O'REILLY"

Introducing

Python

MODERN COMPUTING IN

SIMPLE PACKAGES ’g’%":‘%% 7
o

7 a? Fs -
Sotemmenififen

e ’5“,» S
N0 >
Ao 189

Y

Bill Lubanovic

O'REILLY"

Introducing Python

Easy to understand and fun to read, Introducing Python is ideal for
beginning programmers as well as those new to the language. Author Bill
Lubanovic takes you from the basics to more involved and varied topics,
mixing tutorials with cookbook-style code recipes to explain concepts in
Python 3. End-of-chapter exercises help you practice what you've learned.

You'll gain a strong foundation in the language, including best practices for
testing, debugging, code reuse, and other development tips. This book
also shows you how to use Python for applications in business, science,
and the arts, using various Python tools and open source packages.

m Learn simple data types, and basic math and text operations

m Use data-wrangling techniques with Python's built-in data
structures

Explore Python code structure, including the use of functions
Write large programs in Python, with modules and packages
Dive into objects, classes, and other object-oriented features

Examine storage from flat files to relational databases and
NoSQL

Use Python to build web clients, servers, APIs, and services

m Manage system tasks such as programs, processes, and
threads

m Understand the basics of concurrency and network
programming

Bill Lubanovic has developed software with UNIX since 1977, GUIs since 1981,
databases since 1990, and web applications since 1993. Recently, he developed
core services and distributed systems with a remote team for a startup. Currently,
he's integrating OpenStack services for a supercomputer company.

“Bill Lubanovic has
achieved a tour de
force, laying down
the foundations for
programming and then
teaching you how to deal
with real life problems
through the huge Python
toolbox. This book is a
sure path for learning
how to solve problems
the Python way.”

—LoicPefferkorn
open source systems engineer

PYTHON

US $49.99 CAN $65.99
ISBN: 978-1-449-35936-2

TETIOROLENY

Twitter: @oreillymedia
facebook.com/oreilly

Introducing Python

Bill Lubanovic

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

Introducing Python
By Bill Lubanovic

Copyright © 2015 Bill Lubanovic. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Allyson MacDonald Indexer: Judy McConville
Production Editor: Nicole Shelby Interior Designer: David Futato
Copyeditor: Octal Publishing Cover Designer: Ellie Volckhausen
Proofreader: Sonia Saruba lllustrator: Rebecca Demarest

November, 2014: First Edition

Revision History for the First Edition
2014-11-07: First release
2015-02-20: Second release
2016-02-26: Third release

See http://oreilly.com/catalog/errata.csp?isbn=9781449359362 for release details.

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. Introducing Python, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-449-35936-2
[LST]

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449359362

To Mary, Karin, Tom, and Roxie.

Table of Contents

o] {3

1. ATaste Of Py. .ot e
Python in the Real World
Python versus Language X
So, Why Python?
When Not to Use Python
Python 2 versus Python 3
Installing Python
Running Python
Using the Interactive Interpreter
Use Python Files
What’s Next?
Your Moment of Zen
Things to Do

2. PyIngredients: Numbers, Strings, and Variables.ccoooveeaan,
Variables, Names, and Objects
Numbers

Integers

Precedence

Bases

Type Conversions

How Big Is an int?

Floats

Math Functions
Strings

Create with Quotes

10
11
12
12
12
13
14
14
15
15

17
17
21
21
25
26
27
28
29
29
30
30

3. PyfFilling: Lists, Tuples, Dictionaries, and Sets

Convert Data Types by Using str()
Escape with \

Combine with +

Duplicate with *

Extract a Character with []
Slice with [start : end : step]
Get Length with len()

Split with split()

Combine with join()
Playing with Strings

Case and Alignment
Substitute with replace()
More String Things

Things to Do

Lists and Tuples

Lists

Create with [] or list()

Convert Other Data Types to Lists with list()
Get an Item by Using [offset]

Lists of Lists

Change an Item by [offset]

Get a Slice to Extract Items by Offset Range
Add an Ttem to the End with append()
Combine Lists by Using extend() or +=

Add an Ttem by Offset with insert()

Delete an Item by Offset with del

Delete an Item by Value with remove()

Get an Item by Offset and Delete It by Using pop()
Find an Item’s Offset by Value with index()
Test for a Value with in

Count Occurrences of a Value by Using count()
Convert to a String with join()

Reorder Items with sort()

Get Length by Using len()

Assign with =, Copy with copy()

Tuples

Create a Tuple by Using ()

Tuples versus Lists

Dictionaries

Create with {}

32
32
33
34
34
35
37
38
38
38
39
41
41
41

43
43
44
44
45
45
46
47
47
48
48
48
49
49
49
50
50
51
51
51
52
52
54
54
55
55
56

Table of Contents

Convert by Using dict()
Add or Change an Item by [key]
Combine Dictionaries with update()
Delete an Item by Key with del
Delete All Items by Using clear()
Test for a Key by Using in
Get an Item by [key]
Get All Keys by Using keys()
Get All Values by Using values()
Get All Key-Value Pairs by Using items()
Assign with =, Copy with copy()

Sets
Create with set()
Convert from Other Data Types with set()
Test for Value by Using in
Combinations and Operators

Compare Data Structures

Make Bigger Data Structures

Things to Do

. Py Crust:Code Structures.ovveiiiiiiiiiii it eennns

Comment with #
Continue Lines with \
Compare with if, elif, and else
What Is True?
Do Multiple Comparisons with in
Repeat with while
Cancel with break
Skip Ahead with continue
Check break Use with else
Iterate with for
Cancel with break
Skip with continue
Check break Use with else
Iterate Multiple Sequences with zip()
Generate Number Sequences with range()
Other Iterators
Comprehensions
List Comprehensions
Dictionary Comprehensions
Set Comprehensions
Generator Comprehensions

56
57
59
59
60
60
60
61
61
62
62
62
63
63
64
65
68
68
69

n
71
72
73
76
77
78
78
79
79
80
82
82
82
83
83
84
84
84
87
87
88

Table of Contents

vii

Functions
Positional Arguments
Keyword Arguments
Specify Default Parameter Values
Gather Positional Arguments with *
Gather Keyword Arguments with **
Docstrings
Functions Are First-Class Citizens
Inner Functions
Closures
Anonymous Functions: the lambda() Function
Generators
Decorators
Namespaces and Scope
Uses of _and __ in Names
Handle Errors with try and except
Make Your Own Exceptions
Things to Do

Py Boxes: Modules, Packages, and Programs.e

Standalone Programs
Command-Line Arguments
Modules and the import Statement
Import a Module
Import a Module with Another Name
Import Only What You Want from a Module
Module Search Path
Packages
The Python Standard Library
Handle Missing Keys with setdefault() and defaultdict()
Count Items with Counter()
Order by Key with OrderedDict()
Stack + Queue == deque
Iterate over Code Structures with itertools
Print Nicely with pprint()
More Batteries: Get Other Python Code
Things to Do

. OhOh: Objectsand Classes.c.overieeriereerenneenneennnnns

What Are Objects?
Define a Class with class
Inheritance

89
92
93
93
94
95
96
96
98
99
100
101
102
104
106
107
109
110

m
111
112
112
112
114
114
115
115
116
116
118
120
120
121
122
123
123

125
125
126
128

viii

| Table of Contents

Override a Method

Add a Method

Get Help from Your Parent with super

In self Defense

Get and Set Attribute Values with Properties

Name Mangling for Privacy

Method Types

Duck Typing

Special Methods

Aggregation and Composition

When to Use Classes and Objects versus Modules
Named Tuples

Things to Do

. MangleDataLikeaPro.........coovuiiiniriniiinieeiierierenneenneennanens

Text Strings
Unicode
Format
Match with Regular Expressions
Binary Data
bytes and bytearray
Convert Binary Data with struct
Other Binary Data Tools
Convert Bytes/Strings with binascii()
Bit Operators
Things to Do

. DataHasto GO SOMEWNere. ...vvvr vttt it ittt iiieieneneanes

File Input/Output
Write a Text File with write()
Read a Text File with read(), readline(), or readlines()
Write a Binary File with write()
Read a Binary File with read()
Close Files Automatically by Using with
Change Position with seek()
Structured Text Files
CSV
XML
HTML
JSON
YAML
A Security Note

129
130
131
132
133
135
136
137
139
142
143
144
145

147
147
147
154
159
166
167
168
171
172
172
173

177
177
178
180
181
182
182
183
185
185
187
189
189
192
193

Table of Contents

ix

Configuration Files
Other Interchange Formats
Serialize by Using pickle
Structured Binary Files
Spreadsheets
HDF5
Relational Databases
SQL
DB-API
SQLite
MySQL
PostgreSQL
SQLAlchemy
NoSQL Data Stores
The dbm Family
Memcached
Redis
Other NoSQL
Full-Text Databases
Things to Do

. TheWeb,Untangled..............coovviiiiiiiiiiiiiinnn.n,

Web Clients
Test with telnet
Python’s Standard Web Libraries
Beyond the Standard Library: Requests
Web Servers
The Simplest Python Web Server
Web Server Gateway Interface
Frameworks
Bottle
Flask
Non-Python Web Servers
Other Frameworks
Web Services and Automation
The webbrowser Module

Web APIs and Representational State Transfer

JSON
Crawl and Scrape
Scrape HTML with BeautifulSoup
Things to Do

194
195
195
196
196
196
197
198
200
200
202
203
203
209
209
210
211
219
220
220

223
224
225
226
229
230
230
232
232
233
235
239
241
243
243
243
244
244
245
246

X

Table of Contents

LT T - 113N 247

Files 247
Create with open() 247
Check Existence with exists() 248
Check Type with isfile() 248
Copy with copy() 249
Change Name with rename() 249
Link with link() or symlink() 249
Change Permissions with chmod() 249
Change Ownership with chown() 250
Get a Pathname with abspath() 250
Get a symlink Pathname with realpath() 250
Delete a File with remove() 250

Directories 250
Create with mkdir() 251
Delete with rmdir() 251
List Contents with listdir() 251
Change Current Directory with chdir() 252
List Matching Files with glob() 252

Programs and Processes 253
Create a Process with subprocess 253
Create a Process with multiprocessing 255
Kill a Process with terminate() 255

Calendars and Clocks 256
The datetime Module 257
Using the time Module 260
Read and Write Dates and Times 261
Alternative Modules 265

Things to Do 265

11. Concurrency and Networks.ovvuiriniieniieiieriinrenneenneennesennss 267

Concurrency 268
Queues 269
Processes 270
Threads 271
Green Threads and gevent 273
twisted 276
asyncio 277
Redis 277
Beyond Queues 281

Networks 282
Patterns 282

Table of Contents | xi

12.

The Publish-Subscribe Model

TCP/IP

Sockets

ZeroMQ

Scapy

Internet Services

Web Services and APIs

Remote Processing

Big Fat Data and MapReduce

Working in the Clouds
Things to Do

BeaPythonista............ccoovviiiiiiiiiiiiiiiiiiienn,

About Programming
Find Python Code
Install Packages
Use pip
Use a Package Manager
Install from Source
Integrated Development Environments
IDLE
PyCharm
IPython
Name and Document
Testing Your Code
Check with pylint, pyflakes, and pep8
Test with unittest
Test with doctest
Test with nose
Other Test Frameworks
Continuous Integration
Debugging Python Code
Debug with pdb
Logging Error Messages
Optimize Your Code
Measure Timing
Algorithms and Data Structures
Cython, NumPy, and C Extensions
PyPy
Source Control
Mercurial
Git

282
286
287
291
295
296
297
298
304
305
308

3N
311
312
313
313
314
314
314
314
315
315
315
317
317
319
323
324
325
325
326
327
332
335
335
337
338
338
339
339
339

Xii

| Table of Contents

Clone This Book 342
How You Can Learn More 342
Books 342
Websites 343
Groups 343
Conferences 343
Coming Attractions 343

T T VRN 345
B. PyatWork.......ouieiniiiiii i e 359
L T 1 373
D. Install Python 3.ooiuiiii i i i e e e 393
E. ANSWers t0 EXerCises. . oovv ettt ittt eteeeeerereeeraenenenenens 403
T 01 =T T Y 11T £ 437
T4 <3 441
Table of Contents | xiii

Preface

This book will introduce you to the Python programming language. It's aimed at
beginning programmers, but even if you've written programs before and just want to
add Python to your list of languages, Introducing Python will get you started.

It's an unhurried introduction, taking small steps from the basics to more involved
and varied topics. I mix cookbook and tutorial styles to explain new terms and ideas,
but not too many at once. Real Python code is included early and often.

Even though this is an introduction, I include some topics that might seem advanced,
such as NoSQL databases and message-passing libraries. I chose these because they
can solve some problems better than standard solutions. You’ll download and install
external Python packages, which is good to know when the “batteries included” with
Python don't fit your application. And it’s fun to try something new.

I also include some examples of what not to do, especially if you've programmed in
other languages and try to adapt those styles to Python. And I won’t pretend that
Python is perfect; I'll show you what to avoid.

Sometimes, I'll include a note such as this when something might
be confusing or there’s a more appropriate Pythonic way to do it.

Audience

This book is for anybody interested in learning what seems to be emerging as the
world’s most popular computing language, whether or not you have learned any pro-
gramming before.

Xv

Outline

The first seven chapters explain Python’s basics, and you should read them in order.
The later chapters show how Python is used in specific application areas such as the
Web, databases, networks, and so on; read them in any order you like. The first three
appendices showcase Python in the arts, business, and science. Then, you see how to
install Python 3 if you don’t have it. Next are answers to the end-of-chapter exercises,
and then finally, a few cheat sheets of useful things.

Chapter 1

Programs are like directions for making socks or grilling potatoes. Some real Python
programs give a little demonstration of the language’s look, capabilities, and uses in
the real world. Python fares well when compared with other languages, but it has
some imperfections. An older version of Python (Python 2) is giving way to a newer
one (Python 3). If you have Python 2, install Python 3 on your computer. Use the
interactive interpreter to try examples from this book yourself.

Chapter 2

This chapter shows Python’s simplest data types: booleans, integers, floating-point
numbers, and text strings. You also learn the basic math and text operations.

Chapter 3

We step up to Python’s higher-level built-in data structures: lists, tuples, dictionaries,
and sets. You use these as you would Legos to build much more complicated struc-
tures. You learn how to step through them by using iterators and comprehensions.

Chapter 4

In Chapter 4, you weave the data structures of the previous chapters with code struc-
tures to compare, choose, or repeat. You see how to package code in functions and
handle errors with exceptions.

Chapter 5

This chapter demonstrates how to scale out to larger code structures: modules, pack-
ages, and programs. You see where to put code and data, get data in and out, handle
options, tour the Python Standard Library, and take a glance at what lies beyond.

Chapter 6

If you've done object-oriented programming in other languages, Python is a bit more
relaxed. Chapter 6 explains when to use objects and classes, and when its better to
use modules or even lists and dictionaries.

xvi | Preface

Chapter 7

Learn to manage data like a pro. This chapter is all about text and binary data, the joy
of Unicode characters, and I/O.

Chapter 8

Data needs to go somewhere. In this chapter, you begin with basic flat files, directo-
ries, and filesystems. Then, you see how to handle common file formats such as CSV,
JSON, and XML. You also explore how to store and retrieve with relational databases,
and even some recent NoSQL data stores.

Chapter 9

The Web gets its own chapter, which covers clients, servers, scraping, APIs, and
frameworks. In Chapter 9, you work up a real website with request parameters and
templates.

Chapter 10

This is the hard-core system chapter. In this one, you learn to manage programs, pro-
cesses, and threads; deal with dates and times; and automate some system administra-
tion tasks.

Chapter 11

Networking is the subject here: services, protocols, and APIs. Examples range from
low-level TCP sockets, to messaging libraries and queuing systems, to cloud deploy-
ment.

Chapter 12

This chapter contains tips for Python developers, including installing, using IDEs,
testing, debugging, logging, source control, and documentation. Chapter 12 also
helps you to find and install useful third-party packages, package your own code for
reuse, and learn where to get more information. Good luck.

Appendix A

The first appendix delves into what people are doing with Python in the arts: graph-
ics, music, animation, and games.

Appendix B

Python has specific applications for business: data visualization (plots, graphs, and
maps), security, and regulation.

Appendix C

Python has a strong presence in science: math and statistics, physical science, bio-
science, and medicine. Appendix C features NumPy, SciPy, and Pandas.

Preface | xvii

Appendix D

If you don't already have Python 3 on your computer, this appendix shows you how
to install it, no matter if you're running Windows, Mac OS/X, Linux, or Unix.

Appendix E

This has the answers to the end-of-chapter exercises. Don't peek here until you've
tried the exercises yourself.

Appendix F

This appendix contains cheat sheets to use as a quick reference.

Python Versions

Computer languages change over time as developers add features and fix mistakes.
The examples in this book were written and tested while running Python version 3.3.
Version 3.4 was released as this book was being edited, and I'll talk about a few of its
additions. If you want to know what was added to Python and when, try the What’s
New in Python page. It's a technical reference; a bit heavy when you're just starting
with Python, but may be useful in the future if you ever have to get programs to work
on computers with different Python versions.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variables, functions, and data types.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

xviii | Preface

https://docs.python.org/3/whatsnew/
https://docs.python.org/3/whatsnew/

This icon indicates a warning or caution.

\

Using Code Examples

The substantial code examples in this book—although not the exercises, which are
challenges for the reader—are available online for you to download. This book is here
to help you get your job done. In general, you may use the code in this book in your
programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission. Selling
or distributing a CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Introducing Python by Bill Lubanovic
(O’Reilly). Copyright 2015 Bill Lubanovic, 978-1-449-35936-2"

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
1 DC ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,

Preface | xix

https://github.com/madscheme/introducing-python
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/introducing_python.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Thanks go to the many people who read and commented on my draft. I'd like to par-
ticularly mention the careful reviews by Eli Bessert, Henry Canival, Jeremy Elliott,
Monte Milanuk, Loic Pefferkorn, and Steven Wayne.

xx | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/introducing_python
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1
A Taste of Py

Let’s begin with a mini-mystery and its solution. What do you think the following two
lines mean?

(Row 1): (RS) K18,ssk,k1,turn work.
(Row 2): (WS) SU 1 pwise,p5,p2tog,pl,turn.

It looks technical, like some kind of computer program. Actually, it’s a knitting pat-
tern; specifically, a fragment describing how to turn the heel of a sock. This makes as
much sense to me as the New York Times crossword puzzle does to my cat, but my
wife understands it perfectly. If you're a knitter, you do, too.

Let’s try another example. You'll figure out its purpose right away, although you might
not know its final product.

1/2 c. butter or margarine
1/2 c. cream

2 1/2 c. flour

1 t. salt

1 T. sugar

4 c. riced potatoes (cold)

Be sure all ingredients are cold before adding flour.
Mix all ingredients.
Knead thoroughly.
Form into 20 balls. Store cold until the next step.
For each ball:
Spread flour on cloth.
Roll ball into a circle with a grooved rolling pin.
Fry on griddle until brown spots appear.
Turn over and fry other side.

Even if you don't cook, you probably recognized that it’s a recipe: a list of food ingre-
dients followed by directions for preparation. But what does it make? It’s lefse, a Nor-

wegian delicacy that resembles a tortilla. Slather on some butter and jam or whatever
you like, roll it up, and enjoy.

The knitting pattern and the recipe share some features:

« A fixed vocabulary of words, abbreviations, and symbols. Some might be famil-
iar, others mystifying.

« Rules about what can be said, and where—their syntax.
o A sequence of operations to be performed in order.

 Sometimes, a repetition of some operations (a loop), such as the method for fry-
ing each piece of lefse.

o Sometimes, a reference to another sequence of operations (in computer terms, a
function). In the recipe, you might need to refer to another recipe for ricing pota-
toes.

o Assumed knowledge about the context. The recipe assumes you know what water
is and how to boil it. The knitting pattern assumes that you can knit and purl
without stabbing yourself too often.

 An expected result. In our examples, something for your feet and something for
your stomach. Just don’t mix them up.

You'll see all of these ideas in computer programs. I used these nonprograms to
demonstrate that programming isn't that mysterious. It’s just a matter of learning the
right words and the rules.

Let’s leave these stand-ins and see a real program. What does this do?

for countdown in 5, 4, 3, 2, 1, "hey!":
print(countdown)

If you guessed that it’s a Python program that prints the lines:

TR N WA~O

ey!

then you know that Python can be easier to learn than a recipe or knitting pattern.
And, you can practice writing Python programs from the comfort and safety of your
desk, far from the harrowing dangers of hot water and pointy sticks.

The Python program has some special words and symbols—for, in, print, commas,
colons, parentheses, and so on—that are important parts of the language’s syntax. The
good news is that Python has a nicer syntax, and less of it to remember, than most
computer languages. It seems more natural—almost like a recipe.

2 | Chapter1:ATaste of Py

Heres another tiny Python program that selects a television news cliché from a
Python list and prints it:

cliches = [
"At the end of the day",
"Having said that",
"The fact of the matter is",
"Be that as it may",
"The bottom line is",
"If you will",

1
print(cliches[3])

The program prints the fourth cliché:
Be that as it may

A Python list such as cliches is a sequence of values, accessed by their offset from the
beginning of the list. The first value is at offset 0, and the fourth value is at offset 3.

People count from 1, so it might seem weird to count from 0. It
helps to think in terms of offsets instead of positions.

Lists are very common in Python, and Chapter 3 shows how to use them.

Following is another program that also prints a quote, but this time referenced by the
person who said it rather than its position in a list:

quotes = {
"Moe": "A wise guy, huh?",
"Larry": "Ow!",
"Curly": "Nyuk nyuk!",
}

stooge = "Curly"
print(stooge, "says:", quotes[stooge])

If you were to run this little program, it would print the following:
Curly says: Nyuk nyuk!

quotes is a Python dictionary—a collection of unique keys (in this example, the name
of the Stooge) and associated values (here, a notable quote of that Stooge). Using a
dictionary, you can store and look up things by name, which is often a useful alterna-
tive to a list. You can read much more about dictionaries in Chapter 3.

The cliché example uses square brackets ([and]) to make a Python list, and the
stooge example uses curly brackets ({ and }, which are no relation to Curly), to make

ATasteofPy | 3

a Python dictionary. These are examples of Python’s syntax, and in the next few chap-
ters, you’ll see much more.

And now for something completely different: Example 1-1 presents a Python pro-
gram performing a more complex series of tasks. Don’t expect to understand how the
program works yet; that's what this book is for! The intent is to introduce you to the
look and feel of a typical nontrivial Python program. If you know other computer
languages, evaluate how Python compares.

In earlier printings of this book, this sample program connected to a YouTube website
and retrieved information on its most highly rated videos, like “Charlie Bit My Fin-
ger.” It worked well until shortly after the ink was dry on the second printing. That’s
when Google dropped support for this service and the marquee sample program
stopped working. Our new Example 1-1 goes to another site—the Wayback Machine
at the Internet Archive, which has saved billions of web pages (and movies, TV
shows, music, games, and other digital artifacts) over twenty years.

The program will ask you to type a URL and a date. Then it asks the Wayback
Machine if it has a copy of that website around that date. If it found one, it prints the
URL and displays it in your web browser. The point is to show how Python handles a
variety of tasks—get your typed input, talk across the Internet to a website, get back
some content, extract a URL from it, and convince your web browser to display that
URL.

If we got back a normal web page full of HTML-formatted text, it would be hard to
dig out the information we want (I talk about web scraping in “Crawl and Scrape” on
page 244). Instead, the program returns data in JSON format, which is meant for pro-
cessing by computers. JSON, or JavaScript Object Notation, is a human-readable text
format that describes the types, values, and order of the values within it. It’s like a lit-
tle programming language and has become a popular way to exchange data among
different computer languages and systems. You read about JSON in “JSON” on page
189.

Python programs can translate JSON text into Python data structures—the kind you’ll
see in the next two chapters—as though you wrote a program to create them yourself.
Our little program just selects one piece (the URL of the old page from the Archive).
Again, this is a complete Python program that you can run yourself. We've included
only a little error-checking, just to keep the example short.

Example 1-1. intro/archive.py
import webbrowser
import json

from urllib.request import urlopen

print("Let's find an old website.")

4 | Chapter1:ATaste of Py

http://archive.org

site = input("Type a website URL: ")
era = input("Type a year, month, and day, like 20150613: ")
url = "http://archive.org/wayback/available?url=%s×tamp=%s" % (site, era)
response = urlopen(url)
contents = response.read()
text = contents.decode("utf-8")
data = json.loads(text)
try:
old_site = data["archived_snapshots"]["closest"]["url"]
print("Found this copy: ", old_site)
print("It should appear in your browser now.")
webbrowser.open(old_site)
except:
print("Sorry, no luck finding", site)

When I ran this in a terminal window, I typed a site URL and a date, and got this text

output:

$ python archive.py

Let's find an old website.

Type a website URL: lolcats.com

Type a year, month, and day, like 20150613: 20151022

Found this copy: http://web.archive.org/web/20151102055938/http://www.lolcats.com/

It should appear in your browser now.

And this appeared in my browser:

C' | [1 web.archive.org/web/20151102055938/http://www.lolcats.com/ g Q] Q® =
INTERNET ARCHIVE http:] fwww.lolcats.com/ [SEP el DEC Close 3¢
! 2l 2 g
VI oo o, i s

N
LOLCATS.COM
v -\ " -
o PRy
Funny cat pictures with hilarious
captions!

Click "like' if you love LOLCats!
FiLike Share

. . x
L 3
s =\
; M 8
y
4 " Follow LOLCats on Twitter!
= E W Follow 6LOLCatsOffcial
Mv WHISKERSIII

0 Comments |[fj Like | share “ »

W Tweet

Trending lolz

web.archive.org/web/20151102055838/hitp: [fwww.lolcats.com/featured/51791

ATasteof Py |

5

This little Python program did a lot in a few fairly readable lines. You don’t know all
these terms, but don’t worry; you will within the next few chapters:

Line 1: import (make available to this program) all the code from the Python
standard library called webbrowser

Line 2: import all the code from the Python standard library called json

Line 3: import only the urlopen function from the standard library url
1ib.request

Line 4: a blank line, because we don’t want to feel crowded
Line 5: print some initial text to your display

Line 6: print a question about a URL, read what you type, and save it in a pro-
gram variable called site

Line 7: print another question, this time reading a year, month and day, and sav-
ing it in a variable called era

Line 8: construct another variable called url to make the Wayback Machine look
up its copy of the site and date that you typed

Line 9: connect to the web server at that URL and request a particular web service
Line 10: get the response data and assign to the variable contents

Line 11: decode contents to a text string in JSON format, and assign to the vari-
able text

Line 12: convert text to data—Python data structures

Line 13: error-checking: try to run the next four lines, and if any fail, run the last
line of the program (after the except)

Line 14: if we got back a match for this site and date, extract its value from a
three-level Python dictionary

Line 15: print the URL that we found

Line 16: print another messsage about what will happen in your browser now
Line 17: display the URL we found in your web browser

Line 18: if anything failed in the previous four lines, Python jumps down to here

Line 19: if it failed, print a message and the site that we were looking for

In the previous example, we used some of Python’s standard library modules (pro-
grams that are included with Python when it’s installed), but there’s nothing sacred
about them. The code that follows shows a rewrite that uses an external Python soft-
ware package called requests:

6

Chapter 1: A Taste of Py

import webbrowser
import requests

print("Let's find an old website.")
site = input("Type a website URL: ")
era = input("Type a year, month, and day, like 20150613: ")
url = "http://archive.org/wayback/available?url=%s×tamp=%s" % (site, era)
response = requests.get(url)
data = response. json()
try:
old_site = data["archived_snapshots"]["closest"]["url"]
print("Found this copy: ", old_site)
print("It should appear in your browser now.")
webbrowser.open(old_site)
except:
print("Sorry, no luck finding", site)
The new version is shorter, and I'd guess it's more readable for most people. I have a
lot more to say about requests and other externally authored Python software in

Chapter 5.

Python in the Real World

So, is learning Python worth the time and effort? Is it a fad or a toy? Actually, it’s been
around since 1991 (longer than Java), and is consistently in the top 10 most popular
computing languages. People are paid to write Python programs—serious stuff that
you use every day, such as Google, YouTube, Dropbox, Netflix, and Hulu. I've used it
for production applications as varied as an email search appliance and an ecommerce
website. Python has a reputation for productivity that appeals to fast-moving organi-
zations.

You'll find Python in many computing environments, including the following:

o The command line in a monitor or terminal window
o Graphical user interfaces, including the Web

o The Web, on the client and server sides

« Backend servers supporting large popular sites

o The cloud (servers managed by third parties)

o Mobile devices

o Embedded devices

Python programs range from one-off scripts—such as those you've seen so far in this
chapter—to million-line systems. We'll look at its uses in websites, system administra-
tion, and data manipulation. We'll also look at specific uses of Python in the arts, sci-
ence, and business.

Pythonin the Real World | 7

Python versus Language X

How does Python compare against other languages? Where and when would you
choose one over the other? In this section, I'll show code samples from other lan-
guages, just so you can see what the competition looks like. You are not expected to
understand these if you haven’t worked with them. (By the time you get to the final
Python sample, you might be relieved that you haven't had to work with some of the
others.) If you're only interested in Python, you won’t miss anything if you just skip to
the next section.

Each program is supposed to print a number and say a little about the language.

If you use a terminal or terminal window, the program that reads what you type, runs
it, and displays the results is called the shell program. The Windows shell is called
cmd; it runs batch files with the suffix .bat. Linux and other Unix-like systems
(including Mac OS X) have many shell programs, the most popular is called bash or
sh. The shell has simple abilities, such as simple logic and expanding wildcard sym-
bols such as * into filenames. You can save commands in files called shell scripts and
run them later. These might be the first programs you encountered as a programmaer.
The problem is that shell scripts don't scale well beyond a few hundred lines, and they
are much slower than the alternative languages. The next snippet shows a little shell
program:

#!/bin/sh

language=0

echo "Language S$language: I am the shell. So there."
If you saved this in a file as meh.sh and ran it with sh meh.sh, you would see the
following on your display:

Language 0: I am the shell. So there.

Old stalwarts C and C++ are fairly low-level languages, used when speed is most
important. They’re harder to learn, and require you to keep track of many details,
which can lead to crashes and problems that are hard to diagnose. Here’s a look at a
little C program:

#include <stdio.h>

int main(int argc, char *argv[]) {
int language = 1;
printf("Language %d: I am C! Behold me and tremble!\n", language);
return 0;

}

C++ has the C family resemblance but with distinctive features:

#include <iostream>
using namespace std;
int main() {

8 | Chapter1:ATaste of Py

int language = 2;

cout << "Language " << language << \
": I am C++! Pay no attention to that C behind the curtain!" <<\
endl;

return(0);

}

Java and C# are successors to C and C++ that avoid some of the latters’ problems, but
are somewhat verbose and restrictive. The example that follows shows some Java:

public class Overlord {
public static voild main (String[] args) {
int language = 3;
System.out.format("Language %d: I am Java! Scarier than C!\n", language);

}

If you haven’t written programs in any of these languages, you might wonder: what is
all that stuff¢ Some languages carry substantial syntactic baggage. They’re sometimes
called static languages because they require you to specify some low-level details for
the computer. Let me explain.

Languages have variables—names for values that you want to use in a program. Static
languages make you declare the type of each variable: how much room it will use in
memory, and what you can do with it. The computer uses this information to compile
the program into very low-level machine language (specific to the computer’s hard-
ware and easier for it to understand, but harder for humans). Computer language
designers often must decide between making things easier for people or for comput-
ers. Declaring variable types helps the computer to catch some mistakes and run
faster, but it does require more up-front human thinking and typing. Much of the
code that you saw in the C, C++, and Java examples was required to declare types. For
example, in all of them the int declaration was needed to treat the variable language
as an integer. (Other types include floating-point numbers such as 3.14159 and char-
acter or text data, which are stored differently.)

Then why are they called static languages? Because variables in those languages can’t
ever change their type; they’re static. An integer is an integer, forever and ever.

In contrast, dynamic languages (also called scripting languages) do not force you to
declare variable types before using them. If you type something such as x = 5, a
dynamic language knows that 5 is an integer; thus, the variable x is, too. These lan-
guages let you accomplish more with fewer lines of code. Instead of being compiled,
they are interpreted by a program called—surprisel—an interpreter. Dynamic lan-
guages are often slower than compiled static languages, but their speed is improving
as their interpreters become more optimized. For a long time, dynamic languages
were used mainly for short programs (scripts), often to prepare data for processing by
longer programs written in static languages. Such programs have been called glue

Python versus LanguageX | 9

code. Although dynamic languages are well suited for this purpose, today they are
able to tackle most big processing tasks as well.

The all-purpose dynamic language for many years was Perl. Perl is very powerful and
has extensive libraries. Yet, its syntax can be awkward, and the language seems to
have lost momentum in the last few years to Python and Ruby. This example regales
you with a Per]l bon mot:

my $language = 4;

print "Language $language: I am Perl, the camel of languages.\n";
Ruby is a more recent language. It borrows a little from Perl, and is popular mostly
because of Ruby on Rails, a web development framework. It's used in many of the
same areas as Python, and the choice of one or the other might boil down to a matter
of taste, or available libraries for your particular application. The code example here
depicts a Ruby snippet:

language = 5

puts "Language #{language}: I am Ruby, ready and aglow."
PHP, which you can see in the example that follows, is very popular for web develop-
ment because it makes it easy to combine HTML and code. However, the PHP lan-
guage itself has a number of gotchas, and PHP has not caught on as a general
language outside of the Web.

<?PHP

$language = 6;

echo "Language S$language: I am PHP. The web is <i>mine</i>, I say.\n";
7>

The example that follows presents Python’s rebuttal:

language = 7
print("Language %s: I am Python. What's for supper?" % language)

So, Why Python?

Python is a good general-purpose, high-level language. Its design makes it very reada-
ble, which is more important than it sounds. Every computer program is written only
once, but read and revised many times, often by many people. Being readable also
makes it easier to learn and remember, hence more writeable. Compared with other
popular languages, Python has a gentle learning curve that makes you productive
sooner, yet it has depths that you can explore as you gain expertise.

Python’s relative terseness makes it possible for you to write a program that's much
smaller than its equivalent in a static language. Studies have shown that programmers
tend to produce roughly the same number of lines of code per day—regardless of the
language—so, writing half the lines of code doubles your productivity, just like that.
Python is the not-so-secret weapon of many companies that think this is important.

10 | Chapter1:ATaste of Py

http://www.perl.org/
http://www.ruby-lang.org/
http://www.php.net/

Python is the most popular language for introductory computer science courses at
the top American colleges. It is also the most popular language for evaluating pro-
gramming skill by over two thousand employers.

And of course, it’s free, as in beer and speech. Write anything you want with Python,
and use it anywhere, freely. No one can read your Python program and say, “That’s a
nice little program you have there. It would be too bad if something happened to it”

Python runs almost everywhere and has “batteries included”—a metric boatload of
useful software in its standard library.

But, maybe the best reason to use Python is an unexpected one: people generally like
it. They actually enjoy programming with it, rather than treating it as just another
tool to get stuff done. Often they’ll say that they miss some feature of Python when
they need to work in another language. And that’s what separates Python from most
of its peers.

When Not to Use Python

Python isn’t the best language for every situation.

It is not installed everywhere by default. Appendix D shows you how to install Python
if you don't already have it on your computer.

It’s fast enough for most applications, but it might not be fast enough for some of the
more demanding ones. If your program spends most of its time calculating things
(the technical term is CPU-bound), a program written in C, C++, or Java will gener-
ally run faster than its Python equivalent. But not always!

o Sometimes a better algorithm (a stepwise solution) in Python beats an inefficient
one in C. The greater speed of development in Python gives you more time to
experiment with alternatives.

o In many applications, a program twiddles its thumbs while awaiting a response
from some server across a network. The CPU (central processing unit, the com-
puter’s chip that does all the calculating) is barely involved; consequently, end-to-
end times between static and dynamic programs will be close.

o The standard Python interpreter is written in C and can be extended with C
code. I discuss this a little in “Optimize Your Code” on page 335.

o Python interpreters are becoming faster. Java was terribly slow in its infancy, and
a lot of research and money went into speeding it up. Python is not owned by a
corporation, so its enhancements have been more gradual. In “PyPy” on page
338, I talk about the PyPy project and its implications.

o You might have an extremely demanding application, and no matter what you
do, Python doesn’t meet your needs. Then, as Ian Holm said in the movie Alien,

When Not to Use Python | 11

http://bit.ly/popular-py
http://bit.ly/langs-2014

you have my sympathies. The usual alternatives are C, C++, and Java, but a newer
language called Go (which feels like Python but performs like C) could be an
answer.

Python 2 versus Python 3

The biggest issue that you'll confront at the moment is that there are two versions of
Python out there. Python 2 has been around forever and is preinstalled on Linux and
Apple computers. It has been an excellent language, but nothing’s perfect. In com-
puter languages, as in many other areas, some mistakes are cosmetic and easy to fix,
whereas others are hard. Hard fixes are incompatible: new programs written with
them will not work on the old Python system, and old programs written before the
fix will not work on the new system.

Python’s creator (Guido van Rossum) and others decided to bundle the hard fixes
together and call it Python 3. Python 2 is the past, and Python 3 is the future. The last
version of Python 2 is 2.7, and it will be supported for a long time, but it’s the end of
the line; there will be no Python 2.8. New development will be in Python 3.

This book features Python 3. If you've been using Python 2, it’s almost identical. The
most obvious change is how to call print. The most important change is the handling
of Unicode characters, which is covered in Chapter 2 and Chapter 7. Conversion of
popular Python software has been gradual, with the usual chicken-and-egg analogies.
But now, it looks like we've finally reached a tipping point.

Installing Python

Rather than cluttering this chapter, the details on how to install Python 3 are in
Appendix D. If you don’t have Python 3, or aren’t sure, go there and see what to do
for your computer.

Running Python

After you have installed a working copy of Python 3, you can use it to run the Python
programs in this book as well as your own Python code. How do you actually run a
Python program? There are two main ways:

o Python’s built-in interactive interpreter (also called its shell) is the easy way to
experiment with small programs. You type commands line by line and see the
results immediately. With the tight coupling between typing and seeing, you can
experiment faster. I'll use the interactive interpreter to demonstrate language fea-
tures, and you can type the same commands in your own Python environment.

12 | Chapter1: ATaste of Py

http://golang.org
https://www.python.org/~guido

o For everything else, store your Python programs in text files, normally with
the .py extension, and run them by typing python followed by those filenames.

Let’s try both methods now.

Using the Interactive Interpreter

Most of the code examples in this book use the interactive interpreter. When you type
the same commands as you see in the examples and get the same results, you'll know
youre on the right track.

You start the interpreter by typing just the name of the main Python program on
your computer: it should be python, python3, or something similar. For the rest of
this book, we’ll assume it’s called python; if yours has a different name, type that
wherever you see python in a code example.

The interactive interpreter works almost exactly the same as Python works on files,
with one exception: when you type something that has a value, the interactive inter-
preter prints its value for you automatically. For example, if you start Python and type
the number 61 in the interpreter, it will be echoed to your terminal.

In the example that follows, $ is a sample system prompt for you to
type a command like python in the terminal window. We'll use it
for the code examples in this book, although your prompt might be
different.

$ python

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> 61

61

>>>

This automatic printing of a value is a time-saving feature of the interactive inter-
preter, not a part of the Python language.

By the way, print() also works within the interpreter whenever you want to print
something:

>>> print(61)

61
If you tried these examples with the interactive interpreter and saw the same results,
you just ran some real (though tiny) Python code. In the next few chapters, you’ll
graduate from one-liners to longer Python programs.

Running Python | 13

Use Python Files

If you put 61 in a file by itself and run it through Python, it will run, but it won’t print
anything. In normal noninteractive Python programs, you need to call the print
function to print things, as is demonstrated in the code that follows:

print(61)

Let’s make a Python program file and run it:

1. Open your text editor.
2. Type the line print(61), as it appears above.

3. Save this to a file called 61.py. Make sure you save it as plain text, rather than a
“rich” format such as RTF or Word. You don’t need to use the .py suffix for your
Python program files, but it does help you remember what they are.

4. If you're using a graphical user interface—that’s almost everyone—open a termi-
nal window.!

5. Run your program by typing the following:

$ python 61.py
You should see a single line of output:
61

Did that work? If it did, congratulations on running your first standalone Python
program.

What's Next?

You'll be typing commands to an actual Python system, and they need to follow legal
Python syntax. Rather than dumping the syntax rules on you all at once, we'll stroll
through them over the next few chapters.

The basic way to develop Python programs is by using a plain-text editor and a ter-
minal window. I use plain-text displays in this book, sometimes showing interactive
terminal sessions and sometimes pieces of Python files. You should know that there
are also many good integrated development environments (IDEs) for Python. These
may feature graphical user interfaces with advanced text editing and help displays.
You can learn about details for some of these in Chapter 12.

1 If you're not sure what this means, see Appendix D for details for different operating systems.

14 | Chapter1: ATaste of Py

Your Moment of Zen

Each computing language has its own style. In the preface, I mentioned that there is
often a Pythonic way to express yourself. Embedded in Python is a bit of free verse
that expresses the Python philosophy succinctly (as far as I know, Python is the only
language to include such an Easter egg). Just type import this into your interactive
interpreter and then press the Enter key whenever you need this moment of Zen:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one--and preferably only one--obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea--let's do more of those!

I'll bring up examples of these sentiments throughout the book.

Things to Do

This chapter was an introduction to the Python language—what it does, how it looks,
and where it fits in the computing world. At the end of each chapter, I'll suggest some
mini-projects to help you remember what you just read and prepare you for what’s to
come.

1.1 If you don't already have Python 3 installed on your computer, do it now. Read
Appendix D for the details for your computer system.

1.2 Start the Python 3 interactive interpreter. Again, details are in Appendix D. It
should print a few lines about itself and then a single line starting with >>>. That’s
your prompt to type Python commands.

1.3 Play with the interpreter a little. Use it like a calculator and type this: 8 * 9. Press
the Enter key to see the result. Python should print 72.

Your MomentofZen | 15

1.4 Type the number 47 and press the Enter key. Did it print 47 for you on the next
line?

1.5 Now, type print(47) and press Enter. Did that also print 47 for you on the next
line?

16 | Chapter1: ATaste of Py

CHAPTER 2

Py Ingredients: Numbers, Strings,
and Variables

In this chapter we'll begin by looking at Python’s simplest built-in data types:

o booleans (which have the value True or False)
o integers (whole numbers such as 42 and 100000000)

o floats (numbers with decimal points such as 3.14159, or sometimes exponents
like 1.0e8, which means one times ten to the eighth power, or 100000000 . 0)

o strings (sequences of text characters)

In a way, theyre like atoms. We'll use them individually in this chapter. Chapter 3
shows how to combine them into larger “molecules”

Each type has specific rules for its usage and is handled differently by the computer.
WEe'll also introduce variables (names that refer to actual data; more on these in a
moment).

The code examples in this chapter are all valid Python, but they’re snippets. We'll be
using the Python interactive interpreter, typing these snippets and seeing the results
immediately. Try running them yourself with the version of Python on your com-
puter. You'll recognize these examples by the >>> prompt. In Chapter 4, we start writ-
ing Python programs that can run on their own.

Variables, Names, and Objects

In Python, everything—booleans, integers, floats, strings, even large data structures,
functions, and programs—is implemented as an object. This gives the language a con-
sistency (and useful features) that some other languages lack.

17

An object is like a clear plastic box that contains a piece of data (Figure 2-1). The
object has a type, such as boolean or integer, that determines what can be done with
the data. A real-life box marked “Pottery” would tell you certain things (it's probably
heavy, and don’t drop it on the floor). Similarly, in Python, if an object has the type
int, you know that you could add it to another int.

A~

Figure 2-1. An object is like a box

The type also determines if the data value contained by the box can be changed
(mutable) or is constant (immutable). Think of an immutable object as a closed box
with a clear window: you can see the value but you can’t change it. By the same anal-
ogy, a mutable object is like an open box: not only can you see the value inside, you
can also change it; however, you can’t change its type.

Python is strongly typed, which means that the type of an object does not change,
even if its value is mutable (Figure 2-2).

Figure 2-2. Strong typing does not mean push the keys harder

Programming languages allow you to define variables. These are names that refer to
values in the computer’s memory that you can define for use with your program. In
Python, you use = to assign a value to a variable.

18 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

We all learned in grade school math that = means equal to. So why
do many computer languages, including Python, use = for assign-
ment? One reason is that standard keyboards lack logical alterna-
tives such as a left arrow key, and = didn’t seem too confusing. Also,
in computer programs you use assignment much more than you
test for equality.

The following is a two-line Python program that assigns the integer value 7 to the
variable named a, and then prints the value currently associated with a:

>>> a =7
>>> print(a)
7

Now, it’s time to make a crucial point about Python variables: variables are just names.
Assignment does not copy a value; it just attaches a name to the object that contains
the data. The name is a reference to a thing rather than the thing itself. Think of a
name as a sticky note (see Figure 2-3).

