUEST messages (SNMP), 162, 166,
171

setup packets, 116
SFS benchmarking tool, 253, 301
shell scripts

dig tool and, 247
sanitize tool, 118
tclsh tool, 150
tcp-reduce tool, 120

shutdown scripts, 40
shutting down interfaces, 30
siggen checksum tool, 270
signatures for devices, 146
Simple Network Management Protocol (see

SNMP)
Simple Network Time Protocol (SNTP), 267
simple watcher tool, 264
simulations of system performance, 280
simulators

animating, 237
benefits, 236
ns and nam tools, 237
uses, 235–238

siphon fingerprinting tool, 147, 301
sl4nt syslog tool, 301
SLAC (Stanford Linear Accelerator

Center), 293
SMB (System Messaged Blocks), 156
SMI (Structure of Management

Information), 163
SMS (Systems Management Server), 132
SMTP protocol, 240
Smurf attacks, 63
snapshots of traffic data, 123
SNMP for Perl 5 package, 301
SNMP Manager tool, 136
SNMP (Simple Network Management

Protocol)
basic operation and structures, 160–165
books and resources, 310
in bottleneck analysis, 285
community strings, 157, 161
devices lacking support for, 181
examining MIBs with tkined, 185–187
graphing objects, 222
managers and agents, 162
Microsoft Windows, 190–193
mrtg usage of, 205
NET SNMP tool, 165–179
objects, 161
performance measurements, 205
ports, 145
RMON extensions, 216
scotty tool, 179–181
security issues, 161
setting values with scotty, 179
SNMP Manager, 136
snmp.conf file, 167
SNMPv1, 161
SNMPv2 Classic, v2*, v2c, and v2u, 161
SNMPv3, 161
timeouts, 169
tkined tool, 181–189
toasters controlled by, 171
traps, 184
troubleshooting routing tables, 250
versions, 161, 165

snmp.conf file, 167
snmpd agent, 176–179

preventing forking, 177
snmpd.conf file, 176
snmpget utility, 166

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 Index

snmpgetnext utility, 166, 169–170
snmpnetstat utility, 174
SNMP_Session.pm extension, 149
snmpset utility, 166, 171
snmpstatus utility, 175
snmptable utility, 169–170
snmptranslate utility, 171–174, 217
snmptrap utility, 178
snmptrapd daemon, 178
snmpwalk utility, 169–170
snoop tool, 124
SNTP (Simple Network Time Protocol), 267
sntpd clock tools, 267
sock traffic tool, 231, 301
socket TCP tool, 232, 301
sockets

buffer size, 92
displaying for connections, 24
snmpnetstat results, 174

software
connectivity, 53
installation troubleshooting, 277
tools (see tools, names of specific tools)

Solaris systems
changing kernel parameters, 38
configuration files, 35
installing packages, 291
kernel directives, 37
packet capture, 124
ping tools, 54

Solstice AdminSuite tool, 36
source addresses

arbitrary addresses in hping, 227
filtering, 113
nemesis settings, 229

source code
comments in, 306
downloading, 290

source routing, 73, 78
sources for tools, 294–304
spanning ports, 103
spanning tree protocols, 112
SPEC SFS tool, 253
spidermap scanning scripts, 149, 301
spoofed addresses, 141

hping settings, 227
nmap settings, 141
preventing with ssh, 260

in Smurf attacks, 63
source routing and, 78

spoofing syslog messages, 263
spray packet tool, 95, 232, 285, 301

interval settings, 233
SQL databases, logging data to, 204
ssh tools, 259, 300

authentication, 260
books and resources, 311
extensions, 303
Microsoft Windows, 271
monitoring devices with, 190
remote probing with, 102
source web site, 298, 301
vnc in ssh sessions, 259

ssyslog log tool, 263, 301
stack fingerprinting

nmap tool, 139, 148
passive fingerprinting, 147
queso tool, 147
updating files, 148
uses, 146–149

standard configuration files, 35
Stanford Linear Accelerator Center

(SLCA), 293
starting ports for traceroute, 74
startup files, 39
states, booting into, 40
static IP addresses, 138
status lights, 49
stealth port scanners, 33, 141
stealth scanning, 158
step size in packets, 84
store-and-forward switches, 84, 85
storing log files, 263
strategies for troubleshooting

generic troubleshooting, 273–277
installation practices and, 277
task-specific strategies, 277–287

stratum 1 and 2 servers, 267
streams

capturing, 119
following, 127

stress-testing networks, 95, 224–235
strict source routing, 78
strings analysis tool, 111
stripcharts in tkined, 183
strobe port tool, 33, 302

