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Preface

Lex and yacc are tools designed for writers of compilers and interpreters, although they
are also useful for many applications that will interest the noncompiler writer. Any
application that looks for patterns in its input, or has an input or command language is
a good candidate for lex and yacc. Furthermore, they allow for rapid application pro‐
totyping, easy modification, and simple maintenance of programs. To stimulate your
imagination, here are a few things people have used lex and yacc to develop:

• The desktop calculator bc
• The tools eqn and pic, typesetting preprocessors for mathematical equations and

complex pictures.
• PCC, the Portable C Compiler used with many UNIX systems, and GCC, the GNU

C Compiler
• A menu compiler
• A SQL data base language syntax checker
• The lex program itself

What’s New in the Second Edition

We have made extensive revisions in this new second edition. Major changes include:

• Completely rewritten introductory Chapters 1–3
• New Chapter 5 with a full SQL grammar
• New, much more extensive reference chapters

xi



• Full coverage of all major MS-DOS and UNIX versions of lex and yacc, including
AT&T lex and yacc, Berkeley yacc, flex, GNU bison, MKS lex and yacc, and Abraxas
PCYACC

• Coverage of the new POSIX 1003.2 standard versions of lex and yacc

Scope of This Book

Chapter 1, Lex and Yacc , gives an overview of how and why lex and yacc are used to
create compilers and interpreters, and demonstrates some small lex and yacc applica‐
tions. It also introduces basic terms we use throughout the book.

Chapter 2, Using Lex , describes how to use lex. It develops lex applications that count
words in files, analyze program command switches and arguments, and compute sta‐
tistics on C programs.

Chapter 3, Using Yacc , gives a full example using lex and yacc to develop a fully functional
desktop calculator.

Chapter 4, A Menu Generation Language , demonstrates how to use lex and yacc to
develop a menu generator.

Chapter 5, Parsing SQL , develops a parser for the full SQL relational data base language.
First we use the parser as a syntax checker, then extend it into a simple preprocessor for
SQL embedded in C programs.

Chapter 6, A Reference for Lex Specifications , and Chapter 7, A Reference for Yacc Gram‐
mars , provide detailed descriptions of the features and options available to the lex and
yacc programmer. These chapters and the two that follow provide technical information
for the now experienced lex and yacc programmer to use while developing new lex and
yacc applications.

Chapter 8, Yacc Ambiguities and Conflicts , explains yacc ambiguities and conflicts,
which are problems that keep yacc from parsing a grammar correctly. It then develops
methods that can be used to locate and correct such problems.

Chapter 9, Error Reporting and Recovery , discusses techniques that the compiler or
interpreter designer can use to locate, recognize, and report errors in the compiler input.

Appendix A, AT&T Lex , describes the command-line syntax of AT&T lex and the error
messages it reports and suggests possible solutions.

Appendix B, AT&T Yacc , describes the command-line syntax of AT&T yacc and lists
errors reported by yacc. It provides examples of code which can cause such errors and
suggests possible solutions.
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Appendix C, Berkeley Yacc , describes the command-line syntax of Berkeley yacc, a
widely used free version of yacc distributed with Berkeley UNIX, and lists errors re‐
ported by Berkeley yacc with suggested solutions.

Appendix D, GNU Bison , discusses differences found in bison, the Free Software Foun‐
dation’s implementation of yacc.

Appendix E, Flex , discusses flex, a widely used free version of lex, lists differences from
other versions, and lists errors reported by flex with suggested solutions.

Appendix F, MKS Lex and Yacc , discusses the MS-DOS and OS/2 version of lex and
yacc from Mortice Kern Systems.

Appendix G, Abraxas Lex and Yacc , discusses PCYACC, the MS-DOS and OS/2 versions
of lex and yacc from Abraxas Software.

Appendix H, POSIX Lex and Yacc , discusses the versions of lex and yacc defined by the
IEEE POSIX 1003.2 standard.

Appendix I, MGL Compiler Code , provides the complete source code for the menu
generation language compiler discussed in Chapter 4.

Appendix J, SQL Parser Code , provides the complete source code and a cross-reference
for the SQL parser discussed in Chapter 5.

The Glossary lists technical terms language and compiler theory.

The Bibliography lists other documentation on lex and yacc, as well as helpful books on
compiler design.

We presume the reader is familiar with C, as most examples are in C, lex, or yacc, with
the remainder being in the special purpose languages developed within the text.

Availability of Lex and Yacc

Lex and yacc were both developed at Bell Laboratories in the 1970s. Yacc was the first
of the two, developed by Stephen C. Johnson. Lex was designed by Mike Lesk and Eric
Schmidt to work with yacc. Both lex and yacc have been standard UNIX utilities since
7th Edition UNIX. System V and older versions of BSD use the original AT&T versions,
while the newest version of BSD uses flex (see below) and Berkeley yacc. The articles
written by the developers remain the primary source of information on lex and yacc.

The GNU Project of the Free Software Foundation distributes bison, a yacc replacement;
bison was written by Robert Corbett and Richard Stallman. The bison manual, written
by Charles Donnelly and Richard Stallman, is excellent, especially for referencing spe‐
cific features. Appendix D discusses bison.
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BSD and GNU Project also distribute flex (Fast Lexical Analyzer Generator), “a rewrite
of lex intended to right some of that tool’s deficiencies,” according to its reference page.
Flex was originally written by Jef Poskanzer; Vern Paxson and Van Jacobson have con‐
siderably improved it and Vern currently maintains it. Appendix E covers topics specific
to flex.

There are at least two versions of lex and yacc available for MS-DOS and OS/2 machines.
MKS (Mortice Kern Systems Inc.), publishers of the MKS Toolkit, offers lex and yacc as
a separate product that supports many PC C compilers. MKS lex and yacc comes with
a very good manual. Appendix F covers MKS lex and yacc. Abraxas Software publishes
PCYACC, a version of lex and yacc which comes with sample parsers for a dozen widely
used programming languages. Appendix G covers Abraxas’ version lex and yacc.

Sample Programs

The programs in this book are available free from UUNET (that is, free except for
UUNET’s usual connect-time charges). If you have access to UUNET, you can retrieve
the source code using UUCP or FTP. For UUCP, find a machine with direct access to
UUNET, and type the following command:

    uucp uunet\!~/nutshell/lexyacc/progs.tar.Z yourhost\!˜/yourname/
         

The backslashes can be omitted if you use the Bourne shell (sh) instead of the C shell
(csh). The file should appear some time later (up to a day or more) in the directory /usr/
spool/uucppublic/ yourname. If you don’t have an account but would like one so that
you can get electronic mail, then contact UUNET at 703-204-8000.

To use ftp, find a machine with direct access to the Internet. Here is a sample session,
with commands in boldface.

    % ftp ftp.oreilly.com
    Connected to ftp.oreilly.com.
    220 FTP server (Version 5.99 Wed May 23 14:40:19 EDT 1990) ready.
    Name (ftp.oreilly.com:yourname): anonymous
    331 Guest login ok, send ident as password.
    Password: ambar@ora.com 
            (use your user name and host here)
    230 Guest login ok, access restrictions apply.
    ftp> cd published/oreilly/nutshell/lexyacc
    250 CWD command successful.
    ftp> binary (you must specify binary transfer for compressed files)
    200 Type set to I.
    ftp> get progs.tar.Z
    200 PORT command successful.
    150 Opening BINARY mode data connection for progs.tar.Z.
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    226 Transfer complete.
    ftp> quit
    221 Goodbye.
    %

The file is a compressed tar archive. To extract files once you have retrieved the archive,
type:

    % zcat  progs.tar.Z | tar xf -
         

System V systems require the following tar command instead:

    % zcat progs.tar.Z | tar xof -
         

Conventions Used in This Handbook

The following conventions are used in this book:
Bold

is used for statements and functions, identifiers, and program names.

Italic
is used for file, directory, and command names when they appear in the body of a
paragraph as well as for data types and to emphasize new terms and concepts when
they are introduced.

Constant Width

is used in examples to show the contents of files or the output from commands.

Constant Bold

is used in examples to show command lines and options that you type literally.

Quotes
are used to identify a code fragment in explanatory text. System messages, signs,
and symbols are quoted as well.

%
is the Shell prompt.

[]
surround optional elements in a description of program syntax. (Don’t type the
brackets themselves.)
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CHAPTER 1

Lex and Yacc

Lex and yacc help you write programs that transform structured input. This includes
an enormous range of applications—anything from a simple text search program that
looks for patterns in its input file to a C compiler that transforms a source program into
optimized object code.

In programs with structured input, two tasks that occur over and over are dividing the
input into meaningful units, and then discovering the relationship among the units. For
a text search program, the units would probably be lines of text, with a distinction
between lines that contain a match of the target string and lines that don’t. For a C
program, the units are variable names, constants, strings, operators, punctuation, and
so forth. This division into units (which are usually called tokens) is known as lexical
analysis, or lexing for short. Lex helps you by taking a set of descriptions of possible
tokens and producing a C routine, which we call a lexical analyzer, or a lexer, or a scanner
for short, that can identify those tokens. The set of descriptions you give to lex is called
a lex specification.

The token descriptions that lex uses are known as regular expressions, extended versions
of the familiar patterns used by the grep and egrep commands. Lex turns these regular
expressions into a form that the lexer can use to scan the input text extremely fast,
independent of the number of expressions that it is trying to match. A lex lexer is almost
always faster than a lexer that you might write in C by hand.

As the input is divided into tokens, a program often needs to establish the relationship
among the tokens. A C compiler needs to find the expressions, statements, declarations,
blocks, and procedures in the program. This task is known as parsing and the list of rules
that define the relationships that the program understands is a grammar. Yacc takes a
concise description of a grammar and produces a C routine that can parse that grammar,
a parser. The yacc parser automatically detects whenever a sequence of input tokens
matches one of the rules in the grammar and also detects a syntax error whenever its
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input doesn’t match any of the rules. A yacc parser is generally not as fast as a parser
you could write by hand, but the ease in writing and modifying the parser is invariably
worth any speed loss. The amount of time a program spends in a parser is rarely enough
to be an issue anyway.

When a task involves dividing the input into units and establishing some relationship
among those units, you should think of lex and yacc. (A search program is so simple
that it doesn’t need to do any parsing so it uses lex but doesn’t need yacc. We’ll see this
again in Chapter 2, where we build several applications using lex but not yacc.)

By now, we hope we’ve whetted your appetite for more details. We do not intend for this
chapter to be a complete tutorial on lex and yacc, but rather a gentle introduction to
their use.

The Simplest Lex Program

This lex program copies its standard input to its standard output:

    %%
    .|\n     ECHO;
    %%

It acts very much like the UNIX cat command run with no arguments.

Lex automatically generates the actual C program code needed to handle reading the
input file and sometimes, as in this case, writing the output as well.

Whether you use lex and yacc to build parts of your program or to build tools to aid you
in programming, once you master them they will prove their worth many times over by
simplifying difficult input handling problems, providing more easily maintainable code
base, and allowing for easier “tinkering” to get the right semantics for your program.

Recognizing Words with Lex

Let’s build a simple program that recognizes different types of English words. We start
by identifying parts of speech (noun, verb, etc.) and will later extend it to handle mul‐
tiword sentences that conform to a simple English grammar.

We start by listing a set of verbs to recognize:

is am are were
was be beingbeen
do does did will
wouldshouldcan could
has have had go
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Example 1-1 shows a simple lex specification to recognize these verbs.

Example 1-1. Word recognizer ch1-02.l
%{
/*
 * this sample demonstrates (very) simple recognition:
 * a verb/not a verb.
 */

%}
%%

[\t ]+                   /* ignore whitespace */ ;

is |
am |
are |
were |
was |
be |
being |
been |
do |
does |
did  |
will |
would |
should |
can  |
could |
has  |
have |
had |
go        { printf("%s: is a verb\n", yytext); }
[a-zA-Z]+ { printf("%s: is not a verb\n", yytext); }

.|\n      { ECHO; /* normal default anyway */ }
%%

main()
{
      yylex() ;
}

Here’s what happens when we compile and run this program. What we type is in bold.

    % example1
    did I have fun?
    did: is a verb
    I: is not a verb
    have: is a verb
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    fun: is not a verb
    ?
    ^D
    %

To explain what’s going on, let’s start with the first section:

    %{
    /*
     * This sample demonstrates very simple recognition:
     * a verb/not a verb.
     */

    %}

This first section, the definition section, introduces any initial C program code we want
copied into the final program. This is especially important if, for example, we have
header files that must be included for code later in the file to work. We surround the C
code with the special delimiters “%{” and “%}.” Lex copies the material between “%{”
and “%}” directly to the generated C file, so you may write any valid C code here.

In this example, the only thing in the definition section is some C comments. You might
wonder whether we could have included the comments without the delimiters. Outside
of “%{” and “%}”, comments must be indented with whitespace for lex to recognize them
correctly. We’ve seen some amazing bugs when people forgot to indent their comments
and lex interpreted them as something else.

The %% marks the end of this section.

The next section is the rules section. Each rule is made up of two parts: a pattern and an
action, separated by whitespace. The lexer that lex generates will execute the action when
it recognizes the pattern. These patterns are UNIX-style regular expressions, a slightly
extended version of the same expressions used by tools such as grep, sed, and ed. Chapter
6 describes all the rules for regular expressions. The first rule in our example is the
following:

    [\t ]+                  /* ignore whitespace */ ;

The square brackets, “[]”, indicate that any one of the characters within the brackets
matches the pattern. For our example, we accept either “\t” (a tab character) or " " (a
space). The “+” means that the pattern matches one or more consecutive copies of the
subpattern that precedes the plus. Thus, this pattern describes whitespace (any combi‐
nation of tabs and spaces.) The second part of the rule, the action, is simply a semicolon,
a do-nothing C statement. Its effect is to ignore the input.
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1. You can also use a vertical bar within a pattern, e.g., foo|bar is a pattern that matches either the string “foo”
or the string “bar.” We leave some space between the pattern and the vertical bar to indicate that “bar” is the
action, not part of the pattern.

The next set of rules uses the “|” (vertical bar) action. This is a special action that means
to use the same action as the next pattern, so all of the verbs use the action specified for
the last one.1

Our first set of patterns is:

    is |
    am |
    are |
    were |
    was |
    be |
    being |
    been |
    do |
    does |
    did |
    should |
    can |
    could |
    has |
    have |
    had |
    go         { printf("%s: is a verb\n", yytext); }

Our patterns match any of the verbs in the list. Once we recognize a verb, we execute
the action, a C printf statement. The array yytext contains the text that matched the
pattern. This action will print the recognized verb followed by the string “: is a verb\n”.

The last two rules are:

    [a-zA-Z]+  { printf("%s:  is not a verb\n", yytext);   }

    .|\n       { ECHO;  /* normal default anyway */ }

The pattern “[a-zA-Z]+” is a common one: it indicates any alphabetic string with at least
one character. The “-” character has a special meaning when used inside square brackets:
it denotes a range of characters beginning with the character to the left of the “-” and
ending with the character to its right. Our action when we see one of these patterns is
to print the matched token and the string “: is not a verb\n”.
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2. Actually, we could have left out the main program because the lex library contains a default main routine just
like this one.

It doesn’t take long to realize that any word that matches any of the verbs listed in the
earlier rules will match this rule as well. You might then wonder why it won’t execute
both actions when it sees a verb in the list. And would both actions be executed when
it sees the word “island,” since “island” starts with “is”? The answer is that lex has a set
of simple disambiguating rules. The two that make our lexer work are:

1. Lex patterns only match a given input character or string once.
2. Lex executes the action for the longest possible match for the current input. Thus,

lex would see “island” as matching our all-inclusive rule because that was a longer
match than “is.”

If you think about how a lex lexer matches patterns, you should be able to see how our
example matches only the verbs listed.

The last line is the default case. The special character “.” (period) matches any single
character other than a newline, and “\n” matches a newline character. The special action
ECHO prints the matched pattern on the output, copying any punctuation or other
characters. We explicitly list this case although it is the default behavior. We have seen
some complex lexers that worked incorrectly because of this very feature, producing
occasional strange output when the default pattern matched unanticipated input char‐
acters. (Even though there is a default action for unmatched input characters, well-
written lexers invariably have explicit rules to match all possible input.)

The end of the rules section is delimited by another %%.

The final section is the user subroutines section, which can consist of any legal C code.
Lex copies it to the C file after the end of the lex generated code. We have included a
main() program.

    %%

    main()
    {
          yylex();
    }

The lexer produced by lex is a C routine called yylex(), so we call it.2 Unless the actions
contain explicit return statements, yylex() won’t return until it has processed the entire
input.

We placed our original example in a file called ch1-02.l since it is our second example.
To create an executable program on our UNIX system we enter these commands:
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    % lex  ch1-02.l
    % cc  lex.yy.c -o first -ll
         

Lex translates the lex specification into a C source file called lex.yy.c which we compiled
and linked with the lex library -ll. We then execute the resulting program to check that
it works as we expect, as we saw earlier in this section. Try it to convince yourself that
this simple description really does recognize exactly the verbs we decided to recognize.

Now that we’ve tackled our first example, let’s “spruce it up.” Our second example,
Example 1-2, extends the lexer to recognize different parts of speech.

Example 1-2. Lex example with multiple parts of speech ch1-03.l
%{
/*
 * We expand upon the first example by adding recognition of some other
 * parts of speech.
 */

%}
%%

[\t ]+                    /* ignore whitespace */ ;
is |
am |
are |
were |
was |
be |
being |
been |
do |
does |
did |
will |
would |
should |
can |
could |
has |
have |
had |
go       { printf("%s: is a verb\n", yytext); }

very |
simply |
gently |
quietly |
calmly |
angrily   { printf("%s: is an adverb\n", yytext); }
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to |
from |
behind |
above |
below |
between
below     { printf("%s: is a preposition\n", yytext); }

if |
then |
and |
but |
or       { printf("%s: is a conjunction\n", yytext); }

their |
my |
your |
his |
her |
its      { printf("%s: is a adjective\n", yytext); }

I |
you |
he |
she  |
we  |
they       { printf("%s: is a pronoun\n", yytext); }

[a-zA-Z]+ {
       printf("%s:  don't recognize, might be a noun\n", yytext);
      }
.|\n        { ECHO;/* normal default anyway */ }

%%

main()
{
     yylex();
}

Symbol Tables

Our second example isn’t really very different. We list more words than we did before,
and in principle we could extend this example to as many words as we want. It would
be more convenient, though, if we could build a table of words as the lexer is running,
so we can add new words without modifying and recompiling the lex program. In our
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next example, we do just that—allow for the dynamic declaration of parts of speech as
the lexer is running, reading the words to declare from the input file. Declaration lines
start with the name of a part of speech followed by the words to declare. These lines, for
example, declare four nouns and three verbs:

    noun dog cat horse cow
    verb chew eat lick

The table of words is a simple symbol table, a common structure in lex and yacc appli‐
cations. A C compiler, for example, stores the variable and structure names, labels, enu‐
meration tags, and all other names used in the program in its symbol table. Each name
is stored along with information describing the name. In a C compiler the information
is the type of symbol, declaration scope, variable type, etc. In our current example, the
information is the part of speech.

Adding a symbol table changes the lexer quite substantially. Rather than putting separate
patterns in the lexer for each word to match, we have a single pattern that matches any
word and we consult the symbol table to decide which part of speech we’ve found. The
names of parts of speech (noun, verb, etc.) are now “reserved words” since they introduce
a declaration line. We still have a separate lex pattern for each reserved word. We also
have to add symbol table maintenance routines, in this case add_word(), which puts a
new word into the symbol table, and lookup_word( ), which looks up a word which
should already be entered.

In the program’s code, we declare a variable state that keeps track of whether we’re
looking up words, state LOOKUP, or declaring them, in which case state remembers
what kind of words we’re declaring. Whenever we see a line starting with the name of a
part of speech, we set the state to declare that kind of word; each time we see a \n we
switch back to the normal lookup state.

Example 1-3 shows the definition section.

Example 1-3. Lexer with symbol table (part 1 of 3) ch1-04.l
%{
/*
 * Word recognizer with a symbol table.
 */

enum {
      LOOKUP =0, /* default - looking rather than defining. */
      VERB,
      ADJ,
      ADV,
      NOUN,
      REP,
      PRON,
      CONJ
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};

int state;

int add_word(int type, char *word);
int lookup_word(char *word);
%}

We define an enum in order to use in our table to record the types of individual words,
and to declare a variable state. We use this enumerated type both in the state variable
to track what we’re defining and in the symbol table to record what type each defined
word is. We also declare our symbol table routines.

Example 1-4 shows the rules section.

Example 1-4. Lexer with symbol table (part 2 of 3) ch1-04.l
%%
\n    { state = LOOKUP; }   /* end of line, return to default state */

      /* whenever a line starts with a reserved part of speech name */
      /* start defining words of that type */
^verb { state = VERB; }
^adj  { state = ADJ; }
^adv  { state = ADV; }
^noun { state = NOUN; }
^prep { state = PREP; }
^pron { state = PRON; }
^conj { state = CONJ; }

[a-zA-Z]+ {
                /* a normal word, define it or look it up */
           if(state != LOOKUP) {
                /* define the current word */
                add_word(state, yytext);
              } else {
                 switch(lookup_word(yytext)) {
                 case VERB: printf("%s: verb\n", yytext); break;
                 case ADJ: printf("%s: adjective\n", yytext); break;
                 case ADV: printf("%s: adverb\n", yytext); break;
                 case NOUN: printf("%s: noun\n", yytext); break;
                 case PREP: printf("%s: preposition\n", yytext); break;
                 case PRON: printf("%s: pronoun\n", yytext); break;
                 case CONJ: printf("%s: conjunction\n", yytext); break;
                 default:
                         printf("%s: don't recognize\n", yytext);
                         break;
                 }
          }
         }
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.    /* ignore anything else */ ;

%%

For declaring words, the first group of rules sets the state to the type corresponding to
the part of speech being declared. (The caret, “^”, at the beginning of the pattern makes
the pattern match only at the beginning of an input line.) We reset the state to LOOK‐
UP at the beginning of each line so that after we add new words interactively we can
test our table of words to determine if it is working correctly. If the state is LOOKUP
when the pattern “[a-zA-Z]+” matches, we look up the word, using lookup_word(), and
if found print out its type. If we’re in any other state, we define the word with add_word().

The user subroutines section in Example 1-5 contains the same skeletal main() routine
and our two supporting functions.

Example 1-5. Lexer with symbol table (part 3 of 3) ch1-04.l
main()
{
      yylex();
}

/* define a linked list of words and types */
struct word {
      char *word_name;
      int word_type;
      struct word *next;
};

struct word *word_list; /* first element in word list */

extern void *malloc() ;

int
add_word(int type, char *word)
{
      struct word *wp;

      if(lookup_word(word) != LOOKUP) {
            printf("!!! warning: word %s already defined \n", word);
            return 0;
      }

      /* word not there, allocate a new entry and link it on the list */

      wp = (struct word *) malloc(sizeof(struct word));

      wp->next = word_list;

      /* have to copy the word itself as well */
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      wp->word_name = (char *) malloc(strlen(word)+1);
      strcpy(wp->word_name, word);
      wp->word_type = type;
      word_list = wp;
      return 1;  /* it worked */
}

int
lookup_word(char *word)
{
      struct word *wp = word_list;

      /* search down the list looking for the word */
      for(; wp; wp = wp->next) {
      if(strcmp(wp->word_name, word) == 0)
            return wp->word_type;
      }

      return LOOKUP;       /* not found */
}

These last two functions create and search a linked list of words. If there are a lot of
words, the functions will be slow since, for each word, they might have to search through
the entire list. In a production environment we would use a faster but more complex
scheme, probably using a hash table. Our simple example does the job, albeit slowly.

Here is an example of a session we had with our last example:

               verb is am are was were be being been do
    is
    is: verb
    noun dog cat horse cow
    verb chew eat lick
    verb run stand sleep
    dog run
    dog: noun
    run: verb
    chew eat sleep cow horse
    chew: verb
    eat: verb
    sleep: verb
    cow: noun
    horse: noun
    verb talk
    talk
    talk: verb

We strongly encourage you to play with this example until you are satisfied you under‐
stand it.
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3. We say symbol rather than token here, because we reserve the name “token” for symbols returned from the
lexer, and the symbol to the left of the arrow did not come from the lexer. All tokens are symbols, but not all
symbols are tokens.

Grammars

For some applications, the simple kind of word recognition we’ve already done may be
more than adequate; others need to recognize specific sequences of tokens and perform
appropriate actions. Traditionally, a description of such a set of actions is known as a
grammar. It seems especially appropriate for our example. Suppose that we wished to
recognize common sentences. Here is a list of simple sentence types:

noun verb.
noun verb noun.

At this point, it seems convenient to introduce some notation for describing grammars.
We use the right facing arrow, “→”, to mean that a particular set of tokens can be replaced
by a new symbol.3 For instance:

subject → noun | pronoun

would indicate that the new symbol subject is either a noun or a pronoun. We haven’t
changed the meaning of the underlying symbols; rather we have built our new symbol
from the more fundamental symbols we’ve already defined. As an added example we
could define an object as follows:

object → noun

While not strictly correct as English grammar, we can now define a sentence:

sentence → subject verb object

Indeed, we could expand this definition of sentence to fit a much wider variety of sen‐
tences. However, at this stage we would like to build a yacc grammar so we can test our
ideas out interactively. Before we introduce our yacc grammar, we must modify our
lexical analyzer in order to return values useful to our new parser.

Parser-Lexer Communication

When you use a lex scanner and a yacc parser together, the parser is the higher level
routine. It calls the lexer yylex() whenever it needs a token from the input. The lexer
then scans through the input recognizing tokens. As soon as it finds a token of interest
to the parser, it returns to the parser, returning the token’s code as the value of yylex().
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Not all tokens are of interest to the parser—in most programming languages the parser
doesn’t want to hear about comments and whitespace, for example. For these ignored
tokens, the lexer doesn’t return so that it can continue on to the next token without
bothering the parser.

The lexer and the parser have to agree what the token codes are. We solve this problem
by letting yacc define the token codes. The tokens in our grammar are the parts of speech:
NOUN, PRONOUN, VERB, ADVERB, ADJECTIVE, PREPOSITION, and CON‐
JUNCTION. Yacc defines each of these as a small integer using a preprocessor #define.
Here are the definitions it used in this example:

    # define NOUN 257
    # define PRONOUN 258
    # define VERB 259
    # define ADVERB 260
    # define ADJECTIVE 261
    # define PREPOSITION 262
    # define CONJUNCTION 263

Token code zero is always returned for the logical end of the input. Yacc doesn’t define
a symbol for it, but you can yourself if you want.

Yacc can optionally write a C header file containing all of the token definitions. You
include this file, called y.tab.h on UNIX systems and ytab.h or yytab.h on MS-DOS, in
the lexer and use the preprocessor symbols in your lexer action code.

The Parts of Speech Lexer

Example 1-6 shows the declarations and rules sections of the new lexer.

Example 1-6. Lexer to be called from the parser ch1-05.l
%{
/*
 * We now build a lexical analyzer to be used by a higher-level parser.
 */

#include "y.tab.h"    /* token codes from the parser */

#define   LOOKUP 0   /* default - not a defined word type. */

int state;

%}

%%

\n    { state = LOOKUP; }
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\.\n  {     state = LOOKUP;
            return 0;  /* end of sentence */
      }

^verb { state = VERB; }
^adj  { state = ADJECTIVE; }
^adv  { state = ADVERB; }
^noun { state = NOUN; }
^prep { state = PREPOSITION; }
^pron { state = PRONOUN; }
^conj { state = CONJUNCTION; }

[a-zA-Z]+ {
           if(state != LOOKUP) {
            add_word(state, yytext);
           } else {
            switch(lookup_word(yytext)) {
            case VERB:
              return(VERB);
            case ADJECTIVE:
              return(ADJECTIVE);
            case ADVERB:
              return(ADVERB);
            case NOUN:
              return(NOUN);
            case PREPOSITION:
              return(PREPOSITION);
            case PRONOUN:
              return(PRONOUN);
            case CONJUNCTION:
              return(CONJUNCTION);
            default:
              printf("%s: don't recognize\n", yytext);
              /* don't return, just ignore it */
            }
            }
          }
.    ;

%%

... same add_word() and lookup_word() as before ...

There are several important differences here. We’ve changed the part of speech names
used in the lexer to agree with the token names in the parser. We have also added return
statements to pass to the parser the token codes for the words that it recognizes. There
aren’t any return statements for the tokens that define new words to the lexer, since the
parser doesn’t care about them.
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These return statements show that yylex() acts like a coroutine. Each time the parser
calls it, it takes up processing at the exact point it left off. This allows us to examine and
operate upon the input stream incrementally. Our first programs didn’t need to take
advantage of this, but it becomes more useful as we use the lexer as part of a larger
program.

We added a rule to mark the end of a sentence:

    \.\n  {      state = LOOKUP;
                 return 0;  /* end of sentence */
          }

The backslash in front of the period quotes the period, so this rule matches a period
followed by a newline. The other change we made to our lexical analyzer was to omit
the main() routine as it will now be provided within the parser.

A Yacc Parser

Finally, Example 1-7 introduces our first cut at the yacc grammar.

Example 1-7. Simple yacc sentence parser ch1-05.y
%{
/*
 * A lexer for the basic grammar to use for recognizing English sentences.
 */
#include <stdio.h>
%}

%token NOUN PRONOUN VERB ADVERB ADJECTIVE PREPOSITION CONJUNCTION

%%
sentence: subject VERB object{ printf("Sentence is valid.\n"); }
      ;

subject:    NOUN
      |     PRONOUN
      ;

object:          NOUN

      ;
%%

extern FILE *yyin;

main()
{
     do
       {
           yyparse();
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     }
        while (!feof(yyin));
}

yyerror(s)
char *s;
{
    fprintf(stderr, "%s\n", s);
}

The structure of a yacc parser is, not by accident, similar to that of a lex lexer. Our first
section, the definition section, has a literal code block, enclosed in “%{” and “%}”. We
use it here for a C comment (as with lex, C comments belong inside C code blocks, at
least within the definition section) and a single include file.

Then come definitions of all the tokens we expect to receive from the lexical analyzer.
In this example, they correspond to the eight parts of speech. The name of a token does
not have any intrinsic meaning to yacc, although well-chosen token names tell the reader
what they represent. Although yacc lets you use any valid C identifier name for a yacc
symbol, universal custom dictates that token names be all uppercase and other names
in the parser mostly or entirely lowercase.

The first %% indicates the beginning of the rules section. The second %% indicates the
end of the rules and the beginning of the user subroutines section. The most important
subroutine is main() which repeatedly calls yyparse() until the lexer’s input file runs
out. The routine yyparse() is the parser generated by yacc, so our main program re‐
peatedly tries to parse sentences until the input runs out. (The lexer returns a zero token
whenever it sees a period at the end of a line; that’s the signal to the parser that the input
for the current parse is complete.)

The Rules Section

The rules section describes the actual grammar as a set of production rules or simply
rules. (Some people also call them productions.) Each rule consists of a single name on
the left-hand side of the “:” operator, a list of symbols and action code on the right-hand
side, and a semicolon indicating the end of the rule. By default, the first rule is the
highest-level rule. That is, the parser attempts to find a list of tokens which match this
initial rule, or more commonly, rules found from the initial rule. The expression on the
right-hand side of the rule is a list of zero or more names. A typical simple rule has a
single symbol on the right-hand side as in the object rule which is defined to be a
NOUN. The symbol on the left-hand side of the rule can then be used like a token in
other rules. From this, we build complex grammars.

In our grammar we use the special character “|”, which introduces a rule with the same
left-hand side as the previous one. It is usually read as “or,” e.g., in our grammar a subject
can be either a NOUN or a PRONOUN. The action part of a rule consists of a C block,
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beginning with “{” and ending with “}”. The parser executes an action at the end of a
rule as soon as the rule matches. In our sentence rule, the action reports that we’ve
successfully parsed a sentence. Since sentence is the top-level symbol, the entire input
must match a sentence. The parser returns to its caller, in this case the main program,
when the lexer reports the end of the input. Subsequent calls to yyparse() reset the state
and begin processing again. Our example prints a message if it sees a “subject VERB
object” list of input tokens. What happens if it sees “subject subject” or some other invalid
list of tokens? The parser calls yyerror(), which we provide in the user subroutines
section, and then recognizes the special rule error. You can provide error recovery code
that tries to get the parser back into a state where it can continue parsing. If error recovery
fails or, as is the case here, there is no error recovery code, yyparse() returns to the caller
after it finds an error.

The third and final section, the user subroutines section, begins after the second %%.
This section can contain any C code and is copied, verbatim, into the resulting parser.
In our example, we have provided the minimal set of functions necessary for a yacc-
generated parser using a lex-generated lexer to compile: main() and yyerror(). The main
routine keeps calling the parser until it reaches the end-of-file on yyin, the lex input
file. The only other necessary routine is yylex() which is provided by our lexer.

In our final example of this chapter, Example 1-8, we expand our earlier grammar to
recognize a richer, although by no means complete, set of sentences. We invite you to
experiment further with this example—you will see how difficult English is to describe
in an unambiguous way.

Example 1-8. Extended English parser ch1-06.y
%{
#include <stdio.h>
%}

%token NOUN PRONOUN VERB ADVERB ADJECTIVE PREPOSITION CONJUNCTION

%%

sentence: simple_sentence  { printf("Parsed a simple sentence.\n"); }
      | compound_sentence { printf("Parsed a compound sentence.\n"); }
      ;

simple_sentence: subject verb object
      |     subject verb object prep_phrase
      ;

compound_sentence: simple_sentence CONJUNCTION simple_sentence
      |     compound_sentence CONJUNCTION simple_sentence
      ;

subject:    NOUN
      |     PRONOUN
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      |     ADJECTIVE subject
      ;

verb:       VERB
      |     ADVERB VERB
      |     verb VERB
      ;

object:           NOUN
      |     ADJECTIVE object
      ;

prep_phrase:     PREPOSITION NOUN
      ;

%%

extern FILE *yyin;

main()
{
      do
        {
            yyparse();
      }
        while(!feof(yyin));
}

yyerror(s)
char *s;
{
    fprintf(stderr, "%s\n", s);
}

We have expanded our sentence rule by introducing a traditional grammar formulation
from elementary school English class: a sentence can be either a simple sentence or a
compound sentence which contains two or more independent clauses joined with a
coordinating conjunction. Our current lexical analyzer does not distinguish between a
coordinating conjunction e.g., “and,” “but,” “or,” and a subordinating conjunction (e.g.,
“if ”).

We have also introduced recursion into this grammar. Recursion, in which a rule refers
directly or indirectly to itself, is a powerful tool for describing grammars, and we use
the technique in nearly every yacc grammar we write. In this instance the com‐
pound_sentence and verb rules introduce the recursion. The former rule simply states
that a compound_sentence is two or more simple sentences joined by a conjunction.
The first possible match,

    simple_sentence CONJUNCTION simple_sentence
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defines the “two clause” case while

    compound_sentence CONJUNCTION simple_sentence

defines the “more than two clause case.” We will discuss recursion in greater detail in
later chapters.

Although our English grammar is not particularly useful, the techniques for identifying
words with lex and then for finding the relationship among the words with yacc are
much the same as we’ll use in the practical applications in later chapters. For example,
in this C language statement,

    if( a == b ) break; else func(&a);

a compiler would use lex to identify the tokens if, (, a, ==, and so forth, and then use
yacc to establish that “a == b” is the expression part of an if statement, the break state‐
ment was the “true” branch, and the function call its “false” branch.

Running Lex and Yacc

We conclude by describing how we built these tools on our system.

We called our various lexers ch1-N.l, where N corresponded to a particular lex specifi‐
cation example. Similarly, we called our parsers ch1-M.y, where again M is the number
of an example. Then, to build the output, we did the following in UNIX:

    % lex ch1-n
            .l
    % yacc -d ch1-m
            .y
    % cc -c lex.yy.c y.tab.c
    % cc -o example-m.n 
            lex.yy.o y.tab.o -ll
         

The first line runs lex over the lex specification and generates a file, lex.yy.c, which
contains C code for the lexer. In the second line, we use yacc to generate both y.tab.c and
y.tab.h (the latter is the file of token definitions created by the -d switch.) The next line
compiles each of the two C files. The final line links them together and uses the routines
in the lex library libl.a, normally in /usr/lib/libl.a on most UNIX systems. If you are not
using AT&T lex and yacc, but one of the other implementations, you may be able to
simply substitute the command names and little else will change. (In particular, Berkeley
yacc and flex will work merely by changing the lex and yacc commands to byacc and
flex, and removing the -ll linker flag.) However, we know of far too many differences to
assure the reader that this is true. For example, if we use the GNU replacement bison
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instead of yacc, it would generate two files called ch1-M.tab.c and ch1-M.tab.h. On sys‐
tems with more restrictive naming, such as MS-DOS, these names will change (typically
ytab.c and ytab.h.) See Appendices A through H for details on the various lex and yacc
implementations.

Lex vs. Hand-written Lexers

People have often told us that writing a lexer in C is so easy that there is no point in
going to the effort to learn lex. Maybe and maybe not. Example 1-9 shows a lexer written
in C suitable for a simple command language that handles commands, numbers, strings,
and new lines, ignoring white space and comments. Example 1-10 is an equivalent lexer
written in lex. The lex version is a third the length of the C lexer. Given the rule of thumb
that the number of bugs in a program is roughly proportional to its length, we’d expect
the C version of the lexer to take three times as long to write and debug.

Example 1-9. A lexer written in C
    #include <stdio.h>
    #include <ctype.h>
    char *progname;

    #define NUMBER 400
    #define COMMENT 401
    #define TEXT 402
    #define COMMAND 403

    main(argc,argv)
    int argc;

    char *argv[];
    {
    int val;
    while(val = lexer()) printf("value is %d\n",val);
    }

    lexer()
    {
        int c;

        while ((c=getchar()) == ' ' || c == '\t')
            ;
        if (c == EOF)
            return 0;
        if (c == '.' || isdigit(c)) {   /* number */
            while ((c = getchar()) != EOF && isdigit (c)) ;
        if (c == '.') while ((c = getchar()) != EOF && isdigit (c);
            ungetc(c, stdin);
            return NUMBER;
        }
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        if ( c =='#'){/* comment */
            while ((c = getchar()) != EOF && c != '\n');
            ungetc(c,stdin);
            return COMMENT;
        }
        if ( c =='"'){/* literal text */
            while ((c = getchar()) != EOF &&
           c != '"' && c != '\n') ;
            if(c == '\n') ungetc(c,stdin);
            return TEXT;
        }
        if ( isalpha(c)) { /* check to see if it is a command */
            while ((c = getchar()) != EOF && isalnum(c));
            ungetc(c, stdin);
            return COMMAND;
        }
        return c;
    }

Example 1-10. The same lexer written in lex
    %{
    #define NUMBER 400
    #define COMMENT 401
    #define TEXT 402
    #define COMMAND 403
    %}
    %%
    [ \t]+                 ;
    [0-9]+               |
    [0-9]+\.[0-9]+       |
    \.[0-9]+               { return NUMBER; }
    #.*                     { return COMMENT; }
    \"[^\"\n]*\"            { return TEXT;   }
    [a-zA-Z][a-zA-Z0-9]+    { return COMMAND;}
    \n                      { return '\n'; }
    %%
    #include <stdio.h>

    main(argc,argv)
    int argc;
    char *argv[];
    {
    int val;

    while(val = yylex()) printf ("value is %d\n",val);
    }

Lex handles some subtle situations in a natural way that are difficult to get right in a
hand written lexer. For example, assume that you’re skipping a C language comment.
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To find the end of the comment, you look for a “*”, then check to see that the next
character is a “/”. If it is, you’re done, if not you keep scanning. A very common bug in
C lexers is not to consider the case that the next character is itself a star, and the slash
might follow that. In practice, this means that some comments fail:

    /** comment **/

(We’ve seen this exact bug in a sample, hand-written lexer distributed with one version
of yacc!)

Once you get comfortable with lex, we predict that you’ll find, as we did, that it’s so much
easier to write in lex that you’ll never write another handwritten lexer.

In the next chapter we delve into the workings of lex more deeply. In the chapter fol‐
lowing we’ll do the same for yacc. After that we’ll consider several larger examples which
describe many of the more complex issues and features of lex and yacc.

Exercises

1. Extend the English-language parser to handle more complex syntax: prepositional
phrases in the subject, adverbs modifying adjectives, etc.

2. Make the parser handle compound verbs better, e.g., “has seen.” You might want to
add new word and token types AUXVERB for auxiliary verbs.

3. Some words can be more than one part of speech, e.g., “watch,” “fly,” “time,” or “bear.”
How could you handle them? Try adding a new word and token type
NOUN_OR_VERB, and add it as an alternative to the rules for subject, verb, and
object. How well does this work?

4. When people hear an unfamiliar word, they can usually guess from the context what
part of speech it is. Could the lexer characterize new words on the fly? For example,
a word that ends in “ing” is probably a verb, and one that follows “a” or “the” is
probably a noun or an adjective.

5. Are lex and yacc good tools to use for building a realistic English-language parser?
Why not?
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CHAPTER 2

Using Lex

In the first chapter we demonstrated how to use lex and yacc. We now show how to use
lex by itself, including some examples of applications for which lex is a good tool. We’re
not going to explain every last detail of lex here; consult Chapter 6, A Reference for Lex
Specifications .

Lex is a tool for building lexical analyzers or lexers. A lexer takes an arbitrary input stream
and tokenizes it, i.e., divides it up into lexical tokens. This tokenized output can then be
processed further, usually by yacc, or it can be the “end product.” In Chapter 1 we
demonstrated how to use it as an intermediate step in our English grammar. We now
look more closely at the details of a lex specification and how to use it; our examples use
lex as the final processing step rather than as an intermediate step which passes infor‐
mation on to a yacc-based parser.

When you write a lex specification, you create a set of patterns which lex matches against
the input. Each time one of the patterns matches, the lex program invokes C code that
you provide which does something with the matched text. In this way a lex program
divides the input into strings which we call tokens. Lex itself doesn’t produce an exe‐
cutable program; instead it translates the lex specification into a file containing a C
routine called yylex(). Your program calls yylex() to run the lexer.

Using your regular C compiler, you compile the file that lex produced along with any
other files and libraries you want. (Note that lex and the C compiler don’t even have to
run on the same computer. The authors have often taken the C code from UNIX lex to
other computers where lex is not available but C is.)
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Regular Expressions

Before we describe the structure of a lex specification, we need to describe regular ex‐
pressions as used by lex. Regular expressions are widely used within the UNIX envi‐
ronment, and lex uses a rich regular expression language.

A regular expression is a pattern description using a “meta” language, a language that
you use to describe particular patterns of interest. The characters used in this metalan‐
guage are part of the standard ASCII character set used in UNIX and MS-DOS, which
can sometimes lead to confusion. The characters that form regular expressions are:
.

Matches any single character except the newline character (“\n”).

*
Matches zero or more copies of the preceding expression.

[]
A character class which matches any character within the brackets. If the first char‐
acter is a circumflex (“^”) it changes the meaning to match any character except the
ones within the brackets. A dash inside the square brackets indicates a character
range, e.g., “[0-9]” means the same thing as “[0123456789]”. A “-” or “]” as the first
character after the “[” is interpreted literally, to let you include dashes and square
brackets in character classes. POSIX introduces other special square bracket con‐
structs useful when handling non-English alphabets. See Appendix H, POSIX Lex
and Yacc , for details. Other metacharacters have no special meaning within square
brackets except that C escape sequences starting with “\” are recognized.

^
Matches the beginning of a line as the first character of a regular expression. Also
used for negation within square brackets.

$
Matches the end of a line as the last character of a regular expression.

{}
Indicates how many times the previous pattern is allowed to match when containing
one or two numbers. For example:

A{1,3}

matches one to three occurrences of the letter A. If they contain a name, they refer
to a substitution by that name.

\
Used to escape metacharacters, and as part of the usual C escape sequences, e.g.,
“\n” is a newline character, while “\*” is a literal asterisk.
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+
Matches one or more occurrence of the preceding regular expression. For example:

[0-9]+

matches “1”, “111”, or “123456” but not an empty string. (If the plus sign were an
asterisk, it would also match the empty string.)

?
Matches zero or one occurrence of the preceding regular expression. For example:

-?[0-9]+

matches a signed number including an optional leading minus.

|
Matches either the preceding regular expression or the following regular expression.
For example:

cow|pig|sheep

matches any of the three words.

“...”
Interprets everything within the quotation marks literally—meta-characters other
than C escape sequences lose their meaning.

/
Matches the preceding regular expression but only if followed by the following
regular expression. For example:

0/1

matches “0” in the string “01” but would not match anything in the strings “0” or
“02”. The material matched by the pattern following the slash is not “consumed”
and remains to be turned into subsequent tokens. Only one slash is permitted per
pattern.

()
Groups a series of regular expressions together into a new regular expression. For
example:

(01)

represents the character sequence 01. Parentheses are useful when building up
complex patterns with *, +, and |.
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Note that some of these operators operate on single characters (e.g., []) while others
operate on regular expressions. Usually, complex regular expressions are built up from
simple regular expressions.

Examples of Regular Expressions

We are ready for some examples. First, we’ve already shown you a regular expression for
a “digit”:

    [0-9]

We can use this to build a regular expression for an integer:

    [0-9]+

We require at least one digit. This would have allowed no digits at all:

    [0-9]*

Let’s add an optional unary minus:

    −?[0-9]+

We can then expand this to allow decimal numbers. First we will specify a decimal
number (for the moment we insist that the last character always be a digit):

    [0-9]*\.[0-9]+

Notice the “\” before the period to make it a literal period rather than a wild card char‐
acter. This pattern matches “0.0”, “4.5”, or “.31415”. But it won’t match “0” or “2”. We’d
like to combine our definitions to match them as well. Leaving out our unary minus,
we could use:

    ([0-9]+)|([0-9]*\.[0-9]+)

We use the grouping symbols “()” to specify what the regular expressions are for the “|”
operation. Now let’s add the unary minus:

    −?(([0-9]+)|([0-9]*\.[0-9]+))

We can expand this further by allowing a float-style exponent to be specified as well.
First, let’s write a regular expression for an exponent:

    [eE] [−+]?[0-9]+
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1. Also known as a hash mark, pound sign, and by some extremists as an octothorpe.

This matches an upper- or lowercase letter E, then an optional plus or minus sign, then
a string of digits. For instance, this will match “e12” or “E-3”. We can then use this
expression to build our final expression, one that specifies a real number:

    −?(([0-9]+)|([0-9]*\.[0-9]+)([eE][−+]?[0-9]+)?)

Our expression makes the exponent part optional. Let’s write a real lexer that uses this
expression. Nothing fancy, but it examines the input and tells us each time it matches a
number according to our regular expression.

Example 2-1 shows our program.

Example 2-1. Lex specification for decimal numbers

%%
[\n\t ]     ;

-?(([0-9]+)|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?) { printf("number\n"); }

.     ECHO;
%%
main()
{
      yylex();
}

Our lexer ignores whitespace and echoes any characters it doesn’t recognize as parts of
a number to the output. For instance, here are the results with something close to a valid
number:

    .65ea12
    number
    eanumber

We encourage you to play with this and all our examples until you are satisfied you
understand how they work. For instance, try changing the expression to recognize a
unary plus as well as a unary minus.

Another common regular expression is one used by many scripts and simple configu‐
ration files, an expression that matches a comment starting with a sharp sign, “#”.1 We
can build this regular expression as:

    #.*
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2. The size of the buffer varies a lot from one version to the next, sometimes being as small as 100 bytes or as
large as 8K. For more details, see the section on yytext in Chapter 6.

The “.” matches any character except newline and the “*” means match zero or more of
the preceding expression. This expression matches anything on the comment line up to
the newline which marks the end of the line.

Finally, here is a regular expression for matching quoted strings: 

    \"[^"\n]*["\n]

It might seem adequate to use a simpler expression such as:

    \".*\"

Unfortunately, this causes lex to match incorrectly if there are two strings on the same
input line. For instance:

    "how" to "do"

would match as a single pattern since “*” matches as much as possible. Knowing this,
we then might try:

    \"[^"]*\"

This regular expression can cause lex to overflow its internal input buffer if the trailing
quotation mark is not present, because the expression “[^"]*” matches any character
except a quote, including “\n”. So if the user leaves out a quote by mistake, the pattern
could potentially scan through the entire input file looking for another quote. Since the
token is stored in a fixed size buffer,2 sooner or later the amount read will be bigger than
the buffer and the lexer will crash. For example:

    "How", she said, "is it that I cannot find it.

would match the second quoted string continuing until it saw another quotation mark.
This might be hundreds or thousands of characters later. So we add the new rule that a
quoted string must not extend past one line and end up with the complex (but safer)
regular expression shown above. Lex can handle longer strings, but in a different way.
See the section on yymore in Chapter 6, A Reference for Lex Specifications.

A Word Counting Program

Let’s look at the actual structure of a lex specification. We will use a basic word count
program (similar to the UNIX program wc).
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A lex specification consists of three sections: a definition section, a rules section, and a
user subroutines section. The first section, the definition section, handles options lex
will be using in the lexer, and generally sets up the execution environment in which the
lexer operates.

The definition section for our word count example is:

    %{
    unsigned charCount = 0, wordCount = 0, lineCount = 0;
    %}

    word [^ \t\n]+
    eol \n

The section bracketed by “%{” and “%}” is C code which is copied verbatim into the
lexer. It is placed early on in the output code so that the data definitions contained here
can be referenced by code within the rules section. In our example, the code block here
declares three variables used within the program to track the number of characters,
words, and lines encountered.

The last two lines are definitions. Lex provides a simple substitution mechanism to make
it easier to define long or complex patterns. We have added two definitions here. The
first provides our description of a word: any non-empty combination of characters ex‐
cept space, tab, and newline. The second describes our end-of-line character, newline.
We use these definitions in the second section of the file, the rules section.

The rules section contains the patterns and actions that specify the lexer. Here is our
sample word count’s rules section:

   %%
   {word}      { wordCount++; charCount += yyleng; }
   {eol} { charCount++; lineCount++; }
   .     charCount++;

The beginning of the rules section is marked by a “%%”. In a pattern, lex replaces the
name inside the braces {} with substitution, the actual regular expression in the definition
section. Our example increments the number of words and characters after the lexer
has recognized a complete word.

The actions which consist of more than one statement are enclosed in braces to make a
C language compound statement. Most versions of lex take everything after the pattern
to be the action, while others only read the first statement on the line and silently ignore
anything else. To be safe, and to make the code clearer, always use braces if the action
is more than one statement or more than one line long.

It is worth repeating that lex always tries to match the longest possible string. Thus, our
sample lexer would recognize the string “well-being” as a single word.
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Our sample also uses the lex internal variable yyleng which contains the length of the
string our lexer recognized. If it matched well-being, yyleng would be 10.

When our lexer recognizes a newline, it will increment both the character count and
the line count. Similarly, if it recognizes any other character it increments the character
count. For this lexer, the only “other characters” it could recognize would be space or
tab; anything else would match the first regular expression and be counted as a word.

The lexer always tries to match the longest possible string, but when there are two
possible rules that match the same length, the lexer uses the earlier rule in the lex spec‐
ification. Thus, the word “I” would be matched by the {word} rule, not by the . rule.
Understanding and using this principle will make your lexers clearer and more bug free.

The third and final section of the lex specification is the user subroutines section. Once
again, it is separated from the previous section by “%%”. The user subroutines section
can contain any valid C code. It is copied verbatim into the generated lexer. Typically
this section contains support routines. For this example our “support” code is the main
routine:

    %%
    main()
    {
          yylex();
          printf("%d %d %d\n",lineCount, wordCount, charCount);
    }

It first calls the lexer’s entry point yylex() and then calls printf() to print the results of
this run. Note that our sample doesn’t do anything fancy; it doesn’t accept command-
line arguments, doesn’t open any files, but uses the lex default to read from the standard
input. We will stick with this for most of our sample programs as we assume you know
how to build C programs which do such things. However, it is worthwhile to look at one
way to reconnect lex’s input stream, as shown in Example 2-2.

Example 2-2. User subroutines for word count program ch2-02.l
main(argc,argv)
int argc;
char **argv;
{
      if (argc > 1) {
            FILE *file;

            file = fopen(argv[1], "r");
            if (!file) {
                 fprintf(stderr,"could not open %s\n",argv[1]);
                 exit(1);
           }
           yyin = file;
     }
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3. Traditionally, the first name is that of the program, but if it differs in your environment you might have to
adjust our example to get the right results.

     yylex();
     printf("%u %u %u\n",charCount, wordCount, lineCount);
     return 0;
}

This example assumes that the second argument the program is called with is the file
to open for processing.3 A lex lexer reads its input from the standard I/O file yyin, so
you need only change yyin as needed. The default value of yyin is stdin, since the default
input source is standard input.

We stored this example in ch2-02.l, since it’s the second example in Chapter 2, and lex
source files traditionally end with .l. We ran it on itself, and obtained the following
results:

    % ch2-02 ch2-02.l
    467 72 30

One big difference between our word count example and the standard UNIX word count
program is that ours handles only a single file. We’ll fix this by using lex’s end-of-file
processing handler.

When yylex() reaches the end of its input file, it calls yywrap(), which returns a value
of 0 or 1. If the value is 1, the program is done and there is no more input. If the value
is 0, on the other hand, the lexer assumes that yywrap() has opened another file for it
to read, and continues to read from yyin. The default yywrap() always returns 1. By
providing our own version of yywrap(), we can have our program read all of the files
named on the command line, one at a time.

Handling multiple files requires considerable code changes. Example 2-3 shows our final
word counter in its entirety.