Figure 2-3. Names stick to objects

Try this with the interactive interpreter:

1. As before, assign the value 7 to the name a. This creates an object box containing
the integer value 7.

2. Print the value of a.
3. Assign a to b, making b also stick to the object box containing 7.

4. Print the value of b.

>>> a = 7
>>> print(a)
7

>>> b = a
>>> print(b)
7

Variables, Names, and Objects | 19

In Python, if you want to know the type of anything (a variable or a literal value), use
type(thing). Let’s try it with different literal values (58, 99.9, abc) and different vari-
ables (a, b):

>>> type(a)
<class 'int's>
>>> type(b)
<class 'int's>
>>> type(58)
<class 'int's>
>>> type(99.9)
<class 'float's>
>>> type('abc')
<class 'str's

A class is the definition of an object; Chapter 6 covers classes in greater detail. In
Python, “class” and “type” mean pretty much the same thing.

Variable names can only contain these characters:

+ Lowercase letters (a through z)

o Uppercase letters (A through 7)

« Digits (0 through 9)

o Underscore ()
Names cannot begin with a digit. Also, Python treats names that begin with an under-
score in special ways (which you can read about in Chapter 4). These are valid names:

e a

e al

e abc 95

e _abc

. 1a
These names, however, are not valid:

o 1
e 1la
o1

Finally, don’t use any of these for variable names, because they are Python’s reserved
words:

20 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

False class finally is return

None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

These words, and some punctuation, are used to define Python’s syntax. You'll see all
of them as you progress through this book.

Numbers

Python has built-in support for integers (whole numbers such as 5 and 1,000,000,000)
and floating point numbers (such as 3.1416, 14.99, and 1.87e4). You can calculate
combinations of numbers with the simple math operators in this table:

Operator Description Example Result
+ addition 5+8 13

- subtraction 90 - 10 80

* multiplication 4 * 7 28

/ floating point division 7/ 2 3.5
// integer (truncating) division 7 // 2 3

% modulus (remainder) 7%3 1

b exponentiation 3 %% 4 81

For the next few pages, I'll show simple examples of Python acting as a glorified
calculator.

Integers
Any sequence of digits in Python is assumed to be a literal integer:

>>> 5
5

You can use a plain zero (0):

>>> 0
0

But don't put it in front of other digits:

Numbers | 21

>>> 05
File "<stdin>", line 1
05

A

SyntaxError: invalid token

This is the first time you've seen a Python exception—a program
error. In this case, it's a warning that 05 is an “invalid token.” I'll
explain what this means in “Bases” on page 26. You'll see many
more examples of exceptions in this book because they’re Python’s
main error handling mechanism.

A sequence of digits specifies a positive integer. If you put a + sign before the digits,
the number stays the same:

>>> 123
123
>>> +123
123

To specify a negative integer, insert a — before the digits:

>>> -123
-123

You can do normal arithmetic with Python, much as you would with a calculator, by
using the operators listed in the table on the previous page. Addition and subtraction
work as youd expect:

>>> 5+ 9
14

>>> 100 - 7
93

>>> 4 - 10
-6

You can include as many numbers and operators as youd like:

>>> 5+ 9 + 3

17

>> 4+ 3 -2 -1+6
10

A style note: youre not required to have a space between each number and operator:

>>> 549 + 3
17

It just looks better and is easier to read.

Multiplication is also straightforward:

22 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

>>> 6 * 7

42

>>> 7 % 6

42

>>> 6 % 7 % 2 % 3
252

Division is a little more interesting, because it comes in two flavors:

o / carries out floating-point (decimal) division

o // performs integer (truncating) division
Even if youre dividing an integer by an integer, using a / will give you a floating-
point result:

>>> 9 / 5
1.8

Truncating integer division gives you an integer answer, throwing away any remain-
der:

>>> 9 [/ 5
1

Dividing by zero with either kind of division causes a Python exception:

>>> 5 /0

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> 7 [/ 0

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by z

All of the preceding examples used literal integers. You can mix literal integers and
variables that have been assigned integer values:

>>> a = 95
>>> a

95

>>> a3 - 3
92

Earlier, when we said a - 3, we didn’t assign the result to a, so the value of a did not
change:

>>> 3
95

If you wanted to change a, you would do this:

Numbers | 23

>>>a=a - 3

>>> a

92
This usually confuses beginning programmers, again because of our ingrained grade
school math training, we see that = sign and think of equality. In Python, the expres-
sion on the right side of the = is calculated first, then assigned to the variable on the
left side.

If it helps, think of it this way:

« Subtract 3 from a
« Assign the result of that subtraction to a temporary variable

o Assign the value of the temporary variable to a:

>>> a = 95
>>> temp = a - 3
>>> a = temp

So, when you say:
>>>a=a - 3

Python is calculating the subtraction on the righthand side, remembering the result,
and then assigning it to a on the left side of the = sign. It’s faster and neater than using
a temporary variable.

You can combine the arithmetic operators with assignment by putting the operator
before the =. Here, a -= 3islike sayinga = a - 3:

>>> 3 = 95
>>> a3 -= 3
>>> a

92

Thisislikea = a + 8:

>>> 3 += 8
>>> a
100

And thisislikea = a * 2:

>>> 3 *= 2
>>> a
200

Here’s a floating-point division example, suchasa = a / 3:
>>> 3 [=3

>>> 3
66.66666666666667

24 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

Let’s assign 13 to a, and then try the shorthand for a = a // 4 (truncating integer
division):

>>> a3 = 13

>>> 3 [/=4

>>> 3
3

The % character has multiple uses in Python. When it’s between two numbers, it pro-
duces the remainder when the first number is divided by the second:

>>> 9 % 5
4

Here’s how to get both the (truncated) quotient and remainder at once:
>>> divmod(9,5)
(1 k] 4)

Otherwise, you could have calculated them separately:

>>> 9 [/ 5
1
>>> 9 % 5
4

You just saw some new things here: a function named divmod is given the integers 9
and 5 and returns a two-item result called a tuple. Tuples will take a bow in Chapter 3;
functions will make their debut in Chapter 4.

Precedence
What would you get if you typed the following?
>>> 2 + 3 * 4

If you do the addition first, 2 + 3is 5,and 5 * 4 is 20. But if you do the multiplica-
tion first, 3 * 4is 12, and 2 + 12 is 14. In Python, as in most languages, multiplica-
tion has higher precedence than addition, so the second version is what youd see:

>>> 2 + 3 * 4

14
How do you know the precedence rules? There’s a big table in Appendix F that lists
them all, but I've found that in practice I never look up these rules. It’s much easier to
just add parentheses to group your code as you intend the calculation to be carried
out:

>>> 2 + (3 * 4)

14
This way, anyone reading the code doesn’t need to guess its intent or look up prece-
dence rules.

Numbers | 25

Bases

Integers are assumed to be decimal (base 10) unless you use a prefix to specify
another base. You might never need to use these other bases, but you’ll probably see
them in Python code somewhere, sometime.

We generally have 10 fingers or toes (one of my cats has a few more, but rarely uses
them for counting). So, we count 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Next, we run out of digits
and carry the one to the “ten’s place” and put a 0 in the one’s place: 10 means “1 ten
and 0 ones” We don’t have a single digit that represents “ten” Then, it's 11, 12, up to
19, carry the one to make 20 (2 tens and 0 ones), and so on.

A base is how many digits you can use until you need to “carry the one” In base 2
(binary), the only digits are 0 and 1. 0 is the same as a plain old decimal 0, and 1 is
the same as a decimal 1. However, in base 2, if you add a 1 to a 1, you get 10 (1 deci-
mal two plus 0 decimal ones).

In Python, you can express literal integers in three bases besides decimal:

o 0b or 0B for binary (base 2).

« 0o or 00 for octal (base 8).

o 0x or 0X for hex (base 16).
The interpreter prints these for you as decimal integers. Let’s try each of these bases.
First, a plain old decimal 10, which means 1 ten and 0 ones:

>>> 10
10

Now, a binary (base two), which means I (decimal) two and 0 ones:

>>> 0b10
2

Octal (base 8) for 1 (decimal) eight and 0 ones:

>>> 0010
8

Hexadecimal (base 16) for I (decimal) 16 and 0 ones:

>>> 0x10

16
In case youre wondering what “digits” base 16 uses, they are: 0, 1, 2, 3,4, 5,6, 7, 8,9,
a, b, ¢, d, e, and f. 0xa is a decimal 10, and 0xf is a decimal 15. Add 1 to 0xf and you
get 0x10 (decimal 16).

26 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

Why use a different base from 10? It's useful in bit-level operations, which are
described in Chapter 7, along with more details about converting numbers from one
base to another.

Type Conversions

To change other Python data types to an integer, use the int() function. This will
keep the whole number and discard any fractional part.

Python’s simplest data type is the boolean, which has only the values True and False.
When converted to integers, they represent the values 1 and o:

>>> int(True)

1

>>> int(False)

0
Converting a floating-point number to an integer just lops off everything after the
decimal point:

>>> 1nt(98.6)

98

>>> int(1.0e4)

10000
Finally, here’s an example of converting a text string (you’ll see more about strings in
a few pages) that contains only digits, possibly with + or - signs:

>>> int('99")

99
>>> int('-23")
-23
>>> int('+12')
12

Converting an integer to an integer doesn’t change anything but doesn’t hurt either:

>>> 1nt(12345)
12345

If you try to convert something that doesn’t look like a number, you’'ll get an excep-
tion:
>>> 1nt('99 bottles of beer on the wall')
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '99 bottles of beer on the wall'
>>> int('")

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: "'

Numbers | 27

The preceding text string started with valid digit characters (99), but it kept on going
with others that the int() function just wouldn't stand for.

We'll get to exceptions in Chapter 4. For now, just know that its
how Python alerts you that an error occurred (rather than crashing
the program, as some languages might do). Instead of assuming
that things always go right, I'll show many examples of exceptions
throughout this book, so you can see what Python does when they
go wrong.

int() will make integers from floats or strings of digits, but won’t handle strings con-
taining decimal points or exponents:

>>> 1nt('98.6")

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '98.6'
>>> int('1.0e4")

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '1.0e4'
If you mix numeric types, Python will sometimes try to automatically convert them
for you:

>>> 4 + 7.0

11.0
The boolean value False is treated as @ or 0.0 when mixed with integers or floats,
and True is treated as 1 or 1.0:

>>> True + 2

3

>>> False + 5.0
5.0

How Big Is an int?

In Python 2, the size of an int was limited to 32 bits. This was enough room to store
any integer from -2,147,483,648 to 2,147,483,647.

A long had even more room: 64 bits, allowing values from
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. In Python 3, long is long
gone, and an int can be any size—even greater than 64 bits. Thus, you can say things
like the following (10**100 is called a googol, and was the original name of Google
before they decided on the easier spelling):

28 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

>>>

>>> googol = 10**100

>>> googol
1000
00000000000000000000000

>>> googol * googol
1000
00
000

In many languages, trying this would cause something called integer overflow, where
the number would need more space than the computer allowed for it, causing various

bad effects. Python handles humungous integers with no problem. Score one for
Python.

Floats

Integers are whole numbers, but floating-point numbers (called floats in Python) have
decimal points. Floats are handled similarly to integers: you can use the operators (+,
- *,/,//,** and %) and divmod() function.

To convert other types to floats, you use the float() function. As before, booleans act
like tiny integers:

>>> float(True)

1.0

>>> float(False)
0.0

Converting an integer to a float just makes it the proud possessor of a decimal point:

>>> float(98)

98.0

>>> float('99")

99.0
And, you can convert a string containing characters that would be a valid float (digits,
signs, decimal point, or an e followed by an exponent) to a real float:

>>> float('98.6")

98.6

>>> float('-1.5")
-1.5

>>> float('1.0e4')
10000.0

Math Functions

Python has the usual math functions such as square roots, cosines, and so on. We'll
save them for Appendix C, in which we also discuss Python uses in science.

Numbers | 29

Strings

Nonprogrammers often think that programmers must be good at math because they
work with numbers. Actually, most programmers work with strings of text much
more than numbers. Logical (and creative!) thinking is often more important than
math skills.

Because of its support for the Unicode standard, Python 3 can contain characters
from any written language in the world, plus a lot of symbols. Its handling of that
standard was a big reason for its split from Python 2. It’s also a good reason to use
version 3. I'll get into Unicode in various places, because it can be daunting at times.
In the string examples that follow, I'll mostly use ASCII examples.

Strings are our first example of a Python sequence. In this case, theyre a sequence of
characters.

Unlike other languages, strings in Python are immutable. You can’t change a string in-
place, but you can copy parts of strings to another string to get the same effect. You'll
see how to do this shortly.

Create with Quotes

You make a Python string by enclosing characters in either single quotes or double
quotes, as demonstrated in the following:

>>> 'Spnap’
'Snap'

>>> "Crackle"
'Crackle’

The interactive interpreter echoes strings with a single quote, but all are treated
exactly the same by Python.

Why have two kinds of quote characters? The main purpose is so that you can create
strings containing quote characters. You can have single quotes inside double-quoted
strings, or double quotes inside single-quoted strings:

>>> "'Nay,' saild the naysayer."

"'Nay,' said the naysayer."

>>> 'The rare double quote in captivity:
'The rare double quote in captivity: ".'
>>> 'A "two by four" is actually 1 1/2" x 3 1/2".'

'A "two by four is" actually 1 1/2" x 3 1/2".'

>>> "'There's the man that shot my paw!' cried the 1limping hound."
"'There's the man that shot my paw!' cried the limping hound."

You can also use three single quotes (' ' ') or three double quotes ("""):

>>> '''Boom! """’
'Boom'

30 | Chapter2:PyIngredients: Numbers, Strings, and Variables

>33 " UEQkl M
'Eek!"’

Triple quotes aren’t very useful for short strings like these. Their most common use is

to create multiline strings, like this classic poem from Edward Lear:

>>> poem = '''There was a Young Lady of Norway,
. Who casually sat in a doorway;
. When the door squeezed her flat,
. She exclaimed, "What of that?"
. This courageous Young Lady of Norway.'''
>>>

(This was entered in the interactive interpreter, which prompted us with >>> for the
first line and . . . until we entered the final triple quotes and went to the next line.)

If you tried to create that poem with single quotes, Python would make a fuss when
you went to the second line:

>>> poem = 'There was a young lady of Norway,
File "<stdin>", line 1
poem = 'There was a young lady of Norway,

A

SyntaxError: EOL while scanning string literal
>>>

If you have multiple lines within triple quotes, the line ending characters will be pre-
served in the string. If you have leading or trailing spaces, they’ll also be kept:

>>> poem2 = '''I do not like thee, Doctor Fell.
The reason why, I cannot tell.
But this I know, and know full well:
I do not like thee, Doctor Fell.
>>> print(poem2)
I do not like thee, Doctor Fell.
The reason why, I cannot tell.
But this I know, and know full well:
I do not like thee, Doctor Fell.

>>>

By the way, there’s a difference between the output of print() and the automatic
echoing done by the interactive interpreter:

>>> poem2
'I do not like thee, Doctor Fell.\n The reason why, I cannot tell.\n But
this I know, and know full well:\n I do not like thee, Doctor Fell.\n'

print() strips quotes from strings and prints their contents. It's meant for human
output. It helpfully adds a space between each of the things it prints, and a newline at
the end:

Strings | 31

>>> print(99, 'bottles', 'would be enough.')
99 bottles would be enough.

If you don’t want the space or newline, you'll see how to avoid them shortly.

The interpreter prints the string with single quotes and escape characters such as \n,
which are explained in “Escape with \” on page 32.

Finally, there is the empty string, which has no characters at all but is perfectly valid.
You can create an empty string with any of the aforementioned quotes:

>>> !
L)
>>> "
L)
S>>
L)
S>> e
L)

>>>

Why would you need an empty string? Sometimes you might want to build a string
from other strings, and you need to start with a blank slate.

>>> base = '

>>> base += 'current inventory:
>>> base += str(bottles)

>>> base

'current inventory: 99'

>>> bottles = 99

Convert Data Types by Using str()

You can convert other Python data types to strings by using the str() function:

>>> str(98.6)

'98.6'

>>> str(1.0e4)
'10000.0'

>>> str(True)

'True'

Python uses the str() function internally when you call print() with objects that are
not strings and when doing string interpolation, which you’ll see in Chapter 7.

Escape with\

Python lets you escape the meaning of some characters within strings to achieve
effects that would otherwise be hard to express. By preceding a character with a back-
slash (\), you give it a special meaning. The most common escape sequence is \n,

32 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

which means to begin a new line. With this you can create multiline strings from a
one-line string.

>>> palindrome = 'A man,\nA plan,\nA canal:\nPanama.'
>>> print(palindrome)

A man,

A plan,

A canal:

Panama.

You will see the escape sequence \t (tab) used to align text:

>>> print('\tabc')
abc

>>> print('a\tbc')

a bc

>>> print('ab\tc')

ab C

>>> print('abc\t')

abc

(The final string has a terminating tab which, of course, you can't see.)

You might also need \' or \" to specify a literal single or double quote inside a string
that’s quoted by the same character:

>>> testimony = "\"I did nothing!\" he said. \"Not that either! Or the other
thing.\""

>>> print(testimony)

"I did nothing!" he said. "Not that either! Or the other thing."

>>> fact = "The world's largest rubber duck was 54'2\" by 65'7\" by 105"'"

>>> print(fact)

The world's largest rubber duck was 54'2" by 65'7" by 105'

And if you need a literal backslash, just type two of them:

>>> speech = 'Today we honor our friend, the backslash: \\.'
>>> print(speech)
Today we honor our friend, the backslash: \.

Combine with +

You can combine literal strings or string variables in Python by using the + operator,
as demonstrated here:

>>> 'Release the kraken! ' + 'No, wait!'
'Release the kraken! No, wait!'

You can also combine literal strings (not string variables) just by having one after the
other:

>>> "My word! " "A gentleman caller!"
'My word! A gentleman caller!'

Strings | 33

Python does not add spaces for you when concatenating strings, so in the preceding
example, we needed to include spaces explicitly. It does add a space between each
argument to a print() statement, and a newline at the end:

>>> a = 'Duck.’
>>> b = a
>>> ¢ = 'Grey Duck!'

>>> a + b+ ¢
'Duck.Duck.Grey Duck!'
>>> print(a, b, c)
Duck. Duck. Grey Duck!

Duplicate with *

You use the * operator to duplicate a string. Try typing these lines into your interac-
tive interpreter and see what they print:

>>> start = 'Na ' * 4 + '"\n'
>>> middle = 'Hey ' * 3 + '\n'
>>> end = 'Goodbye.'

>>> print(start + start + middle + end)

Extract a Character with []

To get a single character from a string, specify its offset inside square brackets after
the string’s name. The first (leftmost) offset is 0, the next is 1, and so on. The last
(rightmost) offset can be specified with -1 so you don’t have to count; going to the left
are -2, -3, and so on.

>>> letters = 'abcdefghijklmnopgrstuvwxyz'
>>> letters[0]

Ial

>>> letters[1]

Ibl

>>> letters[-1]

z
>>> letters[-2]

y
>>> letters[25]

z
>>> letters[5]
Ifl

If you specity an offset that is the length of the string or longer (remember, offsets go
from 0 to length-1), you’ll get an exception:

>>> letters[100]

File "<stdin>", line 1, in <module>
IndexError: string index out of range

34 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

Indexing works the same with the other sequence types (lists and tuples), which we
cover in Chapter 3.

Because strings are immutable, you can't insert a character directly into one or change
the character at a specific index. Let’s try to change 'Henny' to 'Penny' and see what
happens:

>>> pame = 'Henny'
>>> name[0] = 'P'

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

Instead you need to use some combination of string functions such as replace() or a
slice (which you’ll see in a moment):

>>> name = 'Henny'

>>> name.replace('H', 'P')
'Penny’

>>> 'P' + pame[1:]

'Penny’

Slice with [start: end. step]

You can extract a substring (a part of a string) from a string by using a slice. You
define a slice by using square brackets, a start offset, an end offset, and an optional
step size. Some of these can be omitted. The slice will include characters from offset
start to one before end.

[:] extracts the entire sequence from start to end.

o [start :] specifies from the start offset to the end.

o [: end] specifies from the beginning to the end offset minus 1.

o [start : end] indicates from the start offset to the end offset minus 1.

e [start : end : step] extracts from the start offset to the end offset minus 1,

skipping characters by step.

As before, offsets go 0, 1, and so on from the start to the right, and -1,-2, and so forth
from the end to the left. If you don’t specify start, the slice uses 0 (the beginning). If
you don’t specify end, it uses the end of the string.

Let’s make a string of the lowercase English letters:
>>> letters = 'abcdefghijklmnopgrstuvwxyz'
Using a plain : is the same as 0: (the entire string):

>>> letters[:]
'abcdefghijklmnopgrstuvwxyz'

Strings | 35

Here’s an example from offset 20 to the end:

>>> letters[20:]
"uvwxyz'

Now, from offset 10 to the end:

>>> letters[10:]
'klmnopgrstuvwxyz'

And another, offset 12 to 14 (Python does not include the last offset):

>>> letters[12:15]
'mno’

The three last characters:

>>> letters[-3:]

Xyz

In this next example, we go from offset 18 to the fourth before the end; notice the
difference from the previous example, in which starting at -3 gets the x, but ending at
-3 actually stops at -4, the w:

>>> letters[18:-3]
'stuvw'

In the following, we extract from 6 before the end to 3 before the end:

>>> letters[-6:-2]
"uvwx '

If you want a step size other than 1, specify it after a second colon, as shown in the
next series of examples.

From the start to the end, in steps of 7 characters:

>>> letters[::7]
'ahov'

From offset 4 to 19, by 3:

>>> letters[4:20:3]
'ehkngt'

From offset 19 to the end, by 4:

>>> letters[19::4]
Cex!

From the start to offset 20 by 5:

>>> letters[:21:5]
'afkpu’

(Again, the end needs to be one more than the actual offset.)

36 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

And that’s not all! Given a negative step size, this handy Python slicer can also step
backward. This starts at the end and ends at the start, skipping nothing:

>>> letters[-1::-1]
'zyxwvutsrgponmlkjihgfedcba'

It turns out that you can get the same result by using this:

>>> letters[::-1]
'zyxwvutsrgponmlkjihgfedcba'

Slices are more forgiving of bad offsets than are single-index lookups. A slice offset
earlier than the beginning of a string is treated as 0, and one after the end is treated as
-1, as is demonstrated in this next series of examples.

From 50 before the end to the end:

>>> letters[-50:]
'abcdefghijklmnopqrstuvwxyz'

From 51 before the end to 50 before the end:

>>> letters[-51:-50]

From the start to 69 after the start:

>>> letters[:70]
'abcdefghijklmnopqrstuvwxyz'

From 70 after the start to 70 after the start:

>>> letters[70:71]

Get Length with len()

So far, we've used special punctuation characters such as + to manipulate strings. But
there are only so many of these. Now, we start to use some of Python’s built-in func-
tions: named pieces of code that perform certain operations.

The len() function counts characters in a string:

>>> len(letters)
26

>>> empty =
>>> len(empty)
0

You can use len() with other sequence types, too, as is described in Chapter 3.

Strings | 37

Split with split()

Unlike len(), some functions are specific to strings. To use a string function, type the
name of the string, a dot, the name of the function, and any arguments that the func-
tion needs: string . function (arguments). You'll see a longer discussion of func-
tions in “Functions” on page 89.

You can use the built-in string split() function to break a string into a list of smaller
strings based on some separator. You'll see lists in the next chapter. A list is a
sequence of values, separated by commas and surrounded by square brackets.

>>> todos = 'get gloves,get mask,give cat vitamins,call ambulance'

>>> todos.split(',"')

['get gloves', 'get mask', 'give cat vitamins', 'call ambulance']
In the preceding example, the string was called todos and the string function was
called split(), with the single separator argument ', '. If you don't specify a separa-
tor, split() uses any sequence of white space characters—newlines, spaces, and tabs.

>>> todos.split()

['get', 'gloves,get', 'mask,give', 'cat', 'vitamins,call', 'ambulance']
You still need the parentheses when calling split with no arguments—that’s how
Python knows you're calling a function.

Combine with join()

In what may not be an earthshaking revelation, the join() function is the opposite of
split(): it collapses a list of strings into a single string. It looks a bit backward
because you specify the string that glues everything together first, and then the list of
strings to glue: string .join(list). So, to join the list 1ines with separating new-
lines, you would say '\n'.join(lines). In the following example, let’s join some
names in a list with a comma and a space:

>>> crypto_list = ['Yetl', 'Bigfoot', 'Loch Ness Monster']

>>> crypto_string = ', '.join(crypto_list)

>>> print('Found and signing book deals:', crypto_string)
Found and signing book deals: Yeti, Bigfoot, Loch Ness Monster

Playing with Strings

Python has a large set of string functions. Let’s explore how the most common of
them work. Our test subject is the following string containing the text of the immor-
tal poem “What Is Liquid?” by Margaret Cavendish, Duchess of Newcastle:

>>> poem = '''All that doth flow we cannot liquid name
Or else would fire and water be the same;

But that is liquid which is moist and wet

Fire that property can never get.

38 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

Then 'tis not cold that doth the fire put out
But 'tis the wet that makes it die, no doubt.'''

To begin, get the first 13 characters (offsets 0 to 12):

>>> poem[:13]
'All that doth'

How many characters are in this poem? (Spaces and newlines are included in the
count.)

>>> len(poem)
250

Does it start with the letters A11?

>>> poem.startswith('All")
True

Does it end with That's all, folks!?

>>> poem.endswith('That\'s all, folks!")
False

Now, let’s find the offset of the first occurrence of the word the in the poem:

>>> word = 'the'
>>> poen.find(word)
73

And the offset of the last the:

>>> poenm.rfind(word)
214

How many times does the three-letter sequence the occur?

>>> poem.count(word)
3

Are all of the characters in the poem either letters or numbers?

>>> poem.isalnum()
False

Nope, there were some punctuation characters.

Case and Alignment

In this section, we'll look at some more uses of the built-in string functions. Our test
string is the following:

>>> setup = 'a duck goes into a bar...'

Remove . sequences from both ends:

Strings | 39

>>> setup.strip('."')
'a duck goes into a bar'

Because strings are immutable, none of these examples actually
changes the setup string. Each example just takes the value of
setup, does something to it, and returns the result as a new string.

Capitalize the first word:

>>> setup.capitalize()
'A duck goes into a bar...'

Capitalize all the words:

>>> setup.title()
'A Duck Goes Into A Bar...'

Convert all characters to uppercase:

>>> setup.upper()
'A DUCK GOES INTO A BAR...'

Convert all characters to lowercase:

>>> setup.lower()
'a duck goes into a bar...'

Swap upper- and lowercase:

>>> setup.swapcase()
'A DUCK GOES INTO A BAR...'

Now, we'll work with some layout alignment functions. The string is aligned within
the specified total number of spaces (30 here).

Center the string within 30 spaces:

>>> setup.center(30)
' a duck goes into a bar...

Left justify:

>>> setup.ljust(30)
'a duck goes into a bar...

Right justify:

>>> setup.rjust(30)
! a duck goes into a bar...'

I have much more to say about string formatting and conversions in Chapter 7,
including how to use % and format().

40 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

Substitute with replace()

You use replace() for simple substring substitution. You give it the old substring, the
new one, and how many instances of the old substring to replace. If you omit this
final count argument, it replaces all instances. In this example, only one string is
matched and replaced:

>>> setup.replace('duck', 'marmoset')
'a marmoset goes into a bar...'

Change up to 100 of them:

>>> setup.replace('a ', 'a famous ', 100)

'a famous duck goes into a famous bar...'
When you know the exact substring(s) you want to change, replace() is a good
choice. But watch out. In the second example, if we had substituted for the single
character string 'a' rather than the two character string 'a ' (a followed by a space),
we would have also changed a in the middle of other words:

>>> setup.replace('a', 'a famous', 100)

'a famous duck goes into a famous ba famousr...'
Sometimes, you want to ensure that the substring is a whole word, or the beginning
of a word, and so on. In those cases, you need regular expressions, which are described
in detail in Chapter 7.

More String Things

Python has many more string functions than I've shown here. Some will turn up in
later chapters, but you can find all the details at the standard documentation link.

Things to Do

This chapter introduced the atoms of Python: numbers, strings, and variables. Let’s
try a few small exercises with them in the interactive interpreter.

2.1 How many seconds are in an hour? Use the interactive interpreter as a calculator
and multiply the number of seconds in a minute (60) by the number of minutes in an
hour (also 60).

2.2 Assign the result from the previous task (seconds in an hour) to a variable called
seconds_per_hour.

2.3 How many seconds are in a day? Use your seconds_per_hour variable.

2.4 Calculate seconds per day again, but this time save the result in a variable called
seconds_per_day.

ThingstoDo | 41

http://bit.ly/py-docs-strings

2.5 Divide seconds_per_day by seconds_per_hour. Use floating-point (/) division.

2.6 Divide seconds_per_day by seconds_per_hour, using integer (//) division. Did
this number agree with the floating-point value from the previous question, aside
from the final .0?

42 | Chapter2: Py Ingredients: Numbers, Strings, and Variables

CHAPTER 3

Py Filling: Lists, Tuples,
Dictionaries, and Sets

In Chapter 2 we started at the bottom with Python’s basic data types: booleans, inte-
gers, floats, and strings. If you think of those as atoms, the data structures in this
chapter are like molecules. That is, we combine those basic types in more complex
ways. You will use these every day. Much of programming consists of chopping and
glueing data into specific forms, and these are your hacksaws and glue guns.

Lists and Tuples

Most computer languages can represent a sequence of items indexed by their integer
position: first, second, and so on down to the last. You've already seen Python strings,
which are sequences of characters. You've also had a little preview of lists, which
you’ll now see are sequences of anything.

Python has two other sequence structures: tuples and lists. These contain zero or
more elements. Unlike strings, the elements can be of different types. In fact, each ele-
ment can be any Python object. This lets you create structures as deep and complex as
you like.

Why does Python contain both lists and tuples? Tuples are immutable; when you
assign elements to a tuple, theyre baked in the cake and can't be changed. Lists are
mutable, meaning you can insert and delete elements with great enthusiasm. I'll show
many examples of each, with an emphasis on lists.

83

By the way, you might hear two different pronunciations for tuple.
Which is right? If you guess wrong, do you risk being considered a
Python poseur? No worries. Guido van Rossum, the creator of
Python, tweeted “I pronounce tuple too-pull on Mon/Wed/Fri and
tub-pull on Tue/Thu/Sat. On Sunday I don’t talk about them. :)”

Lists

Lists are good for keeping track of things by their order, especially when the order
and contents might change. Unlike strings, lists are mutable. You can change a list in-
place, add new elements, and delete or overwrite existing elements. The same value
can occur more than once in a list.

Create with [] or list()

A list is made from zero or more elements, separated by commas, and surrounded by
square brackets:

>>> empty_list = []

>>> weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
>>> big_birds = ['emu', 'ostrich', 'cassowary']

>>> first_names = ['Graham', 'John', 'Terry', 'Terry', 'Michael']

You can also make an empty list with the l1ist() function:

>>> another_empty_list = list()
>>> another_empty_list

(]

“Comprehensions” on page 84 shows one more way to create a list,
called a list comprehension.

The weekdays list is the only one that actually takes advantage of list order. The
first_names list shows that values do not need to be unique.

If you only want to keep track of unique values and don’t care
about order, a Python set might be a better choice than a list. In the
previous example, big_birds could have been a set. You'll read
about sets a little later in this chapter.

44 | Chapter3:PyfFilling: Lists, Tuples, Dictionaries, and Sets

http://bit.ly/tupletweet

Convert Other Data Types to Lists with list()

Python’s 1ist() function converts other data types to lists. The following example
converts a string to a list of one-character strings:

>>> list('cat')
['C‘, |al’ lt|]

This example converts a tuple (coming up after lists in this chapter) to a list:

>>> a_tuple = ('ready', 'fire', 'aim')
>>> list(a_tuple)
['ready', 'fire', 'aim']

As I mentioned earlier in “Split with split()” on page 38, use split() to chop a string
into a list by some separator string:

>>> birthday = '1/6/1952'
>>> birthday.split('/"')
[I1|’ |6I’ |1952|]

What if you have more than one separator string in a row in your original string?
Well, you get an empty string as a list item:

>>> splitme = 'a/b//c/d///e'
>>> splitme.split('/")
[Ia‘; 'blg I': Icl’ ‘d': I': ”: 'el]

If you had used the two-character separator string // instead, you would get this:

>>> splitme = 'a/b//c/d///e'
>>> splitme.split('//")

>>>

['a/b', 'c/d', '[e']

Get an Item by Using [offset]
As with strings, you can extract a single value from a list by specifying its offset:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[0]

'Groucho'

>>> marxes[1]

'Chico’

>>> marxes[2]

'Harpo'

Lists | 45

Again, as with strings, negative indexes count backward from the end:

>>> marxes[-1]

'Harpo'
>>> marxes[-2]
'Chico’
>>> marxes[-3]
'Groucho'
>>>
The offset has to be a valid one for this list—a position you have
assigned a value previously. If you specify an offset before the
beginning or after the end, you'll get an exception (error). Here’s
what happens if we try to get the sixth Marx brother (offset 5
counting from @), or the fifth before the end:
>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[5]
File "<stdin>", line 1, in <module>
IndexError: list index out of range
>>> marxes[-5]
File "<stdin>", line 1, in <module>
IndexError: list index out of range
Lists of Lists

Lists can contain elements of different types, including other lists, as illustrated here:

>>> small_birds = ['hummingbird', 'finch']

>>> extinct_birds = ['dodo', 'passenger pigeon', 'Norwegian Blue']
>>> carol_birds = [3, 'French hens', 2, 'turtledoves']

>>> all_birds = [small_birds, extinct_birds, 'macaw', carol_birds]

So what does all_birds, a list of lists, look like?

>>> all_birds
[["hummingbird', 'finch'], ['dodo', 'passenger pigeon', 'Norwegian Blue'], 'macaw',
[3, 'French hens', 2, 'turtledoves']]

Let’s look at the first item in it:

>>> all_birds[0]
["hummingbird', 'finch']

The first item is a list: in fact, it’s small_birds, the first item we specified when creat-

ing all_birds. You should be able to guess what the second item is:

>>> all_birds[1]
['dodo', 'passenger pigeon', 'Norwegian Blue']

46 | Chapter3:PyfFilling: Lists, Tuples, Dictionaries, and Sets

Its the second item we specified, extinct_birds. If we want the first item of
extinct_birds, we can extract it from all_birds by specifying two indexes:

>>> all_birds[1][0]
'dodo’

The [1] refers to the list that’s the second item in all_birds, whereas the [0] refers
to the first item in that inner list.

Change an Item by [offset]
Just as you can get the value of a list item by its offset, you can change it:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[2] = 'Wanda'

>>> marxes

['Groucho', 'Chico', 'Wanda']

Again, the list offset needs to be a valid one for this list.

You can’t change a character in a string in this way, because strings are immutable.
Lists are mutable. You can change how many items a list contains, and the items
themselves.

Get a Slice to Extract Items by Offset Range
You can extract a subsequence of a list by using a slice:

>>> marxes = ['Groucho', 'Chico,' 'Harpo']
>>> marxes[0:2]
['Groucho', 'Chico']

A slice of a list is also a list.

As with strings, slices can step by values other than one. The next example starts at
the beginning and goes right by 2:

>>> marxes[::2]
['Groucho', 'Harpo']

Here, we start at the end and go left by 2:

>>> marxes[::-2]
['Harpo', 'Groucho']

And finally, the trick to reverse a list:

>>> marxes[::-1]
['Harpo', 'Chico', 'Groucho']

Lists | 47

Add an Item to the End with append()

The traditional way of adding items to a list is to append() them one by one to the
end. In the previous examples, we forgot Zeppo, but that’s all right because the list is
mutable, so we can add him now:

>>> marxes.append('Zeppo')
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo']

Combine Lists by Using extend() or +=

You can merge one list into another by using extend(). Suppose that a well-meaning
person gave us a new list of Marxes called others, and wed like to merge them into
the main marxes list:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']

>>> others = ['Gummo', 'Karl']

>>> marxes.extend(others)

>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', 'Gummo', 'Karl']
Alternatively, you can use +=:
>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> others = ['Gummo', 'Karl']
>>> marxes += others
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', 'Gummo', 'Karl']
If we had used append(), others would have been added as a single list item rather
than merging its items:
>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> others = ['Gummo', 'Karl']
>>> marxes.append(others)
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', ['Gummo', 'Karl']]
This again demonstrates that a list can contain elements of different types. In this
case, four strings, and a list of two strings.

Add an Item by Offset with insert()

The append() function adds items only to the end of the list. When you want to add
an item before any offset in the list, use insert(). Offset 0 inserts at the beginning.
An offset beyond the end of the list inserts at the end, like append(), so you don’t
need to worry about Python throwing an exception.

>>> marxes.insert(3, 'Gummo')
>>> marxes

48 | Chapter3:PyfFilling: Lists, Tuples, Dictionaries, and Sets

['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo']

>>> marxes.insert(10, 'Karl')

>>> marxes

['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo', 'Karl']

Delete an Item by Offset with del

Our fact checkers have just informed us that Gummo was indeed one of the Marx
Brothers, but Karl wasn’t. Let’s undo that last insertion:

>>> del marxes[-1]
>>> Mmarxes
['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo']
When you delete an item by its position in the list, the items that follow it move back

to take the deleted item’s space, and the list’s length decreases by one. If we delete
'Harpo' from the last version of the marxes list, we get this as a result:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo']
>>> marxes[2]

'Harpo'

>>> del marxes[2]

>>> marxes

['Groucho', 'Chico', 'Gummo', 'Zeppo']

>>> marxes[2]

'Gummo '

del is a Python statement, not a list method—you don't say
marxes[-2].del(). Its sort of the reverse of assignment (=): it
detaches a name from a Python object and can free up the objects
memory if that name was the last reference to it.

Delete an Item by Value with remove()

If youre not sure or don't care where the item is in the list, use remove() to delete it
by value. Goodbye, Gummo:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo']

>>> marxes.remove('Gummo')

>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo']

Get an Item by Offset and Delete It by Using pop()

You can get an item from a list and delete it from the list at the same time by using
pop(). If you call pop() with an offset, it will return the item at that offset; with no
argument, it uses -1. So, pop(@) returns the head (start) of the list, and pop() or
pop(-1) returns the tail (end), as shown here:

Lists | 49

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> marxes.pop()

'Zeppo'

>>> marxes

['Groucho', 'Chico', 'Harpo']

>>> marxes.pop(1)

'Chico’

>>> marxes

['Groucho', 'Harpo']

It's computing jargon time! Don’t worry, these won't be on the final
exam. If you use append() to add new items to the end and pop()
to remove them from the same end, you've implemented a data
structure known as a LIFO (last in, first out) queue. This is more
commonly known as a stack. pop(@) would create a FIFO (first in,
first out) queue. These are useful when you want to collect data as
they arrive and work with either the oldest first (FIFO) or the new-
est first (LIFO).

Find an Item’s Offset by Value with index()

If you want to know the offset of an item in a list by its value, use index():

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> marxes.index('Chico')
1

Test for a Value with in

The Pythonic way to check for the existence of a value in a list is using in:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> 'Groucho' in marxes

True

>>> 'Bob' in marxes

False

The same value may be in more than one position in the list. As long as it’s in there at
least once, in will return True:

>>> words = ['a', 'deer', 'a' 'female', 'deer']
>>> 'deer' in words

True

If you check for the existence of some value in a list often and don’t
care about the order of items, a Python set is a more appropriate
way to store and look up unique values. We'll talk about sets a little
later in this chapter.

50 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

Count Occurrences of a Value by Using count()
To count how many times a particular value occurs in a list, use count():

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes.count('Harpo')

1

>>> marxes.count('Bob')

0

>>> snl_skit = ['cheeseburger', 'cheeseburger', 'cheeseburger']
>>> snl_skit.count('cheeseburger')
3

Convert to a String with join()

“Combine with join()” on page 38 discusses join() in greater detail, but here’s
another example of what you can do with it:

>>> marxes = ['Groucho', 'Chico', 'Harpo']

>>> ', '.join(marxes)

'Groucho, Chico, Harpo'
But wait: you might be thinking that this seems a little backward. join() is a string
method, not a list method. You can’t say marxes.join(', '), even though it seems
more intuitive. The argument to join() is a string or any iterable sequence of strings
(including a list), and its output is a string. If join() were just a list method, you
couldn’t use it with other iterable objects such as tuples or strings. If you did want it
to work with any iterable type, youd need special code for each type to handle the
actual joining. It might help to remember: join()' is the opposite of “split(),
as demonstrated here:

>>> friends = ['Harry', 'Hermione', 'Ron']

>>> separator = ' * '

>>> joined = separator.join(friends)

>>> joined

'Harry * Hermione * Ron'

>>> separated = joined.split(separator)

>>> separated

['Harry', 'Hermione', 'Ron']

>>> separated == friends

True

Reorder Items with sort()

You'll often need to sort the items in a list by their values rather than their offsets.
Python provides two functions:

o The list function sort() sorts the list itself, in place.

Lists | 51

o The general function sorted() returns a sorted copy of the list.

If the items in the list are numeric, theyre sorted by default in ascending numeric
order. If they’re strings, theyre sorted in alphabetical order:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> sorted_marxes = sorted(marxes)

>>> sorted_marxes

['Chico', 'Groucho', 'Harpo']

sorted_marxes is a copy, and creating it did not change the original list:

>>> marxes
['Groucho', 'Chico', 'Harpo']

But, calling the list function sort() on the marxes list does change marxes:

>>> marxes.sort()

>>> Mmarxes

['Chico', 'Groucho', 'Harpo']
If the elements of your list are all of the same type (such as strings in marxes), sort()
will work correctly. You can sometimes even mix types—for example, integers and
floats—because they are automatically converted to one another by Python in expres-
sions:

>>> numbers = [2, 1, 4.0, 3]

>>> numbers.sort()

>>> numbers

[1, 2, 3, 4.0]
The default sort order is ascending, but you can add the argument reverse=True to
set it to descending:

>>> numbers = [2, 1, 4.0, 3]

>>> numbers.sort(reverse=True)

>>> numbers
[4.0, 3, 2, 1]

Get Length by Using len()
len() returns the number of items in a list:
>>> marxes = ['Groucho', 'Chico', 'Harpo']

>>> len(marxes)
3

Assign with =, Copy with copy()

When you assign one list to more than one variable, changing the list in one place
also changes it in the other, as illustrated here:

52 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

>>> a3 = [1, 2, 3]

>>>
[1,
>>>
>>>
[1, 2, 3]
>>> a[0]
>>> a

['surprise', 2, 3]

N O ONLU L
]

= 'surprise'

So what’s in b now? Isitstill [1, 2, 3], or ['surprise', 2, 3]? Let’s see:
>>> b

['surprise', 2, 3]

Remember the sticky note analogy in Chapter 2? b just refers to the same list object as
a; therefore, whether we change the list contents by using the name a or b, it’s reflec-
ted in both:

>>> b

['surprise', 2, 3]

>>> b[0] = 'I hate surprises'
>>> b

['I hate surprises', 2, 3]
>>> a

['I hate surprises’, 2, 3]
You can copy the values of a list to an independent, fresh list by using any of these
methods:

o The list copy() function

o The list() conversion function

o Thelist slice [:]

Our original list will be a again. We'll make b with the list copy() function, c with the
1ist() conversion function, and d with a list slice:

>>> a3 = [1, 2, 3]
>>> b = a.copy()
>>> ¢ = list(a)

>>> d = a[:]

Again, b, ¢, and d are copies of a: they are new objects with their own values and no
connection to the original list object [1, 2, 3] to which a refers. Changing a does
not affect the copies b, ¢, and d:

>>> a[0] = 'integer lists are boring'
>>> a

['integer lists are boring', 2, 3]
>>> b

[1, 2, 3]

Lists | 53

>>> C
[1, 2, 3]
>>> d
[1, 2, 3]

Tuples

Similar to lists, tuples are sequences of arbitrary items. Unlike lists, tuples are immut-
able, meaning you can’t add, delete, or change items after the tuple is defined. So, a
tuple is similar to a constant list.

Create a Tuple by Using ()

The syntax to make tuples is a little inconsistent, as we'll demonstrate in the examples
that follow.

Let’s begin by making an empty tuple using ():

>>> empty_tuple = ()
>>> empty_tuple
O

To make a tuple with one or more elements, follow each element with a comma. This
works for one-element tuples:

>>> one_marx = 'Groucho',
>>> one_marx
('Groucho',)

If you have more than one element, follow all but the last one with a comma:

>>> marx_tuple = 'Groucho', 'Chico', 'Harpo'
>>> marx_tuple
('Groucho', 'Chico', 'Harpo')

Python includes parentheses when echoing a tuple. You don’t need them—it’s the
trailing commas that really define a tuple—but using parentheses doesn’t hurt. You
can use them to enclose the values, which helps to make the tuple more visible:

>>> marx_tuple = ('Groucho', 'Chico', 'Harpo')
>>> marx_tuple
('Groucho', 'Chico', 'Harpo')

Tuples let you assign multiple variables at once:

>>> marx_tuple = ('Groucho', 'Chico', 'Harpo')
>>> a, b, ¢ = marx_tuple

>>> a

'Groucho'

>>> b

'Chico’

54 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

>>> C
'Harpo'

This is sometimes called tuple unpacking.