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 341

Structure of Management Information
(SMI), 163

subnet masks
address masks in interfaces, 29
in ARP tables, 31
packet headers, 115
port scanning and, 140
in routing tables, 26
stack fingerprinting, 147
wildcards in (*), 140

subnets
collapsing in diagrams, 154
emulators, 235
ntop results and, 201

substituting subsystems, 4
subsystems

identifying in troubleshooting, 275
substituting, 4

subtrees in MIBs, 164
displaying with getif, 192
displaying with snmptranslate, 173
examining with tkined, 185
retrieving with scotty, 179
retrieving with SNMP, 169

summarizing
connection-by-connection statistics, 122
data in ethereal, 127
mrtg results, 206
packet captures, 120

summary web pages of mrtg results, 206
suppressing graph display in mrtg, 210
suspending jobs in tkined, 183
swap command (ntop), 198
swapper in initialization, 39
swapping

adapters, 53
cables, 51
components, 3

swatch log tool, 264, 302
switches

compared to hubs, 103
cut-through, 84, 85
point-monitoring tools and, 197
port aliasing, 103
security and, 129
static addresses and, 138
store-and-forward, 84, 85
traffic capture and, 101
traffic monitoring and, 196

types of, 85
unmanaged switches, 152

symbolic form in SNMP output, 174
symptoms

changes in, 4
identifying, 274
system failures, 4

SYN packets, blocking, 141
synchronizing clocks, 267
sysctl command, 39
syslog, configuration action fields, 261
syslog command (scotty), 150
syslog tool, 261–263

arpwatch data logging, 142
configuring, 261
Microsoft Windows, 271
modular syslog, 263
remote logging, 262
secure syslog, 263
security holes, 262
syslog-ng tool, 263, 302

syslog.conf file, 261
syslogd daemon, 261
syslog-ng tool, 263, 302
system clocks, synchronizing, 267
system configuration files, 35–41

application files, 41
configuration programs, 36
kernel configuration, 36–39
log files, 41
mrtg, 206
security files, 41
startup files and scripts, 39
testing, 266

system integrity checkers, 269
system management

books and resources, 309
(see also network management)

System Messaged Blocks (SMB), 156
System Monitor tool, 193
System Policy Editor tool, 193
System V systems, 40
Systems Management Server (SMS), 132

T
tables in SNMP objects, 170
.tar files, 290
Task Manager (taskmgr.exe), 44

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

342 Index

task-specific troubleshooting
strategies, 277–287

taxonomy of software tools, 293
tclets, 149
tclsh shell, 150
Tcl/Tk language, 149

books and resources, 312
GUI extensions, 150
Microsoft Windows port, 159
scotty, 150, 181
source web site, 302
Tk extensions, 150
tkined requirements, 155

TCP traffic
ACK packets, 140
active sessions, 202
analysis, 122
capturing, 119
displaying service status, 24
filtering, 114
following streams, 127
generating with nemesis, 228
headers, 89
opening connections with NVT

ASCII, 240
plotting, 123
retrieving with tkined, 188
sending with hping tool, 226

TCP window size, 90, 92
tcpdchk testing tool, 266
tcpdmatch testing tool, 266
tcpdpriv privacy tool, 119, 302
tcpdump tool, 104–118

analysis tools, 106, 118–124
binary files, 106
background capture, 106
in bottleneck analysis, 284
capturing RIP updates, 251
command-line options, 107–118
controlling display fields, 109
controlling information display, 108
extracting data files from, 121
controlling program behavior, 107
filtering options, 112–118
merging files, 121
Microsoft Windows, 131
NFS usage, 253
number of bytes captured, 108, 125
one-line summaries in files, 120

replaying captured data, 107
running, 105–107
source web site, 302
writing data to files, 106-107

tcpflow capture tool, 119, 302
TCP/IP

books and resources, 309
ICMP (see ICMP)
stack fingerprinting, 146–149
Windows configuration, 42

tcp-reduce extraction tool, 120, 197, 302
tcpshow decoding tool, 121, 302
tcpslice extraction tool, 121, 302
tcp-summary extraction tool, 120, 302
tcptrace analysis tool, 122–123, 197, 302
tcpwrappers permissions tool