Example 2-3. Multi-file word count program ch2-03.l
%{
/*
 * ch2-03.l
 *
 * The word counter example for multiple files
 *
 */

unsigned long charCount = 0, wordCount = 0, lineCount = 0;

#undef yywrap     /* sometimes a macro by default */
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%}

word [^ \t\n]+
eol \n
%%
{word}      { wordCount++; charCount += yyleng; }
{eol} { charCount++; lineCount++; }
.     charCount++;
%%

char **fileList;
unsigned currentFile = 0;
unsigned nFiles;
unsigned long totalCC = 0;
unsigned long totalWC = 0;
unsigned long totalLC = 0;

main(argc,argv)
int argc;
char **argv;
{
        FILE *file;

        fileList = argv+1;
        nFiles = argc−1;

        if (argc == 2) {
            /*
             * we handle the single file case differently from
             * the multiple file case since we don't need to
             * print a summary line
             */
            currentFile = 1;
            file = fopen(argv[1], "r");
            if (!file) {
                  fprintf(stderr,"could not open %s\n",argv[1])
                  exit(1);
            }
            yyin = file;
            }
            if (argc > 2)
                yywrap();  /* open first file */

          yylex();
            /*
             * once again, we handle zero or one file
           * differently from multiple files.
             */
            if (argc > 2) {
                printf("%8lu %8lu %8lu %s\n", lineCount, wordCount,
                      charCount, fileList[currentFile−1]);
                totalCC += charCount;
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                totalWC += wordCount;
                totalLC += lineCount;
                printf("%8lu %8lu %8lu total\n",totalLC, totalWC, totalCC);
           } else
                printf("%8lu %8lu %8lu\n",lineCount, wordCount, charCount);

           return 0;
}

/*
 * the lexer calls yywrap to handle EOF conditions (e.g., to
 * connect to a new file, as we do in this case.)
 */

yywrap()
{
      FILE *file = NULL;

      if ((currentFile != 0) && (nFiles > 1) && (currentFile < nFiles)) {
            /*
             * we print out the statistics for the previous file.
             */
            printf("%8lu %8lu %8lu %s\n", lineCount, wordCount,
                  charCount, fileList[currentFile-1]);
            totalCC += charCount;
            totalWC += wordCount;
            totalLC += lineCount;
            charCount = wordCount = lineCount = 0;
            fclose (yyin);    /* done with that file */
      }

      while (fileList[currentFile] != (char *)0) {
            file = fopen(fileList[currentFile++], "r");
            if (file != NULL) {
                  yyin = file;
                  break;
            }
            fprintf(stderr,
                  "could not open %s\n",
                  fileList[currentFile−1]);
      }
      return (file ? 0 : 1);  /* 0 means there's more input */
}

Our example uses yywrap() to perform the continuation processing. There are other
possible ways, but this is the simplest and most portable. Each time the lexer calls
yywrap() we try to open the next filename from the command line and assign the open
file to yyin, returning 0 if there was another file and 1 if not.
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Our example reports both the sizes for the individual files as well as a cumulative total
for the entire set of files at the end; if there is only one file the numbers for the specified
file are reported once.

We ran our final word counter on both the lex file, ch2-03.l, then on both the lex file and
the generated C file ch2-03.c.

    % ch2-03.pgm ch2-03.l
         107     337    2220
    % ch2-03.pgm ch2-03.l ch2-03.c
         107     337    2220 ch2-03.l
         405    1382    9356 ch2-03.c
         512    1719   11576 total

The results will vary from system to system, since different versions of lex produce
different C code. We didn’t devote much time to beautifying the output; that is left as
an exercise for the reader.

Parsing a Command Line

Now we turn our attention to another example using lex to parse command input. Nor‐
mally a lex program reads from a file, using the predefined macro input(), which gets
the next character from the input, and unput(), which puts a character back in the logical
input stream. Lexers sometimes need to use unput() to peek ahead in the input stream.
For example, a lexer can’t tell that it’s found the end of a word until it sees the punctuation
after the end of the word, but since the punctuation isn’t part of the word, it has to put
the punctuation back in the input stream for the next token.

In order to scan the command line rather than a file, we must rewrite input() and
unput(). The implementation we use here only works in AT&T lex, because other ver‐
sions for efficiency reasons don’t let you redefine the two routines. (Flex, for example,
reads directly from the input buffer and never uses input().) If you are using another
version of lex, see the section "Input from Strings" in Chapter 6 to see how to accomplish
the same thing.

We will take the command-line arguments our program is called with, and recognize
three distinct classes of argument: help, verbose, and a filename. Example 2-4 creates
a lexer that reads the standard input, much as we did for our earlier word count example.

Example 2-4. Lex specification to parse command-line input ch2-04.l
%{
unsigned verbose;
char *progName;
%}

%%
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4. Since the string doesn’t fit on one line we’ve used the ANSI C technique of splitting the string into two strings
catenated at compile time. If you have a pre-ANSI C compiler you’ll have to paste the two strings together
yourself.

-h    |
"-?"  |
-help { printf("usage is: %s [-help | -h | -? ] [-verbose | -v] "
       "[(-file| -f) filename]\n", progName);
      }
-v    |
-verbose { printf("verbose mode is on\n"); verbose = 1; }

%%

main(argc, argv)
int argc;
char **argv;
{
      progName = *argv;
      yylex();
}

The definition section includes a code literal block. The two variables, verbose and
progName, are variables used later within the rules section.

In our rules section the first rules recognize the keyword -help as well as abbreviated
versions -h and -?. Note the action following this rule which simply prints a usage string.
4 Our second set of rules recognize the keyword -verbose and the short variant -v. In this
case we set the global variable verbose, which we defined above, to the value 1.

In our user subroutines section the main() routine stores the program name, which is
used in our help command’s usage string, and then calls yylex().

This example does not parse the command-line arguments, as the lexer is still reading
from the standard input, not from the command line. Example 2-5 adds code to replace
the standard input() and unput() routines with our own. (This example is specific to
AT&T lex. See Appendix E for the equivalent in flex.)

Example 2-5. Lex specification to parse a command line ch2-05.l
%{
#undef input
#undef unput
int input(void);
void unput(int ch);
unsigned verbose;
char *progName;
%}
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%%

-h    |
"-?"  |
-help { printf("usage is: %s [-help | -h | -? ] [-verbose | -v]"
       " [(-file| -f) filename]\n", progName);
      }
-v    |
-verbose { printf("verbose mode is on\n"); verbose = 1; }

%%
char **targv;     /* remembers arguments */
char **arglim;    /* end of arguments */

main(int argc, char **argv)
{
      progName = *argv;
      targv = argv+1;
      arglim = argv+argc;
      yylex();
}

static unsigned offset = 0;

int
input(void)
{
      char c;

      if (targv >= arglim)
            return(0);  /* EOF */
      /* end of argument, move to the next */
      if  ((c = targv[0][offset++])   !=  '\0')
             return(c);
      targv++;
      offset = 0;
      return(' ');
}

/* simple unput only backs up, doesn't allow you to */
/* put back different text */
void
unput(int ch)
{

      /* AT&T lex sometimes puts back the EOF ! */
      if(ch == 0)
            return;    /* ignore, can't put back EOF */
      if (offset) {    /* back up in current arg */
            offset−−;
            return;
      }
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      targv−−;    /* back to previous arg */
      offset = strlen(*targv);
}

In the definition section we #undef both input and unput since AT&T lex by default
defines them as macros, and we redefine them as C functions.

Our rules section didn’t change in this example. Instead, most of the changes are in the
user subroutines section. In this new section we’ve added three variables—targv, which
tracks the current argument, arglim, which marks the end of the arguments, and off‐
set, which tracks the position in the current argument. These are set in main() to point
at the argument vector passed from the command line.

The input() routine handles calls from the lexer to obtain characters. When the current
argument is exhausted it moves to the next argument, if there is one, and continues
scanning. If there are no more arguments, we treat it as the lexer’s end-of-file condition
and return a zero byte.

The unput() routine handles calls from the lexer to “push back” characters into the input
stream. It does this by reversing the pointer’s direction, moving backwards in the string.
In this case we assume that the characters pushed back are the same as the ones that
were there in the first place, which will always be true unless action code explicitly pushes
back something else. In the general case, an action routine can push back anything it
wants and a private version of unput() must be able to handle that.

Our resulting example still echoes input it doesn’t recognize and prints out the two
messages for the inputs it does understand. For instance, here is a sample run:

    % ch2-05 -verbose foo
    verbose mode is on
     foo %

Our input now comes from the command line and unrecognized input is echoed. Any
text which is not recognized by the lexer “falls through” to the default rule, which echoes
the unrecognized text to the output.

Start States

Finally, we add a -file switch and recognize a filename. To do this we use a start state, a
method of capturing context sensitive information within the lexer. Tagging rules with
start states tells the lexer only to recognize the rules when the start state is in effect. In
this case, to recognize a filename after a -file argument, we use a start state to note that
it’s time to look for the filename, as shown in Example 2-6.
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Example 2-6. Lex command scanner with filenames ch2-06.l
%{
#undef input
#undef unput
unsigned verbose;
unsigned fname;
char *progName;
%}

%s FNAME

%%
[ ]+          /* ignore blanks */ ;

-h    |
"-?"  |
-help { printf("usage is: %s [-help | -h | -? ] [-verbose | -v]"
       " (-file | -f) filename\n", progName);
      }
-v    |
-verbose { printf("verbose mode is on\n"); verbose = 1; }
-f    |
-file { BEGIN FNAME; fname = 1; }

<FNAME>[^ ]+ { printf("use file %s\n", yytext); BEGIN 0; fname = 2;}

[^ ] +  ECHO;
%%
char **targv;     /* remembers arguments */
char **arglim;    /* end of arguments */

main(int argc, char **argv)
{
      progName = *argv;
      targv = argv+1;
      arglim = argv+argc;
      yylex();
      if(fname < 2)
            printf("No filename given\n");
}

... same input() and unput() as Example 2-5 ...

In the definition section we have added the line “%s FNAME” which creates a new start
state in the lexer. In the rules section we have added rules which begin with “<FNAME>”.
These rules are only recognized when the lexer is in state FNAME. Any rule which does
not have an explicit state will match no matter what the current start state is. The -file
argument switches to FNAME state, which enables the pattern that matches the file‐
name. Once it’s matched the filename, it switches back to the regular state.
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Code within the actions of the rules section change the current state. You enter a new
state with a BEGIN statement. For instance, to change to the FNAME state we used the
statement “BEGIN FNAME;”. To change back to the default state, we use “BEGIN 0”.
(The default, state zero, is also known as INITIAL.)

In addition to changing the lex state we also added a separate variable, fname, so that
our example program can recognize if the argument is missing; note that the main
routine prints an error message if fname’s value hasn’t been changed to 2.

Other changes to this example simply handle the filename argument. Our version of
input() returns a blank space after each command-line argument. The rules ignore
whitespace, yet without that blank space, the arguments -f ile and -file would appear
identical to the lexer.

We mentioned that a rule without an explicit start state will match regardless of what
start state is active (Example 2-7).

Example 2-7. Start state example ch2-07.l
%s MAGIC

%%
<MAGIC>.+   { BEGIN 0; printf("Magic:"); ECHO; }
magic       BEGIN MAGIC;
%%

main()
{
      yylex();
}

We switch into state MAGIC when we see the keyword “magic.” Otherwise we simply
echo the input. If we are in state MAGIC, we prepend the string “Magic:” to the next
token echoed. We created an input file with three words in it: “magic,” “two,” and “three,”
and ran it through this lexer.

     % ch2-07 < magic.input

     Magic:two
     Three

Now, we change the example slightly, so that the rule with the start state follows the one
without, as shown in Example 2-8.

Example 2-8. Broken start state example ch2-08.l
%{
     /* This example deliberately doesn't work! */
%}
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%s MAGIC

%%
magic       BEGIN MAGIC;
.+          ECHO;
<MAGIC>.+   { BEGIN 0; printf ("Magic:"); ECHO; }
%%

main()
{
     yylex();
}

With the same input we get very different results:

     % ch2-08 < magic.input

     two
     three

Think of rules without a start state as implicitly having a “wild card” start state—they
match all start states. This is a frequent source of bugs. Flex and other more recent
versions of lex have “exclusive start states” which fix the wild card problem. See "Start
States" in Chapter 6 for details.

A C Source Code Analyzer

Our final example examines a C source file and counts the number of different types of
lines we see that contain code, that just contain comments, or are blank. This is a little
tricky to do since a single line can contain both comments and code, so we have to decide
how to count such lines.

First, we describe a line of whitespace. We will consider any line with nothing more than
a newline as whitespace. Similarly, a line with any number of blank spaces or tabs, but
nothing else, is whitespace. The regular expression describing this is:

    ^[ \t]*\n

The “^” operator denotes that the pattern must start at the beginning of a line. Similarly,
we require that the entire line be only whitespace by requiring a newline, “\n”, at the end.

Now, we can complement this with the description of what a line of code or comments
is—any line which isn’t entirely whitespace!

    ^[ \t]*\n
    \n    /* whitespace lines matched by previous rule */
    .     /* anything else */
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We use the new rule “\n” to count the number of lines we see which aren’t all whitespace.
The second new rule we use to discard characters in which we aren’t interested. Here is
the rule we add to describe a comment:

    ^[ \t]*"/*".*"*/"[ \t]*\n

This describes a single, self contained comment on a single line, with optional text
between the “/*” and the “*/”. Since “*” and “/” are both special pattern characters, we
have to quote them when they occur literally. Actually this pattern isn’t quite right, since
something like this:

    /* comment */ /* comment

won’t match it. Comments might span multiple lines and the “.” operator excludes the
“\n” character. Indeed, if we were to allow the “\n” character we would probably overflow
the internal lex buffer on a long comment. Instead, we circumvent the problem by adding
a start state, COMMENT, and by entering that state when we see only the beginning of
a comment. When we see the end of a comment we return to the default start state. We
don’t need to use our start state for one-line comments. Here is our rule for recognizing
the beginning of a comment:

    ^[ \t]*"/*"

Our action has a BEGIN statement in it to switch to the COMMENT state. It is important
to note that we are requiring that a comment begin on a line by itself. Not doing so would
incorrectly count cases such as:

    int counter; /* this is
          a strange comment */

because the first line isn’t on a line alone. We need to count the first line as a line of code
and the second line as a line of comment. Here are our rules to accomplish this:

    .+"/*".*"*/".*\n
    .*"/*".*"*/".+\n

The two expressions describe an overlapping set of strings, but they are not identical.
The following expression matches the first rule, but not the second:

    int counter; /* comment */

because the second requires there be text following the comment. Similarly, this next
expression matches the second but not the first:

    /* comment */ int counter;
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They both would match the expression:

    /* comment # 1 */ int counter; /* comment # 2 */

Finally, we need to finish up our regular expressions for detecting comments. We decided
to use a start state, so while we are in the COMMENT state, we merely look for newlines:

    <COMMENT>\n

and count them. When we detect the “end of comment” character, we either count it as
a comment line, if there is nothing else on the line after the comment ends, or we continue
processing:

    <COMMENT>"*/"[ \t]*\n
    <COMMENT>"*/"

The first one will be counted as a comment line; the second will continue processing.
As we put these rules together, there is a bit of gluing to do because we need to cover
some cases in both the default start state and in the COMMENT start state. Example
2-9 shows our final list of regular expressions, along with their associated actions.

Example 2-9. C source analyzer ch2-09.l
%{
int comments, code, whiteSpace;
%}

%x COMMENT
%%
^[ \t]*"/*" { BEGIN COMMENT; /* enter comment eating state */ }
^[ \t]*"/*".*"*/"[ \t]*\n {
             comments++;     /* self-contained comment */
             }

<COMMENT>"*/"[ \t]*\n  { BEGIN 0; comments++;}
<COMMENT>"*/"          { BEGIN 0; }
<COMMENT>\n { comments++; }
<COMMENT>.\n    { comments++; }

^[ \t]*\n   { whiteSpace++; }

.+"/*".*"*/".*\n  { code++; }

.*"/*".*"*/".+\n  { code++ }

.+"/*".*\n        { code++; BEGIN COMMENT; }

.\n               { code++; }

.                 ; /* ignore everything else */
%%
main()
{
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     yylex();
     printf("code: %d, comments %d, whitespace %d\n",
           code, comments, whiteSpace);
}

We added the rules “<COMMENT>\n” and “<COMMENT>.\n” to handle the case of
a blank line in a comment, as well as any text within a comment. Forcing them to match
an end-of-line character means they won’t match something like

    /* this is the beginning of a comment
       and this is the end */ int counter;

as two lines of comments. Instead, this will count as one line of comment and one line
of code.

Summary

In this chapter we covered the fundamentals of using lex. Even by itself, lex is often
sufficient for writing simpler applications such as the word count and lines-of-code
count utilities we developed in this chapter.

Lex uses a number of special characters to describe regular expressions. When a regular
expression matches an input string, it executes the corresponding action, which is a
piece of C code you specify. Lex matches these expressions first by determining the
longest matching expression, and then, if two matches are the same length, by matching
the expression which appears first in the lex specification. By judiciously using start
states, you can further refine when specific rules are active, just as we did for the line-
of-code count utility.

We also discussed special purpose routines used by the lex-generated state machines,
such as yywrap(), which handles end-of-file conditions and lets you handle multiple
files in sequence. We used this to allow our word count example to examine multiple
files.

This chapter focused upon using lex alone as a processing language. Later chapters will
concentrate on how lex can be integrated with yacc to build other types of tools. But lex,
by itself, is capable of handling many otherwise tedious tasks without needing a full-
scale yacc parser.

Exercises

1. Make the word count program smarter about what a word is, distinguishing real
words which are strings of letters (perhaps with a hyphen or apostrophe) from
blocks of punctuation. You shouldn’t need to add more than ten lines to the program.
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2. Improve the C code analyzer: count braces, keywords, etc. Try to identify function
definitions and declarations, which are names followed by “(” outside of any braces.

3. Is lex really as fast as we say? Race it against egrep, awk, sed, or other pattern matching
programs you have. Write a lex specification that looks for lines containing some
string and prints the lines out. (For a fair comparison, be sure to print the whole
line.) Compare the time it takes to scan a set of files to that taken by the other
programs. If you have more than one version of lex, do they run at noticably different
speeds?
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1. Programs can be syntactically valid but semantically invalid, e.g., a C program that assigns a string to an int
variable. Yacc only handles the syntax; other validation is up to you.

CHAPTER 3

Using Yacc

The previous chapter concentrated on lex alone. In this chapter we turn our attention
to yacc, although we use lex to generate our lexical analyzers. Where lex recognizes
regular expressions, yacc recognizes entire grammars. Lex divides the input stream into
pieces (tokens) and then yacc takes these pieces and groups them together logically.

In this chapter we create a desk calculator, starting with simple arithmetic, then adding
built-in functions, user variables, and finally user-defined functions.

Grammars

Yacc takes a grammar that you specify and writes a parser that recognizes valid “sen‐
tences” in that grammar. We use the term “sentence” here in a fairly general way—for a
C language grammar the sentences are syntactically valid C programs.1

As we saw in Chapter 1, a grammar is a series of rules that the parser uses to recognize
syntactically valid input. For example, here is a version of the grammar we’ll use later
in this chapter to build a calculator.

            statement � NAME = expression

        expression � NUMBER + NUMBER | NUMBER − NUMBER
         

The vertical bar, “|”, means there are two possibilities for the same symbol, i.e., an
expression can be either an addition or a subtraction. The symbol to the left of the → is
known as the left-hand side of the rule, often abbreviated LHS, and the symbols to the
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right are the right-hand side, usually abbreviated RHS. Several rules may have the same
left-hand side; the vertical bar is just a short hand for this. Symbols that actually appear
in the input and are returned by the lexer are terminal symbols or tokens, while those
that appear on the left-hand side of some rule are non-terminal symbols or non-
terminals. Terminal and non-terminal symbols must be different; it is an error to write
a rule with a token on the left side.

The usual way to represent a parsed sentence is as a tree. For example, if we parsed the
input “fred = 12 + 13” with this grammar, the tree would look like Figure 3-1. “12 + 13”
is an expression, and “fred = expression" is a statement. A yacc parser doesn’t actually
create this tree as a data structure, although it is not hard to do so yourself.

Figure 3-1. A parse tree

Every grammar includes a start symbol, the one that has to be at the root of the parse
tree. In this grammar, statement is the start symbol.

Recursive Rules

Rules can refer directly or indirectly to themselves; this important ability makes it pos‐
sible to parse arbitrarily long input sequences. Let’s extend our grammar to handle longer
arithmetic expressions:
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               expression � NUMBER
                 | expression + NUMBER
                 | expression − NUMBER
            

Now we can parse a sequence like “fred = 14 + 23 − 11 + 7” by applying the expression
rules repeatedly, as in Figure 3-2. Yacc can parse recursive rules very efficiently, so we
will see recursive rules in nearly every grammar we use.

Shift/Reduce Parsing

A yacc parser works by looking for rules that might match the tokens seen so far. When
yacc processes a parser, it creates a set of states each of which reflects a possible position
in one or more partially parsed rules. As the parser reads tokens, each time it reads a
token that doesn’t complete a rule it pushes the token on an internal stack and switches
to a new state reflecting the token it just read. This action is called a shift. When it has
found all the symbols that constitute the right-hand side of a rule, it pops the right-hand
side symbols off the stack, pushes the left-hand side symbol onto the stack, and switches
to a new state reflecting the new symbol on the stack. This action is called a reduction,
since it usually reduces the number of items on the stack. (Not always, since it is possible
to have rules with empty right-hand sides.) Whenever yacc reduces a rule, it executes
user code associated with the rule. This is how you actually do something with the
material that the parser parses.

Let’s look how it parses the input “fred = 12 + 13” using the simple rules in Figure 3-1.
The parser starts by shifting tokens on to the internal stack one at a time:

    fred
    fred =
    fred = 12
    fred = 12 +
    fred = 12 + 13
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Figure 3-2. A parse using recursive rules

At this point it can reduce the rule “expression → NUMBER + NUMBER” so it pops the
12, the plus, and the 13 from the stack and replaces them with expression:

    fred = expression
         

Now it reduces the rule “statement → NAME = expression”, so it pops fred, =, and
expression and replaces them with statement. We’ve reached the end of the input and the
stack has been reduced to the start symbol, so the input was valid according to the
grammar.
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2. Actually, yacc can deal with a limited but useful set of ambiguous grammars, as we’ll see later.

What Yacc Cannot Parse

Although yacc’s parsing technique is general, you can write grammars which yacc cannot
handle. It cannot deal with ambiguous grammars, ones in which the same input can
match more than one parse tree.2 It also cannot deal with grammars that need more
than one token of lookahead to tell whether it has matched a rule. Consider this ex‐
tremely contrived example:

               phrase � cart_animal AND CART
                    | work_animal AND PLOW

            cart_animal � HORSE | GOAT

            work_animal � HORSE | OX
            

This grammar isn’t ambiguous, since there is only one possible parse tree for any valid
input, but yacc can’t handle it because it requires two symbols of lookahead. In particular,
in the input “HORSE AND CART” it cannot tell whether HORSE is a cart_animal or
a work_animal until it sees CART, and yacc cannot look that far ahead.

If we changed the first rule to this:

               phrase � cart_animal CART
                    | work_animal PLOW
            

yacc would have no trouble, since it can look one token ahead to see whether an input
of HORSE is followed by CART, in which case the horse is a cart_animal or by PLOW
in which case it is a work_animal.

In practice, these rules are not as complex and confusing as they may seem here. One
reason is that yacc knows exactly what grammars it can parse and what it cannot. If you
give it one that it cannot handle it will tell you, so there is no problem of overcomplex
parsers silently failing. Another reason is that the grammars that yacc can handle cor‐
respond pretty well to ones that people really write. As often as not, a grammatical
construct that confuses yacc will confuse people as well, so if you have some latitude in
your language design you should consider changing the language to make it both more
understandable to yacc and to its users.
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For more information on shift/reduce parsing, see Chapter 8. For a discussion of what
yacc has to do to turn your specification into a working C program, see the classic
compiler text by Aho, Sethi, and Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986, often known as the “dragon book” because of the cover illustra‐
tion.

A Yacc Parser

A yacc grammar has the same three-part structure as a lex specification. (Lex copied its
structure from yacc.) The first section, the definition section, handles control informa‐
tion for the yacc-generated parser (from here on we will call it the parser), and generally
sets up the execution environment in which the parser will operate. The second section
contains the rules for the parser, and the third section is C code copied verbatim into
the generated C program.

We’ll first write parser for the simplest grammar, the one in Figure 3-1, then extend it
to be more useful and realistic.

The Definition Section

The definition section includes declarations of the tokens used in the grammar, the types
of values used on the parser stack, and other odds and ends. It can also include a literal
block, C code enclosed in %{ %} lines. We start our first parser by declaring two symbolic
tokens.

    %token NAME NUMBER

You can use single quoted characters as tokens without declaring them, so we don’t need
to declare “=”, “+”, or “−”.

The Rules Section

The rules section simply consists of a list of grammar rules in much the same format as
we used above. Since ASCII keyboards don’t have a → key, we use a colon between the
left- and right-hand sides of a rule, and we put a semicolon at the end of each rule:

    %token NAME NUMBER
    %%
    statement: NAME '=' expression
          |    expression
          ;
    expression: NUMBER '+' NUMBER
          |     NUMBER '−' NUMBER
          ;
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Unlike lex, yacc pays no attention to line boundaries in the rules section, and you will
find that a lot of whitespace makes grammars easier to read. We’ve added one new rule
to the parser: a statement can be a plain expression as well as an assignment. If the user
enters a plain expression, we’ll print out its result.

The symbol on the left-hand side of the first rule in the grammar is normally the start
symbol, though you can use a %start declaration in the definition section to override
that.

Symbol Values and Actions

Every symbol in a yacc parser has a value. The value gives additional information about
a particular instance of a symbol. If a symbol represents a number, the value would be
the particular number. If it represents a literal text string, the value would probably be
a pointer to a copy of the string. If it represents a variable in a program, the value would
be a pointer to a symbol table entry describing the variable. Some tokens don’t have a
useful value, e.g., a token representing a close parenthesis, since one close parenthesis
is the same as another.

Non-terminal symbols can have any values you want, created by code in the parser.
Often the action code builds a parse tree corresponding to the input, so that later code
can process a whole statement or even a whole program at a time.

In the current parser, the value of a NUMBER or an expression is the numerical value of
the number or expression, and the value of a NAME will be a symbol table pointer.

In real parsers, the values of different symbols use different data types, e.g., int and double
for numeric symbols, char * for strings, and pointers to structures for higher level sym‐
bols. If you have multiple value types, you have to list all the value types used in a parser
so that yacc can create a C union typedef called YYSTYPE to contain them. (Fortunately,
yacc gives you a lot of help ensuring that you use the right value type for each symbol.)

In the first version of the calculator, the only values of interest are the numerical values
of input numbers and calculated expressions. By default yacc makes all values of type
int, which is adequate for our first version of the calculator.

Whenever the parser reduces a rule, it executes user C code associated with the rule,
known as the rule’s action. The action appears in braces after the end of the rule, before
the semicolon or vertical bar. The action code can refer to the values of the right-hand
side symbols as $1, $2, ..., and can set the value of the left-hand side by setting $$. In
our parser, the value of an expression symbol is the value of the expression it represents.
We add some code to evaluate and print expressions, bringing our grammar up to that
used in Figure 3-2.

    %token NAME NUMBER
    %%
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    statement:   NAME '='  expression
          |      expression         { printf("= %d\n", $1); }
          ;

    expression:  expression '+' NUMBER { $$ = $1 + $3; }
          |      expression '−' NUMBER { $$ = $1 − $3; }
          |      NUMBER                { $$ = $1; }
          ;

The rules that build an expression compute the appropriate values, and the rule that
recognizes an expression as a statement prints out the result. In the expression building
rules, the first and second numbers’ values are $1 and $3, respectively. The operator’s
value would be $2, although in this grammar the operators do not have interesting
values. The action on the last rule is not strictly necessary, since the default action that
yacc performs after every reduction, before running any explicit action code, assigns
the value $1 to $$.

The Lexer

To try out our parser, we need a lexer to feed it tokens. As we mentioned in Chapter 1,
the parser is the higher level routine, and calls the lexer yylex() whenever it needs a
token from the input. As soon as the lexer finds a token of interest to the parser, it returns
to the parser, returning the token code as the value. Yacc defines the token names in the
parser as C preprocessor names in y.tab.h (or some similar name on MS-DOS systems)
so the lexer can use them.

Here is a simple lexer to provide tokens for our parser:

    %{
    #include "y.tab.h"
    extern int yylval;
    %}

    %%
    [0-9]+      { yylval = atoi(yytext);  return NUMBER; }
    [ \t] ;           /* ignore whitespace */
    \n    return 0;   /* logical EOF */
    .     return yytext[0];
    %%

Strings of digits are numbers, whitespace is ignored, and a newline returns an end of
input token (number zero) to tell the parser that there is no more to read. The last rule
in the lexer is a very common catch-all, which says to return any character otherwise
not handled as a single character token to the parser. Character tokens are usually
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punctuation such as parentheses, semicolons, and single-character operators. If the
parser receives a token that it doesn’t know about, it generates a syntax error, so this rule
lets you handle all of the single-character tokens easily while letting yacc’s error checking
catch and complain about invalid input.

Whenever the lexer returns a token to the parser, if the token has an associated value,
the lexer must store the value in yylval before returning. In this first example, we ex‐
plicitly declare yylval. In more complex parsers, yacc defines yylval as a union and puts
the definition in y.tab.h.

We haven’t defined NAME tokens yet, just NUMBER tokens, but that is OK for the
moment.

Compiling and Running a Simple Parser

On a UNIX system, yacc takes your grammar and creates y.tab.c, the C language parser,
and y.tab.h, the include file with the token number definitions. Lex creates lex.yy.c, the
C language lexer. You need only compile them together with the yacc and lex libraries.
The libraries contain usable default versions of all of the supporting routines, including
a main() that calls the parser yyparse() and exits.

    % yacc -d ch3-01.y   # makes y.tab.c and "y.tab.h
    % lex ch3-01.l       # makes lex.yy.c
    % cc -o ch3-01 y.tab.c lex.yy.c -ly -ll     # compile and link C files
    % ch3-01
    99 + 12
    = 111
    % ch3-01
    2 + 3−14+33
    = 24
    % ch3-01
    100 + −50
    syntax error
            

Our first version seems to work. In the third test, it correctly reports a syntax error when
we enter something that doesn’t conform to the grammar.

Arithmetic Expressions and Ambiguity

Let’s make the arithmetic expressions more general and realistic, extending the expres‐
sion rules to handle multiplication and division, unary negation, and parenthesized
expressions:

    expression: expression '+' expression { $$ = $1 + $3; }
          |     expression '−' expression { $$ = $1 − $3; }
          |     expression '*' expression { $$ = $1 * $3; }
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          |     expression '/' expression
                      {     if($3 == 0)
                                  yyerror("divide by zero");
                            else
                                  $$ = $1 / $3;
                      }
          |     '−' expression          { $$ = −$2; }
          |     '(' expression ')'      { $$ = $2; }
          |     NUMBER                  { $$ = $1; }
          ;

The action for division checks for division by zero, since in many implementations of
C a zero divide will crash the program. It calls yyerror(), the standard yacc error routine,
to report the error.

But this grammar has a problem: it is extremely ambiguous. For example, the input
2+3*4 might mean (2+3)*4 or 2+(3*4), and the input 3−4−5−6 might mean 3−(4−(5−6))
or (3−4)−(5−6) or any of a lot of other possibilities. Figure 3-3 shows the two possible
parses for 2+3*4.

If you compile this grammar as it stands, yacc will tell you that there are 16 shift/reduce
conflicts, states where it cannot tell whether it should shift the token on the stack or
reduce a rule first.

For example, when parsing “2+3*4”, the parser goes through these steps (we abbreviate
expression as E here):

     2                                       shift NUMBER
     E                                       reduce E � NUMBER
     E +                                     shift +
     E + 3                                   shift NUMBER
     E + E                                   reduce E � NUMBER
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Figure 3-3. Ambiguous input 2+3*4

At this point, the parser looks at the “*”, and could either reduce “2+3” using:

    expression:                            expression '+' expression

to an expression, or shift the “*” expecting to be able to reduce:

    expression:                            expression '*'  expression

later on.

The problem is that we haven’t told yacc about the precedence and associativity of the
operators. Precedence controls which operators to execute first in an expression. Math‐
ematical and programming tradition (dating back past the first Fortran compiler in
1956) says that multiplication and division take precedence over addition and subtrac‐
tion, so a+b*c means a+(b*c) and d/e−f means (d/e)−f. In any expression grammar,
operators are grouped into levels of precedence from lowest to highest. The total number
of levels depends on the language. The C language is notorious for having too many
precedence levels, a total of fifteen levels.

Associativity controls the grouping of operators at the same precedence level. Operators
may group to the left, e.g., a−b−c in C means (a−b)−c, or to the right, e.g., a=b=c in C
means a=(b=c). In some cases operators do not group at all, e.g., in Fortran A.LE.B.LE.C
is invalid.
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There are two ways to specify precedence and associativity in a grammar, implicitly and
explicitly. To specify them implicitly, rewrite the grammar using separate non-terminal
symbols for each precedence level. Assuming the usual precedence and left associativity
for everything, we could rewrite our expression rules this way:

    expression: expression '+' mulexp
          |     expression '−' mulexp
          |     mulexp
          ;

    mulexp:           mulexp '*' primary
          |     mulexp '/' primary
          |     primary
          ;

    primary:    '(' expression ')'
          |     '-' primary
          |     NUMBER
          ;

This is a perfectly reasonable way to write a grammar, and if yacc didn’t have explicit
precedence rules, it would be the only way.

But yacc also lets you specify precedences explicitly. We can add these lines to the def‐
inition section, resulting in the grammar in Example 3-1.

    %left '+' '-'
    %left '*' '/'
    %nonassoc UMINUS

Each of these declarations defines a level of precedence. They tell yacc that “+” and “−”
are left associative and at the lowest precedence level, “*” and “/” are left associative and
at a higher precedence level, and UMINUS, a pseudo-token standing for unary minus,
has no associativity and is at the highest precedence. (We don’t have any right associative
operators here, but if we did they’d use %right.) Yacc assigns each rule the precedence
of the rightmost token on the right-hand side; if the rule contains no tokens with prece‐
dence assigned, the rule has no precedence of its own. When yacc encounters a shift/
reduce conflict due to an ambiguous grammar, it consults the table of precedences, and
if all of the rules involved in the conflict include a token which appears in a precedence
declaration, it uses precedence to resolve the conflict.

In our grammar, all of the conflicts occur in the rules of the form expression OPERATOR
expression, so setting precedences for the four operators allows it to resolve all of the
conflicts. This parser using precedences is slightly smaller and faster than the one with
the extra rules for implicit precedence, since it has fewer rules to reduce.
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Example 3-1. The calculator grammar with expressions and precedence ch3-02.y
%token NAME NUMBER
%left '-' '+'
%left '*' '/'
%nonassoc UMINUS

%%

statement:  NAME '=' expression
      |     expression       { printf("= %d\n", $1); }
      ;

expression: expression '+' expression { $$ = $1 + $3; }
      |     expression '−' expression { $$ = $1 − $3; }
      |     expression '*' expression { $$ = $1 * $3; }
      |     expression '/' expression
                        {    if($3 == 0)
                                   yyerror("divide by zero");
                             else
                                   $$ = $1 / $3;
                        }

      |     '−' expression %prec UMINUS { $$ = −$2; }
      |     '(' expression ')'     { $$ = $2; }
      |     NUMBER                 { $$ = $1; }
      ;
%%

The rule for negation includes “%prec UMINUS”. The only operator this rule includes
is “−”, which has low precedence, but we want unary minus to have higher precedence
than multiplication rather than lower. The %prec tells yacc to use the precedence of
UMINUS for this rule.

When Not to Use Precedence Rules

You can use precedence rules to fix any shift/reduce conflict that occurs in the grammar.
This is usually a terrible idea. In expression grammars the cause of the conflicts is easy
to understand, and the effect of the precedence rules is clear. In other situations prece‐
dence rules fix shift/reduce problems, but it is usually difficult to understand just what
effect they have on the grammar.

We recommend that you use precedence in only two situations: in expression grammars,
and to resolve the “dangling else” conflict in grammars for if-then-else language con‐
structs. (See Chapter 7 for examples of the latter.) Otherwise, if you can, you should fix
the grammar to remove the conflict. Remember that conflicts mean that yacc can’t
properly parse a grammar, probably because it’s ambiguous, which means there are
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multiple possible parses for the same input. Except in the two cases above, this usually
points to a mistake in your language design. If a grammar is ambiguous to yacc, it’s
almost certainly ambiguous to humans, too. See Chapter 8 for more information on
finding and repairing conflicts.

Variables and Typed Tokens

Next we extend our calculator to handle variables with single letter names. Since there
are only 26 single letters (lowercase only for the moment) we can simply store the vari‐
ables in a 26 entry array, which we call vbltable. To make the calculator more useful, we
also extend it to handle multiple expressions, one per line, and to use floating point
values, as shown in Examples 3-2 and 3-3.

Example 3-2. Calculator grammar with variables and real values ch3-03.y
%{
double vbltable[26];
%{

%union {
      double dval;
      int vblno;
}

%token <vblno> NAME
%token <dval> NUMBER
%left '-' '+'
%left '*' '/'
%nonassoc UMINUS

%type <dval> expression
%%
statement_list:  statement '\n'
      |    statement_list statement '\n'
      ;

statement: NAME '=' expression   { vbltable[$1] = $3; }
      |    expression       { printf("= %g\n", $1); }
      ;

expression: expression '+' expression { $$ = $1 + $3; }
      |     expression '−' expression { $$ = $1 − $3; }
      |     expression '*' expression { $$ = $1 * $3; }
      |     expression '/' expression
                        {    if($3 == 0.0)
                                    yyerror("divide by zero");
                             else
                                    $$ = $1 / $3;
                         }
      |     '−' expression %prec UMINUS { $$ = −$2; }
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      |     '(' expression ')'     { $$ = $2; }
      |     NUMBER
      |     NAME              { $$ = vbltable[$1]; }
      ;
%%

Example 3-3. Lexer for calculator with variables and real values ch3-03.l

%{
#include "y.tab.h"
#include <math.h>
extern double vbltable[26];
%}

%%
([0-9]+|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?) {
      yylval.dval = atof(yytext); return NUMBER;
      }

[ \t] ;            /* ignore whitespace */

[a-z] { yylval.vblno = yytext[0] - 'a'; return NAME; }

"$"   { return 0; /* end of input */ }

\n    |
.     return yytext[0];
%%

Symbol Values and %union

We now have multiple types of symbol values. Expressions have double values, while the
value for variable references and NAME symbols are integers from 0 to 25 corresponding
to the slot in vbltable. Why not have the lexer return the value of the variable as a
double, to make the parser simpler? The problem is that there are two contexts where a
variable name can occur: as part of an expression, in which case we want the double
value, and to the left of an equal sign, in which case we need to remember which variable
it is so we can update vbltable.

To define the possible symbol types, in the definition section we add a %union decla‐
ration:

    %union {
          double dval;
          int vblno;
    }
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The contents of the declaration are copied verbatim to the output file as the contents of
a C union declaration defining the type YYSTYPE as a C typedef. The generated header
file y.tab.h includes a copy of the definition so that you can use it in the lexer. Here is
the y.tab.h generated from this grammar:

    #define NAME 257
    #define NUMBER 258
    #define UMINUS 259
    typedef union {
          double dval;
          int vblno;
    } YYSTYPE;
    extern YYSTYPE yylval;

The generated file also declares the variable yylval, and defines the token numbers for
the symbolic tokens in the grammar.

Now we have to tell the parser which symbols use which type of value. We do that by
putting the appropriate field name from the union in angle brackets in the lines in the
definition section that defines the symbol:

    %token <vblno> NAME
    %token <dval> NUMBER

    %type <dval> expression

The new declaration %type sets the type for non-terminals which otherwise need no
declaration. You can also put bracketed types in %left, %right, or %nonassoc. In action
code, yacc automatically qualifies symbol value references with the appropriate field
name, e.g., if the third symbol is a NUMBER, a reference to $3 acts like $3.dval.

The new, expanded parser was shown in Example 3-2. We’ve added a new start symbol
statement_list so that the parser can accept a list of statements, each ended by a newline,
rather than just one statement. We’ve also added an action for the rule that sets a variable,
and a new rule at the end that turns a NAME into an expression by fetching the value
of the variable.

We have to modify the lexer a little (Example 3-3). The literal block in the lexer no longer
declares yylval, since its declaration is now in y.tab.h. The lexer doesn’t have any auto‐
matic way to associate types with tokens, so you have to put in explicit field references
when you set yylval. We’ve used the real number pattern from Chapter 2 to match
floating point numbers. The action code uses atof() to read the number, then assigns
the value to yylval.dval, since the parser expects the number’s value in the dval field.
For variables, we return the index of the variable in the variable table in yylval.vblno.
Finally, we’ve made “\n” a regular token, so we use a dollar sign to indicate the end of
the input.
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A little experimentation shows that our modified calculator works:

    % ch3-03
    2/3
    = 0.666667
    a = 2/7
    a
    = 0.285714
    z = a+1
    z
    = 1.28571
    a/z
    = 0.222222
    $
            

Symbol Tables

Few users will be satisfied with single character variable names, so now we add the ability
to use longer variable names. This means we need a symbol table, a structure that keeps
track of the names in use. Each time the lexer reads a name from the input, it looks the
name up in the symbol table, and gets a pointer to the corresponding symbol table entry.
Elsewhere in the program, we use symbol table pointers rather than name strings, since
pointers are much easier and faster to use than looking up a name each time we need
it.

Since the symbol table requires a data structure shared between the lexer and parser, we
created a header file ch3hdr.h (see Example 3-4). This symbol table is an array of struc‐
tures each containing the name of the variable and its value. We also declare a routine
symlook() which takes a name as a text string and returns a pointer to the appropriate
symbol table entry, adding it if it is not already there.

Example 3-4. Header for parser with symbol table ch3hdr.h
#define NSYMS 20  /* maximum number of symbols */

struct symtab {
      char *name;
      double value;
} symtab[NSYMS];

struct symtab *symlook();

The parser changes only slightly to use the symbol table, as shown in Example 3-5. The
value for a NAME token is now a pointer into the symbol table rather than an index as
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before. We change the %union and call the pointer field symp. The %token declaration
for NAME changes appropriately, and the actions that assign to and read variables now
use the token value as a pointer so they can read or write the value field of the symbol
table entry.

The new routine symlook() is defined in the user subroutines section of the yacc spec‐
ification, as shown in Example 3-6. (There is no compelling reason for this; it could as
easily have been in the lex file or in a file by itself.) It searches through the symbol table
sequentially to find the entry corresponding to the name passed as its argument. If an
entry has a name string and it matches the one that symlook() is searching for, it returns
a pointer to the entry, since the name has already been put into the table. If the name
field is empty, we’ve looked at all of the table entries that are in use, and haven’t found
this symbol, so we enter the name into the heretofore empty table entry.

We use strdup() to make a permanent copy of the name string. When the lexer calls
symlook(), it passes the name in the token buffer yytext. Since each subsequent token
overwrites yytext, we need to make a copy ourselves here. (This is a common source of
errors in lex scanners; if you need to use the contents of yytext after the scanner goes
on to the next token, always make a copy.) Finally, if the current table entry is in use but
doesn’t match, symlook() goes on to search the next entry.

This symbol table routine is perfectly adequate for this simple example, but more realistic
symbol table code is somewhat more complex. Sequential search is too slow for symbol
tables of appreciable size, so use hashing or some other faster search function. Real
symbol tables tend to carry considerably more information per entry, e.g., the type of a
variable, whether it is a simple variable, an array or structure, and how many dimensions
if it is an array.

Example 3-5. Rules for parser with symbol table ch3-04.y
%{
#include "ch3hdr.h"
#include <string.h>
%}

%union {
      double dval;
      struct symtab *symp;
}
%token <symp> NAME
%token <dval> NUMBER
%left '-' '+'
%left '*' '/'
%nonassoc UMINUS

%type <dval> expression
%%
statement_list:  statement '\n'
      |    statement_list statement '\n'
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      ;

statement: NAME '=' expression   { $1->value = $3; }
      |    expression        { printf("= %g\n", $1); }
      ;

expression: expression '+' expression { $$ = $1 + $3; }
      |     expression '−' expression { $$ = $1 − $3; }
      |     expression '*' expression { $$ = $1 * $3; }
      |     expression '/' expression
                        {    if($3 == 0.0)
                                   yyerror("divide by zero"
                             else
                                   $$ = $1 / $3;
                        }
      |     '−' expression %prec UMINUS  { $$ = −$2; }
      |     '(' expression ')'      { $$ = $2; }
      |     NUMBER
      |     NAME              { $$ = $1->value; }
      ;
%%

Example 3-6. Symbol table routine ch3-04.pgm
/* look up a symbol table entry, add if not present */
struct symtab *
symlook(s)
char *s;
{
      char *p;
      struct symtab *sp;
      for(sp = symtab;  sp < &symtab[NSYMS]; sp++) {
            /* is it already here? */
            if(sp->name && !strcmp(sp->name, s))
                  return sp;

            /* is it free */
            if(!sp->name) {
                   sp->name = strdup(s);
                   return sp;
            }
            /* otherwise continue to next */
      }
      yyerror("Too many symbols");
      exit(1);    /* cannot continue */
} /* symlook */
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3. Actually, there is a limit due to the maximum token size that lex can handle, but you can make that rather
large. See "yytext" in Chapter 6, A Reference for Lex Specifications.

The lexer also changes only slightly to accommodate the symbol table (Example 3-7).
Rather than declaring the symbol table directly, it now also includes ch3hdr.h. The rule
that recognizes variable names now matches “[A-Za-z][A-Za-z0-9]*”, any string of let‐
ters and digits starting with a letter. Its action calls symlook() to get a pointer to the
symbol table entry, and stores that in yylval.symp, the token’s value.

Example 3-7. Lexer with symbol table ch3-04.l
%{
#include "y.tab.h"
#include "ch3hdr.h"
#include <math.h>
%}

%%
([0-9]+|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?) {
            yylval.dval = atof(yytext);
            return NUMBER;
      }
[ \t] ;            /* ignore whitespace */

[A-Za-z][A-Za-z0-9]*    {     /* return symbol pointer */
            yylval.symp = symlook(yytext);
            return NAME;
      }

"$"   { return 0; }
\n    |
.     return yytext[0];
%%

There is one minor way in which our symbol table routine is better than those in most
programming languages: since we allocate string space dynamically, there is no fixed
limit on the length of variable names:3

    % ch3-04
    foo = 12
    foo /5
    = 2.4
    thisisanextremelylongvariablenamewhichnobodywouldwanttotype = 42
    3 * thisisanextremelylongvariablenamewhichnobodywouldwanttotype
    = 126
    $
    %
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Functions and Reserved Words

The next addition we make to the calculator adds mathematical functions for square
root, exponential, and logarithm. We want to handle input like this:

            s2 = sqrt(2)
    s2
    = 1.41421
    s2*s2
    = 2

The brute force approach makes the function names separate tokens, and adds separate
rules for each function:

    %token SQRT LOG EXP
     . . .
    %%
    expression: . . .
          |     SQRT '(' expression ')'{ $$ = sqrt($3); }
          |     LOG '(' expression ')' { $$ = log($3); }
          |     EXP '(' expression ')' { $$ = exp($3); }

In the scanner, we have to return a SQRT token for “sqrt” input and so forth:

    sqrt   return SQRT;
    log    return LOG;
    exp    return EXP;

    [A-Za-z][A-Za-z0-9]*   {    . . .

(The specific patterns come first so they match before than the general symbol pattern.)

This works, but it has problems. One is that you must hard-code every function into the
parser and the lexer, which is tedious and makes it hard to add more functions. Another
is that function names are reserved words, i.e., you cannot use sqrt as a variable name.
This may or may not be a problem, depending on your intentions.

Reserved Words in the Symbol Table

First we’ll take the specific patterns for function names out of the lexer and put them in
the symbol table. We add a new field to each symbol table entry: funcptr, a pointer to
the C function to call if this entry is a function name.

    struct symtab {
          char *name;
          double (*funcptr)();
          double value;
    } symtab[NSYMS];
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We have to put the function names in the symbol table before the parser starts, so we
wrote our own main() which calls the new routine addfunc() to add each of the function
names to the symbol table, then calls yyparse(). The code for addfunc() merely gets the
symbol table entry for a name and sets the funcptr field.

    main()
    {
          extern double sqrt(), exp(), log();

          addfunc("sqrt", sqrt);
          addfunc("exp", exp);
          addfunc("log", log);
          yyparse();
    }

    addfunc(name, func)
    char *name;
    double (*func)();
    {
          struct symtab *sp = symlook(name);
          sp->funcptr = func;
    }

We define a token FUNC to represent function names. The lexer will return FUNC
when it sees a function name and NAME when it sees a variable name. The value for
either is the symbol table pointer.

In the parser, we replace the separate rules for each function with one general function
rule:

    %token <symp> NAME FUNC
    %%
    expression: ...
          |     FUNC  '(' expression ')'{ $$ = ($1->funcptr) ($3); }

When the parser sees a function reference, it can consult the symbol table entry for the
function to find the actual internal function reference.

In the lexer, we take out the patterns that matched the function names explicitly, and
change the action code for names to return FUNC if the symbol table entry says that a
name is a function name:

    [A-Za-z][A-Za-z0-9]*   {
                struct symtab *sp = symlook(yytext);

                yylval.symp = sp;
                if (sp->funcptr)  /* is it a function? */

68 | Chapter 3: Using Yacc



                       return FUNC;
                else
                       return NAME;
          }

These changes produce a program that works the same as the one above, but the function
names are in the symbol table. The program can, for example, enter new function names
as the parse progresses.

Interchangeable Function and Variable Names

A final change is technically minor, but changes the language significantly. There is no
reason why function and variable names have to be disjoint! The parser can tell a func‐
tion call from a variable reference by the syntax.

So we put the lexer back the way it was, always returning a NAME for any kind of name.
Then we change the parser to accept a NAME in the function position:

    %token <symp> NAME
    %%
    expression: ...
          |     NAME '(' expression ')' { ... }

The entire program is in Examples 3-8 through 3-11. As you can see in Example 3-9,
we had to add some error checking to make sure that when the user calls a function, it’s
a real function.

Now the calculator operates as before, except that the names of functions and variables
can overlap.

    % ch3-05
    sqrt(3)
    = 1.73205
    foo(3)
    foo not a function
    = 0
    sqrt = 5
    sqrt(sqrt)
    = 2.23607

Whether you want to allow users to use the same name for two things in the same
program is debatable. On the one hand it can make programs harder to understand, but
on the other hand users are otherwise forced to invent names that do not conflict with
the reserved names.

Either can be taken to extremes. COBOL has over 300 reserved words, so nobody can
remember them all, and programmers resort to strange conventions like starting every
variable name with a digit to be sure they don’t conflict. On the other hand, PL/I has no
reserved words at all, so you can write:
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    IF IF = THEN THEN ELSE = THEN; ELSE ELSE = IF;

Example 3-8. Final calculator header ch3hdr2.h
#define NSYMS 20   /* maximum number of symbols */

struct symtab {
      char *name;
      double (*funcptr)();
      double value;
} symtab [NSYMS];

struct symtab *symlook();

Example 3-9. Rules for final calculator parser ch3-05.y
%{
#include "ch3hdr2.h"
#include <string.h>
#include <math.h>
%}

%union {
      double dval;
      struct symtab *symp;
}
%token <symp> NAME
%token <dval> NUMBER
%left '-' '+'
%left '*' '/'
%nonassoc UMINUS

%type <dval> expression
%%
statement_list:  statement '\n'
      |     statement_list statement '\n'
      ;

statement:  NAME '=' expression    { $1->value = $3; }
      |     expression        { printf("= %g\n", $1); }
      ;

expression: expression '+' expression { $$ = $1 + $3; }
      |     expression '−' expression { $$ = $1 − $3; }
      |     expression '*' expression { $$ = $1 * $3; }
      |     expression '/' expression
                        {   if($3 == 0.0)
                                  yyerror("divide by zero");
                            else
                                  $$ = $1 / $3;
                        }
      |     '−' expression %prec UMINUS { $$ = −$2; }
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      |     '(' expression ')'      { $$ = $2; }
      |     NUMBER
      |     NAME              { $$ = $1->value; }
      |     NAME '(' expression ')' {
                  if($1->funcptr)
                        $$ = ($1->funcptr)($3);
                  else {
                       printf("%s not a function\n", $1->name);
                       $$ = 0.0;
                  }
            }
      ;
%%

Example 3-10. User subroutines for final calculator parser ch3-05.y
/* look up a symbol table entry, add if not present */
struct symtab *
symlook(s)
char *s;
{
      char *p;
      struct symtab *sp;

      for(sp = symtab; sp < &symtab[NSYMS]; sp++) {
            /* is it already here? */
            if(sp->name &&  !strcmp(sp->name, s))
                  return sp;

            /* is it free */
            if(!sp->name) {
                  sp->name = strdup(s);
                  return sp;
            }
            /* otherwise continue to next */
      }
      yyerror("Too many symbols");
      exit(1);    /* cannot continue */
} /* symlook */

addfunc(name, func)
char *name;
double (*func)();
{
      struct symtab *sp = symlook(name);
      sp->funcptr = func;
}

main()
{
      extern double sqrt(), exp(), log();

      addfunc("sqrt", sqrt);
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      addfunc("exp", exp);
      addfunc("log", log);
      yyparse();
}

Example 3-11. Final calculator lexer ch3-05.l
%{
#include "y.tab.h"
#include "ch3hdr2.h"
#include <math.h>
%}

%%

([0-9]+|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?) {
           yylval.dval = atof(yytext);
           return NUMBER;
      }

[ \t];            /* ignore whitespace */

[A-Za-z][A-Za-z0-9]*   {     /* return symbol pointer */
            struct symtab *sp = symlook(yytext);
            yylval.symp = sp;
            return NAME;
      }

"$"   { return 0; }

\n    |
.     return yytext[0];
%%

Building Parsers with Make

About the third time you recompile this example, you will probably decide that some
automation in the recompilation process is in order, using the UNIX make program.
The Makefile that controls the process is shown in Example 3-12.

Example 3-12. Makefile for the calculator
#LEX = flex -I
#YACC = byacc

CC = cc -DYYDEBUG=1

ch3-05: y.tab.o lex.yy.o
      $(CC) -o ch3-05 y.tab.o lex.yy.o -ly -ll -lm

lex.yy.o:   lex.yy.c y.tab.h

72 | Chapter 3: Using Yacc



lex.yy.o y.tab.o: ch3hdr2.h

y.tab.c y.tab.h: ch3-05.y
      $(YACC) -d ch3-05.y

lex.yy.c : ch3-05.l
      $(LEX) ch3lex.l

At the top are two commented assignments that substitute flex for lex and Berkeley
yacc for AT&T yacc. Flex needs the -I flag to tell it to generate an interactive scanner,
one that doesn’t try to look ahead past a newline. The CC macro sets the preprocessor
symbol YYDEBUG which compiles in some debugging code useful in testing the parser.

The rule for compiling everything together into ch3 refers to three libraries: the yacc
library -ly, the lex library -ll, and the math library -lm. The yacc library provides yyer‐
ror() and, in early versions of the calculator, main(). The lex library provides some
internal support routines that a lex scanner needs. (Scanners generated by flex don’t
need the library, but it does no harm to leave it in.) The math library provides sqrt(),
exp(), and log().

If we were to use bison, the GNU version of yacc, we’d have to change the rule that
generates y.tab.c because bison uses different default filenames:

    y.tab.c y.tab.h:  ch3yac.y
          bison -d ch3yac.y
          mv ch3yac.tab.c y.tab.c
          mv ch3yac.tab.h "y.tab.h

(Or we could change the rest of the Makefile and the code to use bison’s more memorable
names, or else use -y which tells bison to use the usual yacc filenames.)

For more details on make, see Steve Talbott’s Managing Projects with Make, published
by O’Reilly & Associates.

Summary

In this chapter, we’ve seen how to create a yacc grammar specification, put it together
with a lexer to produce a working calculator, and extended the calculator to handle
symbolic variable and function names. In the next two chapters, we’ll work out larger
and more realistic applications, a menu generator and a processor for the SQL database
language.
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Exercises

1. Add more functions to the calculator. Try adding two argument functions, e.g.,
modulus or arctangent, with a rule like this:

    expression: NAME '(' expression ',' expression ')'

You should probably put a separate field in the symbol table for the two-argument
functions, so you can call the appropriate version of atan() for one or two arguments.