You can use tuples to exchange values in one statement without using a temporary
variable:

>>> password = 'swordfish'

>>> {cecream = 'tuttifrutti’

>>> password, icecream = icecream, password
>>> password

"tuttifrutti’

>>> {cecream

'swordfish'

>>>

The tuple() conversion function makes tuples from other things:

>>> marx_list = ['Groucho', 'Chico', 'Harpo']
>>> tuple(marx_list)
('Groucho', 'Chico', 'Harpo')

Tuples versus Lists

You can often use tuples in place of lists, but they have many fewer functions—there
is no append(), insert(), and so on—because they can’t be modified after creation.
Why not just use lists instead of tuples everywhere?

o Tuples use less space.
 You can’t clobber tuple items by mistake.
 You can use tuples as dictionary keys (see the next section).

o Named tuples (see “Named Tuples” on page 144) can be a simple alternative to
objects.

o Function arguments are passed as tuples (see “Functions” on page 89).

I won’t go into much more detail about tuples here. In everyday programming, you'll
use lists and dictionaries more. Which is a perfect segue to...

Dictionaries

A dictionary is similar to a list, but the order of items doesn’t matter, and they aren’t
selected by an offset such as 0 or 1. Instead, you specify a unique key to associate with
each value. This key is often a string, but it can actually be any of Python’s immutable
types: boolean, integer, float, tuple, string, and others that you'll see in later chapters.
Dictionaries are mutable, so you can add, delete, and change their key-value ele-
ments.

Dictionaries | 55

If you've worked with languages that support only arrays or lists, you'll love diction-
aries.

In other languages, dictionaries might be called associative arrays,
hashes, or hashmaps. In Python, a dictionary is also called a dict to
save syllables.

Create with {}

To create a dictionary, you place curly brackets ({}) around comma-separated key :
value pairs. The simplest dictionary is an empty one, containing no keys or values at
all:

>>> empty_dict = {}
>>> empty_dict

(3

Let’s make a small dictionary with quotes from Ambrose Bierce’s The Devils Dictio-
nary:

>>> bierce = {
"day": "A period of twenty-four hours, mostly misspent",
"positive": "Mistaken at the top of one's voice",
"misfortune": "The kind of fortune that never misses",

}

>>>

Typing the dictionary’s name in the interactive interpreter will print its keys and val-
ues:

>>> bierce

{'misfortune': 'The kind of fortune that never misses',
'positive': "Mistaken at the top of one's voice",

'day': 'A period of twenty-four hours, mostly misspent'}

In Python, it’s okay to leave a comma after the last item of a list,
tuple, or dictionary. Also, you don’'t need to indent, as I did in the
preceding example, when you're typing keys and values within the
curly braces. It just helps readability.

Convert by Using dict()

You can use the dict() function to convert two-value sequences into a dictionary.
(You might run into such key-value sequences at times, such as “Strontium, 90, Car-
bon, 147, or “Vikings, 20, Packers, 7”) The first item in each sequence is used as the
key and the second as the value.

56 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

First, here’s a small example using Lol (a list of two-item lists):

s>> lol = [[|a|’ 'b|], ['C‘, ‘d']; [|e|’ 'f‘]]
>>> dict(lol)
{IC‘: ldl’ Ial: lbl’ IeI: lfl}

Remember that the order of keys in a dictionary is arbitrary, and
might differ depending on how you add items.

We could have used any sequence containing two-item sequences. Here are other
examples.

A list of two-item tuples:
>>> lot = [('a', 'b'), ('c', 'd"), ('e', 'f')]
>>> dict(lot)
IC‘: ldl’ Ial: lbl’ IeI: lfl}
A tuple of two-item lists:
>>> tol = (['a', 'b'], ['c', 'd'], ['e', 'f'])
>>> dict(tol)
IC‘: ldl’ Ial: lbl’ IeI: lfl}
A list of two-character strings:
>>> los = ['ab', 'cd', 'ef']
>>> dict(los)
IC‘: ldl’ Ial: lbl’ Iel: lfl}
A tuple of two-character strings:
>>> tos = ('ab', 'cd’, 'ef')
>>> dict(tos)
IC‘: ldl’ Ial: lbl’ Iel: lfl}
The section “Iterate Multiple Sequences with zip()” on page 83 introduces you to a
function called zip() that makes it easy to create these two-item sequences.

Add or Change an Item by [4ey]

Adding an item to a dictionary is easy. Just refer to the item by its key and assign a
value. If the key was already present in the dictionary, the existing value is replaced by
the new one. If the key is new, it’s added to the dictionary with its value. Unlike lists,
you don’t need to worry about Python throwing an exception during assignment by
specifying an index that’s out of range.

Let’s make a dictionary of most of the members of Monty Python, using their last
names as keys, and first names as values:

Dictionaries | 57

>>> pythons = {

'Chapman': 'Graham',
'Cleese': 'John',
'Idle': 'Eric',
'Jones': 'Terry',
'"Palin': 'Michael',
ces }
>>> pythons
{'Cleese': 'John', 'Jones': 'Terry', 'Palin': 'Michael’,

'Chapman': 'Graham', 'Idle': 'Eric'}

Were missing one member: the one born in America, Terry Gilliam. Here’s an
attempt by an anonymous programmer to add him, but he’s botched the first name:

>>> pythons['Gilliam'] = 'Gerry'

>>> pythons

{'Cleese': 'John', 'Gilliam': 'Gerry', 'Palin': 'Michael',

'Chapman': 'Graham', 'Idle': 'Eric', 'Jones': 'Terry'}
And here’s some repair code by another programmer who is Pythonic in more than
one way:

>>> pythons['Gilliam'] = 'Terry'

>>> pythons

{'Cleese': 'John', 'Gilliam': 'Terry', 'Palin': 'Michael',

'Chapman': 'Graham', 'Idle': 'Eric', 'Jones': 'Terry'}
By using the same key ('Gilliam'), we replaced the original value 'Gerry' with
‘Terry'.

Remember that dictionary keys must be unique. That’s why we used last names for
keys instead of first names here—two members of Monty Python have the first name
Terry! If you use a key more than once, the last value wins:

>>> some_pythons = {

'Graham': 'Chapman',
'John': 'Cleese',
'"Eric': 'Idle',
'"Terry': 'Gilliam',
'Michael': 'Palin',
'Terry': 'Jones',

.. }
>>> some_pythons
{'Terry': 'Jones', 'Eric': 'Idle', 'Graham': 'Chapman',
'John': 'Cleese', 'Michael': 'Palin'}
We first assigned the value 'Gilliam’' to the key 'Terry' and then replaced it with
the value 'Jones'.

58 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

Combine Dictionaries with update()

You can use the update() function to copy the keys and values of one dictionary into
another.

Let’s define the pythons dictionary, with all members:

>>> pythons = {
'Chapman': 'Graham',
'"Cleese': 'John',
'Gilliam': 'Terry',
'Idle': "Eric',
'Jones': 'Terry',
'"Palin': 'Michael',

cee }

>>> pythons

{'Cleese': 'John', 'Gilliam': 'Terry', 'Palin': 'Michael',

'Chapman': 'Graham', 'Idle': 'Eric', 'Jones': 'Terry'}

We also have a dictionary of other humorous persons called others:
>>> others = { 'Marx': 'Groucho', 'Howard': 'Moe' }

Now, along comes another anonymous programmer who thinks the members of
others should be members of Monty Python:

>>> pythons.update(others)

>>> pythons

{'Cleese': 'John', 'Howard': 'Moe', 'Gilliam': 'Terry',

'"Palin': 'Michael', 'Marx': 'Groucho', 'Chapman': 'Graham',

'Idle': 'Eric', 'Jones': 'Terry'}
What happens if the second dictionary has the same key as the dictionary into which
it’s being merged? The value from the second dictionary wins:

>>> first = {'a': 1, 'b': 2}

>>> second = {'b': 'platypus'}

>>> first.update(second)

>>> first
{'b': 'platypus', 'a': 1}

Delete an Item by Key with del

Our anonymous programmer’s code was correct—technically. But, he shouldn’t have
done it! The members of others, although funny and famous, were not in Monty
Python. Let’s undo those last two additions:

>>> del pythons['Marx']
>>> pythons

{'Cleese': 'John', 'Howard': 'Moe', 'Gilliam': 'Terry',
'Palin': 'Michael', 'Chapman': 'Graham', 'Idle': 'Eric',
'Jones': 'Terry'}

>>> del pythons['Howard']

Dictionaries | 59

>>> pythons
{'Cleese': 'John', 'Gilliam': 'Terry', 'Palin': 'Michael’,
'Chapman': 'Graham', 'Idle': 'Eric', 'Jones': 'Terry'}

Delete All Items by Using clear()
To delete all keys and values from a dictionary, use clear() or just reassign an empty

dictionary ({}) to the name:

>>> pythons.clear()
>>> pythons

{}
>>> pythons = {}
>>> pythons

{}

Test for a Key by Using in

If you want to know whether a key exists in a dictionary, use in. Let’s redefine the
pythons dictionary again, this time omitting a name or two:

>>> pythons = {'Chapman': 'Graham', 'Cleese': 'John',
'Jones': 'Terry', 'Palin': 'Michael'}

Now let’s see who's in there:

>>> 'Chapman' in pythons
True

>>> 'Palin' in pythons
True

Did we remember to add Terry Gilliam this time?

>>> 'Gilliam' in pythons
False

Drat.

Getan Item by [4ey]

This is the most common use of a dictionary. You specify the dictionary and key to
get the corresponding value:

>>> pythons['Cleese']
'John'

If the key is not present in the dictionary, you'll get an exception:

>>> pythons['Marx']

File "<stdin>", line 1, in <module>
KeyError: 'Marx'

60 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

There are two good ways to avoid this. The first is to test for the key at the outset by
using in, as you saw in the previous section:

>>> 'Marx' in pythons
False

The second is to use the special dictionary get() function. You provide the dictio-
nary, key, and an optional value. If the key exists, you get its value:

>>> pythons.get('Cleese')
'John'

If not, you get the optional value, if you specified one:

>>> pythons.get('Marx', 'Not a Python')
'Not a Python'

Otherwise, you get None (which displays nothing in the interactive interpreter):

>>> pythons.get('Marx')
>>>

Get All Keys by Using keys()

You can use keys() to get all the keys in a dictionary. We'll use a different sample
dictionary for the next few examples:

>>> signals = {'green': 'go', 'yellow': 'go faster', 'red': 'smile for the camera'}

>>> signals.keys()
dict_keys(['green', 'red', 'yellow'])

In Python 2, keys() just returns a list. Python 3 returns
dict_keys(), which is an iterable view of the keys. This is handy
with large dictionaries because it doesn’t use the time and memory
to create and store a list that you might not use. But often you
actually do want a list. In Python 3, you need to call 1ist() to con-
vert a dict_keys object to a list.

>>> list(signals.keys())
['green', 'red', 'yellow']
In Python 3, you also need to use the 1ist() function to turn the

results of values() and items() into normal Python lists. I'm
using that in these examples.

Get All Values by Using values()
To obtain all the values in a dictionary, use values():

>>> list(signals.values())
['go', 'smile for the camera', 'go faster']

Dictionaries | 61

Get All Key-Value Pairs by Using items()

When you want to get all the key-value pairs from a dictionary, use the items() func-
tion:

>>> list(signals.items())
[('green', 'go'), ('red', 'smile for the camera'), ('yellow', 'go faster')]

Each key and value is returned as a tuple, such as ('green', 'go').

Assign with =, Copy with copy()

As with lists, if you make a change to a dictionary, it will be reflected in all the names
that refer to it.

>>> signals = {'green': 'go', 'yellow': 'go faster', 'red': 'smile for the camera'}
>>> save_signals = signals

>>> signals['blue'] = 'confuse everyone'

>>> save_signals

{'blue': 'confuse everyone', 'green': 'go',

'red': 'smile for the camera', 'yellow': 'go faster'}

To actually copy keys and values from a dictionary to another dictionary and avoid
this, you can use copy():

>>> signals = {'green': 'go', 'yellow': 'go faster', 'red': 'smile for the camera'}
>>> original_signals = signals.copy()

>>> signals['blue'] = 'confuse everyone'

>>> signals

{'blue': 'confuse everyone', 'green': 'go',

'red': 'smile for the camera', 'yellow': 'go faster'}

>>> original_signals

{'green': 'go', 'red': 'smile for the camera', 'yellow': 'go faster'}

Sets

A set is like a dictionary with its values thrown away, leaving only the keys. As with a
dictionary, each key must be unique. You use a set when you only want to know that
something exists, and nothing else about it. Use a dictionary if you want to attach
some information to the key as a value.

At some bygone time, in some places, set theory was taught in elementary school
along with basic mathematics. If your school skipped it (or covered it and you were
staring out the window as I often did), Figure 3-1 shows the ideas of union and inter-
section.

Suppose that you take the union of two sets that have some keys in common. Because
a set must contain only one of each item, the union of two sets will contain only one
of each key. The null or empty set is a set with zero elements. In Figure 3-1, an exam-
ple of a null set would be female names beginning with X.

62 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

female names male names

union intersection

Sue
Mary Tom
Kate

Sue
Mary Tom
Kate

Figure 3-1. Common things to do with sets

Create with set()

To create a set, you use the set() function or enclose one or more comma-separated
values in curly brackets, as shown here:

>>> empty_set = set()

>>> empty_set

set()

>>> even_numbers = {0, 2, 4, 6, 8}
>>> even_numbers

{0, 8, 2, 4, 6}

>>> odd_numbers = {1, 3, 5, 7, 9}
>>> odd_numbers

{9, 3, 1, 5, 7}

As with dictionary keys, sets are unordered.

Because [] creates an empty list, you might expect {} to create an
empty set. Instead, {} creates an empty dictionary. That’s also why
the interpreter prints an empty set as set() instead of {}. Why?
Dictionaries were in Python first and took possession of the curly
brackets.

Convert from Other Data Types with set()

You can create a set from a list, string, tuple, or dictionary, discarding any duplicate
values.

First, let’s take a look at a string with more than one occurrence of some letters:

>>> set('letters')
{I'L|’ lel’ It', lrl’ ISI}

Sets | 63

Notice that the set contains only one 'e' or 't', even though 'letters' contained
two of each.

Now, let’s make a set from a list:

>>> set(['Dasher', 'Dancer', 'Prancer', 'Mason-Dixon'])
{'Dancer', 'Dasher', 'Prancer', 'Mason-Dixon'}

This time, a set from a tuple:

>>> set(('Ummagumma', 'Echoes', 'Atom Heart Mother'))
{'Ummagumma', 'Atom Heart Mother', 'Echoes'}

When you give set() a dictionary, it uses only the keys:

>>> set({'apple': 'red', 'orange': 'orange', 'cherry': 'red'})
{'apple', 'cherry', 'orange'}

Test for Value by Using in

This is the most common use of a set. We'll make a dictionary called drinks. Each
key is the name of a mixed drink, and the corresponding value is a set of its ingredi-
ents:

>>> drinks = {
'martini': {'vodka', 'vermouth'},
'black russian': {'vodka', 'kahlua'},
'white russian': {'cream', 'kahlua', 'vodka'},
'manhattan': {'rye', 'vermouth', 'bitters'},
'screwdriver': {'orange juice', 'vodka'}

}

Even though both are enclosed by curly braces ({ and }), a set is just a sequence of
values, and a dictionary is one or more key : value pairs.

Which drinks contain vodka? (Note that I'm previewing the use of for, if, and, and
or from the next chapter for these tests.)

>>> for name, contents in drinks.items():
if 'vodka' in contents:
print(name)

screwdriver
martini

black russian
white russian

We want something with vodka but are lactose intolerant, and think vermouth tastes
like kerosene:

>>> for name, contents in drinks.items():
if 'vodka' in contents and not ('vermouth' in contents or
'cream' in contents):

64 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

print(name)

screwdriver
black russian

We'll rewrite this a bit more succinctly in the next section.

Combinations and Operators

What if you want to check for combinations of set values? Suppose that you want to
find any drink that has orange juice or vermouth? We'll use the set intersection opera-
tor, which is an ampersand (&):

>>> for name, contents in drinks.items():

if contents & {'vermouth', 'orange juice'}:
print(name)

screwdriver

martini

manhattan
The result of the & operator is a set, which contains all the items that appear in both
lists that you compare. If neither of those ingredients were in contents, the & returns
an empty set, which is considered False.

Now, let’s rewrite the example from the previous section, in which we wanted vodka
but neither cream nor vermouth:
>>> for name, contents in drinks.items():

if 'vodka' in contents and not contents & {'vermouth', 'cream'}:
print(name)

screwdriver
black russian

Let’s save the ingredient sets for these two drinks in variables, just to save typing in
the coming examples:

>>> bruss = drinks['black russian']

>>> wruss = drinks['white russian']
The following are examples of all the set operators. Some have special punctuation,
some have special functions, and some have both. We'll use test sets a (contains 1 and
2) and b (contains 2 and 3):

>>> a = {1, 2}

>>> b = {2, 3}
You get the intersection (members common to both sets) with the special punctuation
symbol & or the set intersection() function, as demonstrated here:

Sets | 65

>>> a &b
{2}
>>> a.intersection(b)

{2}
This snippet uses our saved drink variables:

>>> bruss & wruss
{'kahlua', 'vodka'}

In this example, you get the union (members of either set) by using | or the set
union() function:

>>>a | b

{1, 2, 3}

>>> a.unton(b)
{1, 2, 3}

And here’s the alcoholic version:

>>> bruss | wruss
{'cream', 'kahlua', 'vodka'}

The difference (members of the first set but not the second) is obtained by using the
character - or difference():

>>>a - b
{1}
>>> a.difference(b)

{1}

>>> bruss - wruss

set()

>>> Wruss - bruss

{'cream'}
By far, the most common set operations are union, intersection, and difference. I've
included the others for completeness in the examples that follow, but you might never
use them.

The exclusive or (items in one set or the other, but not both) uses ~ or
symmetric_difference():

>>>a b
{1, 3}
>>> a.symmetric_difference(b)

{1, 3}
This finds the exclusive ingredient in our two russian drinks:

>>> bruss ”~ wruss
{'cream'}

You can check whether one set is a subset of another (all members of the first set are
also in the second set) by using <= or issubset():

66 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

>>> a <= b

False

>>> a.issubset(b)
False

Adding cream to a black russian makes a white russian, so wruss is a superset of
bruss:

>>> bruss <= wruss
True

Is any set a subset of itself? Yup.

>>> a <= a

True

>>> a.issubset(a)
True

To be a proper subset, the second set needs to have all the members of the first and
more. Calculate it by using <, as in this example:

>>>a<b

False

>>> a < a
False

>>> bruss < wruss
True

A superset is the opposite of a subset (all members of the second set are also members
of the first). This uses >= or issuperset():

>>> a >=b

False

>>> a.issuperset(b)
False

>>> Wruss >= bruss
True

Any set is a superset of itself:

>>> a3 >= a

True

>>> a.issuperset(a)
True

And finally, you can find a proper superset (the first set has all members of the second,
and more) by using >, as shown here:

>>> a >b
False

>>> Wruss > bruss
True

Sets | 67

You can’t be a proper superset of yourself:

>>> a > a
False

Compare Data Structures

To review: you make a list by using square brackets ([]), a tuple by using commas,
and a dictionary by using curly brackets ({}). In each case, you access a single ele-
ment with square brackets:

>>> marx_list = ['Groucho', 'Chico', 'Harpo']

>>> marx_tuple = 'Groucho', 'Chico', 'Harpo'

>>> marx_dict = {'Groucho': 'banjo', 'Chico': 'piano', 'Harpo': 'harp'}
>>> marx_list[2]

'Harpo'

>>> marx_tuple[2]

'Harpo'

>>> marx_dict['Harpo']

"harp'

For the list and tuple, the value between the square brackets is an integer offset. For
the dictionary, it’s a key. For all three, the result is a value.

Make Bigger Data Structures

We worked up from simple booleans, numbers, and strings to lists, tuples, sets, and
dictionaries. You can combine these built-in data structures into bigger, more com-
plex structures of your own. Let’s start with three different lists:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> pythons = ['Chapman', 'Cleese', 'Gilliam', 'Jones', 'Palin']
>>> stooges = ['Moe', 'Curly', 'Larry']

We can make a tuple that contains each list as an element:

>>> tuple_of_lists = marxes, pythons, stooges

>>> tuple_of_lists

(['Groucho', 'Chico', 'Harpo'],

['Chapman', 'Cleese', 'Gilliam', 'Jones', 'Palin'],
['Moe', 'Curly', 'Larry'])

And, we can make a list that contains the three lists:

>>> list_of_lists = [marxes, pythons, stooges]

>>> list_of_lists

[['Groucho', 'Chico', 'Harpo'],

['Chapman', 'Cleese', 'Gilliam', 'Jones', 'Palin'],
['Moe', 'Curly', 'Larry']]

Finally, let’s create a dictionary of lists. In this example, let’s use the name of the com-
edy group as the key and the list of members as the value:

68 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

>>> dict_of_lists = {'Marxes': marxes, 'Pythons': pythons, 'Stooges': stooges}
>> dict_of_lists
{'Stooges': ['Moe', 'Curly', 'Larry'],
'Marxes': ['Groucho', 'Chico', 'Harpo'],
'Pythons': ['Chapman', 'Cleese', 'Gilliam', 'Jones', 'Palin']}
Your only limitations are those in the data types themselves. For example, dictionary
keys need to be immutable, so a list, dictionary, or set can’t be a key for another dic-
tionary. But a tuple can be. For example, you could index sites of interest by GPS
coordinates (latitude, longitude, and altitude; see “Maps” on page 366 for more map-
ping examples):
>>> houses = {
(44.79, -93.14, 285): 'My House',
(38.89, -77.03, 13): 'The White House'
}

Things to Do

In this chapter, you saw more complex data structures: lists, tuples, dictionaries, and
sets. Using these and those from Chapter 2 (numbers and strings), you can represent
elements in the real world with great variety.

3.1. Create a list called years_list, starting with the year of your birth, and each year
thereafter until the year of your fifth birthday. For example, if you were born in 1980.
the list would be years_1list = [1980, 1981, 1982, 1983, 1984, 1985].

If you're less than five years old and reading this book, I don’t know what to tell you.

3.2. In which year in years_list was your third birthday? Remember, you were 0
years of age for your first year.

3.3. In which year in years_list were you the oldest?

3.4. Make a list called things with these three strings as elements: "mozzarella",

non

"cinderella", "salmonella".

3.5. Capitalize the element in things that refers to a person and then print the list.
Did it change the element in the list?

3.6. Make the cheesy element of things all uppercase and then print the list.

3.7. Delete the disease element from things, collect your Nobel Prize, and print the
list.

3.8. Create a list called surprise with the elements "Groucho", "Chico", and "Harpo".

3.9. Lowercase the last element of the surprise list, reverse it, and then capitalize it.

ThingstoDo | 69

3.10. Make an English-to-French dictionary called e2f and print it. Here are your
starter words: dog is chien, cat is chat, and walrus is morse.

3.11. Using your three-word dictionary e2f, print the French word for walrus.

3.12. Make a French-to-English dictionary called f2e from e2f. Use the items
method.

3.13. Using f2e, print the English equivalent of the French word chien.
3.14. Make and print a set of English words from the keys in e2f.

3.15. Make a multilevel dictionary called 1ife. Use these strings for the topmost keys:
'animals', 'plants’, and 'other'. Make the 'animals' key refer to another dictio-
nary with the keys 'cats', 'octopi', and 'emus'. Make the 'cats' key refer to a list
of strings with the values 'Henri', 'Grumpy', and 'Lucy'. Make all the other keys
refer to empty dictionaries.

3.16. Print the top-level keys of 1ife.
3.17. Print the keys for life['animals'].

3.18. Print the values for life['animals']['cats'].

70 | Chapter3:PyFilling: Lists, Tuples, Dictionaries, and Sets

CHAPTER 4
Py Crust: Code Structures

In Chapters 1 through 3, you've seen many examples of data but have not done much
with them. Most of the code examples used the interactive interpreter and were short.
Now you’ll see how to structure Python code, not just data.

Many computer languages use characters such as curly braces ({ and }) or keywords
such as begin and end to mark off sections of code. In those languages, it's good prac-
tice to use consistent indentation to make your program more readable for yourself
and others. There are even tools to make your code line up nicely.

When he was designing the language that became Python, Guido van Rossum deci-
ded that the indentation itself was enough to define a program’s structure, and avoi-
ded typing all those parentheses and curly braces. Python is unusual in this use of
white space to define program structure. It's one of the first aspects that newcomers
notice, and it can seem odd to those who have experience with other languages. It
turns out that after writing Python for a little while, it feels natural and you stop
noticing it. You even get used to doing more while typing less.

Comment with #

A comment is a piece of text in your program that is ignored by the Python inter-
preter. You might use comments to clarify nearby Python code, make notes to your-
self to fix something someday, or for whatever purpose you like. You mark a
comment by using the # character; everything from that point on to the end of the
current line is part of the comment. You'll usually see a comment on a line by itself, as
shown here:

>>> # 60 sec/min * 60 min/hr * 24 hr/day
>>> seconds_per_day = 86400

n

Or, on the same line as the code it's commenting:
>>> seconds_per_day = 86400 # 60 sec/min * 60 min/hr * 24 hr/day

The # character has many names: hash, sharp, pound, or the sinister-sounding octo-
thorpe.! Whatever you call it,? its effect lasts only to the end of the line on which it
appears.

Python does not have a multiline comment. You need to explicitly begin each com-
ment line or section with a #.

>>> # I can say anything here, even if Python doesn't like fit,
. # because I'm protected by the awesome
. # octothorpe.

>>>

However, if it’s in a text string, the all-powerful octothorpe reverts back to its role as a
plain old # character:

>>> print("No comment: quotes make the # harmless.")
No comment: quotes make the # harmless.

Continue Lines with \

Programs are more readable when lines are reasonably short. The recommended (not
required) maximum line length is 80 characters. If you can't say everything you want
to say in that length, you can use the continuation character: \ (backslash). Just put \
at the end of a line, and Python will suddenly act as though you're still on the same
line.

For example, if I wanted to build a long string from smaller ones, I could do it in
steps:

>>> alphabet = "'

>>> alphabet += 'abcdefg'
>>> alphabet += 'hijklmnop'
>>> alphabet += 'grstuv'
>>> alphabet += 'wxyz'

Or, I could do it in one step, using the continuation character:
>>> alphabet = 'abcdefg' + \
"hijklmnop' + \
'grstuv' + \
'wxyz'

1 Like that eight-legged green thing that’s right behind you.

2 Please don't call it. It might come back.

72 | Chapter4:Py Crust: Code Structures

Line continuation is also needed if a Python expression spans multiple lines:

>> 1 + 2 +
File "<stdin>", 1line 1
1+ 2+

A

SyntaxError: invalid syntax
>5> 1 + 2 + '\

P

6

>>>

Compare with if, elif, and else

So far in this book, we've talked almost entirely about data structures. Now, we finally
take our first step into the code structures that weave data into programs. (You got a
little preview of these in the previous chapter’s section on sets. I hope no lasting dam-
age was done.) Our first example is this tiny Python program that checks the value of
the boolean variable disaster and prints an appropriate comment:

>>> disaster = True
>>> if disaster:
print("Woe!")
. else:
print("Whee!")

Woe!
>>>
The if and else lines are Python statements that check whether a condition (here,

the value of disaster) is True. Remember, print() is Python’s built-in function to
print things, normally to your screen.

If you've programmed in other languages, note that you don’t need
parentheses for the if test. Don't say something such as if (disas
ter == True). You do need the colon (:) at the end. If, like me,
you forget to type the colon at times, Python will display an error
message.

Each print() line is indented under its test. I used four spaces to indent each subsec-
tion. Although you can use any indentation you like, Python expects you to be consis-
tent with code within a section—the lines need to be indented the same amount, lined
up on the left. The recommended style, called PEP-8, is to use four spaces. Don't use
tabs, or mix tabs and spaces; it messes up the indent count.

Compare with if, elif,and else | 73

http://bit.ly/pep-8

We did a number of things here, which T'll explain more fully as the chapter pro-
gresses:

« Assigned the boolean value True to the variable named disaster

o Performed a conditional comparison by using if and else, executing different
code depending on the value of disaster

o Called the print() function to print some text

You can have tests within tests, as many levels deep as needed:

>>> furry = True
>>> small = True
>>> if furry:
if small:
print("It's a cat.")
else:
.. print("It's a bear!")
. else:
if small:
print("It's a skink!")
else:
print("It's a human. Or a hairless bear.")

It's a cat.

In Python, indentation determines how the if and else sections are paired. Our first
test was to check furry. Because furry is True, Python goes to the indented if small
test. Because we had set small to True, 1f small is evaluated as True. This makes
Python run the next line and print It's a cat.

If there are more than two possibilities to test, use if, elif (meaning else if), and
else:

>>> color = "puce"
>>> if color == "red":
print("It's a tomato")
. elif color == "green":
print("It's a green pepper")
. elif color == "bee purple":
print("I don't know what it is, but only bees can see it")
. else:
print("I've never heard of the color", color)

I've never heard of the color puce

In the preceding example, we tested for equality with the == operator. Python’s com-
parison operators are:

74 | (Chapter4:Py Crust: Code Structures

equality ==

inequality 1=
less than <
less than or equal <=
greater than >

greater than or equal >=

membership in...

These return the boolean values True or False. Let’s see how these all work, but first,
assign a value to x:

>>> X = 7
Now, let’s try some tests:

>35> X ==
False

>>> X ==
True

>>> 5 < X
True

>>> X < 10
True

Note that two equals signs (==) are used to test equality; remember, a single equals
sign (=) is what you use to assign a value to a variable.

If you need to make multiple comparisons at the same time, you use the boolean oper-
ators and, or, and not to determine the final boolean result.

Boolean operators have lower precedence than the chunks of code that they’re com-
paring. This means that the chunks are calculated first, then compared. In this exam-
ple, because we set x to 7, 5 < x is calculated to be True and x < 10 is also True, so
we finally end up with True and True:

>>> 5 < x and x < 10

True
As “Precedence” on page 25 points out, the easiest way to avoid confusion about
precedence is to add parentheses:

>>> (5 < x) and (x < 10)
True

Compare with if, elif,and else | 75

Here are some other tests:

>>> 5 < xor x < 10

True

>>> 5 < x and x > 10
False

>>> 5 < x and not x > 10
True

If youre and-ing multiple comparisons with one variable, Python lets you do this:

>>> 5 < x < 10
True

It's the same as 5 < x and x < 10. You can also write longer comparisons:

>>> 5 < x < 10 < 999
True

What Is True?

What if the element we’re checking isn’t a boolean? What does Python consider True
and False?

A false value doesn’t necessarily need to explicitly be False. For example, these are
all considered False:

boolean False

null None

zerointeger 0

zero float 0.0

empty string "'

empty list [1]

empty tuple ()

empty dict {3}

empty set set()
Anything else is considered True. Python programs use this definition of “truthiness”

(or in this case, “falsiness”) to check for empty data structures as well as False
conditions:

76 | Chapter4:Py Crust: Code Structures

>>> some_list = []
>>> if some_list:

print("There's something in here")
... else:

print("Hey, it's empty!")

Hey, it's empty!

If what you're testing is an expression rather than a simple variable, Python evaluates
the expression and returns a boolean result. So, if you type the following:

if color == "red":
Python evaluates color == "red". In our example, we assigned the string "puce" to
color earlier, so color == "red" is False, and Python moves on to the next test:

elif color == "green":

Do Multiple Comparisons with in

Say you have a letter and want to know if it’s a vowel. One way would be to write a
long if statement:

>>> letter = 'o'

>>> if letter == 'a' or letter == 'e' or letter == 'i' \
or letter == '0' or letter == 'u':
print(letter, 'is a vowel')

. else:
print(letter, 'is not a vowel')

o is a vowel

>>>
Whenever you need to make a lot of comparisons like that, separated by or, use
Python’s in feature instead. Here’s how to check vowel-ness more Pythonically, using
in with a string made of vowel characters:

>>> vowels = 'aeilou'
>>> letter = 'o'

>>> letter in vowels
True

>>> if letter in vowels:
print(letter, 'is a vowel')

o is a vowel

In earlier chapters, we used in to see if a value exists in any of Python’s iterable data
types, notably lists, tuples, sets, strings. So, we could define vowels with any of those
data types too:

>>> vowel_set = {'a', 'e', 'i', 'o', 'u'}
>>> letter in vowel_set

Do Multiple Comparisons within | 77

True

>>> vowel_list = ['a', 'e', 'i', 'o', 'u']
>>> letter in vowel_list
True

>>> vowel_tuple = ('a',
>>> letter in vowel_tuple

e', 't', 'o', 'u")

True

>>> vowel _dict = {'a': 'apple', 'e': 'elephant',

. '{': 'impala', 'o': 'ocelot', 'u': 'unicorn'}
>>> letter in vowel_dict

True

For the dictionary, in looks at the keys instead of their values.

Repeat with while

Testing with if, elif, and else runs from top to bottom. Sometimes, we need to do
something more than once. We need a loop, and the simplest looping mechanism in
Python is while. Using the interactive interpreter, try this next example, which is a
simple loop that prints the numbers from 1 to 5:

>>> count = 1

>>> while count <= 5:
print(count)
count += 1

Ui A WN P .
.

>>>

We first assigned the value 1 to count. The while loop compared the value of count
to 5 and continued if count was less than or equal to 5. Inside the loop, we printed the
value of count and then incremented its value by one with the statement count += 1.
Python goes back to the top of the loop, and again compares count with 5. The value
of count is now 2, so the contents of the while loop are again executed, and count is
incremented to 3.

This continues until count is incremented from 5 to 6 at the bottom of the loop. On
the next trip to the top, count <= 5 is now False, and the while loop ends. Python
moves on to the next lines.

Cancel with break

If you want to loop until something occurs, but youre not sure when that might hap-
pen, you can use an infinite loop with a break statement. This time we’ll read a line of

78 | Chapter4:Py Crust: Code Structures

input from the keyboard via Python’s input() function and then print it with the first
letter capitalized. We break out of the loop when a line containing only the letter q is

typed:

>>> while True:

stuff = input("String to capitalize [type g to quit]: ")
if stuff == "q":
break

print(stuff.capitalize())

String to capitalize [type q to quit]: test

Test

String to capitalize [type q to quit]: hey, it works

Hey, it works

String to capitalize [type q to quit]: q

>>>

Skip Ahead with continue

Sometimes you don’t want to break out of a loop but just want to skip ahead to the
next iteration for some reason. Here’s a contrived example: let’s read an integer, print
its square if it's odd, and skip it if it's even. We even added a few comments. Again,
we'll use q to stop the loop:

>>> while True:

value = input("Integer, please [q to quit]:

if value == "'
break
number = int(value)
if number % 2
continue
print(number,

Integer, please
1 squared is 1
Integer, please
Integer, please
3 squared is 9
Integer, please
Integer, please
5 squared is 25
Integer, please
>>>

[q to

[q to
[q to

[q to
[q to

[q to

== 0:

"squared is", number*number)
quit]:

quit]:
quit]:

quit]:
quit]:

quit]:

Check break Use with else

If the while loop ended normally (no break call), control passes to an optional else.
You use this when you've coded a while loop to check for something, and breaking as
soon as it’s found. The else would be run if the while loop completed but the object

was not found:

1

an even number

Repeat withwhile | 79

>>> numbers = [1, 3, 5]

>>> position = 0

>>> while position < len(numbers):
number = numbers[position]

if number % 2 == 0:
print('Found even number', number)
break

position += 1
. else: # break not called
print('No even number found')

No even number found

This use of else might seem nonintuitive. Consider it a break
checker.

[terate with for

Python makes frequent use of iterators, for good reason. They make it possible for
you to traverse data structures without knowing how large they are or how they are
implemented. You can even iterate over data that is created on the fly, allowing pro-
cessing of data streams that would otherwise not fit in the computer’s memory all at
once.

It’s legal Python to step through a sequence like this:

>>> rabbits = ['Flopsy', 'Mopsy', 'Cottontail', 'Peter']

>>> current = 0

>>> while current < len(rabbits):
print(rabbits[current])
current += 1

Flopsy

Mopsy

Cottontail

Peter

But there’s a better, more Pythonic way:

>>> for rabbit in rabbits:
print(rabbit)

Flopsy

Mopsy

Cottontail
Peter

80 | (Chapter4:Py Crust: Code Structures

Lists such as rabbits are one of Python’s iterable objects, along with strings, tuples,
dictionaries, sets, and some other elements. Tuple or list iteration produces an item at
a time. String iteration produces a character at a time, as shown here:

>>> word = 'cat
>>> for letter in word:
print(letter)

a
t

Iterating over a dictionary (or its keys() function) returns the keys. In this example,
the keys are the types of cards in the board game Clue (Cluedo outside of North

America):

>>> accusation = {'room': 'ballroom', 'weapon': 'lead pipe',
'person': 'Col. Mustard'}
>>> for card in accusation: # or, for card in accusation.keys():

print(card)
room
weapon
person
To iterate over the values rather than the keys, you use the dictionary’s values()

function:

>>> for value in accusation.values():
print(value)

ballroom
lead pipe
Col. Mustard
To return both the key and value in a tuple, you can use the items() function:
>>> for item in accusation.items():
print(item)
('room', 'ballroom')

('weapon', 'lead pipe')
('person', 'Col. Mustard')

Remember that you can assign to a tuple in one step. For each tuple returned by
items(), assign the first value (the key) to card and the second (the value) to con
tents:

>>> for card, contents in accusation.items():

print('Card', card, 'has the contents', contents)

Card weapon has the contents lead pipe

Iterate with for | 81

Card person has the contents Col. Mustard
Card room has the contents ballroom

Cancel with break

A break in a for loop breaks out of the loop, as it does for a while loop.

Skip with continue

Inserting a continue in a for loop jumps to the next iteration of the loop, as it does
for a while loop.

Check break Use with else

Similar to while, for has an optional else that checks if the for completed normally.
If break was not called, the else statement is run.

This is useful when you want to verify that the previous for loop ran to completion,
instead of being stopped early with a break. The for loop in the following example
prints the name of the cheese and breaks if any cheese is found in the cheese shop:

>>> cheeses = []
>>> for cheese in cheeses:
print('This shop has some lovely', cheese)
break
. else: # no break means no cheese
print('This is not much of a cheese shop, is it?')

This 1s not much of a cheese shop, is it?

As with while, the use of else with for might seem nonintuitive. It
makes more sense if you think of the for as looking for something,
and else being called if you didn’t find it. To get the same effect
without else, use some variable to indicate whether you found
what you wanted in the for loop, as demonstrated here:

>>> cheeses = []

>>> found_one = False

>>> for cheese in cheeses:
found_one = True
print('This shop has some lovely', cheese)
break

>>> if not found_one:
print('This is not much of a cheese shop, is it?')

This 1s not much of a cheese shop, is it?

82 | (Chapter4:Py Crust: Code Structures

Iterate Multiple Sequences with zip()

There’s one more nice iteration trick: iterating over multiple sequences in parallel by
using the zip() function:

>>> days = ['Monday', 'Tuesday', 'Wednesday']

>>> fruits = ['banana', 'orange', 'peach']

>>> drinks = ['coffee', 'tea', 'beer']

>>> desserts = ['tiramisu', 'ice cream', 'pie', 'pudding']

>>> for day, fruit, drink, dessert in zip(days, fruits, drinks, desserts):

print(day, ": drink", drink, "- eat", fruit, "- enjoy", dessert)

Monday : drink coffee - eat banana - enjoy tiramisu

Tuesday : drink tea - eat orange - enjoy ice cream

Wednesday : drink beer - eat peach - enjoy pie
zip() stops when the shortest sequence is done. One of the lists (desserts) was
longer than the others, so no one gets any pudding unless we extend the other lists.

“Dictionaries” on page 55 shows you how the dict() function can create dictionaries
from two-item sequences like tuples, lists, or strings. You can use zip() to walk
through multiple sequences and make tuples from items at the same offsets. Lets
make two tuples of corresponding English and French words:

>>> english = 'Monday', 'Tuesday', 'Wednesday'

>>> french = 'Lundi', 'Mardi', 'Mercredi'
Now, use zip() to pair these tuples. The value returned by zip() is itself not a tuple
or list, but an iterable value that can be turned into one:

>>> list(zip(english, french))

[('Monday', 'Lundi'), ('Tuesday', 'Mardi'), ('Wednesday', 'Mercredi')]
Feed the result of zip() directly to dict() and voila: a tiny English-French dictio-
nary!

>>> dict(zip(english, french))
{'Monday': 'Lundi', 'Tuesday': 'Mardi', 'Wednesday': 'Mercredi'}

Generate Number Sequences with range()

The range() function returns a stream of numbers within a specified range. without
first having to create and store a large data structure such as a list or tuple. This lets
you create huge ranges without using all the memory in your computer and crashing
your program.

You use range() similar to how to you use slices: range(start, stop, step). If you
omit start, the range begins at 0. The only required value is stop; as with slices, the
last value created will be just before stop. The default value of step is 1, but you can
go backward with -1.

Iterate with for | 83

Like zip(), range() returns an iterable object, so you need to step through the values

with for ... 1in, or convert the object to a sequence like a list. Let's make the range
0, 1, 2

>>> for x in range(0,3):

print(x)

0

1

2

>>> list(range(0, 3))

e, 1, 2]

Here’s how to make a range from 2 down to 0:

>>> for x in range(2, -1, -1):
print(x)

2

1

0

>>> list(range(2, -1, -1))
[2, 1, 0]

The following snippet uses a step size of 2 to get the even numbers from 0 to 10:
>>> list(range(0, 11, 2))
[0, 2, 4, 6, 8, 10]

Other Iterators

Chapter 8 shows iteration over files. In Chapter 6, you can see how to enable iteration
over objects that you've defined yourself.

Comprehensions

A comprehension is a compact way of creating a Python data structure from one or
more iterators. Comprehensions make it possible for you to combine loops and con-
ditional tests with a less verbose syntax. Using a comprehension is sometimes taken
as a sign that you know Python at more than a beginner’s level. In other words, its
more Pythonic.

List Comprehensions

You could build a list of integers from 1 to 5, one item at a time, like this:

>>> pumber_list = []

>>> number_list.append(1)
>>> number_list.append(2)
>>> number_list.append(3)

84 | Chapter4:Py Crust: Code Structures

>>> number_list.append(4)
>>> number_list.append(5)
>>> number_list
[1, 2, 3, 4, 5]

Or, you could also use an iterator and the range() function:

>>> number_list = []
>>> for number in range(l, 6):
number_list.append(number)

>>> number_list
[1, 2, 3, 4, 5]

Or, you could just turn the output of range() into a list directly:

>>> number_list = list(range(l, 6))

>>> number_list

[1, 2, 3, 4, 5]
All of these approaches are valid Python code and will produce the same result. How-
ever, a more Pythonic way to build a list is by using a list comprehension. The simplest
form of list comprehension is:

[expression for itemin iterable]
Here’s how a list comprehension would build the integer list:

>>> number_list = [number for number in range(1,6)]

>>> number_list

[1, 2, 3, 4, 5]
In the first line, you need the first number variable to produce values for the list: that
is, to put a result of the loop into number_list. The second number is part of the for
loop. To show that the first number is an expression, try this variant:

>>> number_list = [number-1 for number in range(1,6)]

>>> number_list

[e, 1, 2, 3, 4]
The list comprehension moves the loop inside the square brackets. This comprehen-
sion example really wasn’t simpler than the previous example, but there’s more. A list
comprehension can include a conditional expression, looking something like this:

[expression for itemin iterable if condition]

Let’s make a new comprehension that builds a list of only the odd numbers between 1
and 5 (remember that number % 2 is True for odd numbers and False for even
numbers):

>>> a_list = [number for number in range(1,6) if number % 2 == 1]
>>> a_list
[1, 3, 5]

Comprehensions | 85

Now, the comprehension is a little more compact than its traditional counterpart:

>>>
>>>

>>>
[1:

a_list = []
for number in range(1,6):
if number % 2 ==
a_list.append(number)

a_list
3, 5]

Finally, just as there can be nested loops, there can be more than one set of for
clauses in the corresponding comprehension. To show this, let’s first try a plain, old
nested loop and print the results:

>>>
>>>
>>>

WWNNRR-.
.
P NRNRE .