configuration, 41
logging in, 196, 265
as security tool, 269
source web site, 303

teardown packets, 116
tee command, 105, 256
telnet

checking FTP and TFTP
performance, 244

filtering traffic from, 116
identifying hardware with, 145
logging sessions, 257
monitoring devices with, 190
ports, 145, 147
remote probing with, 102
retrieving email, 242
root and, 28
sending email, 241
stack fingerprinting and, 147
tcpdump tool and, 105
testing sendmail with, 34
traffic in ntop results, 199
troubleshooting email protocols, 240

teraterm ssh tool, 271, 303
terminated connections, 24
termination on cables, 50
testing

adapters, 52
cabling, 49–52
configuration files, 266
connectivity protocols (see connectivity

protocols)
connectivity (see connectivity testing)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 343

filters, 113
firewalls, 229, 230, 278
hypotheses in troubleshooting, 275
IP addresses, 138
parameters in performance

measurement, 282
performance (see performance

measurement)
software or hardware installations, 277

tethereal packet capture tool, 125
.tgz files, 290
thresholds

netmon, 220
RMON, 217
tkined settings, 183

throughput, 80
achievable, 88
bing results, 86
of connections, 56
graphing averages, 202
graphs, 122
measurements, 79, 88–92

iperf tool, 91
Microsoft Windows, 97
netperf tool, 90
treno tool, 92
ttcp tool, 89–90

ntop results, 198, 199
time sequence graphs, 122
time-series data, 212
timeouts

NFS and, 253
SNMP options, 169
in traceroute, 74

timestamps
extracting traffic data by, 121
in packets, 60, 118
synchronizing clocks, 267
tcpdump tool, 109
troubleshooting printouts, 256

time servers, 267
tjping packet tool, 70, 303
Tk extensions, 150, 155, 159

(see also Tcl/Tk language)
tkined management tool, 149, 150

autodiscovery, 155
caveats, 188
changing monitoring options, 183
collapsed groups, 154, 182

community strings and, 189
examining MIBs, 185–187
ICMP monitoring, 181–184
manually drawing maps, 153
mapping networks, 153–155
Microsoft Windows, 159, 191
monitoring SNMP objects, 188
performance measurements, 205
poll interval, 183
polling devices, 188
reports, 188
requirements, 155
restarting jobs, 183
saving changes in, 188
SNMP traps, 184
SNMP usage, 181–189
source web site, 303
trouble menu information, 188

tmetric bandwidth tool, 83, 303
tnm extensions (scotty), 150, 159
toasters controlled by SNMP, 171
Tool Command Language (see Tcl/Tk

language)
tools

characteristics of management
software, 135

datestamping and versions, 7
installing, 289–292
inventories of contents, 7
legal and ethical considerations, 11
licenses, 293
network management tools in

troubleshooting, 135
preparing for problems, 5
(see also specific types of tools, i.e.,

packet capture)
sources for, 293, 294–304
taxonomy of, 293

top process display tool, 22, 197, 303
topology problems, using maps to

resolve, 151
traceroute routing tool

complications, 74–79
cyberkit suite, 158
getif and, 192
identifying address ranges, 152
loose source routing, 78
options, 74
path discovery with, 71–79

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

344 Index

traceroute routing tool (continued)
source web site, 296, 303
timeouts, 74
tracert tool, 97
using with tkined, 155

tracert routing tool, 75, 97
tracking

changes to systems with tripwire, 270
FTP transfers, 29
IP addresses, 138
log files, 263
open files on systems, 26
software installations, 7

traffic
generated by pathchar, 85
throughput improvements and, 88
understanding current behavior, 5

traffic capture tools, 100
access to traffic, 101
analysis tools, 118–124
duplicating traffic on ports, 103
ethereal tool, 125
filters, 112
getif tool, 222
methods of capturing data, 103
network-monitoring tools, 196
sanitizing captures, 118
security issues, 129–131
snapshots of data, 123
snoop tool, 124
tcpdump tool, 104–118

traffic control configuration files, 41
traffic graphs

daily, 210, 214
hourly, 214
monthly, 210, 214
weekly, 210, 214
yearly, 210

traffic load generation (see load generators)
traffic measurement tools, 79, 94–97

busy hours and, 195, 205
as first step in performance

measurement, 195
host-monitoring tools, 196
load generators (see load generators)
local vs. remote traffic, 205
Microsoft Windows, 97
network-monitoring tools, 205–216