2. Add a string data type, so you can assign strings to variables and use them in ex‐
pressions or function calls. Add a STRING token for quoted literal strings. Change
the value of an expression to a structure containing a tag for the type of value along
with the value. Alternatively, extend the grammar with a stringexp non-terminal
for a string expression with a string (char *) value.

3. If you added a stringexp non-terminal, what happens if the user types this?

    42 + "grapefruit"

How hard is it to modify the grammar to allow mixed type expressions?
4. What do you have to do to handle assigning string values to variables?
5. How hard is it to overload operators, e.g., using “+” to mean catenation if the ar‐

guments are strings?
6. Add commands to the calculator to save and restore the variables to and from disk

files.
7. Add user-defined functions to the calculator. The hard part is storing away the

definition of the function in a way that you can re-execute when the user calls the
function. One possibility is to save the stream of tokens that define the function.
For example:

    statement: NAME '(' NAME ')' '=' { start_save($1, $3); }
        expression
        { end_save(); define_func($1, $3); }

The functions start_save() and end_save() tell the lexer to save a list of all of the
tokens for the expression. You need to identify references within the defining ex‐
pression to the dummy argument $3.
When the user calls the function, you play the tokens back:

    expression: USERFUNC '(' expression ')' { start_replay($1, $3); }
       expression/* replays the function */
       { $$ = $6; }/* use its value */
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While playing back the function, insert the argument value $3 into the replayed
expression in place of the dummy argument.

8. If you keep adding features to the calculator, you’ll eventually end up with your own
unique programming language. Would that be a good idea? Why or why not?
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1. For more information on curses, see Programming with Curses by John Strang, published by O’Reilly & As‐
sociates.

CHAPTER 4

A Menu Generation Language

The previous chapter provided a simple example of an interpreter, a desktop calculator.
In this chapter, we turn our attention to compiler design by developing a menu generation
language (MGL) and its associated compiler. We begin with a description of the language
that we are going to create. Then we look at several iterations of developing the lex and
yacc specifications. Lastly, we create the actions associated with our grammar and which
implement the features of the MGL.

Overview of the MGL

We’ll develop a language that can be used to generate custom menu interfaces. It will
take as input a description file and produce a C program that can be compiled to create
this output on a user’s terminal, using the standard curses library to draw the menus on
the screen.1

In many cases when an application requires a lot of tedious and repetitive code, it is
faster and easier to design a special purpose language and write a little compiler that
translates your language into C or something else your computer can already handle.
Curses programming is tedious, because you have to position all of the data on the screen
yourself. MGL automates most of the layout, greatly easing the job.

The menu description consists of the following:

1. A name for the menu screen
2. A title or titles
3. A list of menu items, each consisting of:
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item
[ command ]
action
[ attribute ]

where item is the text string that appears on the menu, command is the mnemonic
used to provide command-line access to the functions of the menu system, action
is the procedure that should be performed when a menu item is chosen, and at‐
tribute indicates how this item should be handled. The bracketed items are optional.

4. A terminator

Since a useful application usually has several menus, a description file can contain sev‐
eral different named menus.

A sample menu description file is:

    screen myMenu
    title "My First Menu"
    title "by Tony Mason"

    item "List Things to Do"
    command "to-do"
    action execute list-things-todo
    attribute command

    item "Quit"
    command "quit"
    action quit

    end myMenu

The MGL compiler reads this description and produces C code, which must itself be
compiled. When the resulting program is executed, it creates the following menu:

        My First Menu
        by Tony Mason

    1) List Things to Do
    2) Quit

When the user presses the “1” key or enters the command “to-do”, the procedure “list-
things-todo” is executed.

A more general description of this format is:

            screen <name>
    title <string>
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    item <string>
    [ command <string> ]
    action {execute | menu | quit | ignore} [<name>]
    [attribute {visible | invisible}]

    end <name>
         

As we develop this language, we will start with a subset of this functionality and add
features to it until we implement the full specification. This approach shows you how
easy it is to modify the lex-generated lexer and the yacc-generated parser as we change
the language.

Developing the MGL

Let’s look at the design process that led to the grammar above. Menus provide a simple,
clean interface for inexperienced users. For these users, the rigidity and ease of use
provided by a menu system is ideal.

A major disadvantage of menus is that they keep experienced users from moving directly
into the desired application. For these people, a command-driven interface is more
desirable. However, all but the most experienced users occasionally want to fall back
into the menu to access some seldom used function.

Our MGL should be designed with both of these design goals in mind. Initially, suppose
we start with the keyword command, which indicates a menu choice or command that
a user can issue to access some function.

This hardly constitutes a usable language. Nevertheless, we can sketch out a lexical
specification for it:

    ws   [ \t]+
    nl   \n
    %%
    {ws} ;
    command   { return COMMAND; }
    {nl} { lineno++; }
    .    { return yytext[0];}

and its corresponding yacc grammar:

    %{
    #include <stdio.h>
    %}
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    %token COMMAND
    %%
    start:     COMMAND
          ;

Our lexer merely looks for our keyword and returns the appropriate token when it
recognizes one. If the parser sees the token COMMAND, then the start rule will be
matched, and yyparse() will return successfully.

Each item on a menu should have an action associated with it. We can introduce the
keyword action. One action might be to ignore the item (for unimplemented or un‐
available commands), and another might be to execute a program; we can add the key‐
words ignore and execute.

Thus, a sample item using our modified vocabulary might be:

    command action execute

We must tell it what to execute, so we add our first noncommand argument, a string.
Because program names can contain punctuation, we will presume that a program name
is a quoted string. Now our sample item becomes:

    choice action execute "/bin/sh"

Example 4-1 demonstrates that we can modify our lex specification to support the new
keywords, as well as the new token type.

Example 4-1. First version of MGL lexer
ws        [ \t]+
qstring   \"[^\"\n]*[\"\n]
nl        \n
%%
{ws}      ;
{qstring} { yylval.string = strdup(yytext+1); /* skip open quote */
            if(yylval.string[yyleng-2] != '"')
              warning("Unterminated character string",(char *)0);
          else
              yylval.string[yyleng-2] = '\0'; /* remove close quote */
            return QSTRING;
          }
action      { return ACTION; }
execute     { return EXECUTE; }

command     { return COMMAND;  }
ignore      { return IGNORE; }
{nl}        { lineno++; }
.            { return yytext[0]; }
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Our complex definition of a qstring is necessary to prevent lex from matching a line
like:

    "apples" and "oranges"

as a single token. The "[^\"\n]*” part of the pattern says to match against every character
that is not a quotation mark or a newline. We do not want to match beyond a newline
because a missing closing quotation mark could cause the lexical analyzer to plow
through the rest of the file, which is certainly not what the user wants, and may overflow
internal lex buffers and make the program fail. With this method, we can report the
error condition to the user in a more polite manner. When we copy the string, we remove
the opening and closing quotes, because it’s easier to handle the string without quotes
in the rest of the code.

We also need to modify our yacc grammar (Example 4-2).

Example 4-2. First version of MGL parser
%{
#include <stdio.h>
%}

%union {
        char *string;       /* string buffer */
}

%token COMMAND ACTION IGNORE EXECUTE
%token <string> QSTRING
%%
start:    COMMAND action
      ;

action:   ACTION IGNORE
        | ACTION EXECUTE QSTRING
        ;
%%

We defined a %union including the “string” type and the new token QSTRING, which
represents a quoted string.

We need to group information for a single command and choice combination together
as a menu item. We introduce each new item as an item, using the keyword item. If there
is an associated command, we indicate that using the keyword command. We add the
new keyword to the lexer:

     . . .
    %%
     . . .
    item            { return ITEM; }
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Although we have changed the fundamental structure of the language, there is little
change in the lexical analyzer. The change shows up in the yacc grammar, as shown in
Example 4-3.

Example 4-3. Grammar with items and actions
%{
#include <stdio.h>
%}

%union {
        char *string;        /* string pointer */
}

%token COMMAND ACTION IGNORE EXECUTE ITEM
%token <string> QSTRING
%%
item:   ITEM command action
      ;

command:    /* empty */
          | COMMAND
          ;

action:     ACTION IGNORE
          | ACTION EXECUTE QSTRING
          ;
%%

Since each menu item need not have a corresponding command, one of the com‐
mand rules has an empty right-hand side. Surprisingly, yacc has no trouble with such
rules, so long as the rest of the grammar makes it possible to tell unambiguously that
the optional elements are not there.

We still have not given any meaning to the keyword command. Indeed, it is often a good
idea to try writing the yacc grammar alone, because it can indicate “holes” in the lan‐
guage design. Fortunately, this is quickly remedied. We will restrict commands to strings
of alphanumeric characters. We add an ID for “identifier” token to our lexical analyzer:

     . . .
    id        [a-zA-Z][a-zA-Z0-9]*
    %%
     . . .
    {id}      { yylval.string = strdup(yytext);
                return ID;
              }

The value of an ID is a pointer to the name of the identifier. In general, it is a poor idea
to pass back a pointer to yytext as the value of a symbol, because as soon as the lexer
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reads the next token it may overwrite yytext. (Failure to copy yytext is a common lexer
bug, often producing strange symptoms as strings and identifiers mysteriously seem to
change their names.) We copy the token using strdup() and pass back a pointer to the
copy. The rules that use an ID must be careful to free the copy when they are done with
it.

In Example 4-4 we add the ID token to our yacc grammar.

Example 4-4. Grammar with command identifiers
%{
#include <stdio.h>
%}

%union {
       char *string;         /* string buffer */
}

%token COMMAND ACTION IGNORE EXECUTE ITEM
%token <string> QSTRING ID
%%
item:    ITEM command action
         ;

command:  /* empty */
        | COMMAND ID
        ;

action:   ACTION IGNORE
        | ACTION EXECUTE QSTRING
        ;
%%

The grammar does not provide for more than a single line in a menu. We add some rules
for items that support multiple items:

     . . .
    %%
    items:  /* empty */
          | items item
          ;

    item:   ITEM command action
           ;
     . . .

Unlike all our previous rules, these rely upon recursion. Because yacc prefers left-
recursive grammars, we wrote “items item” rather than the right-recursive version “item
items.” (See the section "Recursive Rules" in Chapter 7 for why left-recursion is better.)
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One of the rules for items has an empty right-hand side. For any recursive rule, there
must be a terminating condition, a rule that matches the same non-terminal non-
recursively. If a rule is purely recursive with no non-recursive alternative, most versions
of yacc will halt with a fatal error since it is impossible to construct a valid parser under
those circumstances. We will use left-recursion many times in many grammars.

In addition to being able to specify items within the menu, you may want to have a title
at the top of the menu. Here is a grammar rule that describes a title:

    title:       TITLE       QSTRING
            ;

The keyword title introduces a title. We require that the title be a quoted string. We add
the new token TITLE to our lex specification:

     . . .
    %%
    title        { return TITLE;  }
     . . .

We might want more than a single title line. Our addition to the grammar is:

    titles:   /* empty */
            | titles title
            ;

    title:       TITLE       QSTRING
            ;

A recursive definition allows multiple title lines.

The addition of title lines does imply that we must add a new, higher-level rule to consist
of either items or titles. Titles will come before items, so Example 4-5 adds a new rule,
start, to our grammar.

Example 4-5. Grammar with titles
%{
#include <stdio.h>
%}

%union {
        char *string;       /* string buffer */
}

%token COMMAND ACTION IGNORE EXECUTE ITEM TITLE
%token <string> QSTRING ID
%%
start: titles items
       ;
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titles:  /* empty */
       | titles title
       ;

title:       TITLE       QSTRING
       ;

items:  /* empty */
      | items item
      ;

item:    ITEM command action
       ;

command:  /* empty */
        | COMMAND ID
        ;

action:  ACTION IGNORE
       | ACTION EXECUTE QSTRING
       ;
%%

After we’d used the MGL a little bit, we found that one menu screen wasn’t enough. We
wanted multiple screens and the ability to refer to one screen from another to allow
multi-level menus.

We defined a new rule screen, to contains a complete menu with both titles and items.
To add the handling of multiple screens, we can, once again, use a recursive rule to build
a new screens rule. We wanted to allow for empty screens, so we added a total of five
new sets of rules:

    screens:  /* empty */
            | screens screen
            ;

    screen:  screen_name screen_contents screen_terminator
           | screen_name screen_terminator
           ;

    screen_name:  SCREEN ID
                | SCREEN
                ;

    screen_terminator:  END ID
                      | END
                      ;

    screen_contents: titles lines
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We provide each screen with a unique name. When we wish to reference a particular
menu screen, say, “first,” we can use a line such as:

    item "first" command first action menu first

When we name screens, we must also indicate when a screen ends, so we need a
screen_terminator rule. Thus, a sample screen specification might be something like
this:

    screen main
    title "Main screen"
    item "fruits" command fruits action menu fruits
    item "grains" command grains action menu grains
    item "quit" command quit action quit
    end main

    screen fruits
    title "Fruits"
    item "grape" command grape action execute "/fruit/grape"
    item "melon" command melon action execute "/fruit/melon"
    item "main" command main action menu main
    end fruits

    screen grains
    title "Grains"
    item "wheat" command wheat action execute "/grain/wheat"
    item "barley" command barley action execute "/grain/barley"
    item "main" command main action menu main
    end grains

Our rule does provide for the case when no name is given; hence, the two cases for
screen_name and screen_terminator. When we actually write actions for the specific
rules, we will check that the names are consistent, to detect inconsistent editing of a
menu description buffer, for instance.

After some thought, we decided to add one more feature to our menu generation lan‐
guage. For each item, we wish to indicate if it is visible or invisible. Since of this is an
attribute of the individual item, we precede the choice of visible or invisible with the
new keyword attribute. Here is the portion of our new grammar that describes an at‐
tribute:

    attribute: /* empty */
             | ATTRIBUTE VISIBLE
             | ATTRIBUTE INVISIBLE
             ;
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We allow the attribute field to be empty to accept a default, probably visible. Example
4-6 is our workable grammar.

Example 4-6. Complete MGL grammar
screens:   /* empty */
         | screens screen
         ;

screen:    screen_name screen_contents screen_terminator
         | screen_name screen_terminator
         ;

screen_name:  SCREEN ID
            | SCREEN
            ;

screen_terminator:   END ID
                   | END
                   ;

screen_contents: titles lines
                 ;

titles:   /* empty */
        | titles title
        ;

title: TITLE QSTRING
          ;

lines: line
       | lines line
       ;
line:  ITEM QSTRING command ACTION action attribute
       ;

command:   /* empty */
         | COMMAND ID
         ;

action:    EXECUTE QSTRING
         | MENU ID
         | QUIT
         | IGNORE
         ;

attribute:   /* empty */
           | ATTRIBUTE VISIBLE
           | ATTRIBUTE INVISIBLE
           ;
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We have replaced the start rule of previous examples with the screens rule as the top-
level rule. If there is no %start line in the declarations section, it simply uses the first
rule.

Building the MGL

Now that we have a basic grammar, the work of building the compiler begins. First, we
must finish modifying our lexical analyzer to cope with the new keywords we introduced
in our last round of grammar changes. Our modified lex specification is shown in
Example 4-7.

Example 4-7. MGL lex specification
ws        [ \t]+
comment   #.*
qstring   \"[^\"\n]*[\"\n]
id        [a-zA-Z][a-zA-Z0-9]*
nl        \n

%%

{ws}      ;
{comment} ;
{qstring} { yylval.string = strdup(yytext+1);
            if (yylval.string[yyleng-2] != '"')
              warning("Unterminated character string",(char *)0);
          else
               yylval.string[yyleng-2] = '\0'; /* remove close quote */
            return QSTRING;
          }
screen    { return SCREEN; }
title     { return TITLE; }
item      { return ITEM; }
command   { return COMMAND; }
action    { return ACTION; }
execute   { return EXECUTE; }
menu      { return MENU; }
quit      { return QUIT; }
ignore    { return IGNORE; }
attribute { return ATTRIBUTE; }
visible   { return VISIBLE; }
invisible { return INVISIBLE; }
end       { return END; }
{id}      { yylval.string = strdup(yytext);
            return ID;
          }
{n1}      { lineno++; }
.         { return yytext[0]; }
%%
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An alternative way to handle keywords is demonstrated in Example 4-8.

Example 4-8. Alternative lex specification
 . . .
id            [a-zA-Z][a-zA-Z0-9]*
%%
 . . .
{id}      { if (yylval.cmd = keyword(yytext)) returnyylval.cmd;
                yylval.string = strdup(yytext);
                return ID;
               }
%%
/*
 * keyword: Take a text string and determine if it is, in fact,
 * a valid keyword.  If it is, return the value of the keyword;
 * if not, return zero.  N.B.: The token values must be nonzero.
 */

static struct keyword {
char *name;    /* text string */
int value;     /* token */
} keywords[] =
{
"screen",          SCREEN,
"title",           TITLE,
"item",            ITEM,
"command",         COMMAND,
"action",          ACTION,
"execute",         EXECUTE,
"menu",            MENU,
"quit",            QUIT,
"ignore"           IGNORE,
"attribute",       ATTRIBUTE,
"visible".         VISIBLE,
"invisible",       INVISIBLE,
"end".             END,
NULL, 0,
};

int keyword(string)
   char *string;
  {
   struct keyword *ptr = keywords;

   while(ptr->name != NULL)
      if(strcmp(ptr->name,string) == 0)
        {
  return ptr->value;
}
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   else
       ptr++;
   return 0; /* no match */
}

The alternate implementation in Example 4-8 uses a static table to identify keywords.
The alternative version is invariably slower, since a lex lexer’s speed is independent of
the number or complexity of the patterns. We chose to include it here simply because it
demonstrates a useful technique we could use if we wished to make the language’s vo‐
cabulary extensible. In that case, we would use a single lookup mechanism for all key‐
words, and add new keywords to the table as needed.

Logically, we can divide the work in processing an MGL specification file into several
parts:
Initialization

Initialize all internal data tables, emit any preambles needed for the generated code.

Start-of-screen processing
Set up a new screen table entry, add the name of the screen to the name list, and
emit the initial screen code.

Screen processing
As we encounter each individual item, we deal with it; when we see title lines, we
add them to the title list, and when we see new menu items, we add them to the
item list.

End-of-screen processing
When we see the end statement, we process the data structures we have built while
reading the screen description and emit code for the screen.

Termination
We “clean up” the internal state, emit any final code, and assure that this termination
is OK; if there is a problem, we report it to the user.

Initialization

A certain amount of work must be performed when any compiler begins operation. For
instance, internal data structures must be initialized; recall that Example 4-8 uses a
keyword lookup scheme rather than the hardcoded keyword recognition scheme used
earlier in Example 4-7. In a more complex application with a symbol table as part of
initialization we would insert the keywords into the symbol table as we did in Example
3-10.

Our main() routine starts out simply:
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    main()
    {
        yyparse();
    }

We must also be able to invoke our compiler by giving it a filename. Because lex reads
from yyin and writes to yyout, which are assigned to the standard input and standard
output by default, we can reattach the input and output files to obtain the appropriate
action. To change the input or output, we open the desired files using fopen() from the
standard I/O library and assign the result to yyin or yyout.

If the user invokes the program with no arguments, we write out to a default file,
screen.out, and read from the standard input, stdin. If the user invokes the program with
one argument, we still write to screen.out and use the named file as the input. If the user
invokes the program with two arguments, we use the first arguemnt as the input file and
the second argument as the output file.

After we return from yyparse(), we perform post-processing and then check to assure
we are terminating with no error condition. We then clean up and exit.

Example 4-9 shows our resulting main() routine.

Example 4-9. MGL main() routine
char *progname = "mgl";
int lineno = 1;

#define DEFAULT_OUTFILE "screen.out"

char *usage = "%s: usage [infile] [outfile]\n";

main(int argc, char **argv)
{

      char *outfile;
      char *infile;
      extern FILE *yyin, *yyout;

      progname = argv[0];

      if(argc > 3)
      {
            fprintf(stderr,usage, progname);
            exit(1);
      }
      if(argc > 1)
      {
            infile = argv[1];
            /* open for read */
            yyin = fopen(infile,"r");
            if(yyin == NULL) /* open failed */
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            {
                  fprintf(stderr,"%s: cannot open %s\n",
                        progname, infile);
                  exit(1);
             }
      }

      if(argc > 2)
      {
            outfile = argv[2];
      }
      else
      {
                  outfile = DEFAULT_OUTFILE;
      }

      yyout = fopen(outfile,"w");
      if(yyout == NULL) /* open failed */
      {
                  fprintf(stderr,"%s: cannot open %s\n",
                  progname, outfile);
            exit(1);
      }
      /* normal interaction on yyin and
         yyout from now on */

      yyparse();

      end_file(); /* write out any final information */

      /* now check EOF condition */
      if(!screen_done) /* in the middle of a screen */
      {
            warning("Premature EOF",(char *)0);
            unlink(outfile); /* remove bad file */
            exit(1);
      }
      exit(0); /* no error */
}

warning(char *s, char *t) /* print warning message */
{
      fprintf(stderr, "%s: %s", progname, s);
      if (t)
            fprintf(stderr, " %s", t);
      fprintf(stderr, " line %d\n", lineno);
}
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Screen Processing

Once we have initialized the compiler and opened the files, we turn our attention to the
real work of the menu generator—processing the menu descriptions. Our first rule,
screens, requires no actions. Our screen rule decomposes into the parts screen_name,
screen_contents, and screen_terminator. screen_name interests us first:

    screen_name:  SCREEN ID
                | SCREEN
                ;

We insert the specified name into our list of names duplicates; in case no name is speci‐
fied, we will use the name “default.” Our rule becomes:

    screen_name:  SCREEN ID  { start_screen($2); }
                | SCREEN     { start_screen(strdup("default")); }
                ;

(We need the call to strdup() to be consistent with the first rule which passes a string
dynamically allocated by the lexer.) The start_screen routine enters the name into our
list of screens and begin to generate the code.

For instance, if our input file said “screen first”, the start_screen routine would produce
the following code:

    /* screen first */
    menu_first()
    {
            extern struct item menu_first_items[];

            if(!init) menu_init();

            clear();
            refresh();

When processing our menu specification, the next object is a title line:

    title: TITLE QSTRING
             ;

We call add_title(), which computes the positioning for the title line:

    title: TITLE QSTRING { add_title($2); }
             ;

Our sample output for title lines looks like this:
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        move(0,37);
        addstr("First");
        refresh();

We add a title line by positioning the cursor and printing out the given quoted string
(with some rudimentary centering as well). This code can be repeated for each title line
we encounter; the only change is to the line number used to generate the move() call.

To demonstrate this, we make a menu description with an extra title line:

    screen first
    title "First"
    title "Copyright 1992"

    item "first" command first action ignore
          attribute visible
    item "second" command second action execute "/bin/sh"
          attribute visible
    end first

    screen second
    title "Second"
    item "second" command second action menu first
          attribute visible
    item "first" command first action quit
          attribute invisible
    end second

Our sample output for title lines is:

    move(0,37);
    addstr("First");
    refresh();
    move(1,32);
    addstr("Copyright 1992");
    refresh();

Once we see a list of item lines, we take the individual entries and build an internal table
of the associated actions. This continues until we see the statement end first when we
perform post-processing and finish building the screen. To build a table of menu items,
we add the following actions to the item rule:

    line: ITEM qstring command ACTION action attribute
             {
             item_str = $2;
             add_line($5, $6);
               $$ = ITEM;
              }
             ;
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The rules for command, action, and attribute primarily store the token values for later
use:

    command: /* empty */ { cmd_str = strdup(""); }
           | COMMAND id { cmd_str = $2; }
            ;

A command can be null or a specific command. In the first case we save a null string
for the command name (using strdup() to be consistent with the next rule), and in the
second we save the identifier given for the command in cmd_str.

The action rules and the associated actions are more complex, partially because of the
larger number of variations possible:

    action: EXECUTE qstring
             { act_str = $2;
             $$ = EXECUTE;
             }
          | MENU id
             { /* make "menu_" $2 */
             act_str = malloc(strlen($2) + 6);
             strcpy(act_str,"menu_");
               strcat(act_str, $2);
             free($2);
             $$ = MENU;
            }
           | QUIT   { $$ = QUIT; }
           | IGNORE { $$ = IGNORE; }
           ;

Finally, the attribute rule is simpler, as the only semantic value is represented by the
token:

    attribute:  /* empty */             { $$ = VISIBLE; }
              | ATTRIBUTE VISIBLE       { $$ = VISIBLE; }
              | ATTRIBUTE INVISIBLE    { $$ = INVISIBLE; }
              ;

The return values of the action rule and the attribute rule were passed to the add_line
routine; this call takes the contents of the various static string pointers, plus the two
return values, and creates an entry in the internal state table.

Upon seeing the end first statement, we must the final processing of the screen. From
our sample output, we finish the menu_first routine:

        menu_runtime(menu_first_items);
    }

The actual menu items are written into the array menu_first_items:
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    /* end first */
    struct item menu_first_items [] = {
          {"first","first",271,"",0,273},
          {"second","second",267,"/bin/sh",0,273},
          {(char *)0, (char *)0, 0, (char *)0, 0, 0},
    };

The run-time routine menu_runtime will display the individual items; this will be in‐
cluded in the generated file as part of the code at the end.

Termination

The final stage of dealing with a single screen is to see the termination of that screen.
Recall our screen rule:

    screen:   screen_name screen_contents screen_terminator
            | screen_name screen_terminator
            ;

The grammar expects to see the screen_terminator rule:

    screen_terminator:   END ID
                      |  END
                      ;

We add a call to our post-processing routine for end-of-screen post-processing (not the
end-of-file post-processing which we will discuss later in this section). The resulting
rule is:

    screen_terminator: END id { end_screen($2); }
                     | END { end_screen(strdup("default")); }
                     ;

It calls the routine end_screen with the name of the screen or “default” if no name is
provided. This routine validates the screen name. Example 4-10 shows the code that
implements it.

Example 4-10. Screen end code
/*
 * end_screen:
 * Finish screen, print out postamble.
 */

end_screen(char *name)
{

      fprintf(yyout, "menu_runtime(menu_%s_items);\n",name);
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      if(strcmp(current_screen,name) != 0)
      {
            warning("name mismatch at end of screen",
                current_screen);
      }
      fprintf(yyout, "}\n");
      fprintf(yyout, "/* end %s */\n",current_screen);

      process_items();

      /* write initialization code out to file */
      if(!done_end_init)
      {
            done_end_init = 1;
            dump_data(menu_init);
      }

      current_screen[0]  =  '\0';         /* no current screen */

      screen_done = 1;

      return 0;
}

This routine handles a screen name mismatch as a nonfatal error. Since the mismatch
does not cause problems within the compiler, it can be reported to the user without
termination.

This routine processes the data generated by our add_item() call by processing indi‐
vidual item entries with process_items(). Then it calls dump_data to write out some
initialization routines; these initialization routines are really a static array of strings that
are built into the MGL compiler. We call dump_data() in several places to dump different
code fragments to the output file. An alternative approach is to simply copy these code
fragments from a “skeleton” file containing the boiler-plate code, as some versions of
lex and yacc do.

Post-processing occurs after all input has been read and parsed. This is done by the
main() routine by calling end_file() after yyparse() has completed successfully. Our
implementation is:

    /*
     * this routine writes out the run-time support
     */

    end_file()
    {

          dump_data(menu_runtime);
    }
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This routine contains a single call to dump_data() to write the runtime routines, which
are stored in a static array in the compiler as the initialization code was. All our routines
that handle the boiler-plate code are sufficiently modular in design that these could be
rewritten to use skeleton files.

Once this routine has been called, the main routine terminates by checking to determine
if the end of input was detected at a valid point, i.e., at a screen boundary, and is not
generating an error message.

Sample MGL Code

Now that we have built a simple compiler, let’s demonstrate the basic workings of it. Our
implementation of the MGL consists of three parts: the yacc grammar, the lex specifi‐
cation, and our supporting code routines. The final version of our yacc grammar, lex
lexer, and supporting code is shown in Appendix I, MGL Compiler Code .

We do not consider the sample code to be robust enough for serious use; our attention
was given to developing a first-stage implementation. The resulting compiler will, how‐
ever, generate a fully functional menu compiler. Here is our sample input file:

    screen first
    title "First"

    item "dummy line" command dummy action ignore
          attribute visible
    item "run shell" command shell action execute "/bin/sh"
          attribute visible

    end first

    screen second

    title "Second"

    item "exit program" command exit action quit
          attribute invisible
    item "other menu" command first action menu first
          attribute visible

    end second

When that description file was processed by our compiler, we got the following output
file:

    /*
     * Generated by MGL: Thu Aug 27 18:03:33 1992
     */
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    /* initialization information */
    static int init;

    #include <curses.h>
    #include <sys/signal.h>
    #include <ctype.h>
    #include "mglyac.h"

    /* structure used to store menu items */
    struct item {
          char *desc;
          char *cmd;
          int action;
          char  *act_str;    /* execute string */
          int (*act_menu)();  /* call appropriate function */
          int attribute;
    }

    /* screen first */
    menu_first()
    {
          extern struct item menu_first_items[];
          if(!init) menu_init();

          clear();
          refresh();
          move(0,37);
          addstr("First");
          refresh();
          menu_runtime(menu_first_items);
    }
    /* end first */
    struct item menu_first_items [] = {
    {"dummy line","dummy",269,"",0,271},
    {"run shell","shell",265,"/bin/sh",0,271},
    {(char *)0, (char *)0, 0, (char *)0, 0, 0},
    };

    menu_init()
    {
          void menu_cleanup();

          signal(SIGINT, menu_cleanup);
          initscr();
          crmode();
    }

    menu_cleanup()
    {
          mvcur(0, COLS − 1, LINES − 1, 0);
          endwin();
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    }

    /* screen second */
    menu_second()
    {
          extern struct item menu_second_items[];

          if(!init) menu_init();

          clear();
          refresh();
          move(0,37);
          addstr("Second");
          refresh();
          menu_runtime(menu_second_items);
    }
    /* end second */
    struct item menu_second_items[ ] = {
    {"exit program","exit",268,"",0,272},
    {"other menu","first",267,"",menu_first,271},
    {(char *)0, (char *)0, 0, (char *)0, 0, 0},
    };

    /* runtime */
    menu_runtime(items)
    struct item *items;
    {
          int visible = 0;
          int choice = 0;
          struct item *ptr;
          char buf[BUFSIZ];

          for(ptr = items; ptr->desc != 0; ptr++) {
                addch('\n'); /* skip a line */
                if(ptr->attribute == VISIBLE) {
                      visible++;
                      printw("\t%d) %s",visible,ptr->desc);
                }
          }

          addstr("\n\n\t"); /* tab out so it looks nice */
          refresh();

          for(;;)
          {
                int i, nval;

                getstr(buf);

                /* numeric choice? */
                nval = atoi(buf);
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                /* command choice ? */
                i = 0;
                for(ptr = items; ptr->desc != 0; ptr++) {
                      if(ptr->attribute != VISIBLE)
                            continue;
                      i++;
                      if(nval == i)
                            break;
                      if(!casecmp(buf, ptr->cmd))
                            break;
                }
                if(!ptr->desc)
                      continue;  /* no match */

                switch(ptr->action)
                {
                case QUIT:
                     return 0;
                case IGNORE:
                      refresh();
                      break;
                case EXECUTE:
                      refresh();
                      system(ptr->act_str);
                      break;
                case MENU:
                      refresh();
                      (*ptr->act_menu)();
                      break;
                default:
                      printw("default case,  no action\n");
                      refresh();
                      break;
                }
                refresh();
          }
    }

    casecmp(char *p,  char *q)
    {
          int pc,  qc;

          for(;  *p   !=  0;  p++,   q++)   {
                 pc = tolower(*p);
                 qc = tolower(*q);

                 if(pc  != qc)
                        break;
          }
          return pc-qc;
    }
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In turn, we compiled this code, generated by our compiler and written to first.c, with
the following command:

    $ cat >> first.c
    main()
    {
    menu_second();
    menu_cleanup();
    }
    ^D
    $ cc -o first first.c -lcurses -ltermcap
    $

We had to add a main() routine to the generated code; in a revision of the MGL, it might
be desirable to include a command-line option or a specification option to provide the
name of a routine to call from within the main loop; this a typical possible enhancement.
Because we wrote our grammar in yacc, this modification would be easy. For example,
we might modify the screens rule to read:

    screens:   /* nothing */
             | preamble screens screen
             | screens screen
             ;
    preamble:  START ID
            |  START DEFAULT
            ;

where we add appropriate keywords for START and DEFAULT.

Running our MGL-generated screen code, we see with the following menu screen:

                              Second
    1) other menu

We see the one visible menu entry, and when we enter “1” or “first” move to the first
menu:

                              First
    1)   dummy line
    2)   run shell

Exercises

1. Add a command to identify the main screen and generate a main routine, as outlined
previously.
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2. Improve the screen handling: read characters in CBREAK mode rather than a line
at a time, allow more flexible command handling, e.g., accept unique prefixes of
commands rather than requiring the whole command, allow application code to
set and clear the invisible attribute, etc.

3. Extend the screen definition language to let titles and command names come from
variables in the host program, e.g.:

    screen sample
    title $titlevar

    item $label1 command $cmd1 action ignore
        attribute visible

    end sample

where titlevar and label1 are character arrays or pointers in the host program.
4. (Term project) Design a language to specify pulldown or pop-up menus. Implement

several translators based on the same parser so you can use the same menu speci‐
fication to create menus that run in different environments, e.g., a terminal with
curses, Motif, and Open Look.

5. Yacc is often used to implement “little languages” that are specific to an application
area and translate into lower-level, more general languages. The MGL turns a menu
specification into C, eqn turns an equation language into raw troff. What are some
other application areas that would benefit from a little language? Design and im‐
plement a few of them with lex and yacc.
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1. SQL is the Fortran of data bases—nobody likes it much, the language is ugly and ad hoc, every data base
supports it, and we all use it.

CHAPTER 5

Parsing SQL

SQL (which stands for Structured Query Language and is usually pronounced sequel)
is the most common language used to handle relational data bases.1 First we’ll develop
a SQL parser that checks the syntax of its input but doesn’t do anything else with it. Then
we’ll turn that into a preprocessor for SQL embedded in C programs.

This parser is based on the definition of SQL in C. J. Date, A Guide to the SQL Stan‐
dard, Second Edition, Addison-Wesley, 1989. Date’s description is written in Backus-
Naur Form or BNF, a standard form used to write formal language descriptions. Yacc
input syntax is similar to BNF except for the punctuation, so in many places it was
sufficient to transliterate the BNF to get the corresponding yacc rules. In most cases we
use the same symbol names Date did, although in a few places we’ve deviated from his
usage in order to make the grammar suitable for yacc.

The ultimate definitions for SQL are the standards documents, ANSI X3.135-1989
(which defines SQL itself) and ANSI X3.168-1989 (which defines the way to embed
SQL in other programming languages).

A Quick Overview of SQL

SQL is a special purpose language for relational data bases. Rather than manipulating
data in memory, it manipulates data in data base tables, referring to memory only in‐
cidentally.
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Relational Data Bases

A data base is a collection of tables, which are analogous to files. Each table contains
rows and columns, which are analogous to records and fields. The rows in a table are not
kept in any particular order. You create a set of tables by giving the name and type of
each column:

    CREATE SCHEMA
    AUTHORIZATION JOHNL

    CREATE TABLE Foods (
          name CHAR(8) NOT NULL,
          type CHAR(5),
          flavor    CHAR(6),
          PRIMARY KEY ( name )
    )

    CREATE TABLE Courses (
          course      CHAR(8) NOT NULL PRIMARY KEY,
          flavor      CHAR(6),
          sequence INTEGER
    )

The syntax is completely free-format and there are often several different syntactic ways
to write the same thing—notice the two different ways we gave the PRIMARY KEY
specifier. (The primary key in a table is a column or set of columns that uniquely specify
a row.) Figure 5-1 shows the two tables we just created after loading in data.
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Figure 5-1. Two relational tables

To use a data base, you tell the data base what you want from your tables. It’s up to the
data base to figure out how to get it. The specification of a set of desired data is a
query. For example, using the two tables in Figure 5-1, to get a list of fruits, you would
say:

    SELECT       Foods.name, Foods.flavor
    FROM  Foods
    WHERE Foods.type =  "fruit"

The response is:

name flavor

peach sweet

tomato savory

lemon sour

Parsing SQL | 107



You can also ask questions spanning more than one table. To get a list of foods suitable
to each course of the meal, you say:

    SELECT course, name, Foods.flavor, type
    FROM   Courses, Foods
    WHERE  Courses.flavor = Foods.flavor

The response is:

course name flavor type

salad tomato savory fruit

salad cheddar savory fat

main tomato savory fruit

main cheddar savory fat

dessert peach sweet fruit

When listing the column names we can leave out the table name if the column name is
unambiguous.

Manipulating Relations

SQL has a rich set of table manipulation commands. You can read and write individual
rows with SELECT, INSERT, UPDATE, and DELETE commands. More commonly, you
need to do something to each of a group of rows. In that case a different variant of
SELECT defines a cursor, a sort of file pointer that can step through a set of rows to let
you handle the rows one at a time. You then use OPEN and CLOSE commands to find
the relevant rows and FETCH, UPDATE CURRENT, and DELETE CURRENT to do
things to them. The COMMIT and ROLLBACK commands complete or abort a set of
commands as a transaction.

The SELECT statement has a very complex syntax that lets you look for values in col‐
umns, compare columns to each other, do arithmetic, and compute minimum, maxi‐
mum, average, and group totals.

Three Ways to Use SQL

In the original version of SQL, users typed commands into a file or directly at the ter‐
minal and received responses immediately. People still sometimes use it this way for
creating tables and for debugging, but for the vast majority of applications, SQL com‐
mands come from inside programs and the results are returned to those programs.

The first approach to combining SQL with conventional languages was the SQL module
language, which let you define little routines in SQL that you could call from conven‐
tional languages. Example 5-1 defines a cursor and three procedures that use it.
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Example 5-1. Example of SQL module language
    MODULE LANGUAGE C AUTHORIZATION JOHNL

    DECLARE flav CURSOR FOR
          SELECT      Foods.name, Foods.type
          FROM  Foods
          WHERE Foods.flavor = myflavor
          -- myflavor is defined below

    PROCEDURE open_flav
          SQLCODE
          myflavor CHAR(6) ;
          OPEN flav

    PROCEDURE close_flav
          SQLCODE ;
          CLOSE flav

    PROCEDURE get_flav
          SQLCODE
          myname CHAR(8)
          mytype CHAR(5) ;
          FETCH flav INTO myname, mytype

Within a C program one could use the routines in the module by writing:

    char flavor[6],  name[8],  type[5];

    main()
    {
          int icode;

          scanf("%s", flavor);
          open_flav(&icode, flavor);
          for(;;) {
                get_flav(&icode, name, type);
                if(icode != 0)
                     break;
                printf("%8.8s %5.5s\n",  name,  type);
          }
          close_flav(&icode);
    }

This works, but it is a pain in the neck to use, because every SQL statement you write
has to be wrapped in a little routine. The approach people really use is embedded SQL,
which lets you put chunks of SQL right in your program. Each SQL statement is intro‐
duced by “EXEC SQL” and ends with a semicolon. References to host language variables
are preceded by a colon. Example 5-2 shows the same program written as embedded
SQL.
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Example 5-2. Example of embedded SQL
char flavor[6], name[8], type[5];
int SQLCODE;     /* global status variable */

EXEC SQL DECLARE flav CURSOR FOR
      SELECT    Foods.name, Foods.type
      FROM Foods
      WHERE Foods.flavor = :flavor ;

main()
{
      scanf("%s", flavor);
      EXEC SQL OPEN flav ;
      for(;;) {
            EXEC SQL FETCH flav INTO :name, :type
            if(SQLCODE != 0)
                 break;
            printf("%8.8s %5.5s\n", name, type);
      }
      EXEC SQL CLOSE flav ;
}

To compile this, you run it through a SQL preprocessor which turns the SQL code into
calls to C routines, then compile the pure C program. Later in this chapter, we’ll write
a simple version of such a preprocessor.

The Syntax Checker

Writing a syntax checker in yacc is easy. You parse something, and if the parse worked,
the syntax must have been OK. (If we put some error recovery into the parser, things
wouldn’t be quite this simple. See Chapter 9 for details.) We’ll build a syntax checker for
SQL, a task which consists almost entirely of writing a yacc grammar for SQL. Since the
syntax of SQL is so large, we have reproduced the entire yacc grammar in one place in
Appendix J, with a cross-reference for all of the symbols in the grammar.

The Lexer

First we need a lexer for the tokens that SQL uses. The syntax is free format, with white‐
space ignored except to separate words. There is a fairly long but fixed set of reserved
words. The other tokens are conventional: names, strings, numbers, and punctuation.
Comments are Ada-style, from a pair of dashes to the end of the line. Example 5-3 shows
the SQL lexer.

Example 5-3. The first SQL lexer
%{
#include "sql1.h"
#include <string.h>
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int lineno = 1;
void yyerror(char *s);
%}

%e 1200
%%
      /* literal keyword tokens */

ADA         { return ADA; }
ALL         { return ALL; }
AND         { return AND; }
AVG         { return AMMSC; }
MIN         { return AMMSC; }
MAX         { return AMMSC; }
SUM         { return AMMSC; }
COUNT       { return AMMSC; }
ANY         { return ANY; }
AS          { return AS; }
ASC         { return ASC; }
AUTHORIZATION     { return AUTHORIZATION; }
BETWEEN           { return BETWEEN; }
BY          { return BY; }
C           { return C; }
CHAR(ACTER)?      { return CHARACTER; }
CHECK       { return CHECK; }
CLOSE       { return CLOSE; }
COBOL       { return COBOL; }
COMMIT            { return COMMIT; }
CONTINUE    { return CONTINUE; }
CREATE            { return CREATE; }
CURRENT           { return CURRENT; }
CURSOR            { return CURSOR; }
DECIMAL           { return DECIMAL; }
DECLARE           { return DECLARE; }
DEFAULT           { return DEFAULT; }
DELETE            { return DELETE; }
DESC        { return DESC; }
DISTINCT    { return DISTINCT; }
DOUBLE            { return DOUBLE; }
ESCAPE            { return ESCAPE; }
EXISTS            { return EXISTS; }
FETCH       { return FETCH; }
FLOAT       { return FLOAT; }
FOR         { return FOR; }
FOREIGN           { return FOREIGN; }
FORTRAN           { return FORTRAN; }
FOUND       { return FOUND; }
FROM        { return FROM; }
GO[ \t]*TO  { return GOTO; }
GRANT       { return GRANT; }
GROUP       { return GROUP; }
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HAVING            { return HAVING; }
IN          { return IN; }
INDICATOR   { return INDICATOR; }
INSERT            { return INSERT; }
INT(EGER)?  { return INTEGER; }
INTO        { return INTO; }
IS          { return IS; }
KEY         { return KEY; }
LANGUAGE    { return LANGUAGE; }
LIKE        { return LIKE; }
MODULE            { return MODULE; }
NOT         { return NOT; }
NULL        { return NULLX; }
NUMERIC           { return NUMERIC; }
OF          { return OF; }
ON          { return ON; }
OPEN        { return OPEN; }
OPTION            { return OPTION; }
OR          { return OR; }
ORDER       { return ORDER; }
PASCAL            { return PASCAL; }
PLI         { return PLI; }
PRECISION   { return PRECISION; }
PRIMARY           { return PRIMARY; }
PRIVILEGES  { return PRIVILEGES; }
PROCEDURE   { return PROCEDURE; }
PUBLIC            { return PUBLIC; }
REAL        { return REAL; }
REFERENCES  { return REFERENCES; }
ROLLBACK    { return ROLLBACK; }
SCHEMA            { return SCHEMA; }
SELECT            { return SELECT; }
SET         { return SET; }
SMALLINT    { return SMALLINT; }
SOME        { return SOME; }
SQLCODE           { return SQLCODE; }
TABLE       { return TABLE; }
TO          { return TO; }
UNION       { return UNION; }
UNIQUE            { return UNIQUE; }
UPDATE            { return UPDATE; }
USER        { return USER; }
VALUES            { return VALUES; }
VIEW        { return VIEW; }
WHENEVER    { return WHENEVER; }
WHERE       { return WHERE; }
WITH        { return WITH; }
WORK        { return WORK; }

       /* punctuation */

"="    |
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"<>"   |
"<"    |
">"    |
"<="   |
">="        { return COMPARISON; }

[−+*/:(),.;]     { return yytext[0]; }

      /* names */
[A-Za-z][A-Za-z0-9_]* { return NAME; }

      /* numbers */

[0-9]+      |
[0-9]+"."[0-9]*  |
"."[0-9]*   { return INTNUM; }

[0-9]+[eE][+-]?[0-9]+  |
[0-9]+"."[0-9]*[eE][+-]?[0-9]+  |
"."[0-9]*[eE][+-]?[0-9]+     { return APPROXNUM; }

      /* strings */

'[^'\n]*'   {
            int c = input() ;
            unput(c);  /* just peeking */
            if(c !=  '\'')
                 return STRING;
            else
                 yymore();
        }

'[^'\n]*$   { yyerror("Unterminated string"); }

     /* whitespace */
\n         lineno++;

[ \t\r]+   ;    /* whitespace */

"--".*       ;        /* comment */

      /* anything else */
.           yyerror("invalid character);
%%

void
yyerror(char *s)
{
      printf("%d: %s at %s\n", lineno, s, yytext);
{
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main(int ac, char **av)
{
      if(ac > 1 && (yyin = fopen(av[1], "r")) == NULL) {
            perror(av[1]);
            exit(1);
      }

      if(!yyparse())
            printf("SQL parse worked\n");
      else
            printf("SQL parse failed\n");
}  /* main */

The lexer starts with a few include files, notably sql1.h, the token name definition file
generated by yacc. (We renamed it from the default y.tab.h.) All of the reserved words
are separate tokens in the parser, because it is the easiest thing to do. Notice that CHAR‐
ACTER and INTEGER can be abbreviated to CHAR and INT, and GOTO can be written
as one word or two. The reserved words AVG, MIN, MAX, SUM, and COUNT all turn
into a AMMSC token; in the SQL preprocessor we’ll use the token value to remember
which of the words it was.

Next come the punctuation tokens, including the usual trick to match all of the single-
character operators with the same pattern. Names start with a letter and are composed
of letters, digits, and underscores. This pattern has to follow all of the reserved words
so the reserved word patterns take precedence.

SQL defines exact numbers, which may have a decimal point (but no explicit exponent),
and approximate numbers, which do have exponents. Separate patterns distinguish the
two.

SQL strings are enclosed in single quotes, using a pair of quotes to represent a single
quote in the string. The first string pattern matches a quoted string that contains no
embedded quotes. Its action routine uses input() and unput() to peek at the next char‐
acter and see if it’s another quote (meaning that it found a doubled quote, not the end
of the string). If so it uses yymore() to append the next quoted string to the token. The
next pattern catches unterminated strings and prints a diagnostic when it sees one.

The last few patterns skip whitespace, counting lines when the whitespace is a newline,
skip comments, and complain if any invalid character appears in the input.

Error and Main Routines

This version of yyerror() reports the current line number, current token, and an error
message. This simple routine is often all you need for useful error reports. For maximum
portability we’ve put it in with the lexer because it needs to refer to yytext, and only in
the lexer’s source file is yytext already defined. (Different versions of lex define yytext
as an array or a pointer, so you can’t portably write references to it anywhere else.)
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The main() routine opens a file named on the command line, if any, and then calls the
parser. When the parser returns, the return value reports whether the parse succeeded
or failed. We put main() here because yyin is already defined here, though putting
main() in a file of its own and declaring yyin an external "FILE*” would have worked
equally well.

The Parser

The SQL parser is larger than any of the parsers we’ve seen up to this point, but we can
understand it in pieces.

Definitions

Example 5-4. Definition section of first SQL parser
%union {
      int intval;
      double floatval;
      char *strval;
      int subtok;
}

%token NAME
%token STRING
%token INTNUM APPROXNUM

      /* operators */

%left OR
%left AND
%left NOT
%left COMPARISON /* = <> < > <= >= */
%left '+' '-'
%left '*' '/'
%nonassoc UMINUS

     /* literal keyword tokens */

%token ALL AMMSC ANY AS ASC AUTHORIZATION BETWEEN BY
%token CHARACTER CHECK CLOSE COMMIT CONTINUE CREATE CURRENT
%token CURSOR DECIMAL DECLARE DEFAULT DELETE DESC DISTINCT DOUBLE
%token ESCAPE EXISTS FETCH FLOAT FOR FOREIGN FOUND FROM GOTO
%token GRANT GROUP HAVING IN INDICATOR INSERT INTEGER INTO
%token IS KEY LANGUAGE LIKE MODULE NULLX NUMERIC OF ON
%token OPEN OPTION ORDER PRECISION PRIMARY PRIVILEGES PROCEDURE
%token PUBLIC REAL REFERENCES ROLLBACK SCHEMA SELECT SET
%token SMALLINT SOME SQLCODE SQLERROR TABLE TO UNION
%token UNIQUE UPDATE USER VALUES VIEW WHENEVER WHERE WITH WORK
%token COBOL FORTRAN PASCAL PLI C ADA
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Example 5-4 shows the definition section of the parser. First comes the definition of the
value union. The fields intval and floatval handle integer and floating point numbers.
(Actually, since SQL’s exact numbers can include decimals, we’ll end up storing all the
numeric values as floatval s.) Strings can be returned as strval, although in this version
of the parser we don’t bother to do so. Finally, subtok holds sub-token codes for the
tokens that represent multiple input tokens, e.g., AVG, MIN, MAX, SUM, and COUNT,
although again we don’t bother to do so in the syntax checker.

Next come definitions of the tokens used in the grammar. There are tokens for NAME,
STRING, INTNUM, and APPROXNUM, all of which we saw in the lexer. Then all the
operators appear in %left declarations to set their precedence and associativity. We
declare the literal + − * / tokens since we need to set their precedence and the pseudo-
token UMINUS which is used only in %prec clauses later.

Finally come the token definitions for all of SQL’s reserved words.

Top Level Rules

Example 5-5. Top level rules in first SQL parser

sql_list:
             sql ';'
      |      sql_list sql  ';'
      ;
      . . .
      /* schema definition language */
      /* Note: other "sql:" rules appear later in the grammar */
sql:        schema
      ;
      . . .
      /* module language */
sql:        module_def
      ;
      . . .
      /* manipulative statements */

sql:        manipulative_statement
      ;

Example 5-5 shows the top-level rules for the parser. The start rule is sql_list, a list of
sql rules, each of which is one kind of statement. There are three different kinds of
statements, a schema which defines tables, a module_def module definition, and a
manipulative_statement which encompasses all of the statements such as OPEN,
CLOSE, and SELECT that actually manipulate a data base. We’ve put a sql rule at the
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beginning of each of the sections of the grammar. (Yacc doesn’t care if all of the rules
with the same left-hand side appear together in the specification, and in cases like this
it is easier if they don’t. If you do this, be sure to include comments explaining what
you’ve done.)

The Schema Sublanguage

Example 5-6. Schema sublanguage, top part
schema:
          CREATE SCHEMA AUTHORIZATION user opt_schema_element_list
      ;

user:     NAME
      ;

opt_schema_element_list:
            /* empty */
      |     schema_element_list
      ;

schema_element_list:
           schema_element
      |    schema_element_list schema_element
      ;

schema_element:
           base_table_def
      |    view_def
      |    privilege_def
      ;

The schema sublanguage defines data base tables. As in the example above, it starts with
CREATE SCHEMA AUTHORIZATION “user”, followed by an optional list of schema
elements. Example 5-6 shows the top-level schema definition rules. We have a rule
saying that a user is a NAME. Syntactically, we could have used NAME directly in the
schema rule, but this separate rule provides a convenient place for action code that
verifies that the name given is a plausible user name.

The schema element list syntax uses a lot of rules, but they’re not complex. An opt_sche‐
ma_element_list is either a schema_element_list or nothing, a schema_element_list
is a list of schema_elements, and a schema_element is one of three kinds of definitions.
We could have simplified these rules considerably to this:

    opt_schema_element_list:
                /* empty */
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          |     opt_schema_element_list base_table_def
          |     opt_schema_element_list view_def
          |  opt_schema_element_list privilege_def
          ;

although the more complex version turns out to be easier to use when we add action
code.

Base Tables

Example 5-7. Schema sublanguage, base tables

base_table_def:
           CREATE TABLE table '(' base_table_element_commalist')'
      ;

table:
            NAME
    |       NAME '.' NAME
    ;

base_table_element_commalist:
           base_table_element
      |    base_table_element_commalist ',' base_table_element
      ;

base_table_element:
            column_def
      |     table_constraint_def
      ;

column_def:
            column data_type column_def_opt_list
      ;

data_type:
            CHARACTER
      |     CHARACTER ' (' INTNUM ') '
      |     NUMERIC
      |     NUMERIC ' (' INTNUM ') '
      |     NUMERIC ' (' INTNUM ', ' INTNUM ')'
      |     DECIMAL
      |     DECIMAL ' (' INTNUM ') '
      |     DECIMAL ' (' INTNUM ', ' INTNUM ')'
      |     INTEGER
      |     SMALLINT
      |     FLOAT
      |     FLOAT ' (' INTNUM ') '
      |     REAL
      |     DOUBLE PRECISION
      ;
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column_def_opt_list:
            /* empty */
      |     column_def_opt_list column_def_opt
      ;

column_def_opt:
           NOT NULLX
      |    NOT NULLX UNIQUE
      |    NOT NULLX PRIMARY KEY
      |    DEFAULT literal
      |    DEFAULT NULLX
      |    DEFAULT USER
      |    CHECK '(' search_condition ')'
      |    REFERENCES table
      |    REFERENCES table '(' column_commalist ')'
      ;

table_constraint_def:
           UNIQUE '(' column_commalist ')'
     |     PRIMARY KEY '(' column_commalist ')'
     |     FOREIGN KEY '(' column_commalist ')'
                REFERENCES table
     |     FOREIGN KEY '(' column_commalist ')'
                REFERENCES table '(' column_commalist ')'
     |    CHECK '(' search_condition ')'
     ;

column_commalist:
           column
      |    column_commalist ',' column
      ;

column:        NAME
      ;

literal:
           STRING
       |   INTNUM
       |   APPROXNUM
       ;

Example 5-7 shows the base table language. Again there is a lot of syntax, but it isn’t
complicated once you look at the parts. A base table definition base_table_def is “CRE‐
ATE TABLE,” the table name which may be a simple name or a name qualified by a user
name, and a comma-separated list of base table elements in parentheses. Each
base_table_element is a column definition or a table constraint definition.