2

rows = range(1,4)
cols = range(1,3)
for row in rows:
for col in cols:
print(row, col)

Now, let’s use a comprehension and assign it to the variable cells, making it a list of
(row, col) tuples:

>>>
>>>
>>>
>>>

(1,
(1,
(2,
(2,
@3,
@3,

rows = range(1,4)
cols = range(1,3)
cells = [(row, col) for row in rows for col in cols]
for cell in cells:
print(cell)

1)
2)
1)
2)
1)
2)

By the way, you can also use tuple unpacking to yank the row and col values from
each tuple as you iterate over the cells list:

>>>

NN R R .
.
N R NBR .

for row, col in cells:
print(row, col)

86

| Chapter 4: Py Crust: Code Structures

31

32
The for row ... and for col ... fragments in the list comprehension could also
have had their own if tests.

Dictionary Comprehensions

Not to be outdone by mere lists, dictionaries also have comprehensions. The simplest
form looks familiar:

{ key_expression : value_expression for expressionin iterable }

Similar to list comprehensions, dictionary comprehensions can also have if tests and
multiple for clauses:

>>> word = 'letters'

>>> letter_counts = {letter: word.count(letter) for letter in word}

>>> letter_counts

{'"l1': 1, 'e': 2, '"t': 2, 'r': 1, 's': 1}
We are running a loop over each of the seven letters in the string 'letters' and
counting how many times that letter appears. Two of our uses of word.count(let
ter) are a waste of time because we have to count all the e’s twice and all the t’s twice.
But, when we count the e’s the second time, we do no harm because we just replace
the entry in the dictionary that was already there; the same goes for counting the t’s.
So, the following would have been a teeny bit more Pythonic:

>>> word = 'letters'

>>> letter_counts = {letter: word.count(letter) for letter in set(word)}
>>> letter_counts

{'t': 2, 'U': 1, 'e': 2, 'r': 1, 's': 1}

The dictionary’s keys are in a different order than the previous example, because iter-
ating set(word) returns letters in a different order than iterating the string word.

Set Comprehensions

No one wants to be left out, so even sets have comprehensions. The simplest version
looks like the list and dictionary comprehensions that you've just seen:

{ expression for expressionin iterable }

The longer versions (if tests, multiple for clauses) are also valid for sets:

>>> a_set = {number for number in range(1,6) if number % 3 == 1}
>>> a_set

{1, 43

Comprehensions | 87

Generator Comprehensions

Tuples do not have comprehensions! You might have thought that changing the
square brackets of a list comprehension to parentheses would create a tuple compre-
hension. And it would appear to work because there’s no exception if you type this:

>>> number_thing = (number for number in range(1, 6))

The thing between the parentheses is a generator comprehension, and it returns a gen-
erator object:

>>> type(number_thing)
<class 'generator's

I’ll get into generators in more detail in “Generators” on page 101. A generator is one
way to provide data to an iterator.

You can iterate over this generator object directly, as illustrated here:

>>> for number in number_thing:
print(number)

U h WN B
.

Or, you can wrap a list() call around a generator comprehension to make it work
like a list comprehension:

>>> number_list = list(number_thing)
>>> number_list
[1’ 2’ 3) 4) 5]

A generator can be run only once. Lists, sets, strings, and dictionar-
ies exist in memory, but a generator creates its values on the fly and
hands them out one at a time through an iterator. It doesn't
remember them, so you can't restart or back up a generator.

If you try to re-iterate this generator, you'll find that it’s tapped out:

>>> try_again = list(number_thing)

>>> try_again

(]
You can create a generator from a generator comprehension, as we did here, or from
a generator function. We'll talk about functions in general first, and then we'll get to
the special case of generator functions.

88 | Chapter4:Py Crust: Code Structures

Functions

So far, all our Python code examples have been little fragments. These are good for
small tasks, but no one wants to retype fragments all the time. We need some way of
organizing larger code into manageable pieces.

The first step to code reuse is the function: a named piece of code, separate from all
others. A function can take any number and type of input parameters and return any
number and type of output results.

You can do two things with a function:

o Define it
e Callit

To define a Python function, you type def, the function name, parentheses enclosing
any input parameters to the function, and then finally, a colon (:). Function names
have the same rules as variable names (they must start with a letter or _ and contain
only letters, numbers, or _).

Let’s take things one step at a time, and first define and call a function that has no
parameters. Here’s the simplest Python function:

>>> def do_nothing():
pass
Even for a function with no parameters like this one, you still need the parentheses
and the colon in its definition. The next line needs to be indented, just as you would
indent code under an if statement. Python requires the pass statement to show that
this function does nothing. Its the equivalent of This page intentionally left blank
(even though it isn’t anymore).

You call this function just by typing its name and parentheses. It works as advertised,
doing nothing very well:

>>> do_nothing()
>>>

Now, let’s define and call another function that has no parameters but prints a single
word:

>>> def make_a_sound():
print('quack"')

>>> make_a_sound()
quack

When you called the make_a_sound() function, Python ran the code inside its defini-
tion. In this case, it printed a single word and returned to the main program.

Functions | 89

Let’s try a function that has no parameters but returns a value:

>>> def agree():
return True

You can call this function and test its returned value by using if:

>>> if agree():
print('Splendid!"')
. else:
print('That was unexpected.')

Splendid!
You've just made a big step. The combination of functions with tests such as if and

loops such as while make it possible for you to do things that you could not do
before.

At this point, it's time to put something between those parentheses. Let’s define the
function echo() with one parameter called anything. It uses the return statement to
send the value of anything back to its caller twice, with a space between:

>>> def echo(anything):
return anything +

+ anything
>>>
Now let’s call echo() with the string 'Rumplestiltskin':

>>> echo('Rumplestiltskin')

'Rumplestiltskin Rumplestiltskin'
The values you pass into the function when you call it are known as arguments. When
you call a function with arguments, the values of those arguments are copied to their
corresponding parameters inside the function. In the previous example, the function
echo() was called with the argument string 'Rumplestiltskin'. This value was
copied within echo() to the parameter anything, and then returned (in this case
doubled, with a space) to the caller.

These function examples were pretty basic. Let’s write a function that takes an input
argument and actually does something with it. We'll adapt the earlier code fragment
that comments on a color. Call it commentary and have it take an input string parame-
ter called color. Make it return the string description to its caller, which can decide
what to do with it:

>>> def commentary(color):
if color == 'red':
return "It's a tomato."
elif color == "green":
return "It's a green pepper."
elif color == 'bee purple':

90 | Chapter4:Py Crust: Code Structures

return "I don't know what it is, but only bees can see it."
else:
return "I've never heard of the color

+ color +
>>>

Call the function commentary() with the string argument 'blue’.
>>> comment = commentary('blue')

The function does the following:

o Assigns the value 'blue' to the function’s internal color parameter
+ Runs through the if-elif-else logic chain
o Returns a string

« Assigns the string to the variable comment

What do we get back?

>>> print(comment)

I've never heard of the color blue.
A function can take any number of input arguments (including zero) of any type. It
can return any number of output results (also including zero) of any type. If a func-
tion doesn’t call return explicitly, the caller gets the result None.

>>> print(do_nothing())
None

None Is Useful

None is a special Python value that holds a place when there is nothing to say. It is not
the same as the boolean value False, although it looks false when evaluated as a
boolean. Here’s an example:

>>> thing = None
>>> if thing:
print("It's some thing")
. else:
print("It's no thing")

It's no thing
To distinguish None from a boolean False value, use Python’s is operator:

>>> if thing is None:
print("It's nothing")
. else:
print("It's something")

Functions | 91

It's nothing

This seems like a subtle distinction, but it’s important in Python. You’ll need None to
distinguish a missing value from an empty value. Remember that zero-valued integers
or floats, empty strings (' '), lists ([1), tuples ((,)), dictionaries ({}), and sets(set())
are all False, but are not equal to None

Let’s write a quick function that prints whether its argument is None:

>>> def is_none(thing):
if thing is None:
print("It's None")
elif thing:
print("It's True")
else:
print("It's False")

Now, let’s run some tests:

>>> {s_none(None)
It's None

>>> {s_none(True)
It's True

>>> {s_none(False)
It's False

>>> is_none(0)
It's False

>>> is_none(0.0)
It's False

>>> {s_none(())
It's False

>>> is_none([])
It's False

>>> is_none({})
It's False

>>> {s_none(set())
It's False

Positional Arguments

Python handles function arguments in a manner that’s unusually flexible, when com-
pared to many languages. The most familiar types of arguments are positional argu-
ments, whose values are copied to their corresponding parameters in order.

This function builds a dictionary from its positional input arguments and returns it:

>>> def menu(wine, entree, dessert):
return {'wine': wine, 'entree': entree, 'dessert': dessert}

92 | Chapter4:Py Crust: Code Structures

>>> menu('chardonnay', 'chicken', 'cake')

{'dessert': 'cake', 'wine': 'chardonnay', 'entree': 'chicken'}
Although very common, a downside of positional arguments is that you need to
remember the meaning of each position. If we forgot and called menu() with wine as
the last argument instead of the first, the meal would be very different:

>>> menu('beef', 'bagel', 'bordeaux')
{'dessert': 'bordeaux', 'wine': 'beef', 'entree': 'bagel'}

Keyword Arguments

To avoid positional argument confusion, you can specify arguments by the names of
their corresponding parameters, even in a different order from their definition in the
function:

>>> menu(entree='beef', dessert='bagel', wine='bordeaux')

{'dessert': 'bagel', 'wine': 'bordeaux', 'entree': 'beef'}
You can mix positional and keyword arguments. Let’s specify the wine first, but use
keyword arguments for the entree and dessert:

>>> menu('frontenac', dessert='flan', entree='fish'")

{'entree': 'fish', 'dessert': 'flan', 'wine': 'frontenac'}

If you call a function with both positional and keyword arguments, the positional
arguments need to come first.

Specify Default Parameter Values

You can specify default values for parameters. The default is used if the caller does not
provide a corresponding argument. This bland-sounding feature can actually be quite
useful. Using the previous example:

>>> def menu(wine, entree, dessert='pudding'):
return {'wine': wine, 'entree': entree, 'dessert': dessert}

This time, try calling menu() without the dessert argument:

>>> menu('chardonnay', 'chicken')
{'dessert': 'pudding', 'wine': 'chardonnay', 'entree': 'chicken'}

If you do provide an argument, it’s used instead of the default:

>>> menu('dunkelfelder', 'duck', 'doughnut')
{'dessert': 'doughnut', 'wine': 'dunkelfelder', 'entree': 'duck'}

Default argument values are calculated when the function is
defined, not when it is run. A common error with new (and some-
times not-so-new) Python programmers is to use a mutable data
type such as a list or dictionary as a default argument.

Functions | 93

In the following test, the buggy() function is expected to run each time with a fresh
empty result list, add the arg argument to it, and then print a single-item list. How-
ever, there’s a bug: it's empty only the first time it’s called. The second time, result
still has one item from the previous call:

>>> def buggy(arg, result=[]):
result.append(arg)
print(result)

;;; buggy('a')
['a']
>>> buggy('b') # expect ['b']
'a', 'b']
It would have worked if it had been written like this:

>>> def works(arg):
result = []
result.append(arg)
return result

;;; works('a")
['a']
>>> works('b")
['b']
The fix is to pass in something else to indicate the first call:

>>> def nonbuggy(arg, result=None):
if result is None:
result = []
result.append(arg)
print(result)

>>> nonbuggy('a')
['a']
>>> nonbuggy('b")
['b']

Gather Positional Arguments with *

If you've programmed in C or C++, you might assume that an asterisk (*) in a Python
program has something to do with a pointer. Nope, Python doesn’t have pointers.

When used inside the function with a parameter, an asterisk groups a variable num-
ber of positional arguments into a tuple of parameter values. In the following exam-
ple, args is the parameter tuple that resulted from the arguments that were passed to
the function print_args():

>>> def print_args(*args):
print('Positional argument tuple:', args)

94 | Chapter4:Py Crust: Code Structures

If you call it with no arguments, you get nothing in *args:

>>> print_args()
Positional argument tuple: ()

Whatever you give it will be printed as the args tuple:

>>> print_args(3, 2, 1, 'wait!', 'uh...")
Positional argument tuple: (3, 2, 1, 'wait!', 'uh...")
This is useful for writing functions such as print() that accept a variable number of
arguments. If your function has required positional arguments as well, *args goes at
the end and grabs all the rest:
>>> def print_more(requiredl, required2, *args):
print('Need this one:', requiredl)

print('Need this one too:', required2)
print('All the rest:', args)

>>> print_more('cap', 'gloves', 'scarf', 'monocle', 'mustache wax')

Need this one: cap

Need this one too: gloves

ALl the rest: ('scarf', 'monocle', 'mustache wax')
When using *, you don’t need to call the tuple parameter args, but it's a common
idiom in Python.

Gather Keyword Arguments with **

You can use two asterisks (**) to group keyword arguments into a dictionary, where
the argument names are the keys, and their values are the corresponding dictionary
values. The following example defines the function print_kwargs() to print its key-
word arguments:

>>> def print_kwargs(**kwargs):
print('Keyword arguments:', kwargs)

Now, try calling it with some keyword arguments:

>>> print_kwargs(wine='merlot', entree='mutton', dessert='macaroon')
Keyword arguments: {'dessert': 'macaroon', 'wine': 'merlot', 'entree': 'mutton'}

Inside the function, kwargs is a dictionary.
If you mix positional parameters with *args and **kwargs, they need to occur in that

order. As with args, you don’t need to call this keyword parameter kwargs, but its
common usage.

Functions | 95

Docstrings

Readability counts, says the Zen of Python. You can attach documentation to a func-
tion definition by including a string at the beginning of the function body. This is the
function’s docstring:

>>> def echo(anything):
'echo returns its input argument'’
return anything

You can make a docstring quite long and even add rich formatting, if you want, as is
demonstrated in the following:
def print_if_true(thing, check):

Prints the first argument if a second argument is true.
The operation is:

1. Check whether the *second* argument is true.

2. If it is, print the *first* argument.

if check:
print(thing)
To print a function’s docstring, call the Python help() function. Pass the function’s
name to get a listing of arguments along with the nicely formatted docstring:

>>> help(echo)
Help on function echo in module __main__:

echo(anything)
echo returns its input argument

If you want to see just the raw docstring, without the formatting:

>>> print(echo.__doc_)
echo returns its input argument

That odd-looking __doc__ is the internal name of the docstring as a variable within
the function. “Uses of _and __ in Names” on page 106 explains the reason behind all
those underscores.

Functions Are First-Class Citizens

I've mentioned the Python mantra, everything is an object. This includes numbers,
strings, tuples, lists, dictionaries—and functions, as well. Functions are first-class citi-
zens in Python. You can assign them to variables, use them as arguments to other
functions, and return them from functions. This gives you the capability to do some
things in Python that are difficult-to-impossible to carry out in many other lan-
guages.

96 | Chapter4:Py Crust: Code Structures

To test this, let’s define a simple function called answer () that doesn’t have any argu-
ments; it just prints the number 42:

>>> def answer():
print(42)

If you run this function, you know what you’ll get:

>>> answer()
42

Now, let’s define another function named run_something. It has one argument called
func, a function to run. Once inside, it just calls the function.

>>> def run_something(func):
func()

If we pass answer to run_something(), were using a function as data, just as with
anything else:

>>> run_something(answer)
42

Notice that you passed answer, not answer (). In Python, those parentheses mean call
this function. With no parentheses, Python just treats the function like any other
object. That’s because, like everything else in Python, it is an object:

>>> type(run_something)
<class 'function's>

Let’s try running a function with arguments. Define a function add_args() that prints
the sum of its two numeric arguments, argl and arg2:

>>> def add_args(argl, arg2):
print(argl + arg2)

And what is add_args()?

>>> type(add_args)
<class 'function's>

At this point, let’s define a function called run_something_with_args() that takes
three arguments:

o func—The function to run

o argl—The first argument for func

o arg2—The second argument for func

>>> def run_something_with_args(func, argl, arg2):
func(argl, arg2)

Functions | 97

When you call run_something_with_args(), the function passed by the caller is
assigned to the func parameter, whereas argl and arg2 get the values that follow in
the argument list. Then, running func(argl, arg2) executes that function with
those arguments because the parentheses told Python to do so.

Let’s test it by passing the function name add_args and the arguments 5 and 9 to
run_something_with_args():

>>> run_something_with_args(add_args, 5, 9)
14

Within the function run_something_with_args(), the function name argument
add_args was assigned to the parameter func, 5 to argl, and 9 to arg2. This ended
up running:

add_args(5, 9)

You can combine this with the *args and **kwargs techniques.

Let’s define a test function that takes any number of positional arguments, calculates
their sum by using the sum() function, and then returns that sum:

>>> def sum_args(*args):
return sum(args)

I haven’t mentioned sum() before. It’s a built-in Python function that calculates the
sum of the values in its iterable numeric (int or float) argument.

WEe'll define the new function run_with_positional_args(), which takes a function
and any number of positional arguments to pass to it:

>>> def run_with_positional_args(func, *args):
return func(*args)

Now, go ahead and call it:

>>> run_with_positional_args(sum_args, 1, 2, 3, 4)
10

You can use functions as elements of lists, tuples, sets, and dictionaries. Functions are
immutable, so you can also use them as dictionary keys.

Inner Functions
You can define a function within another function:

>>> def outer(a, b):
def inner(c, d):
return c + d
return inner(a, b)

>>>

98 | Chapter4:Py Crust: Code Structures

>>> outer(4, 7)
11
An inner function can be useful when performing some complex task more than
once within another function, to avoid loops or code duplication. For a string exam-
ple, this inner function adds some text to its argument:
>>> def knights(saying):
def inner(quote):

return "We are the knights who say: '%s'" % quote
return inner(saying)

>>> knights('Ni!"')
"We are the knights who say: 'Ni!'"

Closures

An inner function can act as a closure. This is a function that is dynamically generated
by another function and can both change and remember the values of variables that
were created outside the function.

The following example builds on the previous knights() example. Let’s call the new
one knights2(), because we have no imagination, and turn the inner() function into
a closure called inner2(). Here are the differences:

o inner2() uses the outer saying parameter directly instead of getting it as an
argument.

o knights2() returns the inner2 function name instead of calling it.

>>> def knights2(saying):
def inner2():
return "We are the knights who say: '%s'" % saying
return inner2

The inner2() function knows the value of saying that was passed in and remembers
it. The line return inner2 returns this specialized copy of the inner2 function (but
doesn’t call it). That’s a closure: a dynamically created function that remembers where
it came from.

Let’s call knights2() twice, with different arguments:

>>> a = knights2('Duck")
>>> b = knights2('Hasenpfeffer')

Okay, so what are a and b?

>>> type(a)
<class 'function'>

Functions | 99

>>> type(b)
<class 'function's>

They’re functions, but they’re also closures:

>>> a
<function knights2.<locals>.inner2 at 0x10193e158>
>>> b
<function knights2.<locals>.inner2 at 0x10193ele0>

If we call them, they remember the saying that was used when they were created by
knights2:

>>> a()

"We are the knights who say: 'Duck'"

>>> b()
"We are the knights who say: 'Hasenpfeffer'"

Anonymous Functions: the lambda() Function

In Python, a lambda function is an anonymous function expressed as a single state-
ment. You can use it instead of a normal tiny function.

To illustrate it, let’s first make an example that uses normal functions. To begin, we'll
define the function edit_story(). Its arguments are the following:

o words—a list of words

o func—a function to apply to each word in words

>>> def edit_story(words, func):
for word in words:
print(func(word))

Now, we need a list of words and a function to apply to each word. For the words,
here’s a list of (hypothetical) sounds made by my cat if he (hypothetically) missed one
of the stairs:

>>> stairs = ['thud', 'meow', 'thud', 'hiss']
And for the function, this will capitalize each word and append an exclamation point,

perfect for feline tabloid newspaper headlines:

>>> def enliven(word): # give that prose more punch
return word.capitalize() + '!'

Mixing our ingredients:

>>> edit_story(stairs, enliven)
Thud!
Meow!
Thud!
Hiss!

100 | Chapter4: Py Crust: Code Structures

Finally, we get to the lambda. The enliven() function was so brief that we could
replace it with a lambda:

>>>

>>> edit_story(stairs, lambda word: word.capitalize() + '!")
Thud!

Meow!

Thud!

Hiss!

>>>

The lambda takes one argument, which we call word here. Everything between the
colon and the terminating parenthesis is the definition of the function.

Often, using real functions such as enliven() is much clearer than using lambdas.
Lambdas are mostly useful for cases in which you would otherwise need to define
many tiny functions and remember what you called them all. In particular, you can
use lambdas in graphical user interfaces to define callback functions; see Appendix A
for examples.

Generators

A generator is a Python sequence creation object. With it, you can iterate through
potentially huge sequences without creating and storing the entire sequence in mem-
ory at once. Generators are often the source of data for iterators. If you recall, we
already used one of them, range(), in earlier code examples to generate a series of
integers. In Python 2, range() returns a list, which limits it to fit in memory. Python
2 also has the generator xrange(), which became the normal range() in Python 3.
This example adds all the integers from 1 to 100:

>>> sum(range(1, 101))

5050
Every time you iterate through a generator, it keeps track of where it was the last time
it was called and returns the next value. This is different from a normal function,
which has no memory of previous calls and always starts at its first line with the same
state.

If you want to create a potentially large sequence, and the code is too large for a gen-
erator comprehension, write a generator function. It’s a normal function, but it returns
its value with a yield statement rather than return. Let’s write our own version of
range():
>>> def my_range(first=0, last=10, step=1):
number = first

while number < last:
yield number

Generators | 101

number += step

It’s a normal function:

>>> my_range
<function my_range at 0x10193e268>

And it returns a generator object:

>>> ranger = my_range(1l, 5)
>>> ranger
<generator object my_range at 0x101a0a168>

We can iterate over this generator object:

>>> for x in ranger:
print(x)

AW N R
.

Decorators

Sometimes, you want to modify an existing function without changing its source
code. A common example is adding a debugging statement to see what arguments
were passed in.

A decorator is a function that takes one function as input and returns another func-
tion. We'll dig into our bag of Python tricks and use the following:

e *args and **kwargs
« Inner functions

« Functions as arguments
The function document_1it() defines a decorator that will do the following:

o Print the function’s name and the values of its arguments
 Run the function with the arguments
« Print the result

o Return the modified function for use

Here’s what the code looks like:

>>> def document_1it(func):
def new_function(*args, **kwargs):
print('Running function:', func.__name__)

102 | Chapter4: Py Crust: Code Structures

print('Positional arguments:', args)
print('Keyword arguments:', kwargs)
result = func(*args, **kwargs)
print('Result:', result)
return result

return new_function

Whatever func you pass to document_1t(), you get a new function that includes the
extra statements that document_1it() adds. A decorator doesn't actually have to run
any code from func, but document_it() calls func part way through so that you get
the results of func as well as all the extras.

So, how do you use this? You can apply the decorator manually:

>>> def add_ints(a, b):
return a + b

>>> add_ints(3, 5)

8

>>> cooler_add_ints = document_it(add_ints) # manual decorator assignment
>>> cooler_add_ints(3, 5)

Running function: add_ints

Positional arguments: (3, 5)

Keyword arguments: {}

Result: 8

8

As an alternative to the manual decorator assignment above, just add
@decorator_name before the function that you want to decorate:

>>>
... def add_ints(a, b):
return a + b

>>> add_ints(3, 5)

Start function add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 8

8

You can have more than one decorator for a function. Let’s write another decorator
called square_1it() that squares the result:

>>> def square_it(func):
def new_function(*args, **kwargs):
result = func(*args, **kwargs)
return result * result
return new_function

Decorators | 103

The decorator thats used closest to the function (just above the def) runs first and
then the one above it. Either order gives the same end result, but you can see how the
intermediate steps change:

>>>

. def add_ints(a, b):
return a + b

>>> add_ints(3, 5)

Running function: new_function
Positional arguments: (3, 5)
Keyword arguments: {}

Result: 64

64

Let’s try reversing the decorator order:

>>>

. def add_ints(a, b):
return a + b

>>> add_ints(3, 5)

Running function: add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 8

64

Namespaces and Scope

A name can refer to different things, depending on where it’s used. Python programs
have various namespaces—sections within which a particular name is unique and
unrelated to the same name in other namespaces.

Each function defines its own namespace. If you define a variable called x in a main
program and another variable called x in a function, they refer to different things. But
the walls can be breached: if you need to, you can access names in other namespaces
in various ways.

The main part of a program defines the global namespace; thus, the variables in that
namespace are global variables.

You can get the value of a global variable from within a function:

>>> animal = 'fruitbat'
>>> def print_global():
print('inside print_global:', animal)

>>> print('at the top level:', animal)

104 | Chapter4: Py Crust: Code Structures

at the top level: fruitbat
>>> print_global()
inside print_global: fruitbat

But, if you try to get the value of the global variable and change it within the function,
you get an error:

>>> def change_and_print_global():
print('inside change_and_print_global:', animal)
animal = 'wombat'
print('after the change:', animal)

>>> change_and_print_global()

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in change_and_print_global
UnboundLocalError: local variable 'animal' referenced before assignment

If you just change it, it changes a different variable also named animal, but this vari-
able is inside the function:

>>> def change_local():
animal = 'wombat'
print('inside change_local:', animal, id(animal))

>>> change_local()

inside change_local: wombat 4330406160
>>> animal

'fruitbat'

>>> id(animal)

4330390832

What happened here? The first line assigned the string 'fruitbat' to a global vari-

able named animal. The change_local() function also has a variable named animal,
but that’s in its local namespace.

We used the Python function 1d() here to print the unique value for each object and
prove that the variable animal inside change_local() is not the same as animal at
the main level of the program.

To access the global variable rather than the local one within a function, you need to
be explicit and use the global keyword (you knew this was coming: explicit is better
than implicit):

>>> animal = 'fruitbat'
>>> def change_and_print_global():
global animal
animal = 'wombat'
print('inside change_and_print_global:', animal)

>>> animal
'fruitbat'

Namespaces and Scope | 105

>>> change_and_print_global()

inside change_and_print_global: wombat
>>> animal

'wombat'

If you don’t say global within a function, Python uses the local namespace and the
variable is local. It goes away after the function completes.

Python provides two functions to access the contents of your namespaces:

o locals() returns a dictionary of the contents of the local namespace.

o globals() returns a dictionary of the contents of the global namespace.

And, here they are in use:

>>> animal = 'fruitbat'

>>> def change_local():
animal = 'wombat' # local variable
print('locals:', locals())

>>> animal

'fruitbat'

>>> change_local()

locals: {'animal': 'wombat'}

>>> print('globals:', globals()) # reformatted a little for presentation
globals: {'animal': 'fruitbat',

'__doc__": None,

'change_local': <function change_it at 0x1006c0170>,
'__package__': None,

' _name__': '__main__"',

'__loader__': <class '_frozen_importlib.BuiltinImporter's,
' __builtins__': <module 'builtins's>}

>>> animal

'fruitbat'

The local namespace within change_local() contained only the local variable
animal. The global namespace contained the separate global variable animal and a
number of other things.

Usesof and __ in Names

Names that begin and end with two underscores (__) are reserved for use within
Python, so you should not use them with your own variables. This naming pattern
was chosen because it seemed unlikely to be selected by application developers for
their own variables.

For instance, the name of a function is in the system variable function .__name__,
and its documentation string is function .__doc__:

106 | Chapter4: Py Crust: Code Structures

>>> def amazing():
""'This is the amazing function.
Want to see it again?'''
print('This function is named:', amazing.__name__)
print('And its docstring is:', amazing.__doc__)

>>> amazing()

This function is named: amazing

And its docstring is: This is the amazing function.
Want to see it again?

As you saw in the earlier globals printout, the main program is assigned the special
name __main__.

Handle Errors with try and except

Do, or do not. There is no try.
—Yoda

In some languages, errors are indicated by special function return values. Python uses
exceptions: code that is executed when an associated error occurs.

You've seen some of these already, such as accessing a list or tuple with an out-of-
range position, or a dictionary with a nonexistent key. When you run code that might
fail under some circumstances, you also need appropriate exception handlers to inter-
cept any potential errors.

It’s good practice to add exception handling anywhere an exception might occur to let
the user know what is happening. You might not be able to fix the problem, but at
least you can note the circumstances and shut your program down gracefully. If an
exception occurs in some function and is not caught there, it bubbles up until it is
caught by a matching handler in some calling function. If you don’t provide your own
exception handler, Python prints an error message and some information about
where the error occurred and then terminates the program, as demonstrated in the
following snippet.
>>> short_list = [1, 2, 3]

>>> position = 5
>>> short_list[position]

File "<stdin>", line 1, in <module>
IndexError: list index out of range

Rather than leaving it to chance, use try to wrap your code, and except to provide
the error handling:
>>> short_list

>>> position = 5
>>> try:

[1, 2, 3]

Handle Errors with try and except | 107

short_list[position]
. except:
print('Need a position between 0 and', len(short_list)-1, ' but got',
position)

Need a position between 0 and 2 but got 5

The code inside the try block is run. If there is an error, an exception is raised and
the code inside the except block runs. If there are no errors, the except block is skip-

ped.

Specifying a plain except with no arguments, as we did here, is a catchall for any
exception type. If more than one type of exception could occur, it’s best to provide a
separate exception handler for each. No one forces you to do this; you can use a bare
except to catch all exceptions, but your treatment of them would probably be generic
(something akin to printing Some error occurred). You can use any number of specific
exception handlers.

Sometimes, you want exception details beyond the type. You get the full exception
object in the variable name if you use the form:

except exceptiontype as name

The example that follows looks for an IndexError first, because that’s the exception
type raised when you provide an illegal position to a sequence. It saves an IndexError
exception in the variable err, and any other exception in the variable other. The
example prints everything stored in other to show what you get in that object.

>>> short_list = [1, 2, 3]
>>> while True:
value = input('Position [q to quit]? ')
if value == 'q':
break
try:
position = int(value)
print(short_list[position])
except IndexError as err:
print('Bad index:', position)
except Exception as other:
print('Something else broke:', other)

Position [q to quit]? 1
2

Position [q to quit]? O
1

Position [q to quit]? 2
3

Position [q to quit]? 3
Bad index: 3

Position [q to quit]? 2
3

108 | Chapter4: Py Crust: Code Structures

Position [q to quit]? two

Something else broke: invalid literal for int() with base 10: 'two'

Position [q to quit]? g
Inputting position 3 raised an IndexError as expected. Entering two annoyed the
int() function, which we handled in our second, catchall except code.

Make Your Own Exceptions

The previous section discussed handling exceptions, but all of the exceptions (such as
IndexError) were predefined in Python or its standard library. You can use any of
these for your own purposes. You can also define your own exception types to handle
special situations that might arise in your own programs.

This requires defining a new object type with a class—something
we don't get into until Chapter 6. So, if youre unfamiliar with
classes, you might want to return to this section later.

An exception is a class. It is a child of the class Exception. Let's make an exception
called UppercaseException and raise it when we encounter an uppercase word in a
string.

>>> class UppercaseException(Exception):
pass

>>> words = ['eeenie', 'meenie', 'miny', 'MO']
>>> for word in words:
if word.isupper():
raise UppercaseException(word)

File "<stdin>", line 3, in <module>
__main__.UppercaseException: MO
We didn't even define any behavior for UppercaseException (notice we just used
pass), letting its parent class Exception figure out what to print when the exception
was raised.

You can access the exception object itself and print it:

>>> try:
raise OopsException('panic')
. except OopsException as exc:
print(exc)

panic

Make Your Own Exceptions | 109

Things to Do

4.1 Assign the value 7 to the variable guess_me. Then, write the conditional tests (if,
else, and elif) to print the string 'too low' if guess_me is less than 7, 'too high' if
greater than 7, and ' just right' ifequal to 7.

4.2 Assign the value 7 to the variable guess_me and the value 1 to the variable start.
Write a while loop that compares start with guess_me. Print too low if start is less
than guess me. If start equals guess_me, print 'found it!' and exit the loop. If
start is greater than guess_me, print 'oops' and exit the loop. Increment start at
the end of the loop.

4.3 Use a for loop to print the values of the list [3, 2, 1, @].
4.4 Use a list comprehension to make a list of the even numbers in range(10).

4.5 Use a dictionary comprehension to create the dictionary squares. Use range(10)
to return the keys, and use the square of each key as its value.

4.6 Use a set comprehension to create the set odd from the odd numbers in
range(10).

4.7 Use a generator comprehension to return the string 'Got ' and a number for the
numbers in range(10). Iterate through this by using a for loop.

4.8 Define a function called good that returns the list ['Harry', 'Ron', 'Her
mione'].

4.9 Define a generator function called get_odds that returns the odd numbers from

range(10). Use a for loop to find and print the third value returned.

4.10 Define a decorator called test that prints 'start' when a function is called and
'end' when it finishes.

4.11 Define an exception called OopsException. Raise this exception to see what hap-
pens. Then write the code to catch this exception and print 'Caught an oops'.

4.12 Use zip() to make a dictionary called movies that pairs these lists: titles =
['Creature of Habit', 'Crewel Fate']andplots = ['A nun turns into a mon
ster', 'A haunted yarn shop'].

110 | Chapter4: Py Crust: Code Structures

CHAPTER 5

Py Boxes: Modules, Packages,
and Programs

During your bottom-up climb, you've progressed from built-in data types to con-
structing ever-larger data and code structures. In this chapter, you'll finally get down
to brass tacks and learn how to write realistic, large programs in Python.

Standalone Programs

Thus far, you've been writing and running code fragments such as the following
within Python’s interactive interpreter:

>>> print("This interactive snippet works.")
This interactive snippet works.

Now let’s make your first standalone program. On your computer, create a file called
test1.py containing this single line of Python code:

print("This standalone program works!")

Notice that there’s no >>> prompt, just a single line of Python code. Ensure that there
is no indentation in the line before print.

If youre running Python in a text terminal or terminal window, type the name of
your Python program followed by the program filename:

$ python testl.py
This standalone program works!

m

You can save all of the interactive snippets that you've seen in this
book so far to files and run them directly. If youre cutting and
pasting, ensure that you delete the initial >>> and .. (include the
final space).

Command-Line Arguments

On your computer, create a file called test2.py that contains these two lines:

import sys

print('Program arguments:', sys.argv)
Now, use your version of Python to run this program. Here’s how it might look in a
Linux or Mac OS X terminal window using a standard shell program:

$ python test2.py

Program arguments: ['test2.py']

$ python test2.py tra la la

Program arguments: ['test2.py', 'tra', 'la', 'la'l]

Modules and the import Statement

We're going to step up another level, creating and using Python code in more than
one file. A module is just a file of Python code.

The text of this book is organized in a hierarchy: words, sentences, paragraphs, and
chapters. Otherwise, it would be unreadable after a page or two. Code has a roughly
similar bottom-up organization: data types are like words, statements are like senten-
ces, functions are like paragraphs, and modules are like chapters. To continue the
analogy, in this book, when I say that something will be explained in Chapter 8, in
programming, that’s like referring to code in another module.

We refer to code of other modules by using the import statement. This makes the
code and variables in the imported module available to your program.

Import a Module

The simplest use of the import statement is import module, where module is the
name of another Python file, without the .py extension. Let’s simulate a weather sta-
tion and print a weather report. One main program prints the report, and a separate
module with a single function returns the weather description used by the report.

Here’s the main program (call it weatherman.py):

import report

description = report.get_description()
print("Today's weather:", description)

112 | Chapter5: Py Boxes: Modules, Packages, and Programs

And here is the module (report.py):

def get_description(): # see the docstring below?
"""Return random weather, just like the pros"""
from random import choice
possibilities = ['rain', 'snow', 'sleet', 'fog', 'sun', 'who knows']
return choice(possibilities)
If you have these two files in the same directory and instruct Python to run weather-
man.py as the main program, it will access the report module and run its
get_description() function. We wrote this version of get_description() to return
a random result from a list of strings, so that’s what the main program will get back
and print:
$ python weatherman.py
Today's weather: who knows
$ python weatherman.py
Today's weather: sun

$ python weatherman.py
Today's weather: sleet

We used imports in two different places:

o The main program weatherman.py imported the module report.

o In the module file report.py, the get_description() function imported the
chotice function from Python’s standard random module.

We also used imports in two different ways:

o The main program called import report and then ran report.get_descrip
tion().

o The get_description() function in report.py called from random import
choice and then ran choice(possibilities).

In the first case, we imported the entire report module but needed to use report. as
a prefix to get_description(). After this import statement, everything in report.py is
available to the main program, as long as we tack report. before its name. By qualify-
ing the contents of a module with the module’s name, we avoid any nasty naming
conflicts. There could be a get_description() function in some other module, and
we would not call it by mistake.

In the second case, we're within a function and know that nothing else named choice
is here, so we imported the choice() function from the random module directly. We
could have written the function like the following snippet, which returns random
results:

Modules and the import Statement | 113

def get_description():
import random
possibilities = ['rain', 'snow', 'sleet', 'fog', 'sun', 'who knows']
return random.choice(possibilities)
Like many aspects of programming, pick the style that seems the most clear to you.
The module-qualified name (random.chotice) is safer but requires a little more typ-
ing.

These get_description() examples showed variations of what to import, but but not
where to do the importing—they all called import from inside the function. We could
have imported random from outside the function:
>>> import random
>>> def get_description():
possibilities = ['rain', 'snow', 'sleet', 'fog', 'sun', 'who knows']
return random.choice(possibilities)

>>> get_description()

'who knows'

>>> get_description()

'‘rain’
You should consider importing from outside the function if the imported code might
be used in more than one place, and from inside if you know its use will be limited.
Some people prefer to put all their imports at the top of the file, just to make all the
dependencies of their code explicit. Either way works.

Import a Module with Another Name

In our main weatherman.py program, we called import report. But what if you have

another module with the same name or want to use a name that is more mnemonic

or shorter? In such a situation, you can import using an alias. Let’s use the alias wr:
import report as wr

description = wr.get_description()
print("Today's weather:", description)

Import Only What You Want from a Module

With Python, you can import one or more parts of a module. Each part can keep its
original name or you can give it an alias. First, let's import get_description() from
the report module with its original name:

from report import get_description

description = get_description()
print("Today's weather:", description)

Now, import it as do_1it:

114 | Chapter5: Py Boxes: Modules, Packages, and Programs

from report import get_description as do_it
description = do_1it()
print("Today's weather:", description)

Module Search Path

Where does Python look for files to import? It uses a list of directory names and ZIP
archive files stored in the standard sys module as the variable path. You can access
and modify this list. Here’s the value of sys. path for Python 3.3 on my Mac:

>>> import sys

>>> for place in sys.path:
print(place)

/Library/Frameworks/Python.framework/Versions/3.3/1ib/python33.zip

/Library/Frameworks/Python.framework/Versions/3.3/1ib/python3.3

/Library/Frameworks/Python.framework/Versions/3.3/1ib/python3.3/plat-darwin

/Library/Frameworks/Python.framework/Versions/3.3/1ib/python3.3/1ib-dynload

/Library/Frameworks/Python.framework/Versions/3.3/1ib/python3.3/site-packages
That initial blank output line is the empty string '', which stands for the current
directory. If "' is first in sys.path, Python looks in the current directory first when
you try to import something: import report looks for report.py.

The first match will be used. This means that if you define a module named random
and it’s in the search path before the standard library, you won't be able to access the
standard library’s random now.

Packages

We went from single lines of code, to multiline functions, to standalone programs, to
multiple modules in the same directory. To allow Python applications to scale even
more, you can organize modules into file hierarchies called packages.

Maybe we want different types of text forecasts: one for the next day and one for the
next week. One way to structure this is to make a directory named sources, and cre-
ate two modules within it: daily.py and weekly.py. Each has a function called fore
cast. The daily version returns a string, and the weekly version returns a list of seven
strings.

Here’s the main program and the two modules. (The enumerate() function takes
apart a list and feeds each item of the list to the for loop, adding a number to each
item as a little bonus.)

from sources import daily, weekly

print("Daily forecast:", daily.forecast())
print("Weekly forecast:")

Packages | 115

for number, outlook in enumerate(weekly.forecast(), 1):
print(number, outlook)

def forecast():
'fake daily forecast'
return 'like yesterday'

def forecast():
"""Fake weekly forecast
return ['snow', 'more snow', 'sleet',
'freezing rain', 'rain', 'fog', 'hail']

wn

You'll need one more thing in the sources directory: a file named __init__.py. This
can be empty, but Python needs it to treat the directory containing it as a package.

Run the main weather.py program to see what happens:

$ python weather.py

Daily forecast: like yesterday
Weekly forecast:

snow

more snow

sleet

freezing rain

rain

fog

hatl

The Python Standard Library

One of Python’s prominent claims is that it has “batteries included”—a large standard
library of modules that perform many useful tasks, and are kept separate to avoid
bloating the core language. When you’re about to write some Python code, it’s often
worthwhile to first check whether there’s a standard module that already does what
you want. It’s surprising how often you encounter little gems in the standard library.
Python also provides authoritative documentation for the modules, along with a tuto-
rial. Doug Hellmann’s website Python Module of the Week and his book The Python
Standard Library by Example (Addison-Wesley Professional) are also very useful
guides.

No b WN R

Upcoming chapters in this book feature many of the standard modules that are spe-
cific to the Web, systems, databases, and so on. In this section, I'll talk about some
standard modules that have generic uses.

Handle Missing Keys with setdefault() and defaultdict()

You've seen that trying to access a dictionary with a nonexistent key raises an excep-
tion. Using the dictionary get() function to return a default value avoids an excep-

116 | Chapter5: Py Boxes: Modules, Packages, and Programs

http://docs.python.org/3/library
http://bit.ly/library-tour
http://bit.ly/library-tour
http://bit.ly/py-motw
http://bit.ly/py-libex
http://bit.ly/py-libex

tion. The setdefault() function is like get(), but also assigns an item to the
dictionary if the key is missing:

>>> periodic_table = {'Hydrogen': 1, 'Helium': 2}
>>> print(periodic_table)
{'Helium': 2, 'Hydrogen': 1}

If the key was not already in the dictionary, the new value is used:

>>> carbon = periodic_table.setdefault('Carbon', 12)
>>> carbon

12

>>> periodic_table

{'Helium': 2, 'Carbon': 12, 'Hydrogen': 1}

If we try to assign a different default value to an existing key, the original value is
returned and nothing is changed:

>>> helium = periodic_table.setdefault('Helium', 947)
>>> helium

2

>>> periodic_table

{'Helium': 2, 'Carbon': 12, 'Hydrogen': 1}

defaultdict() is similar, but specifies the default value for any new key up front,
when the dictionary is created. Its argument is a function. In this example, we pass
the function int, which will be called as int() and return the integer 0:

>>> from collections import defaultdict
>>> periodic_table = defaultdict(int)

Now, any missing value will be an integer (int), with the value 0:

>>> periodic_table['Hydrogen'] = 1

>>> periodic_table['Lead']

0

>>> periodic_table

defaultdict(<class 'int's, {'Lead': 0, 'Hydrogen': 1})

The argument to defaultdict() is a function that returns the value to be assigned to
a missing key. In the following example, no_idea() is executed to return a value
when needed:

>>> from collections import defaultdict
>>>
>>> def no_idea():

return 'Huh?'

>>> bestiary = defaultdict(no_idea)

>>> bestiary['A'] = 'Abominable Snowman'
>>> bestiary['B'] = 'Basilisk’

>>> bestiary['A']

'Abominable Snowman'

>>> bestiary['B']

The Python Standard Library | 117

'Basilisk!’

>>> bestiary['C']

'"Huh?'
You can use the functions int(), list(), or dict() to return default empty values for
those types: int() returns 0, 1ist() returns an empty list ([]), and dict() returns an
empty dictionary ({}). If you omit the argument, the initial value of a new key will be
set to None.

By the way, you can use lambda to define your default-making function right inside
the call:

>>> bestiary = defaultdict(lambda: 'Huh?')
>>> bestiary['E']
'"Huh?'

Using int is one way to make your own counter:

>>> from collections import defaultdict

>>> food_counter = defaultdict(int)

>>> for food in ['spam', 'spam', 'eggs', 'spam']:
food_counter[food] += 1

>>> for food, count in food_counter.items():
print(food, count)

eggs 1

spam 3
In the preceding example, if food_counter had been a normal dictionary instead of a
defaultdict, Python would have raised an exception every time we tried to incre-

ment the dictionary element food_counter[food] because it would not have been
initialized. We would have needed to do some extra work, as shown here:

>>> dict_counter = {}
>>> for food in ['spam', 'spam', 'eggs', 'spam']:
if not food in dict_counter:
dict_counter[food] = 0
dict_counter[food] += 1

>>> for food, count in dict_counter.items():
print(food, count)

spam 3
eggs 1

Count Items with Counter()

Speaking of counters, the standard library has one that does the work of the previous
example and more:

118 | Chapter5: Py Boxes: Modules, Packages, and Programs

>>> from collections import Counter

>>> breakfast = ['spam', 'spam', 'eggs', 'spam']

>>> breakfast_counter = Counter(breakfast)

>>> breakfast_counter

Counter({'spam': 3, 'eggs': 1})
The most_common() function returns all elements in descending order, or just the top
count elements if given a count:

>>> breakfast_counter.most_common()
[('spam', 3), ('eggs', 1)]

>>> breakfast_counter.most_common(1)
[('spam’, 3)]

You can combine counters. First, let’s see again whats in breakfast_counter:

>>> breakfast_counter
>>> Counter({'spam': 3, 'eggs': 1})

This time, we'll make a new list called lunch, and a counter called lunch_counter:

>>> lunch = ['eggs', 'eggs', 'bacon']
>>> lunch_counter = Counter(lunch)
>>> lunch_counter

Counter({'eggs': 2, 'bacon': 1})

The first way we combine the two counters is by addition, using +:

>>> breakfast_counter + lunch_counter
Counter({'spam': 3, 'eggs': 3, 'bacon': 1})

As you might expect, you subtract one counter from another by using -. What's for
breakfast but not for lunch?