point-monitoring tools, 196, 197–204
traffic intervals and locations, 195

traffic monitors (see traffic capture tools)
trafshow capture tool, 123, 303
transfer rates in ttcp tool, 89
translating OID numbers to

names, 171–174
transmission delays or times, 80
transmission points, hidden or

unknown, 84, 87
transmission rates, 80
transmit lights, 49
transport-level protocols (see names of

specific protocols)
transport-level services, 114
TRAP message (SNMP), 162
traps, 160

alerts for network problems, 162
generating, 178
Microsoft Windows, 190
RMON, 217
scotty trap handlers, 180
SNMP agents and, 176–179
snmptrap utility, 178
snmptrapd utility, 178
tkined usage, 184

trayping packet tool, 70, 303
trend analysis, 135, 216, 285, 286
treno bulk transfer tool, 92, 303
tripwire integrity tool, 18, 269, 272, 303
troubleshooting

books and resources, 311
data collection, 1
developing solutions, 277
diagnosing problems

breaking problems into pieces, 3
changes to systems, 3
data collection, 1
general approaches, 2

documenting networks, 6–8
documenting steps in, 255–260
firewall installation, 278
installation, 277
logging telnet sessions, 257
management practices, 6
preparing for problems, 5
proactive nature of, ix
recording command line sequences, 256

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index 345

solutions in, 277, 285
strategies

generic troubleshooting, 273–277
task-specific strategies, 277–287

system configuration files, 35–41
tools (see tools)
versus network management, 134–137

truncating packets, 108
trust relationships, 36, 41
ttcp load testing tool

generating loads with, 231
Microsoft Windows, 97
source web site, 303
uses, 89–90

TTL field, 55, 56, 72, 227
ttssh ssh extensions, 271, 303
tuning networks, 195
twisted pair cable, 52

U
UCD SNMP tools, 165–179, 205, 296

(see also NET SNMP)
UDP (Unreliable Datagram Protocol)

bandwidth, 91
filtering packets, 114
hping tool, 226
load generation, 232
MGEN tool, 233
nemesis tool, 228
NTP usage of, 267
syslog use of, 263
throughput, 90
traceroute tool, 72

unauthorized changes to systems, 6
uncompressing software tools, 290
unformatted timestamps, 109, 118
unicast packets, 200
unknown transmission points, 84
unmanaged hubs and switches, 152
unpacking

software, 290
Solaris packages, 291

unreachable devices or hosts
ARP tables and, 32
checking with getif, 192
checking with tkined, 182
ping and, 58
routing troubleshooting, 250
traceroute and, 73

unreachable networks
ping and, 58
traceroute and, 73

unresolved addresses in ARP tables, 31
usage patterns, 195
USENIX user group, 305
user groups, 305
users

authentication, 260
data collection, 12
dissatisfaction, 194
privacy of, 12

utilities (see tools)
utilization statistics (RMON), 216

V
variables

monitoring with tkined, 188
SNMP objects as, 161

vendors
adapter configuration software, 52
diagnostic tools, 307
documentation, 307
host vendor information, 201
information in arpwatch tool, 143
web sites, 306

verbose output
arping tool, 68
bing, 87
echoping, 67
hping tool, 226
nemesis tool, 229
pathchar, 84
ping tools, 59
ps command, 21
SNMP, 178
tcpdump tool, 109
traceroute tool, 74

verifying results in troubleshooting, 276
versions

displaying for SNMP, 169
distinguishing tools and

documentation, 7
software management, 135

victims in Smurf attacks, 63
view only mode (vnc), 258
viewers in vnc, 257
VINT (Virtual InterNetwork Testbed), 237
virtual LANs, 112, 131, 152

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

346 Index

virtual network computing (vnc), 257–259
Visio, 159
VLANs (virtual local area networks), 112,