A column definition column_def is a column name, its data type, and an optional list
of column definition options. There are long lists of possible data types and of column
definition options. Each column has exactly one data type, since there is one reference
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2. This is a slight oversimplification, since in many cases you can write rows into a view and the data base updates
the underlying tables appropriately.

to data_type. Some of these tokens are reserved words and some are numbers, so that
a type like NUMERIC(5,2) matches the fifth data_type rule. For the column definition
options, col-umn_def_opt_list allows zero or more options in any order. These options
state whether a column may contain null (undefined) values, state whether values must
be unique, set default values, or set validity check conditions or inter-table consistency
(REFERENCES) conditions. The search_condition is defined later, since it is syntacti‐
cally part of the manipulation language.

We represent the reserved word NULL by the token NULLX, because yacc defines all
of the tokens as C preprocessor symbols, and the symbol NULL already means some‐
thing in C. For the same reason, avoid the token names FILE, BUFSIZ, and EOF, all
names preempted by symbols in the standard I/O library.

Base table elements can also be table constraints in one of several forms. SQL syntax is
redundant here; these two forms are equivalent:

    thing CHAR(3) NOT NULL UNIQUE

    thing CHAR(3),
          UNIQUE ( some_name )

The first form is parsed as a column_def with “NOT NULL” and “UNIQUE” each being
a column_def_opt in a column_def_opt_list. The second form is a column_def fol‐
lowed by a table_constraint_def, with each then being a base_table_element and the
two combined in a base_table_element_list.

The SQL definition prohibits NULLs in unique columns, but is inconsistent about
whether you have to say so explicitly. It is up to the action code to recognize that these
two forms are equivalent, since syntactically they are different and that’s all yacc knows
about.

View Definition

A view is a virtual table defined by a query, whose contents are the result of executing
the query each time an application opens the view.2 For example, we could create a view
of fruits in our food table:

    CREATE VIEW fruits (frname, frflavor)
          AS SELECT Foods.name, Foods.flavor
          FROM Foods
          WHERE Foods.type = "fruit"

Example 5-8 shows the syntax for a schema view definition.
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Example 5-8. Schema view definitions
view_def:
          CREATE VIEW table opt_column_commalist
          AS query_spec opt_with_check_option
       ;

opt_with_check_option:
            /* empty */
      |    WITH CHECK OPTION
      ;

opt_column_commalist:
            /* empty */
      |    '(' column_commalist
      ;

A view definition is “CREATE VIEW,” the table name, an optional list of column names
(the default being to use the names in the base table), the keyword “AS,” a query speci‐
fication (defined later), and an optional check option that controls the amount of error
checking when new rows are written into the view.

Privilege Definitions

Example 5-9. Schema privilege definitions

privilege_def:
            GRANT privileges ON table TO grantee_commalist
            opt_with_grant_option
      ;

opt_with_grant_option:
            /* empty */
      |    WITH GRANT OPTION
      ;

privileges:
           ALL PRIVILEGES
      |     ALL
      |     operation_commalist
      ;

operation_commalist:
            operation
      |     operation_commalist ',' operation
      ;

operation:
              SELECT
      |       INSERT
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      |       DELETE
      |       UPDATE opt_column_commalist
      |       REFERENCES opt_column_commalist
      ;

grantee_commalist:
            grantee
      |     grantee_commalist  ',' grantee
      ;

grantee:
            PUBLIC
       |    user
       ;

Example 5-9 shows the privilege definition sublanguage, the last of the view definition
sublanguages. The owner of a table or view can give other users the authority to perform
various operations on their tables, e.g.:

    GRANT SELECT,  UPDATE  (address,  telephone)
          ON employees TO PUBLIC

    GRANT ALL ON foods TO tony,   dale WITH GRANT OPTION

    GRANT REFERENCES   (flavor)   ON Foods TO PUBLIC

WITH GRANT OPTION allows the grantees to re-grant their authority to other users.
REFERENCES is the authority needed to create a table keyed to a column in an existing
table. Otherwise both the syntax and meaning of the GRANT statement are fairly
straightforward.

The Module Sublanguage

Since the module language is for practical purposes obsolete, we don’t cover it in detail
here. You can find its yacc definition in the complete listing of the SQL grammar in
Appendix J.

Cursor Definitions

Example 5-10. Cursor definition
cursor_def:
            DECLARE cursor CURSOR FOR query_exp opt_order_by_clause
      ;
opt_order_by_clause:

            /* empty */
      |      ORDER BY ordering_spec_commalist
      ;
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ordering_spec_commalist:  /* define sort order*/
            ordering_spec
      |     ordering_spec_commalist','ordering_spec
      ;

ordering_spec:
            INTNUM opt_asc_desc  /* by column number*/
      |     column_ref opt_asc_desc  /* by column name */
      ;

opt_asc_desc:
            /* empty */
      |     ASC
      |     DESC
      ;

cursor:        NAME
      ;

column_ref:
            NAME      /* column name */
      |     NAME '.' NAME   /* table.col or range.col */
      |     NAME '.' NAME '.' NAME  /* user.table.col */
      ;

We do need the cursor definition statements from the module language for use in em‐
bedded SQL. Example 5-10 shows the syntax for cursor definitions. A typical cursor
definition is:

    DECLARE course_cur CURSOR FOR
          SELECT           ALL
          FROM   Courses
          ORDER BY sequence ASC

Cursor definitions look a lot like view definitions, since both associate a name with a
SELECT query. The difference is that a view is a permanent object that lives in the data
base, while a cursor is a temporary object that lives in an application program. Practi‐
cally, views can have their own privileges different from the tables on which they are
built. (This is the main reason to create a view.) You need a cursor to read or write data
in a program; to read or write a view you need a cursor on the view. Also, the query
expression used to define a cursor is more general than the query specification used to
define a view. We’ll see both in connection with the SELECT statement, in the following
section.

The Manipulation Sublanguage

The heart of SQL is the manipulation sublanguage, the commands that search, read,
insert, delete, and update rows and tables.
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Example 5-11. Manipulation sublanguage, top part
sql:       manipulative_statement
      ;

manipulative_statement:
            close_statement
      |     commit_statement
      |     delete_statement_positioned
      |     delete_statement_searched
      |     fetch_statement
      |     insert_statement
      |     open_statement
      |     rollback_statement
      |     select_statement
      |     update_statement_positioned
      |     update_statement_searched
      ;

There are 11 different kinds of manipulative statements, listed in the rules in Example
5-11. SQL statements are executed one at a time although some statements, particularly
SELECT statements, can involve a lot of work on the part of the data base.

Simple Statements

Example 5-12. Simple manipulative statements
open_statement:
            OPEN cursor
      ;

close_statement:
            CLOSE cursor
      ;

commit_statement:
            COMMIT WORK
      ;

rollback_statement:
            ROLLBACK WORK
      ;

delete_statement_positioned:
            DELETE FROM table WHERE CURRENT OF cursor
      ;

Most manipulative statements are quite simple, so Example 5-12 shows them all. OPEN
and CLOSE are analogous to opening and closing a file. DELETE ... WHERE CURRENT
deletes a single record identified by a cursor.
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The FETCH statement is the main way to retrieve data into a program. Its syntax is
slightly more complex than that of previous statements because it says where to put the
data, column by column.

FETCH Statements

Example 5-13. FETCH statement
fetch_statement:
           FETCH cursor INTO target_commalist
      ;

target_commalist:
            target
      |     target_commalist ',' target
      ;

target:
            parameter_ref
      ;

parameter_ref:
            parameter
      |     parameter parameter
      |     parameter INDICATOR parameter
      ;

parameter:
      |           |     ':' NAME       /* embedded parameter */
      ;

Example 5-13 shows the rules for FETCH. FETCH is complicated because of all the
possible targets. Each target is one or two parameters, with the optional second param‐
eter being an indicator variable that says whether the data stored was valid or null. A
parameter is a host language variable name preceded by a colon in embedded SQL. In
a procedure in the module language, a parameter can also be a name declared as a
parameter in the module header, but in that case the lexer must distinguish parameter
names from column and range names or yacc gets dozens of shift/reduce conflicts be‐
cause it can’t tell which names are which. To keep our syntax checker relatively simple,
we’ll leave out the module language names. In a worked out example, the lexer would
look up each name in the symbol table and return a different token, e.g., MODPARAM
for module parameter names, and we’d add a rule:

    parameter:   MODPARAM ;

INSERT Statements
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Example 5-14. INSERT statement

insert_statement:
            INSERT INTO table opt_column_commalist values_or_query_spec
      ;

values_or_query_spec:
            VALUES '(' insert_atom_commalist
      |     query_spec
      ;

insert_atom_commalist:
            insert_atom
      |     insert_atom_commalist ',' insert_atom
      ;

insert_atom:
            atom
      |     NULLX
      ;

atom:
            parameter_ref
      |     literal
      |     USER
      ;

The INSERT statement (Example 5-14), which inserts new rows into a table, has two
variants. In both cases it takes a table name and an optional list of column names. (We
can reuse opt_column_commalist which we already used in CREATE VIEW.) Then
comes either a list of values or a query specification. The list of values is “VALUE” and
a comma-separated list of insert_atoms. Each insert atom is either NULL, a parameter,
a literal string or number, or “USER” meaning the current user’s ID. The query specifi‐
cation query_spec, defined, selects existing data in the data base to copy into the current
table.

DELETE Statements

Example 5-15. DELETE statement

delete_statement_positioned:
           DELETE FROM table WHERE CURRENT OF cursor
      ;

delete_statement_searched:
           DELETE FROM table opt_where_clause
      ;

opt_where_clause:
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            /* empty */
      |      where_clause
      ;

where_clause:
            WHERE search_condition
      ;

The DELETE statement deletes one or more rows from a table. Its rules are listed in
Example 5-15. The positioned version deletes the row at the cursor. The searched version
deletes the rows identified by an optional WHERE clause, or in the absence of the
WHERE clause, deletes all rows from the table. The WHERE clause uses a search con‐
dition (defined below) to identify the rows to delete.

UPDATE Statements

Example 5-16. UPDATE statement

update_statement_positioned:
            UPDATE table SET assignment_commalist
            WHERE CURRENT OF cursor
      ;

assignment_commalist:
      |    assignment
      |    assignment_commalist ',' assignment
      ;

assignment:
           column COMPARISON scalar_exp
      |    column COMPARISON NULLX
      ;

update_statement_searched:
            UPDATE table SET assignment_commalist opt_where_clause
      ;

The UPDATE statement (Example 5-16) rewrites one or more rows. There are two
versions, positioned and searched, like the two kinds of DELETE. In both cases, a
comma-separated list of assignments sets columns of the appropriate rows to new values,
which can be NULL or a scalar expression.

Scalar Expressions

Example 5-17. Scalar expressions
scalar_exp:
           scalar_exp '+' scalar_exp
      |    scalar_exp '-' scalar_exp
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      |    scalar_exp '*' scalar_exp
      |    scalar_exp '/' scalar_exp
      |    '+' scalar_exp %prec UMINUS
      |    '-' scalar_exp %prec UMINUS
      |    atom
      |    column_ref
      |    function_ref
      |    '(' scalar_exp ')'
      ;

scalar_exp_commalist:
            scalar_exp
      |     scalar_exp_commalist ',' scalar_exp
      ;
function_ref:
           AMMSC'(' '*' ')'/* COUNT(*) */
      |    AMMSC '(' DISTINCT column_ref ')
      |    AMMSC '(' ALL scalar_exp ')'
      |    AMMSC ' (' scalar_exp ')'
      ;

scalar_exp_commalist:
            scalar_exp
      |     scalar_exp_commalist ',' scalar_exp

Scalar expressions (Example 5-17) resemble arithmetic expressions in conventional
programming languages. They allow the usual arithmetic operations with the usual
precedences. Recall that we used %left to set precedences at the beginning of the gram‐
mar, and a %prec gives unary “+” and “−” the highest precedence. SQL also has a few
built-in functions. The token AMMSC is a shorthand for any of AVG, MIN, MAX, SUM,
or COUNT. The syntax here is actually somewhat looser than SQL allows. “COUNT(*)”
counts the number of rows in a selected set, and is the only place where a “*” argument
is allowed. (Action code has to check the token value of the AMMSC and complain if
it’s not a COUNT.) DISTINCT means to remove duplicate values before performing the
function; it only permits a column reference. Otherwise functions can take any scalar
reference.

We could have made the syntax rules more complex to better match the allowable syntax,
but this way has two advantages: the parser is slightly smaller and faster; action routines
can issue much more informative messages (for example, “MIN does not allow a * ar‐
gument” rather than just “syntax error”).

The definition of scalar functions is quite recursive, so these rules let you write extremely
complex expressions, e.g.:

    SUM( (p.age*p.age) / COUNT( p.age )) - AVG( p.age )* AVG(p.age )

which computes the mathematical variance of the age column in table p, probably very
slowly.
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We also define scalar_exp_commalist, a comma separated list of scalar expressions, for
use later.

SELECT Statements

Example 5-18. SELECT statement, query specifications and expressions

select_statement:
            SELECT opt_all_distinct selection
            INTO target_commalist
            table_exp
      ;

opt_all_distinct:
            /* empty */
      |    ALL
      |    DISTINCT
      ;

selection:
           scalar_exp_commalist
      |    '*'
      ;

query_exp:
            query_term
      |      query_exp UNION query_term
      |      query_exp UNION ALL query_term
      ;

query_term:
             query_spec
      |      '(' query_exp
      ;
query_spec:
            SELECT opt_all_distinct selection table_exp
      ;

The SELECT statement (Example 5-18) selects one row (possibly derived from a lot of
different rows in different tables) from the data base and fetches it into a set of local
variables, using a table_exp (defined in the next section), which is a table-valued ex‐
pression that selects a table or subtable from the data base. The optional ALL or DIS‐
TINCT keeps or discards duplicate rows.

A query expression, query_exp, and query specification, query_spec (also in Example
5-18), are similar table-valued forms. A query specification has almost the same form
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as a SELECT statement, but without the INTO clause, since the query specification will
be part of a larger statement. A query expression can be a UNION of several query
specifications; the results of the queries are merged together. (The specifications must
all have the same number and types of columns.)

Table Expressions

Example 5-19. Table expressions
table_exp:
           from_clause
           opt_where_clause
           opt_group_by_clause
           opt_having_clause
      ;

from_clause:
           FROM table_ref_commalist
      ;

table_ref_commalist:
           table_ref
      |    table_ref_commalist ',' table_ref
      ;

table_ref:
           table
      |    table range_variable
      ;

range_variable:
           NAME
      ;
where_clause:
            WHERE search_condition
      ;

opt_group_by_clause:
            /* empty */
      |     GROUP BY column_ref_commalist
      ;

column_ref_commalist:
            column_ref
      |     column_ref_commalist ',' column_ref
      ;

opt_having_clause:
            /* empty */
      |     HAVING search_condition
      ;
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Table expressions (Figure 5-19) are what gives SQL its power, since they let you define
arbitrarily elaborate expressions that retrieve exactly the data you want. A table expres‐
sion starts with a mandatory FROM clause, followed by optional WHERE, GROUP BY,
and HAVING clauses. The FROM clause names the tables from which the expression
is constructed. The optional range variables let you use the same table more than once
in separate contexts in an expression, which is occasionally useful, e.g., managers and
employees both in a personnel table. The WHERE clause specifies a search condition
that controls which rows from a table to include. The GROUP BY clause groups rows
by a common column value, particularly useful if your selection includes functions like
SUM or AVG, since then they sum or average by group. The HAVING clause applies a
search condition group by group; e.g., in a table of suppliers, part names, and prices,
you could ask for all the parts supplied by suppliers who sell at least three parts:

    SELECT supplier
    FROM p
    GROUP BY supplier
    HAVING COUNT(*) >= 3

Search Conditions

Example 5-20. Search conditions
search_condition:
      |    search_condition OR search_condition
      |    search_condition AND search_condition
      |    NOT search_condition
      |    '(' search_condition ')'
      |    predicate
      ;

predicate:
           comparison_predicate
      |    between_predicate
      |    like_predicate
      |    test_for_null
      |    in_predicate
      |    all_or_any_predicate
      |    existence_test
      ;

comparison_predicate:
            scalar_exp COMPARISON scalar_exp
      |     scalar_exp COMPARISON subquery
      ;

between_predicate:
            scalar_exp NOT BETWEEN scalar_exp AND scalar_exp
      |    scalar_exp BETWEEN scalar_exp AND scalar_exp
      ;
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like_predicate:
         scalar_exp NOT LIKE atom opt_escape
    |    scalar_exp LIKE atom opt_escape
    ;

opt_escape:
           /* empty */
      |    ESCAPE atom
      ;

test_for_null:
            column_ref IS NOT NULLX
      |     column_ref IS NULLX
      ;

in_predicate:
            scalar_exp NOT IN ' (' subquery ') '
      |     scalar_exp IN '(' subquery ')'
      |     scalar_exp NOT IN '(' atom_commalist
      |     scalar_exp IN '(' atom_commalist ')'
      ;
atom_commalist:
            atom
      |     atom_commalist ',' atom
      ;

all_or_any_predicate:
            scalar_exp COMPARISON any_all_some subquery
      ;

any_all_some:
            ANY
      |     ALL
      |     SOME
      ;

existence_test:
            EXISTS subquery
      ;

subquery:
            '(' SELECT opt_all_distinct selection table_exp
      ;

Search conditions specify which rows from a group you want to use. A search condition
is a combination of predicates combined with AND, OR, and NOT. There are seven
different kinds of predicates, a grab bag of operations that people like to do on data
bases. Example 5-20 defines their syntax.
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A COMPARISON predicate compares two scalar expressions, or a scalar expression and
a subquery. Recall that a COMPARISON token is any of the usual comparison operators
such as “=” and “<>”. A subquery is a recursive SELECT expression that is restricted
(semantically, not in the syntax) to return a single column.

A BETWEEN predicate is merely a shorthand for a pair of comparisons. These two
predicates are equivalent, for example:

    p.age BETWEEN 21 and 65

    p.age >= 21 AND p.age <= 65

A LIKE predicate does some string pattern matching, comparing a scalar expression to
an atom, the latter being a literal string or a string parameter reference. The atom to
which an expression is compared is treated as a simple pattern, similar to UNIX shell
filename patterns. The optional ESCAPE clause lets you specify a quoting character
analogous to “\” in filename patterns.

The left operand of a LIKE predicate has to be a column reference, not a general ex‐
pression. We’ve used a scalar expression here to get around a yacc limitation. A more
natural syntax for LIKE predicates would be this:

    like_predicate:
                column_ref NOT LIKE atom opt_escape
          |     column_ref LIKE atom opt_escape
          ;

Yacc might see something like this in the context of a predicate:

    Foods.flavor NOT ...

At the time it sees the NOT, it can’t tell if it is in the middle of a NOT BETWEEN or a
NOT LIKE, so it can’t tell whether “Foods.flavor” is a column_ref for a LIKE predicate
or a scalar_exp for a BETWEEN predicate. Yacc reacts to this with a shift/reduce conflict
since it can’t tell whether or not to reduce the rule that turns the column_ref into a
scalar_exp. There are a couple of ways around this problem. We’ve adjusted the grammar
to take the reduce side of the shift/reduce conflict, allowing a scalar_exp either way,
since action code can easily check the left operand of a NOT LIKE to ensure it’s a column
reference. (This also gives an opportunity for a better error message.) Another possibility
would be a lexical hack. We could define a token NOTLIKE which matches two words
in the lexer:

    NOT[ \t]+LIKE    { return NOTLIKE; }

and use that in the LIKE predicate:
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    like_predicate:
                column_ref NOTLIKE atom opt_escape
          |     column_ref LIKE atom opt_escape
          ;

This solves the problem because yacc can now tell as soon as it sees the NOTLIKE token
that it’s parsing a LIKE predicate. But the lexical hack is ugly. (This version fails if NOT
and LIKE are on separate lines. If we added a “\n” to the whitespace between them, we’d
need to check in the lexical action to see if there are any newlines and, if so, update
lineno, adding more mess.)

A test for null is just what it sounds like, testing whether the contents of a particular
column are or are not null. We use the token name NULLX to avoid colliding with the
stdio NULL symbol in the lexer.

An IN predicate checks to see whether a value is one of a set specified either explicitly
or via a subquery. The explicit version is equivalent to a group of comparisons:

    q.Name IN  ( 'Tom', 'Dick', 'Harry')

    q.Name = 'Tom' OR q.Name = 'Dick' OR q.Name = 'Harry'

An ANY or ALL predicate lets you test whether any or all values of an expression satisfy
a comparison with a subquery. These are sometimes useful but always confusing; it’s
hard to write ANY and ALL predicates correctly. This example checks that all of the
names in the Name column of table p match names in the name column of table q:

    p.Name =ALL (SELECT q.Name from q)

Finally, an existence test lets you test whether there are any data that satisfy some sub‐
query.

Using all of the predicates and subqueries, you can create queries and table expressions
of truly awesome complexity which will take equally awesome amounts of time to ex‐
ecute. In practice, most SQL SELECT expressions are simple, but the ability to perform
complex operations is there for people who need it.

Odds and Ends

Example 5-21. Conditions for embedded SQL

      /* embedded condition things */
sql:        WHENEVER NOT FOUND when_action
      |     WHENEVER SQLERROR when_action
      ;
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3. Bugs in AT&T lex make it unable to handle the SQL lexer, but all of the other versions of lex accept it without
trouble. All versions of yacc accept the parser.

when_action:         GOTO NAME
      |           CONTINUE
      ;

Example 5-21 defines some statements of use only in embedded SQL programs. They
say that whenever a selection doesn’t retrieve any data (NOT FOUND) or some other
error (SQLERROR) the program should either jump to a specific label in the host pro‐
gram or else ignore the condition.

Using the Syntax Checker

Example 5-22. Makefile for SQL syntax checker

LEX = flex -I
YACC = byacc -dv
CFLAGS = -DYYDEBUG=1

all: sql1

sql1: sql1.o scn1.o
      ${CC} -o $@ sql1.o scn1.o

sql1.c sql1.h:   sql1.y
        ${YACC} sql1.y
      mv y.tab.h sql1.h
      mv y.tab.c sql1.c
      mv y.output sql1.out

scn1.o:   sql1.h

To compile the syntax checker, we just run the lexer and scanner through lex and yacc
and compile the resulting C programs together. Example 5-22 shows the Makefile. In
this case we’ve used make rules to rename the outputs of lex and yacc to match the input
files. Also, we use Berkeley yacc and flex3 and define our own main() and yyerror() so
we don’t need to use either the lex or yacc library. To test the syntax checker we can
either check files full of SQL or else type in directly:

    %  sql1   sqlmod
    SQL parse worked
    %  sql1
    FETCH foo INTO
    :a ,
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    b c,   -- two names are legal
    d  e f -- but three aren't
    4:  syntax error at f
    SQL parse failed

Embedded SQL

We finish this chapter by turning our SQL syntax checker into a very simple embed‐
ded SQL preprocessor. Let’s assume we have a SQL implementation that can interpret
SQL statements passed as text strings. The embedded SQL preprocessor need only turn
the SQL statements into C procedure calls that pass the SQL statements to an interpreter
routine.

This is a little more complex than it looks. The lexer must run in two different states:
normal state in which it just passes text through, and SQL mode in which it buffers up
a SQL statement to pass to the interpreter. We also need to handle parameter references,
since in the compiled program there is no way for the interpreter to associate the string
“:foo” with the variable foo. We’ll extract the parameters in the lexer, substituting “#N"
for the Nth variable mentioned, and then pass all of the mentioned variables by reference
in the argument list to the interpreter. For example, this embedded SQL:

    EXEC SQL FETCH flav INTO :name, :type ;

should turn into this C:

    exec_sql(" FETCH flav INTO #1, #2 ", &name, &type);

Here we highlight the changes to the lexer and the parser. The full code is in Appendix
J.

Changes to the Lexer

Example 5-23. Definitions in embedded lexer
%{
#include "sql2.h"
#include <string.h>

int lineno = 1;
void yyerror(char *s);

      /* macro to save the text of a SQL token */
#define SV save_str(yytext)

      /* macro to save the text and return a token */
#define TOK(name)   { SV;return name;}
%}

%s SQL
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The lexer actually has the largest set of changes. Example 5-23 shows the modified
definitions. We have defined two C macros, SV that calls save_str() to save the text of
the current token, and TOK() which saves the token text and returns a token to the
parser. We’ve also added a new start state called SQL, using the standard INITIAL state
as the normal non-SQL state.

Example 5-24. Embedded lexer rules
EXEC[   \t]+SQL  { BEGIN SQL; start_save ( ) ;}

        /* literal keyword tokens */

<SQL>ALL         TOK(ALL)
<SQL>AND         TOK(AND)
<SQL>AVG         TOK (AMMSC)

      ... all the other reserved words and tokens ...

      /* names */
<SQL>[A-Za-z] [A-Za-z0-9_] *     TOK(NAME)

      /* parameters */
<SQL>":"[A-Za-z][A-Za-z0-9_]*{
                 save_param(yytext+1) ;
                 return PARAMETER;
             }

         /* numbers */

<SQL>[0-9]+ |
<SQL>[0-9]+"."[0-9]* |
<SQL>"." [0-9]*        TOK(INTNUM)

<SQL>[0-9]+[eE][+-]?[0-9]+   |
<SQL>[0-9]+"."[0-9]*[eE][+-]?[0-9]+ |
<SQL>"." [0-9]*[eE] [+-]?[0-9]+TOK(APPROXNUM)

      /* strings */

<SQL>'[^'\n]*'   {
            int c = input();

            unput(c);   /* just peeking */
            if(c  !=  '\")   {
                   SV;return STRING;
            } else
                   yymore();
      }

<SQL>'[^'\n] *$    {    yyerror("Unterminated string");   }
<SQL>\n        { save_str("   ");lineno++;   }
\n         { lineno++;  ECHO;}
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<SQL>[ \t\r]+     save_str("  ");   /* whitespace */

<SQL>"--".* ;      /* comment */

.           ECHO; /* random non-SQL text */
%%

Example 5-24 shows the revised lexer rules. The first new rule matches the “EXEC
SQL” keyword and puts the scanner into SQL state. It also calls start_save() to initialize
the buffer where we’ll save the SQL command. Then we prefix all of the existing token
rules with “<SQL>” so they only match in SQL mode, and change the actions to use SV
or TOK() to save each token. Since we need to treat parameters a little differently from
other tokens, we’ve added a new lex rule for parameters which matches a colon followed
by a name, and call save_param() to save the parameter reference. Our SQL rules that
match a newline and whitespace each save a single space; since all whitespace is equiv‐
alent in SQL this makes the saved string shorter. Finally, we add two rules without the
<SQL> prefix that match and echo all characters when we’re not in SQL mode. In the
user subroutines section, we add a tiny routine un_sql() which switches the lexer from
SQL mode to INITIAL mode; this routine has to be in the lexer since that’s the only
place the BEGIN macro is defined.

    /* leave SQL lexing mode */
    un_sql ()
    {
           BEGIN INITIAL;
    }   /* un_sql  */

Changes to the Parser

The changes to the parser are much smaller than the changes to the lexer. We add a
%token definition of PARAMETER. We add actions to the start rules:

    sql_list:
               sql ';' { end_sql(); }
          |    sql_list sql ';' { end_sql (); }
          ;

These call the routine end_sql() each time a complete SQL statement has been parsed
to switch the lexer out of SQL mode.

Since we now have a special token for parameters, we change our parameter rule to refer
to the new token:

    parameter:
               PARAMETER   /*  :name handled in parser */
          ;

138 | Chapter 5: Parsing SQL



Since embedded SQL doesn’t use the module language, we ripped out the rules for the
module language, leaving only the rules for cursor definitions, and made a cursor def‐
inition a top-level SQL statement:

    sql:
               cursor_def
          ;

That’s it—the parser is otherwise unchanged.

Auxiliary Routines

Example 5-25. Highlights of embedded SQL text support routines

char save_buf[2000];  /* buffer for SQL command */
char *savebp;        /* current buffer pointer */

#define NPARAM  20   /* max params per function */
char *varnames [NPARAM]; /* parameter names */

/* start an embedded command after EXEC SQL */
start_save(void);

/* save a SQL token */
save_str(char *s);

/* save a parameter reference */
save_param(char *n) ;

/* end of SQL command, now write it out */
end_sql(void);

We wrote some string processing routines to buffer up and write out the SQL commands
as they are parsed. The data structures and entry points are in Example 5-25, and the
full text is in Appendix J. We save the commands in a large fixed character buffer,
save_buf[] and use the character pointer savebp to track the current position in the
buffer. Each variable name used as a parameter is saved in varnames[]. If a variable is
used twice in the same command, we will only save it once.

Routine start_save() initializes the buffer pointer when the lexer sees “EXEC SQL”. Each
token is saved with save_str(), which appends its argument to save_buf. Parameter
references are handled by save_param() which looks up its argument, the variable name,
in varnames[], entering the name if not already present, and then saves a reference of
the form “#N“.

When the parser has seen an entire SQL command, it calls end_sql(), which writes out
a call to the run-time interpreter routine exec_sql(). It passes the saved buffer as a quoted
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string, breaking it into lines as necessary, and also passes the address of each variable in
the parameter table. Finally, it calls our lexer routine un_sql() to take the lexer out of
the SQL state. All of the output goes to yyout, the default lex output stream, just as the
ECHO statements in the lexer pass through non-SQL code.

Using the Preprocessor

We changed the Makefile to link in our auxiliary routines with the lexer and parser.
Since we haven’t changed the main routine, other than its messages (a purely cosmetic
change) we run the preprocessor the same way we ran the syntax checker.

Example 5-26 shows the result of running the preprocessor on the embedded SQL in
Example 5-2.

Example 5-26. Output from embedded SQL preprocessor
char flavor[6], name[8], type[5];
int SQLCODE;    /* global status variable */

exec_sql(" DECLARE flav CURSOR FOR SELECT Foods.name, Foods.\
type FROM Foods WHERE Foods. flavor = #1 ",
     &flavor);

main()
{

      scanf("%s",  flavor);
      exec_sql(" OPEN flav ");

      for(;;)   {
            exec_sql(" FETCH flav INTO #1, #2 ",
      &name,
      &type);
            if(SQLCODE != 0)
                  break;
            printf("%8.8s %5.5s\n", name, type);
      }
      exec_sql(" CLOSE flav ");

}

Exercises

1. In several places, the SQL parser accepts more general syntax than SQL itself per‐
mits. For example the parser accepts the invalid scalar expression “MIN(*)” and it
accepts any expression as the left operand of a LIKE predicate, although that
operand has to be a column reference. Fix the syntax checker to diagnose these
erroneous inputs. You can either change the syntax or add action code to check the
expressions. Try both and see which is easier, and which gives better diagnostics.
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2. Turn the parser into a SQL cross-referencer, which reads a set of SQL statements
and produces a report showing for each name where it is defined and where it is
referenced.

3. (Term project) Modify the embedded SQL translator to interface to a real data base
on your system.
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CHAPTER 6

A Reference for Lex Specifications

In this chapter, we discuss the format of the lex specification and describe the features
and options available. This chapter summarizes the capabilities demonstrated in pre‐
vious chapters and covers features that have not been discussed.

After the section on the structure of a lex program, the sections in this chapter are in
alphabetical order by feature.

Structure of a Lex Specification

A lex program consists of three parts: the definition section, the rules section, and the
user subroutines.

    ...definition section ...
    %%
            
    ... rules section ...
    %%
    ... user subroutines ...

The parts are separated by lines consisting of two percent signs. The first two parts are
required, although a part may be empty. The third part and the preceding %% line may
be omitted. (This structure is the same as that used by yacc, from which it was copied.)

Definition Section

The definition section can include the literal block, definitions, internal table declarations,
start conditions, and translations. (There is a section on each in this reference.) Lines
that start with whitespace are copied verbatim to the C file. Typically this is used to
include comments enclosed in “/*” and “*/”, preceded by whitespace.

143



1. In the absence of braces, some versions of lex take the entire rest of the line, others just take up to a semicolon.
For maximum clarity and portability, use braces for all but the most trivial C code.

Rules Section

The rules section contains pattern lines and C code. A line that starts with whitespace,
or material enclosed in “%{” and “%}” is C code. A line that starts with anything else is
a pattern line.

C code lines are copied verbatim to the generated C file. Lines at the beginning of the
rules section are placed near the beginning of the generated yylex() function, and should
be declarations of variables used by code associated with the patterns and initialization
code for the scanner. C code lines anywhere else are copied to an unspecified place in
the generated C file, and should contain only comments. (This is how you put comments
in the rules section outside of actions.)

Pattern lines contain a pattern followed by some whitespace and C code to execute when
the input matches the pattern. If the C code is more than one statement or spans multiple
lines, it must be enclosed in braces {}.1

When a lex scanner runs, it matches the input against the patterns in the rules section.
Every time it finds a match (the matched input is called a token) it executes the C code
associated with that pattern. If a pattern is followed by a single vertical bar, instead of
C code, the pattern uses the same C code as the next pattern in the file. When an input
character matches no pattern, the lexer acts as though it matched a pattern whose code
is “ECHO;” which writes a copy of the token to the output.

User Subroutines

The contents of the user subroutines section is copied verbatim by lex to the C file. This
section typically includes routines called from the rules. If you redefine input(), un‐
put(), output(), or yywrap(), the new versions or supporting subroutines might be here.

In a large program, it is sometimes more convenient to put the supporting code in a
separate source file to minimize the amount of material recompiled when you change
the lex file.

BEGIN

The BEGIN macro switches among start states. You invoke it, usually in the action code
for a pattern, as:

    BEGIN statename;
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The scanner starts in state 0 (zero), also known as INITIAL. All other states must be
named in %s or %x lines in the definition section. (See the section "Start States" later in
this chapter.)

Notice that even though BEGIN is a macro, the macro itself doesn’t take any arguments,
and the statename need not be enclosed in parentheses, although it is good style to do
so.

Bugs

Like any other computer programs, versions of lex have their share of bugs. There are
also a few common pattern matching peculiarities that are worth mentioning.

Ambiguous Lookahead

Patterns that use the trailing context operator, where the end of the token can match
the same text as the beginning of the trailing context, don’t work reliably. For example:

    (a|ab)/ba
    zx*/xy*

This is a problem with the pattern matching algorithm usually used, so it is unlikely to
be fixed soon. flex will issue a warning when this problem makes it impossible to generate
a correct scanner.

AT&T Lex

No two ways about it, AT&T lex is buggy. This is partly because it was the first imple‐
mentation, and partly because it was written by an undergraduate summer intern. There
is a bug with counted repetitions of character ranges, so patterns like this don’t work:

    [0-9] +− [0-9] {2} − [0-9]

We’ve also had trouble with comments in the rules section. For example, this example
from Chapter 1 gets a spurious error message from lex unless you remove the two com‐
ment lines:

    %%
    \n     { state = LOOKUP; }    /* end of line, return to default state */

           /* whenever a line starts with a reserved part of speech name */
           /* start defining words of that type */
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2. We’ve told the maintainer of flex about this, so by the time you read this it may already be fixed.

    ^verb  { state = VERB; }
    ^adj   { state = ADJ; }
    ^adv   { state = ADV; }
     . . .

There is also an unfortunate tendency for complicated scanners generated by AT&T lex
to fail in hard-to-pinpoint ways.

Flex

flex is much more reliable than AT&T lex. As of version 2.3.7, the only bug of which we
are aware is an obscure one related to the “|” action. This script looks for troff macros
that make the word “lex” italic and de-italicizes them.

    %%

    ^\.I\ +lex$        |
    *\.I\ *\"lex\"$         { fputs("lex", yyout); }

    %%

The input:

    .I lex

produces lexx rather than the correct lex. If you write out the action twice, the bug
goes away.2

Character Translations

Most versions of lex have character translations introduced by %T. Unfortunately, what
they do in different versions varies wildly.

In AT&T lex and MKS lex, a lexer normally uses the native character code that the C
compiler uses, e.g., the code for the character “A” is the C value “A”. Now and then it is
convenient to use some other character code, either because the input stream uses a
different code, such as baudot or EBCDIC, or because lex is looking for patterns in an
input stream not consisting of text at all. Lex character translations let you define an
explicit mapping between bytes that are read by input() and the characters used in lex
patterns. The translations are preceded and followed by lines consisting of %T. Each
translation line contains a number, some whitespace, and then one or more characters.
For example:

146 | Chapter 6: A Reference for Lex Specifications



    %T
    1      aA
    2      bB
    3      cC
    %T

In this example, an input byte with value 1 will match anywhere there is an “A” or “a” in
a pattern, an input byte with value 2 will match anywhere there is a “B” or “b”, and an
input byte with value 3 will match anywhere there is a “C” or “c”.

You may need to modify the input() and unput() macros in AT&T lex or yygetc() in
MKS lex to produce appropriate values if they do not come directly from a file.

If you use translations, every literal character used in a lex pattern must appear on the
right side of a translation line.

flex has a different, nearly useless, version of translations which we do not document
here. It is scheduled to be removed from future versions of flex. The simplest application
of flex’s translations, folding upper and lowercase letters together, is available much more
easily by using the -i flag with flex.

Context Sensitivity

Lex provides several ways to make your patterns sensitive to left and right context, that
is, to the text that precedes or follows the token.

Left Context

There are three ways to handle left context: the special beginning of line pattern char‐
acter, start states, and explicit code.

The character “ˆ” at the beginning of a pattern tells lex to match the pattern only at the
beginning of the line. The “ˆ” doesn’t match any characters, it just specifies the context.

Start states can be used to require that one token precede another:

    %s MYSTATE
    %%
    first { BEGIN MYSTATE; }
    . . .
    <MYSTATE>second  { BEGIN 0; }

In this lexer, the token second is only recognized after the token first. There may be
intervening tokens between first and second.

In some cases you can fake left context sensitivity by setting flags to pass context infor‐
mation from one token’s routine to another:
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    %{
    int flag = 0;
    %}
    %%
    a     { flag = 1; }
    b     { flag = 2; }
    zzz   {
                switch(flag) {
          case 1:     a_zzz_token(); break;
          case 2:     b_zzz_token(); break;
          default: plain_zzz_token(); break;
                }
                flag = 0;
          }

Right Context

There are three ways to make token recognition depend on the text to the right of the
token: the special end of line pattern character, the slash operator, and yyless().

The “$” character at the end of a pattern makes the token only match at the end of a
line, i.e., immediately before a \n character. Like the “^” character, “$” doesn’t match
any characters, it just specifies context. It is exactly equivalent to “/\n”, and therefore,
can’t be used with trailing context.

The “‘/” characters in a pattern let you include explicit trailing context. For instance, the
pattern “abc/de” matches the token “abc”, but only if it is immediately followed by “de”.
The “/” itself matches no characters. Lex counts trailing context characters when de‐
ciding which of several patterns has the longest match, but the characters do not appear
in yytext[ ], nor are they counted in yyleng.

The yyless() function tells lex to “push back” part of the token that was just read. The
argument to yyless() is the number of token characters to keep. For example:

    abcde { yyless(3); }

has nearly the same effect as “abc/de” does because the call to yyless() keeps three char‐
acters of the token and puts back the other two. The only differences are that in this case
the token in yytext[] contains all five characters and yyleng contains five instead of three.

Definitions (Substitutions)

Definitions (or substitutions) allow you to give a name to all or part of a regular ex‐
pression, and refer to it by name in the rules section. This can be useful to break up
complex expressions and to document what your expressions are supposed to be doing.
A definition takes this form:

    NAME   expression
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The name can contain letters, digits, and underscores, and must not start with a digit.
Some implementations also allow hyphens.

In the rules section, patterns may include references to substitutions with the name in
braces, for example, “{NAME}”. The expression corresponding to the name is substituted
literally into pattern. For example:

    DIG       [0-9]
    ...
    %%
    {DIG}+           process_integer();
    {DIG}+\.{DIG}*   |
    \.{DIG}+   process_real() ;

There is one small way that the treatment of substitutions varies among versions of lex.
In most versions, when the pattern corresponding to the name is substituted in, it is
treated as though it were surrounded by parentheses. In a few versions, though, it is not.
This makes a difference in some cases such as:

    PAT     abc
    %%
    {PAT}+

If the pattern is treated as “(abc)+”, it matches any number of copies of “abc”, while if it
is “abc+”, it matches “abc” followed by any number of c’s. To maximize portability, enclose
the patterns in definitions in parentheses, as shown here:

    PAT      (abc)

ECHO

In the C code associated with a pattern, the macro ECHO writes the token to the current
output file yyout. It is equivalent to:

    fprintf(yyout, "%s", yytext);

The default action in lex for input text that doesn’t match any pattern is to write the text
to the output, equivalent to ECHO. In flex, the command-line flag -s makes the default
action abort, useful in the common case that the scanner is supposed to include patterns
to handle all possible input.

In some versions of lex, you can redefine ECHO to do something else with the characters.
If you redefine ECHO, you will also probably want to redefine output(), which normally
sends a single character to yyout.
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3. See "yytext" for the implications of changing the flex buffer size.

Include Operations (Logical Nesting of Files)

Many input languages have some sort of include statement that logically inserts another
file in place of the include statement. At the beginning of your program, you can assign
any open stdio file to yyin to have the scanner read from that file. Unfortunately, there
is no portable way in lex to handle nested input files, but here are some hints for major
implementations.

File Chaining with yywrap()

When a lexer reaches the end of the input file, it calls yywrap(). You can write your own
yywrap() that switches to a new input file by changing or reopening yyin, and continue
scanning. See the section "yywrap()" for more details.

File Nesting

You handle nested files differently in different versions of lex. We briefly describe the
facilities provided by the major implementations.

AT&T Lex

In AT&T lex, you can redefine the standard input() and unput() macros to handle
multiple input files. You’ll need to keep a stack or linked list of structures containing the
FILE pointer, the pushback buffer and indices, and line number in the file, and have
input() and unput() use the top structure on the stack. At the end of a file, close the file,
remove the top structure from the stack, and continue from the next file on the stack.

Flex

In flex you cannot redefine input() or unput(). (The lexer doesn’t even use them itself,
but takes characters from the underlying data structures for speed.) But you can redefine
YY_INPUT, which is the macro that flex calls to read text from the input file. (See "Input
from Strings.”) Even more useful are flex buffers, defined as type
YY_BUFFER_STATE. The routine yy_create_buffer(FILE *, size z0), makes a new flex
buffer of the given size, usually YY_BUF_SIZE,* reading from the stdio FILE. A call to
yy_switch_to_buffer(flexbuf) tells the scanner to read from the corresponding file, and
yy_delete_buffer(flexbuf) gets rid of a flex buffer. The current buffer is YY_CUR‐
RENT_BUFFER. Also helpful is the special token pattern “<<EOF>>” which matches
at the end of a file after the call to yywrap().
3
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MKS Lex

MKS lex defines routines yySaveScan() and yyRestoreScan() to save and restore the
current state of the scanner. They use an object of type YY_SAVED that contains the
state. To save the state, call yySaveScan(file). It returns a YY_SAVED object, and ar‐
ranging to read from the stdio stream file. To restore a previously saved state, call yyR‐
estoreScan(saved) which restores a previously saved state.

Abraxas Pclex

Although pclex is based on flex, pclex does not include the buffer-switching routines
available in flex. Saving and restoring buffer states is so difficult as to be impractical.

One approach is to include multiple copies of the scanner and to switch scanners when
you need to handle an included file. For more information, see "Multiple Lexers in One
Program.”

POSIX Lex

The POSIX.2 standard takes a simple approach to file inclusion: it doesn’t support it at
all. There is no standard way in POSIX lex to handle multiple input files other than
yywrap(). Most implementations will provide some sort of support as an extension, but
you’ll have to consult the documentation for your specific version.

Input from Strings

Normally lex reads from a file, but sometimes you want it to read from some other
source, such as a string in memory. All versions of lex make this possible, but the details
vary considerably.

AT&T Lex

AT&T lex reads all of its input with the input() macro. To change the input source,
redefine the input() and unput() macros. For example:

    %{
    extern char *mystring;

    #undef input
    #undef unput
    #define input()  (*mystring++)
    #define unput(c) (*--mystring = c)
    %}

At the end of the input data, input() should return 0.
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Flex

Although flex provides an input() function, it gets characters using optimized in-line
code. You can redefine YY_INPUT, the macro it uses to read blocks of data. It is called
as:

    YY_INPUT(buffer, result, max_size)

where buffer is a character buffer, result is a variable in which to store the number of
characters actually read, and max_size is the size of the buffer. To read from a string,
have your version of YY_INPUT copy data from your string buffer (Example 6-1).

Example 6-1. Taking flex input from a string

    %{
    #undef YY_INPUT
    #define YY_INPUT(b, r, ms) (r = my_yyinput(b, ms))
    %}
    . . .
    extern char myinput[];
    extern char *myinputptr;/* current position in myinput */
    extern int *myinputlim; /* end of data */

    int
    my_yyinput(char *buf, int max_size)
    {
          int n = min(max_size, myinputlim - myinputptr);

          if(n > 0) {
                memcpy(buf, myinputptr, n);
                myinputptr += n;
          }
          return n;
    }

Abraxas Pclex

Since pclex is derived from flex, it uses the same input mechanism. Redefine YY_IN‐
PUT() as described above to change the input source.

MKS Lex

MKS lex uses the macro yygetc() to read all input characters. To change the input source,
redefine yygetc(). MKS lexers handle pushback automatically, so you need not worry
about it. At the end of input, yygetc() returns EOF. Here is a possible definition, slightly
convoluted to return EOF when the character in the string is a null:
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    %{
    extern char *mystring;
    #undef yygetc
    #define yygetc() (*mystring? *mystring++ : EOF)
    %}

POSIX Lex

The POSIX standard doesn’t define any way to change the input source, so programs
that read from some other place than yyin are not portable from one implementation
to another.

input()

The input() routine provides characters to the lexer. In some versions of lex, e.g., AT&T
lex, it is a macro, while others, e.g., flex, define it as a function.

When the lexer matches characters it conceptually calls input() to fetch each character.
Some implementations bypass input() for performance reasons, but the effect is the
same.

The most likely place to call input() is in an action routine to do something special with
the text that follows a particular token. For example, here is a way to handle C comments:

    "/*" {   int c1 = 0, c2 = input ();

             for(;;) {
                   if(c2 == EOF)
                         break;
                   if(c1 == '*' && c2 == '/')
                         break;
                   c1 = c2;
                   c2 = input();
             }

         }

The calls to input() process the characters until either end-of-file or the characters “*/”
occur. This approach is the easiest way to handle C style comments in the absence of
exclusive start states (see "Start States“), and is always the best way to handle long quoted
strings and other tokens that might be too long for lex to buffer itself.

In some versions of lex it is possible to redefine input() to take input from something
other than a stdio file. Other versions of lex don’t let you redefine input(), but have other
ways to change the input source. See "Input from Strings" for details. Remember that a
redefined input() has to be able to handle characters pushed back by unput().
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Internal Tables (%N Declarations)

AT&T and MKS lex use internal tables of a fixed size which may not be big enough for
large scanners, although they do allow the programmer to increase the size of the tables
explicitly. You increase the sizes of the tables with “%a”, “%e”, “%k”, “%n”, “%o”, and “%p”
lines in the definition section, for example:

    %p 6000
    %e 3000

To find out what the current statistics are, run lex with the -v flag. For example, the MGL
lexer in Example 4-7 produces this report:

    151/2000 nodes(%e), 551/5000 positions(%p), 86/2500 (%n),
    6182 transitions, 27/1000 packed char classes(%k),
    234/5000 packed transitions(%a), 241/5000 output slots(%o)

Clearly, it normally takes a significantly larger grammar than this to fill the default size
of the tables.

It is possible to construct regular expressions that will lead to very large state machines
which need larger than normal tables. In general, it is better to simplify these expressions
by either writing them in a simpler form, splitting them into multiple expressions, or
writing C code to handle more of the work.

Except for very large projects, it should not be necessary to increase the table sizes.
Unless lex complains that one of the tables has overflowed, you need not worry about
them at all. To figure out optimal sizes for the tables, significantly increase the sizes of
the tables that overflow, run lex with the -v flag, and adjust the values closer to the actual
needs of the lexer.

Some very old versions of lex also accept “%r” to make lex generate a lexer in Ratfor and
“%c” for a lexer in C.

lex Library

Most lex implementations come with a library of helpful routines. You can link in the
library by giving the -ll flag at the end of the cc command line on UNIX systems, or the
equivalent on other systems. The contents of the library vary among implementations,
but it always contains main().

main()

All versions of lex come with a minimal main program which can be useful for quickie
programs and for testing. It’s so simple we reproduce it here:
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    main(int ac,  char **av)
    {
           return yylex();
    }

As with any library routine, you can provide your own main().

Other Library Routines

Many of the routines that you can call from lex scanners, e.g., yymore(), yyless(), and
yywrap() may also be in the library, along with routines that support other lex features
such as REJECT.

Any lex program can redefine yywrap() to change what happens at end of file. Many
implementations also let you redefine input(), unput(), and output(). See the sections
on those routines for details.

Line Numbers and yylineno

If you keep track of the line number in the input file, you can report it in error messages.
Some versions of lex define yylineno to contain this line number and automatically
update it, but most do not.

Keeping track of the line number is easy. Initialize your line number variable to 1, and
increment it in any lex rule that matches a newline character, as shown here:

    %{
          int lineno = 1;
    %}
    %%
    ...
    \n    { lineno++; }

Lexers that handle nested include files have to save and restore the line number asso‐
ciated with each file.

Literal Block

The literal block in the definition section is C code bracketed by the lines “%{” and “%}”.

    %{
    ... C code and declarations...
    %}
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The contents of the literal block are copied verbatim to the generated C source file near
the beginning, before the beginning of yylex(). The literal block usually contains dec‐
larations of variables and functions used by code in the rules section, as well as #in‐
clude lines for header files.

Multiple Lexers in One Program

You may want to have lexers for two partially or entirely different token syntaxes in the
same program. For example, an interactive debugging interpreter might have one lexer
for the programming language and use another for the debugger commands.

There are two basic approaches to handling two lexers in one program: combine them
into a single lexer, or put two complete lexers into the program.

Combined Lexers

You can combine two lexers into one by using start states. All of the patterns for each
lexer are prefixed by a unique set of start states. When the lexer starts, you need a little
code to put the lexer into the appropriate initial state for the particular lexer in use, e.g.,
the following code (which will be copied at the front of yylex()):

    %s INITA INITB INITC
    %%
    %{
         extern first_tok, first_lex;

         if(first_lex) {
               BEGIN first_lex;
               first_lex = 0;
         }
         if(first_tok) {
               int holdtok = first_tok;
               first_tok = 0;
               return holdtok;
         }
    %}

In this case, before you call the lexer, you set first_lex to the initial state for the lexer.
You will usually use a combined lexer in conjunction with a combined yacc parser, so
you’ll also usually have code to force an initial token to tell the parser which grammar
to use. See “Variant and Multiple Grammars” in Chapter 8.

The advantage of this approach is that the object code is somewhat smaller, since there
is only one copy of the lexer code, and the different rule sets can share rules. Disadvan‐
tages are that you have to be careful to use the correct start states everywhere, you cannot
have both lexers active at once (i.e., you can’t call yylex() recursively), and it is difficult
to use different input sources for the different lexers.
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Multiple Lexers

The other approach is to include two complete lexers in your program. Lex doesn’t make
this easy, because every lexer it generates has the same entry point: yylex(). Furthermore,
most versions of lex put the scanning tables and scanner buffers in global variables with
names like yycrank and yysvec. If you just translated two scanners and compiled and
linked all the two resulting files (renaming at least one of them to something other than
lex.yy.c), you would still get a long list of multiply defined symbols. The trick is to change
the names that lex uses for its functions and variables.

Using the p Flag

Some versions of lex, notably MKS lex, provide a command-line switch -p to change the
prefix used on the names in the scanner generated by lex. For example, the command:

    lex -p pdq myscan.y

produces a scanner with the entry point pdqlex(), which reads from file pdqin and so
forth. The names affected are yylex(), yyin, yyout, yytext, yylineno, yyleng, yymore(),
yyless(), yywrap(), as well as all of the implementation-specific variables. The other
variables used in the lexer are renamed and are also made static. There is also a -o flag
to specify the name of the generated lexer, e.g.:

    lex -p pdq -o pdqtab.c mygram.y

produces pdqtab.c.

Faking It

Lex has no automatic way to change the names in the generated C routine, so you have
to fake it. On UNIX systems, the easiest way to fake it is with the stream editor sed.
Assuming you are using AT&T lex, create the file yy-lsed containing these sed com‐
mands. (Here we use the new prefix “pdq”.)

    s/yyback/pdqback/g
    s/yybgin/pdqbgin/g
    s/yycrank/pdqcrank/g
    s/yyerror/pdqerror/g
    s/yyestate/pdqestate/g
    s/yyextra/pdqextra/g
    s/yyfnd/pdqfnd/g
    s/yyin/pdqin/g
    s/yyinput/pdqinput/g
    s/yyleng/pdqleng/g
    s/yylex/pdqlex/g
    s/yylineno/pdqlineno/g
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    s/yylook/pdqlook/g
    s/yylsp/pdqlsp/g
    s/yylstate/pdqlstate/g
    s/yylval/pdqlval/g
    s/yymatch/pdqmatch/g
    s/yymorfg/pdqmorfg/g
    s/yyolsp/pdqolsp/g
    s/yyout/pdqout/g
    s/yyoutput/pdqoutput/g
    s/yyprevious/pdqprevious/g
    s/yysbuf/pdqsbuf/g
    s/yysptr/pdqsptr/g
    s/yysvec/pdqsvec/g
    s/yytchar/pdqtchar/g
    s/yytext/pdqtext/g
    s/yytop/pdqtop/g
    s/yyunput/pdqunput/g
    s/yyvstop/pdqvstop/g
    s/yywrap/pdqwrap/g

Then, after you run lex, this command edits the generated scanner:

    sed -f yy-lsed lex.yy.c > lex.pdq.c

You would probably want to put these rules in a Makefile:

    lex.pdq.c:  myscan.l
          lex -t myscan.l | sed -f yy-lsed > $@

If you are using MS-DOS and don’t have access to sed, in the worst case you can go
through the generated C file by hand, changing the names.

Another approach that may be easier in some cases is to use C preprocessor #define s
at the beginning of the grammar to rename the variables:

    %{
    #define yyback pdqback
    #define yybgin pdqbgin
    #define yycrank pdqcrank
    #define yyerror pdqerror
    #define yyestate pdqestate
    #define yyextra pdqextra
    #define yyfnd pdqfnd
    #define yyin pdqin
    #define yyinput pdqinput
    #define yyleng pdqleng
    #define yylex pdqlex
    #define yylineno pdqlineno
    #define yylook pdqlook
    #define yylsp pdqlsp
    #define yylstate pdqlstate
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    #define yylval pdqlval
    #define yymatch pdqmatch
    #define yymorfg pdqmorfg
    #define yyolsp pdqolsp
    #define yyout pdqout
    #define yyoutput pdqoutput
    #define yyprevious pdqprevious
    #define yysbuf pdqsbuf
    #define yysptr pdqsptr
    #define yysvec pdqsvec
    #define yytchar pdqtchar
    #define yytext pdqtext
    #define yytop pdqtop
    #define yyunput pdqunput
    #define yyvstop pdqvstop
    #define yywrap pdqwrap
    %}

This avoids using sed. In practice you will probably want to rename both lex and yacc
names, so put all of the definitions for both in a file, say pdqdefs.h. Wherever you use
the names, include pdqdefs.h first, for instance, in the lex source file:

    %{
    #include "pdqdefs.h"
    #include "pdq.tab.h"
    %}

In this case pdq.tab.h is the yacc-generated header that includes the token name defi‐
nitions. Since it usually defines yylval, it needs to follow pdqdefs.h.