>>> breakfast_counter - lunch_counter
Counter({'spam': 3})

Okay, now what can we have for lunch that we can’t have for breakfast?

>>> lunch_counter - breakfast_counter
Counter({'bacon': 1, 'eggs': 1})

Similar to sets in Chapter 4, you can get common items by using the intersection
operator &:

>>> breakfast_counter & lunch_counter
Counter({'eggs': 1})

The intersection picked the common element ('eggs') with the lower count. This
makes sense: breakfast only offered one egg, so thats the common count.

Finally, you can get all items by using the union operator |:

>>> breakfast_counter | lunch_counter
Counter({'spam': 3, 'eggs': 2, 'bacon': 1})

The Python Standard Library | 119

The item 'eggs' was again common to both. Unlike addition, union didn’t add their
counts, but picked the one with the larger count.

Order by Key with OrderedDict()

Many of the code examples in the early chapters of this book demonstrate that the
order of keys in a dictionary is not predictable: you might add keys a, b, and c in that
order, but keys() might return ¢, a, b. Here’s a repurposed example from Chapter 1:

>>> quotes = {

'Moe': 'A wise guy, huh?',
"Larry': 'Ow!',
"Curly': 'Nyuk nyuk!',

eee }

>>> for stooge in quotes:

print(stooge)

Larry

Curly

Moe

An OrderedDict() remembers the order of key addition and returns them in the
same order from an iterator. Try creating an OrderedDict from a sequence of (key,
value) tuples:

>>> from collections import OrderedDict
>>> quotes = OrderedDict([
('Moe', 'A wise guy, huh?'),
('Larry', 'Ow!'),
('Curly', 'Nyuk nyuk!"),

D
>>>
>>> for stooge in quotes:
print(stooge)
Moe
Larry
Curly

Stack + Queue == deque

A deque (pronounced deck) is a double-ended queue, which has features of both a
stack and a queue. It’s useful when you want to add and delete items from either end
of a sequence. Here, we'll work from both ends of a word to the middle to see if it’s a
palindrome. The function popleft() removes the leftmost item from the deque and
returns it; pop() removes the rightmost item and returns it. Together, they work from
the ends toward the middle. As long as the end characters match, it keeps popping
until it reaches the middle:

120 | Chapter5: Py Boxes: Modules, Packages, and Programs

>>> def palindrome(word):
from collections import deque
dg = deque(word)
while len(dq) > 1:
if dq.popleft() != dq.pop():
return False
return True

>>> palindrome('a')

True

>>> palindrome('racecar')
True

>>> palindrome('')

True

>>> palindrome('radar')
True

>>> palindrome('halibut"')
False

I used this as a simple illustration of deques. If you really wanted a quick palindrome
checker, it would be a lot simpler to just compare a string with its reverse. Python
doesn’'t have a reverse() function for strings, but it does have a way to reverse a
string with a slice, as illustrated here:

>>> def another_palindrome(word):
return word == word[::-1]

>>> another_palindrome('radar')
True

>>> another_palindrome('halibut')
False

Iterate over Code Structures with itertools

itertools contains special-purpose iterator functions. Each returns one item at a
time when called within a for ... in loop, and remembers its state between calls.

chain() runs through its arguments as though they were a single iterable:

>>> import itertools
>>> for item in itertools.chain([1, 2], ['a', 'b']):
print(item)

LN R e
.

cycle() is an infinite iterator, cycling through its arguments:

The Python Standard Library | 121

http://bit.ly/py-itertools

>>> import itertools
>>> for item in itertools.cycle([1, 2]):
print(item)

N RN B .
.

...and so on.

accumulate() calculates accumulated values. By default, it calculates the sum:

>>> import itertools
>>> for item in itertools.accumulate([1, 2, 3, 4]):
print(item)

A W e
.

10

You can provide a function as the second argument to accumulate(), and it will be
used instead of addition. The function should take two arguments and return a single
result. This example calculates an accumulated product:

>>> import itertools
>>> def multiply(a, b):
return a * b

>>> for item in itertools.accumulate([1, 2, 3, 4], multiply):
print(item)

AN B e
.

24

The itertools module has many more functions, notably some for combinations
and permutations that can be time savers when the need arises.

Print Nicely with pprint()

All of our examples have used print() (or just the variable name, in the interactive
interpreter) to print things. Sometimes, the results are hard to read. We need a pretty
printer such as pprint():

>>> from pprint import pprint
>>> quotes = OrderedDict([

122 | Chapter5: Py Boxes: Modules, Packages, and Programs

('Moe', 'A wise guy, huh?'),
('Larry', 'Ow!'),
('Curly', 'Nyuk nyuk!'),
D
>>>

Plain old print() just dumps things out there:

>>> print(quotes)
OrderedDict([('Moe', 'A wise guy, huh?'), ('Larry', 'Ow!'), ('Curly', 'Nyuk nyuk!')])

However, pprint() tries to align elements for better readability:

>>> pprint(quotes)

{'Moe': 'A wise guy, huh?',
"Larry': 'Ow!',
"Curly': 'Nyuk nyuk!'}

More Batteries: Get Other Python Code

Sometimes, the standard library doesn’t have what you need, or doesn’t do it in quite
the right way. There’s an entire world of open-source, third-party Python software.
Good resources include:

o PyPi (also known as the Cheese Shop, after an old Monty Python skit)
o github

o readthedocs

You can find many smaller code examples at activestate.

Almost all of the Python code in this book uses the standard Python installation on
your computer, which includes all the built-ins and the standard library. External
packages are featured in some places: I mentioned requests in Chapter 1, and have
more details in “Beyond the Standard Library: Requests” on page 229. Appendix D
shows how to install third-party Python software, along with many other nuts-and-
bolts development details.

Things to Do

5.1. Create a file called zoo.py. In it, define a function called hours() that prints the
string 'Open 9-5 daily'. Then, use the interactive interpreter to import the zoo
module and call its hours() function.

5.2. In the interactive interpreter, import the zoo module as menagerie and call its
hours() function.

More Batteries: Get Other Python Code | 123

http://pypi.python.org
https://github.com/Python
https://readthedocs.org/
http://code.activestate.com/recipes/langs/python/

5.3. Staying in the interpreter, import the hours() function from zoo directly and
call it.

5.4. Import the hours() function as info and call it.

5.5. Make a dictionary called plain with the key-value pairs 'a': 1, 'b': 2, and
'c': 3, and then print it.

5.6. Make an OrderedDict called fancy from the same pairs listed in 5.5 and print it.
Did it print in the same order as plain?

5.7. Make a defaultdict called dict_of_lists and pass it the argument 1ist. Make
the list dict_of_lists['a'] and append the value 'something for a' to it in one
assignment. Print dict_of_lists['a'].

124 | Chapter5: Py Boxes: Modules, Packages, and Programs

CHAPTER 6

Oh Oh: Objects and Classes

No object is mysterious. The mystery is your eye.
—Elizabeth Bowen

Take an object. Do something to it. Do something else to it.
—Jasper Johns

Up to this point, you've seen data structures such as strings and dictionaries, and code
structures such as functions and modules. In this chapter, you'll deal with custom
data structures: objects.

What Are Objects?

As I mention in Chapter 2, everything in Python, from numbers to modules, is an
object. However, Python hides most of the object machinery by means of special syn-
tax. You can type num = 7 to create a object of type integer with the value 7, and
assign an object reference to the name num. The only time you need to look inside
objects is when you want to make your own or modify the behavior of existing
objects. You'll see how to do both in this chapter.

An object contains both data (variables, called attributes) and code (functions, called
methods). It represents a unique instance of some concrete thing. For example, the
integer object with the value 7 is an object that facilitates methods such as addition
and multiplication, as is demonstrated in “Numbers” on page 21. 8 is a different
object. This means there’s an Integer class in Python, to which both 7 and 8 belong.
The strings 'cat' and 'duck' are also objects in Python, and have string methods
that you've seen, such as capitalize() and replace().

When you create new objects no one has ever created before, you must create a class
that indicates what they contain.

125

Think of objects as nouns and their methods as verbs. An object represents an indi-
vidual thing, and its methods define how it interacts with other things.

Unlike modules, you can have multiple objects at the same time, each one with differ-
ent values for its attributes. They’re like super data structures, with code thrown in.

Define a Class with class

In Chapter 1, I compare an object to a plastic box. A class is like the mold that makes
that box. For instance, a String is the built-in Python class that makes string objects
such as 'cat' and 'duck'. Python has many other built-in classes to create the other
standard data types, including lists, dictionaries, and so on. To create your own cus-
tom object in Python, you first need to define a class by using the class keyword.
Lets walk through a simple example.

Suppose that you want to define objects to represent information about people. Each
object will represent one person. You'll first want to define a class called Person as the
mold. In the examples that follow, well try more than one version of this class as we
build up from the simplest class to ones that actually do something useful.

Our first try is the simplest possible class, an empty one:

>>> class Person():
pass

Just as with functions, we needed to say pass to indicate that this class was empty.

This definition is the bare minimum to create an object. You create an object from a
class by calling the class name as though it were a function:

>>> someone = Person()

In this case, Person() creates an individual object from the Person class and assigns
it the name someone. But, our Person class was empty, so the someone object that we
create from it just sits there and can't do anything else. You would never actually
define such a class, and I'm only showing it here to build up to the next example.

Lets try again, this time including the special Python object initialization method
__init__:

>>> class Person():
def __init__ (self):
pass
This is what you’ll see in real Python class definitions. I admit that the __init__()
and self look strange. __init__() is the special Python name for a method that

126 | Chapter 6: Oh Oh: Objects and Classes

initializes an individual object from its class definition. ' The self argument specifies
that it refers to the individual object itself.

When you define __init__() in a class definition, its first parameter should be self.
Although self is not a reserved word in Python, it's common usage. No one reading
your code later (including you!) will need to guess what you meant if you use self.

But even that second Person definition didn’t create an object that really did any-
thing. The third try is the charm that really shows how to create a simple object in
Python. This time, we'll add the parameter name to the initialization method:

>>> class Person():
def __init__ (self, name):
self.name = name

>>>

Now, we can create an object from the Person class by passing a string for the name
parameter:

>>> hunter = Person('Elmer Fudd')

Here’s what this line of code does:

 Looks up the definition of the Person class
o Instantiates (creates) a new object in memory

o Calls the object’s __init__ method, passing this newly-created object as self and
the other argument (' Elmer Fudd') as name

o Stores the value of name in the object
o Returns the new object
o Attaches the name hunter to the object
This new object is like any other object in Python. You can use it as an element of a

list, tuple, dictionary, or set. You can pass it to a function as an argument, or return it
as a result.

What about the name value that we passed in? It was saved with the object as an
attribute. You can read and write it directly:

>>> print('The mighty hunter: ', hunter.name)
The mighty hunter: Elmer Fudd

1 You'll see many examples of double underscores in Python names; to save syllables, some people pronounce
them as dunder.

Definea Class with dlass | 127

Remember, inside the Person class definition, you access the name attribute as
self.name. When you create an actual object such as hunter, you refer to it as
hunter.name.

It is not necessary to have an __init__ method in every class definition; it’s used to
do anything thats needed to distinguish this object from others created from the
same class.

Inheritance

When you're trying to solve some coding problem, often you’ll find an existing class
that creates objects that do almost what you need. What can you do? You could mod-
ify this old class, but you'll make it more complicated, and you might break some-
thing that used to work.

Of course, you could write a new class, cutting and pasting from the old one and
merging your new code. But this means that you have more code to maintain, and the
parts of the old and new classes that used to work the same might drift apart because
they’re now in separate places.

The solution is inheritance: creating a new class from an existing class but with some
additions or changes. It's an excellent way to reuse code. When you use inheritance,
the new class can automatically use all the code from the old class but without copy-
ing any of it.

You define only what you need to add or change in the new class, and this overrides
the behavior of the old class. The original class is called a parent, superclass, or base
class; the new class is called a child, subclass, or derived class. These terms are inter-
changeable in object-oriented programming.

So, let’s inherit something. We'll define an empty class called Car. Next, define a sub-
class of Car called Yugo. You define a subclass by using the same class keyword but
with the parent class name inside the parentheses (class Yugo(Car) below):

>>> class Car():
pass

>>> class Yugo(Car):
pass

Next, create an object from each class:

>>> glve_me_a_car = Car()
>>> gilve_me_a_yugo = Yugo()

A child class is a specialization of a parent class; in object-oriented lingo, Yugo is-a
Car. The object named give_me_a_yugo is an instance of class Yugo, but it also inher-

128 | Chapter 6: Oh Oh: Objects and Classes

its whatever a Car can do. In this case, Car and Yugo are as useful as deckhands on a
submarine, so let’s try new class definitions that actually do something:

>>> class Car():
def exclaim(self):
print("I'm a Car!")

>>> class Yugo(Car):
pass

Finally, make one object from each class and call the exclaim method:

>>> gilve_me_a_car = Car()

>>> give_me_a_yugo = Yugo()

>>> glve_me_a_car.exclaim()

I'ma Car!

>>> give_me_a_yugo.exclaim()

I'ma Car!
Without doing anything special, Yugo inherited the exclaim() method from Car. In
fact, Yugo says that it is a Car, which might lead to an identity crisis. Let’s see what we
can do about that.

Override a Method

As you just saw, a new class initially inherits everything from its parent class. Moving
forward, you’ll see how to replace or override a parent method. Yugo should probably
be different from Car in some way; otherwise, what’s the point of defining a new
class? Lets change how the exclaim() method works for a Yugo:

>>> class Car():
def exclaim(self):
print("I'm a Car!")

>>> class Yugo(Car):
def exclaim(self):
print("I'm a Yugo! Much like a Car, but more Yugo-ish.")

Now, make two objects from these classes:

>>> glve_me_a_car = Car()
>>> gilve_me_a_yugo = Yugo()

What do they say?

>>> glve_me_a_car.exclaim()

I'ma Car!

>>> gilve_me_a_yugo.exclaim()

I'm a Yugo! Much like a Car, but more Yugo-ish.

OverrideaMethod | 129

In these examples, we overrode the exclaim() method. We can override any meth-
ods, including __init__(). Here’s another example that uses our earlier Person class.
Let’s make subclasses that represent doctors (MDPerson) and lawyers (JDPerson):

>>> class Person():

def __init_ (self, name):
self.name = name

>>> class MDPerson(Person):
def __init__ (self, name):

self.name = "Doctor " + name
>>> class JDPerson(Person):
def __init__ (self, name):
self.name = name + ", Esquire"

In these cases, the initialization method __init__() takes the same arguments as the
parent Person class but stores the value of name differently inside the object instance:

>>> person = Person('Fudd')
>>> doctor = MDPerson('Fudd')
>>> lawyer = JDPerson('Fudd')
>>> print(person.name)

Fudd

>>> print(doctor.name)

Doctor Fudd

>>> print(lawyer.name)

Fudd, Esquire

Add a Method

The child class can also add a method that was not present in its parent class. Going
back to classes Car and Yugo, we'll define the new method need_a_push() for class
Yugo only:

>>> class Car():
def exclaim(self):
print("I'm a Car!")

>>> class Yugo(Car):
def exclaim(self):
print("I'm a Yugo! Much like a Car, but more Yugo-ish.")
def need_a_push(self):
print("A little help here?")

Next, make a Car and a Yugo:

>>> glve_me_a_car = Car()
>>> glve_me_a_yugo = Yugo()

130 | Chapter 6: Oh Oh: Objects and Classes

A Yugo object can react to a need_a_push() method call:

>>> glve_me_a_yugo.need_a_push()
A little help here?

But a generic Car object cannot:

>>> glve_me_a_car.need_a_push()

File "<stdin>", line 1, in <module>
AttributeError: 'Car' object has no attribute 'need_a_push'
At this point, a Yugo can do something that a Car cannot, and the distinct personality
of a Yugo can emerge.

Get Help from Your Parent with super

We saw how the child class could add or override a method from the parent. What if
it wanted to call that parent method? “I'm glad you asked,” says super(). We'll define
a new class called EmailPerson that represents a Person with an email address. First,
our familiar Person definition:

>>> class Person():

def __init_ (self, name):
self.name = name

Notice that the __init__() call in the following subclass has an additional email
parameter:
>>> class EmailPerson(Person):
def __init__(self, name, email):

super().__init__(name)

self.email = email
When you define an __init__() method for your class, youre replacing the
__init__() method of its parent class, and the latter is not called automatically any-
more. As a result, we need to call it explicitly. Here’s what's happening:

o The super() gets the definition of the parent class, Person.

o The __init__() method calls the Person.__init__() method. It takes care of
passing the self argument to the superclass, so you just need to give it any
optional arguments. In our case, the only other argument Person() accepts is

name.

e The self.email = email line is the new code that makes this EmailPerson dif-
ferent from a Person.

Moving on, let’s make one of these creatures:

Get Help from Your Parent with super | 131

>>> bob = EmailPerson('Bob Frapples', 'bob@frapples.com"')
We should be able to access both the name and email attributes:

>>> bob.name

'Bob Frapples'
>>> bob.email
'bob@frapples.com'

Why didn’t we just define our new class as follows?

>>> class EmailPerson(Person):
def __init__ (self, name, email):

self.name = name

self.email = email
We could have done that, but it would have defeated our use of inheritance. We used
super () to make Person do its work, the same as a plain Person object would. There’s
another benefit: if the definition of Person changes in the future, using super () will
ensure that the attributes and methods that EmailPerson inherits from Person will
reflect the change.

Use super () when the child is doing something its own way but still needs something
from the parent (as in real life).

In self Defense

One criticism of Python (besides the use of whitespace) is the need to include self as
the first argument to instance methods (the kind of method you’ve seen in the previ-
ous examples). Python uses the self argument to find the right object’s attributes and
methods. For an example, I'll show how you would call an object’s method, and what
Python actually does behind the scenes.

Remember class Car from earlier examples? Let’s call its exclaim() method again:

>>> car = Car()
>>> car.exclaim()
I'ma Car!

Here’s what Python actually does, under the hood:

o Look up the class (Car) of the object car.
o DPass the object car to the exclaim() method of the Car class as the self parame-
ter.
Just for fun, you can even run it this way yourself and it will work the same as the
normal (car.exclaim()) syntax:

>>> Car.exclaim(car)
I'ma Car!

132 | Chapter 6: Oh Oh: Objects and Classes

However, there’s never a reason to use that lengthier style.

Get and Set Attribute Values with Properties

Some object-oriented languages support private object attributes that can’t be
accessed directly from the outside; programmers often need to write getter and setter
methods to read and write the values of such private attributes.

Python doesn’t need getters or setters, because all attributes and methods are public,
and youre expected to behave yourself. If direct access to attributes makes you nerv-
ous, you can certainly write getters and setters. But be Pythonic—use properties.

In this example, we'll define a Duck class with a single attribute called hidden_name.
(In the next section, I'll show you a better way to name attributes that you want to
keep private.) We don’t want people to access this directly, so we'll define two meth-
ods: a getter (get_name()) and a setter (set_name()). I've added a print() statement
to each method to show when it’s being called. Finally, we define these methods as
properties of the name attribute:

>>> class Duck():

def __init__(self, input_name):
self.hidden_name = input_name

def get_name(self):
print('inside the getter')
return self.hidden_name

def set_name(self, input_name):
print('inside the setter')
self.hidden_name = input_name

name = property(get_name, set_name)

The new methods act as normal getters and setters until that last line; it defines the
two methods as properties of the attribute called name. The first argument to prop
erty() is the getter method, and the second is the setter. Now, when you refer to the
name of any Duck object, it actually calls the get_name() method to return it:

>>> fowl = Duck('Howard")

>>> fowl.name

inside the getter
'Howard'

You can still call get_name() directly, too, like a normal getter method:

>>> fowl.get_name()
inside the getter
'"Howard'

When you assign a value to the name attribute, the set_name() method will be called:

>>> fowl.name = 'Daffy'’
inside the setter

Get and Set Attribute Values with Properties | 133

>>> fowl.name
inside the getter
'Daffy’

You can still call the set_name() method directly:

>>> fowl.set_name('Daffy')
inside the setter

>>> fowl.name

inside the getter

'Daffy’

Another way to define properties is with decorators. In this next example, we'll define
two different methods, each called name() but preceded by different decorators:

o @property, which goes before the getter method

 @name.setter, which goes before the setter method

Here’s how they actually look in the code:

>>> class Duck():
def __init__ (self, input_name):
self.hidden_name = input_name

def name(self):
print('inside the getter')
return self.hidden_name

def name(self, input_name):
print('inside the setter')
self.hidden_name = input_name

You can still access name as though it were an attribute, but there are no visible
get_name() or set_name() methods:

>>> fowl = Duck('Howard')
>>> fowl.name

inside the getter
'Howard'

>>> fowl.name = 'Donald'’
inside the setter

>>> fowl.name

inside the getter
'Donald’

If anyone guessed that we called our attribute hidden_name, they
could still read and write it directly as fowl.hidden_name. In the
next section, you'll see how Python provides a special way to name
private attributes.

134 | Chapter 6: Oh Oh: Objects and Classes

In both of the previous examples, we used the name property to refer to a single
attribute (ours was called hidden_name) stored within the object. A property can refer
to a computed value, as well. Let’s define a Circle class that has a radius attribute and
a computed diameter property:

>>> class Circle():

def _ init_ (self, radius):
self.radius = radius

def diameter(self):
return 2 * self.radius

We create a Circle object with an initial value for its radius:

>>> ¢ = Circle(5)
>>> c.radius
5

We can refer to diameter as if it were an attribute such as radius:

>>> c.diameter

10
Here’s the fun part: we can change the radius attribute at any time, and the diameter
property will be computed from the current value of radius:

>>> c.radius = 7

>>> c.diameter

14
If you don’t specify a setter property for an attribute, you can’t set it from the outside.
This is handy for read-only attributes:

>>> c.dlameter = 20

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
There’s one more big advantage of using a property over direct attribute access: if you
ever change the definition of the attribute, you only need to fix the code within the
class definition, not in all the callers.

Name Mangling for Privacy

In the Duck class example in the previous section, we called our (not completely) hid-
den attribute hidden_name. Python has a naming convention for attributes that
should not be visible outside of their class definition: begin by using with two under-
scores (__).

Let’s rename hidden_name to __name, as demonstrated here:

Name Mangling for Privacy | 135

>>> class Duck():
def __init__ (self, input_name):
self.__name = input_name

def name(self):
print('inside the getter')
return self.__name

def name(self, input_name):
print('inside the setter')
self.__name = input_name

Take a moment to see if everything still works:

>>> fowl = Duck('Howard")
>>> fowl.name

inside the getter
'Howard'

>>> fowl.name = 'Donald'’
inside the setter

>>> fowl.name

inside the getter
'Donald’

Looks good. And, you can't access the __name attribute:

>>> fowl.__name

File "<stdin>", line 1, in <module>
AttributeError: 'Duck' object has no attribute

__name'

This naming convention doesn’t make it private, but Python does mangle the name to
make it unlikely for external code to stumble upon it. If you're curious and promise
not to tell everyone, here’s what it becomes:

>>> fowl._Duck__name
'Donald’

Notice that it didn’t print inside the getter. Although this isn't perfect protection,
name mangling discourages accidental or intentional direct access to the attribute.

Method Types

Some data (attributes) and functions (methods) are part of the class itself, and some
are part of the objects that are created from that class.

When you see an initial self argument in methods within a class definition, it'’s an
instance method. These are the types of methods that you would normally write when
creating your own classes. The first parameter of an instance method is self, and
Python passes the object to the method when you call it.

136 | Chapter 6: Oh Oh: Objects and Classes

In contrast, a class method affects the class as a whole. Any change you make to the
class affects all of its objects. Within a class definition, a preceding @classmethod dec-
orator indicates that that following function is a class method. Also, the first parame-
ter to the method is the class itself. The Python tradition is to call the parameter cls,
because class is a reserved word and can’t be used here. Let’s define a class method
for A that counts how many object instances have been made from it:

>>> class A():
count = 0
def __init__(self):

A.count += 1

def exclaim(self):

print("I'm an A!")

def kids(cls):

>>>

>>> easy_a =
>>> breezy_a
>>> wheezy_a
>>> A.kids()

print("A has", cls.count, "little objects.")

AQ

A has 3 little

AQ)
AQ)

objects.

Notice that we referred to A.count (the class attribute) rather than self.count
(which would be an object instance attribute). In the kids() method, we used
cls.count, but we could just as well have used A. count.

A third type of method in a class definition affects neither the class nor its objects; it’s
just in there for convenience instead of floating around on its own. It’s a static method,
preceded by a @staticmethod decorator, with no initial self or class parameter.
Here’s an example that serves as a commercial for the class CoyoteWeapon:

>>> class CoyotelWleapon():

def commercial():

>>>

print('This CoyoteWeapon has been brought to you by Acme')

>>> CoyoteWeapon.commercial()
This CoyoteWeapon has been brought to you by Acme

Notice that we didn’t need to create an object from class CoyoteWeapon to access this
method. Very class-y.

Duck Typing

Python has a loose implementation of polymorphism; this means that it applies the
same operation to different objects, regardless of their class.

DuckTyping | 137

Let’s use the same __init__() initializer for all three Quote classes now, but add two
new functions:

o who() just returns the value of the saved person string

o says() returns the saved words string with the specific punctuation

And here they are in action:

>>> class Quote():
def __init_ (self, person, words):
self.person = person
self.words = words
def who(self):
return self.person
def says(self):
return self.words +

>>> class QuestionQuote(Quote):
def says(self):
return self.words + '?'

>>> class ExclamationQuote(Quote):
def says(self):
return self.words + '!'

>>>

We didn’t change how QuestionQuote or ExclamationQuote were initialized, so we
didn’t override their __init__() methods. Python then automatically calls the
__init__() method of the parent class Quote to store the instance variables person
and words. That’s why we can access self.words in objects created from the sub-
classes QuestionQuote and ExclamationQuote.

Next up, let's make some objects:

>>> hunter = Quote('Elmer Fudd', "I'm hunting wabbits")
>>> print(hunter.who(), 'says:', hunter.says())
Elmer Fudd says: I'm hunting wabbits.

>>> huntedl = QuestionQuote('Bugs Bunny', "What's up, doc")
>>> print(huntedl.who(), 'says:', huntedil.says())
Bugs Bunny says: What's up, doc?

>>> hunted2 = ExclamationQuote('Daffy Duck', "It's rabbit season")
>>> print(hunted2.who(), 'says:', hunted2.says())
Daffy Duck says: It's rabbit season!

Three different versions of the says() method provide different behavior for the
three classes. This is traditional polymorphism in object-oriented languages. Python
goes a little further and lets you run the who() and says() methods of any objects

138 | Chapter 6: Oh Oh: Objects and Classes

that have them. Let’s define a class called BabblingBrook that has no relation to our
previous woodsy hunter and huntees (descendants of the Quote class):

>>> class BabblingBrook():
def who(self):

return 'Brook’
def says(self):

return 'Babble’

>>> brook = BabblingBrook()

Now, run the who() and says() methods of various objects, one (brook) completely
unrelated to the others:

>>> def who_says(obj):
print(obj.who(), 'says', obj.says())

>>> who_says(hunter)

Elmer Fudd says I'm hunting wabbits.
>>> who_says(hunted1)

Bugs Bunny says What's up, doc?

>>> who_says(hunted?2)

Daffy Duck says It's rabbit season!
>>> who_says(brook)

Brook says Babble

This behavior is sometimes called duck typing, after the old saying:

If it walks like a duck and quacks like a duck, it’s a duck.
—A Wise Person

Special Methods

You can now create and use basic objects, but now let’s go a bit deeper and do more.

When you type something such asa = 3 + 8, how do the integer objects with values
3 and 8 know how to implement +? Also, how does a know how to use = to get the
result? You can get at these operators by using Python’s special methods (you might
also see them called magic methods). You don’t need Gandalf to perform any magic,
and they’re not even complicated.

The names of these methods begin and end with double underscores (__). You've
already seen one: __init__ initializes a newly created object from its class definition
and any arguments that were passed in.

Suppose that you have a simple Word class, and you want an equals() method that
compares two words but ignores case. That is, a Word containing the value 'ha’
would be considered equal to one containing 'HA'.

Special Methods | 139

The example that follows is a first attempt, with a normal method we're calling
equals(). self.text is the text string that this Word object contains, and the
equals() method compares it with the text string of word2 (another Word object):

>>> class Word():

def __init__(self, text):
self.text = text

def equals(self, word2):
return self.text.lower() == word2.text.lower()

Then, make three Word objects from three different text strings:

>>> first = Word('ha')
>>> second = Word('HA')
>>> third = Word('eh')

When strings 'ha' and 'HA' are compared to lowercase, they should be equal:

>>> first.equals(second)
True

But the string 'eh' will not match "ha':

>>> first.equals(third)
False

We defined the method equals() to do this lowercase conversion and comparison. It
would be nice to just say if first == second, just like Python’s built-in types. So,
let's do that. We change the equals() method to the special name __eq__() (you'll
see why in a moment):

>>> class Word():
def __init__(self, text):
self.text = text
def __eq_ (self, word2):
return self.text.lower() == word2.text.lower()

Let’s see if it works:

>>> first = Word('ha')
>>> second = Word('HA')
>>> third = Word('eh')

>>> first == second
True
>>> first == third
False

Magic! All we needed was the Python’s special method name for testing equality,
__eq__(). Tables 6-1 and 6-2 list the names of the most useful magic methods.

140 | Chapter 6: Oh Oh: Objects and Classes

Table 6-1. Magic methods for comparison
__eq__(self,other) self==other
__ne__(self, other) self !=other
__1t__(self,other) self < other
__gt__(self,other) self > other
__le__(self, other) self <= other

__ge__(self, other) self >= other

Table 6-2. Magic methods for math

__add__(self, other) self + other
__sub__(self, other) self - other
__mul__(self, other) self * other

__floordiv__(self, other) self / / other
__truediv__(self,other) self [other
__mod__(self, other) self % other

__pow__(self, other) self ** other

You aren't restricted to use the math operators such as + (magic method __add__())
and - (magic method __sub__()) with numbers. For instance, Python string objects
use + for concatenation and * for duplication. There are many more, documented

online at Special method names. The most common among them are presented in
Table 6-3.

Table 6-3. Other, miscellaneous magic methods
_str__(self) str(self)
__repr__(self) repr(self)

__len__(self) len(self)

Special Methods | 141

http://bit.ly/pydocs-smn

Besides __init__(), you might find yourself using __str__() the most in your own
methods. It's how you print your object. It’s used by print(), str(), and the string
formatters that you can read about in Chapter 7. The interactive interpreter uses the
__repr__() function to echo variables to output. If you fail to define either
__str__() or __repr__(), you get Python’s default string version of your object:

>>> first = Word('ha')

>>> first

<__main__.Word object at 0x1006ba3do>
>>> print(first)

<__main__.Word object at 0x1006ba3do>

Let’s add both __str__() and __repr__() methods to the Word class to make it pret-
tier:

>>> class Word():
def __init__(self, text):
self.text = text
def __eq__ (self, word2):
return self.text.lower() == word2.text.lower()
def __str__(self):
return self.text
def __repr__(self):
return 'Word("' self.text '")'

>>> first = Word('ha')

>>> first # uses __repr__
Word("ha")

>>> print(first) # uses __str _
ha

To explore even more special methods, check out the Python documentation.

Aggregation and Composition

Inheritance is a good technique to use when you want a child class to act like its par-
ent class most of the time (when child is-a parent). It's tempting to build elaborate
inheritance hierarchies, but sometimes composition or aggregation make more sense.
What's the difference? In composition, one thing is part of another. A duck is-a bird
(inheritance), but has-a tail (composition). A tail is not a kind of duck, but part of a
duck. In this next example, let’s make bill and tail objects and provide them to a
new duck object:

>>> class Bill():
def __init__(self, description):
self.description = description

>>> class Tail():
def __init__(self, length):
self.length = length

142 | Chapter 6: Oh Oh: Objects and Classes

http://bit.ly/pydocs-smn

>>> class Duck():
def __init__(self, bill, tail):
self.bill = bill
self.tall = tail
def about(self):
print('This duck has a', self.bill.description,
'bill and a', self.tail.length, 'tail')

>>> a_tail = Tail('long')

>>> a_bill = Bill('wide orange')

>>> duck = Duck(a_bill, a_tail)

>>> duck.about()

This duck has a wide orange bill and a long tail

Aggregation expresses relationships, but is a little looser: one thing uses another, but
both exist independently. A duck uses a lake, but one is not a part of the other.

When to Use Classes and Objects versus Modules

Here are some guidelines for deciding whether to put your code in a class or a mod-
ule:

o Objects are most useful when you need a number of individual instances that
have similar behavior (methods), but differ in their internal states (attributes).

o Classes support inheritance, modules don't.

o If you want only one of something, a module might be best. No matter how many
times a Python module is referenced in a program, only one copy is loaded. (Java
and C++ programmers: if you're familiar with the book Design Patterns: Elements
of Reusable Object-Oriented Software by Erich Gamma, you can use a Python
module as a singleton.)

o If you have a number of variables that contain multiple values and can be passed
as arguments to multiple functions, it might be better to define them as classes.
For example, you might use a dictionary with keys such as size and color to
represent a color image. You could create a different dictionary for each image in
your program, and pass them as arguments to functions such as scale() or
transform(). This can get messy as you add keys and functions. It's more coher-
ent to define an Image class with attributes size or color and methods scale()
and transform(). Then, all the data and methods for a color image are defined in
one place.

o Use the simplest solution to the problem. A dictionary, list, or tuple is simpler,
smaller, and faster than a module, which is usually simpler than a class.

When to Use Classes and Objects versus Modules | 143

Guido’s advice:

Avoid overengineering datastructures. Tuples are better than objects (try namedtuple
too though). Prefer simple fields over getter/setter functions ... Built-in datatypes are
your friends. Use more numbers, strings, tuples, lists, sets, dicts. Also check out the
collections library, esp. deque.

—Guido van Rossum

Named Tuples

Because Guido just mentioned them and I haven't yet, this is a good place to talk
about named tuples. A named tuple is a subclass of tuples with which you can access
values by name (with . name) as well as by position (with [offset]).

Let’s take the example from the previous section and convert the Duck class to a
named tuple, with bill and tail as simple string attributes. We'll call the namedtuple
function with two arguments:

o The name

o A string of the field names, separated by spaces

Named tuples are not automatically supplied with Python, so you need to load a
module before using them. We do that in the first line of the following example:

>>> from collections import namedtuple
>>> Duck = namedtuple('Duck', 'bill tail')
>>> duck = Duck('wide orange', 'long')

>>> duck

Duck(bill="'wide orange', tail='long')

>>> duck.bill

'wide orange'

>>> duck.tail

'long'’

You can also make a named tuple from a dictionary:
>>> parts = {'bill': 'wide orange', 'tail': 'long'}
>>> duck2 = Duck(**parts)

>>> duck?
Duck(bill="wide orange', tail='long')

In the preceding code, take a look at **parts. This is a keyword argument. It extracts
the keys and values from the parts dictionary and supplies them as arguments to
Duck(). It has the same effect as:

>>> duck2 = Duck(bill = 'wide orange', tail = 'long')

Named tuples are immutable, but you can replace one or more fields and return
another named tuple:

144 | Chapter 6: Oh Oh: Objects and Classes

http://bit.ly/guido-vr

>>> duck3 = duck2._replace(tail='magnificent', bill='crushing')
>>> duck3
Duck(bill='crushing', tail='magnificent')

We could have defined duck as a dictionary:

>>> duck_dict = {'bill': 'wide orange', 'tail': 'long'}
>>> duck_dict
{'tail': 'long', 'bill': 'wide orange'}

You can add fields to a dictionary:

>>> duck_dict['color'] = 'green'
>>> duck_dict
{'color': 'green', 'tail': 'long', 'bill': 'wide orange'}

But not to a named tuple:

>>> duck.color = 'green'

File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'color'

To recap, here are some of the pros of a named tuple:

o Itlooks and acts like an immutable object.
o It is more space- and time-efficient than objects.

 You can access attributes by using dot notation instead of dictionary-style square
brackets.

 You can use it as a dictionary key.

Things to Do

6.1. Make a class called Thing with no contents and print it. Then, create an object
called example from this class and also print it. Are the printed values the same or
different?

6.2. Make a new class called Thing2 and assign the value 'abc' to a class attribute
called letters. Print letters.

6.3. Make yet another class called, of course, Thing3. This time, assign the value
'xyz' to an instance (object) attribute called letters. Print letters. Do you need to
make an object from the class to do this?

6.4. Make a class called Element, with instance attributes name, symbol, and number.
Create an object of this class with the values 'Hydrogen', 'H', and 1.

ThingstoDo | 145

6.5. Make a dictionary with these keys and values: 'name': 'Hydrogen', 'symbol':
'H', 'number': 1. Then, create an object called hydrogen from class Element using
this dictionary.

6.6. For the Element class, define a method called dump() that prints the values of the
object’s attributes (name, symbol, and number). Create the hydrogen object from this
new definition and use dump() to print its attributes.

6.7. Call print(hydrogen). In the definition of Element, change the name of method
dump to __str__, create a new hydrogen object, and call print(hydrogen) again.

6.8. Modify Element to make the attributes name, symbol, and number private. Define
a getter property for each to return its value.

6.9. Define three classes: Bear, Rabbit, and Octothorpe. For each, define only one
method: eats(). This should return 'berries' (Bear), 'clover' (Rabbit), or
'campers' (Octothorpe). Create one object from each and print what it eats.

6.10. Define these classes: Laser, Claw, and SmartPhone. Each has only one method:
does(). This returns 'disintegrate' (Laser), 'crush' (Claw), or 'ring' (Smart
Phone). Then, define the class Robot that has one instance (object) of each of these.
Define a does() method for the Robot that prints what its component objects do.

146 | Chapter 6: Oh Oh: Objects and Classes

CHAPTER7
Mangle Data Like a Pro

In this chapter, you’ll learn many techniques for taming data. Most of them concern
these built-in Python data types:

strings
Sequences of Unicode characters, used for text data.

bytes and bytearrays
Sequences of eight-bit integers, used for binary data.

Text Strings

Text is the most familiar type of data to most readers, so we'll begin with some of the
powerful features of text strings in Python.

Unicode

All of the text examples in this book thus far have been plain old ASCII. ASCII was
defined in the 1960s, when computers were the size of refrigerators and only slightly
better at performing computations. The basic unit of computer storage is the byte,
which can store 256 unique values in its eight bits. For various reasons, ASCII only
used 7 bits (128 unique values): 26 uppercase letters, 26 lowercase letters, 10 digits,
some punctuation symbols, some spacing characters, and some nonprinting control
codes.

Unfortunately, the world has more letters than ASCII provides. You could have a hot
dog at a diner, but never a Gewiirztraminer' at a café. Many attempts have been made

1 This wine has an umlaut in Germany, but loses it in France.

147

to add more letters and symbols, and you’ll see them at times. Just a couple of those
include:

e Latin-1, or ISO 8859-1
« Windows code page 1252

Each of these uses all eight bits, but even that’s not enough, especially when you need
non-European languages. Unicode is an ongoing international standard to define the

characters of all the worlds languages, plus symbols from mathematics and other
fields.

Unicode provides a unique number for every character, no matter what the platform,
no matter what the program, no matter what the language.

—The Unicode Consortium

The Unicode Code Charts page has links to all the currently defined character sets
with images. The latest version (6.2) defines over 110,000 characters, each with a
unique name and identification number. The characters are divided into eight-bit sets
called planes. The first 256 planes are the basic multilingual planes. See the Wikipedia
page about Unicode planes for details.

Python 3 Unicode strings

Python 3 strings are Unicode strings, not byte arrays. This is the single largest change
from Python 2, which distinguished between normal byte strings and Unicode char-
acter strings.

If you know the Unicode ID or name for a character, you can use it in a Python
string. Here are some examples:

« A \u followed by four hex numbers' specifies a character in one of Unicode’s 256
basic multilingual planes. The first two are the plane number (00 to FF), and the
next two are the index of the character within the plane. Plane 00 is good old
ASCII, and the character positions within that plane are the same as ASCII.

o For characters in the higher planes, we need more bits. The Python escape
sequence for these is \U followed by eight hex characters; the leftmost ones need
to be @.

o For all characters, \N{ name } lets you specity it by its standard name. The Uni-
code Character Name Index page lists these.

The Python unicodedata module has functions that translate in both directions:

1 Base 16, specified with characters 0-9 and A-F.

148 | Chapter7: Mangle Data Like a Pro

http://www.unicode.org/charts
http://bit.ly/unicode-plane
http://bit.ly/unicode-plane
http://www.unicode.org/charts/charindex.html
http://www.unicode.org/charts/charindex.html

o lookup()—Takes a case-insensitive name and returns a Unicode character

o name()—Takes a Unicode character and returns an uppercase name

In the following example, we'll write a test function that takes a Python Unicode char-
acter, looks up its name, and looks up the character again from the name (it should
match the original character):

>>> def unicode_test(value):
import unicodedata
name = unicodedata.name(value)
value2 = unicodedata.lookup(name)
print('value="%s", name="%s", value2="%s"' % (value, name, value2))

Let’s try some characters, beginning with a plain ASCII letter:

>>> unicode_test('A')
value="A", name="LATIN CAPITAL LETTER A", value2="A"

ASCII punctuation:

>>> unicode_test('$"')
value="$", name="DOLLAR SIGN", value2="$"

A Unicode currency character:

>>> unicode_test('\ub0a2')
value="¢", name="CENT SIGN", value2="¢"

Another Unicode currency character:

>>> unicode_test('\u20ac')

value="€", name="EURO SIGN", value2="€"
The only problem you could potentially run into is limitations in the font youre
using to display text. All fonts do not have images for all Unicode characters, and
might display some placeholder character. For instance, here’s the Unicode symbol for
SNOWMAN, like symbols in dingbat fonts:

>>> unicode_test('\u2603')

value=""%", name="SNOWMAN", value2=""%"
Suppose that we want to save the word café in a Python string. One way is to copy
and paste it from a file or website and hope that it works:

>>> place = 'café'

>>> place

'café’
This worked because I copied and pasted from a source that used UTF-8 encoding
(which you’ll see in a few pages) for its text.

TextStrings | 149

How can we specify that final é character? If you look at character index for E, you
see that the name E WITH ACUTE, LATIN SMALL LETTER has the value OOE9. Let’s
check with the name() and lookup() functions that we were just playing with. First
give the code to get the name:

>>> unicodedata.name('\ub0e9')
'LATIN SMALL LETTER E WITH ACUTE'

Next, give the name to look up the code:

>>> unicodedata.lookup('E WITH ACUTE, LATIN SMALL LETTER')

File "<stdin>", line 1, in <module>
KeyError: "undefined character name 'E WITH ACUTE, LATIN SMALL LETTER'"

The names listed on the Unicode Character Name Index page were
reformatted to make them sort nicely for display. To convert them
to their real Unicode names (the ones that Python uses), remove
the comma and move the part of the name that was after the
comma to the beginning. Accordingly, change E WITH ACUTE,
LATIN SMALL LETTER to LATIN SMALL LETTER E WITH ACUTE:

>>> unicodedata.lookup('LATIN SMALL LETTER E WITH ACUTE")
Iél

Now, we can specify the string café by code or by name:

>>> place = 'caf\u00e9'

>>> place

'café’

>>> place = 'caf\N{LATIN SMALL LETTER E WITH ACUTE}'
>>> place

'café’

In the preceding snippet, we inserted the é directly in the string, but we can also build
a string by appending:

>>> u_umlaut = '"\N{LATIN SMALL LETTER U WITH DIAERESIS}'

>>> u_umlaut

G

>>> drink = 'Gew' + u_umlaut + 'rztraminer'

>>> print('Now I can finally have my', drink, 'in a', place)

Now I can finally have my Gewirztraminer in a café
The string len function counts Unicode characters, not bytes:

>>> len('S')

1

>>> len('\U00O1f47b')
1

150 | Chapter7: Mangle Data Like a Pro

http://bit.ly/e-index

Encode and decode with UTF-8

You don’t need to worry about how Python stores each Unicode character when you
do normal string processing.

However, when you exchange data with the outside world, you need a couple of
things:

A way to encode character strings to bytes

o A way to decode bytes to character strings

If there were fewer than 64,000 characters in Unicode, we could store each Unicode
character ID in two bytes. Unfortunately, there are more. We could encode each ID in
three or four bytes, but that would increase the memory and disk storage space needs
for common text strings by three or four times.