131, 152
vnc remote control tool, 192, 257–259, 271,

304
processes, 263

vrfy command (telnet), 242

W
walk operations in SNMP, 169, 187
WAP traffic, 202
warm reboots, 2
warranties, 7
web browsers, testing connectivity with, 69
web ntop mode, 199
web pages

cricket, 213
mrtg, 208

web protocol books and resources, 311
web servers

cricket and, 215
port 80, 67
security file configuration, 244
troubleshooting, 244
vnc tool and, 259

web sites
magazine sites, 308
software web sites, 306
traceroute looking glass sites, 78
vendor sites, 306

whois tool (cyberkit), 158
wildcards in subnet masks (*), 140
window screen captures, 256, 271
window size, TCP, 90, 92
Windows registry, 44
Windows Resource Kit, 44
WinDump and WinDump95 tools, 131, 304
winipcfg configuration tool, 42
winping packet tool, 70, 304

wire-map testing, 50
wiring (see cabling)
wish shell, 150
working files, mrtg, 208
wrapper programs, 265
writing data to files, 107

command output, 256
decoding files, 121
interface configuration information, 207
IP scans, 142
name resolution data, 249

writing data to SQL databases, 204

X
X Window software

capturing windows, 256
displaying sessions remotely, 258
ethereal tool and, 124
plotting tools, 123
remote probing with, 102
tcpdump tool and, 105
Tk extensions, 150

X.25 network files, 27
xinetd inetd tool, 265, 304
xlogmaster log tool, 264, 304
xplot graphing tool, 122, 123, 197, 304
xv image tool, 256, 304
xwd command (X Window), 256

Y
ypcat NIS tool, 250
ypmatch NIS tool, 250
ypwhich NIS tool, 250

Z
zeroing ntop statistics, 199, 203
zone authority records, 246, 248
zone transfers, 249

About the Author
Joseph D. Sloan has been working with computers since the mid-1970s. He began
using Unix as a graduate student in 1981, first as an applications programmer and
later as a system programmer and system administrator. Since 1988 he has taught
mathematics and computer science at Lander University. He also manages the
networking computer laboratory at Lander, where he can usually be found testing
and using the software tools described in this book.

Colophon
Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of Network Troubleshooting Tools is a basilisk, a lizard
belonging to the iguana family. Its name comes from the mythological basilisk
(also known as a cockatrice), a reptile with a deadly gaze and breath, said to have
been hatched from a rooster’s egg by a serpent.

Though the two crests along their backs may make them look ferocious, basilisk
lizards aren’t deadly to anyone but the bugs and occasional worms and small
animals they eat. They grow to about two or two and a half feet long, with most
of that length in their tail. The banded basilisk is brown with a yellow stripe along
each side of its body, and other basilisk species are green or brown.

Unlike their mythological counterparts, real basilisks are hatched from basilisk
eggs. The female basilisk digs a shallow hole in moist dirt, lays up to 18 eggs in
the hole, and covers them with dirt. Then she goes back to her swinging single
basilisk life, leaving the eggs and later the young lizards to fend for themselves.
They do this quite well, taking up residence in trees and finding their own food
soon after hatching.

The talent that basilisks are most known for is their ability to do something that
looks remarkably like walking on water. In reality, their webbed hind feet trap a
bubble of air beneath them as they run, buoying them up so that their feet don’t
sink more than an inch or so below the water. A small basilisk can run like this for
up to 60 feet without sinking.

Catherine Morris was the production editor and proofreader, and Norma Emory
was the copyeditor for Network Troubleshooting Tools . Sarah Jane Shangraw, Emily
Quill, and Claire Cloutier provided quality control. Jan Wright wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy
Priest. Anne-Marie Vaduva converted the files from Microsoft Word to FrameMaker
5.5.6 using tools created by Mike Sierra. The text and heading fonts are ITC Gara-
mond Light and Garamond Book; the code font is Constant Willison. The
illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colo-
phon was written by Leanne Soylemez.

Whenever possible, our books use a durable and flexible lay-flat binding. If the
page count exceeds this binding’s limit, perfect binding is used.

	Table of Contents
	Preface
	Audience
	Organization
	Conventions
	Acknowledgments

	Network Management and Troubleshooting
	General Approaches to Troubleshooting
	Need for Troubleshooting Tools
	Troubleshooting and Management
	Documentation
	Management Practices
	Professionalism
	Ego management
	Legal and ethical considerations
	Economic considerations

	Host Configurations
	Utilities
	ps
	top
	netstat
	lsof
	ifconfig
	arp
	Scanning Tools

	System Configuration Files
	Basic Configuration Files
	Configuration Programs
	Kernel
	Startup Files and Scripts
	Other Files
	Application files
	Security files
	Log files

	Microsoft Windows

	Connectivity Testing
	Cabling
	Installing New Cabling
	Maintaining Existing Cabling
	Testing Cabling
	Link lights
	Cable testers
	Other cable tests