For flex lexers, the variables that need to be renamed are:

    yy_create_buffer
    yy_delete_buffer
    yy_init_buffer
    yy_load_buffer_state
    yy_switch_to_buffer
    yyin
    yyleng
    yylex
    yyout
    yyrestart
    yytext

You can use either of the two techniques above to rename them.

output()
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Some versions of lex define a function or macro output(c) that writes its argument to
the output file yyout. This is always equivalent to:

    putc(c, yyout)

If it exists, you can use it in your actions, and the scanner may use it to implement the
default action that sends unmatched characters to the output.

If output() is a macro, you may want to define it to do something different with un‐
matched input characters.

A well-designed lexer usually has cases that match all possible input, in which case
output() should never be called automatically from inside the lexer.

If you redefine output(), also redefine the macro ECHO which copies the current con‐
tents of yytext to the output.

Portability of Lex Lexers

Lex lexers are fairly portable among C implementations. There are two levels at which
you can port a lexer: the original lex specification or the C source file generated by lex.

Porting Lex Specifications

As long as you can avoid using the implementation-specific features of one implemen‐
tation, you can usually write portable lex specifications. Particular issues are:

• Don’t use exclusive start states if you want to port to AT&T lex.
• Maximum table sizes vary, so a lexer that fits in one implementation may be too big

for another.
• The size of the token buffer yytext varies from as little as 100 bytes up to 8K bytes.
• Take input only from the usual input file yyin, since there is no standardization of

taking input from anywhere else. See the sections "Input from Strings" and "Include
Operations" for details.

Porting Generated C Lexers

Most versions of lex generate portable C code, and you can usually move the code to
any C compiler without trouble.

Libraries
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The lex library is usually provided only in object form. For the two standard library
routines, main() and yywrap(), this is rarely a problem since you can easily write your
own versions. See "lex Library.” Some versions, notably AT&T lex, put other routines
such as yyreject() and yyless() into the library. If you use them, you can’t port lexers
unless you have the library source. Flex uses no library, so its code is usually the most
portable.

Buffer Sizes

You may want to adjust the size of some buffers. Flex uses two input buffers, each by
default 8K, which may be too big for some microcomputer implementations. See "yy‐
text" for details on adjusting buffer sizes.

Character Sets

The knottiest portability problem involves character sets. The C code generated by every
lex implementation uses character codes as indexes into tables in the lexer. If both the
original and target machine use the same character code, such as ASCII, the ported lexer
will work. You may have to deal with different line end conventions: UNIX systems end
a line with a plain “\n” while MS-DOS and other systems use “\r\n”. You often can have
lexers ignore “\r” and treat “\n” as the line end in either case.

When the original and target machine use different character sets, e.g., ASCII and
EBCDIC, the lexer won’t work at all, since all of the character codes used as indexes will
be wrong. Sophisticated users have sometimes been able to post-process the tables to
rebuild them for other character sets, but in general the only reasonable approach is to
find a version of lex that runs on the target machine, or else to redefine the lexer’s input
routine to translate the input characters into the original character set. See "Input from
Strings" for how to change the input routine.

The translation tables in AT&T lex and MKS lex provide a way to specify character codes
explicitly, so if you are willing to use fixed numeric codes for all your characters, you
can write very portable lexers. See "Character Translations.”

Regular Expression Syntax

Lex patterns are an extended version of the regular expressions used by editors and
utilities such as grep. Regular expressions are composed of normal characters, which
represent themselves, and metacharacters which have special meaning in a pattern. All
characters other than these listed below are regular characters. Whitespace (spaces and
tabs) separate the pattern from the action and so must be quoted to include them in a
pattern.
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Metacharacters

.
Matches any single character except the newline character “\n"'.

[]
Match any one of the characters within the brackets. A range of characters is indi‐
cated with the “-” (dash), e.g., “[0-9]” for any of the 10 digits. If the first character
after the open bracket is a dash or close bracket, it is not interpreted as a metachar‐
acter. If the first character is a circumflex “ˆ” it changes the meaning to match any
character except those within the brackets. (Such a character class will match a
newline unless you explicitly exclude it.) Other metacharacters have no special
meaning within square brackets except that C escape sequences starting with “\”
are recognized. POSIX lex adds more special square bracket patterns for interna‐
tionalization. See below for details.

*
Matches zero or more of the preceding expression. For example, the pattern:

    a.*z

matches any string that starts with “a” and ends with “z”, such as “az” “abz” or
“alcatraz”.

+
Matches one or more occurence of the preceding regular expression. For example:

    x+

matches “x”, “xxx”, or “xxxxxx”, but not an empty string, and

    (ab)+

matches “ab”, “abab”, “ababab”, and so forth.

?
Matches zero or one occurrence of the preceding regular expression. For example:

    −?[0-9]+

indicates a number with an optional leading unary minus.

{}
Mean different things depending on what is inside. A single number “{n}” means
n repetitions of the preceding pattern, e.g.,

    [A-Z]{3}
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matches any three uppercase letters. If the braces contain two numbers separated
by a comma, “{n,m}”, they are a minimum and maximum number of repetitions of
the preceding pattern. For example:

    A{1,3}

matches one to three occurrences of the letter “A”. If the second number is missing,
it is taken to be infinite, so “{1,}” means the same as “+” and “{0,}” the same as “*”.

If the braces contain a name, it refers to the substitution by that.

\
If the following character is a lowercase letter, then it is a C escape sequence such
as “\t” for tab. Some implementations also allow octal and hex characters in the
form “\123” and “\x3f ”. Otherwise “\” quotes the following character, so “\*” match‐
es an asterisk.

()
Group a series of regular expressions together. Each of “*”, “+”, and “[]” effects only
the expression immediately to its left, and “|” normally affects everything to its left
and right. Parentheses can change this, for example:

    (ab|cd)?ef

matches “abef ”, “cdef ”, or just “ef ”.

|
Match either the preceding regular expression or the subsequent regular expression.
For example:

    twelve|12

matches either “twelve” or “12”.

“. . .”
Match everything within the quotation marks literally. Meta-characters other than
“\” lose their meaning. For example:

    "/*"

matches the two characters “/*”.

/
Matches the preceding regular expression but only if followed by the following
regular expression. For example:

    0/1
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matches “0” in the string “01” but does not match anything in the strings “0” or
“02”. Only one slash is permitted per pattern, and a pattern cannot contain both a
slash and a trailing “$”.

ˆ
As the first character of a regular expression, it matches the beginning of a line; it
is also used for negation within square brackets. Otherwise not special.

$
As the last character of a regular expression, it matches the end of a line—otherwise
not special. Same meaning as “/\n” when at the end of an expression.

<>
A name or list of names in angle brackets at the beginning of a pattern makes that
pattern apply only in the given start states.

<<EOF>>
(flex only) In flex the special pattern <<EOF>> matches the end of file.

POSIX Extensions

POSIX defines new regular expression syntax to handle character sets other than ASCII
and languages other than English in a portable and language-independent way. These
are supposed to be accepted by all utilities which handle regular expressions such as sed
and grep, as well as in lex. The three new expressions are collating symbols, equivalence
classes, and character classes.

A collating symbol is a multicharacter sequence which is treated as a single character,
such as Spanish “ch” and “ll” or Dutch “ij”. A collating symbol is written inside square
brackets and dots, e.g., “[.ch.]”. Collating symbols are only recognized within character
class expressions, such as “[abc[.ch.]d]”.

An equivalence class is a set of characters that sort together, typically accented versions
of the same letter such as “a”, “á”, and “â”. The characters in the class are enclosed inside
square brackets and equal signs; for instance, “[=a=]” stands for any one of the characters
in the class, in this example the same as “[aáâ]”.

A character class expression stands for any character of a named type handled by the
ctype macros, with the types being alnum, alpha, blank, cntrl, digit, graph, lower, print,
punct, space, upper, and xdigit. The class name is enclosed in square brackets and
colons. For example, “[:digit:]” would be equivalent to “[0123456789]”.

As of this writing no versions of lex handle any of the POSIX extensions, but flex will
handle them in the near future.
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REJECT

Usually lex separates the input into non-overlapping tokens. But sometimes you want
all occurrences of a token even if it overlaps with other tokens. The special action
REJECT lets you do this. If an action executes REJECT, lex conceptually puts back the
text matched by the pattern and finds the next best match for it. The example finds all
occurrences of the words “pink”, “pin”, and “ink” in a file, even when they overlap:

    ...
    %%
    pink    { npink++; REJECT;  }
    ink     { nink++; REJECT; }
    pin     { npin++; REJECT; }
    .       |
    \n        ;    /* discard other characters */

If the input contains the word “pink,” all three patterns will match. Without the RE‐
JECT statements, only “pink” would match.

Scanners that use REJECT may be much larger and slower than those that don’t, since
they need considerable extra information to allow backtracking and re-lexing.

Returning Values from yylex()

The C code executed when a pattern matches a token can contain a return statement
which returns a value from yylex() to its caller, typically a parser generated by yacc. The
next time yylex() is called, the scanner picks up where it left off.

When a scanner matches a token of interest to the parser (e.g., a keyword, variable name,
or operator) it uses return to pass the token back to the parser. When it matches a token
not of interest to the parser (e.g., whitespace or a comment) it does not return, and the
scanner immediately proceeds to match another token.

This means that you cannot restart a lexer just by calling yylex(). You have to reset it
into the default state using BEGIN INITIAL, discard any input text buffered up by
unput(), and otherwise arrange so that the next call to input() will start reading the new
input.

Flex makes restarting considerably easier. A call to yyrestart(file), where file is a standard
I/O file pointer, arranges to start reading from that file.

In pclex you can reset the scanner’s state with the macro YY_INIT. You’ll probably want
to rewind yyin or assign it to a new file.

In MKS lex you can use YY_INIT, a macro that only works within the scanner file, or
call yy_reset() which is a routine that you can call from anywhere.
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4. Indeed, this is a singularly common lex programming mistake. This problem is fixed by exclusive start
states, as described in this section.

Start States

You can declare start states, also called start conditions or start rules, in the definition
section. Start states are used to limit the scope of certain rules, or to change the way the
lexer treats part of the file. For example, suppose we have the following C preprocessor
directive:

    #include <somefile.h>

Normally, the angle brackets and the filename would be scanned as the five tokens “<”,
“somefile”, “.”, “h”, and “>”, but after “#include” they are a single filename token. You can
use a start state to apply a set of rules only at certain times. Be warned that those rules
that do not have start states can apply in any state!4 The BEGIN statement (q.v.) in an
action sets the current start state. For example:

    ^"#include" { BEGIN INCLMODE; }
    <INCLMODE>"<" [^>\n]+">" { ... do something with the name ...  }
    <INCLMODE>\n      { BEGIN INITIAL;  /* return to normal */ }

You declare a start state with %s lines. For example:

    %s  PREPROC

creates the start state PREPROC. In the rules section, then, a rule that has <PRE‐
PROC> prepended to it will only apply in state PREPROC. The standard state in which
lex starts is state zero, also known as INITIAL.

Flex and most versions other than AT&T lex also have exclusive start states declared
with %x. The difference between regular and exclusive start states is that a rule with no
start state is not matched when an exclusive state is active. In practice, exclusive states
are a lot more useful than regular states, and you will probably want to use them if your
version of lex supports them.

Exclusive start states make it easy to do things like recognize C language comments:

    %x CMNT
    %%
    "/*" BEGIN CMNT;          /* switch to comment mode */
    <CMNT>.          |
    <CMNT>\n ;                /* throw away comment text */
    <CMNT>"*/"BEGIN INITIAL;  /* return to regular mode */
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This wouldn’t work using regular start states since all of the regular token patterns would
still be active in CMNT state.

In versions of lex that lack exclusive start states, you can get the same effect more pain‐
fully by giving an explicit state to your normal state and by putting a start state on each
expression. Assuming that the normal state is called NORMAL, the example above
becomes:

    %s NORMAL CMNT
    %%
    %{
         BEGIN NORMAL;    /* start in NORMAL state */
    %}
    <NORMAL>"/*"          BEGIN CMNT; /* switch to comment mode */
    <CMNT>.               |
    <CMNT>\n  ;           /* throw away comment text */
    <CMNT>"*/" BEGIN NORMAL;         /* return to regular mode */

This isn’t quite equivalent to the scanner above, because the BEGIN NORMAL is exe‐
cuted each time the routine yylex() is called, which it will be after any token that returns
a value to the parser. If that causes a problem, you can have a “first time” flag, e.g.:

    %s NORMAL CMNT
    %{
         static int first_time = 1;
    %}
    . . .
    %%
    %{
         if(first_time) {
               BEGIN NORMAL;
               first_time = 0;
         }
    %}
    . . .

unput()

The routine unput(c) returns the character c to the input stream. Unlike the analogous
stdio routine unputc(), you can call unput() several times in a row to put several char‐
acters back in the input. The limit of data “pushed back” by unput() varies, but it is
always at least as great as the longest token the lexer recognizes.
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Some implementations let you redefine input() and unput() to change the source of the
scanner’s input. If you redefine unput(), you have to be prepared to handle multiple
pushed back characters. If the scanner itself calls unput(), it will always put back the
same characters it just got from input(), but there is no requirement that calls to un‐
put() from user code to do so.

When expanding macros such as C’s #define, you need to insert the text of the macro
in place of the macro call. One way to do this is to call unput() to push back the text,
e.g.:

    ... in lexer action code...
    char *p = macro_contents () ;
    char *q = p + strlen(p);

    while(q > p)
          unput(*--q);    /* push back right-to-left */

yyinput(), yyoutput(), yyunput()

Some versions of lex, notably AT&T lex, provide the functions yyinput(), yyoutput(),
and yyunput() as wrappers for the macros input(), output(), and unput(), respectively.
These exist so that they can be called from other source modules, in particular the lex
library. If you need them, and your version of lex doesn’t define them, define them
yourself in the user subroutines section:

    int yyinput(void) { return input(); }
    int yyoutput(int c) { output(c); }
    int yyunput(int c) { unput(c); }

yyleng

Whenever a scanner matches a token, the text of the token is stored in the null terminated
string yytext and its length is in yyleng. The length in yyleng is the same as the value
that would be returned by strlen(yytext).

yyless()

You can call yyless(n) from the code associated with a rule to “push back” all but the
first n characters of the token. This can be useful when the rule to determine the bound‐
ary between tokens is inconvenient to express as a regular expression. For example,
consider a pattern to match quoted strings, but where a quotation mark within a string
can be escaped with a backslash:
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    \" [^"]*\"      { /* is the char before close quote a \ ? */
                      if(yytext[yyleng-2]   ==  '\\') {
                           yyless(yyleng-1); /* return last quote */
                           yymore();         /* append next string */
                         } else {
                         ...  /* process string */
                         }
                     }

If the quoted string ends with a backslash before the closing quotation mark, it uses
yyless() to push back the closing quote, and yymore () (q.v.) to tell lex to append the
next token to this one. The next token will be the rest of the quoted string starting with
the pushed back quote, so the entire string will end up in yytext.

A call to yyless() has the same effect as calling unput() with the characters to be pushed
back, but yyless() is often much faster because it can take advantage of the fact that the
characters pushed back are the same ones just fetched from the input.

Another use of yyless() is to reprocess a token using rules for a different start state:

    sometoken  { BEGIN OTHER_STATE; yyless(0); }

BEGIN tells lex to use another start state, and the call to yyless() pushes back all of the
token’s characters so they can be reread using the new start state. If the new start state
doesn’t enable different patterns that take precedence over the current one, yyless(0)
will cause an infinite loop in the scanner as the same token is repeatedly recognized and
pushed back.

yylex()

The scanner created by lex has the entry point yylex(). You call yylex() to start or resume
scanning. If a lex action does a return to pass a value to the calling program, the next
call to yylex() will continue from the point where it left off. (See "Returning Values from
yylex()" for how to begin scanning a new file.)

User Code in yylex()

All code in the rules section is copied into yylex(). Lines starting with whitespace are
presumed to be user code. Lines of code immediately after the “%%” line are placed near
the beginning of the scanner, before the first executable statement. This is a good place
to declare local variables used in code for specific rules. Keep in mind that although the
contents of these variables are preserved from one rule to the next, if the scanner returns
and is called again, automatic variables will not keep the same values.
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Code on a pattern line is executed when that pattern is matched. The code should either
be one statement on one line, ending with a semicolon, or else a block of code enclosed
in braces. When code is not enclosed in braces, some implementations copy the entire
line, while others only copy one statement. For example, in the following case:

    [0-9]+       yylval.ival = atoi(yytext);  return NUMBER;

some versions will throw away the return statement. (Yes, this is poor design.) As a rule,
use braces if there is more than one statement:

    [0-9]+       { yylval.ival = atoi(yytext);  return NUMBER; }

If the code on a line is a single vertical bar, the pattern uses the same code as the next
pattern does:

    %%
    colour       |
    color { printf("Color seen\n");

Code lines starting with whitespace that occur after the first pattern line are also copied
into the scanner, but there is no agreement among implementations where they end up.
These lines should contain only comments:

    rule1 { some statement; }

          /* this comment describes the following rules */

    rule2 { other statement; }

yymore()

You can call yymore() from the code associated with a rule to tell lex to append the next
token to this one. For example:

    %%
    hyper yymore ();
    text   printf("Token is %s\n", yytext);

If the input string is “hypertext,” the output will be “Token is hypertext.”

Using yymore() is most often useful where it is inconvenient or impractical to define
token boundaries with regular expressions. See "yyless()" for an example.

yytext
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Whenever a lexer matches a token, the text of the token is stored in the null terminated
string yytext. In some implementations of lex, yytext is a character array declared by:

    extern char yytext[];

In others it is a character pointer declared by:

    extern char *yytext;

Since the C language treats arrays and pointers in almost the same way, it is almost
always possible to write lex programs that work either way. If you reference yytext in
other source files, you must ensure that they reference it correctly. POSIX lex includes
the new definition lines %array and %pointer which you can use to force yytext to be
defined one way or the other, for compatibility with code in other source files.

The contents of yytext are replaced each time a new token is matched. If the contents
of yytext are going to be used later, e.g., by an action in a yacc parser which calls the lex
scanner, save a copy of the string by using strdup(), which makes a copy of the string in
freshly allocated storage, or a similar routine.

If yytext is an array, any token which is longer than yytext will overflow the end of the
array and cause the lexer to fail in some hard to predict way. In AT&T lex, the standard
size for yytext[] is 200 characters, and in MKS lex it is 100 characters. Even if yytext is
a pointer, the pointer points into an I/O buffer which is also of limited size, and similar
problems can arise from very long tokens. In flex the default I/O buffer is 16K, which
means it can handle tokens up to 8K, almost certainly large enough. In pclex the buffer
is only 256 bytes. This is why it is a bad idea to try to recognize multi-line comments as
single tokens, since comments can be very long and will often overflow a buffer no
matter how large.

Enlarging yytext

You can usually write lexers so that no single token is larger than the default token
buffer of your version of lex, but sometimes the default buffer is just too small. For
example, you may be handling a language that allows 128 character names with a lexer
whose default size is 100 characters. The technique for increasing the buffer size varies
among versions.

AT&T and MKS Lex

Both of these versions make yytext a static character array whose size is set by the
compile-time symbol YYLMAX. In both cases, you can redefine YYLMAX in the def‐
initions section of a scanner:
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    %{
    #undef YYLMAX        /* remove default definition */
    #define YYLMAX 500   /* new size */
    %}

Flex

Since the default flex token size is 8K bytes, it’s hard to imagine a situation where you
need it to be bigger, but if memory is particularly tight you might want to make the
buffer smaller. Flex buffers are created on the fly by a routine called yy_cre‐
ate_buffer( ), and the current buffer is pointed to by yy_current_buffer. You can create
a buffer of any size by putting in the user subroutines section a routine to create a smaller
buffer, and calling it before you start scanning. (The routine has to be in the scanner file
because some of the variables it refers to are declared to be static.)

    %%
    setupbuf(size)
    int size;
    {
         yy_current_buffer = yy_create_buffer( yyin, size );
    }

Pclex

Abraxas pclex is based on flex so it uses a similar buffering scheme to flex, but with
much smaller statically declared buffers. The buffer size is YY_BUF_SIZE which is
defined to be twice F_BUFSIZ, which is by default 128. You can change the buffer size
by changing either. The maximum input line length YY_MAX_LINE is also by default
defined to be F_BUFSIZ so it is probably easier to increase F_BUFSIZ which automat‐
ically increases the others:

    %{
    #undef F_BUFSIZ      /* remove default definition */
    #define F_BUFSIZ 256 /* new size */
    %}

For both of the MS-DOS versions of lex, keep in mind that most MS-DOS C compilers
have a 64K limit on the total amount of static data and stack, and that a very large token
buffer can eat up a lot of that 64K.

yywrap()

When a lexer encounters an end of file, it calls the routine yywrap() to find out what to
do next. If yywrap() returns 0, the scanner continues scanning, while if it returns 1 the
scanner returns a zero token to report the end of file.
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The standard version of yywrap() in the lex library always returns 1, but you can replace
it with one of your own. If yywrap() returns 0 to indicate that there is more input, it
needs first to adjust yyin to point to a new file, probably using fopen().

As of version 2.3.7, flex defines yywrap() as a macro which makes it slightly harder to
define your own version since you have to undefine the macro before you can define
your routine or macro. To do so, put this at the beginning of the rules section:

    %{
    #undef yywrap
    %}

Future versions of flex will conform to the POSIX lex standard which declares that
yywrap() is a routine in the library, in which case a version that you define automatically
takes priority.
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CHAPTER 7

A Reference for Yacc Grammars

In this chapter, we discuss the format of the yacc grammar and describe the various
features and options available. This chapter summarizes the capabilities demonstrated
in the examples in previous chapters and covers features not yet mentioned.

After the section on the structure of a yacc grammar, the sections in this chapter are in
alphabetical order by feature.

Structure of a Yacc Grammar

A yacc grammar consists of three sections: the definition section, the rules section, and
the user subroutines section.

    ... definition section ...
    %%
    ... rules section ...
    %%
    ... user subroutines section ...
         

The sections are separated by lines consisting of two percent signs. The first two sections
are required, although a section may be empty. The third section and the preceding “%
%” line may be omitted. (Lex uses the same structure.)

Symbols

A yacc grammar is constructed from symbols, the “words” of the grammar. Symbols are
strings of letters, digits, periods, and underscores that do not start with a digit. The
symbol error is reserved for error recovery, otherwise yacc attaches no a priori meaning
to any symbol.
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Symbols produced by the lexer are called terminal symbols or tokens. Those that are
defined on the left-hand side of rules are called nonterminal symbols or non-terminals.
Tokens may also be literal quoted characters. (See "Literal Tokens.”) A widely-followed
convention makes token names all uppercase and non-terminals lowercase. We follow
that convention throughout the book.

Definition Section

The definition section can include a literal block, C code copied verbatim to the begin‐
ning of the generated C file, usually containing declaration and #include lines. There
may be %union, %start, %token, %type, %left, %right, and %nonassoc declarations.
(See "%union Declaration,” "Start Declaration,” "Tokens,” "%type Declarations,” and
“Precedence and Operator Declarations.”) It can also contain comments in the usual C
format, surrounded by “/*” and “*/”. All of these are optional, so in a very simple parser
the definition section may be completely empty.

Rules Section

The rules section contains grammar rules and actions containing C code. See "Ac‐
tions" and "Rules" for details.

User Subroutines Section

Yacc copies the contents of the user subroutines section verbatim to the C file. This
section typically includes routines called from the actions.

In a large program, it is sometimes more convenient to put the supporting code in a
separate source file to minimize the amount of material recompiled when you change
the yacc file.

Actions

An action is C code executed when yacc matches a rule in the grammar. The action must
be a C compound statement, e.g.:

    date: month '/' day '/' year { printf("date found"); } ;

The action can refer to the values associated with the symbols in the rule by using a
dollar sign followed by a number, with the first symbol after the colon being number 1,
e.g.:

    date: month '/' day '/' year
                { printf("date %d-%d-%d found", $1, $3, $5); }
          ;
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The name “$$” refers to the value for the symbol to the left of the colon. Symbol values
can have different C types. See "Tokens,” "%type Declarations,” and "%union Declara‐
tion" for details.

For rules with no action, yacc uses a default of:

    { $$ = $1; }

Embedded Actions

Even though yacc’s parsing technique only allows actions at the end of a rule, yacc
automatically simulates actions embedded within a rule. If you write an action within
a rule, yacc invents a rule with an empty right hand side and a made-up name on the
left, makes the embedded action into the action for that rule, and replaces the action in
the original rule with the made-up name. For example, these are equivalent:

    thing:           A { printf("seen an A"); } B ;

    thing:           A fakename B ;
    fakename:  /* empty */ { printf("seen an A"); } ;

Although this feature is quite useful, it has some peculiarities. The embedded action
turns into a symbol in the rule, so its value (whatever it assigns to “$$”) is available to
an end-of-rule action like any other symbol:

    thing:          A { $$ = 17; } B C
                    { printf("%d", $2); }
              ;

This example prints “17”. Either action can refer to the value of A as $1, and the end-of-
rule action can refer to the value of the embedded action as $2, and the values of B and
C as $3 and $4.

Embedded actions can cause shift/reduce conflicts in otherwise acceptable grammars.
For example, this grammar causes no problem:

    %%
    thing:      abcd | abcz ;

    abcd: 'A' 'B' 'C' 'D' ;
    abcz: 'A' 'B' 'C' 'Z' ;

But if you add an embedded action it has a shift/reduce conflict:
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    %%
    thing:      abcd | abcz ;

    abcd: 'A' 'B' { somefunc(); } 'C' 'D' ;
    abcz: 'A' 'B' 'C' 'Z' ;

In the first case the parser doesn’t need to decide whether it’s parsing an abcd or an abcz
until it’s seen all four tokens, when it can tell which it’s found. In the second case, it needs
to decide after it parses the ‘B', but at that point it hasn’t seen enough of the input to
decide which rule it is parsing. If the embedded action came after the ‘C there would be
no problem, since yacc could use its one-token lookahead to see whether a ‘D’ or a ‘Z’
is next.

Symbol Types for Embedded Actions

Since embedded actions aren’t associated with grammar symbols, there is no way to
declare the type of the value returned by an embedded action. If you are using %un‐
ion and typed symbol values, you have to put the value in angle brackets when referring
to the action’s value, e.g., $< type>$ when you set it in the embedded action and $< type
>3 (using the appropriate number) when you refer to it in the action at the end of the
rule. See "Symbol Values.” If you have a simple parser that uses all int values, as in the
example above, you don’t need to give a type.

Obsolescent Feature

Early versions of yacc required an equal sign before an action. Old grammars may still
contain them, but they are no longer required nor considered good style.

Ambiguity and Conflicts

Yacc may fail to translate a grammar specification because the grammar is ambiguous
or contains conflicts. In some cases the grammar is truly ambiguous, that is, there are
two possible parses for a single input string, and yacc cannot handle that. In others, the
grammar is unambiguous, but the parsing technique that yacc uses is not powerful
enough to parse the grammar. The problem in an unambiguous grammar with conflicts
is that the parser would need to look more than one token ahead to decide which of two
possible parses to use.

See "Precedence, Associativity, and Operator Declarations" and Chapter 8, Yacc Ambi‐
guities and Conflicts , for more details and suggestions on how to fix these problems.

Types of Conflicts

There are two kinds of conflicts that can occur when yacc tries to create a parser: “shift/
reduce” and “reduce/reduce.”
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Shift/Reduce Conflicts

A shift/reduce conflict occurs when there are two possible parses for an input string, and
one of the parses completes a rule (the reduce option) and one doesn’t (the shift option).
For example, this grammar has one shift/reduce conflict:

    %%
    e:       'X'
         |   e '+' e
         ;

For the input string “X+X+X” there are two possible parses,"(X+X)+X” or “X+(X+X)”.
(See Figure 3-3 for an illustration of a similar conflict.) Taking the reduce option makes
the parser use the first parse, the shift option the second. Yacc always chooses the shift
unless the user puts in operator declarations. See the “Precedence and Operator Dec‐
larations” section for more information.

Reduce/Reduce Conflicts

A reduce/reduce conflict occurs when the same token could complete two different rules.
For example:

    %%
    prog: proga | progb ;

    proga:      'X' ;
    progb:      'X' ;

An “X” could either be a proga or a progb. Most reduce/reduce conflicts are less obvious
than this, but in nearly every case they represent mistakes in the grammar. See Chapter
8, Yacc Ambiguities and Conflicts , for details on handling conflicts.

Bugs in Yacc

Although yacc is a fairly mature program (the source code for AT&T yacc has been
essentially unchanged for over ten years) one bug is commonly in distributed versions
and quite a few quirks are often misinterpreted as bugs.

Real Bugs

There are a few real yacc bugs, particularly in AT&T yacc. (Thanks to Dave Jones of
Megatest Corp. for these examples.)
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Error Handling

Some older versions of AT&T yacc mishandle this grammar:

    %token a
    %%
    s     : oseq
          ;
    oseq:  /* empty */
          | oseq a
          | oseq error
          ;

The buggy version does a default reduction in the error state. In particular, in the
y.output listing file in state 2 there is a default reduction:

    .  reduce 1

The correct default behavior is to detect an error:

    .  error

The mistake is an off-by-one coding error in the yacc source. Any vendor with AT&T
source can easily fix it.

Even with the fix, there is an unfortunate interaction between error recovery and yacc’s
default reductions. Yacc doesn’t take the error token into account when it computes its
shift and reduce tables, and sometimes reduces rules even when it has a lookahead token
from which it could tell that there is a syntax error and it shouldn’t reduce the rule. Look
at the y.output file if you plan on doing error recovery to see what rules will be reduced
before entering the error state. You may have to do more work to recover than you had
planned.

Declaring Literal Tokens

AT&T yacc fails to diagnose attempts to change the token number of a literal token:

    %token '9' 17

This generates invalid C code in the output file.

Infinite Recursion

A common error in yacc grammars is to create a recursive rule with no way to terminate
the recursion. Berkeley yacc, at least through version 1.8, doesn’t diagnose this grammar:
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    %%
    xlist:    xlist 'X' ;

Other versions do produce diagnostics.

Unreal Bugs

There are a few places where yacc seems to misbehave but actually is doing what it
should.

Interchanging Precedences

People occasionally try to use %prec to swap the precedence of two tokens:

    %token  NUMBER
    %left PLUS
    %left MUL
    %%
    expr  :    expr PLUS expr %prec MUL
          |    expr MUL expr %prec PLUS
          |    NUMBER
          ;

This example seems to give PLUS higher precedence than MUL, but in fact it makes
them the same. The precedence mechanism resolves shift/reduce conflicts by comparing
the precedence of the token to be shifted to the precedence of the rule. In this case, there
are several conflicts. A typical conflict arises when the parser has seen “expr PLUS expr”
and the next token is a MUL. In the absence of a %prec, the rule would have the prece‐
dence of PLUS which is lower than that of MUL, and yacc takes the shift. But with
%prec, both the rule and the token have the precedence of MUL, so it reduces because
MUL is left associative.

One possibility would be to introduce pseudo-tokens, e.g., XPLUS and XMUL, with
their own precedence levels to use with %prec. A far better solution is to rewrite the
grammar to say what it means, in this case exchanging the %left lines (see "Precedence,
Associativity, and Operator Declarations.”)

Embedded Actions

When you write an action in the middle of a rule rather than at the end, yacc has to
invent an anonymous rule to trigger the embedded action. Occasionally the anonymous
rule causes unexpected shift/reduce conflicts. See "Actions" for more details.
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End Marker

Each yacc grammar includes a pseudo-token called the end marker which marks the
end of input. In yacc listings, the end marker is usually indicated as $end.

The lexer must return a zero token to indicate end of input.

Error Token and Error Recovery

When yacc detects a syntax error, i.e., when it receives an input token that it cannot
parse, it attempts to recover from the error using this procedure:

1. It calls yyerror (“syntax error”). This usually reports the error to the user.
2. It discards any partially parsed rules until it returns to a state in which it could shift

the special error symbol.
3. It resumes parsing, starting by shifting an error.
4. If another error occurs before three tokens have been shifted successfully, yacc does

not report another error but returns to step 2.

See Chapter 9, Error Reporting and Recovery , for more details on error recovery. Also,
see the sections about "YYERROR,” "YYRECOVERING(),” "yyclearin,” and "yyerrok"
for details on features that help control error recovery.

Some versions of AT&T yacc contain a bug that makes error recovery fail. See "Bugs in
Yacc" for more information.

%ident Declaration

Berkeley yacc allows an %ident in the definitions section to introduce an identification
string into the module:

    %ident "identification string"

It produces an #ident in the generated C code. C compilers typically place these iden‐
tification strings in the object module in a place where the UNIX what command can
find them.

No other versions of yacc currently support %ident. A more portable way to get the
same effect is:

    %{
    #ident  "identification string"
    %}
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Inherited Attributes ($0)

Yacc symbol values usually act as inherited attributes or synthesized attributes. (What
yacc calls values are usually referred to in compiler literature as attributes.) Attributes
start as token values, the leaves of the parse tree. Information conceptually moves up
the parse tree each time a rule is reduced and its action synthesizes the value of its
resulting symbol ($$) from the values of the symbols on the right-hand side of the rule.

Sometimes you need to pass information the other way, from the root of the parse tree
toward the leaves. Consider this example:

    declaration:     class type namelist ;

    class:           GLOBAL           { $$ = 1; }
          |    LOCAL       { $$ = 2; }
          ;

    type:      REAL        { $$ = 1; }
          |    INTEGER           { $$ = 2; }
          ;

    namelist:  NAME        { mksymbol($0, $−1, $1); }
          |    namelist NAME     { mksymbol($0, $−1, $2); }
          ;

It would be useful to have the class and type available in the actions for namelist, both
for error checking and to enter into the symbol table. Yacc makes this possible by al‐
lowing access to symbols on its internal stack to the left of the current rule, via $0, $−1,
etc. In the example, the $0 in the call to mksymbol() refers to the value of the type which
is stacked just before the symbol(s) for the namelist production, and will have the value
1 or 2 depending on whether the type was REAL or INTEGER, and $−1 refers to the
class which will have the value 1 or 2 if the class was GLOBAL or LOCAL.

Although inherited attributes can be very useful, they can also be a source of hard-to-
find bugs. An action that uses inherited attributes has to take into account every place
in the grammar where its rule is used. In this example, if you changed the grammar to
use a namelist somewhere else, you’d have to make sure that in the new place where the
namelist occurs appropriate symbols precede it so that $0 and $−1 will get the right
values:

    declaration:      STRING namelist ; /* won't work! */

Inherited attributes can occasionally be very useful, particularly for syntactically com‐
plex constructs like C language variable declarations. But in many cases it is safer and
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nearly as easy to use synthesized attributes. In the example above, the namelist rules
could create a linked list of references to the names to be declared and return a pointer
to that list as its value. The action for declaration could take the class, type, and namelist
values and at that point assign the class and type to the names in the name-list.

Symbol Types for Inherited Attributes

When you use the value of an inherited attribute, the usual value declaration techniques
(e.g., %type) don’t work. Since the symbol corresponding to the value doesn’t appear in
the rule, yacc cannot tell what the correct type is. You have to supply type names in the
action code using an explicit type. In the previous example, if the types of class and type
were cval and tval, the last two lines would actually read like this:

    namelist:    NAME        { mksymbol($<tval>0, $<cval>−1, $1); }
          |      namelist NAME     { mksymbol($<tval>0, $<cval>−1, $2); }

See "Symbol Values" for additional information.

Lexical Feedback

Parsers can sometimes feed information back to the lexer to handle otherwise difficult
situations. For example, consider an input syntax like this:

    message (any characters)

where in this particular context the parentheses are acting as string quotes. (This isn’t
great language design, but you are often stuck with what you’ve got.) You can’t just decide
to parse a string any time you see an open parenthesis, because they might be used
differently elsewhere in the grammar.

A straightforward way to handle this situation is to feed context information from the
parser back to the lexer, e.g., set a flag in the parser when a context-dependent construct
is expected:

    /* parser */
    %{
    int parenstring = 0;
    }%
    . . .
    %%
    statement: MESSAGE { parenstring = 1; } '(' STRING ')' ;

and look for it in the lexer:

    %{
    extern int parenstring;
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    %}
    %s PSTRING
    %%
    . . .
    "message"  return MESSAGE;
    "("   {    if(parenstring)
                     BEGIN PSTRING;
               return '(';
          }
    <PSTRING>[^)]*   {
                   yylval.svalue = strdup(yytext);   /* pass string to parser */
                   BEGIN INITIAL;
                   return STRING;
                   }

This code is not bullet-proof, because if there is some other rule that starts with MES‐
SAGE, yacc might have to use a lookahead token in which case the in-line action
wouldn’t be executed until after the open parenthesis had been scanned. In most real
cases that isn’t a problem because the syntax tends to be simple.

In this example, you could also handle the special case in the lexer by setting paren‐
string in the lexer, e.g.:

    "message"  { parenstring = 1; return MESSAGE; }

This could cause problems, however, if the token MESSAGE is used elsewhere in the
grammar and is not always followed by a parenthesized string. You usually have the
choice of doing lexical feedback entirely in the lexer or doing it partly in the parser, with
the best solution depending on how complex the grammar is. If the grammar is simple
and tokens do not appear in multiple contexts, you can do all of your lexical hackery in
the lexer, while if the grammar is more complex it is easier to identify the special situa‐
tions in the parser.

This approach can be taken to extremes—one of the authors wrote a complete Fortran
77 parser in yacc (but not lex, since tokenizing Fortran is just too strange) and the parser
needed to feed a dozen special context states back to the lexer. It was messy, but it was
far easier than writing the whole parser and lexer in C.

Literal Block

The literal block in the definition section is bracketed by the lines %{ and %}.

    %{
    ... C code and declarations ...
    %}
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The contents of the literal block are copied verbatim to the generated C source file near
the beginning, before the beginning of yyparse(). The literal block usually contains
declarations of variables and functions used by code in the rules section, as well as
#include lines for any necessary header files.

Literal Tokens

Yacc treats a character in single quotes as a token. In this example,

    expr: '(' expr ')' ;

the open and close parentheses are literal tokens. The token number of a literal token is
the numeric value in the local character set, usually ASCII, and is the same as the C
value of the quoted character.

The lexer usually generates these tokens from the corresponding single characters in
the input, but as with any other token, the correspondence between the input characters
and the generated tokens is entirely up to the lexer. A common technique is to have the
lexer treat all otherwise unrecognized characters as literal tokens. For example, in a lex
scanner:

    .     return yytext[0];

this covers all of the single-character operators in a language, and lets yacc catch all
unrecognized characters in the input.

Some versions of yacc allow multiple character literal tokens, e.g., “<=”, but it is a bad
idea to use them, as different versions of yacc treat them in different, incompatible, ways.
If a token’s input representation is more than one character, it is better style to give it a
name:

    %token LE

and in the scanner:

    ">="  return LE;

Portability of Yacc Parsers

Yacc parsers are in general very portable among C implementations. There are two levels
at which you can port a parser: the original yacc grammar, or the generated C source
file.
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Porting Yacc Grammars

Different versions of yacc are for the most part very compatible. Each has a few unique
features, but it’s usually possible to write a grammar that uses only common features.
(For example, a parser that uses bison ’s reentrant parser feature will only work with
bison.)

Different yacc versions handle errors slightly differently. In particular, when a parser
receives a token that is in error, the parser may or may not reduce rules that ended with
the previous token, depending on the way the version of yacc produced the parser. The
exact behavior of YYERROR() varies. Again, some versions complete the reduction of
the current rule and remove the RHS tokens from the parse stack before starting error
recovery, and some don’t.

Different versions of yacc have different translation limits: one that most often is a
problem is the maximum number of symbolic tokens, which can be as low as 127 in
AT&T yacc. You can usually evade this limit by using literal characters as tokens; see
"Character Sets.”

Porting Generated C Parsers

Most versions of yacc generate very portable C code, and you can usually move the code
to any C compiler without trouble.

Libraries

The only routines in the yacc library are usually main() and yyerror(). Most parsers use
their own versions of those two routines, so the library usually isn’t necessary.

Character Codes

Moving a generated parser between machines that use different character codes can be
tricky. In particular, you must avoid literal tokens like "0" since the parser uses the
character code as an index into internal tables, so a parser generated on an ASCII ma‐
chine where the code for “0” is 48 will fail on an EBCDIC machine where the code is
240.

Yacc assigns its own numeric values to symbolic tokens, so a parser that uses only sym‐
bolic tokens should port sucessfully.

Precedence, Associativity, and Operator Declarations

Normally, all yacc grammars have to be unambiguous. That is, there is only one possible
way to parse any legal input using the rules in the grammar.
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Sometimes, an ambiguous grammar is easier to use. Ambiguous grammars cause con‐
flicts, situations where there are two possible parses and hence two different ways that
yacc can process a token. When yacc processes an ambiguous grammar, it uses default
rules to decide which way to parse an ambiguous sequence. Often these rules do not
produce the desired result, so yacc includes operator declarations that let you change
the way it handles shift/reduce conflicts that result from ambiguous grammars. (See
also "Ambiguity and Conflicts.”)

Precedence and Associativity

Most programming languages have complicated rules that control the interpretation of
arithmetic expressions. For example, the C expression:

    a = b = c + d / e / f

is treated as:

    a = (b = (c + ((d / e) / f))))

The rules for determining what operands group with which operators are known as
precedence and associativity.

Precedence

Precedence assigns each operator a precedence “level.” Operators at higher levels bind
more tightly, e.g., if “*” has higher precedence than “+”, “A+B*C” is treated as “A+(B*C)”,
while “D*E+F” is “(D*E)+F”.

Associativity

Associativity controls how the grammar groups expressions using the same operator or
different operators with the same precedence, whether they group from the left, from
the right, or not at all. If “−” were left associative, the expression “A−B−C” would mean
“(A−B)−C”, while if it were right associative it would mean “A−(B−C)”.

Some operators such as Fortran .GE. are not associative either way, i.e., “A .GE. B .GE.
C” is not a valid expression.

Operator Declarations

Operator declarations appear in the definitions section. The possible declarations are
%left, %right, and %nonassoc. (In very old grammars you may find the obsolete equiv‐
alents %<, %>, and %2 or %binary.) The %left and %right declarations make an operator
left or right associative, respectively. You declare non-associative operators with %non‐
assoc.
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Operators are declared in increasing order of precedence. All operators declared on the
same line are at the same precedence level. For example, a Fortran grammar might
include:

    %left '+' '−'
    %left '*' '/'
    %right POW

The lowest precedence operators here are “+” and “−”, the middle predecence are “*”
and “/”, and the highest is POW which represents the “**” power operator.

Using Precedence and Associativity to Resolve Conflicts

Every token in a grammar can have a precedence and an associativity assigned by an
operator declaration. Every rule can also have a precedence and an associativity, which
is taken from a %prec clause in the rule or, failing that, the rightmost token in the rule
that has a precedence assigned.

Whenever there is a shift/reduce conflict, yacc compares the precedence of the token
that might be shifted to that of the rule that might be reduced. It shifts if the token’s
precedence is higher or reduces if the rule’s precedence is higher. If both have the same
precedence, yacc checks the associativity. If they are left associative it reduces, if they
are right associative it shifts, and if they are non-associative yacc generates an error.

Typical Uses of Precedence

Although you can in theory use precedence to resolve any kind of shift/reduce conflict,
precedence rarely resolves the conflict more cleanly than rewriting the grammar. Prece‐
dence declarations were designed to handle expression grammars, with large numbers
of rules like:

    expr OP expr

Expression grammars are almost always written using precedence.

The only other common use is if-then-else, where you can resolve the “dangling else”
problem more easily with precedence than by rewriting the grammar.

See Chapter 8, Yacc Ambiguities and Conflicts , for details. Also see "Bugs in Yacc" for a
common pitfall using %prec.

Recursive Rules

To parse a list of items of indefinite length, you write a recursive rule, one that is defined
in terms of itself. For example, this parses a possibly empty list of numbers:
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    numberlist: /* empty */
          | numberlist NUMBER
          ;

The details of the recursive rule vary depending on the exact syntax to be parsed. The
next example parses a non-empty list of expressions separated by commas, with the
symbol expr being defined elsewhere in the grammar:

    exprlist:     expr
          |       exprlist ',' expr
          ;

Any recursive rule must have at least one non-recursive alternative (one that does not
refer to itself). Otherwise there is no way to terminate the string that it matches, which
is an error. (Berkeley yacc fails to diagnose this problem.)

Left and Right Recursion

When you write a recursive rule, you can put the recursive reference at the left end or
the right end of the right-hand side of the rule, e.g.:

    exprlist:    exprlist ',' expr ;    /* left recursion
               
                */

    exprlist:    expr ',' exprlist ;    /* right recursion
 */

In most cases you can write the grammar either way. Yacc handles left recursion much
more efficiently than right recursion. This is because its internal stack keeps track of all
symbols seen so far for all partially parsed rules. If you use the right recursive version
of exprlist and have an expression with ten expressions in it, by the time the tenth
expression is read there will be 20 entries on the stack, an expr and a comma for each
of the ten expressions. When the list ends, all of the nested exprlist s will be reduced,
starting from right to left. On the other hand, if you use the left recursive version, the
exprlist rule is reduced after each expr, so the list will never have more than three entries
on the internal stack.

A ten-element expression list poses no problems in a parser, but grammars often parse
lists hundreds of items long, particularly when a program is defined as a list of state‐
ments:

    %start program
    %%
    program:   statementlist ;
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    statementlist :   statement
                | statementlist statement
                ;
    statement: . . .

In this case, a 400 statement program is parsed as a 400 element list of statements, and
a right recursive list of 400 elements is too large for most yacc parsers.

Right recursive grammars can be useful for a list of items which you know will be short
and which you want to make into a linked list of values:

    thinglist:   THING { $$ = $1; }
          |      THING thinglist { $1->next = $2; $$ = $1; }
          ;

With a left recursive grammar, either you end up with the list linked in reverse order, or
you need extra code to search for the end of the list at each stage in order to add the next
thing to the end. A compromise is to create the list in the “wrong” order, then when the
entire list has been created, run down it and reverse it.

Rules

A yacc grammar consists of a set of rules. Each rule starts with a nonterminal symbol
and a colon, and is followed by a possibly empty list of symbols, literal tokens, and
actions. Rules by convention end with a semicolon, although in most versions of yacc
the semicolon is optional. For example,

    date: month '/' day '/' year ;

says that a date is a month, a slash, a day, another slash, and a year. (The symbols month,
day, and year must be defined elsewhere in the grammar.) The initial symbol and colon
are called the left-hand side of the rule, and the rest of the rule is the right-hand side. The
right-hand side may be empty.

If several consecutive rules in a grammar have the same left-hand side, the second and
subsequent rules may start with a vertical bar rather than the name and the colon. These
two fragments are equivalent:

    declaration:     EXTERNAL name ;
    declaration:     ARRAY name '(' size ')' ;

    declaration:     EXTERNAL name
          |    ARRAY name '(' size ')' ;

The form with the vertical bar is better style. The semicolon must be omitted before a
vertical bar.
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An action is a C compound statement that is executed whenever the parser reaches the
point in the grammar where the action occurs:

    date: month '/' day '/' year
                       { printf("Date recognized.\n"); }
          ;

The C code in actions may have some special constructs starting with “$” that are spe‐
cially treated by yacc. (See "Actions" for details.) Actions that occur anywhere except at
the end of a rule are treated specially. (See “Embedded Actions,” page 183, for details.)

An explicit precedence at the end of a rule:

    expr: expr '*' expr
        | expr '-' expr
        | '-' expr %prec UMINUS ;

The precedence is only used to resolve otherwise ambiguous parses. See "Precedence,
Associativity, and Operator Declarations" for details.

Special Characters

Since yacc deals with symbolic tokens rather than literal text, its input character set is
considerably simpler than lex’s. Here is a list of the special characters that it uses:
%

A line with two percent signs separates the parts of a yacc grammar, (see "Structure
of a Yacc Grammar.”) All of the declarations in the definition section start with %,
including %{ %}, %start, %token, %type, %left, %right, %nonassoc, and %union.
See "Literal Block,” "Start Declaration,” "%type Declarations,” "Precedence, Asso‐
ciativity, and Operator Declarations,” and "%union Declaration.”

\
The backslash is an obsolete synonym for a percent sign. It also has its usual effect
in C language strings in actions.

$
In actions, a dollar sign introduces a value reference, e.g., $3 for the value of the
third symbol in the rule’s right-hand side. See "Symbol Values.”

'
Literal tokens are enclosed in single quotes, e.g., 'Z‘. See "Literal Tokens.”

"
Some versions of yacc treat double quotes the same as single quotes in literal to‐
kens. Such use is not at all portable.
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< >
In a value reference in an action, you can override the value’s default type by en‐
closing the type name in angle brackets, e.g., $<xtype>3. See “Symbol Types.” Also,
$< and $> are obsolete equivalents for %left and %right. See “Precedence, Asso‐
ciativity and Operator Declarations.”

{ }
The C code in actions is enclosed in curly braces. (See "Actions.”) C code in the
literal block declarations section is enclosed in “%{” and “%}”. See "Literal Block.”

;
Each rule in the rules section should end with a semicolon, except those that are
immediately followed by a rule that starts with a vertical bar. In most versions of
yacc the semicolons are optional, but they are always a good idea. See "Rules.”

|
When two consecutive rules have the same left-hand side, the second rule may
replace the symbol and colon with a vertical bar. See "Rules.”

:
In each rule, a colon follows the symbol on the rule’s left-hand side. See "Rules.”

_
Symbols may include underscores along with letters, digits, and periods.

.
Symbols may include periods along with letters, digits, and underscores. This can
cause trouble because C identifiers cannot include periods. In particular, do not use
tokens whose names contain periods, since the token names are all #define ‘d as C
preprocessor symbols.

=
Early versions of yacc required an equal sign before an action, and most versions
still accept them. They are now neither required nor recommended. See "Actions.”

Start Declaration

Normally, the start rule, the one that the parser starts trying to parse, is the one named
in the first rule. If you want to start with some other rule, in the declaration section you
can write:

    %start 
            somename
         

to start with rule somename.
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In most cases the clearest way to present the grammar is top-down, with the start rule
first, so no %start is needed.

Symbol Values

Every symbol in a yacc parser, both tokens and non-terminals, can have a value asso‐
ciated with it. If the token were NUMBER, the value might be the particular number, if
it were STRING, the value might be a pointer to a copy of the string, and if it were
SYMBOL, the value might be a pointer to an entry in the symbol table that describes
the symbol. Each of these kinds of value corresponds to a different C type, int or dou‐
ble for the number, char * for the string, and a pointer to a structure for the symbol.
Yacc makes it easy to assign types to symbols so that it automatically uses the correct
type for each symbol.

Declaring Symbol Types

Internally, yacc declares each value as a C union that includes all of the types. You list
all of the types in a %union declaration, q.v. Yacc turns this into a typedef for a union
type called YYSTYPE. Then for each symbol whose value is set or used in action code,
you have to declare its type. Use %type for non-terminals. Use %token, %left, %right,
or %nonassoc for tokens, to give the name of the union field corresponding to its type.

Then, whenever you refer to a value using $$, $1, etc., yacc automatically uses the ap‐
propriate field of the union.

Calculator Example

Here is a simple although not particularly realistic calculator. It can add numbers and
compare strings. All results are numbers.

    %union {
          double dval;
          char *sval;
    }
    . . .
    %token <dval> REAL
    %token <sval> STRING
    %type <dval> expr
    %%
    calc: expr { printf("%g\n", $1); }

    expr: expr '+' expr { $$ = $1 + $3; }
          | REAL { $$ = $1; }
          | STRING '=' STRING { $$ = strcmp($1, $3) ? 0.0: 1.0; }
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There are two value types: dval, which is a double, and sval, which is a character pointer.
The token REAL and the non-terminal expr automatically use the union member
dval, and the token STRING uses the union member sval.

Yacc doesn’t understand any C, so any symbol typing mistakes you make, such as using
a type name that isn’t in the union or using a field in a way that C doesn’t allow, will
cause errors in the generated C program.

Explicit Symbol Types

Yacc allows you to declare an explicit type for a symbol value reference by putting the
type name in angle brackets between the dollar sign and the symbol number, or between
the two dollar signs, e.g., $<xxx>3 or $<zzz>$.

The feature is rarely used, since in nearly all cases it is easier and more readable to declare
the symbols. The most plausible uses are when referring to inherited attributes and when
setting and referring to the value returned by an embedded action. See "Inherited At‐
tributes" and "Actions" for details.

Tokens

Tokens or terminal symbols are symbols that the lexer passes to the parser. Whenever a
yacc parser needs another token it calls yylex() which returns the next token from the
input. At the end of input yylex() returns zero.

Tokens may either be symbols defined by %token or individual characters in single
quotes. (See "Literal Tokens.”) All symbols used as tokens must be defined explicitly in
the definitions section, e.g.:

    %token UP DOWN LEFT RIGHT

Tokens can also be declared by %left, %right, or %nonassoc declarations, each of which
has exactly the same syntax options as has %token. See "Precedence, Associativity, and
Operator Declarations.”

Token Numbers

Within the lexer and parser, tokens are identified by small integers. The token number
of a literal token is the numeric value in the local character set, usually ASCII, and is the
same as the C value of the quoted character.

Symbolic tokens usually have values assigned by yacc, which gives them numbers higher
than any possbile character’s code, so they will not conflict with any literal tokens. You
can assign token numbers yourself by following the token name by its number in %token:
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    %token UP 50 DOWN 60 LEFT 17 RIGHT 25

It is a serious error to assign two tokens the same number, but most versions of yacc
don’t even notice—they just generate bad parsers. In most cases it is easier and more
reliable to let yacc choose its own token numbers.

The lexer needs to know the token numbers in order to return the appropriate values
to the parser. For literal tokens, it uses the corresponding C character constant. For
symbolic tokens, you can tell yacc with the -d command-line flag to create a C header
file with definitions of all of the token numbers. If you #include that header file in your
lexer you can use the symbols, e.g., UP, DOWN, LEFT, and RIGHT, in its C code. The
header file is normally called y.tab.h. On MS-DOS systems, MKS yacc calls it ytab.h and
pcyacc calls it yytab.h. Bison, POSIX yacc, and both MS-DOS versions have command-
line options to change the name of the generated header file. 

Token Values

Each symbol in a yacc parser can have an associated value. (See "Symbol Values.”) Since
tokens can have values, you need to set the values as the lexer returns tokens to the
parser. The token value is always stored in the variable yylval. In the simplest parsers,
yylval is a plain int variable, and you might set it like this in a lex scanner:

    [0-9]+      { yylval = atoi(yytext); return NUMBER; }

In most cases, though, different symbols have different value types. See "%union Dec‐
laration,” "Symbol Values,” and "%type Declarations.”