Ken Thompson and Rob Pike, whose names will be familiar to Unix developers,
designed the UTF-8 dynamic encoding scheme one night on a placemat in a New Jer-
sey diner. It uses one to four bytes per Unicode character:

o One byte for ASCII
 Two bytes for most Latin-derived (but not Cyrillic) languages
« Three bytes for the rest of the basic multilingual plane

o Four bytes for the rest, including some Asian languages and symbols

UTF-8 is the standard text encoding in Python, Linux, and HTML. It’s fast, complete,
and works well. If you use UTF-8 encoding throughout your code, life will be much
easier than trying to hop in and out of various encodings.

If you create a Python string by copying and pasting from another
source such as a web page, be sure the source is encoded in the
UTEF-8 format. It's very common to see text that was encoded as
Latin-1 or Windows 1252 copied into a Python string, which causes
an exception later with an invalid byte sequence.

Encoding

You encode a string to bytes. The string encode() function’s first argument is the
encoding name. The choices include those presented in Table 7-1.

TextStrings | 151

Table 7-1. Encodings

'asciti' Good old seven-bit ASCII

'utf-8' Eight-bit variable-length encoding, and what you almost always want to use
'latin-1' Also known as IS0 8859-1

'cp-1252' A common Windows encoding

'unicode-escape’ Python Unicode literal format, “\u"xxxx or “\U xxooox

You can encode anything as UTF-8. Let’s assign the Unicode string '\u2603' to the
name snowman:

>>> snowman = '\u2603'

snowman is a Python Unicode string with a single character, regardless of how many
bytes might be needed to store it internally:

>>> len(snowman)
1

Next let’s encode this Unicode character to a sequence of bytes:
>>> ds = snowman.encode('utf-8')

As I mentioned earlier, UTF-8 is a variable-length encoding. In this case, it used three
bytes to encode the single snowman Unicode character:

>>> len(ds)

3

>>> ds
b'\xe2\x98\x83"'

Now, len() returns the number of bytes (3) because ds is a bytes variable.

You can use encodings other than UTF-8, but you’'ll get errors if the Unicode string
can’t be handled by the encoding. For example, if you use the ascii encoding, it will
fail unless your Unicode characters happen to be valid ASCII characters as well:

>>> ds = snowman.encode('ascii')

File "<stdin>", 1ine 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character '\u2603'
in position 0: ordinal not in range(128)
The encode() function takes a second argument to help you avoid encoding excep-
tions. Its default value, which you can see in the previous example, is 'strict'; it

152 | Chapter7: Mangle Data Like a Pro

raises a UnicodeEncodeError if it sees a non-ASCII character. There are other encod-
ings. Use 'ignore' to throw away anything that won’t encode:

>>> snowman.encode('ascii', 'ignore')
bll

Use 'replace’ to substitute ? for unknown characters:

>>> snowman.encode('ascii', 'replace')

b'?!
Use 'backslashreplace' to produce a Python Unicode character string, like
unicode-escape:

>>> snowman.encode('ascii', 'backslashreplace')
b'\\u2603"'

You would use this if you needed a printable version of the Unicode escape sequence.
The following produces character entity strings that you can use in web pages:

>>> snowman.encode('ascii', 'xmlcharrefreplace')
b'☃"

Decoding

We decode byte strings to Unicode strings. Whenever we get text from some external
source (files, databases, websites, network APIs, and so on), its encoded as byte
strings. The tricky part is knowing which encoding was actually used, so we can run it
backward and get Unicode strings.

The problem is that nothing in the byte string itself says what encoding was used. I
mentioned the perils of copying and pasting from websites earlier. You've probably
visited websites with odd characters where plain old ASCII characters should be.

Let’s create a Unicode string called place with the value 'café':

>>> place = 'caf\u00e9'
>>> place

'café'’

>>> type(place)

<class 'str's

Encode it in UTF-8 format in a bytes variable called place_bytes:

>>> place_bytes = place.encode('utf-8")
>>> place_bytes

b'caf\xc3\xa9'

>>> type(place_bytes)

<class 'bytes's

TextStrings | 153

Notice that place_bytes has five bytes. The first three are the same as ASCII (a
strength of UTF-8), and the final two encode the 'é'. Now, lets decode that byte
string back to a Unicode string:

>>> place2 = place_bytes.decode('utf-8")
>>> place2
'café’

This worked because we encoded to UTF-8 and decoded from UTF-8. What if we
told it to decode from some other encoding?

>>> place3 = place_bytes.decode('ascii')

File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 3:
ordinal not in range(128)

The ASCII decoder threw an exception because the byte value 0xc3 is illegal in
ASCII. There are some 8-bit character set encodings in which values between 128
(hex 80) and 255 (hex FF) are legal but not the same as UTF-8:

>>> place4 = place_bytes.decode('latin-1")
>>> place4d
'cafhe'
>>> place5
>>> place5
'caffo’

Urk.

place_bytes.decode('windows-1252")

The moral of this story: whenever possible, use UTF-8 encoding. It works, is sup-
ported everywhere, can express every Unicode character, and is quickly decoded and
encoded.

For more information

If you would like to learn more, these links are particularly helpful:

o Unicode HOWTO
o Pragmatic Unicode

o The Absolute Minimum Every Software Developer Absolutely, Positively Must
Know About Unicode and Character Sets (No Excuses!)

Format

We've pretty much ignored text formatting—until now. Chapter 2 shows a few string
alignment functions, and the code examples have used simple print() statements, or
just let the interactive interpreter display values. But it’s time we look at how to inter-

154 | Chapter7: Mangle Data Like a Pro

http://bit.ly/unicode-howto
http://bit.ly/pragmatic-uni
http://bit.ly/jspolsky
http://bit.ly/jspolsky

polate data values into strings—in other words, put the values inside the strings—
using various formats. You can use this to produce reports and other outputs for
which appearances need to be just so.

Python has two ways of formatting strings, loosely called old style and new style. Both
styles are supported in Python 2 and 3 (new style in Python 2.6 and up). Old style is
simpler, so we'll begin there.

0ld style with %

The old style of string formatting has the form string % data. Inside the string are
interpolation sequences. Table 7-2 illustrates that the very simplest sequence is a %
followed by a letter indicating the data type to be formatted.

Table 7-2. Conversion types
%s string

%d decimal integer

%x hex integer

%o octal integer

%f decimal float

%e exponential float

%g decimal or exponential float

% a literal %

xR

Following are some simple examples. First, an integer:

>>> '%s' % 42
l42|
>>> '%d' % 42
l42|
>>> '%x' % 42
l2a|
>>> '%0"' % 42
l52|

A float:

>>> '%s' % 7.03
'7.03'

>>> '%f' % 7.03
'7.030000'

TextStrings | 155

>>>

"%e' % 7.03

'7.030000e+00'

>>>

"%g' % 7.03

'7.03'

An integer and a literal %:

>>>

"%d%%" % 100

'100%'

Some string and integer interpolation:

>>>
>>>
>>>

>>>
nMy

>>>

actor = 'Richard Gere'
cat = 'Chester'
welght = 28

"My wife's favorite actor is %s" % actor
wife's favorite actor is Richard Gere"

"Our cat %s weighs %s pounds" % (cat, weight)

'Our cat Chester weighs 28 pounds'

That %s inside the string means to interpolate a string. The number of % appearances
in the string needs match the number of data items after the %. A single data item
such as actor goes right after the %. Multiple data must be grouped into a tuple
(bounded by parentheses, separated by commas) such as (cat, weight).

Even though weight is an integer, the %s inside the string converted it to a string.

You can add other values between the % and the type specifier to designate minimum
and maximum widths, alignment, and character filling:

For variables, let’s define an integer, n; a float, f; and a string, s:

>>>
>>>
>>>

n =42
f=7.03
s = 'string cheese'

Format them using default widths:

>>>

'%d %f %s' % (n, f, s)

'42 7.030000 string cheese'

Set a minimum field width of 10 characters for each variable, and align them to the
right, filling unused spots on the left with spaces:

>>>
'

'%10d %10f %10s' % (n, f, s)
42 7.030000 string cheese'

Use the same field width, but align to the left:

>>>
'42

'%-10d %-10f %-10s' % (n, f, s)
7.030000 string cheese'

156 | Chapter7: Mangle Data Like a Pro

This time, the same field width, but a maximum character width of 4, and aligned to
the right. This setting truncates the string, and limits the float to 4 digits after the dec-
imal point:

>>> '%10.4d %10.4f %10.4s' % (n, f, s)
! 0042 7.0300 stri'

The same song as before, but right-aligned:

>>> '%.4d %.4f %.4s' % (n, f, s)
'0042 7.0300 stri'

Finally, get the field widths from arguments rather than hard-coding them:
>>> '%*.xd %*.*f %*.*s' % (10, 4, n, 10, 4, f, 10, 4, s)
! 0042 7.0300 stri'

New style formatting with {} and format

Old style formatting is still supported. In Python 2, which will freeze at version 2.7, it
will be supported forever. However, new style formatting is recommended if you're
using Python 3.

The simplest usage is demonstrated here:

>>> '{} {} {}'.format(n, f, s)
'42 7.03 string cheese'

Old-style arguments needed to be provided in the order in which their % placeholders
appeared in the string. With new-style, you can specify the order:

>>> {2} {0} {1}'.format(f, s, n)
'42 7.03 string cheese'

The value 0 referred to the first argument, f, whereas 1 referred to the string s, and 2
referred to the last argument, the integer n.

The arguments can be a dictionary or named arguments, and the specifiers can
include their names:

>>> '{n} {f} {s}'.format(n=42, f=7.03, s='string cheese')
'42 7.03 string cheese'

In this next example, let’s try combining our three values into a dictionary, which
looks like this:

>>>d = {'n': 42, 'f': 7.03, 's': 'string cheese'}

In the following example, {0} is the entire dictionary, whereas {1} is the string
'other' that follows the dictionary:

>>> '{0[n]} {0[f]} {0[s]} {1}'.format(d, 'other')
'42 7.03 string cheese other'

TextStrings | 157

These examples all printed their arguments with default formats. Old-style allows a
type specifier after the % in the string, but new-style puts it after a :. First, with posi-
tional arguments:

>>> '{0:d} {1:f} {2:s}'.format(n, f, s)
'42 7.030000 string cheese'

In this example, we'll use the same values, but as named arguments:

>>> '"{n:d} {f:f} {s:s}'.format(n=42, f=7.03, s='string cheese')
'42 7.030000 string cheese'

The other options (minimum field width, maximum character width, alignment, and
so on) are also supported.

Minimum field width 10, right-aligned (default):

>>> '{0:10d} {1:10f} {2:10s}'.format(n, f, s)
! 42 7.030000 string cheese'

Same as the preceding example, but the > characters make the right-alignment more
explicit:

>>> '{0:>10d} {1:>10f} {2:>10s}'.format(n, f, s)
! 42 7.030000 string cheese'

Minimum field width 10, left-aligned:

>>> '{0:<10d} {1:<10f} {2:<10s}'.format(n, f, s)
'42 7.030000 string cheese'

Minimum field width 10, centered:

>>> '{0:710d} {1:710f} {2:710s}'.format(n, f, s)

! 42 7.030000 string cheese'
There is one change from old-style: the precision value (after the decimal point) still
means the number of digits after the decimal for floats, and the maximum number of
characters for strings, but you can’t use it for integers:

>>> '{0:>10.4d} {1:>10.4f} {2:10.4s}'.format(n, f, s)

File "<stdin>", line 1, in <module>
ValueError: Precision not allowed in integer format specifier
>>> '{0:>10d} {1:>10.4f} {2:>10.4s}"'.format(n, f, s)
! 42 7.0300 stri’
The final option is the fill character. If you want something other than spaces to pad
your output fields, put it right after the :, before any alignment (<, >, #) or width
specifiers:

>>> '{0:1420s}'.format('BIG SALE')

158 | Chapter7: Mangle Data Like a Pro

Match with Regular Expressions

Chapter 2 touched on simple string operations. Armed with that introductory infor-
mation, you've probably used simple “wildcard” patterns on the command line, such
as Is *.py, which means list all filenames ending in .py.

Its time to explore more complex pattern matching by using regular expressions.
These are provided in the standard module re, which we’ll import. You define a
string pattern that you want to match, and the source string to match against. For sim-
ple matches, usage looks like this:

result = re.match('You', 'Young Frankenstein')

Here, 'You' is the pattern and 'Young Frankenstein' is the source—the string you
want to check. match() checks whether the source begins with the pattern.

For more complex matches, you can compile your pattern first to speed up the match
later:

youpattern = re.compile('You')
Then, you can perform your match against the compiled pattern:
result = youpattern.match('Young Frankenstein')

match() is not the only way to compare the pattern and source. Here are several other
methods you can use:

o search() returns the first match, if any.
o findall() returns a list of all non-overlapping matches, if any.

o split() splits source at matches with pattern and returns a list of the string
pieces.

o sub() takes another replacement argument, and changes all parts of source that
are matched by pattern to replacement.

Exact match with match()

Does the string 'Young Frankenstein' begin with the word 'You'? Here’s some code
with comments:

>>> import re

>>> source = 'Young Frankenstein'

>>> m = re.match('You', source) # match starts at the beginning of source

>>> i1f m: # match returns an object; do this to see what matched
print(m.group())

You

>>> m = re.match('~You', source) # start anchor does the same

TextStrings | 159

>>> if m:
print(m.group())

You
How about 'Frank'?

>>> m = re.match('Frank', source)
>>> if m:

print(m.group())

This time match() returned nothing and the if did not run the print statement. As I
said earlier, match() works only if the pattern is at the beginning of the source. But
search() works if the pattern is anywhere:

>>> m = re.search('Frank', source)
>>> if m:

print(m.group())
Frank
Let’s change the pattern:

>>> m = re.match('.*Frank', source)
>>> if m: # match returns an object
print(m.group())

Young Frank
Following is a brief explanation of how our new pattern works:

o . means any single character.

o * means any number of the preceding thing. Together, .* mean any number of
characters (even zero).

o Frank is the phrase that we wanted to match, somewhere.

match() returned the string that matched . *Frank: 'Young Frank'.

First match with search()

You can use search() to find the pattern 'Frank' anywhere in the source string
'Young Frankenstein', without the need for the .* wildcards:

>>> m = re.search('Frank', source)
>>> if m: # search returns an object
print(m.group())

Frank

160 | Chapter7: Mangle Data Like a Pro

All matches with findall()

The preceding examples looked for one match only. But what if you want to know
how many instances of the single-letter string 'n' are in the string?

>>> m = re.findall('n', source)

>>> m # findall returns a list
[In|, lnl’ Inl’ lnl]

>>> print('Found', len(m), 'matches')
Found 4 matches

How about 'n' followed by any character?

>>> m = re.findall('n.', source)

>>> M

[Ingl’ Inkl’ lnsl]
Notice that it did not match that final 'n'. We need to say that the character after 'n'
is optional with ?:

>>> m = re.findall('n.?', source)

>>> M
[Ingll Inkll

ns', 'n']

Split at matches with split()

The example that follows shows you how to split a string into a list by a pattern rather
than a simple string (as the normal string split() method would do):
>>> m = re.split('n', source)

>>> m # split returns a list
['You', 'g Fra', 'ke', 'stei', '']

Replace at matches with sub()
This is like the string replace() method, but for patterns rather than literal strings:

>>> m = re.sub('n', '?"', source)
>>> m # sub returns a string
'You?g Fra?ke?stei?’

Patterns: special characters

Many descriptions of regular expressions start with all the details of how to define
them. I think that’s a mistake. Regular expressions are a not-so-little language in their
own right, with too many details to fit in your head at once. They use so much punc-
tuation that they look like cartoon characters swearing.

With these expressions (match(), search(), findall(), and sub()) under your belt,
let’s get into the details of building them. The patterns you make apply to any of these
functions.

TextStrings | 161

You've seen the basics:

o Literal matches with any non-special characters
o Any single character except \n with .
o Any number (including zero) with *

 Optional (zero or one) with ?

First, special characters are shown in Table 7-3.

Table 7-3. Special characters

Pattern Matches

\d a single digit

\D a single non-digit

\w an alphanumeric character

\W a non-alphanumeric character

\s a whitespace character

\S a non-whitespace character

\b a word boundary (between a \w and a \W, in either order)
\B a non-word boundary

The Python string module has predefined string constants that we can use for test-
ing. We'll use printable, which contains 100 printable ASCII characters, including
letters in both cases, digits, space characters, and punctuation:

>>> import string

>>> printable = string.printable

>>> len(printable)

100

>>> printable[0:50]
'0123456789abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMN'

>>> printable[50:]
'OPQRSTUVWXYZ ! "#$%&\ ' ()*+,-./:;<=>2@[\\]*_"{|}~ \t\n\r\xeb\xoc'

Which characters in printable are digits?

>>> re.findall('\d', printable)
[I0|’ lll’ I2|’ I3I’ I4l’ |5I’ l6', l7l, l8', l9l]

Which characters are digits, letters, or an underscore?

162 | Chapter7: Mangle Data Like a Pro

>>> re.findall('\w', printable)
[Iel, |1I’ Izl, |3I’ I4l’ lsl’ I6l’ l7l, l8|’ l9l, lal’ Ibl,
IC', ldl, |el’ I.Fl, |gl’ Ih|, l.‘LI’ Ijl’ lkl’ I‘Ll’ lml, lnl’

‘o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'A', 'B', 'c', 'D', 'E', '"F', 'G', 'H', 'LI', 'J', 'K', 'L'",
'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', "W', 'X',
oz,

Which are spaces?

>>> re.findall('\s', printable)
[" ' "\t "\n', \r', "\xeb', "\x6c']
Regular expressions are not confined to ASCII. A \d will match whatever Unicode

calls a digit, not just ASCII characters '0' through '9'. Let’s add two non-ASCII low-
ercase letters from FileFormat.info:

In this test, we'll throw in the following:

o Three ASCII letters
o Three punctuation symbols that should not match a \w
o A Unicode LATIN SMALL LETTER E WITH CIRCUMFLEX (\u0Oea)
o A Unicode LATIN SMALL LETTER E WITH BREVE (\u0115)
>>> x = 'abc' + '-/*' + '\ubGea' + '\u0115'
As expected, this pattern found only the letters:
>>> re.findall('\w', x)

[|a|, lbl’ IC', lél’ Iél]

Patterns: using specifiers

Now, let's make “punctuation pizza,” using the main pattern specifiers for regular
expressions, which are presented in Table 7-4.

In the table, expr and the other italicized words mean any valid regular expression.

Table 7-4. Pattern specifiers

Pattern Matches

abc literal abc
(expr) expr
exprl | expr2 exprl or expr2

any character except \n

TextStrings | 163

http://bit.ly/unicode-letter

Pattern Matches

A start of source string

$ end of source string

prev? Z€I0 OF one prev

prev * Z€10 Or more prev, as many as possible

prev *? zero or more prev, as few as possible

prev + one or more prev, as many as possible

prev +? one or more prev, as few as possible

prev {m} m consecutive prev

prev{m,n} m to n consecutive prev, as many as possible

prev{m,n}? m to n consecutive prev, as few as possible
[abc] aorborc(sameasa|b]c)

[~abc] not (aorborc)

prev (2=next) previf followed by next

prev (2! next) previf not followed by next

(2<=prev) next nextif preceded by prev

(?<! prev) next nextif not preceded by prev

Your eyes might cross permanently when trying to read these examples. First, lets
define our source string:

>>> source = '''I wish I may, I wish I might
... Have a dish of fish tonight.'''

First, find wish anywhere:

>>> re.findall('wish', source)
['wish', 'wish']

Next, find wish or fish anywhere:

>>> re.findall('wish|fish', source)
['wish', 'wish', 'fish']

164 | Chapter7: Mangle Data Like a Pro

Find wish at the beginning:

>>> re.findall('*wish', source)

(]
Find I wish at the beginning:

>>> re.findall('~I wish', source)
['T wish']

Find fish at the end:

>>> re.findall('fish$', source)

(]
Finally, find fish tonight. atthe end:

>>> re.findall('fish tonight.S$', source)
['fish tonight.']

The characters ~ and $ are called anchors: ~ anchors the search to the beginning of the
search string, and $ anchors it to the end. .$ matches any character at the end of the
line, including a period, so that worked. To be more precise, we should escape the dot
to match it literally:

>>> re.findall('fish tonight\.$', source)
['fish tonight.']

Begin by finding w or f followed by ish:

>>> re.findall('[wf]ish', source)
['wish', 'wish', 'fish']

Find one or more runs of w, s, or h:

>>> re.findall('[wsh]+"', source)
[Iw|, lshl, lwl, lsh|, lhl’ Ishl, lshI, lhl]

Find ght followed by a non-alphanumeric:

>>> re.findall('ght\W', source)
['ght\n', 'ght.']

Find I followed by wish:

>>> re.findall('I (?=wish)', source)

[' I Ll , 1 I 1]
And last, wish preceded by I:

>>> re.findall('(?<=I) wish', source)

[' wish', ' wish']
There are a few cases in which the regular expression pattern rules conflict with the
Python string rules. The following pattern should match any word that begins with
fish:

TextStrings | 165

>>> re.findall('\bfish', source)

(]

Why doesnt it? As is discussed in Chapter 2, Python employs a few special escape
characters for strings. For example, \b means backspace in strings, but in the mini-
language of regular expressions it means the beginning of a word. Avoid the acciden-
tal use of escape characters by using Python’s raw strings when you define your
regular expression string. Always put an r character before your regular expression
pattern string, and Python escape characters will be disabled, as demonstrated here:

>>> re.findall(r'\bfish', source)
['fish']

Patterns: specifying match output

When using match() or search(), all matches are returned from the result object m as
m.group(). If you enclose a pattern in parentheses, the match will be saved to its own
group, and a tuple of them will be available as m.groups(), as shown here:

>>> m = re.search(r'(. dish\b).*(\bfish)', source)

>>> m.group()

'a dish of fish'

>>> m.groups()

('a dish', 'fish')
If you use this pattern (?P< name > expr), it will match expr, saving the match in
group narme:

>>> m = re.search(r'(?P<DISH>. dish\b).*(?P<FISH>\bfish)', source)
>>> m.group()

'a dish of fish'

>>> m.groups()

('a dish', 'fish')

>>> m.group('DISH")

'a dish'

>>> m.group('FISH")

'fish'

Binary Data

Text data can be challenging, but binary data can be, well, interesting. You need to
know about concepts such as endianness (how your computer’s processor breaks data
into bytes) and sign bits for integers. You might need to delve into binary file formats
or network packets to extract or even change data. This section will show you the
basics of binary data wrangling in Python.

166 | Chapter7: Mangle Data Like a Pro

bytes and bytearray

Python 3 introduced the following sequences of eight-bit integers, with possible val-

ues from 0 to 255, in two types:

o bytes is immutable, like a tuple of bytes
o bytearray is mutable, like a list of bytes

Beginning with a list called blist, this next example creates a bytes variable called

the_bytes and a bytearray variable called the_byte_array:

>> blist = [1, 2, 3, 255]

>>> the_bytes = bytes(blist)

>>> the_bytes

b'\x01\x02\x03\xff"'

>>> the_byte_array = bytearray(blist)
>>> the_byte_array
bytearray(b'\x01\x02\x03\xff")

The representation of a bytes value begins with a b and a quote
character, followed by hex sequences such as \x02 or ASCII charac-
ters, and ends with a matching quote character. Python converts
the hex sequences or ASCII characters to little integers, but shows
byte values that are also valid ASCII encodings as ASCII charac-
ters.

>>> b'\x61'

b'a'

>>> b'\x01abc\xff'
b'\x01labc\xff"

This next example demonstrates that you can’t change a bytes variable:

>>> the_bytes[1] = 127

File "<stdin>", line 1, in <module>
TypeError: 'bytes' object does not support item assignment

But a bytearray variable is mellow and mutable:

>>> the_byte_array = bytearray(blist)
>>> the_byte_array
bytearray(b'\x01\x02\x03\xff"')

>>> the_byte_array[1] = 127

>>> the_byte_array
bytearray(b'\x01\x7f\x03\xff")

Each of these would create a 256-element result, with values from 0 to 255:

Binary Data

167

>>> the_bytes = bytes(range(0, 256))
>>> the_byte_array = bytearray(range(0, 256))

When printing bytes or bytearray data, Python uses \x xx for non-printable bytes
and their ASCII equivalents for printable ones (plus some common escape characters,
such as \n instead of \x0a). Here’s the printed representation of the_bytes (manually
reformatted to show 16 bytes per line):

>>> the_bytes
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f
\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1le\x1f
PHS%R\ ' () *+,-./

0123456789: ;<=>?

@ABCDEFGHIJKLMNO

PQRSTUVWXYZ[\\]~_

“abcdefghijklmno

parstuvwxyz{|}~\x7f
\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f
\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f
\xa0\xa1\xa2\xa3\xad4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf
\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf
\xcO\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf
\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf
\xe0\xe1\xe2\xe3\xed4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef
\XFO\XF1\xF2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff"'

This can be confusing, because they’re bytes (teeny integers), not characters.

Convert Binary Data with struct

As you've seen, Python has many tools for manipulating text. Tools for binary data
are much less prevalent. The standard library contains the struct module, which
handles data similar to structs in C and C++. Using struct, you can convert binary
data to and from Python data structures.

Let’s see how this works with data from a PNG file—a common image format that
you'll see along with GIF and JPEG files. We'll write a small program that extracts the
width and height of an image from some PNG data.

We'll use the O’Reilly logo—the little bug-eyed tarsier shown in Figure 7-1.

O’REILLY"

Figure 7-1. The O’Reilly tarsier

168 | Chapter7: Mangle Data Like a Pro

The PNG file for this image is available on Wikipedia. We don't show how to read
files until Chapter 8, so I downloaded this file, wrote a little program to print its val-
ues as bytes, and just typed the values of the first 30 bytes into a Python bytes vari-
able called data for the example that follows. (The PNG format specification
stipulates that the width and height are stored within the first 24 bytes, so we don’t
need more than that for now.)

>>> import struct

>>> valid_png_header = b'\x89PNG\r\n\x1a\n'

>>> data = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR' + \

.. b'\x00\x00\x00\x9a\x00\x00\x00\x8d\x08\x02\x00\x00\x00\xcO'

>>> if data[:8] == valid_png_header:
width, height = struct.unpack('sLL', data[16:24])
print('Valid PNG, width', width, 'height', height)

. else:

print('Not a valid PNG')

Valid PNG, width 154 height 141

Here’s what this code does:

« data contains the first 30 bytes from the PNG file. To fit on the page, I joined two
byte strings with + and the continuation character (\).

o valid_png_header contains the 8-byte sequence that marks the start of a valid
PNG file.

o width is extracted from bytes 16-20, and height from bytes 21-24.

The >LL is the format string that instructs unpack() how to interpret its input byte
sequences and assemble them into Python data types. Here’s the breakdown:

o The > means that integers are stored in big-endian format.

o Each L specifies a 4-byte unsigned long integer.

You can examine each 4-byte value directly:

>>> data[16:20]

b'\x00\x00\x00\x9%a"'
>>> data[20:24]0x9%a
b'\x00\x00\x00\x8d'

Big-endian integers have the most significant bytes to the left. Because the width and

height are each less than 255, they fit into the last byte of each sequence. You can ver-
ify that these hex values match the expected decimal values:

>>> 0x%a
154
>>> Ox8d
141

BinaryData | 169

http://bit.ly/orm-logo

When you want to go in the other direction and convert Python data to bytes, use the
struct pack() function:

>>> import struct

>>> struct.pack('>L', 154)
b'\x00\x00\x00\x9%a"

>>> struct.pack('>L', 141)
b'\x00\x00\x00\x8d'

Table 7-5 and Table 7-6 show the format specifiers for pack() and unpack().

The endian specifiers go first in the format string.

Table 7-5. Endian specifiers

Specifier Byte order

< little endian

> big endian

Table 7-6. Format specifiers

X skip a byte 1
b signed byte 1
B unsigned byte 1
h signed short integer 2
H unsigned short integer 2
i signed integer 4
I unsigned integer 4
1 signed long integer 4
L unsigned long integer 4
Q unsigned long long integer 8
f single precision float 4
d double precision float 8

170 | Chapter7: Mangle Data Like a Pro

Specifier Description Bytes

p count and characters 1+ count

s characters count

The type specifiers follow the endian character. Any specifier may be preceded by a
number that indicates the count; 5B is the same as BBBBB.

You can use a count prefix instead of >LL:

>>> struct.unpack('>2L"', data[16:24])
(154, 141)

We used the slice data[16:24] to grab the interesting bytes directly. We could also
use the x specifier to skip the uninteresting parts:

>>> struct.unpack('>16x2L6x"', data)
(154, 141)

This means:

o Use big-endian integer format (>)

o Skip 16 bytes (16x)

« Read 8 bytes—two unsigned long integers (2L)
o Skip the final 6 bytes (6x)

Other Binary Data Tools

Some third-party open source packages offer the following, more declarative ways of
defining and extracting binary data:

o bitstring

« construct

o hachoir

« binio
Appendix D has details on how to download and install external packages such as
these. For the next example, you need to install construct. Here’s all you need to do:

$ pip install construct

Here’s how to extract the PNG dimensions from our data bytestring by using
construct:

BinaryData | 171

http://bit.ly/py-bitstring
http://bit.ly/py-construct
http://bit.ly/hachoir-pkg
http://spika.net/py/binio/

>>> from construct import Struct, Magic, UBInt32, Const, String
>>> # adapted from code at https://github.com/construct
>>> fmt = Struct('png',
Magic(b'\x89PNG\r\n\x1a\n'),
UBInt32('length'),
Const(String('type', 4), b'IHDR'),
UBINnt32('width'),
UBINnt32('height"')
ces)
>>> data = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR' + \
b'\x00\x00\x00\x9a\x00\x00\x00\x8d\x08\x02\x00\x00\x00\xcO'
>>> result = fmt.parse(data)
>>> print(result)

Container:

length = 13

type = b'IHDR'

width = 154

height = 141
>>> print(result.width, result.height)
154, 141

Convert Bytes/Strings with binascii()

The standard binascii module has functions with which you can convert between
binary data and various string representations: hex (base 16), base 64, uuencoded,
and others. For example, in the next snippet, let’s print that 8-byte PNG header as a
sequence of hex values, instead of the mixture of ASCII and \x xx escapes that
Python uses to display bytes variables:

>>> import binascii

>>> valid_png_header = b'\x89PNG\r\n\x1a\n'
>>> print(binascii.hexlify(valid_png_header))
b'89504e470d0alaba’

Hey, this thing works backwards, too:
>>> print(binascii.unhexlify(b'89504e470d0alala'))
b'\x89PNG\r\n\x1a\n'

Bit Operators

Python provides bit-level integer operators, similar to those in the C language.
Table 7-7 summarizes them and includes examples with the integers a (decimal 5,
binary 0b01601) and b (decimal 1, binary 0b0001).

172 | Chapter7: Mangle Data Like a Pro

Table 7-7. Bit-level integer operators

Operator Description Example Decimal result Binary result

& and a&b 1 0b0001
| or alb 5 0b0101
A exclusiveor a ~ b 4 0b0100
~ flip bits ~a -6 binary representation depends on int size
<< left shift a<<1 10 0b10106
>> rightshift a >> 1 2 0b0010

These operators work something like the set operators in Chapter 3. The & operator
returns bits that are the same in both arguments, and | returns bits that are set in
either of them. The ~ operator returns bits that are in one or the other, but not both.
The ~ operator reverses all the bits in its single argument; this also reverses the sign
because an integer’s highest bit indicates its sign (1 = negative) in two’s complement
arithmetic, used in all modern computers. The << and >> operators just move bits to
the left or right. A left shift of one bit is the same as multiplying by two, and a right
shift is the same as dividing by two.

Things to Do

7.1. Create a Unicode string called mystery and assign it the value '\U0001f4a9".
Print mystery. Look up the Unicode name for mystery.

7.2. Encode mystery, this time using UTF-8, into the bytes variable pop_bytes. Print
pop_bytes.

7.3. Using UTEF-8, decode pop_bytes into the string variable pop_string. Print
pop_string. Is pop_string equal to mystery?

7.4. Write the following poem by using old-style formatting. Substitute the strings
'roast beef', 'ham', 'head', and 'clam' into this string:

My kitty cat likes %s,

My kitty cat likes %s,

My kitty cat fell on his %s
And now thinks he's a %s.

ThingstoDo | 173

7.5. Write a form letter by using new-style formatting. Save the following string as
letter (you'll use it in the next exercise):

Dear {salutation} {name},

Thank you for your letter. We are sorry that our {product} {verbed} in your
{room}. Please note that it should never be used in a {room}, especially
near any {animals}.

Send us your receipt and {amount} for shipping and handling. We will send
you another {product} that, in our tests, is {percent}% less likely to
have {verbed}.

Thank you for your support.

Sincerely,
{spokesman}
{job_title}

7.6. Make a dictionary called response with values for the string keys 'salutation’,
'name', 'product’, 'verbed' (past tense verb), 'room', 'animals', 'amount', 'per
cent', 'spokesman’', and 'job_title'. Print letter with the values from response.

7.7. When youre working with text, regular expressions come in very handy. We'll
apply them in a number of ways to our featured text sample. It’s a poem titled “Ode
on the Mammoth Cheese,” written by James McIntyre in 1866 in homage to a seven-
thousand-pound cheese that was crafted in Ontario and sent on an international tour.
If youd rather not type all of it, use your favorite search engine and cut and paste the
words into your Python program. Or, just grab it from Project Gutenberg. Call the
text string mammoth.

We have seen thee, queen of cheese,
Lying quietly at your ease,

Gently fanned by evening breeze,
Thy fair form no flies dare seize.

All gaily dressed soon you'll go
To the great Provincial show,

To be admired by many a beau

In the city of Toronto.

Cows numerous as a swarm of bees,

Or as the leaves upon the trees,

It did require to make thee please,
And stand unrivalled, queen of cheese.

May you not receive a scar as

We have heard that Mr. Harris
Intends to send you off as far as
The great world's show at Paris.

0f the youth beware of these,
For some of them might rudely squeeze

174 | Chapter7: Mangle Data Like a Pro

http://bit.ly/mcintyre-poetry

And bite your cheek, then songs or glees
We could not sing, oh! queen of cheese.

We'rt thou suspended from balloon,

You'd cast a shade even at noon,

Folks would think it was the moon

About to fall and crush them soon.
7.8. Import the re module to use Pythons regular expression functions. Use
re.findall() to print all the words that begin with c.

7.9. Find all four-letter words that begin with c.
7.10. Find all the words that end with r.
7.11. Find all words that contain exactly three vowels in a row.

7.12. Use unhex1ify to convert this hex string (combined from two strings to fit on a
page) to a bytes variable called gif:
'47494638396101000100800000000000F FFFFF21f9" +
'0401000000002c000000000100010000020144003b '
7.13. The bytes in gif define a one-pixel transparent GIF file, one of the most com-

mon graphics file formats. A legal GIF starts with the string GIF89a. Does gif match
this?

7.14. The pixel width of a GIF is a 16-bit little-endian integer beginning at byte offset
6, and the height is the same size, starting at offset 8. Extract and print these values
for gif. Are they both 1?

ThingstoDo | 175

CHAPTER 8
Data Has to Go Somewhere

It is a capital mistake to theorize before one has data.
—Arthur Conan Doyle

An active program accesses data that is stored in Random Access Memory, or RAM.
RAM is very fast, but it is expensive and requires a constant supply of power; if the
power goes out, all the data in memory is lost. Disk drives are slower than RAM but
have more capacity, cost less, and retain data even after someone trips over the power
cord. Thus, a huge amount of effort in computer systems has been devoted to making
the best tradeoffs between storing data on disk and RAM. As programmers, we need
persistence: storing and retrieving data using nonvolatile media such as disks.

This chapter is all about the different flavors of data storage, each optimized for dif-
ferent purposes: flat files, structured files, and databases. File operations other than
input and output are covered in “Files” on page 247.

This is also the first chapter to show examples of nonstandard
Python modules; that is, Python code apart from the standard
library. You'll install them by using the pip command, which is
painless. There are more details on its usage in Appendix D.

File Input/Qutput

The simplest kind of persistence is a plain old file, sometimes called a flat file. This is
just a sequence of bytes stored under a filename. You read from a file into memory
and write from memory to a file. Python makes these jobs easy. Its file operations
were modeled on the familiar and popular Unix equivalents.

Before reading or writing a file, you need to open it:

177

fileobj = open(filename, mode)

Here’s a brief explanation of the pieces of this call:

o fileobj is the file object returned by open()
o filename is the string name of the file

o mode is a string indicating the file’s type and what you want to do with it
The first letter of mode indicates the operation:

e r means read.

o w means write. If the file doesn’t exist, it’s created. If the file does exist, it’s over-
written.

« x means write, but only if the file does not already exist.

« ameans append (write after the end) if the file exists.
The second letter of mode is the file’s type:

o t (or nothing) means text.

o b means binary.

After opening the file, you call functions to read or write data; these will be shown in
the examples that follow.

Last, you need to close the file.

Let’s create a file from a Python string in one program and then read it back in the
next.

Write a Text File with write()

For some reason, there aren’t many limericks about special relativity. This one will
just have to do for our data source:

>>> poem = '''There was a young lady named Bright,
. Whose speed was far faster than light;
. She started one day
. In a relative way,

... And returned on the previous night.'''

>>> len(poem)

150

The following code writes the entire poem to the file 'relativity' in one call:

>>> fout = open('relativity', 'wt')
>>> fout.write(poem)

178 | Chapter 8: Data Has to Go Somewhere

150
>>> fout.close()

The write() function returns the number of bytes written. It does not add any spaces
or newlines, as print() does. You can also print() to a text file:

>>> fout = open('relativity', 'wt')

>>> print(poem, file=fout)

>>> fout.close()
This brings up the question: should I use write() or print()? By default, print()
adds a space after each argument and a newline at the end. In the previous example, it
appended a newline to the relativity file. To make print() work like write(), pass
the following two arguments:

o sep (separator, which defaults to a space, ' ')

o end (end string, which defaults to a newline, '\n")

print() uses the defaults unless you pass something else. We'll pass empty strings to
suppress all of the fussiness normally added by print():

>>> fout = open('relativity', 'wt')
>>> print(poem, file=fout, sep='', end="")
>>> fout.close()

If you have a large source string, you can also write chunks until the source is done:

>>> fout = open('relativity', 'wt')
>>> size = len(poem)
>>> offset = 0
>>> chunk = 100
>>> while True:
if offset > size:
break
fout.write(poem[offset:offset+chunk])
offset += chunk
100
50
>>> fout.close()

This wrote 100 characters on the first try and the last 50 characters on the next.

If the relativity file is precious to us, lets see if using mode x really protects us from
overwriting it:

>>> fout = open('relativity', 'xt')

File "<stdin>", line 1, in <module>
FileExistsError: [Errno 17] File exists: 'relativity'

You can use this with an exception handler:

File Input/Output | 179

>>> try:
fout = open('relativity', 'xt')]
fout.write('stomp stomp stomp')
... except FileExistsError:
print('relativity already exists!. That was a close one.'")

relativity already exists!. That was a close one.

Read a Text File with read(), readline(), or readlines()

You can call read() with no arguments to slurp up the entire file at once, as shown in
the example that follows. Be careful when doing this with large files; a gigabyte file
will consume a gigabyte of memory.

>>> fin = open('relativity', 'rt')
>>> poem = fin.read()

>>> fin.close()

>>> len(poem)

150

You can provide a maximum character count to limit how much read() returns at
one time. Let’s read 100 characters at a time and append each chunk to a poenm string
to rebuild the original:

>>> poem =
>>> fin = open('relativity', 'rt')
>>> chunk = 100
>>> while True:

fragment = fin.read(chunk)

if not fragment:

break
poem += fragment

>>> fin.close()
>>> len(poem)
150

After you've read all the way to the end, further calls to read() will return an empty
string (''), which is treated as False in if not fragment. This breaks out of the
while True loop.

You can also read the file a line at a time by using readline(). In this next example,
we'll append each line to the poem string to rebuild the original:

>>> poem =
>>> fin = open('relativity', 'rt')
>>> while True:
line = fin.readline()
if not line:
break
poem += line

180 | Chapter 8: Data Has to Go Somewhere

>>> fin.close()
>>> len(poem)
150

For a text file, even a blank line has a length of one (the newline character), and is
evaluated as True. When the file has been read, readline() (like read()) also returns
an empty string, which is also evaluated as False.

The easiest way to read a text file is by using an iterator. This returns one line at a
time. It’s similar to the previous example, but with less code:

>>> poem =
>>> fin = open('relativity', 'rt')
>>> for line in fin:

poem += line

>>> fin.close()
>>> len(poem)
150

All of the preceding examples eventually built the single string poem. The read
Tines() call reads a line at a time, and returns a list of one-line strings:

>>> fin = open('relativity', 'rt')
>>> lines = fin.readlines()
>>> fin.close()
>>> print(len(lines), 'lines read')
5 lines read
>>> for line in lines:

print(line, end="")

There was a young lady named Bright,
Whose speed was far faster than light;
She started one day

In a relative way,

And returned on the previous night.>>>

We told print() to suppress the automatic newlines because the first four lines
already had them. The last line did not, causing the interactive prompt >>> to occur
right after the last line.

Write a Binary File with write()

If you include a 'b' in the mode string, the file is opened in binary mode. In this case,
you read and write bytes instead of a string.

We don’t have a binary poem lying around, so we'll just generate the 256 byte values
from 0 to 255:

>>> bdata = bytes(range(0, 256))
>>> len(bdata)
256

File Input/Output | 181

Open the file for writing in binary mode and write all the data at once:

>>> fout = open('bfile', 'wb")
>>> fout.write(bdata)

256

>>> fout.close()

Again, write() returns the number of bytes written.
As with text, you can write binary data in chunks:

>>> fout = open('bfile', 'wb')

>>> size = len(bdata)

>>> offset = 0

>>> chunk = 100

>>> while True:
if offset > size:

break

fout.write(bdata[offset:offset+chunk])
offset += chunk

100

100

56

>>> fout.close()

Read a Binary File with read()
This one is simple; all you need to do is just open with 'rb":

>>> fin = open('bfile', 'rb")
>>> bdata = fin.read()

>>> len(bdata)

256

>>> fin.close()

Close Files Automatically by Using with

If you forget to close a file that you've opened, it will be closed by Python after it’s no
longer referenced. This means that if you open a file within a function and don't close
it explicitly, it will be closed automatically when the function ends. But you might
have opened the file in a long-running function or the main section of the program.
The file should be closed to force any remaining writes to be completed.

Python has context managers to clean up things such as open files. You use the form
with expression as variable:

>>> with open('relativity', 'wt') as fout:
fout.write(poem)

182 | Chapter 8: Data Has to Go Somewhere

Thats it. After the block of code under the context manager (in this case, one line)
completes (normally or by a raised exception), the file is closed automatically.

Change Position with seek()

As you read and write, Python keeps track of where you are in the file. The tell()
function returns your current offset from the beginning of the file, in bytes. The
seek() function lets you jump to another byte offset in the file. This means that you
don’t have to read every byte in a file to read the last one; you can seek() to the last
one and just read one byte.

For this example, use the 256-byte binary file 'bfile' that you wrote earlier:
>>> fin = open('bfile', 'rb")
>>> fin.tell()
0

Use seek() to one byte before the end of the file:

>>> fin.seek(255)
255

Read until the end of the file:

>>> bdata = fin.read()
>>> len(bdata)

1

>>> bdata[0]

255

seek() also returns the current offset.

You can call seek() with a second argument: seek(offset, origin):

o Iforiginis 0 (the default), go offset bytes from the start
o Iforiginis 1, go offset bytes from the current position

« Iforiginis 2, go offset bytes relative to the end

These values are also defined in the standard os module:

>>> import os
>>> 0S.SEEK_SET
0

>>> 0s.SEEK_CUR
1

>>> 0s.SEEK_END
2

So, we could have read the last byte in different ways:

>>> fin = open('bfile', 'rb")

File Input/Output | 183

One byte before the end of the file:

>>> fin.seek(-1, 2)
255

>>> fin.tell()

255

Read until the end of the file:

>>> bdata = fin.read()
>>> len(bdata)

1

>>> bdata[0]

255

You don’t need to call tell() for seek() to work. I just wanted to
show that they both report the same offset.

Here’s an example of seeking from the current position in the file:
>>> fin = open('bfile', 'rb")
This next example ends up two bytes before the end of the file:

>>> fin.seek(254, 0)
254

>>> fin.tell()

254

Now, go forward one byte:

>>> fin.seek(1, 1)
255

>>> fin.tell()

255

Finally, read until the end of the file:

>>> bdata = fin.read()
>>> len(bdata)

1

>>> bdata[0]

255

These functions are most useful for binary files. You can use them with text files, but
unless the file is ASCII (one byte per character), you would have a hard time calculat-
ing offsets. These would depend on the text encoding, and the most popular encod-
ing (UTF-8) uses varying numbers of bytes per character.

184 | Chapter 8: Data Has to Go Somewhere

Structured Text Files

With simple text files, the only level of organization is the line. Sometimes, you want
more structure than that. You might want to save data for your program to use later,
or send data to another program.