	Testing Adapters
	Software Testing with ping
	ping
	How ping Works
	Simple examples
	Interpreting results
	Options
	Using ping

	Problems with ping
	Security and ICMP
	Smurf Attacks
	Ping of Death
	Other problems

	Alternatives to ping
	fping
	echoping
	arping
	Other programs

	Microsoft Windows

	Path Characteristics
	Path Discovery with traceroute
	Options
	Complications with traceroute

	Path Performance
	Performance Measurements
	Bandwidth Measurements
	ping revisited
	pathchar
	bing
	Packet pair software

	Throughput Measurements
	ttcp
	netperf
	iperf
	Other related tools

	Traffic Measurements with netstat

	Microsoft Windows

	Packet Capture
	Traffic Capture Tools
	Access to Traffic
	Capturing Data
	tcpdump
	Using tcpdump
	tcpdump Options
	Controlling program behavior
	Controlling how information is displayed
	Controlling what’s displayed
	Filtering

	Analysis Tools
	sanitize
	tcpdpriv
	tcpflow
	tcp-reduce
	tcpshow
	tcpslice
	tcptrace
	trafshow
	xplot
	Other Packet Capture Programs

	Packet Analyzers
	ethereal
	Using ethereal
	Display filters

	Dark Side of Packet Capture
	Switch Security
	Protecting Yourself

	Microsoft Windows

	Device Discovery and Mapping
	Troubleshooting Versus Management
	Characteristics of Management Software
	Discovery and Mapping Tools
	Selecting a Product

	Device Discovery
	IP Address Management
	nmap
	arpwatch

	Device Identification
	Stack Fingerprinting
	queso
	nmap Revisited

	Scripts
	Tcl/Tk and scotty

	Mapping or Diagramming
	tkined
	Drawing maps with tkined
	Autodiscovery with tkined

	Politics and Security
	Microsoft Windows
	Cyberkit
	Other Tools for Windows

	Device Monitoring with SNMP
	Overview of SNMP
	SNMP-Based Management Tools
	NET SNMP (UCD SNMP)
	snmpget
	Configuration and options
	snmpgetnext, snmpwalk, and snmptable
	snmpset
	snmptranslate
	snmpnetstat
	snmpstatus
	Agents and traps

	scotty
	tkined
	ICMP monitoring
	SNMP traps
	Examining MIBs
	Monitoring SNMP objects
	Other commands
	Caveats

	Non-SNMP Approaches
	Microsoft Windows
	Windows SNMP Setup
	SNMP Tools
	Other Options

	Performance Measurement Tools
	What, When, and Where
	Host-Monitoring Tools
	Point-Monitoring Tools
	ntop
	Interactive mode
	Web mode

	Network-Monitoring Tools
	mrtg
	mrtg configuration file

	rrd and the Future of mrtg
	cricket

	RMON
	Microsoft Windows
	ntop, mrtg, and cricket on Windows
	getif revisited

	Testing Connectivity Protocols
	Packet Injection Tools
	Custom Packets Generators
	hping
	nemesis
	Other tools

	Load Generators
	spray
	MGEN

	Network Emulators and Simulators
	NISTNet
	ns and nam

	Microsoft Windows

	Application-Level Tools
	Application-Protocols Tools
	Email
	HTTP
	FTP and TFTP
	Name Services
	nslookup and dig
	doc, dnswalk, and lamers
	Other tools
	NIS and NIS+

	Routing
	NFS

	Microsoft Windows

	Miscellaneous Tools
	Communications Tools
	Automating Documentation
	vnc
	ssh

	Log Files and Auditing
	syslog
	Configuring syslog
	Remote logging

	Log File Management
	Other Approaches to Logging
	tcpwrappers

	NTP
	Security Tools
	tripwire

	Microsoft Windows

	Troubleshooting Strategies
	Generic Troubleshooting
	Task-Specific Troubleshooting
	Installation Testing
	Firewall testing

	Performance Analysis and Monitoring
	General steps
	Bottleneck analysis
	Capacity planning

	Software Sources
	Installing Software
	Generic Installs
	Solaris Packages
	Red Hat Package Manager
	FreeBSD Ports

	Generic Sources
	Licenses
	Sources for Tools

	Resources and References
	Sources of Information
	References by Topic
	System Management
	TCP/IP
	Specific Protocols
	Performance
	Troubleshooting
	Wiring
	Security
	Scripting
	Microsoft Windows

	References

	Index