In the parser you must declare the value types of all tokens that have values. Put the
name of the appropriate union tag in angle brackets in the %token or precedence dec‐
laration. You might define your values types like this:

    %union {
          enum optype opval;
          double dval;
          char *sval;
    }
    . . .
    %token <dval> REAL
    %token <sval> STRING
    %nonassoc <opval> RELOP

(In this case RELOP might be a relational operator such as “==” or “>”, and the token
value says which operator it is.)

You set the appropriate field of yylval when you return the token. In this case, you’d do
something like this in lex:
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    %{
    #include "y.tab.h"
    %}
    . . .
    [0-9]+\.[0-9]*   { yylval.dval = atof(yytext); return REAL; }
    \"[^"]*\"  { yylval.sval = strdup(yytext); return STRING; }
    "=="       { yyval.opval = OPEQUAL; return RELOP; }

The value for REAL is a double so it goes into yylval.dval, while the value for STRING
is a char * so it goes into yylval.sval.

%type Declaration

You declare the types of non-terminals using %type. Each declaration has the form:

    %type <type> name, name, . . .
         

The type name must have been defined by a %union. (See "%union Declaration.”) Each
name is the name of a non-terminal symbol. See “Symbol Types” for details and an
example.

Use %type to declare non-terminals. To declare tokens, you can also use %token, %left,
%right, or %nonassoc. See "Tokens" and "Precedence, Associativity, and Operator Dec‐
larations" for details.

%union Declaration

The %union declaration identifies all of the possible C types that a symbol value can
have. (See "Symbol Values.”) The declaration takes this form:

    %union {
      ... field declarations...
    }

The field declarations are copied verbatim into a C union declaration of the type YYS‐
TYPE in the output file. Yacc does not check to see if the contents of the %union are
valid C.

In the absence of a %union declaration, yacc defines YYSTYPE to be int so all of the
symbol values are integers.

You associate the types declared in %union with particular symbols using the %type
declaration.

Yacc puts the generated C union declaration both in the generated C file and in the
optional generated header file (usually called y.tab.h) so you can use YYSTYPE in other
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source files by including the generated header file. Conversely, you can put your own
declaration of YYSTYPE in an include file that you reference with #include in the def‐
inition section. In this case, there must be at least one %type to warn yacc that you are
using explicit symbol types.

Variant and Multiple Grammars

You may want to have parsers for two partially or entirely different grammars in the
same program. For example, an interactive debugging interpreter might have one parser
for the programming language and another for debugger commands. A one-pass C
compiler might need one parser for the preprocessor syntax and another for the C lan‐
guage itself.

There are two ways to handle two grammars in one program: combine them into a single
parser, or put two complete parsers into the program.

Combined Parsers

You can combine several grammars into one by adding a new start rule that depends
on the first token read. For example:

    %token CSTART PPSTART
    %%
    combined:  CSTART cgrammar
          |    PPSTART ppgrammar
          ;

    cgrammar:  . . .

    ppgrammar: . . .

In this case if the first token is CSTART it parses the grammar whose start rule is
cgrammar, while if the first token is PPSTART it parses the grammar whose start rule
is ppgrammar.

You also need to put code in the lexer that returns the appropriate special token the first
time that the parser asks the lexer for a token:

    %%
    %{
         extern first_tok;

         if(first_tok) {
               int holdtok = first_tok;

               first_tok = 0;
               return holdtok;
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         }
    %}
    . . . <the rest of the lexer>
            

In this case you set first_tok to the appropriate token before calling yyparse().

One advantage of this approach is that the program is smaller than it would be with
multiple parsers, since there is only one copy of the parsing code. Another is that if you
are parsing related grammars, e.g., C preprocessor expressions and C itself, you may be
able to share some parts of the grammar. The disadvantages are that you cannot usually
call one parser while the other is active (but see "Recursive Parsing,” later in this chapter)
and that you have to use different symbols in the two grammars except where they
deliberately share rules.

In practice, this approach is useful when you want to parse slightly different versions of
a single language, e.g., a full language that is compiled and an interactive subset that you
interpret in a debugger.

Multiple Parsers

The other approach is to include two complete parsers in a single program. Yacc doesn’t
make this easy, because every parser it generates has the same entry point, yyparse(),
and calls the same lexer, yylex(), which uses the same token value variable yylval. Fur‐
thermore, most versions of yacc put the parse tables and parser stack in global variables
with names like yyact and yyv. If you just translate two grammars and compile and link
the two resulting files (renaming at least one of them to something other than y.tab.c)
you get a long list of multiply defined symbols. The trick is to change the names that
yacc uses for its functions and variables.

Using the -p Flag

Modern versions of yacc (including bison, MKS yacc, and any POSIX-compliant im‐
plementation) provide a command-line switch -p to change the prefix used on the names
in the parser generated by yacc. For example, the command:

    yacc -p pdq mygram.y

produces a parser with the entry point pdqparse(), which calls the lexer pdqlex() and
so forth. Specifically, the names affected are yyparse(), yylex(), yyerror(), yylval, yy‐
char, and yydebug. (The variable yychar holds the most recently read token, which is
sometimes useful when printing error messages.) The other variables used in the parser
may be renamed or may be made static or auto; in any event they are guaranteed not to
collide. There is also a -b flag to specify the prefix of the generated C file; e.g.,

    yacc -p pdq -b pref mygram.y
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would produce pref.tab.c assuming the standard name was y.tab.c.

You have to provide properly named versions of yyerror() and yylex().,

Faking It

Older versions of yacc have no automatic way to change the names in the generated C
routine, so you have to fake it. On UNIX systems, the easiest way to fake it is with the
stream editor sed. Assuming you are using AT&T yacc, create the file yy-sed containing
these 26 sed commands. (In this case the new prefix is “pdq”.)

    s/yyact/pdqact/g
    s/yychar/pdqchar/g
    s/yychk/pdqchk/g
    s/yydebug/pdqdebug/g
    s/yydef/pdqdef/g
    s/yyerrflag/pdqerrflag/g
    s/yyerror/pdqerror/g
    s/yyexca/pdqexca/g
    s/yylex/pdqlex/g
    s/yylval/pdqlval/g
    s/yynerrs/pdqnerrs/g
    s/yypact/pdqpact/g
    s/yyparse/pdqparse/g
    s/yypgo/pdqpgo/g
    s/yyps/pdqps/g
    s/yypv/pdqpv/g
    s/yyr1/pdqr1/g
    s/yyr2/pdqr2/g
    s/yyreds/pdqreds/g
    s/yys/pdqs/g
    s/yystate/pdqstate/g
    s/yytmp/pdqtmp/g
    s/yytoks/pdqtoks/g
    s/yyv/pdqv/g
    s/yyval/pdqval/g

After you run yacc, these commands edit the generated parser:

    sed -f yy-sed y.tab.c > pdq.tab.c
    sed -f yy-sed y.tab.h > pdq.tab.h

You would probably want to put these rules in a Makefile:

    pdq.tab.h pdq.tab.c: yvexamp.y
          yacc -vd yvexamp.y
          sed -f yy-sed y.tab.c > pdq.tab.c
          sed -f yy-sed y.tab.h > pdq.tab.h
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Another approach is to use C preprocessor #define s at the beginning of the grammar
to rename the variables:

    %{
    #define yyact pdqact
    #define yychar pdqchar
    #define yychk pdqchk
    #define yydebug pdqdebug
    #define yydef pdqdef
    #define yyerrflag pdqerrflag
    #define yyerror pdqerror
    #define yyexca pdqexca
    #define yylex pdqlex
    #define yylval pdqlval
    #define yynerrs pdqnerrs
    #define yypact pdqpact
    #define yyparse pdqparse
    #define yypgo pdqpgo
    #define yyps pdqps
    #define yypv pdqpv
    #define yyr1 pdqr1
    #define yyr2 pdqr2
    #define yyreds pdqreds
    #define yys pdqs
    #define yystate pdqstate
    #define yytmp pdqtmp
    #define yytoks pdqtoks
    #define yyv pdqv
    #define yyval pdqval
    %}

This avoids using sed, but has the disadvantage that the definitions do not appear in the
generated header file, but only the generated C file. To deal with that problem, put all
the definitions in a file, call it pdqdefs.h, and in the parser put the following:

    %{
    #include "pdqdefs.h"
    %}

In the files where you use the header file, include pdqdefs.h first, e.g., in the lexer:

    %{
    #include "pdqdefs.h"
    #include "y.tab.h"
    %}
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Recursive Parsing

A slightly different problem is that of recursive parsing, calling yyparse() a second time
while the original call to yyparse() is still active. This can be an issue when you have
combined parsers. If you have a combined C language and C preprocessor parser, you’ll
want to call yyparse() in C language mode once to parse the whole program, and call it
recursively whenever you see a #if to parse a preprocessor expression.

Unfortunately, most versions of yacc provide no easy way to handle recursive calls to
the parser. If you really need recursive parsing, you will have to do some non-trivial
editing of the generated C file. In an AT&T yacc parser, for example, you need to make
the variables yyv, yypv, yys, and yyps automatic variables local to the parser, and save
and restore the values of ystate, yytmp, yynerrs, yyerrflag, and yychar around the re‐
cursive call to yyparse().

The one version that does support recursive parsing is bison, when you give it the
%pure_parser declaration. This declaration makes the parser reenterable and also
changes the calling sequence to yylex(), passing as arguments pointers to the current
copies of yylval and yylloc. (The latter is a part of an optional bison-specific feature that
tracks the exact source position of each token to allow more precise error reports.)

Lexers for Multiple Parsers

If you use a lex lexer with your multiple parsers, you need to make adjustments to the
lexer to correspond to the changes to the parser. (See "Multiple Lexers" in Chapter 6.)
You will usually want to use a combined lexer with a combined parser, and multiple
lexers with multiple parsers.

If you use multiple parsers and lexers and your versions of yacc and lex don’t provide
automatic renaming, you will probably want to combine the sed or include files that
rename yacc variables with those that rename lex variables since the techniques are the
same and some of the same names, e.g., yylex() and yylval, need to be changed in both
places.

y.output Files

Every version of yacc has the ability to create a log file, named y.output under UNIX and
y.out or yy.lrt on MS-DOS, that shows all of the states in the parser and the transitions
from one state to another. Use the -v flag to generate a log file.

The precise format of the file is specific to each version of yacc, but the following excerpt
from an expression grammar is typical:

    state 1
          e : ID .  (2)
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          .  reduce 2

    state 2
          e : '(' . e ')'  (3)

          ID  shift 1
          '('  shift 2
          .  error

          e  goto 5

The dot in each state shows how far the parser has gotten parsing a rule when it gets to
that state. When the parser is in state 2, for example, if the parser sees an ID, it shifts
the ID onto the stack and switches to to state 1. If it sees an open parenthesis it shifts
the paren onto the stack and switches back to state 2, and any other token is an error.
In state 1, it always reduces rule number 2. (Rules are numbered in the order they appear
in the input file.) After the reduction the ID is replaced on the parse stack by an e and
the parser pops back to state 2, at which point the e makes it go to state 5.

When there are conflicts, the states with conflicts show the conflicting shift and reduce
actions.

    9: shift/reduce conflict (shift 7, reduce 4) on '+'
    state 9
          e : e . '+' e  (4)
          e : e '+' e .  (4)

          '+'  shift 7
          ';'  reduce 4
          ')'  reduce 4

In this case there is a shift/reduce conflict when yacc sees a plus sign. You could fix it
either by rewriting the grammar or by adding an operator declaration for the plus sign.
See "Precedence, Associativity, and Operator Declarations.”

Yacc Library

Every implementation comes with a library of helpful routines. You can include the
library by giving the -ly flag at the end of the cc command line on UNIX systems, or the
equivalent on other systems. The contents of the library vary among implementations,
but it always contains main() and yyerror().

main()

All versions of yacc come with a minimal main program which is sometimes useful for
quickie programs and for testing. It’s so simple we can reproduce it here:
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    main(ac, av)
    {
          yyparse();
          return 0;
    }

As with any library routine, you can provide your own main(). In nearly any useful
application you will want to provide a main() that accepts command-line arguments
and flags, opens files, and checks for errors.

yyerror()

All versions of yacc also provide a simple error reporting routine. It’s also simple enough
to list in its entirety:

    yyerror(char *errmsg)
    {
          fprintf(stderr, "%s\n", errmsg);
    }

This sometimes suffices, but a better error routine that reports at least the line number
and the most recent token (available in yytext if your lexer is written with lex) will make
your parser much more usable.

YYABORT

The special statement

    YYABORT;

in an action makes the parser routine yyparse() return immediately with a non-zero
value, indicating failure.

It can be useful when an action routine detects an error so severe that there is no point
in continuing the parse.

Since the parser may have a one-token lookahead, the rule action containing the YYA‐
BORT may not be reduced until the parser has read another token.

YYACCEPT

The special statement

    YYACCEPT;
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in an action makes the parser routine yyparse() return immediately with a value 0,
indicating success.

It can be useful in a situation where the lexer cannot tell when the input data ends, but
the parser can.

Since the parser may have a one-token lookahead, the rule action containing the YYAC‐
CEPT may not be reduced until the parser has read another token.

YYBACKUP

Some versions of yacc, including the original AT&T yacc, have a poorly documented
macro YYBACKUP that lets you unshift the current token and replace it with something
else. The syntax is:

    sym:    TOKEN{YYBACKUP(newtok, newval);}

It discards the symbol sym that would have been substituted by the reduction and pre‐
tends that the lexer just read the token newtok with the value newval. If there is a look-
ahead token or the rule has more than one symbol on the right side, the rule fails with
a call to yyerror().

It is extremely difficult to use YYBACKUP() correctly and it is not at all portable, so we
suggest you not use it. (We document it here in case you come across an existing gram‐
mar that does use it.)

yyclearin

The macro yyclearin in an action discards a lookahead token if one has been read. It is
most often useful in error recovery in an interactive parser to put the parser into a known
state after an error:

    stmtlist: stmt | stmtlist stmt ;

    stmt: error  { reset_input(); yyclearin; } ;

After an error this calls the user routine reset_input() which presumably puts the input
into a known state, then uses yyclearin to prepare to start reading tokens anew.

See the sections "YYRECOVERING()" and "yyerrok" for more information.
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yydebug and YYDEBUG

Most versions of yacc can optionally compile in trace code that reports everything that
the parser does. These reports are extremely verbose but are often the only way to figure
out what a recalcitrant parser is doing.

YYDEBUG

Since the trace code is large and slow, it is not automatically compiled into the object
program. To include the trace code, either use the -t flag on the yacc command line, or
else define the C preprocessor symbol YYDEBUG to be non-zero either on the C com‐
piler command line or by including something like this in the definition section:

    %{
    #define YYDEBUG 1
    %}

yydebug

The integer variable yydebug in the running parser controls whether the parser actually
produces debug output. If it is non-zero, the parser produces debugging reports, while
if it is zero it doesn’t. You can set yydebug non-zero in any way you want, for instance,
in response to a flag on the program’s command line, or by patching it at run-time with
a debugger.

yyerrok

After yacc detects a syntax error, it normally refrains from reporting another error until
it has shifted three consecutive tokens without another error. This somewhat alleviates
the problem of multiple error messages resulting from a single mistake as the parser gets
resynchronized.

If you know when the parser is back in sync, you can return to the normal state in which
all errors are reported. The macro yyerrok tells the parser to return to the normal state.

For example, assume you have a command interpreter in which all commands are on
separate lines. No matter how badly the user botches a command, you know the next
line is a new command.

    cmdlist: cmd | cmdlist cmd ;

    cmd:  error '\n' { yyerrok; } ;
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The rule with error skips input after an error up to a newline, and the yyerrok tells the
parser that error recovery is complete.

See also "YYRECOVERING()" and "yyclearin.”

YYERROR

Sometimes your action code can detect context-sensitive syntax errors that the parser
itself cannot. If your code detects a syntax error, you can call the macro YYERROR to
produce exactly the same effect as if the parser had read a token forbidden by the gram‐
mar. As soon as you invoke YYERROR the parser calls yyerror() and goes into error
recovery mode looking for a state where it can shift an error token. See "Error Token"
and "Error Recovery" for details.

yyerror()

Whenever a yacc parser detects a syntax error, it calls yyerror() to report the error to
the user, passing it a single argument, a string describing the error. (Usually the only
error you ever get is “syntax error.”) The default version of yyerror in the yacc library
merely prints its argument on the standard output. Here is a slightly more informative
version:

    yyerror(const char *msg)
    {
          printf("%d: %s at '%s'\n", yylineno, msg, yytext);
    }

We assume yylineno is the current line number. (See "Line Numbers and yylineno" in
Chapter 6.) and yytext is the lex token buffer that contains the current token. Since
different versions of lex declare yytext differently, some as an array and some as a pointer,
for maximum portability the best place to put this routine is in the user subroutines
section of the lexer file, since that is the only place where yytext is automatically defined
for you.

Since yacc doggedly tries to recover from errors and parse its entire input, no matter
how badly garbled, you may want to have yyerror() count the number of times it’s called
and exit after ten errors, on the theory that the parser is probably hopelessly confused
by the errors that have already been reported.

You can and probably should call yyerror() yourself when your action routines detect
other sorts of errors.
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yyparse()

The entry point to a yacc-generated parser is yyparse(). When your program calls
yyparse(), the parser attempts to parse an input stream. The parser returns a value of
zero if the parse succeeds and non-zero if not.

Every time you call yyparse() the parser starts parsing anew, forgetting whatever state
it might have been in the last time it returned. This is quite unlike the scanner yylex()
generated by lex, which picks up where it left off each time you call it.

See also "YYACCEPT" and "YYABORT.”

YYRECOVERING()

After yacc detects a syntax error, it normally enters a recovery mode in which it refrains
from reporting another error until it has shifted three consecutive tokens without an‐
other error. This somewhat alleviates the problem of multiple error messages resulting
from a single mistake as the parser gets resynchronized.

The macro YYRECOVERING() returns non-zero if the parser is currently in the error
recovery mode and zero if it is not. It is sometimes convenient to test YYRECOVER‐
ING() to decide whether to report errors discovered in an action routine.

See also "yyclearin" and "yyerrok.”
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1. MS-DOS versions of yacc call the listing file y.out or yy.lrt, and the format of the information in them is
different. All versions of yacc use the same parsing strategy and get the same conflicts, so the listing files
contain the same information.

CHAPTER 8

Yacc Ambiguities and Conflicts

This chapter focuses on finding and correcting conflicts within a yacc grammar. Con‐
flicts occur when yacc reports shift/reduce and reduce/reduce errors. Finding them can
be challenging because yacc points to them in y.output,1 which we will describe in this
chapter, rather than in your yacc grammar file. Before reading this chapter, you should
understand the general way that yacc parsers work, described in in Chapter 3, Using
Yacc .

The Pointer Model and Conflicts

To describe what a conflict is in terms of the yacc grammar, we introduce a model of
yacc’s operation. In this model, a pointer moves through the yacc grammar as each
individual token is read. When you start, there is one pointer (represented here as an
up-arrow, ↑) at the beginning of the start rule:

    %token A B C
    %%
    start:     � A B C;

As the yacc parser reads tokens, the pointer moves. Say it reads A and B:

    %token A B C
    %%
    start:     A B � C;
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At times, there may be more than one pointer because of the alternatives in your yacc
grammar. For example, suppose with the following grammar it reads A and B:

    %token A B C D E F
    %%
    start:      x
         |      y;
    x:    A B � C D;
    y:    A B � E F;

(For the rest of the examples in this chapter, we will leave out the %token and the %%.)
There are two ways for pointers to disappear. One is for a token to eliminate one or more
pointers because only one still matches the input. If the next token that yacc reads is
C, the second pointer will disappear, and the first pointer advances:

    start:      x
         |      y;
    x:    A B C � D;
    y:    A B E F;

The other way for pointers to disappear is for them to merge in a common subrule. In
this example, z appears in both x and y:

    start:      x
         |      y;
    x:    A B z R;
    y:    A B z S;
    z:C D

After reading A, there are two pointers:

    start:      x
         |      y;
    x:    A � B z R;
    y:    A � B z S;
    z:    C D

After A B C, there is only one pointer:

    start:      x
         |      y;
    x:    A B z R;
    y:    A B z S;
    z:    C � D;

And after A B C D, there again are two:
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    start:      x
         |      y;
    x:    A B z � R;
    y:    A B z � S;
    z:    C D;

When a pointer reaches the end of a rule, the rule is reduced. Rule z was reduced when
the pointer got to the end of it after yacc read D. Then the pointer returns to the rule
from which the reduced rule was called, or as in the case above, the pointer splits up
into the rules from which the reduced rule was called.

There is a conflict if a rule is reduced when there is more than one pointer. Here is an
example of reductions with only one pointer:

    start:      x
         |      y;
    x:    A � ;
    y:    B ;

After A, there is only one pointer—in rule x—and rule x is reduced. Similarly, after B,
there is only one pointer—in rule y—and rule y is reduced.

Here is an example of a conflict:

    start:     x
         |     y;
    x:    A � ;
    y:    A � ;

After A, there are two pointers, at the ends of rules x and y. They both want to reduce,
so it is a reduce/reduce conflict.

There is no conflict if there is only one pointer, even if it is the result of merging pointers
into a common subrule and even if the reduction will result in more than one pointer:

    start:       x
         |       y;
    x:    z R ;
    y:    z S ;
    z:    A B � ;

After A B, there is one pointer, at the end of rule z, and that rule is reduced, resulting
in two pointers:

    start:     x
         |     y;
    x:    z � R;
    y:    z � S;
    z:    A B;
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But at the time of the reduction, there is only one pointer, so it is not a conflict.

Types of Conflicts

There are two kinds of conflicts, reduce/reduce and shift/reduce. Conflicts are catego‐
rized based upon what is happening with the other pointer when one pointer is reducing.
If the other rule is also reducing, it is a reduce/reduce conflict. The following example
has a reduce/reduce conflict in rules x and y:

    start:      x
         |      y;
    x:    A � ;
    y:    A � ;

If the other pointer is not reducing, then it is shifting, and the conflict is a shift/reduce
conflict. The following example has a shift/reduce conflict in rules x and y:

    start:     x
         |     y R;
    x:    A � R;
    y:    A � ;

After yacc reads A, rule y needs to reduce to rule start, where R can then be accepted,
while rule x can accept R immediately.

If there are more than two pointers at the time of a reduce, yacc lists the conflicts in
pairs. The following example has a reduce/reduce conflict in rules x and y and another
reduce/reduce conflict in rules x and z:

    start:     x
         |     y
         |     z;
    x:    A � ;
    y:    A � ;
    z:    A � ;

Let’s define exactly when the reduction takes place with respect to token lookahead and
pointers disappearing so we can keep our simple definition of conflicts correct. Here is
a reduce/reduce conflict:

    start:      x B
         |      y B;
    x:    A � ;
    y:    A � ;

But there is no conflict here:

212 | Chapter 8: Yacc Ambiguities and Conflicts



    start:     x B
         |     y C;
    x:    A � ;
    y:    A � ;

The reason the second example is not a conflict is because yacc can look ahead one token
beyond the A. If it sees a B, the pointer in rule y disappears before rule x is reduced.
Similarly, if it sees a C, the pointer in rule x disappears before rule y reduces.

Yacc can only look ahead one token. The following is not a conflict in a compiler that
can look ahead two tokens, but in yacc, it is a reduce/reduce conflict:

    start:      x B C
         |      y B D;
    x:    A � ;
    Y:    A � ;

Parser States

Rather than telling where your conflicts lie in your yacc grammar, yacc tells where they
are in y.output, which is a description of the state machine it is generating. We will discuss
what the states are, describe the contents of y.output, then discuss how to find the prob‐
lem in your yacc grammar given a conflict described in y.output. You can generate
y.output by running yacc with the -v(verbose) option.

Each state corresponds to a unique combination of possible pointers in your yacc gram‐
mar. Every nonempty yacc grammar has at least two unique possible states: one at the
beginning, when no input has been accepted, and one at the end, when a complete valid
input has been accepted. The following simple example has two more states:

    start:    A <one here> B <another here> C;

For future examples, we will number the states as a clear means of identification. Al‐
though yacc numbers the states, the order of the numbers is not significant:

    start:     A <state 1> B <state 2> C;

When a given stream of input tokens can correspond to more than one possible pointer
position, then all the pointers for a given token stream correspond to one state:

    start:        a
         |        b;
    a:    X <state 1> Y <state 2> Z;
    b:    X <state 1> Y <state 2> Q;

Different input streams can correspond to the same state when they correspond to the
same pointer:
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    start:      threeAs;
    threeAs: /* empty */
           | threeAs A <state 1> A <state2>
                            A <state3>;
            

The grammar above accepts some multiple of three A’s. State 1 corresponds to 1, 4, 7, ...
A’s; state 2 corresponds to 2, 5, 8, ... A’s; and state 3 corresponds to 3, 6, 9, ... A’s. Although
not as good design, we rewrite this with right recursion in order to illustrate the next
point.

    start:       threeAs;
    threeAs:  /* empty */
           |  A A A threeAs;

(The next example would have a conflict if we used left recursion.) A position in a rule
does not necessarily correspond to only one state. A given pointer in one rule can cor‐
respond to different pointers in another rule, making several states:

    start:      threeAs X
         |      twoAs Y;
    threeAs: /* empty */
           | A A A threeAs;
    twoAs: /* empty */
         | A A twoAs;

The grammar above accepts multiples of 2 or 3 A’s, followed by an X for multiples of 3,
or a Y for multiples of 2. (Without the X or Y, the grammar would have a conflict, not
knowing whether a multiple of 6 A’s satisfied threeAs or twoAs.) If we number the states
as follows:

    state 1: 1, 7, ... A's accepted
    state 2: 2, 8, ... A's accepted
    ...
    state 6: 6, 12, ... A's accepted

then the corresponding pointer positions are as follows:

    start:      threeAs X
         |      twoAs Y;
    threeAs: /* empty */
           | A <1,4> A <2,5> A <3,6> threeAs;
    twoAs: /* empty */
         |  A <1,3,5> A <2,4,6> twoAs;

That is, after the first A in threeAs, yacc could have accepted 6i+1 or 6i+4 A s, where i
is 0, 1, etc. Similarly, after the first A in twoAs, yacc could have accepted 6i+1, 6i+3, or
6i+5 A’s.
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2. Yacc’s use of dot to show where you are in the rule can get confusing if you have rules with dots in them. Some
versions of yacc use an underscore rather than a dot, which can be equally confusing if you have rules with
underscores in them.

Contents of y.output

Now that we have defined states, we can look at the conflicts described in y.output. The
format of the file varies among versions of yacc, but it always includes a listing of all of
the parser states. For each states, it lists the rules and positions that correspond to the
state, the shifts and reductions the parser will do when it reads various tokens in that
state, and what state it will switch to after a reduction produces a non-terminal in that
state. The listings below come from various versions of yacc, so you can see that the
differences are small. We’ll show some ambiguous grammars and the y.output reports
that identify the ambiguities.

Reduce/Reduce Conflicts

Consider the following ambiguous grammar:

    start:       a Y
         |       b Y ;
    a:    X ;
    b:    X ;

When we run it through Berkeley yacc, a typical state description is:

    state 3
          start : a . Y  (1)

          Y  shift 5
          .  error

In this state, the parser has already reduced an a. If it sees a Y it shifts the Y and moves
to state 5. Anything else (represented by a dot) is an error. The ambiguity produces a
reduce/reduce conflict in state 1:

    1: reduce/reduce conflict (reduce 3, reduce 4) on Y
    state 1
          a : X .  (3)
          b : X .  (4)

          .  reduce 3

The first line says that state 1 has a reduce/reduce conflict between rule 3 and rule 4
when token Y is read. In this state, it’s read an X which may be an a or a b. The third
and fourth lines show the two rules that might be reduced. The dot2 shows where in the
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rule you are before receiving the next token. This corresponds to the pointer in the yacc
grammar. For reduce conflicts, the pointer is always at the end of the rule. The last line
shows that yacc chose to reduce rule 3, since it resolves reduce/reduce conflicts by re‐
ducing the rule that appears earlier in the grammar.

The rules may have tokens or rule names in them. The following ambiguous grammar:

    start:      a Z
         |      b Z;
    a:   X y;
    b:   X y;
    y:   Y;

produces a parser with this state:

    6: reduce/reduce conflict (reduce 3, reduce 4) on Z
    state 6
          a : X y .   (3)
          b : X y .   (4)

          .  reduce 3

In this state, the parser has already reduced a Y to a y, but the y could complete either
a a or a b. Non-terminals can cause reduce/reduce conflicts just like tokens can. It’s easy
to tell the difference if you use uppercase token names, as we have.

The rules that conflict do not have to be identical. The grammar:

    start:     A B x Z
         |     y Z;
    x:    C;
    y:    A B C;

when processed by AT&T yacc produces a grammar containing this state:

    7: reduce/reduce conflict (red'ns 3 and 4 ) on Z
    state 7
          x : C_   (3)
          y : A B C_   (4)

          . reduce 3

In state 7, yacc has already accepted A B C. Rule x only has C in it, because in the start
rule from which x is called, A B is accepted before calling x. The C could complete either
an x or a y. Yacc again resolves the conflict by reducing the earlier rule in the grammar,
in this case rule 3.
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Shift/Reduce Conflicts

Identifying a shift/reduce conflict is a little harder. To identify the conflict, we will do
the following:

• Find the shift/reduce error in y.output
• Pick out the reduce rule
• Pick out the relevant shift rules
• See where the reduce rule reduces to
• Deduce the token stream that will produce the conflict

This grammar contains a shift/reduce conflict:

    start:     x
         |     y R;
    x:    A R;
    y:    A;

AT&T yacc produces this complaint:

    4: shift/reduce conflict (shift 6, red'n 4) on R
    state 4
          x : A_R
          y : A_    (4)

          R  shift 6
          .  error

State 4 has a shift/reduce conflict between shifting token R, and moving to state 6, and
reducing rule 4 when it reads an R. Rule 4 is rule y, as shown in the line:

    Y :   A_    (4)

You can find the reduce rule in a shift/reduce conflict the same way you find both rules
in a reduce/reduce conflict. The reduction number is in parentheses on the right. In the
case above, the rule with the shift conflict is the only rule left in the state:

    x:    A_R;

Yacc is in rule x, having accepted A and about to accept R. The shift conflict rule was
easy to find in this case, because it is the only rule left, and it shows that the next token
is R. Yacc resolves shift/reduce conflicts in favor of the shift, so in this case if it receives
an R it shifts to state 6.

The next thing showing may be a rule instead of a token:
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    start:      x1
         |      x2
         |      y R;
    x1:   A R;
    x2:   A z;
    y:    A;
    z:    R;

Berkeley yacc reports several conflicts, including this one:

    1: shift/reduce conflict (shift 6, reduce 6) on R
    state 1
          x1 : A . R (4)
          x2 : A . z  (5)
          Y : A .  (6)

          R  shift 6

          z  goto 7

In the example above, the reduction rule is:

    Y : A .   (6)

so that leaves two candidates for the shift conflict:

    x1 : A . R    (4)
    x2 : A . z    (5)

Rule x1 uses the next token, R, so you know it is part of the shift conflict, but rule x2
shows the next non-terminal (not token). You have to look at the rule for z to find out
if it starts with an R. In this case it does, so there is a three-way conflict for an A followed
by an R: it could be an x1, an x2 which includes a z, or a y followed by an R.

There could be more rules in a conflicting state, and they may not all accept an R.
Consider this extended version of the grammar:

    start:      x1
         |      x2
         |      x3
         |      y R;
   x1:    A R;
   x2:    A z1;
   x3:    A z2
   y:     A;
   z1:    R;
   z2:    S;

MKS yacc produces a listing with this state:
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    State 1
             X1:    A.R
             X2:    A.z1
             X3:    A.z2
         (8) Y:     A.  [ R ]

      Shift/reduce conflict (10,8) on R
          R     shift 10
          S     shift 7
          .     error

          z2    goto 8
          z1    goto 9

(The R in brackets means that in the grammar, a y in this context must be followed by
an R.) The conflict is between shifting to state 10 and reducing rule 8. The reduce
problem, rule 8, is the rule for y. The rule for x1 is a shift problem, because it shows the
next token after the dot to be R. It is not immediately obvious about x2 or x3, because
they show rules z1 and z2 following the dots. When you look at rules z1 and z2, you
find that z1 contains an R next and z2 contains an S next, so x2 which uses z1 is part of
the shift conflict and x3 is not.

In each of our last two shift/reduce conflict examples, can you also see a reduce/reduce
conflict? Run yacc and look in y.output to check your answer.

Review of Conflicts in y.output

Let’s review the relationship between our pointer model, conflicts, and y.output. First,
here is a reduce/reduce conflict:

    start:      A B x Z
         |      y Z;
    x:    C;
    y:    A B C;

The AT&T yacc listing contains:

    7: reduce/reduce conflict (red'ns 3 and 4 ) on Z
    state 7
    x :  C_   (3)
    y :  A B C_   (4)

There is a conflict because if the next token is Z, yacc wants to reduce both rules 3 and
4, the rules for both x and y. Or using our pointer model, there are two pointers and
both are reducing:
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    start:       A B x z
         |       y Z;
    x:    c � ;
    y:    A B C � ;

Here is a, shift/reduce example:

    start:     X
         |     y R;
    x:,   A R;
    y:    A

Berkeley yacc reports this conflict:

    1: shift/reduce conflict (shift 5, reduce 4) on R
    state 1
          x : A . R   (3)
          y : A .   (4)

          R  shift 5

There is a conflict, because if the next token is R, yacc wants to reduce the rule for y and
shift an R in the rule for x. Or there are two pointers and one is reducing:

    start:    x
         |    y R;
    x:    A � R;
    y:    A � ;

Common Examples of Conflicts

The three most common situations that produce shift/reduce conflicts are expression
grammars, IF—THEN—ELSE, and nested lists of items. After we see how to identify
these three situations, we look at ways to get rid of the conflicts.

Expression Grammars

Our first example is from the original UNIX yacc manual. We have added a terminal
for completeness:

    expr: TERMINAL
        | expr '-' expr ;

The state with a conflict is:
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    4:  shift/reduce conflict  (shift 3, red'n 2) on -
           state 4
           expr :    expr_− expr
           expr :    expr − expr_    (2)

Yacc tells us that there is a shift/reduce conflict when you get the minus token. Adding
our pointers:

    expr: expr � − expr ;
    expr: expr − expr � ;

These are the same rule, not even different alternatives under the same name. This shows
that you can have a state where your pointers can be in two different places in the same
rule. This is because the grammar is recursive. (In fact, all of the examples in this section
are recursive. We have found that most of the tricky yacc problems are recursive.)

After accepting two expr’s and “-”, the pointer is at the end of rule expr, as shown in the
second line of the pointer example above. But “expr − expr” is also an expr, so your
pointer can also be just after the first expr, as shown in the first line of the example
above. If the next token is not “-”, then the pointer in the first line disappears because it
wants “-” next, so you are back to one pointer. But if the next token is “-”, then the second
line wants to reduce, and the first line wants to shift.

To solve this conflict, look at y.output, shown above, to find the source of the conflict.
Get rid of irrelevant rules in the state (there are not any here), and you get the two
pointers we just discussed. It becomes clear that the problem is:

    expr − expr − expr

The middle expr might be the second expr of an “expr−expr”, in which case the input
is interpreted as:

    (expr − expr) − expr

which is left associative, or might be the first expr in which case the input is interpreted
as:

    expr − (expr − expr)

which is right associative. After reading “expr−expr”, the parser could reduce if using
left associativity or shift using right associativity. If not instructed to prefer one or the
other, this ambiguity causes a shift/reduce conflict, which yacc resolves by choosing the
shift. Figure 8-1 shows the two possible parses.
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Figure 8-1. Ambiguous input expr- expr- expr

Later in this chapter, we discuss what to do about this kind of conflict.

IF—THEN—ELSE

Our next example is also from the UNIX yacc manual. Again we have added a terminal
symbol for completeness:

    stmt:  IF '(' cond ')' stmt
        |  IF '(' cond ')' stmt ELSE stmt
        |  TERMINAL;
    cond:  TERMINAL;

AT&T yacc complains:

    8: shift/reduce conflict (shift 9, red'n 1) on ELSE
    state 8
          stmt : IF ( cond ) stmt_    (1)
          stmt : IF ( cond ) stmt_ELSE stmt

In terms of pointers this is:

    stmt: IF ( cond ) stmt � ;
    stmt: IF ( cond ) stmt � ELSE stmt ;
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The first line is the reduce part of the conflict, and the second, the shift part. This time
they are different rules with the same left-hand side. To figure out what is going wrong,
we see where the first line reduces to. It has to be a call to stmt, followed by an ELSE.
There is only one place where that can happen:

    stmt: IF ( cond ) stmt <return  to here> ELSE stmt ;

After the reduction, the pointer returns to the exact spot where it is for the shift part of
the conflict. In fact, that is the same as what was happening with “expr − expr − expr”
in the previous example. And using similar logic, in order to reduce “IF ( cond ) stmt”
into “stmt” and end up here:

    stmt: IF ( cond ) stmt <here> ELSE stmt ;

you have to have this token stream:

    IF ( cond ) IF ( cond ) stmt ELSE

Again, do you want to group it like this:

    IF ( cond ) { IF ( cond ) stmt } ELSE stmt

or like this:

    IF ( cond ) { IF ( cond ) stmt ELSE stmt }

The next section explains what to do about this kind of conflict.

Nested List Grammer

Our final example is a simple version of a problem we have helped people track down
a number of times. Novice yacc programmers often run into it:

    start:            outerList Z ;
    outerList:  /* empty */
          |     outerList outerListItem ;

    outerListItem:    innerList ;

    innerList:  /* empty */
          |     innerList innerListItem ;

    innerListItem:    I ;

AT&T yacc reports this conflict:

Yacc Ambiguities and Conflicts | 223



    2: shift/reduce conflict (shift 3, red'n 5) on Z
    state 2
          start :  outerList_Z
          outerList :  outerList_outerListItem
          innerList : _    (5)

Let’s go through the steps. The reduce rule is the empty alternative of innerList. That
leaves two candidates for the shift problem. Rule start is one, because it explicitly takes
Z as the next token. The nonempty alternative of outerList might be a candidate, if it
takes Z next. We see that outerList includes an outerListItem, which is an innerList.
The innerList can’t include an innerListItem, because that includes an I, and this conflict
only occurs when the next token is a Z. But an innerList can be empty, so the outer‐
ListItem involves no tokens, so we might actually be at the end of the outerList as well,
since as the first line in the conflict report told us, an outerList can be followed by a Z.

This all boils down to this state: we have just finished an innerList, possibly empty, or
an outerList, possibly empty. How can it not know which list it has just finished? Look
at the two list expressions. They can both be empty, and the inner one sits in the outer
one without any token to say it is starting or finishing the inner loop. Assume the input
stream consists solely of a Z. Is it an empty outerList, or it might be an outerList with
one item, an empty innerList ? That’s ambiguous.

The grammar is redundant. You have a loop within a loop, with nothing to separate
them. Since this grammar actually accepts a possibly empty list of I’s followed by a Z,
you can write it using only one recursive rule:

    start:              outerList Z ;
    outerList:    /* empty */
          |       outerList outerListItem ;
    outerListItem:      I ;

Or perhaps you forgot some tokens in outerListItem to delimit the inner from the outer
loop.

How Do I Fix the Conflict?

The rest of this chapter describes what to do with a conflict once you’ve figured out what
it is. We’ll discuss how to fix classes of conflicts that commonly cause trouble for yacc
users. We welcome feedback from readers about specific problems they’ve had that can
add to this section in future editions. Two examples in the second edition came from a
reader in Minneapolis.

When trying to resolve conflicts, consider changing the language you’re parsing. Some‐
times you work with a language that’s already defined, but if not, you can often simplify
the yacc description a great deal by making minor adjustments to the language. In fact,
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the location of a keyword in your language could make the difference between the yacc
description being practical, impractical, or even impossible. Languages that yacc has
trouble parsing are often hard for people to parse in their heads; you’ll end up with a
better langauge design once you change your language to remove the conflicts.

IF—THEN—ELSE (Shift/Reduce)

This is one of the examples from earlier in this chapter. Here we describe what to do
with the shift/reduce conflict once you’ve tracked it down. It turns out that the default
way that yacc resolves this particular conflict is usually what you want it to do anyway.
How do you know it’s doing what you want it to do? Your choices are to (1) be good
enough at reading yacc descriptions, (2) be masochistic enough to decode the y.output
listing, or (3) test the generated code to death. Once you’ve verified that you’re getting
what you want, you ought to make yacc quit complaining. Conflict warnings may con‐
fuse or annoy anyone trying to maintain your code, and make it easier for you to miss
an important warning.

You can rewrite the grammar this way to avoid the conflict:

    stmt:       matched
          |     unmatched
          ;
    matched:    other_stmt
          |     IF expr THEN matched ELSE matched
          ;
    unmatched:  IF expr THEN stmt
          |     IF expr THEN matched ELSE unmatched
          ;
    other_stmt: /* rules for other kinds of statement */  ...

The non-terminal other_stmt represents all of the other possible statements in the lan‐
guage. Although this works, it adds ugly complication to the grammar.

You can set explicit precedences will stop yacc from issuing a warning.

    %nonassoc LOWER_THAN_ELSE
    %nonassoc ELSE

    %%

    stmt:       IF expr stmt             %prec LOWER_THAN_ELSE ;
           |    IF expr stmt ELSE stmt;

If your language uses a THEN keyword (like Pascal does) you can do this:

    %nonassoc THEN
    %nonassoc ELSE
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    %%

    stmt:     IF expr THEN stmt
          |   IF expr stmt ELSE stmt
          ;

A shift/reduce conflict is a conflict between shifting a token (ELSE in the example above)
and reducing a rule (stmt). You need to assign a precedence to the token (%nonassoc
ELSE in our example) and to the rule (%nonassoc THEN or %nonassoc LOW‐
ER_THAN_ELSE and %prec LOWER_THAN_ELSE.) The precedence of the token to
shift must be higher than the precedence of the rule to reduce, so the %nonassoc
ELSE must come after the %nonassoc THEN or %nonassoc LOWER_THAN_ELSE. It
makes no difference for this application if you use %nonassoc, %left, or %right.

The goal here is to hide a conflict you know about and understand, and not to hide any
others. When you’re trying to mute yacc’s warnings about other shift/reduce conflicts,
the further you get from the example above, the more careful you should be. Other shift/
reduce conflicts may be amenable to a simple change in the yacc description. And, as
we mentioned above, any conflict can be fixed by changing the language. For example,
the IF-THEN-ELSE conflict can be eliminated by insisting on BEGIN-END or braces
around the stmt.

What would happen if you swapped the precedences of the token to shift and the rule
to reduce? The normal IF-ELSE handling makes the following two equivalent:

    if expr if expr stmt else stmt
    if expr { if expr stmt else stmt }

It seems only fair that swapping the precedences would make the following two equiv‐
alent, right?

    if expr if expr stmt else stmt
    if expr { if expr stmt } else stmt

Wrong! That’s not what it does. Having higher precedence on the shift (normal IF-ELSE)
makes it always shift the ELSE. Swapping the precedences makes it never shift the ELSE,
so your IF-ELSE can no longer have an else.

Normal IF-ELSE processing associates the ELSE with the most recent IF. Suppose you
want it some other way. One possibility is that you only allow one ELSE with a sequence
of IFS, and the ELSE is associated with the first IF. This would require a two-level state‐
ment definition, as follows:

    %nonassoc LOWER_THAN_ELSE
    %nonassoc ELSE

    %%
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    stmt:       IF expr stmt2 %prec LOWER_THAN_ELSE
          |     IF expr stmt2 ELSE stmt;

   stmt2:  IF expr stmt2;

We don’t encourage this; such a language is extremely counterintuitive.

Loop Within a Loop (Shift/Reduce)

    start:           outerList Z ;
    outerList: /* empty */
          |    outerList outerListItem ;

    outerListItem:   innerList ;
    innerList: /* empty */
          |    innerList innerListItem ;

    innerListItem:   I ;

Resolution depends on whether you want repetitions to be treated as one outer loop and
many inner loops, or many outer loops of one inner loop each. The difference is whether
the code associated with outerListItem gets executed once for each repetition, or once
for each set of repetitions. If it makes no difference, arbitrarily choose one or the other.
If you want many outer loops, remove the inner loop:

    start:              outerList Z ;

    outerList:    /* empty */
          |       outerList innerListItem ;

    innerListItem:      I ;

If you want many inner loops, remove the outer loop:

    start:              innerList Z ;

    innerList:    /* empty */
          |       innerList innerListItem ;

    innerListItem:  I ;

Expression Precedence (Shift/Reduce)

    expr:        expr  '+'  expr
          |      expr  '−'  expr
          |      expr  '*'  expr
          |      ...
            ;
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If you describe an expression syntax using the technique above, but forget to define the
precedences with %left and %right, you get a truckload of shift/reduce conflicts. As‐
signing precedences to all of the operators should resolve the conflicts. Keep in mind
that if you use any of the operators in other ways, e.g., using a “-” to indicate a range of
values, the precedence can also mask conflicts in the other contexts.

Limited Lookahead (Shift/Reduce or Reduce/Reduce)

A class of shift/reduce conflicts are due to yacc’s limited lookahead. That is, a parse that
could look farther ahead would not have a conflict. For example:

    rule: command optional_keyword '('  identifier_list ')'
          ;

    optional_keyword: /* blank */
          |      '(' keyword ')'
          ;

The example describes a command line that starts with a required command, ends with
a required identifier list in parentheses, and has in the middle an optional keyword in
parentheses. Yacc gets a shift/reduce conflict with this when it gets to the first parenthesis
in the input stream, it doesn’t know if it goes with the optional keyword or the identifier
list. In the first case yacc would shift the parenthesis within the optional_keyword rule,
and in the second it would reduce an empty optional_keyword and move on to the
identifier list. If yacc could look farther ahead it could tell the difference between the
two. But it can’t.

The default is for yacc to choose the shift, which means it always assumes the optional
keyword is there. (You can’t really call it optional in that case.) If you apply precedences
you could get the conflict to resolve in favor of the reduction, which would mean you
could never have the optional keyword.

Yacc cannot parse the command line with the example description above, no matter
how you fiddle with precedences, because yacc lacks the lookahead depth required. Our
only choice, if we can’t change the syntax of the command language, is to flatten the
description:

    rule:     command '('keyword ')''(' identifier_list  ')'
           |  command '('  identifier_list ')'
           ;

By flattening the list, we allow the parser to scan ahead with multiple possible pointers
until it sees a keyword or identifier, at which point it can tell which rule to use.
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Flattening is a practical solution in this example, but when more rules are involved it
rapidly becomes impractical due to the exponential expansion of the yacc description.
You may run into a shift/reduce conflict from limited look-ahead for which your only
practical solutions are to change the language, or not to use yacc.

It’s also possible to get a reduce/reduce conflict due to limited look-ahead. One way is
to have an overlap of alternatives:

    rule:       command_type_1 ':' '[' ...
          |     command_type_2 ':' '(' ...

    command_type_1:  CMD_1  | CMD_2 | CMD_COMMON  ;

    command_type_2: CMD_A  | CMD_B | CMD_COMMON  ;

The solutions for this are flattening, as we did above. or making the alternatives disjoint,
as described in the following section.

You can also get a reduce/reduce conflict from limited lookahead because actions in the
middle of a rule are really anonymous rules that must be reduced:

    rule:      command_list {<actionfor '['form> }':' '[' ...
          |    command_list {<actionfor '('form> }':' '(' ...

This is already flattened, so there’s nothing you can do to get it to work in yacc. It simply
needs a two token lookahead, and yacc doesn’t have that. Unless you’re doing some sort
of exotic communication between the parser and lexer, you can just move the action
over:

    rule:       command_list ':' '['{ <action for '['  form> } ...
           |    command_list ':' '('{ <action for '('  form> } ...

Overlap of Alternatives (Reduce/Reduce)

In this case, you have two alternative rules with the same LHS, and the inputs accepted
by them overlap partially. Your best bet is to make the two input sets disjoint. For ex‐
ample:

    rule:       girls
           |    boys
           ;

    girls:            ALICE
           |    BETTY
           |    CHRIS
           |    DARRYL
           ;
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    boys:       ALLEN
           |    BOB
           |    CHRIS
           |    DARRYL
           ;

You will get a reduce/reduce conflict on CHRIS and DARRYL because yacc can’t tell
whether they’re intended to be girls or boys. There are several ways to resolve the con‐
flict. One is:

    rule:     girls  | boys | either;

    girls:           ALICE
          |    BETTY
          ;

   boys:       ALLEN
          |    BOB
          ;

    either:          CHRIS
          |    DARRYL
          ;

But what if these lists were really long, or were complex rules rather than just lists of
keywords, so you wanted to minimize duplication, and girls and boys were referenced
many other places in the yacc description? Here’s one possibility:

    rule:      just_girls
          |    just_boys
          |    either
          ;

    girls:           just_girls
          |    either
          ;

    boys:      just_boys
          |    either
          ;

    just_girls:ALICE
          |    BETTY
          ;

    just_boys: ALLEN
          |    BOB
          ;
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    either:          CHRIS
          |    DARRYL
          ;

All references to “boys | girls” have to be fixed. There’s no way to avoid either having to
fix references to “boys | girls” or to fix the lists.

But what if it’s impractical to make the alternatives disjoint? If you just can’t figure out
a clean way to break up the overlap, then you’ll have to leave the reduce/reduce conflict.
Yacc will use its default disambiguating rule for reduce/reduce, which is to choose the
first definition in the yacc description. So in the first “girls | boys” example above, CHRIS
and DARRYL would always be girls. Swap the positions of the boys and girls lists, and
CHRIS and DARRYL are always boys. You’ll still get the reduce/reduce warning, and
yacc will make the alternatives disjoint for you, exactly what you were trying to avoid.
You have to rewrite the grammar.

Summary

Ambiguities and conflicts within the yacc grammar are just one type of coding error,
one that is problematical to find and correct. This chapter has presented some techniques
for correcting these errors. In the chapter that follows, we will largely be looking at other
sources of errors.

Our goal in this chapter has been for you understand the problem at a high enough level
that you can fix it.

To review how to get to that point:

• Find the shift/reduce error in y.output
• Pick out the reduce rule
• Pick out the relevant shift rules
• See where the reduce rule will reduce back to
• With this much information, you ought to be able to deduce the token stream lead‐

ing up to the conflict.

Seeing where the reduce rule reduces to is typically as easy as we have shown. Sometimes
a grammar is so complicated that it is not practical to use our “hunt-around” method,
and you will need to learn the detailed operation of the state machine to find the states
to which you reduce.
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Exercises

1. All reduce/reduce conflicts and many shift/reduce conflicts are caused by ambig‐
uous grammars. Beyond the fact that yacc doesn’t like them, why are ambiguous
grammars usually a bad idea?

2. Find a grammar for a substantial programming language like C, C++, or Fortran
and run it through yacc. Does the grammar have conflicts? (Nearly all of them do.)
Go through the y.output listing and determine what causes the conflicts. How hard
would they be to fix?

3. After doing the previous exercise, speculate about why languages are usually defined
and implemented with ambiguous grammars.
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CHAPTER 9

Error Reporting and Recovery

The previous two chapters discussed techniques for finding errors within yacc gram‐
mars. In this chapter, we turn our attention to the other side of error correction and
detection—how the parser and lexical analyzer detect errors. This chapter presents some
techniques to incorporate error detection and reporting into the grammar. To ground
the discussion in a complete example, we will refer to the menu generation language
defined in Chapter 4, A Menu Generation Language .

Yacc provides the error token and the yyerror routine, which are typically sufficient for
early versions of a tool. However, as any program begins to mature, especially a pro‐
gramming tool, it becomes important to provide better error recovery, which allows for
detection of errors in the later portions of the file, and better error reporting.

Error Reporting

Error reporting should give as much detail about the error as is possible. The default
yacc error only declares that a syntax error exists and to stop parsing. In our examples,
we typically added a mechanism for reporting the line number. This provides the loca‐
tion of the error but does not report any other errors within the file or where in the
specified line the error occurs.

It is best to categorize the possible errors, perhaps building an array of error types and
defining symbolic constants to identify the errors. For example, in the MGL a possible
error is to fail to terminate a string. Another error might be using the wrong type of
string (quoted string instead of an identifier or vice versa). At a minimum, the MGL
should report:

• General syntactic errors (e.g., a line that makes no sense)
• A nonterminated string
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• The wrong type of string (quoted instead of unquoted or vice versa)
• A premature end-of-file
• Duplicate names used

Our existing mechanism that reports a syntax error with the line number is a good one;
if we cannot identify the error, we will use this as a fallback. We will place other more
specific error reports where we recognize the possibility of such an error. In general, this
should be enough to point out the offending line in the input file, which in turn is often
enough to determine the nature of the error.

The duty for error correction does not lie with yacc alone, however. Many fundamental
errors are better detected by lex. For instance, the normal quoted string matching pattern
is:

    \"[^\"\n]*\"

We would like to detect an unterminated quoted string. One potential solution is to add
a new rule to catch unterminated strings as we did in the SQL parser in Chapter 5. If a
quoted string runs all the way to the end of the line without a closing quote, we print an
error:

    \"[^\"\n]*\"  {
                  yylval.string = yytext;
                  return QSTRING;
               }

   \"[^\"\n]*$ {
                  warning("Unterminated string");
                  yylval.string = yytext;
                  return QSTRING;
              }

This technique of accepting illegal input and then reporting it with an error or warning
is a powerful one that can be used to improve the error reporting of the compiler. If we
had not added this rule, the compiler would have used the generic “syntax error” mes‐
sage; by reporting the specific error, we can tell the user precisely what to fix. Later in
this chapter, we will describe ways to resynchronize and attempt continuing operation
after such errors.

The yacc equivalent of accepting erroneous input is demonstrated by testing for the
improper use of a quoted string for an identifier and vice versa.

For instance, the following MGL specification fragment should generate such an error:

    screen "flavors"

instead of:
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    screen flavors

It is a lot more useful to tell the user that the string is the wrong type rather than just
saying “syntax error”; this is the type of error a beginning user makes. To handle the
wrong type of string, we modify the yacc grammar to recognize the error condition and
report it. Thus, we can introduce a non-terminal to replace the currently used tokens
QSTRING and ID. Currently, the MGL has the rules:

    screen_name: SCREEN ID { start_screen($2); }
               | SCREEN    { start_screen(strdup("default")); }
               ;

    screen_terminator: END ID { end_screen($2); }
                     | END { end_screen(strdup("default")); }
                     ;

    screen_contents: titles lines
                   ;

    titles: /* empty */
          | titles title
          ;

    title: TITLE qstring { add_title($2); }
         ;

Instead, use the following rules to replace the QSTRING and ID tokens:

    id:             ID     {  $$  = $1; }
          |   QSTRING  { warning("String literal inappropriate", $1);
                     $$ = $1; /* use it anyway */
              }
          ;

    qstring:  QSTRING  { $$ = $1; }
          |   ID { warning("Non-string literal inappropriate", $1);
                    $$ = $1;  /* use it anyway */
              }
          ;

Now when the yacc grammar detects an improper string literal or identifier, it can pin‐
point the type of error. We use the improper literal anyway; the generated C code may
be wrong but this lets the parser continue and look for more errors. Sometimes error
recovery is impossible; often it is desirable to issue a warning but not to actually do any
error recovery. For example, pcc, the portable C compiler, aborts when it sees an illegal
character in the input stream. The compiler writers decided that there was a point when
resynchronizing and continuing were not possible. However, pcc reports questionable
assignments and then recovers, as in this C fragment:
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    int i =  "oops";

In this case, it issues an error message but processing continues.