There are many formats, and here’s how you can distinguish them:

o A separator, or delimiter, character like tab ('\t'), comma (', "), or vertical bar
("I"). This is an example of the comma-separated values (CSV) format.

o '<'and '>' around tags. Examples include XML and HTML.
o Punctuation. An example is JavaScript Object Notation (JSON).

o Indentation. An example is YAML (which depending on the source you use
means “YAML Ain’t Markup Language;” you’ll need to research that one your-
self).

 Miscellaneous, such as configuration files for programs.

Each of these structured file formats can be read and written by at least one Python
module.

csv

Delimited files are often used as an exchange format for spreadsheets and databases.
You could read CSV files manually, a line at a time, splitting each line into fields at
comma separators, and adding the results to data structures such as lists and diction-
aries. But it’s better to use the standard csv module, because parsing these files can
get more complicated than you think.

o Some have alternate delimiters besides a comma: '|' and '\t' (tab) are com-
mon.

o Some have escape sequences. If the delimiter character can occur within a field,
the entire field might be surrounded by quote characters or preceded by some
escape character.

o Files have different line-ending characters. Unix uses '\n', Microsoft uses '\r
\n', and Apple used to use '\r' but now uses '\n".

o There can be column names in the first line.

First, we'll see how to read and write a list of rows, each containing a list of columns:

>>> import csv

>>> villains = [
['Doctor', 'No'],
['Rosa', 'Klebb'],

Structured Text Files | 185

['Mister', 'Big'],
['Auric', 'Goldfinger'],
['Ernst', 'Blofeld'],
1
>>> with open('villains', 'wt') as fout: # a context manager
csvout = csv.writer(fout)
csvout.writerows(villains)

This creates the file villains with these lines:

Doctor,No
Rosa,Klebb
Mister,Big
Auric,Goldfinger
Ernst,Blofeld

Now, we'll try to read it back in:

>>> import csv
>>> with open('villains', 'rt') as fin: # context manager
cin = csv.reader(fin)
villains = [row for row in cin] # This uses a list comprehension

>>> print(villains)

[['Doctor', 'No'], ['Rosa', 'Klebb'], ['Mister', 'Big'],

['Auric', 'Goldfinger'], ['Ernst', 'Blofeld']]
Take a moment to think about list comprehensions (feel free to go to “Comprehen-
sions” on page 84 and brush up on that syntax). We took advantage of the structure
created by the reader() function. It obligingly created rows in the cin object that we
can extract in a for loop.

Using reader() and writer() with their default options, the columns are separated
by commas and the rows by line feeds.

The data can be a list of dictionaries rather than a list of lists. Let’s read the villains
file again, this time using the new DictReader () function and specifying the column
names:

>>> import csv

>>> with open('villains', 'rt') as fin:
cin = csv.DictReader(fin, fieldnames=['first', 'last'])
villains = [row for row in cin]

>>> print(villains)

[{'last': 'No', 'first': 'Doctor'},
{'last': 'Klebb', 'first': 'Rosa'},
{'last': 'Big', 'first': 'Mister'},
{'last': 'Goldfinger', 'first': 'Auric'},
{'last': 'Blofeld', 'first': 'Ernst'}]

Let’s rewrite the CSV file by using the new DictWriter() function. We'll also call
writeheader() to write an initial line of column names to the CSV file:

186 | Chapter 8: Data Has to Go Somewhere

import csv

villains = [
{'first': 'Doctor', 'last': 'No'},
{'first': 'Rosa', 'last': 'Klebb'},
{'first': 'Mister', 'last': 'Big'},
{'first': 'Auric', 'last': 'Goldfinger'},
{'first': 'Ernst', 'last': 'Blofeld'},
1

with open('villains', 'wt') as fout:
cout = csv.DictWriter(fout, ['first', 'last'])
cout.writeheader()
cout.writerows(villains)

That creates a villains file with a header line:

first,last
Doctor,No
Rosa,Klebb
Mister,Big
Auric,Goldfinger
Ernst,Blofeld

Now we'll read it back. By omitting the fieldnames argument in the DictReader()
call, we instruct it to use the values in the first line of the file (first,last) as column
labels and matching dictionary keys:

>>> import csv

>>> with open('villains', 'rt') as fin:
cin = csv.DictReader(fin)
villains = [row for row in cin]

>>> print(villains)

[{'last': 'No', 'first': 'Doctor'},
{'last': 'Klebb', 'first': 'Rosa'},
{'"last': 'Big', 'first': 'Mister'},
{'last': 'Goldfinger', 'first': 'Auric'},
{'last': 'Blofeld', 'first': 'Ernst'}]

XML

Delimited files convey only two dimensions: rows (lines) and columns (fields within a
line). If you want to exchange data structures among programs, you need a way to
encode hierarchies, sequences, sets, and other structures as text.

XML is the most prominent markup format that suits the bill. It uses tags to delimit
data, as in this sample menu.xml file:

<?xml version="1.0"?>
<menu>
<breakfast hours="7-11">
<item price="$6.00">breakfast burritos</item>
<item price="$4.00">pancakes</item>

Structured Text Files | 187

</breakfast>
<lunch hours="11-3">
<item price="$5.00">hamburger</item>
</lunch>
<dinner hours="3-10">
<item price="8.00">spaghetti</item>
</dinner>
</menu>

Following are a few important characteristics of XML:

Tags begin with a < character. The tags in this sample were menu, breakfast,
lunch, dinner, and item.

Whitespace is ignored.

Usually a start tag such as <menu> is followed by other content and then a final
matching end tag such as </menu>.

Tags can nest within other tags to any level. In this example, item tags are chil-
dren of the breakfast, lunch, and dinner tags; they, in turn, are children of
menu.

Optional attributes can occur within the start tag. In this example, price is an
attribute of item.

Tags can contain values. In this example, each item has a value, such as pancakes
for the second breakfast item.

If a tag named thing has no values or children, it can be expressed as the single
tag by including a forward slash just before the closing angle bracket, such as
<thing/>, rather than a start and end tag, like <thing></thing>.

The choice of where to put data—attributes, values, child tags—is somewhat
arbitrary. For instance, we could have written the last item tag as <item
price="$8.00" food="spaghetti"/>.

XML is often used for data feeds and messages, and has subformats like RSS and
Atom. Some industries have many specialized XML formats, such as the finance field.

XMLs tiber-flexibility has inspired multiple Python libraries that differ in approach
and capabilities.

The simplest way to parse XML in Python is by using ElementTree. Here’s a little pro-
gram to parse the menu.xml file and print some tags and attributes:

>>> import xml.etree.ElementTree as et
>>> tree = et.ElementTree(file="'menu.xml')
>>> root = tree.getroot()

>>> root.tag

'menu’

>>> for child in root:

188

| Chapter 8: Data Has to Go Somewhere

http://bit.ly/xml-finance

print('tag:', child.tag, 'attributes:', child.attrib)
for grandchild in child:
print('\ttag:', grandchild.tag, 'attributes:', grandchild.attrib)

tag: breakfast attributes: {'hours': '7-11'}
tag: item attributes: {'price': '$6.00'}
tag: item attributes: {'price': '$4.00'}

tag: lunch attributes: {'hours': '11-3'}
tag: item attributes: {'price': '$5.00'}

tag: dinner attributes: {'hours': '3-10'}
tag: item attributes: {'price': '8.00'}

>>> len(root) # number of menu sections

3

>>> len(root[0]) # number of breakfast items
2

For each element in the nested lists, tag is the tag string and attrib is a dictionary of
its attributes. ElementTree has many other ways of searching XML-derived data,
modifying it, and even writing XML files. The ElementTree documentation has the
details.

Other standard Python XML libraries include:

xml.dom
The Document Object Model (DOM), familiar to JavaScript developers, repre-
sents Web documents as hierarchical structures. This module loads the entire
XML file into memory and lets you access all the pieces equally.

xml.sax
Simple API for XML, or SAX, parses XML on the fly, so it does not have to load
everything into memory at once. Therefore, it can be a good choice if you need to
process very large streams of XML.

HTML

Enormous amounts of data are saved as Hypertext Markup Language (HTML), the
basic document format of the Web. The problem is so much of it doesn’t follow the
HTML rules, which can make it difficult to parse. Also, much of HTML is intended
more to format output than interchange data. Because this chapter is intended to
describe fairly well-defined data formats, I have separated out the discussion about
HTML to Chapter 9.

JSON

JavaScript Object Notation (JSON) has become a very popular data interchange for-
mat, beyond its JavaScript origins. The JSON format is a subset of JavaScript, and
often legal Python syntax as well. Its close fit to Python makes it a good choice for

Structured Text Files | 189

http://bit.ly/elementtree
http://www.json.org

data interchange among programs. You'll see many examples of JSON for web devel-
opment in Chapter 9.

Unlike the variety of XML modules, there’s one main JSON module, with the unfor-
gettable name json. This program encodes (dumps) data to a JSON string and
decodes (loads) a JSON string back to data. In this next example, let’s build a Python
data structure containing the data from the earlier XML example:

>>> menu = \
- {
... "breakfast": {
"hours": "7-11",
"{tems": {
"breakfast burritos": "$6.00",
"pancakes": "$4.00"
}
ces 3},
. "lunch" : {
"hours": "11-3",
"{tems": {
"hamburger": "$5.00"
}
}}
. "dinner": {
"hours": "3-10",
"{tems": {
"spaghetti": "$8.00"
}

Next, encode the data structure (menu) to a JSON string (menu_json) by using
dumps():

>>> import json

>>> menu_json = json.dumps(menu)

>>> menu_json

"{"dinner": {"items": {"spaghetti": "$8.00"}, "hours": "3-10"},
"lunch": {"items": {"hamburger": "$5.00"}, "hours": "11-3"},
"breakfast": {"items": {"breakfast burritos": "$6.00", "pancakes":
"$4.00"}, "hours": "7-11"3}}"

And now, lets turn the JSON string menu_json back into a Python data structure
(menu2) by using loads():

>>> menu2 = json.loads(menu_json)

>>> menu?2

{'breakfast': {'items': {'breakfast burritos': '$6.00', 'pancakes':

'$4.00'}, 'hours': '7-11'}, 'lunch': {'items': {'hamburger': '$5.00'},

'hours': '11-3'}, 'dinner': {'items': {'spaghetti': '$8.00'}, 'hours': '3-10'}}

190 | Chapter8: Data Has to Go Somewhere

menu and menu2 are both dictionaries with the same keys and values. As always with
standard dictionaries, the order in which you get the keys varies.

You might get an exception while trying to encode or decode some objects, including

objects such as datetime (covered in detail in “Calendars and Clocks” on page 256),
as demonstrated here.

>>> import datetime

>>> now = datetime.datetime.utcnow()

>>> NOwW

datetime.datetime(2013, 2, 22, 3, 49, 27, 483336)
>>> json.dumps(now)

... (deleted stack trace to save trees)

TypeError: datetime.datetime(2013, 2, 22, 3, 49, 27, 483336) is not JSON serializable
>>>

This can happen because the JSON standard does not define date or time types; it
expects you to define how to handle them. You could convert the datetime to some-
thing JSON understands, such as a string or an epoch value (coming in Chapter 10):

>>> now_str = str(now)

>>> json.dumps(now_str)

'"2013-02-22 03:49:27.483336""'

>>> from time import mktime

>>> now_epoch = int(mktime(now.timetuple()))
>>> json.dumps(now_epoch)

'1361526567"'

If the datetime value could occur in the middle of normally converted data types, it
might be annoying to make these special conversions. You can modify how JSON is
encoded by using inheritance, which is described in “Inheritance” on page 128.
Python’s JSON documentation gives an example of this for complex numbers, which
also makes JSON play dead. Let’s modify it for datetime:

>>> class DTEncoder(json.JSONEncoder):
def default(self, obj):
isinstance() checks the type of obj
if isinstance(obj, datetime.datetime):
return int(mktime(obj.timetuple()))
else it's something the normal decoder knows:
return json.JSONEncoder.default(self, obj)

>>> json.dumps(now, cls=DTEncoder)
'1361526567"'
The new class DTEncoder is a subclass, or child class, of JSONEncoder. We only need

to override its default() method to add datetime handling. Inheritance ensures that
everything else will be handled by the parent class.

Structured Text Files | 191

http://bit.ly/json-docs

The isinstance() function checks whether the object obj is of the class date
time.datetime. Because everything in Python is an object, isinstance() works
everywhere:

>>> type(now)

<class 'datetime.datetime'>
>>> isinstance(now, datetime.datetime)
True

>>> type(234)

<class 'int's>

>>> isinstance(234, int)
True

>>> type('hey"')

<class 'str's

>>> isinstance('hey', str)
True

For JSON and other structured text formats, you can load from a
file into data structures without knowing anything about the struc-
tures ahead of time. Then, you can walk through the structures by
using isinstance() and type-appropriate methods to examine
their values. For example, if one of the items is a dictionary, you
can extract contents through keys(), values(), and items().

YAML

Similar to JSON, YAML has keys and values, but handles more data types such as
dates and times. The standard Python library does not yet include YAML handling,
so you need to install a third-party library named yaml to manipulate it. load() con-
verts a YAML string to Python data, whereas dump() does the opposite.

The following YAML file, mcintyre.yaml, contains information on the Canadian poet
James McIntyre, including two of his poems:

name:

first: James

last: McIntyre
dates:

birth: 1828-05-25

death: 1906-03-31
details:

bearded: true

themes: [cheese, Canada]

books:
url: http://www.gutenberg.org/files/36068/36068-h/36068-h.htm
poems:
- title: 'Motto'
text: |

Politeness, perseverance and pluck,

192 | Chapter8: Data Has to Go Somewhere

http://www.yaml.org
http://pyyaml.org/wiki/PyYAML

To their possessor will bring good luck.
- title: 'Canadian Charms'
text: |
Here industry is not in vain,
For we have bounteous crops of grain,
And you behold on every field
Of grass and roots abundant yield,
But after all the greatest charm
Is the snug home upon the farm,
And stone walls now keep cattle warm.

Values such as true, false, on, and off are converted to Python Booleans. Integers
and strings are converted to their Python equivalents. Other syntax creates lists and
dictionaries:

>>> import yaml

>>> with open('mcintyre.yaml', 'rt') as fin:

>5> text = fin.read()

>>> data = yaml.load(text)

>>> data['details']

{"'themes': ['cheese', 'Canada'], 'bearded': True}
>>> len(data['poems'])

2

The data structures that are created match those in the YAML file, which in this case
are more than one level deep in places. You can get the title of the second poem with
this dict/list/dict reference:

>>> data['poems' J[1]['title']
'Canadian Charms'

PyYAML can load Python objects from strings, and this is danger-
ous. Use safe_load() instead of load() if youre importing YAML

o that you don't trust. Better yet, always use safe_load(). Read war
\ is peace for a description of how unprotected YAML loading com-
promised the Ruby on Rails platform.
A Security Note

You can use all the formats described in this chapter to save objects to files and read
them back again. It’s possible to exploit this process and cause security problems.

For example, the following XML snippet from the billion laughs Wikipedia page
defines ten nested entities, each expanding the lower level ten times for a total expan-
sion of one billion:

<?xml version="1.0"?>

<!DOCTYPE lolz [

<!ENTITY lol "lol">

<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

Structured Text Files | 193

http://bit.ly/war-is-peace
http://bit.ly/war-is-peace

<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&1ol1;&lol1;&1loll;"
<!ENTITY lol3 "&lol2;&lol2;8&lol2;&lo12;8&lol2;&lol2;&lo12;&1ol2;&lo12;&1lol2;"
<!ENTITY lol4 "&lol3;&lol3;&lol3;&1ol3;&lol3;&1ol3;&lol3;&1ol3;&lol3;8&1lol3;"
<!ENTITY lol5 "&lol4;&lol4;8&lol4;&1lo14;8&lol4;&1ol4;8&lol4;&1014;&lol4;&1ol4;"
<!ENTITY lolé "&lol5;&lol5;&lol5;&1lol5;&lol5;&1lol5;&lol5;&1lol5;&lol5;&1lol5;"
<!ENTITY lol7 "&lol6;&lol6;8&lol6;&1lol6;8&lol6;&1lol6;&lol6;&10ol6;&lol6;&1lol6;"
<!ENTITY lol8 "&lol7;&lol7;&lol7;&1lol7;&lol7;&1ol7;&lol7;&10ol7;&lol7;&1lol7;"
<!ENTITY lol9 "&lol8;&lol8;8&lol8;&1o18;&lol18;&1ol8;&1lo18;&1018;&lo18;&10l8;"
1>

<lolz>&lol9;</lolz>

>
>
>
>
>
>
>
>

The bad news: billion laughs would blow up all of the XML libraries mentioned in the
previous sections. Defused XML lists this attack and others, along with the vulnera-
bility of Python libraries. The link shows how to change the settings for many of the
libraries to avoid these problems. Also, you can use the defusedxml library as a secu-
rity frontend for the other libraries:

>>> # insecure:

>>> from xml.etree.ElementTree import parse
>>> et = parse(xmlfile)

>>> # protected:

>>> from defusedxml.ElementTree import parse
>>> et = parse(xmlfile)

Configuration Files

Most programs offer various options or settings. Dynamic ones can be provided as
program arguments, but long-lasting ones need to be kept somewhere. The tempta-
tion to define your own quick and dirty config file format is strong—but resist it. It
often turns out to be dirty, but not so quick. You need to maintain both the writer
program and the reader program (sometimes called a parser). There are good alterna-
tives that you can just drop into your program, including those in the previous sec-
tions.

Here, we'll use the standard configparser module, which handles Windows-style .ini

files. Such files have sections of key = value definitions. Here’s a minimal settings.cfg
file

[english]
greeting = Hello

[french]
greeting = Bonjour

[files]

home = /usr/local

simple interpolation:
bin = %(home)s/bin

Here’s the code to read it into Python data structures:

194 | Chapter 8: Data Has to Go Somewhere

https://bitbucket.org/tiran/defusedxml

>>> import configparser

>>> cfg = configparser.ConfigParser()
>>> cfg.read('settings.cfg")
['settings.cfg']

>>> cfg

<configparser.ConfigParser object at 0x1006be4do>
>>> cfg['french']

<Section: french>

>>> cfg['french']['greeting']
'Bonjour'

>>> cfg['files']['bin']
'Jusr/local/bin'

Other options are available, including fancier interpolation. See the configparser
documentation. If you need deeper nesting than two levels, try YAML or JSON.

Other Interchange Formats

These binary data interchange formats are usually more compact and faster than
XML or JSON:

o MsgPack

« Protocol Buffers
o Avro

o Thrift

Because they are binary, none can be easily edited by a human with a text editor.

Serialize by Using pickle

Saving data structures to a file is called serializing. Formats such as JSON might
require some custom converters to serialize all the data types from a Python program.
Python provides the pickle module to save and restore any object in a special binary
format.

Remember how JSON lost its mind when encountering a datetime object? Not a
problem for pickle:

>>> import pickle

>>> import datetime

>>> nowl = datetime.datetime.utcnow()

>>> pickled = pickle.dumps(nowl)

>>> now2 = pickle.loads(pickled)

>>> nowl

datetime.datetime(2014, 6, 22, 23, 24, 19, 195722)
>>> now2

datetime.datetime(2014, 6, 22, 23, 24, 19, 195722)

Structured Text Files | 195

http://bit.ly/configparser
http://msgpack.org
https://code.google.com/p/protobuf/
http://avro.apache.org/docs/current/
http://thrift.apache.org/

pickle works with your own classes and objects, too. We'll define a little class called
Tiny that returns the string 'tiny' when treated as a string:

>>> import pickle
>>> class Tiny():
def __str__(self):
return 'tiny'

>>> obj1 = Tiny()
>>> obj1
<__main__.Tiny object at 0x10076ed10>
>>> str(objl)
"tiny'
>>> pickled = pickle.dumps(objl)
>>> pickled
b'\x80\x03c__main__\nTiny\nq\x00)\x81q\x01."
>>> obj2 = pickle.loads(pickled)
>>> obj2
<__main__.Tiny object at 0x10076e550>
>>> str(obj2)
"tiny'
pickled is the pickled binary string made from the object obj1. We converted that

back to the object obj2 to make a copy of obj1. Use dump() to pickle to a file, and
load() to unpickle from one.

Because pickle can create Python objects, the same security warn-
ings that were discussed in earlier sections apply. Don’t unpickle
something that you don’t trust.

Structured Binary Files

Some file formats were designed to store particular data structures but are neither
relational nor NoSQL databases. The sections that follow present some of them.

Spreadsheets

Spreadsheets, notably Microsoft Excel, are widespread binary data formats. If you can
save your spreadsheet to a CSV file, you can read it by using the standard csv module
that was described earlier. If you have a binary x1s file, xlrd is a third-party package
for reading and writing.

HDF5

HDF?5 is a binary data format for multidimensional or hierarchical numeric data. Its
used mainly in science, where fast random access to large datasets (gigabytes to tera-

196 | Chapter 8:Data Has to Go Somewhere

http://pypi.python.org/pypi/xlrd
http://www.hdfgroup.org/why_hdf

bytes) is a common requirement. Even though HDF5 could be a good alternative to
databases in some cases, for some reason HDF5 is almost unknown in the business
world. It’s best suited to WORM (write once/read many) applications for which data-
base protection against conflicting writes is not needed. Here are a couple of modules
that you might find useful:

o h5py is a full-featured low-level interface. Read the documentation and code.

 PyTables is a bit higher-level, with database-like features. Read the documenta-
tion and code.

Both of these are discussed in terms of scientific applications of Python in Appendix
C. 'm mentioning HDF5 here in case you have a need to store and retrieve large
amounts of data and are willing to consider something outside the box, as well as the
usual database solutions. A good example is the Million Song dataset, which has
downloadable song data in HDF5 format.

Relational Databases

Relational databases are only about 40 years old but are ubiquitous in the computing
world. You'll almost certainly have to deal with them at one time or another. When
you do, you'll appreciate what they provide:

o Access to data by multiple simultaneous users

o Protection from corruption by those users

« Efficient methods to store and retrieve the data

o Data defined by schemas and limited by constraints

o Joins to find relationships across diverse types of data

o A declarative (rather than imperative) query language: SQL (Structured Query
Language)

These are called relational because they show relationships among different kinds of
data in the form of tables (as they are usually called nowadays). For instance, in our
menu example earlier, there is a relationship between each item and its price.

A table is a grid of rows and columns, similar to a spreadsheet. To create a table,
name it and specify the order, names, and types of its columns. Each row has the
same columns, although a column may be defined to allow missing data (called
nulls). In the menu example, you could create a table with one row for each item
being sold. Each item has the same columns, including one for the price.

A column or group of columns is usually the table’s primary key; its values must be
unique in the table. This prevents adding the same data to the table more than once.

Relational Databases | 197

http://www.h5py.org/
https://github.com/h5py/h5py
http://www.pytables.org/
http://www.pytables.org/
http://pytables.github.com/
http://bit.ly/millionsong

This key is indexed for fast lookups during queries. An index works a little like a book
index, making it fast to find a particular row.

Each table lives within a parent database, like a file within a directory. Two levels of
hierarchy help keep things organized a little better.

Yes, the word database is used in multiple ways: as the server, the
table container, and the data stored therein. If you'll be referring to
all of them at the same time, it might help to call them database
server, database, and data.

If you want to find rows by some non-key column value, define a secondary index on
that column. Otherwise, the database server must perform a table scan—a brute-force
search of every row for matching column values.

Tables can be related to each other with foreign keys, and column values can be con-
strained to these keys.

saL

SQL is not an API or a protocol, but a declarative language: you say what you want
rather than how to do it. Its the universal language of relational databases. SQL quer-
ies are text strings, that a client sends to the database server, which figures out what to
do with them.

There have been various SQL standard definitions, but all database vendors have
added their own tweaks and extensions, resulting in many SQL dialects. If you store
your data in a relational database, SQL gives you some portability. Still, dialect and
operational differences can make it difficult to move your data to another type of
database.

There are two main categories of SQL statements:

DDL (data definition language)
Handles creation, deletion, constraints, and permissions for tables, databases,
and uses

DML (data manipulation language)
Handles data insertions, selects, updates, and deletions

Table 8-1 lists the basic SQL DDL commands.

198 | Chapter 8: Data Has to Go Somewhere

Table 8-1. Basic SQL DDL commands

Operation SQL pattern SQL example

(reate a database CREATE DATABASE dbname CREATE DATABASE d

Select current database USE dbname USE d

Delete a database and its tables DROP DATABASE dbname DROP DATABASE d

(reate a table CREATE TABLE tbname (coldefs) CREATE TABLE t (id INT, count
INT)

Delete a table DROP TABLE tbname DROP TABLE t

Remove all rows from a table ~ TRUNCATE TABLE tbname TRUNCATE TABLE t

Why all the CAPITAL LETTERS? SQL is case-insensitive, but its
tradition (don’t ask me why) to SHOUT its keywords in code
examples to distinguish them from column names.

The main DML operations of a relational database are often known by the acronym
CRUD:

o Create by using the SQL INSERT statement
o Read by using SELECT

o Update by using UPDATE

o Delete by using DELETE

Table 8-2 looks at the commands available for SQL DML.

Table 8-2. Basic SQL DML commands

Operation SQL pattern SQL example

Add a row INSERT INTO tbname VAL INSERT INTO t VALUES(7, 40)
UES(...)

Select all rows and columns SELECT * FROM tbname SELECT * FROM t

Select all rows, some columns SELECT cols FROM tbname SELECT 1d, count FROM t

Relational Databases | 199

Operation SQL pattern SQL example

Select some rows, some SELECT cols FROM tbname WHERE ~ SELECT id, count from t WHERE
columns condition count > 5 AND id = 9

Change some rows in a column UPDATE tbname SET col = value UPDATE t SET count=3 WHERE id=5

WHERE condition
Delete some rows DELETE FROM tbname WHERE DELETE FROM t WHERE count <= 10
condition OR id = 16

DB-API

An application programming interface (API) is a set of functions that you can call to
get access to some service. DB-API is Python’s standard API for accessing relational
databases. Using it, you can write a single program that works with multiple kinds of
relational databases instead of writing a separate program for each one. It’s similar to
Java’s JDBC or Perl’s dbi.

Its main functions are the following:

connect()
Make a connection to the database; this can include arguments such as username,
password, server address, and others.

cursor()
Create a cursor object to manage queries.

execute() and executemany()
Run one or more SQL commands against the database.

fetchone(), fetchmany(), and fetchall()
Get the results from execute.

The Python database modules in the coming sections conform to DB-API, often with
extensions and some differences in details.

SQLite

SQLite is a good, light, open source relational database. It's implemented as a stan-
dard Python library, and stores databases in normal files. These files are portable
across machines and operating systems, making SQLite a very portable solution for
simple relational database applications. It isn't as full-featured as MySQL or Post-
greSQL, but it does support SQL, and it manages multiple simultaneous users. Web
browsers, smart phones, and other applications use SQLite as an embedded database.

200 | Chapter8: Data Has to Go Somewhere

http://bit.ly/db-api
http://www.sqlite.org

You begin with a connect() to the local SQLite database file that you want to use or
create. This file is the equivalent of the directory-like database that parents tables in
other servers. The special string ':memory:' creates the database in memory only;
this is fast and useful for testing but will lose data when your program terminates or if
your computer goes down.

For the next example, let’s make a database called enterprise.db and the table zoo to
manage our thriving roadside petting zoo business. The table columns are as follows:

critter
A variable length string, and our primary key

count
An integer count of our current inventory for this animal

damages
The dollar amount of our current losses from animal-human interactions

>>> import sqlite3

>>> conn = sqlite3.connect('enterprise.db')

>>> curs = conn.cursor()

>>> curs.execute('''CREATE TABLE zoo
(critter VARCHAR(20) PRIMARY KEY,
count INT,
damages FLOAT)''')

<sqlite3.Cursor object at 0x1006a22d0>

Python’s triple quotes are handy when creating long strings such as SQL queries.
Now, add some animals to the zoo:

>>> curs.execute('INSERT INTO zoo VALUES("duck", 5, 0.0)')
<sqlite3.Cursor object at 0x1006a22d0>

>>> curs.execute('INSERT INTO zoo VALUES("bear", 2, 1000.0)")
<sqlite3.Cursor object at 0x1006a22d0>

There’s a safer way to insert data, using a placeholder:

>>> ins = 'INSERT INTO zoo (critter, count, damages) VALUES(?, ?, ?)

>>> curs.execute(ins, ('weasel', 1, 2000.0))

<sqlite3.Cursor object at 0x1006a22d0>
This time, we used three question marks in the SQL to indicate that we plan to insert
three values, and then pass those three values as a tuple to the execute() function.
Placeholders handle tedious details such as quoting. They protect you against SQL
injection—a kind of external attack that is common on the Web that inserts malicious
SQL commands into the system.

Now, let’s see if we can get all our animals out again:

Relational Databases | 201

>>> curs.execute('SELECT * FROM zoo')

<sqlite3.Cursor object at 0x1006a22d0>

>>> rows = curs.fetchall()

>>> print(rows)

[('duck', 5, 0.0), ('bear', 2, 1000.0), ('weasel', 1, 2000.0)]

Let’s get them again, but ordered by their counts:

>>> curs.execute('SELECT * from zoo ORDER BY count')
<sqlite3.Cursor object at 0x1006a22d0>

>>> curs.fetchall()

[('weasel', 1, 2000.0), ('bear', 2, 1000.0), ('duck', 5, 0.0)]

Hey, we wanted them in descending order:

>>> curs.execute('SELECT * from zoo ORDER BY count DESC')
<sqlite3.Cursor object at 0x1006a22d0>

>>> curs.fetchall()

[('duck', 5, 0.0), ('bear', 2, 1000.0), ('weasel', 1, 2000.0)]

Which type of animal is costing us the most?

>>> curs.execute('''SELECT * FROM zoo WHERE

. damages = (SELECT MAX(damages) FROM zoo)''')
<sqlite3.Cursor object at 0x1006a22d0>

>>> curs.fetchall()

[('weasel', 1, 2000.0)]

You would have thought it was the bears. It’s always best to check the actual data.

Before we leave SQLite, we need to clean up. If we opened a connection and a cursor,
we need to close them when we're done:

>>> curs.close()
>>> conn.close()

MySQL

MySQL is a very popular open source relational database. Unlike SQLite, it's an actual
server, so clients can access it from different devices across the network.

MysqglDB has been the most popular MySQL driver, but it has not yet been ported to
Python 3. Table 8-3 lists the drivers you can use to access MySQL from Python.

Table 8-3. MySQL drivers

Name Link Pypi package Import as Notes
MysaL http://bit.ly/mysql-cpdg mysql-connector- ~ mysql.connector
Connector python
PYMySQL https://github.com/petehunt/ pymysql pymysql

PyMysQL/

202 | Chapter8: Data Has to Go Somewhere

http://www.mysql.com
http://sourceforge.net/projects/mysql-python
http://bit.ly/mysql-cpdg
https://github.com/petehunt/PyMySQL/
https://github.com/petehunt/PyMySQL/

Name Link Pypi package Import as Notes

oursql http://pythonhosted.org/oursql/ oursql oursql Requires the MySQL C
q p:/7py g/oursq q q q y
client libraries.

PostgreSQL

PostgreSQL is a full-featured open source relational database, in many ways more
advanced than MySQL. Table 8-4 presents the Python drivers you can use to access it.

Table 8-4. PostgreSQL drivers

Name Link Pypi package Importas Notes
psycopg2 http://initd.org/psycopg/ psycopg2 psycopg2 Needs pg_config from PostgreSQL
client tools

py-postgresql http://python.projects.pgfoundry.org/ py-postgresql postgresql

The most popular driver is psycopg?, but its installation requires the PostgreSQL cli-
ent libraries.

SQLAIchemy

SQL is not quite the same for all relational databases, and DB-API takes you only so
far. Each database implements a particular dialect reflecting its features and philoso-
phy. Many libraries try to bridge these differences in one way or another. The most
popular cross-database Python library is SQLAlchemy.

It isn’t in the standard library, but it’s well known and used by many people. You can
install it on your system by using this command:
$ pip install sqlalchemy

You can use SQLAlchemy on several levels:

o The lowest level handles database connection pools, executing SQL commands,
and returning results. This is closest to the DB-APIL.

o Next up is the SQL expression language, a Pythonic SQL builder.

o Highest is the ORM (Object Relational Model) layer, which uses the SQL Expres-
sion Language and binds application code with relational data structures.

As we go along, you'll understand what the terms mean in those levels. SQLAlchemy
works with the database drivers documented in the previous sections. You don’'t need
to import the driver; the initial connection string you provide to SQLAlchemy will
determine it. That string looks like this:

Relational Databases | 203

http://pythonhosted.org/oursql/
http://www.postgresql.org
http://initd.org/psycopg/
http://python.projects.pgfoundry.org/
http://www.sqlalchemy.org

dialect + driver :// user : password@ host : port | dbname

The values you put in this string are as follows:

dialect
The database type

driver
The particular driver you want to use for that database

user and password
Your database authentication strings

host and port
The database server’s location (: port is only needed if it’s not the standard one
for this server)

dbname
The database to initially connect to on the server

Table 8-5 lists the dialects and drivers.

Table 8-5. SQLAlchemy connection

dialect driver

sqlite pysqlite (or omit)
mysql mysqlconnector
mysql pymysql

mysql oursql

postgresql psycopg2

postgresql pypostgresql

The engine layer

First, we'll try the lowest level of SQLAlchemy, which does little more than the base
DB-API functions.

Let’s try it with SQLite, which is already built into Python. The connection string for
SQLite skips the host, port, user, and password. The dbname informs SQLite as to
what file to use to store your database. If you omit the dbname, SQLite builds a data-
base in memory. If the dbname starts with a slash (/), it’s an absolute filename on your

204 | Chapter8: Data Has to Go Somewhere

computer (as in Linux and OS X; for example, C:\\ on Windows). Otherwise, it’s rela-
tive to your current directory.

The following segments are all part of one program, separated here for explanation.

To begin, you need to import what we need. The following is an example of an import
alias, which lets us use the string sa to refer to SQLAlchemy methods. I do this
mainly because sa is a lot easier to type than sqlalchemy:

>>> import sqlalchemy as sa

Connect to the database and create the storage for it in memory (the argument string
'sqlite:///:memory: "' also works):

>>> conn = sa.create_engine('sqlite://")
Create a database table called zoo that comprises three columns:

>>> conn.execute('''CREATE TABLE zoo

(critter VARCHAR(20) PRIMARY KEY,

count INT,
.. damages FLOAT)''")
<sqlalchemy.engine.result.ResultProxy object at 0x1017efb10>

Running conn.execute() returns a SQLAlchemy object called a ResultProxy. You'll
soon see what to do with it.

By the way, if you've never made a database table before, congratulations. Check that
one off your bucket list.

Now, insert three sets of data into your new empty table:

>>> ins = 'INSERT INTO zoo (critter, count, damages) VALUES (?, ?, ?)'
>>> conn.execute(ins, 'duck', 10, 0.0)
<sqlalchemy.engine.result.ResultProxy object at 0x1017efb50>

>>> conn.execute(ins, 'bear', 2, 1000.0)
<sqlalchemy.engine.result.ResultProxy object at 0x1017ef090>

>>> conn.execute(ins, 'weasel', 1, 2000.0)
<sqlalchemy.engine.result.ResultProxy object at 0x1017ef450>

Next, ask the database for everything that we just put in:
>>> rows = conn.execute('SELECT * FROM zoo')

In SQLAlchemy, rows is not a list; it's that special ResultProxy thing that we can’t
print directly:

>>> print(rows)
<sqlalchemy.engine.result.ResultProxy object at 0x1017ef9do>

However, you can iterate over it like a list, so we can get a row at a time:

>>> for row in rows:
print(row)

Relational Databases | 205

('duck', 10, 0.0)
('bear', 2, 1000.0)
('weasel', 1, 2000.0)

That was almost the same as the SQLite DB-API example that you saw earlier. The
one advantage is that we didn't need to import the database driver at the top; SQLAI-
chemy figured that out from the connection string. Just changing the connection
string would make this code portable to another type of database. Another plus is
SQLAlchemy’s connection pooling, which you can read about at its documentation
site.

The SQL Expression Language

The next level up is SQLAlchemy’s SQL Expression Language. It introduces functions
to create the SQL for various operations. The Expression Language handles more of
the SQL dialect differences than the lower-level engine layer does. It can be a handy
middle-ground approach for relational database applications.

Here’s how to create and populate the zoo table. Again, these are successive fragments
of a single program.

The import and connection are the same as before:

>>> import sqlalchemy as sa
>>> conn = sa.create_engine('sqlite://")

To define the zoo table, we'll begin using some of the Expression Language instead of
SQL:

>>> meta = sa.MetaData()

>>> z00 = sa.Table('zoo', meta,
sa.Column('critter', sa.String, primary_key=True),
sa.Column('count', sa.Integer),
sa.Column('damages', sa.Float)

)
>>> meta.create_all(conn)
Check out the parentheses in that multiline call in the preceding example. The struc-
ture of the Table() method matches the structure of the table. Just as our table con-
tains three columns, there are three calls to Column() inside the parentheses of the
Table() method call.

Meanwhile, zoo is some magic object that bridges the SQL database world and the
Python data structure world.

Insert the data with more Expression Language functions:

. conn.execute(zoo.insert(('bear', 2, 1000.0)))
<sqlalchemy.engine.result.ResultProxy object at 0x1017ea910>
>>> conn.execute(zoo.insert(('weasel', 1, 2000.0)))
<sqlalchemy.engine.result.ResultProxy object at 0x1017eab10>

206 | Chapter8: Data Has to Go Somewhere

http://bit.ly/conn-pooling
http://bit.ly/conn-pooling

>>> conn.execute(zoo.insert(('duck', 10, 0)))
<sqlalchemy.engine.result.ResultProxy object at 0x1017eac50>

Next, create the SELECT statement (zoo.select() selects everything from the table
represented by the zoo object, such as SELECT * FROM zoo would do in plain SQL):

>>> result = conn.execute(zoo.select())
Finally, get the results:

>>> rows = result.fetchall()
>>> print(rows)
[('bear', 2, 1000.0), ('weasel', 1, 2000.0), ('duck', 10, 0.0)]

The Object-Relational Mapper

In the last section, the zoo object was a mid-level connection between SQL and
Python. At the top layer of SQLAlchemy, the Object-Relational Mapper (ORM) uses
the SQL Expression Language but tries to make the actual database mechanisms
invisible. You define classes, and the ORM handles how to get their data in and out of
the database. The basic idea behind that complicated phrase, “object-relational map-
per; is that you can refer to objects in your code, and thus stay close to the way
Python likes to operate, while still using a relational database.

WEe'll define a Zoo class and hook it into the ORM. This time, we'll make SQLite use
the file zoo.db so that we can confirm that the ORM worked.

As in the previous two sections, the snippets that follow are actually one program
separated by explanations. Don't worry if you don't understand some if it. The
SQLAlchemy documentation has all the details, and this stuff can get complex. I just
want you to get an idea of how much work it is to do this, so that you can decide
which of the approaches discussed in this chapter suits you.

The initial import is the same, but this time we need another something also:

>>> import sqlalchemy as sa
>>> from sqlalchemy.ext.declarative import declarative_base

Here, we make the connection:
>>> conn = sa.create_engine('sqlite:///zoo.db")

Now, we get into SQLAlchemy’s ORM. We define the Zoo class and associate its
attributes with table columns:

>>> Base = declarative_base()
>>> class Zoo(Base):
__tablename__ = 'zoo'
critter = sa.Column('critter', sa.String, primary_key=True)
count = sa.Column('count', sa.Integer)
damages = sa.Column('damages', sa.Float)
def __init__ (self, critter, count, damages):

Relational Databases | 207

self.critter = critter

self.count = count

self.damages = damages
def _ repr__(self):

return "<Zoo({}, {}, {})>".format(self.critter, self.count, self.damages)

The following line magically creates the database and table:
>>> Base.metadata.create_all(conn)

You can then insert data by creating Python objects. The ORM manages these
internally:

>>> first = Zoo('duck', 10, 0.0)
>>> second = Zoo('bear', 2, 1000.0)
>>> third = Zoo('weasel', 1, 2000.0)
>>> first

<Zoo(duck, 10, 0.0)>

Next, we get the ORM to take us to SQL land. We create a session to talk to the data-
base:

>>> from sqlalchemy.orm import sessionmaker
>>> Session = sessionmaker(bind=conn)
>>> session = Session()

Within the session, we write the three objects that we created to the database. The
add() function adds one object, and add_all() adds a list:

>>> session.add(first)
>>> session.add_all([second, third])

Finally, we need to force everything to complete:
>>> session.commit()

Did it work? Well, it created a zoo.db file in the current directory. You can use the
command-line sqlite3 program to check it:

$ sqlite3 zoo.db

SQLite version 3.6.12

Enter ".help" for instructions

Enter SQL statements terminated with a
sqlite> .tables

z00

sqlite> select * from zoo;

duck|10]0.0

bear|2]1000.0

weasel|1]|2000.0

nen
B

The purpose of this section was to show what an ORM is and how it works at a high
level. The author of SQLAlchemy has written a full tutorial. After reading this, decide
which of the following levels would best fit your needs:

208 | Chapter8: Data Has to Go Somewhere

http://bit.ly/obj-rel-tutorial

o Plain DB-API, as in the earlier SQLite section
o The SQLAlchemy engine room

o The SQLAlchemy Expression Language

+ The SQLAlchemy ORM

It seems like a natural choice to use an ORM to avoid the complexities of SQL. Should
you use one? Some people think ORMs should be avoided, but others think the criti-
cism is overdone. Whoever’s right, an ORM is an abstraction, and all abstractions
break down at some point; they’re leaky. When your ORM doesn’t do what you want,
you must figure out both how it works and how to fix it in SQL. To borrow an Inter-
net meme: Some people, when confronted with a problem, think, “I know, I'll use an
ORM.” Now they have two problems. Use ORMs sparingly, and mostly for simple
applications. If the application is that simple, maybe you can just use straight SQL (or
the SQL Expression Language), anyhow.

Or, you can try something simpler such as dataset. It's built on SQLAlchemy and
provides a simple ORM for SQL, JSON, and CSV storage.

NoSQL Data Stores

Some databases are not relational and don’t support SQL. These were written to han-
dle very large data sets, allow more flexible data definitions, or support custom data
operations. They’ve been collectively labeled NoSQL (formerly meaning no SQL; now
the less confrontational not only SQL).

The dbm Family

The dbm formats were around long before NoSQL was coined. Theyre key-value
stores, often embedded in applications such as web browsers to maintain various set-
tings. A dbm database is like a Python dictionary in the following ways:

» You can assign a value to a key, and it’s automatically saved to the database on

disk.

 You can get a value from a key.

The following is a quick example. The second argument to the following open()
method is 'r' to read, 'w' to write, and 'c' for both, creating the file if it doesn’t
exist:

>>> import dbm
>>> db = dbm.open('definitions', 'c")

To create key-value pairs, just assign a value to a key just as you would a dictionary:

NoSQL Data Stores | 209

http://bit.ly/obj-rel-map
http://bit.ly/fowler-orm
http://bit.ly/fowler-orm
http://bit.ly/leaky-law
https://dataset.readthedocs.org/

>>> db['mustard'] 'yellow'
>>> db['ketchup'] = 'red'
>>> db['pesto'] = 'green'

Let’s pause and check what we have so far:

>>> len(db)

3

>>> db['pesto']
b'green'

Now close, then reopen to see if it actually saved what we gave it:

>>> db.close()

>>> db = dbm.open('definitions', 'r'")

>>> db['mustard’']

b'yellow'
Keys and values are stored as bytes. You cannot iterate over the database object db,
but you can get the number of keys by using len(). Note that get() and setde
fault() work as they do for dictionaries.

Memcached

memcached is a fast in-memory key-value cache server. It’s often put in front of a data-
base, or used to store web server session data. You can download versions for Linux
and OS X, and for Windows. If you want to try out this section, you'll need a memc-
ached server and Python driver.

There are many Python drivers; one that works with Python 3 is python3-memcached,
which you can install by using this command:

$ pip install python-memcached

To use it, connect to a memcached server, after which you can do the following:

o Set and get values for keys
o Increment or decrement a value

o Delete a key

Data is not persistent, and data that you wrote earlier might disappear. This is inher-
ent in memcached, being that it’s a cache server. It avoids running out of memory by
discarding old data.

You can connect to multiple memcached servers at the same time. In this next exam-
ple, we're just talking to one on the same computer:

>>> import memcache
>>> db = memcache.Client(['127.0.0.1:11211"'])
>>> db.set('marco', 'polo')

210 | Chapter8: Data Has to Go Somewhere

http://memcached.org/
http://bit.ly/install-osx
http://bit.ly/install-osx
http://bit.ly/memcache-win
https://github.com/eguven/python3-memcached

True
>>> db.get('marco')

'polo’

>>> db.set('ducks', 0)
True

>>> db.get('ducks"')

0

>>> db.incr('ducks', 2)
2

>>> db.get('ducks"')

2

Redis

Redis is a data structure server. Like memcached, all of the data in a Redis server
should fit in memory (although there is now an option to save the data to disk).
Unlike memcached, Redis can do the following:

o Save data to disk for reliability and restarts
o Keep old data

o Provide more data structures than simple strings

The Redis data types are a close match to Python’s, and a Redis server can be a useful
intermediary for one or more Python applications to share data. I've found it so use-
ful that it's worth a little extra coverage here.