Our next example detects reused names. This illustrates a type of error detection that
occurs within the compiler code, rather than within the lexical analyzer or the parser;
indeed, it cannot be implemented inside the grammar or lexical analyzer because it
requires memory of the tokens previously seen. The approach we took with the MGL
was straightforward. In this instance, duplicate names are syntactically OK but cause
duplicates in the C code the MGL generates, so whenever we see a new name, we “reg‐
ister” it in a list of used names. Prior to registration, we scan the list to see if the name
is already registered; if it is, we report a duplicate name error. The full code is shown in
Appendix I, MGL Compiler Code .

Better Lex Error Reports

Some simple lex hackery can let you produce better error reports than the rather dull
defaults. A very simple technique that we used in the SQL parser reports the line number
and current token. We track the line number on each \n character, and the current token
is always available in yytext.

    \n          lineno++;

    %%

    void yyerror(char *s)
    {
          printf("%d: %s at %s\n", lineno, s, yytext);
    }

A slightly more complex trick saves the input a line at a time:

    %{
    char linebuf[500];
    %}
    %%
    \n.*  { strcpy(linebuf, yytext+1); /* save the next line */
            lineno++;
            yyless(1);      /* give back all but the \n to rescan */
          }
    %%

    void yyerror(char *s)
    {
         printf("%d: %s at %s in this line:\n%s\n",
               lineno, s, yytext, linebuf);
    }
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The pattern “\n.*” matches a newline character and the entire next line. The action code
saves the line, then gives it back to the scanner with yyless().

To pinpoint the exact position of an erroneous token in the input line, keep a variable
that records the current position in the line, setting it to zero on each “\n.*” token and
incrementing it by yyleng on each token. Assuming the line position is in tokenpos, you
can report the error position like this:

    void yyerror(char *s)
    {
          printf("%d: %s:\n%s\n",
                lineno, s, linebuf);
          printf("%*s\n", 1+tokenpos, "^");
    }

The second printf prints a caret at position tokenpos, like this:

    3: syntax error:
    CREATE TABLE sample ( color CHAR(10) NOT DEFAULT 'plaid' )
                                             ^

Error Recovery

We concentrated on error reporting in the previous section; in this section, we discuss
the problem of error recovery. When an error is detected, the yacc parser is left in an
ambiguous position. It is unlikely that meaningful processing can continue without
some adjustment to the existing parser stack.

There is no reason error recovery is necessary. Many programs do not attempt to con‐
tinue once an error has been detected. For compilers, this is often undesirable, because
running the compiler itself is expensive. For example, a C compiler typically consists of
several stages: the preprocessor, the parser, the data flow analyzer, and the code gener‐
ator. Reporting an error in the parser stage and ceasing operation will require that the
single problem be repaired and the process started again—but the work by the prepro‐
cessor must be redone. Instead, it may be possible to recover from the error and continue
examining the file for additional errors, stopping the compiler before invoking the next
stage. This technique improves the productivity of the programmer by shortening the
edit-compile-test cycle, since several errors can be repaired in each iteration of the cycle.

Typically, error recovery becomes increasingly valuable as the compiler becomes in‐
creasingly complex. However, the issues involved in error recovery can be illustrated
with a simple compiler such as the MGL.
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Yacc Error Recovery

Yacc has some provision for error recovery, by using the error token. Essentially, the
error token is used to find a synchronization point in the grammar from which it is likely
that processing can continue. Note that we said likely. Sometimes our attempts at re‐
covery will not remove enough of the erroneous state to continue, and the error messages
will cascade. Either the parser will reach a point from which processing can continue or
the entire parser will abort.

After reporting a syntax error, a yacc parser discards any partially parsed rules until it
finds one in which it can shift an error token. It then reads and discards input tokens
until it finds one which can follow the error token in the grammar. This latter process
is called resynchronizing.

In the MGL, we could use screens as synchronization points. For example, after seeing
an erroneous token, it could discard the entire screen record and restart at the next
screen. In Chapter 4, A Menu Generation Language , our rule for a screen was:

    screens:  /* nothing */
            | preamble screens screen
            | screens screen
            ;

    screen:   screen_name screen_contents screen_terminator
            | screen_name screen_terminator
            ;

We can augment this to synchronize in the screen rule:

    screen:   screen_name screen_contents screen_terminator
          | screen_name screen_terminator
          | screen_name error screen_terminator
                { warning("Skipping to next screen",(char *)0);  }
        ;

This is the basic “trick” to error recovery—attempting to move forward in the input
stream far enough that the new input is not adversely affected by the older input.

Error recovery is enhanced with proper language design. Modern programming lan‐
guages use statement terminators, which serve as convenient synchronization points.
For instance, when parsing a C grammar, a logical synchronizing character is the sem‐
icolon. Error recovery can introduce other problems, such as missed declarations if the
parser skips over a declaration looking for a semicolon, but these can also be included
in the overall error recovery scheme.

The potential for cascading errors caused by lost state (discarded variable declarations,
for example) discourages a strategy that throws away large portions of the input stream.
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One mechanism for counteracting the problem of cascading errors is to count the num‐
ber of error messages reported and abort the compilation process when the count ex‐
ceeds some arbitrary number. For example, many C compilers abort after reporting ten
errors within a file.

Like any other yacc rule, one that contains error can be followed with action code. It
would be typical at this type of point to clean up after the error, reinitialization of data
state, or other necessary “housekeeping” activities, so when recovery is done, processing
can continue. For example, the previous error recovery fragment from MGL might be
expressed as:

    screen:     screen_name screen_contents screen_terminator
          |   screen_name screen_terminator
          |   screen_name error
                  { recover(); }
                  screen_terminator
                        { warning("Skipping to next screen",(char *)0);  }
          ;

Unfortunately, this means the entire input must be parsed up to a screen_terminator
before the state machine has recovered. This means that if the screen terminator were
not found, the parser would throw away the rest of the input file looking for it, causing
a fatal syntax error. (Recall that we have no error recovery at the level above the screen
rule in this example). Normally, the parser refrains from generating any more error
messages until it has successfully shifted three tokens without an intervening syntax
error, at which point it decides that it has resynchronized and returns to its normal state.
If we wish to force immediate resynchronization, we can use the special yacc action
yyerrok. This informs the parser that recovery is complete and resets the parser to its
normal mode. Our previous example then becomes:

    screen:     screen_name screen_contents screen_terminator
          |   screen_name screen_terminator
          |   screen_name error
                  { yyerrok; recover(); }
                  screen_terminator
                        { warning("Skipping to next screen",(char *)0); }
          ;

The recover() routine should ensure that the next token read is an END, which is what
screen_terminator needs, or you may immediately get another syntax error.

The most common place to use yyerrok is in interactive parsers. If you were reading
commands from the user, each starting on a new line:

    commands:      /* empty */
          |        commands command
          ;
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    command:       . . .
          |        error {
                         yyclearin; /* discard lookahead */
                         yyerrok;
                         printf("Enter another command\n");
                   }

The macro yyclearin discards any lookahead token, and yyerrok tells the parser to re‐
sume normal parsing, so it will start anew with the next command the user types.

If your code reports its own errors, your error routines should use the yacc macro
YYRECOVERING() to test if the parser is trying to resynchronize, in which case you
shouldn’t print any more errors, e.g.:

    warning(char *err1, char *err2)
    {
          if (YYRECOVERING() )
                 return;      /* no report at this time */
           . . .
    }

Where to Put Error Tokens

Proper placement of error tokens in a grammar is a black art with two conflicting goals.
You want to be as sure as possible that the resynchronization will succeed, so you want
error tokens in the highest level rules in the grammar, maybe even the start rule, so there
will always be a rule to which the parser can recover. On the other hand, you want to
discard as little input as possible before recovering, so you want the error tokens in the
lowest level rules to minimize the number of partially matched rules the parser has to
discard during recovery.

If your top level rule matches a list (e.g., the list of screens in the MGL) or a list of
declarations and definitions in a C compiler, make one of the alternatives for a list entry
contain error, as in the command and screen examples above. This applies equally for
relatively high-level lists such as the list of statements in a C function.

If punctuation separates elements of a list, use that punctuation in error rules to help
find synchronization points. For example, in a C compiler, you might write this:

    stmt:         . . .
          |       RETURN expr ';'
          |       '{' opt_decls stmt_list '}'
          |       error ';'
          |       error '}'
          ;
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Since each C statement ends with “;” if it’s a simple statment or “}” if it’s a compound
statement, the two error rules tell the parser that it should start looking for the next
statement after a “;” or “}”.

You can also put error rules at lower levels, e.g., as a rule for an expression, but in our
experience, unless the language provides punctuation or keywords that make it easy to
tell where the expression ends, the parser can rarely recover at such a low level.

Compiler Error Recovery

In the previous section, we described the mechanisms that yacc provides for error re‐
covery. In this section, we discuss external recovery mechanisms, provided by the pro‐
grammer.

The inherent difficulty with error recovery is that it usually depends upon semantic
knowledge of the grammar rather than just syntactic knowledge. This greatly compli‐
cates complex recovery within the grammar itself.

Previously we suggested that a user-provided mechanism for resetting internal data
structures of the compiler might be in order; in addition, it may be desirable for the
recovery routine to scan the input itself and, using a heuristic, perform appropriate error
recovery. For instance, a C compiler writer might decide that errors encountered during
the declarations section of a code block are best recovered from by skipping the entire
block rather than continuing to report additional errors. She might also decide that an
error encountered during the code section of the code block need only skip to the next
semicolon. A truly ambitious writer of compilers or interpreters might wish to report
the error and attempt to describe potential correct solutions.

Once the compiler has performed such error recovery, it should clear the yacc lookahead
buffer which contains the erroneous token, using yyclearin, and probably also use
yyerrok so the compiler immediately reports any other errors found. (You might not
call yyerrok if you’re not confident that you’ve recovered properly.)

Typically, sophisticated error correction uses both yacc error recovery for fundamental
syntactic errors and user-provided routines for semantic errors and data structure re‐
covery (e.g., discarding data for local variables, nested BEGIN blocks and loops if re‐
covery skipped to the end of a routine.) Our final version of MGL, in Appendix I, MGL
Compiler Code , includes some of these error recovery techniques.
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Exercises

1. Add error recovery to the SQL grammar in Chapter 5 and Appendix J. At the very
least, you should resynchronize at the “;” between SQL statements. Create some
deliberately wrong SQL and give it to your parser. How well does it recover? Usually
it takes several attempts to get error rules that recover effectively.

2. (Term project) Yacc’s error recovery works by discarding input tokens until it comes
up with something that is syntactically correct. Another approach inserts rather
than discards tokens, because in many cases it is easy to predict what token must
come next. For example, in a C program, every break and continue must be followed
by a semicolon, and every case must be preceded by a semicolon or a close brace.
How hard would it be to augment a yacc parser so that in case of an input error, it
can suggest appropriate tokens to insert?
You’ll need to know more about the insides of yacc for this exercise. See the Bib‐
liography for suggested readings.
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APPENDIX A

AT&T Lex

AT&T lex is the most common version found on UNIX systems. If you’re not sure which
version of lex you have, try running a lexer through it with the -v flag. If the produces
a terse two-line summary like this, it’s AT&T lex:

    5/2000 nodes(%e), 16/5000 positions(%p), 5/2500 (%n),
    4 transitions, 0/1000 packed char classes(%k), 6/5000
    packed transitions(%a), 113/5000 output slots(%o)

If produces a page of statistics with lex’s version number on the first line, it’s flex.

Lex processes a specification file and generates source code for a lexical analyzer. By
convention, the specification file has a .l extension. The file that lex generates is named
lex.yy.c.

The syntax of the AT&T lex command is:

lex [options] file

where options are as follows:
-c

Writes the lexer in C (default). The obsolescent flag is not present in many versions.

-n
Don’t print the summary line with the table sizes. This is the default unless the
definition section changes the size of one of lex’s internal tables.

-r
Actions are written in RATFOR, a dialect of FORTRAN. This option no longer
works in most versions of lex, and is not even present in many of them.
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-t
Source code is sent to standard output instead of to the default file lex.yy.c. This is
useful in Makefiles and shell scripts that direct the output of lex to a named file.

-v
Generates a one-line statistical summary of the finite state machine. This option is
implied when any of the tables sizes are specified in the definitions section of the
lex specification.

-f
Translate faster by not packing the generated tables. (Only practical for small lexers.)
Present only in BSD-derived versions of lex.

You must specify options before the file on the command line. You can specify one or
more files, but they are treated as a single specification file. Standard input is used if no
file is specified.

The lex library libl.a contains yyreject, an internal routine required by any lexer that
uses REJECT, and default versions of main() and yywrap().

See Chapter 6, A Reference for Lex Specifications , for more information on lex specifi‐
cations.

Error Messages

This section discusses correcting problems and errors reported by AT&T lex. The error
messages are listed alphabetically and are intended for reference use.
Action does not terminate

While processing an action, lex encountered the end of the file before the action
terminated. This usually means the closing brace of the action is missing.

Solution: Add the missing brace.

bad state %d %o

This is an internal lex error.

Solution: Report problem to system’s software maintainer.

bad transition %d %d
This is an internal lex error.

Solution: Report problem to system’s software maintainer.

Can’t open %s
Lex was unable to open the output file lex.yy.c. This is usually because you do not
have write permission on the directory or the file exists and is not writable.
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Solution: Remove the file; change permission on the directory; change directories.

Can’t read input file %s
Lex was unable to open the file specified on the command line.

Solution: Invoke lex with a valid filename.

ch table needs redeclaration
While reading a %T declaration from the lex file, the number of characters defined
exceeded the amount of space lex has allocated for character tables.

Solution: Either remove characters from the translation table or, if you have the lex
source code, rebuild lex to maintain a larger translation table.

Character '%c’ used twice 
Character %o used twice

While processing a new translation table, a character was redeclared.

Solution: Remove the extraneous declaration.

Character value %d out of range
While processing a new translation table, lex saw an invalid character value. Valid
values are in the range 1 to 256.

Solution: Correct the invalid character value.

Definition %s not found

After seeing a {definition}, lex was unable to find it in the list of declared substitu‐
tions.

Solution: Replace substitution; define it in definition section.

Definitions too long
Lex has a limit on the size of a definition. The length of the definition is too large.

Solution: Make the definition shorter (perhaps by breaking into two); rebuild lex
to allow longer definitions.

EOF inside comment

While processing a comment, lex encountered the end of the file. This is usually
caused because there is an unterminated comment.

Solution: Add the missing “*/”.
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Executable statements should occur right after %
While processing the rules section, lex saw an action without an associated pattern.
It is legal to place executable code immediately following the rules break (this code
will then be executed on each call to yylex()). Such code can’t appear anywhere else
in the rules section. Solution: Either fix the pattern associated with the action or
move the code to the beginning of the rules section.

Extra slash removed
An invalid “/” character was ignored. This probably means that a literal “/” in a
pattern wasn’t quoted.

Solution: Quote the “/”, or fix the error.

Invalid request %s
While processing the definition section, a lex declaration (beginning with “%”) was
seen, but the declaration was not valid. Valid requests are either “%{” to start a literal
block, or “%” followed by a letter. See "Internal Tables" and "Literal Block" in Chapter
6.

Iteration range must be positive 
Can’t have negative iteration

An iteration range (using {count,count}) was used with a negative value, or a zero
value for the second count.

No space for char table reverse
Internal lex error.

Solution: Report problem to system’s software maintainer.

No translation given - null string assumed
While processing the definition section, lex saw a substitution string that had no
substitution text. Lex uses an empty string. This is a warning message only.

Non-portable character class
While scanning through a rule, a non-portable escape sequence was specified. This
occurs whenever an octal constant is used in a character class.

Solution: Live with non-portability, or don’t use an octal constant there.

Non-terminated string 
Non-terminated string or character constant 
EOF in string or character constant

While reading a rule or processing a string in action code, lex has encountered a
string that does not terminate before the end of line.

Solution: If the string is supposed to continue to the next line, add a “\” continuation
marker; if not, add the missing “.”.

246 | Appendix A: AT&T Lex



OOPS - calloc returns a 0
Internal error, or system out of virtual memory.

Solution: Report problem to system’s software maintainer.

output table overflow
Internal error.

Solution: Report problem to system’s software maintainer.

Parse tree too big %s
Lex has exhausted the parse tree space.

Solution: Simplify the lex specification; increase the parse tree space with the %e
declaration in the definition section.

Premature eof
While processing the definition section, a “%{” was seen but no “%}”.

Solution: Add the missing “%}”.

Start conditions too long

The total length of the names of start states (also known as start conditions) exceeds
the size of an internal table.

Solution: Shorten the name of the start condition.

String too long
While reading a rule, lex encountered a string that is too long to store inside its
internal (static) buffer.

Solution: Shorten the string; rewrite the string expression to use a more compact
form; rebuild lex to allow larger strings.

Substitution strings may not begin with digits
While processing the definition section, lex saw a substitution string name that
began with a digit.

Solution: Replace the substitution string with one not beginning with a digit.

syntax error
Lex has seen a line that is syntactically incorrect.

Solution: Fix the error.

Too late for language specifier
While processing the definition section, lex saw a %c or %r (language choice of C
or RATFOR) after it had already started to write the output file.

Solution: Declare the language earlier.
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Too little core for final packing 
Too little core for parse tree 
Too little core for state generation 
Too little core to begin

Internal error, or system out of virtual memory.

Solution: Report problem to system’s software maintainer.

Too many characters pushed
Lex has exhausted the stack space available for an input token.

Solution: Shorten the size of the token; rebuild lex to accept larger-sized tokens.

Too many definitions

While parsing the input file, lex has exhausted its static space for storing definitions.

Solution: Remove some definitions; rebuild lex to use a larger definitions table.

Too many large character classes

Lex has exhausted internal storage for large character classes. A large character class
is used to describe the ranges that occur inside brackets ([]).

Solution: Shorten the number of different large character classes; rebuild lex to allow
more large character classes.

Too many packed character classes
Solution: Use the %k declaration.

Too many positions %s
Lex has exhausted the space for positions.

Solution: Use the %p declaration.

Too many positions for one state - acompute
Lex has used more than 300 positions for a single state, which is an internal lex limit.
This error indicates an overly complex state.

Solution: Simplify the lex specification; rebuild lex to allow more positions per state.

Too many right contexts
Lex has exhausted the space for right contexts, the pattern text after the “/” pattern
character.

Solution: Decrease the number of right contexts used; rebuild lex to allow more
right contexts.

Too many start conditions
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While processing the definition section, the number of start conditions exceeded
the size of lex’s static internal table.

Solution: Use fewer start conditions; recompile lex with a larger number of start
conditions.

Too many start conditions used
Too many start conditions were specified for a particular rule for lex to handle.

Solution: Decrease the number of starting positions; rebuild lex to allow a larger
number of start conditions per rule.

Too many states %s
Solution: Use the %n declaration.

Too many transitions %s
Solution: Use the %a declaration.

Undefined start condition %s
A <start state> was used in a pattern, but lex was unable to find it in the list of
declared start state.

Solution: Declare the start state, or correct the name if it’s misspelled.

Unknown option %c
Lex was invoked with an unknown switch. The valid switches are listed above.

yacc stack overflow

Lex was written using a yacc grammar. The yacc-generated grammar has exhausted
its stack space. (We’ll be impressed if you see this one!)

Solution: Shorten or reorder the expressions in the lex specification; rebuild lex with
a larger yacc stack area.
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APPENDIX B

AT&T Yacc

Options

AT&T yacc is distributed with most versions of UNIX, except for the most recent verions
of Berkeley UNIX, which have Berkeley yacc. If you’re not sure which version of yacc
you have, try running it with no arguments. If it says:

    fatal error: cannot open input file, line 1

it’s AT&T yacc. If it gives you a summary of the command syntax, it’s Berkeley yacc.

Yacc processes a file containing a grammar and generates source code for a parser. By
convention, the grammar file has a .y extension. The file that yacc generates is named
y.tab.c.

The syntax of the yacc command is:

yacc [options]file

where options are as follows:
-d

Generates the header file y.tab.h that contains definitions of token names.

-l
Omits #line constructs in the generated code.

-t
Includes runtime debugging code when y.tab.c is compiled.
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-v
Produces the file y.output, which contains a listing of all of the states in the generated
parser and other useful information.

In order to compile the parser generated by yacc, you must supply a main routine and
a supporting routine, yyerror. The UNIX library liby.a contains default versions of these
routines.

See Chapter 7, A Reference for Yacc Grammars , for information on yacc specifications.

Error Messages

This section discusses correcting problems and errors reported by yacc, aside from the
shift/reduce and reduce/reduce errors discussed in Chapter 8, Yacc Ambiguities and
Conflicts . The error messages are organized alphabetically.
%d rules never reduced

Some rules in the grammar were never reduced, either because they were never
mentioned on the right-hand side of other rules or because they were involved in
reduce/reduce conflicts. Yacc reports the number of rules that did not reduce.

Solution: Resolve the conflicts, or look for spelling errors.

’000’ is illegal

An octal escape specified the null character, which AT&T yacc reserves for its in‐
ternal use.

Solution: Remove the offending escape.

action does not terminate
An action in the input runs off the end of the file, probably because of an extra '{'
or a missing '}'.

Solution: Fix the erroneous action.

action table overflow 
no space in action table

While parsing the input file (or processing the input), the yacc static action table
overflowed.

Solution: Simplify actions; recompile yacc with a larger action table; use bison or
Berkeley yacc.

bad %start construction

A %start directive didn’t contain a non-terminal name.
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Solution: Change the %start so it has an argument.

bad syntax in %type

The type argument to a %type directive was not valid. This occurs because the
directive had no arguments.

Solution: Remove the %type or give it arguments.

bad syntax on $<ident> clause
While reading an action, an invalid value type appeared.

Solution: Correct the invalid type declaration either by removing the offending
declaration or by fixing the type declaration.

bad syntax on first rule

The first rule was syntactically incorrect. For example, yacc never found the colon
following the first rule.

Solution: Fix the first rule.

bad tempfile
Internal error, or system ran out of disk space.

Solution: Rerun yacc; report problem to system’s software maintainer.

cannot open input file
Yacc could not open the input file specified on the command line, or no name
appeared.

Solution: Correct the filename.

cannot open temp file
Yacc attempted to open the yacc.tmp temporary file but failed. This probably oc‐
curred because the current directory was not writable or because an unwritable
yacc.tmp already exists.

Solution: Remove yacc.tmp or change the directory permissions.

cannot open y.output 
cannot open y.tab.c 
cannot open y.tab.h

Yacc attempted to open one of its output files but failed. This probably occurred
because the current directory was not writable or because an unwritable version of
the file already exists.

Solution: Remove the file or change the directory permissions.
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cannot place goto %d
Internal error.

Solution: Report problem to system’s software maintainer.

cannot reopen action tempfile
Yacc keeps all its actions in a temporary file called yacc.acts. This file has disap‐
peared; it was probably deleted while yacc was running.

Solution: Do not delete yacc’s temporary files while running yacc.

clobber of a array, pos’n %d, by %d
Internal error.

Solution: Report problem to system’s software maintainer.

default action causes potential type clash

A rule has no action, so it uses the default “$$ = $1”, but the type of $1 is different
from that of $$. of the rule.

    %union{
          int integer;
          char *string;

    }
    %TOKEN <integer> int
    %type <string> s
    %%
          ...
    int:  s ;

Solution: Add an explicit action or correct the types. The last line might be corrected
to:

    int:  s { $$ = atoi($1); } ;

eof before %
While reading the input file, yacc failed to find the rules section, probably because
the “%%” was omitted.

Solution: Add the"%%”.

EOF encountered while processing %union
The file ended in the middle of a %union directive, probably because of a missing
“}”.

Solution: Add the missing brace.
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EOF in string or character constant 
EOF inside comment

The file ended inside a string, character constant, or comment.

Solution: Add the closing quotation mark or “*/”.

Error; failure to place state %d
Internal error.

Solution: Report problem to system’s software maintainer.

illegal %prec syntax
No symbol name follows a %prec directive.

Solution: Add one.

illegal comment
A “/”, in the rules section outside an action is not followed by a “*”.

Solution: Remove the slash or add an asterisk.

illegal \nnn construction
An octal character escape contains something other than octal digits, e.g.:

    %left '\2z'

Solution: Correct the octal character escape.

illegal option: %c
Yacc was run with an option other than the valid ones listed above.

illegal or missing ' or "
While reading a string literal or character literal, yacc failed to find the closing
single or double quote.

Solution: Supply the closing quotation mark or marks.

illegal rule: missing semicolon or | ?
Yacc saw in invalid character such as a “%” in a rule.

Solution: Revise the rule.

internal yacc error: pyield %d
Internal error.

Solution: Report problem to system’s software maintainer.

invalid escape
The character after a “\” is not a valid escaped character.

Solution: Correct or remove the escape.
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illegal reserved word: %s
The directive following a “%” is not one that yacc understands.

Solution: Fix the directive if possible. Also, check to see if the directive is a bison
directive. See Appendix D, GNU Bison .

item too big

In the process of building the output strings, yacc has encountered an item that is
too large to fit inside its internal buffer.

Solution: Use a shorter name (this error occurs when the name of the item was quite
large; in the implementation we used, 370 characters was the limit).

more than %d rules
While reading rules in from the specified grammar, yacc has overflowed the static
space allocated for rules.

Solution: Simplify the grammar; recompile yacc with larger state tables; use bison
or Berkeley yacc.

must return a value, since LHS has a type
A rule with a typed left-hand side does not set “$$”.

Solution: Add a return value by assigning an appropriate value to"$$”.

must specify type for %s
A %token directive, no type was specified for the directive.

Solution: Add a type.

must specify type of $%d
In an action, yacc has found a value reference usage which must be typed.

Solution: Declare the type of the symbol in the definition section.

newline in string or char. const.
A string or character constant runs past the end of the line.

Solution: Add the closing quotation mark or marks.

nonterminal %s illegal after %prec
A %prec directive was followed by a non-terminal.

Solution: Correct the erroneous %prec.

nonterminal %s never derives any token string
A recursive rule loops endlessly, because there is no non-recursive alternative for
the left-hand side. Example:

    x_list:'X' x_list
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with no other rule for x_list.

Solution: Remove the rule or add a non-recursive alternative. This example could
be rewritten:

    x_list:'X' x_list | 'X' ;

nonterminal %s not defined!
A non-terminal symbol never appears in the left-hand side of the rule. Yacc reports
the line where the undefined non-terminal was used.

Solution: Define the symbol or fix the spelling error.

optimizer cannot open tempfile
The temporary file yacc uses cannot be opened.

Solution: Do not delete yacc temporary files while yacc is running.

out of space
While running through the optimizer, yacc has exhausted its static internal working
space.

out of space in optimizer a array 
a array overflow 
out of state space

One of yacc’s internal tables ran out of space.

Solution: Simplify grammar; rebuild yacc with more space in the “a” array; use bison
or Berkeley yacc.

Ratfor Yacc is dead: sorry.
The -rflag used to produce a RATFOR parser.

Solution: Stick with C.

redeclaration of precedence of %s
The specified token has its precedence declared in more than one %left, %right, or
%nonassoc directive.

    %left PLUS MINUS
    %left TIMES DIVIDE
    %left PLUS

Solution: Remove all the extra declaration.

Rule not reduced: %s
A rules was never reduced, either because it was never mentioned on the right-hand
side of other rules or because they were involved in reduce/reduce conflicts. This
error message is reported in y.output.
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Solution: Examine the rule and rewrite so that it does reduce.

syntax error
Yacc did not understand the statement.

Solution: Fix the statement.

token illegal on LHS of grammar rule
A token was found on the left-hand side of the rule on the specified line. Tokens
can appear only on the right-hand side.

    %token FOO
    %%
    FOO: ;

Solution: Correct the rule.

too many characters in ids and literals
While processing the input file, yacc has exhausted the internal static storage for
identifiers and literals.

Solution: Simplify grammar; rebuild yacc with larger static tables; use bison or
Berkeley yacc.

too many lookahead sets
An internal buffer overflowed.

Solution: Simplify the grammar or rebuild yacc with more lookahead set space.

too many nonterminals, limit %d
Yacc has found more non-terminals than fit in its table.

Solution: Simplify the grammar; rebuild yacc with larger internal tables; use bison
or Berkeley yacc.

too many states
An internal table overflowed.

Solution: Simplify the grammar (thus, it will take fewer states); increase the number
of allowed states by recompiling yacc; use bison or Berkeley yacc.

too many terminals, limit %d
The grammar has found more tokens (terminal symbols) than fit in yacc’s statically
defined buffer space. The limit may be as low as 127 tokens.

Solution: Simplify the grammar; rebuild yacc with larger internal tables; use bison
or Berkeley yacc.
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type redeclaration of nonterminal %s 
type redeclaration of token %s

The value type of the non-terminal token has been declared more than once. Sample:

    %union{
    int integer;
    char *string;
    }

    %type <string> foo
    %type <integer> foo

Solution: Remove one of the the offending %type directives.

unexpected EOF before %
The file given to yacc was empty.

Solution: Put something in the file (preferably a yacc grammar).

unterminated < ... > clause
A type name (within angle brackets) runs off the end of the file.

Solution: Put in a closing bracket.

working set overflow
An internal table overflowed.

Solution: Simplify the grammar or rebuild yacc with more working set space.

yacc state/nolook error
Internal error.

Solution: Report problem to system’s software maintainer.
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APPENDIX C

Berkeley Yacc

Berkeley yacc is a nearly exact reimplementation of AT&T yacc with few extra features.

Options

Berkeley yacc’s options are the same as AT&T yacc’s with these additions:
-b pref

Uses pref as the prefix for generated files instead of y.

-r
Generates separate files for code and tables. The code file is named y.code.c, and the
tables file is named y.tab.c.

There is no library for Berkeley yacc; you have to provide your own versions of main()
and yyerror().

Error Messages

This section discusses correcting problems and errors reported by Berkeley yacc, aside
from the shift/reduce and reduce/reduce errors discussed in Chapter 8, Yacc Ambiguities
and Conflicts . Each error message starts with a letter f for fatal error, e for error, or w
for warning. Yacc gives up as soon as it sees an error or fatal error. Most of the error
message also include the input filename and line number, which we omit here.
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Fatal Errors

f - cannot open file
Yacc couldn’t open a file. If it’s a name you specified, make sure the file exists and
is readable. If it’s one of yacc’s temporary or output file, make sure that the appro‐
priate directory is readable and there is not already a read-only version of the given
file.

f - out of space 
f - too many gotos 
f - too many states 
f - maximum table size exceeded

An internal table overflowed, or insufficient virtual memory was available. Unless
you have a stupendously huge grammar with tens of thousands of tokens and rules,
this probably represents a bug in yacc.

Solution: Report problem to system’s software maintainer.

Regular Errors

e - unexpected end-of-file
The input file ended in a syntactically impossible place.

Solution: Check and fix the input.

e - syntax error
Yacc didn’t find a mandatory syntax element, e.g., after a “%” it didn’t find any of
the possible words allowed there.

Solution: Check and fix the input.

e - unmatched /*
The file ends in the middle of a comment, probably because the close comment is
missing or mistyped.

Solution: Check and fix the input.

e - unterminated string

A string runs past the end of a line, probably because the close quote is missing.

Solution: Add the missing quote.

e - unmatched %{
The file ends in the literal block, probably because the “%}” is missing

Solution: Add the missing “%}”.
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e - unterminated %union declaration

The file ends in the %union declaration, probably because the closing brace is
missing.

Solution: Add the missing “}”.

e - too many %union declarations
There are multiple %union declarations. Yacc only allows one.

Solution: Remove the extra one, or combine them.

e - illegal tag

Value type tags must be valid C identifiers, e.g.:

    %token <ab&z> foo

The tag ab&z is illegal.

Solution: Change the tag name.

e - illegal character
An octal or hex escape sequence represents a value too large to fit in a char variable.

Solution: Use character values between 0 and 255.

e - illegal use of reserved symbol %s
The symbol names $accept, $end, any names of the form $$N where N is a number,
and the name consisting of a single dot are reserved for yacc’s internal use.

Solution: Pick another name.

e - the start symbol %s cannot be declared to be a token
A token appears in the %start declaration.

Solution: Don’t do that.

e - the start symbol %s is a token
The start symbol appears in a %token declaration.

Solution: Don’t do that.

e - no grammar has been specified
The rules section of the grammar contains no rules, probably because of a missing
or extra %% line.

Solution: Correct the error.

e - a token appears on the lhs of a production
The left-hand side of every rule must be a non-terminal, not a token.
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Solution: Correct the error.

e - unterminated action
The grammar file ends in the middle of an action, probably because of a mising
close brace.

Solution: Add the missing brace.

e - illegal $-name
A value reference with an explicit tag is of an invalid form, e.g., $<foo>bar.

Solution: Correct the error.

e - $$ is untyped
An action contains a reference to $$, but the left-hand side symbol has no value
type set.

Solution: Remove the reference to $$, or assign a type to the symbol.

e - $%d (%s) is untyped
An action contains a reference to $N, but the corresponding right hand side symbol
has no value type set.

Solution: Remove the reference to $N, or assign a type to the symbol.

e - $%d is untyped
An out-of-range value reference, e.g., $0, needs an explicit type.

Solution: Use an explicit type, e.g., “$<sym>0”.

e - the start symbol %s is undefined
There is no rule with the start symbol on its left-hand side.

Solution: Add one, or correct spelling errors.

Warnings

w - the type of %s has been redeclared
The type of symbol’s value has been set more than once, inconsistently.

Solution: Only declare a symbol’s type once.

w - the precedence of %s has been redeclared
A token appears in more than one %left, %right, or %nonassoc declaration.

Solution: Only set a symbol’s precedence once.

w - the value of %s has been redeclared
The token number of a token has been declared more than once.

Solution: Only declare a token’s number once. Better yet, let yacc choose its own
token numbers for non-literal tokens.
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w - the start symbol has been redeclared
The grammar contains multiple inconsistent %start declarations.

Solution: Remove all but one of them.

w - conflicting %prec specifiers

A rule contains multiple inconsistent %prec specifiers. You can only use a maximum
of one per rule.

Solution: Remove extra predecence specifiers.

w - $%d references beyond the end of the current rule
The action contains a reference to a nonexistent right-hand side symbol, e.g., $9
when the right-hand side contains only eight symbols.

Solution: Correct the error.

w - the default action assigns an undefined value to $$

In a rule with no explicit action, $$ and $1 do not have the same value type. For
example:

    %union{
          int integer;
          char *string;
    }

    %TOKEN <integer> int
    %type <string> s
    %%
          ...
    int:  s ;

Solution: Change the types, or add appropriate action code. For example:

    int:  s { $$ = atoi($1); } ;

w - the symbol %s is undefined
There is no rule with the given non-terminal on its left-hand side.

Solution: Add one, or correct spelling errors.

Informative Messages

%s: %d rules never reduced

Some rules are never used, either because they weren’t used in the grammar or
because they were on the losing end of shift/reduce or reduce/reduce conflicts.
Either change the grammar to use the rules or remove them.
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%d shift/reduce conflicts, %d reduce/reduce conflicts
The grammar contains conflicts, which you should fix if you weren’t expecting
them. See Chapter 8, Yacc Ambiguities and Conflicts , for more details.
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APPENDIX D

GNU Bison

The GNU project’s yacc replacement is called bison. Briefly, GNU (Gnu’s Not UNIX) is
the project of the Free Software Foundation and is an attempt to create a UNIX-like
operating system with source code available publicly (although GNU is not public do‐
main, it is freely available and has a license intended to keep it freely available). Hence,
bison is available to anyone. For more information on how to obtain bison, GNU, or the
Free Software Foundation, contact:

         Free Software Foundation, Inc.
         675 Massachusetts Avenue
         Cambridge, MA 02139
         (617) 876-3296
      

Users with access to the Internet can FTP bison and all other GNU software from
prep.ai.mit.edu in the directory /pub/gnu.

Parsers generated with some versions of bison are subject to the GNU “copyleft” software
license which sets conditions on the distribution of GNU and GNU-derived software.
If you plan to use bison to develop a program distributed to others, be sure to check the
file COPYING included with the bison distribution to see if you agree to the terms.

This description reflects bison version 1.18, which was released in May 1992.

Differences

In general, bison is compatible with yacc, although there are occasional yacc grammars
that do not work properly with bison. Bison is derived from an early version of Berkeley
yacc, but each has been developed independently for several years and there are now
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many small differences. Nevertheless, bison can often be a boon when trying to deal
with some of the problems associated with yacc, notably yacc’s use of internal static
buffers. Bison uses dynamic memory rather than static memory, so it can often accept
a yacc grammar that AT&T yacc will not.

Further, bison offers some minor enhancements that can prove to be of value:

• %expect in the definition section tells bison to expect a certain number of shift/
reduce conflicts. Bison refrains from reporting the number of shift/reduce conflicts
if it is exactly this number.

• %pure_parser in the definition section tells bison to generate a reentrant parser
(one without global variables). This lets you use the parser in a multi-threaded
environment, and allows the parser to call itself recursively. In a reentrant parser,
the interface to yylex() is slightly different, and the code in the actions and sup‐
porting routines must also be reentrant.

• %semantic_parser and %guard are used in a semantic parser, one that attempts
more sophisticated error recovery based upon the meaning (or contents) of the
token, rather than the type of the token. Such a parser is more complex but provides
more functionality. Bison is distributed with two model parser internals, one called
bison.simple and the other bison.hairy. The latter is used for the semantic parser.
“Guards” control the actions of the parser, handling reductions and errors. This
feature is rarely used and not documented in the online bison manual.

• @N in actions maintains information about the source file line and column numbers
of tokens in the current rule, which can be useful in error messages. This informa‐
tion must be provided by the lexer. For a more detailed explanation, see the bison
manual.

• Bison does not write out names to y.tab.c. Instead it writes to filename.tab.c for the
file filename.y. Command-line flag let you specify other filenames, or use the tra‐
ditional yacc names.

• Bison has command-line options to change the prefixes of the symbols in the gen‐
erated parser from the default “yy.” This lets you include more than one parser in
the same program.

We’ve noted most of the places where bison and yacc differ, but bison comes with about
100 pages of online documentation which quite completely explain the differences be‐
tween bison and yacc.
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APPENDIX E

Flex

A freely available version of lex is flex. It is the version of lex distributed with 4.4BSD
and by the GNU project. Internet users can also FTP it from ftp.ee.lbl.gov. The most
significant advantages of flex are that it is much more reliable than AT&T lex, generates
faster lexical analyzers, and does not have lex’s limitations upon table size. Flex may be
redistributed with no requirements other than reproducing the authors’ copyright and
disclaimer, and there are no distribution restrictions at all on flex scanners.

Flex is highly compatible with lex. Some AT&T lex scanners will need to be modified
to work with flex, as detailed below.

This description reflects flex version 2.3.7, released in March 1991.

Flex Differences

We’ve noted differences between flex and other versions of lex throughout the text. Here
is a summary of the most important differences:

• Flex does not need an external library (AT&T lex scanners must be linked with the
lex library by using -ll on the command line). The user, however, must supply a
main function or some other function which calls yylex. For POSIX compatibility,
flex 2.4 will change the default yywrap() from a macro to a library routine, so scan‐
ners that do not define their own yywrap() will need to be linked with the library.

• Flex has a different, nearly useless, version of lex’s translation tables (the %t or %T
declaration in the lex specification file).

• Flex expands pattern definitions slightly differently than lex. Whenever it expands
a pattern, it places parentheses, “()”, around the expansion. For example, the flex
documentation lists the following:
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    NAME    [A-Z][A-Z0-9]*
    %%
    foo{NAME}?      printf( "Found it\n" );
    %%

Lex will not match the string “foo” in this example but flex will. Without the group‐
ing, the last parameter of the expansion is the target of the question mark operator.
With the grouping, the entire expansion is the target of the “?” operator.

• Flex doesn’t support the undocumented internal lex variable yylineno.
• Flex doesn’t let you redefine the macros input and output. See "Input from

Strings" in Chapter 6, for details. As in lex, ECHO output may be redirected by
modifying the flex file pointer yyout. Similarly, input may be redirected by modi‐
fying the flex file pointer yyin.

• Flex lets scanners read from multiple nested input files. See "Include Operations"
in Chapter 6.

Flex offers the following additional features:

• Flex offers exclusive start conditions, that is, conditions which exclude all other con‐
ditions when in that state.

• The special pattern “<<EOF>>” matches at the end of a file.
• Flex dynamically allocates tables, so table directives are not necessary and are ig‐

nored if present.
• The name and arguments of the scanning routine are taken from the macro

YY_DECL. You can redefine the macro to give the scanner a different name than
yylex or to have it take argument, or return a value other than an int.

• Flex lets you write multiple statements on the same action line without braces, “{}”,
although it is dreadful style to do so.

• Flex allows “%{” and “%}” in actions. When it sees “%{” in an action, it copies
everything up to the “%}” to the generated C file, rather than attempting to match
braces.

• Flex scanners can be compiled by C++ as well as by C, although they take no ad‐
vantage of the object-oriented features of C++.

Options

Flex has a lot more options than AT&T lex.
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-b
Generates a report in lex.backtrack of the rules which required backtracking. Rules
that backtrack are slow and you can usually adjust your rules to avoid it. The online
flex documentation discusses the use of this option in considerable depth

-d
Generates debugging code in the generated scanner.

-f
Generates uncompressed “full” tables which are faster but larger.

-i
Generates a case-insensitive scanner, one which matches upper and lowercase
characters regardless of the case of the letters in the patterns in rules.

-p
Produces a report of features used in the scanner that have a performance impact.

-s
Suppressses the default rule that echoes unmatched input, so the generated scanner
instead aborts with an error on unmatched input.

-v
Produces a summary report of scanner statistics.

-Cx
Controls the degree of table compression. Possible values for x are efmF. See the
flex documentation for details.

-F
Generates “fast” tables which may be faster or smaller than full tables.

-I
Generates an interactive scanner, one which matches tokens immediately on read‐
ing each input line rather than looking one character ahead.

-L
Does not put #lines in the generated C code.

-Sx
Use the given lexer skeleton rather than the default. Of use mostly for debugging
flex itself.

-T
Runs in trace mode, useful mostly for debugging flex itself.

-8
Generates a scanner that is 8-bit clean even if the local default is 7-bit characters.
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Error Messages

This section discusses correcting problems and errors reported by flex.
unrecognized '%' directive

In the definitions section, a % must be followed by “{” or “}” to bracket user C code,
one of the letters “s” or “x” to declare a start state, one of “anpek” for an (ignored)
table size declaration, or one of “otcu” which are obsolete.

Solution: Remove or correct the directive.

illegal character
An illegal character appears in the definitions section

Solution: Remove or correct the character.

incomplete name definition
A name definition (substitution) doesn’t contain a pattern.

Solution: Add one.

unrecognized %used/%unused construct
The definition section contained an invalid form of the obsolete %used or %un‐
used declarations.

Solution: Remove it.

bad row in translation table
Each line in the translation table must start with a number.

Solution: Remove or correct the row.

undefined {name}

A reference to a named pattern (substitution) in braces refers to a name that is not
defined.

Solution: Change the reference or define the name.

bad start condition name
A start condition prefix in < > has an invalid name. Names must be valid C iden‐
tifiers.

Solution: Correct the name.

missing quote

A quoted pattern runs past the end of a line.

Solution: Add the missing quote.
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bad character inside {}’s
Repeat counts in patters must consist only of digits, perhaps separated by commas.

Solution: Correct the count.

missing }
A repeat count runs to the end of a line, presumably because the closing brace is
missing.

Solution: Add the missing brace.

bad name in {}’s
A pattern name (substitution) must consist of letters, digits, underscores, and hy‐
phens.

Solution: Correct the name

missing }
A pattern name in braces runs to the end of a line, presumably because the closing
brace is missing.

Solution: Add the missing brace.

EOF encountered inside an action
An action runs to the end of the file, presumably because the closing brace is missing.

Solution: Add the missing brace.

warning - %used/%unused have been deprecated
These obsolete declarations no longer do anything.

Solution: Remove them.

fatal parse error
The yacc parser that parses the input found an unrecoverable syntax error.

Solution: Correct the error.

multiple <<EOF>> rules for start condition %s

You can only have one EOF rule per start condition.

Solution: Remove all but one of them.

warning - all start conditions already have <<EOF>> rules

If all start states already have EOF rules, an EOF rule with no start state can never
match.

Solution: Remove the rule, or correct the state states.
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start condition %s declared twice
Each start state may only be declared once.

Solution: Remove the duplicate declaration.

undeclared start state %s

A start state prefix in < > refers to an unknown state.

Solution: Declare the state or correct the spelling.

scanner requires −8 flag
The lexer spec contains 8-bit characters, but the local default is 7 bits.

Solution: Remove the 8-bit characters or use the −8 flat.

REJECT cannot be used with −f or −F

The −f and −F flags generate lexers that cannot handle the backtracking required
by REJECT.

Solution: Either don’t use REJECT or don’t use those flags.

could not create lex.backtrack
The file couldn’t be created, probably because the directory or a previous version
of the file is read-only.

Solution: Remove any previous version of the file, change directory permissions, or
change to another directory.

read() in flex scanner failed

I/O error on the input file.

Solution: Either your disk is broken or there is an error in flex.

−C flag must be given separately
You cannot combine the −C flag with any others in the same argument.

Solution: Don’t do that.

full table and −Cm don’t make sense together 
full table and −I are (currently) incompatible 
full table and −F are mutually exclusive

These are inconsistent table compression options.

Solution: Specify one or the other.

−S flag must be given separately
You cannot combine the −S flag with any others in the same argument.

Solution: Use separate arguments.
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fatal error - scanner input buffer overflow 
fatal flex scanner internal error—end of buffer missed 
fatal flex scanner internal error—no action found 
flex scanner jammed 
flex scanner push-back overflow 
out of dynamic memory in yy_create_buffer() 
unexpected last match in input()

These are fatal internal errors in the flex scanner that flex itself uses.

All indicate an internal error of some sort.

Solution: Report problem to system’s software maintainer.

attempt to increase array size by less than 1 byte 
attempt to increase array size failed 
bad state type in mark_beginning_as_normal() 
bad transition character detected in sympartition() 
consistency check failed in epsclosure() 
consistency check failed in symfollowset 
could not create unique end-of-buffer state 
could not re-open temporary action file 
dynamic memory failure building %t table 
dynamic memory failure in copy_string() 
dynamic memory failure in copy_unsigned_string() 
dynamic memory failure in snstods() 
empty machine in dupmachine() 
error occurred when closing backtracking file 
error occurred when closing output file 
error occurred when closing skeleton file 
error occurred when closing temporary action file 
error occurred when closing temporary action file 
error occurred when deleting output file 
error occurred when deleting temporary action file 
error occurred when writing backtracking file 
error occurred when writing output file 
error occurred when writing skeleton file 
error occurred when writing temporary action file 
found too many transitions in mkxtion() 
memory allocation failed in allocate_array() 
request for < 1 byte in allocate_array() 
symbol table memory allocation failed 
too many %t classes!

These all represent internal errors in flex. The file errors sometimes mean that you
are out of disk space.
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Solution: Free up some disk space, or report problem to system’s software main‐
tainer.

Flex Versions of Lexer Examples

Two of the lex examples in Chapter 2 used code specific to AT&T lex to take input from
a string instead of from a file. Flex uses different methods to change the input source.
Examples E-1 and E-2 are the same examples written for flex.

Example E-1. Flex specification to parse a command line ape-05.l
%{
unsigned verbose;
char *progName;

int myinput(char *buf, int max);
#undef YY_INPUT
#define YY_INPUT(buf,result,max) (result = myinput(buf,max))
%}

%%

-h    |
"-?"  |
-help { printf("usage is: %s [-help | -h | -? ] [-verbose | -v]"
       " [(-file| -f) filename]\n", progName);
      }
-v    |
-verbose { printf("verbose mode is on\n"); verbose = 1;}

%%
char **targv;         /* remembers arguments */
char **arglim;        /* end of arguments */

main(int argc, char **argv)
{
     progName = *argv;
     targv = argv+1;
     arglim = argv+argc;
     yylex();
}

static unsigned offset = 0;

/* provide a chunk of stuff to flex */
/* it handles unput itself, so we pass in an argument at a time */
int
myinput(char *buf, int max)
{
      int len, copylen;
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      if (targv >= arglim)
            return 0;   /* EOF */
      len = strlen(*targv)-offset; /* amount of current arg */
      if(len >= max)
            copylen = max-1;
      else
            copylen = len;
      if(len > 0)
            memcpy(buf, targv[0]+offset, copylen);
      if(targv[0][offset+copylen] == '\0') {   /* end of arg */
            buf[copylen] = ' ';
            copylen++;
            offset = 0;
            targv++;
      }
      return copylen;
}

Example E-2. Flex command scanner with filenames ape-06.l
%{
unsigned verbose;
unsigned fname;
char *progName;

int myinput(char *buf, int max);
#undef YY_INPUT
#define YY_INPUT(buf,result,max) (result = myinput(buf,max))
%}

%s FNAME

%%
[ ]+         /* ignore blanks */ ;
<FNAME>[ ]+  /* ignore blanks */ ;
-h    |
"-?"  |
-help { printf("usage is: %s [-help | -h | -? ] [-verbose | -v]"
       " [(-file| -f) filename]\n", progName);
      }
-v    |
-verbose { printf("verbose mode is on\n"); verbose = 1; }

-f    |
-file { BEGIN FNAME; fname = 1; }

<FNAME>[^ ]+ { printf("use file %s\n", yytext); BEGIN 0; fname = 2;}

[^ ]+  ECHO;
%%
char **targv;    /* remembers arguments */
char **arglim;   /* end of arguments */
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main(int argc, char **argv)
{
     progName = *argv;
     targv = argv+1;
     arglim = argv+argc;
     yylex();
     if(fname < 2)
           printf("No filename given\n");
}

static unsigned offset = 0;

/* provide a chunk of stuff to flex */
/* it handles unput itself, so we pass in an argument at a time */
int
myinput(char *buf, int max)
{
     int len, copylen;
     if (targv >= arglim)
           return 0;   /* EOF */
     len = strlen(*targv)-offset; /* amount of current arg */
     if(len >= max)
           copylen = max-1;
     else
           copylen = len;
     if(len > 0)
           memcpy(buf, targv[0]+offset, copylen);
     if(targv[0][offset+copylen] == '\0') {  /* end of arg */
           buf[copylen] = ' ';
           copylen++;
           offset = 0;
           targv++;
     }
     return copylen;
}
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APPENDIX F

MKS lex and yacc

Mortice Kern Systems has a lex and yacc package that runs under MS-DOS and OS/2.
It includes an excellent 450 page manual, so in this discussion concentrates on the dif‐
ferences between MKS and other implementations. It is available from:

         Mortice Kern Systems
         35 King Street North
         Waterloo, ON N2J2W9
         Canada
         Phone: +1 519 884 2251
         or in the U.S. (800) 265-2797
E-mail: inquiry@mks.com
      

Differences

Most of the differences are due to running under MS-DOS or OS/2 rather than UNIX.

• The output files have different names: lex_yy.c, ytab.c, ytab.h, and y.out. rather than
lex.yy.c, y.tab.c, y.tab.h, and y.output.

• MKS lex has its own method for handling nested include files. See "Include Oper‐
ations" in Chapter 6 for details.

• MKS lex has its own method for resetting a lexer into its initial state. See "Returning
Values from yylex()" in Chapter 6.

• MKS lex uses the macro yygetc() to read input. You can redefine it to change the
input source. See "Input from Strings" in Chapter 6.
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• The standard lex token buffer is only 100 characters. You can enlarge it by redefining
some macros. See "yytext" in Chapter 6.

• The internal yacc tables are generated differently. This makes error recovery slightly
different; in general MKS yacc will perform fewer reductions than will UNIX yacc
before noticing an error on a lookahead token.

New Features

• MKS lex and yacc can generate scanners and parsers in C++ and Pascal as well as
in C.

• MKS provides the yacc tracker, a screen-oriented grammar debugger that lets you
single step, put breakpoints into, and examine a parser as it works.

• MKS lex and yacc both let you change the prefix of symbols in the generated C code
from the default “yy,” so you can include multiple lexers and parsers in one program.

• MKS yacc can allocate its stack dynamically, allowing recursive and reentrant pars‐
ers.

• MKS yacc has selection preferences which let you resolve reduce/reduce conflicts by
specifying lookahead tokens that tell it to use one rule or the other.

• The MKS lex library contains routines that skip over C style comments and handle
C strings including escapes.

• MKS yacc documents many more of its internal variables than do AT&T or Berkeley
yacc. This lets error recovery routines get access and change much more of the
parser’s internal state.

• The package includes sample scanners and parsers for C, C++, dBASE, Fortran,
Hypertalk, Modula-2, Pascal, pic (the troff picture language), and SQL.
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APPENDIX G

Abraxas lex and yacc

Abraxas Software offers pcyacc, which contains pcyacc and pclex, MS-DOS and OS/2
versions of yacc and lex. It is available from:

         Abraxas Software
         7033 SW Macadam Avenue
         Portland OR 97219
         Phone: +1 503 244 5253
      

Pclex is based on flex, so much of what we have said about flex also applies to pclex.

Differences

• The output files have different names: lex_yy.c, yytab.c, yytab.h, and yy.lrt. rather
than lex.yy.c, y.tab.c, y.tab.h, and y.output.

• The standard lex input buffer is only 256 characters. You can enlarge it by redefining
some macros. See "yytext" in Chapter 6.

New Features

• An option lets you just check the syntax of a yacc specification rather than waiting
for it to generate a complete parser.

• Each time it reduces a rule, a parser can write a line with the symbols in that rule
into a file. (Abraxas refers to this as the parse tree option.)
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• An optional extended error recovery library allows more complete error reporting
and recovery.

• The package includes sample scanners and parsers for ANSI and K&R C, C++,
Cobol, dBase III and IV, Fortran, Hypertalk, Modula-2, Pascal, pic (a demo language
unrelated to troff), Postscript, Prolog, Smalltalk, SQL, and yacc and lex themselves.
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APPENDIX H

POSIX lex and yacc

The IEEE POSIX P1003.2 standard will define portable standard versions of lex and
yacc. In nearly all cases the standards merely codify long-standing existing practice.
POSIX lex closely resembles flex, minus the more exotic features. POSIX yacc closely
resembles AT&T or Berkeley yacc. The input and output filenames are identical to those
in flex and AT&T yacc.

Options

The syntax of the POSIX lex command is:

lex [options] [file . . .]

If multiple input files are specified, they are catenated together to form one lexer spec‐
ification.

The options are as follows:
-c

Writes actions in C (obsolescent).

-n
Suppresses the summary statistics line.

-t
Sends source code to standard output instead of to the default file lex.yy.c.

-v
Generates a short statistical summary of the finite state machine. This option is
implied when any of the tables sizes are specified in the definitions section of the
lex specification.
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The syntax of the yacc command is:

yacc [options] file

where options are as follows:
-bxx

Uses “xx” rather than the default "yy" as the prefix in generated filenames.

-d
Generates header file y.tab.h that contains definitions of token names for use by
lexical analyzer routine.

-l
Does not include #line constructs in the generated code. These constructs help
identify lines in the specification file in error messages.

-pxx
Uses “xx” rather than the default "yy" as the prefix in symbols in the generated C
code. This lets you use multiple parsers in one program.

-t
Includes runtime debugging code when y.tab.c is compiled.

-v
Produces the file y.output, which is used to analyze ambiguities and conflicts in the
grammar. This file contains a description of parsing tables.

Differences

The main differences are due to POSIX internationalization.

• POSIX doesn’t standardize features that aren’t implemented in a consistent way in
most existing versions. Hence POSIX specifies no way to change the lex input source
(other than assigning to yyin) or to change the size of internal buffers. It has no
version of lex translation tables. A POSIX-compliant implementation may offer any
of these as an extension.

• As in AT&T lex, yywrap() is a function which you can redefine, not a macro.
• You can force yytext to be an array or a pointer by using a %array or %pointer

declaration. In the absence of such a declaration, an implementation may use either.
• POSIX lex defines extra character regular expressions which handle extended non-

English character sets. See "Regular Expression Syntax" in Chapter 6.
• POSIX yacc has a library with the standard versions of main() and yyerror(). You

can (and probably should) write your own versions of both.
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APPENDIX I

MGL Compiler Code

Chapter 4, A Menu Generation Language , presented the lex and yacc grammars for the
MGL. Here we present the entire code of the MGL, including runtime support code not
shown in the chapter. Many improvements to the runtime code are possible, such as:

• Screen clearing after improper input.
• Better handling of the system() call, particularly saving and restoring terminal

modes and screen contents.
• Automatic generation of a main routine. Currently, it must be defined outside the

calling program. Furthermore, it must call the routine menu_cleanup before exit‐
ing.

• More flexible command handling, e.g., allowing unique prefixes of commands
rather than requiring the whole command.

• Taking keyboard input a character at a time in cbreak mode rather than the current
line at a time.

• More flexible nesting of menus.

See the Preface for information on obtaining an online copy of this code.

MGL Yacc Source

This is file mglyac.c.

    %{
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
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    int screen_done = 1; /* 1 if done, 0 otherwise */
    char *act_str;  /* extra argument for an action */
    char *cmd_str;  /* extra argument for command */
    char *item_str; /* extra argument for
                     * item description */
    %}
    %union {
        char     *string;     /* string buffer */
        int     cmd;          /* command value */
    }

    %token <string> QSTRING ID COMMENT
    %token <cmd> SCREEN TITLE ITEM COMMAND ACTION EXECUTE EMPTY
    %token <cmd> MENU QUIT IGNORE ATTRIBUTE VISIBLE INVISIBLE END

    %type <cmd> action line attribute command
    %type <string> id qstring

    %start screens

    %%

    screens:   screen
             | screens screen
             ;
    screen:    screen_name screen_contents screen_terminator
             | screen_name screen_terminator
             ;

    screen_name: SCREEN id { start_screen($2); }
               | SCREEN    { start_screen(strdup("default")); }
               ;

    screen_terminator: END id { end_screen($2); }
                     | END { end_screen(strdup("default")); }
                     ;

    screen_contents: titles lines
                   ;

    titles: /* empty */
          | titles title
          ;

    title: TITLE qstring { add_title($2); }
         ;

    lines: line
         | lines line
         ;

    line: ITEM qstring command ACTION action attribute
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             { item_str = $2;
             add_line($5, $6);
               $$ = ITEM;
              }
            ;

    command: /* empty */ { cmd_str = strdup(""); }
           | COMMAND id { cmd_str = $2; }
            ;

    action: EXECUTE qstring
             { act_str = $2;
             $$ = EXECUTE;
             }
          | MENU id
             { /* make "menu_" $2 */
             act_str = malloc(strlen($2) + 6);
             strcpy(act_str,"menu_");
               strcat(act_str, $2);
             free($2);
             $$ = MENU;
           }
          | QUIT   { $$ = QUIT; }
          | IGNORE { $$ = IGNORE; }
          ;

    attribute: /* empty */     { $$ = VISIBLE; }
             | ATTRIBUTE VISIBLE { $$ = VISIBLE; }
             | ATTRIBUTE INVISIBLE { $$ = INVISIBLE; }
             ;

    id: ID
         { $$ = $1; }
      | QSTRING
         { warning("String literal inappropriate",
                   (char *)0);
           $$ = $1; /* but use it anyway */
         }
      ;

    qstring: QSTRING { $$ = $1; }
           | ID
              { warning("Non-string literal inappropriate",
                        (char *)0);
              $$ = $1;     /* but use it anyway */
              }
            ;
    %%

    char *progname = "mgl";
    int lineno = 1;
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    #define DEFAULT_OUTFILE "screen.out"

    char *usage = "%s: usage [infile] [outfile]\n";

    main(int argc, char **argv)
    {
          char *outfile;
          char *infile;
          extern FILE *yyin, *yyout;
          progname = argv[0];

          if(argc > 3)
          {
                fprintf(stderr,usage, progname);
                exit(1);
          }
          if(argc > 1)
          {
                infile = argv[1];
                /* open for read */
                yyin = fopen(infile,"r");
                if(yyin == NULL) /* open failed */
                {
                      fprintf(stderr,"%s: cannot open %s\n",
                            progname, infile);
                      exit(1);
                }
          }

          if(argc > 2)
          {
                outfile = argv[2];
          }
          else
          {
                      outfile = DEFAULT_OUTFILE;
          }

          yyout = fopen(outfile,"w");
          if(yyout == NULL) /* open failed */
          {
                      fprintf(stderr,"%s: cannot open %s\n",
                      progname, outfile);
                exit(1);
          }

          /* normal interaction on yyin and
             yyout from now on */

          yyparse();

          end_file(); /* write out any final information */
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          /* now check EOF condition */
          if(!screen_done) /* in the middle of a screen */
          {
                warning("Premature EOF",(char *)0);
                unlink(outfile); /* remove bad file */
                exit(1);
          }
          exit(0); /* no error */
    }
    warning(char *s, char *t) /* print warning message */
    {
          fprintf(stderr, "%s: %s", progname, s);
          if (t)
                fprintf(stderr, " %s", t);
          fprintf(stderr, " line %d\n", lineno);
    }

MGL Lex Source

This is file mgllex.l.

    %{
    #include "mglyac.h"
    #include <string.h>

    extern int lineno;
    %}

    ws         [ \t]+
    comment    #.*
    qstring    \"[^\"\n]*[\"\n]
    id         [a-zA-Z][a-zA-Z0-9]*
    nl         \n

    %%

    {ws}       ;
    {comment}  ;
    {qstring}  { yylval.string = strdup(yytext+1); /* skip open quote */
                 if(yylval.string[yyleng-2] != '"')
                   warning("Unterminated character string",(char *)0);
               else /* remove close quote */
                   yylval.string[yyleng-2] = '\0';
                 return QSTRING;
               }
    screen     { return SCREEN; }
    title      { return TITLE; }
    item       { return ITEM; }
    command    { return COMMAND; }
    action     { return ACTION; }
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    execute    { return EXECUTE; }
    menu       { return MENU; }
    quit       { return QUIT; }
    ignore     { return IGNORE; }
    attribute  { return ATTRIBUTE; }
    visible    { return VISIBLE; }
    invisible  { return INVISIBLE; }
    end        { return END; }
    {id}       { yylval.string = strdup(yytext);
                 return ID;
               }
    {nl}       { lineno++; }
    .          { return yytext[0]; }
    %%

Supporting C Code

This is file subr.c.

    /* subr.c */

    /*
     * Supporting subroutines for the menu generation
     * language (MGL)
     *
     * Tony Mason
     * November 1988
     * Completed by John Levine, August 1992
     */

    /* includes */
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include "mglyac.h"
    #include "mgl-code"      /* contains definitions of
                        * skeleton file to be built */

    extern FILE *yyin, *yyout;

    /* imports */
    extern int screen_done;
    extern char *cmd_str, *act_str,*item_str;

    /* exports */

    /* local */
    static char current_screen[100]; /* reasonable? */
    static int done_start_init;
    static int done_end_init;
    static int current_line;
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    struct item {
          char             *desc;         /* item description */
          char             *cmd;          /* command */
          int              action;        /* action to take */
          char             *act_str;      /* action operation */
          int              attribute;     /* visible/invisible */
          struct item      *next;         /* next member of list */
    } *item_list, *last_item;

    /* macros */
    #define SCREEN_SIZE 80
    void cfree(char *);     /* free if not null */

    /* code */

    /*
     * start_screen:
     * This routine begins preparation of the screen. It
     * writes the preamble and modifies the global state
     * variable screen_done to show that a screen is in
     * progress (thus, if a screen is in progress when EOF
     * is seen, an appropriate error message can be given).
     */

    start_screen(char *name)  /* name of screen to create */
    {
          long time(),tm = time((long *)0);
          char *ctime ();

          if(!done_start_init)
          {
                fprintf(yyout,
                    "/*\n * Generated by MGL: %s */\n\n",
                    ctime(&tm));
                dump_data(screen_init);
                done_start_init = 1;
          }
          if(check_name(name) == 0)
                warning("Reuse of name",name);
          fprintf(yyout, "/* screen %s */\n", name);
          fprintf(yyout, "menu_%s()\n{\n",name);
          fprintf(yyout,
              "\textern struct item menu_%s_items[];\n\n",
              name);
          fprintf(yyout, "\tif(!init) menu_init();\n\n");
          fprintf(yyout, "\tclear();\n\trefresh();\n");

          if(strlen(name) > sizeof current_screen)
              warning("Screen name is larger than buffer",(char *)0);
          strncpy(current_screen, name, sizeof(current_screen) − 1);

          screen_done = 0;
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          current_line = 0;

          return 0;
    }

    /*
     * add_title:
     * Add centered text to screen code.
     */
    add_title(line)
    char *line;
    {
          int length = strlen(line);
          int space = (SCREEN_SIZE − length) / 2;

          fprintf(yyout, "\tmove(%d,%d);\n",current_line, space);
          current_line++;
          fprintf(yyout, "\taddstr(\"%s\");\n",line);
          fprintf(yyout, "\trefresh();\n");
    }

    /*
     * add_line:
     * Add a line to the actions table. It will be written
     * out after all lines have been added. Note that some
     * of the information is in global variables.
     */

    add_line(action, attrib)
    int action, attrib;
    {
          struct item *new;

          new = (struct item *)malloc(sizeof(struct item));

          if(!item_list)
          {     /* first item */
                item_list = last_item = new;
          }
          else
          {     /* already items on the list */
                last_item->next = new;
                last_item = new;
          }

          new->next = NULL;  /* mark end of list */

          new->desc = item_str;
          new->cmd = cmd_str;
          new->action = action;

          switch(action)
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          {
          case EXECUTE:
                new->act_str = act_str;
                break;
          case MENU:
                new->act_str = act_str;
                break;
          default:
                new->act_str = 0;
                break;
          }
          new->attribute = attrib;

    }
    /*
     * end_screen:
     * Finish screen, print out postamble.
     */

    end_screen(char *name)
    {

          fprintf(yyout, "\tmenu_runtime(menu_%s_items);\n",name);

          if(strcmp(current_screen,name) != 0)
          {
                warning("name mismatch at end of screen",
                    current_screen);
           }
           fprintf(yyout, "}\n");
           fprintf(yyout, "/* end %s */\n",current_screen);

           process_items();

           /* write initialization code out to file */
           if(!done_end_init)
           {
                 done_end_init = 1;
                 dump_data(menu_init);
           }

           current_screen[0] = '\0';    /* no current screen */

           screen_done = 1;

           return 0;
    }

    /*
     * process_items:
     * Walk the list of menu items and write them to an
     * external initialized array. Also defines the symbolic
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     * constant used for the run-time support module (which
     * is below this table).
     */
    process_items()
    {
          int cnt = 0;
          struct item *ptr;

          if(item_list == 0)
                return; /* nothing to do */
          fprintf(yyout, "struct item menu_%s_items[]={\n",current_screen);
          ptr = item_list;

          /* climb through the list */
          while(ptr)
          {
                struct item *optr;

                if(ptr->action == MENU)
                      fprintf(yyout,
                          "{\"%s\",\"%s\",%d,\"\",%s,%d},\n",
                          ptr->desc,ptr->cmd, ptr->action,
                          ptr->act_str,ptr->attribute);
                else
                      fprintf(yyout,
                          "{\"%s\",\"%s\",%d,\"%s\",0,%d},\n",
                          ptr->desc,ptr->cmd, ptr->action,
                          ptr->act_str ? ptr->act_str : "",
                          ptr->attribute);

                cfree(ptr->desc);
                cfree(ptr->cmd);
                cfree(ptr->act_str);
                optr = ptr;
                ptr = ptr->next;
                free(optr);
                cnt++;
          }
          fprintf(yyout,
              "{(char *)0, (char *)0, 0, (char *)0, 0, 0},\n");
          fprintf(yyout, "};\n\n");
          item_list = 0;

          /* next the run-time module that does all the "work" */;
    }

    /*
     * This routine takes a null-terminated list of strings
     * and prints them on the standard out. Its sole purpose
     * in life is to dump the big static arrays making up the
     * runtime code for the menus generated.
     */
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    dump_data(array)
    char **array;
    {
          while(*array)
                fprintf(yyout, "%s\n",*array++);
    }

    /*
     * this routine writes out the run-time support
     */

    end_file()
    {
          dump_data(menu_runtime);
    }
    \*
     * Check a name to see if it has already been used. If
     * not, return 1; otherwise, return 0. This routine also
     * squirrels away the name for future reference. Note
     * that this routine is purely dynamic. It would be
     * easier to just set up a static array, but less flexible.
     */

    check_name(name)
    char *name;
    {
          static char **names = 0;
          static name_count = 0;
          char **ptr,*newstr;

          if(!names)
          {
                names = (char **)malloc(sizeof(char *));
                *names = 0;
          }

          ptr = names;
          while(*ptr)
          {
                if(strcmp(name,*ptr++) == 0) return 0;
          }

          /* not in use */
          name_count++;
          names = (char **)realloc(names, (name_count+1) * sizeof(char *));
          names[name_count] = 0;
          newstr = strdup(name);
          names[name_count-1] = newstr;
          return 1;
    }
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    void
    cfree(char *p)
    {
          if(p)
                free(p);
    }

This is file mgl-code, the supporting code copied by the MGL into the generated C file.

    /*
     * MGL Runtime support code
     */

    char *screen_init[] = {
    "/* initialization information */",
    "static int init;\n",
    "#include <curses.h>",
    "#include <sys/signal.h>",
    "#include <ctype.h>",
    "#include \"mglyac.h\"\n",
    "/* structure used to store menu items */",
    "struct item {",
    "\tchar *desc;",
    "\tchar *cmd;",
    "\tint action;",
    "\tchar *act_str;       /* execute string */",
    "\tint (*act_menu)();   /* call appropriate function */",
    "\tint attribute;",
    "};\n",
    0,
    };

    char *menu_init[] = {
    "menu_init()",
    "{",
    "\tvoid menu_cleanup();\n",
    "\tsignal(SIGINT, menu_cleanup);",
    "\tinitscr();",
    "\tcrmode();",
    "}\n\n",
    "menu_cleanup()",
    "{",
    "\tmvcur(0, COLS − 1, LINES − 1, 0);",
    "\tendwin();",
    "}\n",
    0,
    };

    char *menu_runtime[] = {
    "/* runtime */",
    "",
    "menu_runtime(items)",
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    "struct item *items;",
    "{",
    "\tint visible = 0;",
    "\tint choice = 0;",
    "\tstruct item *ptr;",
    "\tchar buf [BUFSIZ];",
    "",
    "\tfor(ptr = items; ptr->desc != 0; ptr++) {",
    "\t\taddch('\\n'); /* skip a line */",
    "\t\tif(ptr->attribute == VISIBLE) {",
    "\t\t\tvisible++;",
    "\t\t\tprintw(\"\\t%d) %s\",visible,ptr->desc);",
    "\t\t}",
    "\t}",
    "",
    "\taddstr(\"\\n\\n\\t\"); /* tab out so it looks nice */",
    "\trefresh();",
    "",
    "\tfor(;;)",
    "\t{",
    "\t\tint i, nval;",
    "",
    "\t\tgetstr(buf);",
    "",
    "\t\t/* numeric choice? */",
    "\t\tnval = atoi (buf);",
    "",
    "\t\t/* command choice ? */",
    "\t\ti = 0;",
    "\t\tfor(ptr = items; ptr->desc != 0; ptr++) {",
    "\t\t\tif(ptr->attribute != VISIBLE)",
    "\t\t\t\tcontinue;",
    "\t\t\ti++;",
    "\t\t\tif(nval == i)",
    "\t\t\t\tbreak;",
    "\t\t\tif(!casecmp(buf, ptr->cmd))",
    "\t\t\t\tbreak;",
    "\t\t}",
    "",
    "\t\tif (!ptr->desc)",
    "\t\t\tcontinue;\t/* no match */",
    "",
    "\t\tswitch(ptr->action)",
    "\t\t{",
    "\t\tcase QUIT:",
    "\t\t\treturn 0;",
    "\t\tcase IGNORE:",
    "\t\t\trefresh();",
    "\t\t\tbreak;",
    "\t\tcase EXECUTE:",
    "\t\t\trefresh();",
    "\t\t\tsystem(ptr->act_str);",
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    "\t\t\tbreak;",
    "\t\tcase MENU:",
    "\t\t\trefresh();",
    "\t\t\t(*ptr->act_menu)();",
    "\t\t\tbreak;",
    "\t\tdefault:",
    "\t\t\tprintw(\"default case, no action\\n\");",
    "\t\t\trefresh();",
    "\t\t\tbreak;",
    "\t\t}",
    "\t\trefresh();",
    "\t}",
    "}",
    "",
    "casecmp(char *p, char *q)",
    "{",
    "\tint pc, qc;",
    "",
    "\tfor(; *p != 0; p++, q++) {",
    "\t\tpc = tolower (*p);",
    "\t\tqc = tolower(*q);",
    "",
    "\t\tif(pc != qc),
    "\t\t\tbreak;",
    "\t}",
    "\treturn pc-qc;",
    "}",
    0
    };
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APPENDIX J

SQL Parser Code

Here we display the complete code for the embedded SQL translator, including the lexer,
the parser, and the supporting C code. Since the parser is so long, we have numbered
the lines and included a cross-reference of all of the symbols by line number at the end.

The main() and yyerror() routines are at the end of the lex scanner.

Yacc Parser

In this printed listing, some of the lines have been split in two so they fit on the page.
The line numbers correspond to the original lines in the grammar file.

        /* symbolic tokens */

    %union {
        int intval;
5       double floatval;
        char *strval;
        int subtok;
    }

10  %token NAME
    %token STRING
    %token INTNUM APPROXNUM

        /* operators */
15
    %left OR
    %left AND
    %left NOT
    %left <subtok> COMPARISON /* = <> < > <= >= */
20  %left '+' '-'
    %left '*' '/'
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    %nonassoc UMINUS

        /* literal keyword  tokens */
25
    %token ALL AMMSC ANY AS ASC AUTHORIZATION BETWEEN BY
    %token CHARACTER CHECK CLOSE COMMIT CONTINUE CREATE CURRENT
    %token CURSOR DECIMAL DECLARE DEFAULT DELETE DESC DISTINCT
        DOUBLE
    %token ESCAPE EXISTS FETCH FLOAT FOR FOREIGN FOUND FROM GOTO
30  %token GRANT GROUP HAVING IN INDICATOR INSERT INTEGER INTO
    %token IS KEY LANGUAGE LIKE NULLX NUMERIC OF ON OPEN OPTION
    %token ORDER PARAMETER PRECISION PRIMARY PRIVILEGES PROCEDURE
    %token PUBLIC REAL REFERENCES ROLLBACK SCHEMA SELECT SET
    %token SMALLINT SOME SQLCODE SQLERROR TABLE TO UNION
35  %token UNIQUE UPDATE USER VALUES VIEW WHENEVER WHERE WITH WORK

    %%

    sql_list:
40          sql ';' { end_sql (); }
        |   sql_list sql ';' { end_sql(); }
        ;

45      /* schema definition language */
    sql:        schema
        ;

    schema:
50         CREATE SCHEMA AUTHORIZATION user
        opt_schema_element_list
       ;

    opt_schema_element_list:
            /* empty */
55      |  schema_element_list
        ;

    schema_element_list:
            schema_element
60      |   schema_element_list schema_element
        ;

    schema_element:
            base_table_def
65      |  view_def
        |  privilege_def
        ;

    base_table_def:
70          CREATE TABLE table '(' base_table_element_commalist ')'
        ;
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    base_table_element_commalist:
            base_table_element
75      |   base_table_element_commalist ',' base_table_element
        ;
    base_table_element:
            column_def
80      |   table_constraint_def
        ;

    column_def:
            column data_type column_def_opt_list
85      ;

    column_def_opt_list:
            /* empty */
        |   column_def_opt_list column_def_opt
90      ;

    column_def_opt:
            NOT NULLX
        |   NOT NULLX UNIQUE
95      |   NOT NULLX PRIMARY KEY
        |   DEFAULT literal
        |   DEFAULT NULLX
        |   DEFAULT USER
        |   CHECK '(' search_condition ')'
100     |   REFERENCES table
        |   REFERENCES table '(' column_commalist ')'
        ;

    table_constraint_def:
105         UNIQUE '(' column_commalist ')'
        |   PRIMARY KEY '(' column_commalist ')'
        |   FOREIGN KEY '(' column_commalist ')'
                REFERENCES table
        |   FOREIGN KEY '(' column_commalist ')'
110             REFERENCES table '(' column_commalist
        |  CHECK '(' search_condition ')'
        ;

    column_commalist:
115         column
        |   column_commalist ',' column
        ;

    view_def:
120         CREATE VIEW table opt_column_commalist
            AS query_spec opt_with_check_option
        ;

     opt_with_check_option:
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125          /* empty */
       |     WITH CHECK OPTION
       ;

    opt_column_commalist:
130         /* empty */
        |  '(' column_commalist ')'
        ;

    privilege_def:
135         GRANT privileges ON table TO grantee_commalist
            opt_with_grant_option
        ;

    opt_with_grant_option:
140         /* empty */
        |   WITH GRANT OPTION
        ;

    privileges:
145         ALL PRIVILEGES
        |   ALL
        |   operation_commalist
        ;

150 operation_commalist:
            operation
        |   operation_commalist ',' operation
        ;

155 operation:
            SELECT
        |   INSERT
        |   DELETE
        |   UPDATE opt_column_commalist
160     |   REFERENCES opt_column_commalist
        ;

    grantee_commalist:
165         grantee
        |   grantee_commalist ',' grantee
        ;

    grantee:
170         PUBLIC
        |   user
        ;

        /* cursor definition */
175 sql:
            cursor_def
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        ;

180 cursor_def:
            DECLARE cursor CURSOR FOR query_exp
        opt_order_by_clause
        ;

    opt_order_by_clause:
185         /* empty */
        |  ORDER BY ordering_spec_commalist
        ;

    ordering_spec_commalist:
190         ordering_spec
        |   ordering_spec_commalist ',' ordering_spec
        ;

    ordering_spec:
195         INTNUM opt_asc_desc
        |   column_ref opt_asc_desc
        ;

    opt_asc_desc:
200         /* empty */
        |   ASC
        |   DESC
        ;

205      /* manipulative statements */

    sql:         manipulative_statement
        ;

210 manipulative_statement:
            close_statement
        |   commit_statement
        |   delete_statement_positioned
        |   delete_statement_searched
215     |   fetch_statement
        |   insert_statement
        |   open_statement
        |   rollback_statement
        |   select_statement
220     |   update_statement_positioned
        |   update_statement_searched
        ;

    close_statement:
225         CLOSE cursor
        ;

    commit_statement:
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             COMMIT WORK
230     ;

    delete_statement_positioned:
             DELETE FROM table WHERE CURRENT OF cursor
        ;
235
    delete_statement_searched:
             DELETE FROM table opt_where_clause
        ;
240 fetch_statement:
             FETCH cursor INTO target_commalist
        ;

    insert_statement:
245         INSERT INTO table opt_column_commalist
         values_or_query_spec
        ;

    values_or_query_spec:
           VALUES '(' insert_atom_commalist ')'
250     |  query_spec
        ;

    insert_atom_commalist:
            insert_atom
255     |   insert_atom_commalist ',' insert_atom
        ;

    insert_atom:
            atom
260     |   NULLX
        ;

    open_statement:
            OPEN cursor
265     ;

    rollback_statement:
            ROLLBACK WORK
        ;
270
    select_statement:
            SELECT opt_all_distinct selection
            INTO target_commalist
            table_exp
275     ;

    opt_all_distinct:
            /* empty */
        |   ALL
280     |   DISTINCT
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    update_statement_positioned:
            UPDATE table SET assignment_commalist
285         WHERE CURRENT OF cursor
        ;

    assignment_commalist:
        |   assignment
290     |   assignment_commalist ',' assignment
        ;
    assignment:
            column COMPARISON scalar_exp
295     |   column COMPARISON NULLX
        ;

    update_statement_searched:
            UPDATE table SET assignment_commalist opt_where_clause
300     ;

    target_commalist:
            target
        |   target_commalist ',' target
305     ;

    target:
            parameter_ref
        ;
310
    opt_where_clause:
            /* empty */
        |   where_clause
        ;
315
        /* query expressions */

    query_exp:
            query_term
320     |   query_exp UNION query_term
        |   query_exp UNION ALL query_term
        ;

    query_term:
325         query_spec
        |  '(' query_exp ')'
        ;

    query_spec:
330         SELECT opt_all_distinct selection table_exp
        ;

    selection:
            scalar_exp_commalist
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335     |  '*'
        ;

    table_exp:
            from_clause
340         opt_where_clause
            opt_group_by_clause
            opt_having_clause
        ;

345 from_clause:
            FROM table_ref_commalist
        ;

    table_ref_commalist:
350         table_ref
        |   table_ref_commalist ',' table_ref
        ;

    table_ref:
355         table
        |  table range_variable
        ;

    where_clause:
360            WHERE search_condition
        ;

    opt_group_by_clause:
            /* empty */
365     |    GROUP BY column_ref_commalist
        ;

    column_ref_commalist:
            column_ref
370     |   column_ref_commalist ',' column_ref
        ;

    opt_having_clause:
           /* empty */
375     |  HAVING search_condition
        ;

        /* search conditions */

380 search_condition:
        |  search_condition OR search_condition
        |  search_condition AND search_condition
        |  NOT search_condition
        |  '(' search_condition ')'
385     |  predicate
        ;
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    predicate:
            comparison_predicate
390     |   between_predicate
        |   like_predicate
        |   test_for_null
        |   in_predicate
        |   all_or_any_predicate
395     |   existence_test
        ;

    comparison_predicate:
            scalar_exp COMPARISON scalar_exp
400     |   scalar_exp COMPARISON subquery
        ;

    between_predicate:
            scalar_exp NOT BETWEEN scalar_exp AND scalar_exp
405     |   scalar_exp BETWEEN scalar_exp AND scalar_exp
        ;

    like_predicate:
            scalar_exp NOT LIKE atom opt_escape
410     |   scalar_exp LIKE atom opt_escape
        ;

    opt_escape:
            /* empty */
415     |   ESCAPE atom
        ;

    test_for_null:
            column_ref IS NOT NULLX
420     |   column_ref IS NULLX
        ;

    in_predicate:
            scalar_exp NOT IN ' (' subquery ')'
425     |   scalar_exp IN ' (' subquery ')'
        |   scalar_exp NOT IN '(' atom_commalist ')'
        |   scalar_exp IN '(' atom_commalist ')'
        ;

430 atom_commalist:
            atom
        |   atom_commalist ',' atom
        ;

435 all_or_any_predicate:
            scalar_exp COMPARISON any_all_some subquery
        ;
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    any_all_some:
440         ANY
        |   ALL
        |   SOME
        ;

445 existence_test:
            EXISTS subquery
        ;

    subquery:
450         '(' SELECT opt_all_distinct selection table_exp ')'
        ;

        /* scalar expressions */
455 scalar_exp:
            scalar_exp '+' scalar_exp
        |   scalar_exp '-' scalar_exp
        |   scalar_exp '*' scalar_exp
        |   scalar_exp '/' scalar_exp
460     |   '+' scalar_exp %prec UMINUS
        |   '-' scalar_exp %prec UMINUS
        |   atom
        |   column_ref
        |   function_ref
465     |   '(' scalar_exp ')'
        ;

    scalar_exp_commalist:
            scalar_exp
470     |   scalar_exp_commalist ',' scalar_exp
        ;

    atom:
            parameter_ref
475     |   literal
        |   USER
        ;

    parameter_ref:
480         parameter
        |   parameter parameter
        |   parameter INDICATOR parameter
        ;

485 function_ref:
            AMMSC '(' '*' ')'
        |   AMMSC '(' DISTINCT column_ref ')'
        |   AMMSC '(' ALL scalar_exp ')'
        |   AMMSC '(' scalar_exp ')'
490     ;
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    literal:
            STRING
        |   INTNUM
495     |   APPROXNUM
        ;

        /* miscellaneous */

500 table:
            NAME
        |   NAME '.' NAME
        ;

505 column_ref:
            NAME
        |   NAME '.' NAME  /* needs semantics */
        |   NAME '.' NAME '.' NAME
        ;
510
            /* data types */

    data_type:
            CHARACTER
515     |   CHARACTER   ' (' INTNUM ')'
        |   NUMERIC
        |   NUMERIC ' (' INTNUM ')'
        |   NUMERIC ' (' INTNUM ',' INTNUM ')'
        |   DECIMAL
520     |   DECIMAL '(' INTNUM ')'
        |   DECIMAL '(' INTNUM ',' INTNUM ')'
        |   INTEGER
        |   SMALLINT
        |   FLOAT
525     |   FLOAT '(' INTNUM ')'
        |   REAL
        |   DOUBLE PRECISION
        ;

530     /*  the various things you can name */

    column:      NAME
        ;

535 cursor:      NAME
        ;

    parameter:
            PARAMETER  /* :name handled in parser */
540     ;

    range_variable: NAME
        ;
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545 user:      NAME
        ;

        /* embedded condition things */
    sql:       WHENEVER NOT FOUND when_action
550     |  WHENEVER SQLERROR when_action
        ;

    when_action:   GOTO NAME
        |   CONTINUE
555     ;
    %%

Cross-reference

Since the parser is so long, we include a cross-reference of all of the symbols by line
number. For each symbol, lines where it is defined on the left-hand side of a rule are in
bold type.

A
ALL (26)

145, 146, 279, 321, 441, 488

all_or_any_predicate (435)
394

AMMSC (26)
486, 487, 488, 489

AND (17)
382, 404, 405

ANY (26)
440

any_all_some (439)
436

APPROXNUM (12)
495

AS (26)
121

ASC (26)
201

assignment (293)
289, 290
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assignment_commalist (288)
284, 290, 299

atom (473)
259, 409, 410, 415, 431, 432, 462

atom_commalist (430)
426, 427, 432

AUTHORIZATION (26)
50

B
base_table_def (69)

64

base_table_element (78)
74, 75

base_table_element_commalist (73)
70, 75

BETWEEN (26)
404, 405

between_predicate (403)
390

BY (26)
186, 365

C
CHARACTER (27)

514, 515

CHECK (27)
99, 111, 126

CLOSE (27)
225

close_statement (224)
211

column (532)
84, 115, 116, 294, 295

column_commalist (114)
101, 105, 106, 107, 109, 110, 116, 131
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column_def (83)
79

column_def_opt (92)
89

column_def_opt_list (87)
84, 89

column_ref (505)
196, 369, 370, 419, 420, 463, 487

column_ref_commalist (368)
365, 370

COMMIT (27)
229

commit_statement (228)
212

COMPARISON (19)
294, 295, 399, 400, 436

comparison_predicate (398)
389

CONTINUE (27)
554

CREATE (27)
50, 70, 120

CURRENT (27)
233, 285

CURSOR (28)
181

cursor (535)
181, 225, 233, 241, 264, 285

cursor_def (180)
176

D
data_type (513)

84

DECIMAL (28)
519, 520, 521
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DECLARE (28)
181

DEFAULT (28)
96, 97, 98

DELETE (28)
158, 233, 237

delete_statement_positioned (232)
213

delete_statement_searched (236)
214

DESC (28)
202

DISTINCT (28)
280, 487

DOUBLE (28)
527

E
ESCAPE (29)

415

existence_test (445)
395

EXISTS (29)
446

F
FETCH (29)

241

fetch_statement (240)
215

FLOAT (29)
524, 525

FOR (29)
181

FOREIGN (29)
107, 109
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FOUND (29)
549

FROM (29)
233, 237, 346

from_clause (345)
339

function_ref (485)
464

G
GOTO (29)

553

GRANT (30)
135, 141

grantee (169)
165, 166

grantee_commalist (164)
135, 166

GROUP (30)
365

H
HAVING (30)

375

I
IN (30)

424, 425, 426, 427

INDICATOR (30)
482

INSERT (30)
157, 245

insert_atom (258)
254, 255

insert_atom_commalist (253)
249, 255

insert_statement (244)
216
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INTEGER (30)
522

INTNUM (12)
195, 494, 515, 517, 518, 520, 521, 525

INTO (30)
241, 245, 273

in_predicate (423)
393

IS (31)
419, 420

K
KEY (31)

95, 106, 107, 109

L
LANGUAGE (31)
LIKE (31)

409, 410

like_predicate (408)
391

literal (492)
96, 475

M
manipulative_statement (210)

207

N
NAME (10)

501,502, 506, 507, 508, 532, 535, 542, 545, 553

NOT (18)
93, 94, 95, 383, 404, 409, 419, 424, 426, 549

NULLX (31)
93, 94, 95, 97, 260, 295, 419, 420

NUMERIC (31)
516, 517, 518

O
OF (31)

233, 285

Error Reporting and Recovery | 315



ON (31)
135

OPEN (31)
264

open_statement (263)
217

operation (155)
151, 152

operation_commalist (150)
147, 152

OPTION (31)
126, 141

opt_all_distinct (277)
272, 330, 450

opt_asc_desc (199)
195, 196

opt_column_commalist (129)
120, 159, 160, 245

opt_escape (413)
409, 410

opt_group_by_clause (363)
341

opt_having_clause (373)
342

opt_order_by_clause (184)
181

opt_schema_element_list (53)
50

opt_where_clause (311)
237, 299, 340

opt_with_check_option (124)
121

opt_with_grant_option (139)
136
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OR (16)
381

ORDER (32)
186

ordering_spec (194)
190, 191

ordering_spec_commalist (189)
186, 191

P
PARAMETER (32)

539

parameter (538)
480, 481, 482

parameter_ref (479)
308, 474

PRECISION (32)
527

predicate (388)
385

PRIMARY (32)
95, 106

PRIVILEGES (32)
145

privileges (144)
135

privilege_def (134)
66

PROCEDURE (32)
PUBLIC (33)

170

Q
query_exp (318)

181, 320, 321, 326

query_spec (329)
121, 250, 325
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query_term (324)
319, 320, 321

R
range_variable (542)

356

REAL (33)
526

REFERENCES (33)
100, 101, 108, 110, 160

ROLLBACK (33)
268

rollback_statement (267)
218

S
scalar_exp (455)

294, 399, 400, 404, 405, 409, 410, 424, 425, 426, 427, 436, 456, 457, 458, 459, 460,
461, 465, 469, 470, 488, 489

scalar_exp_commalist (468)
334, 470

SCHEMA (33)
50

schema (49)
46

schema_element (63)
59, 60

schema_element_list (58)
55, 60

search_condition (380)
99, 111, 360, 375, 381, 382, 383, 384

SELECT (33)
156, 272, 330, 450

selection (333)
272, 330, 450

select_statement (271)
219
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SET (33)
284, 299

SMALLINT (34)
523

SOME (34)
442

sql (46, 175, 207, 549)
40, 41

SQLCODE (34)
SQLERROR (34)

550

sql_list (39)
41

STRING (11)
493

subquery (449)
400, 424, 425, 436, 446

T
TABLE (34)

70

table (500)
70, 100, 101, 108, 110, 120, 135, 233, 237, 245, 284, 299, 355, 356

table_constraint_def (104)
80

table_exp (338)
274, 330, 450

table_ref (354)
350, 351

table_ref_commalist (349)
346, 351

target (307)
303, 304

target_commalist (302)
241, 273, 304
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test_for_null (418)
392

TO (34)
135

U
UMINUS (22)

460, 461

UNION (34)
320, 321

UNIQUE (35)
94, 105

UPDATE (35)
159, 284, 299

update_statement_positioned (283)
220

update_statement_searched (298)
221

USER (35)
98, 476

user (545)
50, 171

V
VALUES (35)

249

values_or_query_spec (248)
245

VIEW (35)
120

view_def (119)
65

W
WHENEVER (35)

549, 550

when_action (553)
549, 550
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WHERE (35)
233, 285, 360

where_clause (359)
313

WITH (35)
126, 141

WORK (35)
229, 268
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APPENDIX K

SQL Parser Code

Recycle this page

Lex Scanner

This is file scn2.l.

    %{
    #include *sql2.h*
    #include <string.h>

    int lineno = 1;
    void yyerror(char *s);

          /* macro to save the text of a SQL token */
    #define SV save_str(yytext)

          /* macro to save the text and return a token */
    #define TOK(name) { SV;return name; }
    %}
    %s SQL
    %%

    EXEC[ \t]+SQL    { BEGIN SQL; start_save () ; }

          /* literal keyword tokens */

    <SQL>ALL          TOK (ALL)
    <SQL>AND          TOK (AND)
    <SQL>AVG          TOK (AMMSC)
    <SQL>MIN          TOK (AMMSC)
    <SQL>MAX          TOK (AMMSC)
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    <SQL>SUM          TOK (AMMSC)
    <SQL>COUNT        TOK (AMMSC)
    <SQL>ANY          TOK (ANY)
    <SQL>AS                  TOK (AS)
    <SQL>ASC          TOK(ASC)
    <SQL>AUTHORIZATION       TOK (AUTHORIZATION)
    <SQL>BETWEEN             TOK (BETWEEN)
    <SQL>BY                  TOK(BY)
    <SQL>CHAR (ACTER)?TOK (CHARACTER)
    <SQL>CHECK        TOK (CHECK)
    <SQL>CLOSE        TOK(CLOSE)
    <SQL>COMMIT       TOK (COMMIT)
    <SQL>CONTINUE            TOK (CONTINUE)
    <SQL>CREATE       TOK (CREATE)
    <SQL>CURRENT             TOK (CURRENT)
    <SQL>CURSOR       TOK (CURSOR)
    <SQL>DECIMAL             TOK (DECIMAL)
    <SQL>DECLARE             TOK (DECLARE)
    <SQL>DEFAULT             TOK (DEFAULT)
    <SQL>DELETE       TOK (DELETE)
    <SQL>DESC         TOK (DESC)
    <SQL>DISTINCT            TOK (DISTINCT)
    <SQL>DOUBLE       TOK (DOUBLE)
    <SQL>ESCAPE       TOK (ESCAPE)
    <SQL>EXISTS       TOK (EXISTS)
    <SQL>FETCH        TOK (FETCH)
    <SQL>FLOAT        TOK (FLOAT)
    <SQL>FOR          TOK (FOR)
    <SQL>FOREIGN             TOK (FOREIGN)
    <SQL>FOUND        TOK (FOUND)
    <SQL>FROM         TOK (FROM)
    <SQL>GO[ \t]*TO          TOX (GOTO)
    <SQL>GRANT        TOK (GRANT)
    <SQL>GROUP        TOK (GROUP)
    <SQL>HAVING       TOK (HAVING)
    <SQL>IN                  TOK (IN)
    <SQL>INDICATOR           TOK (INDICATOR)
    <SQL>INSERT       TOK (INSERT)
    <SQL>INT(EGER)?          TOK (INTEGER)
    <SQL>INTO         TOK (INTO)
    <SQL>IS                  TOK (IS)
    <SQL>KEY          TOK (KEY)
    <SQL>LANGUAGE            TOK (LANGUAGE)
    <SQL>LIKE         TOK (LIKE)
    <SQL>NOT          TOK (NOT)
    <SQL>NULL         TOK (NULLX)
    <SQL>NUMERIC             TOK (NUMERIC)
    <SQL>OF                  TOK (OF)
    <SQL>ON                  TOK (ON)
    <SQL>OPEN         TOK (OPEN)
    <SQL>OPTION       TOK (OPTION)
    <SQL>OR                  TOX (OR)
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    <SQL>ORDER        TOK (ORDER)
    <SQL>PRECISION           TOK (PRECISION)
    <SQL>PRIMARY             TOK (PRIMARY)
    <SQL>PRIVILEGES          TOK (PRIVILEGES)
    <SQL>PROCEDURE           TOK (PROCEDURE)
    <SQL>PUBLIC       TOK (PUBLIC)
    <SQL>REAL         TOK (REAL)
    <SQL>REFERENCES          TOK (REFERENCES)
    <SQL>ROLLBACK            TOK (ROLLBACK)
    <SQL>SCHEMA       TOK (SCHEMA)
    <SQL>SELECT       TOK (SELECT)
    <SQL>SET          TOK (SET)
    <SQL>SMALLINT            TOK (SMALLINT)
    <SQL>SOME         TOK (SOME)
    <SQL>SQLCODE             TOK (SQLCODE)
    <SQL>SQLERROR             TOK(SQLERROR)
    <SQL>TABLE        TOK (TABLE)
    <SQL>TO                  TOK (TO)
    <SQL>UNION        TOK (UNION)
    <SQL>UNIQUE       TOK (UNIQUE)
    <SQL>UPDATE       TOK (UPDATE)
    <SQL>USER         TOK (USER)
    <SQL>VALUES       TOK (VALUES)
    <SQL>VIEW         TOK (VIEW)
    <SQL>WHENEVER            TOK (WHENEVER)
    <SQL>WHERE        TOK (WHERE)
    <SQL>WITH         TOK (WITH)
    <SQL>WORK         TOK (WORK)

          /* punctuation */

    <SQL>"="    |
    <SQL>"<>"   |
    <SQL>"<"    |
    <SQL>">"    |
    <SQL>"<="   |
    <SQL>">="         TOK (COMPARISON)

    <SQL>[−+*/(),.;]  TOK (yytext [0])

          /* names */
    <SQL>[A-Za-z][A-Za-z0-9_] *   TOK(NAME)

          /* parameters */
    <SQL>":"[A-Za-z][A-Za-z0-9_]* {
                         save_param (yytext+1) ;
                         return PARAMETER;
                 }

          /* numbers */
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    <SQL>[0-9]+ |
    <SQL>[0-9]+"."[0-9]* |
    <SQL>"."[0-9]*        TOK (INTNUM)

    <SQL>[0-9]+[eE][+-]?[0-9]+   |
    <SQL>[0-9]+"."[0-9]*[eE][+-]?[0-9]+   |
    <SQL>"."[0-9]*[eE] [+-]?[0-9]+TOK(APPROXNUM)

          /* strings */

    <SQL>'[^'\n]*'   {
                 int c = input();

                 unput(c);  /* just peeking */
                 if(c  !=  '\'')   {
                        SV;return STRING;
                 } else
                      yymore() ;
            }
    <SQL>'[^'\n]*$    {   yyerror("Unterminated string"); }

    <SQL>\n           { save_str(" ");lineno++; }
    \n          { lineno++; ECHO; }

    <SQL>[ \t\r]+      save_str(" ");   /* whitespace */
    <SQL>"--".* ;          /* comment */

                ECHO; /* random non-SQL text */
    .
    %%

    void
    yyerror(char *s)
    {
          printf("%d: %s at %s\n", lineno, s, yytext);
    }

    main(int ac,  char **av)
    {
         if(ac > 1 &&  (yyin = fopen(av[1],   "r"))  == NULL) {
               perror(av[1]);
               exit(1);
         }

         if(!yyparse())
               fprintf(stderr, "Embedded SQL parse worked\n");
         else
               fprintf(stderr, "Embedded SQL parse failed\n"};
    } /* main */

    /* leave SQL lexing mode */
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    un_sql ()
    {
          BEGIN INITIAL;
    }   /* un_sql  */

Supporting Code

This is file sqltext.c.

    /*
     *   Text handling routines for simple embedded SQL
     */

    #include <stdio.h>
    #include <string.h>
    extern FILE *yyout;     /* lex output file */

    char save_buf[2000];    /* buffer for SQL command */
    char *savebp;           /* current buffer pointer */

    #define NPARAM  20      /* max params per function */
    char *varnames[NPARAM]; /* parameter names */

    /* start an embedded command after EXEC SQL */
    start_save(void)
    {
          savebp = save_buf;
    } /* start_save */

    /* save a SQL token */
    save_str(char *s)
    {

         strcpy(savebp, s);
         savebp += strlen(s);
    } /* save_str */

    /* save a parameter reference */
    save_param(char *n)
    {
          int i;
          char pbuf[10] ;

          /* look up the variable name in the table */

          for(i = 1; i < NPARAM; i++) {
                if(!varnames[i]) {

                     /* not there, enter it */
                     varnames[i] = strdup(n);
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                     break;
                }

                if(!strcmp(varnames[i], n))
                     break;    /* already present */
          }

          if (i >= NPARAM) {
                yyerror("Too many parameter references");
                exit(1);
          }

          /* save #n referece by variable number */
          sprintf(pbuf, " #%d", i);
          save_str(pbuf);

    } /* save_param */

    /* end of SQL command, now write it out */
    end_sql(void)
    {
         int i;
         register char *cp;

         savebp-;  /* back over the closing semicolon */

         /* call exec_sql function */

         fprintf(yyout, "exec_sql(\"") ;
         /* write out saved buffer as a big C string
          * starting new lines as needed
          */

         for(cp = save_buf, i = 20; cp < savebp; cp++, i++) {
               if(i > 70) {    /* need new line */
                     fprintf(yyout, "\\\n");
                     i = 0;
               }
               putc(*cp, yyout);
          }
          putc(' "', yyout) ;

          /* pass address of every referenced variable */
          for(i = 1; i < NPARAM; i++) {
                if(!varnames[i])
                      break;
                fprintf(yyout, ",\n\t&%s", varnames[i]);
                free(varnames[i]);
                varnames[i] = 0;
          }

          fprintf(yyout, ");\n");
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          /* return scanner to regular mode */
          un_sql();

    }/* end_sql */
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Glossary

A large number of technical terms are used in this manual. Many of them may be fa‐
miliar; some may not. To help avoid confusion, the most significant terms are listed
here.
action

The C code associated with a lex pattern or
a yacc rule. When the pattern or rule match‐
es an input sequence, the action code is ex‐
ecuted.

alphabet
A set of distinct symbols. For example, the
ASCII character set is a collection of 128
different symbols. In a lex specification, the
alphabet is the native character set of the
computer, unless you use “%T” to define a
custom alphabet. In a yacc grammar, the al‐
phabet is the set of tokens and non-
terminals used in the grammar.

ambiguity
An ambiguous grammar is one with more
than one rule or set of rules that match the
same input. In a yacc grammar, ambiguous
rules cause shift/reduce or reduce/reduce
conflicts. The parsing mechanism that yacc
uses cannot handle ambiguous grammars,
so it uses %prec declarations and its own
internal rules to resolve the conflict when
creating a parser.

Lex specifications can be and usually are
ambiguous; when two patterns match the
same input, the pattern earlier in the spec‐
ification wins.

ASCII
American Standard Code for Information
Interchange; a collection of 128 symbols
representing the common symbols found in
the American alphabet: lower and upper‐
case letters, digits, and punctuation, plus
additional characters for formatting and
control of data communication links. Most
computers on which yacc and lex run use
ASCII, although some IBM mainframe sys‐
tems use a different 256 symbol code called
EBCDIC.

BNF (Backus-Naur Form)
Backus-Naur Form; a method of represent‐
ing grammars. It is commonly used to spec‐
ify formal grammars of programming lan‐
guages. The input syntax of yacc is a sim‐
plifed version of BNF.
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BSD
Berkeley Software Distribution. The Uni‐
versity of California at Berkeley issued a
series of operating system distributions
based upon Seventh Edition UNIX; typi‐
cally, BSD is further qualified with the ver‐
sion number of the particular distribution,
e.g., BSD 2.10 or BSD 4.3.

compiler
A program which translates a set of instruc‐
tions (a program) in one language into some
other representation; typically, the output of
a compiler is in the native binary language
that can be run directly on a computer.
Compare to interpreter.

conflict
An error within the yacc grammar in which
two (or more) parsing actions are possible
when parsing the same input token. There
are two types of conflicts: shift/reduce and
reduce/reduce. (See also ambiguity.)

empty string
The special case of a string with zero sym‐
bols, sometimes written ϵ. In the C lan‐
guage, a string which consists only of the
ASCII character NUL. Yacc rules can match
the empty string, but lex patterns cannot.

finite automaton
An abstract machine which consists of a fi‐
nite number of instructions (or transitions).
Finite automata are useful in modeling
many commonly occurring computer pro‐
cesses and have useful mathematical prop‐
erties. Lex and yacc create lexers and parsers
based on finite automata.

input
A stream of data read by a program. For in‐
stance, the input to a lex scanner is a se‐
quence of bytes, while the input to a yacc
parser is a sequence of tokens.

interpreter
A program which reads instructions in a
language (a program) and decodes and acts
on them one at a time. Compare to compiler.

language
Formally, a well-defined set of strings over
some alphabet; informally, some set of in‐
structions for describing tasks which can be
executed by a computer.

LALR(1)
LookAhead Left Recursive; the parsing
technique that yacc uses. The (1) denotes
that the lookahead is limited to a single to‐
ken.

left-hand side (LHS)
The left-hand side or LHS of a yacc rule is
the symbol that precedes the colon. During
a parse, when the input matches the se‐
quence of symbols on the RHS of the rule,
that sequence is reduced to the LHS symbol.

lex
A program for producing lexical analyzers
that match patterns defined by regular ex‐
pressions to a character stream.

lexical analyzer
A program which converts a character
stream into a token stream. Lex takes a de‐
scription of individual tokens as regular ex‐
pressions, divides the character stream into
tokens, and determines the types and values
of the tokens. For example it might turn the
character stream “a = 17;” into a token
stream consisting of the name “a”, the op‐
erator “=”, the number “17”, and the single
character token “;”. Also called a lexer or
scanner.

lookahead
Input read by a parser or scanner but not yet
matched to a pattern or rule. Yacc parsers
have a single token of lookahead, while lex
scanners can have indefinitely long look‐
ahead.

non-terminal

Symbols in a yacc grammar that do not ap‐
pear in the input, but instead are defined by
rules. Contrast to tokens.

parser stack

BSD
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In a yacc parser, the symbols for partially
matched rules are stored on an internal
stack. Symbols are added to the stack when
the parser shifts and are removed when it
reduces.

parsing
The process of taking a stream of tokens and
logically grouping them into statements
within some language.

pattern
In a lex lexer, a regular expression that the
lexer matches against the input.

precedence
The order in which some particular opera‐
tion is performed; e.g., when interpreting
mathematical statements, multiplication
and division are assigned higher prece‐
dence than addition and subtraction; thus,
the statement “3+4*5” is 23 as opposed to
35.

production
See rules.

program
A set of instructions which perform a cer‐
tain predefined task.

reduce
In a yacc parser, when the input matches the
list of symbols on the RHS of a rule, the
parser reduces the rule by removing the RHS
symbols from the parser stack and replacing
them with the LHS symbol.

reduce/reduce conflict
In a yacc grammar, the situation where two
or more rules match the same string of to‐
kens. Yacc resolves the conflict by reducing
the rule that occurs earlier in the grammar.

regular expression
A language for specifying patterns that
match a sequence of characters. Regular ex‐
pressions consist of normal characters,
which match the same character in the in‐
put, character classes which match any sin‐

gle character in the class, and other charac‐
ters which specify the way that parts of the
expression are to be matched against the
input.

right-hand side (RHS)
The right-hand side or RHS of a yacc rule is
the list of symbols that follow the colon.
During a parse, when the input matches the
sequence of symbols on the RHS of the rule,
that sequence is reduced to the LHS symbol.

rule
In yacc, rules are the abstract description of
the grammar. Yacc rules are also called pro‐
ductions. A rule is a single non-terminal
called the LHS, a colon, and a possible emp‐
ty set of symbols called the RHS. Whenever
the input matches the RHS of a rule, the
parser reduces the rule.

semantic meaning

See value.

shift
A yacc parser shifts input symbols onto the
parser stack in expectation that the symbol
will match one of the rules in the grammar.

shift/reduce conflict
In a yacc grammar, the situation where a
symbol completes the RHS of one rule,
which the parser needs to reduce, and is an
intermediate symbol in the RHS of other
rules, for which the parser needs to shift the
symbol. Shift/reduce conflicts occur either
because the grammar is ambiguous, or be‐
cause the parser would need to look more
than one token ahead to decide whether to
reduce the rule that the symbol completes.
Yacc resolves the conflict by doing the shift.

specification
A lex specification is a set of patterns to be
matched against an input stream. Lex turns
a specification into a lexer.

start state
In a lex specification, patterns can be tagged
with start states, in which case the pattern

parsing
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start symbol
The single symbol to which a yacc parser
reduces a valid input stream. Rules with the
start symbol on the LHS are called start
rules.

symbol table
A table containing information about
names occurring in the input, so that all
references to the same name can be related
to the same object.

symbol
In yacc terminology, symbols are either to‐
kens or non-terminals. In the rules for the
grammar, any name found on the right-
hand side of a rule is always a symbol.

System V
After the release of Seventh Edition UNIX
(upon which the BSD distributions of
UNIX are based), AT&T released newer
versions of UNIX, the most recent of which
is called System V; newer versions bear re‐
lease numbers, so it is common to refer to
either System V or System V.4.

token
In yacc terminology, tokens or terminals are
the symbols provided to the parser by the
lexer. Compare to non-terminals, which are
defined within the parser.

tokenizing
The process of converting a stream of char‐
acters into a stream of tokens is termed to‐
kenizing. A lexer tokenizes its input.

value
Each token in a yacc grammar has both a
syntactic and a semantic value; its semantic
value is the actual data contents of the to‐
ken. For instance, the syntactic type of a
certain operation may be INTEGER, but its
semantic value might be 3.

yacc
Yet Another Compiler Compiler; a program
that generates a parser from a list of rules in
BNF-like format.

start symbol
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