The Python driver redis-py has its source code and tests on GitHub, as well as
online documentation. You can install it by using this command:

$ pip install redis

The Redis server itself has good documentation. If you install and start the Redis
server on your local computer (with the network nickname localhost), you can try
the programs in the following sections.

Strings

A key with a single value is a Redis string. Simple Python data types are automatically
converted. Connect to a Redis server at some host (default is localhost) and port
(default is 6379):

>>> import redis
>>> conn = redis.Redis()

redis.Redis('localhost') or redis.Redis('localhost', 6379) would have given
the same result.

List all keys (none so far):

NoSQL Data Stores | 211

http://redis.io
https://github.com/andymccurdy/redis-py
http://bit.ly/redis-py-docs
http://redis.io

>>> conn.keys('*")

[1
Set a simple string (key 'secret'), integer (key 'carats'), and float (key 'fever'):

>>> conn.set('secret', 'ni!')

True

>>> conn.set('carats', 24)
True

>>> conn.set('fever', '101.5")
True

Get the values back by key:
>>> conn.get('secret"')
b'ni!'
>>> conn.get('carats')
b'24'
>>> conn.get('fever')
b'101.5'
Here, the setnx() method sets a value only if the key does not exist:

>>> conn.setnx('secret', 'icky-icky-icky-ptang-zoop-boing!")
False

It failed because we had already defined 'secret':

>>> conn.get('secret"')
b'ni!’

The getset() method returns the old value and sets it to a new one at the same time:

>>> conn.getset('secret', 'icky-icky-icky-ptang-zoop-boing!")
b'ni!’

Let’s not get too far ahead of ourselves. Did it work?

>>> conn.get('secret')
b'1icky-icky-icky-ptang-zoop-boing!"'

Now, get a substring by using getrange() (as in Python, offset O=start, -1=end):

>>> conn.getrange('secret', -6, -1)
b'boing!"'

Replace a substring by using setrange() (using a zero-based offset):

>>> conn.setrange('secret', 0, 'ICKY')
32

>>> conn.get('secret')
b'ICKY-icky-icky-ptang-zoop-boing!"'

Next, set multiple keys at once by using mset():

>>> conn.mset({'pie': 'cherry', 'cordial': 'sherry'})
True

212 | Chapter8: Data Has to Go Somewhere

Get more than one value at once by using mget():

>>> conn.mget(['fever', 'carats'])
[b'101.5', b'24']

Delete a key by using delete():

>>> conn.delete('fever"')
True

Increment by using the incr() or incrbyfloat() commands, and decrement with
decr():

>>> conn.incr('carats')

25

>>> conn.incr('carats', 10)

35

>>> conn.decr('carats')

34

>>> conn.decr('carats', 15)

19

>>> conn.set('fever', '101.5")
True

>>> conn.incrbyfloat('fever')
102.5

>>> conn.incrbyfloat('fever', 0.5)
103.0

There’s no decrbyfloat(). Use a negative increment to reduce the fever:

>>> conn.incrbyfloat('fever', -2.0)
101.0

Lists

Redis lists can contain only strings. The list is created when you do your first inser-
tion. Insert at the beginning by using lpush():

>>> conn.lpush('zoo', 'bear')
1

Insert more than one item at the beginning:

>>> conn.lpush('zoo', 'alligator', 'duck')
3

Insert before or after a value by using linsert():

>>> conn.linsert('zoo', 'before', 'bear', 'beaver')

4

>>> conn.linsert('zoo', 'after', 'bear', 'cassowary')
5

Insert at an offset by using lset() (the list must exist already):

NoSQL Data Stores | 213

>>> conn.lset('zoo', 2, 'marmoset')
True

Insert at the end by using rpush():

>>> conn.rpush('zoo', 'yak")
6

Get the value at an offset by using 1index():

>>> conn.lindex('zoo', 3)
b'bear'

Get the values in an offset range by using lrange() (0 to -1 for all):

>>> conn.lrange('zoo', 0, 2)
[b'duck', b'alligator', b'marmoset']

Trim the list with 1trim(), keeping only those in a range of offsets:

>>> conn.ltrim('zoo', 1, 4)
True

Get a range of values (use 0 to -1 for all) by using lrange():

>>> conn.lrange('zoo', 0, -1)
[b'alligator', b'marmoset', b'bear', b'cassowary']

Chapter 10 shows you how you can use Redis lists and publish-subscribe to implement
job queues.

Hashes

Redis hashes are similar to Python dictionaries but can contain only strings. Thus,
you can go only one level deep, not make deep-nested structures. Here are examples
that create and play with a Redis hash called song:

Set the fields do and re in hash song at once by using hmset():

>>> conn.hmset('song', {'do': 'a deer', 're': 'about a deer'})
True

Set a single field value in a hash by using hset():

>>> conn.hset('song', 'mi', 'a note to follow re')

1
Get one field’s value by using hget():

>>> conn.hget('song', 'mi')
b'a note to follow re'

Get multiple field values by using hmget():

>>> conn.hmget('song', 're', 'do')
[b'about a deer', b'a deer']

214 | Chapter8: Data Has to Go Somewhere

Get all field keys for the hash by using hkeys():

>>> conn.hkeys('song")
[b'do', b're', b'mi']

Get all field values for the hash by using hvals():

>>> conn.hvals('song')
[b'a deer', b'about a deer', b'a note to follow re']

Get the number of fields in the hash by using hlen():

>>> conn.hlen('song"')
3

Get all field keys and values in the hash by using hgetall():

>>> conn.hgetall('song')
{b'do': b'a deer', b're': b'about a deer', b'mi': b'a note to follow re'}

Set a field if its key doesn’t exist by using hsetnx():

>>> conn.hsetnx('song', 'fa', 'a note that rhymes with la')
1

Sets

Redis sets are similar to Python sets, as you can see in the series of examples that fol-
low.

Add one or more values to a set:

>>> conn.sadd('zoo', 'duck', 'goat', 'turkey')
3

Get the number of values from the set:

>>> conn.scard('zoo')
3

Get all the set’s values:

>>> conn.smembers('zoo")
{b'duck', b'goat', b'turkey'}

Remove a value from the set:

>>> conn.srem('zoo', 'turkey')
True

Let’s make a second set to show some set operations:

>>> conn.sadd('better_zoo', 'tiger', 'wolf', 'duck')
0

Intersect (get the common members of) the zoo and better_zoo sets:

NoSQL Data Stores | 215

>>> conn.sinter('zoo', 'better_zoo')
{b'duck'}

Get the intersection of zoo and better_zoo, and store the result in the set fowl_zoo:

>>> conn.sinterstore('fowl_zoo', 'zoo', 'better_zoo')
1

Who’s in there?

>>> conn.smembers('fowl_zoo')
{b'duck'}
Get the union (all members) of zoo and better_zoo:
>>> conn.sunion('zoo', 'better_zoo')
{b'duck', b'goat', b'wolf', b'tiger'}
Store that union result in the set fabulous_zoo:
>>> conn.sunionstore('fabulous_zoo', 'zoo', 'better_zoo')
4
>>> conn.smembers('fabulous_zoo')
{b'duck', b'goat', b'wolf', b'tiger'}
What does zoo have that better_zoo doesn’t? Use sdiff() to get the set difference,
and sdiffstore() to save it in the zoo_sale set:
>>> conn.sdiff('zoo', 'better_zoo')
{b'goat'}
>>> conn.sdiffstore('zoo_sale', 'zoo', 'better_zoo')
1

>>> conn.smembers('zoo_sale')
{b'goat'}

Sorted sets

One of the most versatile Redis data types is the sorted set, or zset. It's a set of unique
values, but each value has an associated floating point score. You can access each item
by its value or score. Sorted sets have many uses:

o Leader boards
 Secondary indexes

« Timeseries, using timestamps as scores

We'll show the last use case, tracking user logins via timestamps. We're using the Unix
epoch value (more on this in Chapter 10) that’s returned by the Python time() func-
tion:

>>> import time
>>> now = time.time()

216 | Chapter8: Data Has to Go Somewhere

>>> now
1361857057.576483

Let’s add our first guest, looking nervous:

>>> conn.zadd('logins', 'smeagol', now)
1

Five minutes later, another guest:

>>> conn.zadd('logins', 'sauron', now+(5*60))
1

Two hours later:

>>> conn.zadd('logins', 'bilbo', now+(2*60*60))
1

One day later, not hasty:

>>> conn.zadd('logins', 'treebeard', now+(24*60%*60))
1

In what order did bilbo arrive?

>>> conn.zrank('logins', 'bilbo"')
2

When was that?

>>> conn.zscore('logins', 'bilbo')
1361864257.576483

Let’s see everyone in login order:

>>> conn.zrange('logins', 0, -1)
[b'smeagol', b'sauron', b'bilbo', b'treebeard']

With their times, please:

>>> conn.zrange('logins', 0, -1, withscores=True)
[(b'smeagol', 1361857057.576483), (b'sauron', 1361857357.576483),
(b'bilbo', 1361864257.576483), (b'treebeard', 1361943457.576483)]

Bits

This is a very space-efficient and fast way to deal with large sets of numbers. Suppose
that you have a website with registered users. Youd like to track how often people log
in, how many users visit on a particular day, how often the same user visits on follow-
ing days, and so on. You could use Redis sets, but if you've assigned increasing
numeric user IDs, bits are more compact and faster.

Let’s begin by creating a bitset for each day. For this test, we'll just use three days and a
few user IDs:

NoSQL Data Stores | 217

>>> days = ['2013-02-25', '2013-02-26', '2013-02-27"]
>>> big_spender = 1089

>>> tire_kicker = 40459

>>> late_joiner = 550212

Each date is a separate key. Set the bit for a particular user ID for that date. For exam-
ple, on the first date (2013-02-25), we had visits from big_spender (ID 1089) and
tire_kicker (ID 40459):

>>> conn.setbit(days[0], big_spender, 1)

0

>>> conn.setbit(days[0], tire_kicker, 1)
0

The next day, big_spender came back:

>>> conn.setbit(days[1], big_spender, 1)

0
The next day had yet another visit from our friend, big_spender, and a new person
whom we're calling late_jotiner:

>>> conn.setbit(days[2], big_spender, 1)

0

>>> conn.setbit(days[2], late_joiner, 1)
0

Let’s get the daily visitor count for these three days:

>>> for day in days:
conn.bitcount(day)

N BN

Did a particular user visit on a particular day?

>>> conn.getbit(days[1], tire_kicker)
0

So, tire_kicker did not visit on the second day.
How many users visited every day?
>>> conn.bitop('and', 'everyday', *days)
68777

>>> conn.bitcount('everyday')
1

I'll give you three guesses who it was:

>>> conn.getbit('everyday', big_spender)
1

Finally, what was the number of total unique users in these three days?

218 | Chapter8: Data Has to Go Somewhere

>>> conn.bitop('or', 'alldays', *days)
68777

>>> conn.bitcount('alldays"')

3

Caches and expiration

All Redis keys have a time-to-live, or expiration date. By default, this is forever. We
can use the expire() function to instruct Redis how long to keep the key. As is
demonstrated here, the value is a number of seconds:

>>> import time

>>> key = 'now you see it'

>>> conn.set(key, 'but not for long')
True

>>> conn.expire(key, 5)

True

>>> conn.ttl(key)

5

>>> conn.get(key)
b'but not for long'
>>> time.sleep(6)
>>> conn.get(key)
>>>

The expireat() command expires a key at a given epoch time. Key expiration is use-
ful to keep caches fresh and to limit login sessions.

Other NoSQL

The NoSQL servers listed here handle data larger than memory, and many of them
use multiple computers. Table 8-6 presents notable servers and their Python libraries.

Table 8-6. NoSQL databases

Site Python API

(assandra pycassa
CouchDB couchdb-python
HBase happybase
Kyoto Cabinet kyotocabinet
MongoDB mongodb

Riak riak-python-client

NoSQL Data Stores | 219

http://cassandra.apache.org/
https://github.com/pycassa/pycassa
http://couchdb.apache.org/
https://github.com/djc/couchdb-python
http://hbase.apache.org/
https://github.com/wbolster/happybase
http://fallabs.com/kyotocabinet/
http://bit.ly/kyotocabinet
http://www.mongodb.org/
http://api.mongodb.org/python/current/
http://basho.com/riak/
https://github.com/basho/riak-python-client

Full-Text Databases

Finally, there’s a special category of databases for full-text search. They index every-
thing, so you can find that poem that talks about windmills and giant wheels of
cheese. You can see some popular open source examples, and their Python APIs, in
Table 8-7.

Table 8-7. Full-text databases

Site Python API

Lucene pylucene
Solr SolPython
ElasticSearch pyes
Sphinx sphinxapi
Xapian Xappy

Whoosh (written in Python, includes an API)

Things to Do

8.1. Assign the string 'This is a test of the emergency text system' to the
variable test1, and write test1 to a file called test.txt.

8.2. Open the file test.txt and read its contents into the string test2. Are testl and
test2 the same?

8.3. Save these text lines to a file called books.csv. Notice that if the fields are separated
by commas, you need to surround a field with quotes if it contains a comma.

author,book
J R R Tolkien,The Hobbit
Lynne Truss,"Eats, Shoots & Leaves"

8.4. Use the csv module and its DictReader method to read books.csv to the variable

books. Print the values in books. Did DictReader handle the quotes and commas in
the second books title?

8.5. Create a CSV file called books.csv by using these lines:

title,author,year

The Weirdstone of Brisingamen,Alan Garner,1960
Perdido Street Station,China Miéville,2000
Thud!,Terry Pratchett,2005

220 | Chapter8: Data Has to Go Somewhere

http://lucene.apache.org/
http://lucene.apache.org/pylucene/
http://lucene.apache.org/solr/
http://wiki.apache.org/solr/SolPython
http://www.elasticsearch.org/
https://github.com/aparo/pyes/
http://sphinxsearch.com/
http://bit.ly/sphinxapi
http://xapian.org/
https://code.google.com/p/xappy/
http://bit.ly/mchaput-whoosh

The Spellman Files,Lisa Lutz,2007
Small Gods,Terry Pratchett,1992

8.6. Use the sqlite3 module to create a SQLite database called books.db, and a table
called books with these fields: title (text), author (text), and year (integer).

8.7. Read books.csv and insert its data into the book table.
8.8. Select and print the title column from the book table in alphabetical order.
8.9. Select and print all columns from the book table in order of publication.

8.10. Use the sqlalchemy module to connect to the sqlite3 database books.db that you
just made in exercise 8.6. As in 8.8, select and print the title column from the book
table in alphabetical order.

8.11. Install the Redis server and the Python redis library (pip install redis) on
your computer. Create a Redis hash called test with the fields count (1) and name
('Fester Bestertester'). Print all the fields for test.

8.12. Increment the count field of test and print it.

ThingstoDo | 221

CHAPTER9
The Web, Untangled

Straddling the French-Swiss border is CERN—a particle physics research institute
that would seem a good lair for a Bond villain. Luckily, its quest is not world domina-
tion but to understand how the universe works. This has always led CERN to gener-
ate prodigious amounts of data, challenging physicists and computer scientists just to
keep up.

In 1989, the English scientist Tim Berners-Lee first circulated a proposal to help dis-
seminate information within CERN and the research community. He called it the
World Wide Web, and soon distilled its design into three simple ideas:

HTTP (Hypertext Transfer Protocol)
A specification for web clients and servers to interchange requests and responses

HTML (Hypertext Markup Language)
A presentation format for results

URL (Uniform Resource Locator)
A way to uniquely represent a server and a resource on that server

In its simplest usage, a web client (I think Berners-Lee was the first to use the term
browser) connected to a web server with HTTP, requested a URL, and received
HTML.

He wrote the first web browser and server on a NeXT computer, invented by a short-
lived company Steve Jobs founded during his hiatus from Apple Computer. Web
awareness really expanded in 1993, when a group of students at the University of Illi-
nois released the Mosaic web browser (for Windows, the Macintosh, and Unix) and
NCSA httpd server. When I downloaded these and started building sites, I had no
idea that the Web and the Internet would soon become part of everyday life. At the
time, the Internet was still officially noncommercial; there were about 500 known

223

http://home.web.cern.ch/about/birth-web

web servers in the world. By the end of 1994, the number of web servers had grown
to 10,000. The Internet was opened to commercial use, and the authors of Mosaic
founded Netscape to write commercial web software. Netscape went public as part of
the Internet frenzy that was occurring at the time, and the Web’s explosive growth has
never stopped.

Almost every computer language has been used to write web clients and web servers.
The dynamic languages Perl, PHP, and Ruby have been especially popular. In this
chapter, I'll show why Python is a particularly good language for web work at every
level:

o Clients, to access remote sites
o Servers, to provide data for websites and web APIs

o Web APIs and services, to interchange data in other ways than viewable web
pages

And while we're at it, we'll build an actual interactive website in the exercises at the
end of this chapter.

Web Clients

The low-level network plumbing of the Internet is called Transmission Control Pro-
tocol/Internet Protocol, or more commonly, simply TCP/IP (“TCP/IP” on page 286
goes into more detail about this). It moves bytes among computers, but doesn't care
about what those bytes mean. That’s the job of higher-level protocols—syntax defini-
tions for specific purposes. HTTP is the standard protocol for web data interchange.

The Web is a client-server system. The client makes a request to a server: it opens a
TCP/IP connection, sends the URL and other information via HTTP, and receives a
response.

The format of the response is also defined by HTTP. It includes the status of the
request, and (if the request succeeded) the response’s data and format.

The most well-known web client is a web browser. It can make HTTP requests in a
number of ways. You might initiate a request manually by typing a URL into the loca-
tion bar or clicking on a link in a web page. Very often, the data returned is used to
display a website—HTML documents, JavaScript files, CSS files, and images—but it
can be any type of data, not just that intended for display.

An important aspect of HTTP is that it’s stateless. Each HTTP connection that you
make is independent of all the others. This simplifies basic web operations but com-
plicates others. Here are just a few samples of the challenges:

224 | Chapter9: The Web, Untangled

http://home.web.cern.ch/about/birth-web

Caching
Remote content that doesn’t change should be saved by the web client and used
to avoid downloading from the server again.

Sessions
A shopping website should remember the contents of your shopping cart.

Authentication
Sites that require your username and password should remember them while
you're logged in.

Solutions to statelessness include cookies, in which the server sends the client enough
specific information to be able to identify it uniquely when the client sends the cookie
back.

Test with telnet

HTTP is a text-based protocol, so you can actually type it yourself for web testing.
The ancient telnet program lets you connect to any server and port and type com-
mands.

Lets ask everyone’s favorite test site, Google, some basic information about its home
page. Type this:

$ telnet www.google.com 80

If there is a web server on port 80 at google.com (I think that’s a safe bet), telnet will
print some reassuring information and then display a final blank line that’s your cue
to type something else:

Trying 74.125.225.177...
Connected to www.google.com.
Escape character is '~]'.

Now, type an actual HTTP command for telnet to send to the Google web server.
The most common HTTP command (the one your browser uses when you type a
URL in its location bar) is GET. This retrieves the contents of the specified resource,
such as an HTML file, and returns it to the client. For our first test, we'll use the
HTTP command HEAD, which just retrieves some basic information about the
resource:

HEAD / HTTP/1.1

That HEAD / sends the HTTP HEAD verb (command) to get information about the
home page (/). Add an extra carriage return to send a blank line so the remote server
knows you’re all done and want a response. You'll receive a response such as this (we
trimmed some of the long lines using ... so they wouldn't stick out of the book):

Web Clients | 225

HTTP/1.1 200 OK
Date: Sat, 26 Oct 2013 17:05:17 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=IS0-8859-1
Set-Cookie: PREF=ID=962a70e9eb3db9d9:FF=0:TM=1382807117:LM=1382807117:S=y...
expires=Mon, 26-0ct-2015 17:05:17 GMT;
path=/;
domain=.google.com
Set-Cookie: NID=67=hTvtVC7dZImZzGktimbwVbNZxPQnaD1jCz716B1L56GM9qvsqqelGb. ..
expires=Sun, 27-Apr-2014 17:05:17 GMT
path=/;
domain=.google.com;
HttpOnly
P3P: CP="This is not a P3P policy! See http://www.google.com/support/accounts...
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic
Transfer-Encoding: chunked

These are HTTP response headers and their values. Some, like Date and Content-
Type, are required. Others, such as Set-Cooktie, are used to track your activity across
multiple visits (we'll talk about state management a little later in this chapter). When
you make an HTTP HEAD request, you get back only headers. If you had used the
HTTP GET or POST commands, you would also receive data from the home page (a
mixture of HTML, CSS, JavaScript, and whatever else Google decided to throw into
its home page).

I don’t want to leave you stranded in telnet. To close telnet, type the following:

q

Python’s Standard Web Libraries

In Python 2, web client and server modules were a bit scattered. One of the Python 3
goals was to bundle these modules into two packages (remember from Chapter 5 that
a package is just a directory containing module files):
o http manages all the client-server HTTP details:
— client does the client-side stuff
— server helps you write Python web servers
— cookies and cookiejar manage cookies, which save data between site visits
o urllib runs on top of http:
— request handles the client request

— response handles the server response

226 | Chapter9: The Web, Untangled

— parse cracks the parts of a URL

Let’s use the standard library to get something from a website. The URL in the follow-
ing example returns information about movies from the IMDB movie database:

>>> import urllib.request as ur

>>> from urllib.parse import quote

>>> import json

>>>

>>> title = input('Type a movie title: ')

Type a movie title: eegah

>>> url = 'http://www.omdbapi.com/?t=%s' % quote(title)
>>> conn = ur.urlopen(url)

For our example, we typed the movie title eegah; as you'll soon see, there was a movie
with that name. But first, some web computing details.

This little chunk of Python opened a TCP/IP connection to the remote quote server,
made an HTTP request, and received an HTTP response. The response contained
more than just the page data (the movie info). In the official documentation, we find
that conn is an HTTPResponse object with a number of methods and attributes. One of
the most important parts of the response is the HTTP status code:

>>> print(conn.status)
200

A 200 means that everything was peachy. There are dozens of HTTP status codes,
grouped into five ranges by their first (hundreds) digit:

Ixx (information)
The server received the request but has some extra information for the client.

2xx (success)
It worked; every success code other than 200 conveys extra details.

3xx (redirection)
The resource moved, so the response returns the new URL to the client.

4xx (client error)
Some problem from the client side, such as the famous 404 (not found). 418 (I'm
a teapot) was an April Fool’s joke.

5xx (server error)
500 is the generic whoops; you might see a 502 (bad gateway) if there’s some dis-
connect between a web server and a backend application server.

To get the actual data contents from the web page, use the read() method of the conn
variable:

Web Clients | 227

http://bit.ly/httpresponse-docs

>>> data = conn.read()
>>> print(data)

b'{"Title":"Eegah","Year":"1962","Rated": "UNRATED", "Released":"01 Apr
1965","Runtime":"90 min","Genre":"Comedy","Director":"Arch Hall
Sr.","Writer":"Bob Wehling (screenplay), Arch Hall Sr. (original
story)","Actors":"Arch Hall Jr., Marilyn Manning, Richard Kiel, Arch

Hall Sr.","Plot":"Teenagers stumble across a prehistoric caveman, who

goes on a rampage.","Language":"English","Country":"USA","Awards":"N/A",
"Poster":"http://ia.media-imdb.com/images/M/MV5BMTY4MDE3NDQIMF5BM15BanB
nXkFtZTcwODI3MDQyMQ@@._V1_SX300.jpg", "Metascore":"N/A","imdbRating":"2.2",
"{mdbVotes":"4,387","imdbID":"tt0055946","Type": "movie","Response":"True"}'

That didn’t look like plain text or HTML. Web servers can send data back to you in
any format they like. The data format is specified by the HTTP response header value
with the name Content-Type, which we also saw in our google.com example:

>>> print(conn.getheader('Content-Type'))
application/json; charset=utf-8

That application/json string is a MIME type, and it means JSON format, not plain
text or HTML. The MIME type for HTML, which the google.com example sent, is
text/html. I'll show you more MIME types in this chapter.

Now that we know it’s JSON, we can convert it into Python data structures and print
the ones we want:

>>> try:

v str_data = data.decode('utf8')

ces js_data = json.loads(str_data)

v print('title:', js_data['Title'])

ces print('plot:', js_data['Plot'])

... except:

ces print('Sorry, no match for', title)

title: Eegah

plot: Teenagers stumble across a prehistoric caveman, who goes on a rampage.

In this example, the returned JSON string was converted to a Python dictionary, and
we printed the two elements with the string keys Title and Plot.

Out of sheer curiosity, what other HTTP headers were sent back to us?

>>> for key, value in conn.getheaders():
v print(key, value)

Date Tue, 09 Feb 2016 02:57:47 GMT

Content-Type application/json; charset=utf-8

Content-Length 627

Connection close

Set-Cookie __cfduid=dc4315212f945a15f879910e5f92c79651454986667;
expires=Wed, 08-Feb-17 02:57:47 GMT; path=/; domain=.omdbapi.com;
HttpOnly

228 | Chapter9: The Web, Untangled

Cache-Control public, max-age=14400

Expires Tue, 09 Feb 2016 06:57:47 GMT
Last-Modified Tue, 09 Feb 2016 01:43:08 GMT
Vary Accept-Encoding

X-AspNet-Version 4.0.30319

X-Powered-By ASP.NET
Access-Control-Allow-0Origin *
CF-Cache-Status HIT

Server cloudflare-nginx

CF-RAY 271c4f0fe6da109f-0RD

Remember that telnet example a little earlier? Now, our Python library is parsing all
those HTTP response headers and providing them in a dictionary. Date and Server
seem straightforward; some of the others, less so. It’s helpful to know that HTTP has a
set of standard headers such as Content-Type, and many optional ones.

Beyond the Standard Library: Requests

At the beginning of Chapter 1, there’s a program that accessed a Wayback Machine
API by using the standard libraries urllib.request and json. Following that exam-
ple is a version that uses the third-party module requests. The requests version is
shorter and easier to understand.

For most purposes, I think web client development with requests is easier. You can
browse the documentation (which is pretty good) for full details. I'll show the basics
of requests in this section and use it throughout this book for web client tasks.

First, install the requests library into your Python environment. From a terminal
window (Windows users, type cmd to make one), type the following command to
make the Python package installer pip download the latest version of the requests
package and install it:

$ pip install requests

If you have trouble, read Appendix D for details on how to install and use pip.

Let’s redo our previous call to the movie service with requests. This time, just for
cinematic variety, we'll input the name of a different wretched movie from days gone

by:

>>> import requests

>>> import json

>>>

>>> url = 'http://www.omdbapi.com'

>>> title = input('Type a movie title: ')
Type a movie title: from hell it came
>>> args = {'t': title}

>>> resp = requests.get(url, params=args)
>>> resp

<Response [200]>

Web Clients | 229

http://docs.python-requests.org/

>>> js_data = resp.json()
>>> try:
print('title:', js_data['Title'])
print('plot:"', js_data['Plot'])
. except:
print('Sorry, no match for', title)

title: From Hell It Came

plot: A wrongfully accused South Seas prince is executed, and returns

as a walking tree stump.
It isn’t that different from using ur1lib.request.urlopen, but I think it’s a little more
convenient and less wordy.

Web Servers

Web developers have found Python to be an excellent language for writing web
servers and server-side programs. This has led to such a variety of Python-based web
frameworks that it can be hard to navigate among them and make choices—not to
mention deciding what deserves to go into a book.

A web framework provides features with which you can build websites, so it does
more than a simple web (HTTP) server. You'll see features such as routing (URL to
server function), templates (HTM with dynamic inclusions), debugging, and more.

I'm not going to cover all of the frameworks here—just those that I've found to be
relatively simple to use and suitable for real websites. I'll also show how to run the
dynamic parts of a website with Python and other parts with a traditional web server.

The Simplest Python Web Server
You can run a simple web server by typing just one line of Python:
$ python -m http.server

This implements a bare-bones Python HTTP server. If there are no problems, this
will print an initial status message:

Serving HTTP on 0.0.0.0 port 86000 ...

That 0.0.0.0 means any TCP address, so web clients can access it no matter what
address the server has. There’s more low-level details on TCP and other network
plumbing for you to read about in Chapter 11.

You can now request files, with paths relative to your current directory, and they will
be returned. If you type http://localhost:8000 in your web browser, you should
see a directory listing there, and the server will print access log lines such as this:

127.0.0.1 - - [20/Feb/2013 22:02:37] "GET / HTTP/1.1" 200 -

230 | Chapter9: The Web, Untangled

localhost and 127.0.0.1 are TCP synonyms for your local computer, so this works
regardless of whether youre connected to the Internet. You can interpret this line as
follows:

e 127.0.0.1 s the clients IP address
o The first "-" is the remote username, if found
o The second "-" is the login username, if required
o [20/Feb/2013 22:02:37] is the access date and time
e "GET / HTTP/1.1" is the command sent to the web server:
— The HTTP method (GET)
— The resource requested (/, the top)
— The HT'TP version (HTTP/1.1)
o The final 200 is the HTTP status code returned by the web server
Click any file. If your browser can recognize the format (HTML, PNG, GIE JPEG,
and so on) it should display it, and the server will log the request. For instance, if you
have the file oreilly.png in your current directory, a request for http://localhost:8000/

oreilly.png should return the image of the unsettling fellow in Figure 7-1, and the log
should show something such as this:

127.0.0.1 - - [20/Feb/2013 22:03:48] "GET /oreilly.png HTTP/1.1" 200 -

If you have other files in the same directory on your computer, they should show up
in a listing on your display, and you can click any one to download it. If your browser
is configured to display that file’s format, you’ll see the results on your screen; other-
wise, your browser will ask you if you want to download and save the file.

The default port number used is 8000, but you can specify another:
$ python -m http.server 9999

You should see this:
Serving HTTP on 0.0.0.0 port 9999 ...

This Python-only server is best suited for quick tests. You can stop it by killing its
process; in most terminals, press Ctrl+C.

You should not use this basic server for a busy production website. Traditional web
servers such as Apache and Nginx are much faster for serving static files. In addition,
this simple server has no way to handle dynamic content, which more extensive
servers can do by accepting parameters.

Web Servers | 231

http://localhost:8000/oreilly.png
http://localhost:8000/oreilly.png

Web Server Gateway Interface

All too soon, the allure of serving simple files wears off, and we want a web server
that can also run programs dynamically. In the early days of the Web, the Common
Gateway Interface (CGI) was designed for clients to make web servers run external
programs and return the results. CGI also handled getting input arguments from the
client through the server to the external programs. However, the programs were
started anew for each client access. This could not scale well, because even small pro-
grams have appreciable startup time.

To avoid this startup delay, people began merging the language interpreter into the
web server. Apache ran PHP within its mod_php module, Perl in mod_perl, and
Python in mod_python. Then, code in these dynamic languages could be executed
within the long-running Apache process itself rather than in external programs.

An alternative method was to run the dynamic language within a separate long-
running program and have it communicate with the web server. FastCGI and SCGI
are examples.

Python web development made a leap with the definition of Web Server Gateway
Interface (WSGI), a universal API between Python web applications and web servers.
All of the Python web frameworks and web servers in the rest of this chapter use
WSGIL. You don’t normally need to know how WSGI works (there really isn’t much to
it), but it helps to know what some of the parts under the hood are called.

Frameworks

Web servers handle the HTTP and WSGI details, but you use web frameworks to
actually write the Python code that powers the site. So, we'll talk about frameworks
for a while and then get back to alternative ways of actually serving sites that use
them.

If you want to write a website in Python, there are many Python web frameworks
(some might say too many). A web framework handles, at a minimum, client requests
and server responses. It might provide some or all of these features:

Routes
Interpret URLs and find the corresponding server files or Python server code

Templates
Merge server-side data into pages of HTML

Authentication and authorization
Handle usernames, passwords, permissions

Sessions
Maintain transient data storage during a user’s visit to the website

232 | Chapter9: The Web, Untangled

In the coming sections, we'll write example code for two frameworks (bottle and
flask). Then, we'll talk about alternatives, especially for database-backed websites.
You can find a Python framework to power any site that you can think of.

Bottle

Bottle consists of a single Python file, so it’s very easy to try out, and it’s easy to deploy
later. Bottle isn’'t part of standard Python, so to install it, type the following command:

$ pip install bottle

Here’s code that will run a test web server and return a line of text when your browser
accesses the URL http://localhost:9999/. Save it as bottlel.py:

from bottle import route, run

@route('/")
def home():
return "It isn't fancy, but it's my home page"

run(host="'localhost', port=9999)

Bottle uses the route decorator to associate a URL with the following function; in this
case, / (the home page) is handled by the home() function. Make Python run this
server script by typing this:

$ python bottlel.py
You should see this on your browser when you access http://localhost:9999:
It isn't fancy, but it's my home page

The run() function executes bottle’s built-in Python test web server. You don’t need
to use this for bottle programs, but it’s useful for initial development and testing.

Now, instead of creating text for the home page in code, let's make a separate HTML
file called index.html that contains this line of text:

My new and <i>improved</i> home page!!!

Make bottle return the contents of this file when the home page is requested. Save
this script as bottle2.py:

from bottle import route, run, static_file

¢/
def main():
return static_file('index.html', root=".")

run(host="1localhost', port=9999)

Web Servers | 233

http://localhost:9999/
http://localhost:9999:

In the call to static_file(), we want the file index.html in the directory indicated
by root (in this case, '.', the current directory). If your previous server example
code was still running, stop it. Now, run the new server:

$ python bottle2.py

When you ask your browser to get http:/localhost:9999/, you should see:
My new and improved home page!!!

Lets add one last example that shows how to pass arguments to a URL and use them.
Of course, this will be bottle3.py:

from bottle import route, run, static_file

/"
def home():
return static_file('index.html', root='.")

('/echo/<thing>")
def echo(thing):
return "Say hello to my little friend: %s!" % thing

run(host="'localhost', port=9999)

We have a new function called echo() and want to pass it a string argument in a URL.
That’s what the line @route('/echo/<thing>") in the preceding example does. That
<thing> in the route means that whatever was in the URL after /echo/ is assigned to
the string argument thing, which is then passed to the echo function. To see what
happens, stop the old server if it’s still running, and start it with the new code:

$ python bottle3.py

Then, access http://localhost:9999/echo/Mothra in your web browser. You should see
the following:

Say hello to my little friend: Mothra!

Now, leave bottle3.py running for a minute so that we can try something else. You've
been verifying that these examples work by typing URLs into your browser and look-
ing at the displayed pages. You can also use client libraries such as requests to do
your work for you. Save this as bottle_test.py:

import requests

resp = requests.get('http://localhost:9999/echo/Mothra')
if resp.status_code == 200 and \
resp.text == 'Say hello to my little friend: Mothra!':
print('It worked! That almost never happens!')
else:
print('Argh, got this:', resp.text)

234 | Chapter9: The Web, Untangled

http://localhost:9999/echo/Mothra

Great! Now, run it:
$ python bottle_test.py
You should see this in your terminal:
It worked! That almost never happens!

This is a little example of a unit test. Chapter 8 provides more details on why tests are
good and how to write them in Python.

There’s more to bottle than I've shown here. In particular, you can try adding these
arguments when you call run():

o debug=True creates a debugging page if you get an HTTP error;

o reloader=True reloads the page in the browser if you change any of the Python
code.

It’s well documented at the developer site.

Flask

Bottle is a good initial web framework. If you need a few more cowbells and whistles,
try Flask. It started in 2010 as an April Fools’ joke, but enthusiastic response encour-
aged the author, Armin Ronacher, to make it a real framework. He named the result
Flask as a wordplay on bottle.

Flask is about as simple to use as Bottle, but it supports many extensions that are use-
ful in professional web development, such as Facebook authentication and database
integration. It's my personal favorite among Python web frameworks because it balan-
ces ease of use with a rich feature set.

The Flask package includes the werkzeug WSGI library and the jinja2 template
library. You can install it from a terminal:

$ pip install flask
Let’s replicate the final bottle example code in flask. First, though, we need to make

a few changes:

o FlasK’s default directory home for static files is static, and URLs for files there
also begin with /static. We change the folder to '."' (current directory) and the
URL prefix to ' ' (empty) to allow the URL / to map to the file index.html.

o In the run() function, setting debug=True also activates the automatic reloader;
bottle used separate arguments for debugging and reloading.

Save this file to flask1.py:

Web Servers | 235

http://bottlepy.org/docs/dev/

from flask import Flask

app = Flask(__name__, static_folder='."', static_url_path='")

¢/
def home():
return app.send_static_file('index.html")

('/echo/<thing>")
def echo(thing):
return "Say hello to my little friend: %s" % thing

app.run(port=9999, debug=True)
Then, run the server from a terminal or window:
$ python flaski.py
Test the home page by typing this URL into your browser:
http://localhost:9999/
You should see the following (as you did for bottle):
My new and improved home page!!!
Try the /echo endpoint:
http://localhost:9999/echo/Godzilla
You should see this:
Say hello to my little friend: Godzilla

There’s another benefit to setting debug to True when calling run. If an exception
occurs in the server code, Flask returns a specially formatted page with useful details
about what went wrong, and where. Even better, you can type some commands to see
the values of variables in the server program.

Do not set debug = True in production web servers. It exposes too
much information about your server to potential intruders.

\

So far, the Flask example just replicates what we did with bottle. What can Flask do
that bottle can’t? Flask includes jinja2, a more extensive templating system. Here’s a
tiny example of how to use jinja2 and flask together.

Create a directory called templates, and a file within it called flask2.htmi:

<html>
<head>

236 | Chapter9: The Web, Untangled

<title>Flask2 Example</title>

</head>

<body>

Say hello to my little friend: {{ thing }}

</body>

</html>
Next, we'll write the server code to grab this template, fill in the value of thing that we
passed it, and render it as HTML (I'm dropping the home() function here to save
space). Save this as flask2.py:

from flask import Flask, render_template
app = Flask(__name__)

('/echo/<thing>")
def echo(thing):
return render_template('flask2.html', thing=thing)

app.run(port=9999, debug=True)

That thing = thing argument means to pass a variable named thing to the template,
with the value of the string thing.

Ensure that flask1.py isn't still running, and start flask2.py:
$ python flask2.py
Now, type this URL:
http://localhost:9999/echo/Gamera
You should see the following:
Say hello to my little friend: Gamera
Let’s modify our template and save it in the templates directory as flask3.html.:

<html>

<head>

<title>Flask3 Example</title>

</head>

<body>

Say hello to my little friend: {{ thing }}.
Alas, it just destroyed {{ place }}!
</body>

</html>

You can pass this second argument to the echo URL in many ways.

Pass an argument as part of the URL path
Using this method, you simply extend the URL itself (save this as flask3a.py):

Web Servers | 237

from flask import Flask, render_template
app = Flask(__name__)

('/echo/<thing>/<place>")
def echo(thing, place):
return render_template('flask3.html', thing=thing, place=place)

app.run(port=9999, debug=True)

As usual, stop the previous test server script if it’s still running and then try this new
one:

$ python flask3a.py
The URL would look like this:

http://localhost:9999/echo/Rodan/McKeesport
And you should see the following:

Say hello to my little friend: Rodan. Alas, it just destroyed McKeesport!
Or, you can provide the arguments as GET parameters (save this as flask3b.py):

from flask import Flask, render_template, request
app = Flask(__name__)

('/echo/")
def echo():
thing = request.args.get('thing')
place = request.args.get('place')
return render_template('flask3.html', thing=thing, place=place)

app.run(port=9999, debug=True)
Run the new server script:
$ python flask3b.py
This time, use this URL:
http://localhost:9999/echo?thing=Gorgo&place=Wilmerding
You should get back what you see here:
Say hello to my little friend: Gorgo. Alas, it just destroyed Wilmerding!

When a GET command is used for a URL, any arguments are passed in the form
&keyl=vali&key2=val2&. ..

You can also use the dictionary ** operator to pass multiple arguments to a template
from a single dictionary (call this flask3c.py):

238 | Chapter9: The Web, Untangled

from flask import Flask, render_template, request
app = Flask(__name__)

('/echo/")
def echo():
kwargs = {}
kwargs['thing'] = request.args.get('thing')
kwargs['place'] = request.args.get('place')
return render_template('flask3.html', **kwargs)

app.run(port=9999, debug=True)

That **kwargs acts like thing=thing, place=place. It saves some typing if there are
a lot of input arguments.

The jinja2 templating language does a lot more than this. If you've programmed in
PHP, you’ll see many similarities.

Non-Python Web Servers
So far, the web servers we've used have been simple: the standard library’s
http.server or the debugging servers in Bottle and Flask. In production, you’ll want
to run Python with a faster web server. The usual choices are the following:

« apache with the mod_wsgi module

 nginx with the uWSGI app server
Both work well; apache is probably the most popular, and nginx has a reputation for
stability and lower memory use.
Apache

The apache web server’s best WSGI module is mod_wsgti. This can run Python code
within the Apache process or in separate processes that communicate with Apache.

You should already have apache if your system is Linux or OS X. For Windows, you'll
need to install apache.

Finally, install your preferred WSGI-based Python web framework. Let’s try bottle
here. Almost all of the work involves configuring Apache, which can be a dark art.

Create this test file and save it as /var/www/test/home.wsgi:
import bottle

application = bottle.default_app()

(QVAD!

Web Servers | 239

http://httpd.apache.org/
https://code.google.com/p/modwsgi/
http://bit.ly/apache-http

def home():
return "apache and wsgi, sitting in a tree"
Do not call run() this time, because that starts the built-in Python web server. We
need to assign to the variable application because that’s what mod_wsgi looks for to
marry the web server and the Python code.

If apache and its mod_wsgi module are working correctly, we just need to connect
them to our Python script. We want to add one line to the file that defines the default
website for this apache server, but finding that file is a task in and of itself. It could
be /etc/apache2/httpd.conf, or /etc/apache2/sites-available/default, or the Latin name of
someone’s pet salamander.

Let’s assume for now that you understand apache and found that file. Add this line
inside the <VirtualHost> section that governs the default website:

WSGIScriptAlias / /var/www/test/home.wsgi
That section might then look like this:

<VirtualHost *:80>
DocumentRoot /var/www

WSGIScriptAlias / /var/www/test/home.wsgi

<Directory /var/www/test>
Order allow,deny
Allow from all
</Directory>
</VirtualHost>
Start apache, or restart it if it was running to make it use this new configuration. If
you then browse to http://localhost/, you should see:

apache and wsgi, sitting in a tree

This runs mod_wsg1 in embedded mode, as part of apache itself.

You can also run it in daemon mode: as one or more processes, separate from apache.
To do this, add two new directive lines to your apache config file:

$ WSGIDaemonProcess domain-name user=user-name group=group-name threads=25
WSGIProcessGroup domain-name

In the preceding example, user-name and group-name are the operating system user
and group names, and the domain-name is the name of your Internet domain. A mini-
mal apache config might look like this:

<VirtualHost *:80>
DocumentRoot /var/www

WSGIScriptAlias / /var/www/test/home.wsgi

240 | Chapter9: The Web, Untangled

http://localhost/

WSGIDaemonProcess mydomain.com user=myuser group=mygroup threads=25
WSGIProcessGroup mydomain.com

<Directory /var/www/test>

Order allow,deny

Allow from all

</Directory>
</VirtualHost>

The nginx Web Server

The nginx web server does not have an embedded Python module. Instead, it com-
municates by using a separate WSGI server such as uWSGI. Together they make a
very fast and configurable platform for Python web development.

You can install nginx from its website. You also need to install uWSGI. uWSGI is a
large system, with many levers and knobs to adjust. A short documentation page
gives you instructions on how to combine Flask, nginx, and uWSGI.

Other Frameworks

Websites and databases are like peanut butter and jelly—you see them together a lot.
The smaller frameworks such as bottle and flask do not include direct support for
databases, although some of their contributed add-ons do.

If you need to crank out database-backed websites, and the database design doesn’t
change very often, it might be worth the effort to try one of the larger Python web
frameworks. The current main contenders include:

django

This is the most popular, especially for large sites. It’s worth learning for many
reasons, among them the frequent requests for django experience in Python job
ads. It includes ORM code (we talked about ORMs in “The Object-Relational
Mapper” on page 207) to create automatic web pages for the typical database
CRUD functions (create, replace, update, delete) that I discussed in “SQL” on
page 198. You don’'t have to use django’s ORM if you prefer another, such as
SQLAlchemy, or direct SQL queries.

web2py
This covers much the same ground as django, with a different style.

pyramid
This grew from the earlier pylons project, and is similar to django in scope.

Web Servers | 241

http://nginx.org/
http://wiki.nginx.org/Install
http://bit.ly/uWSGI
http://bit.ly/flask-uwsgi
https://www.djangoproject.com/
http://www.web2py.com/
http://www.pylonsproject.org/

turbogears
This framework supports an ORM, many databases, and multiple template lan-
guages.

wheezy.web
This is a newer framework optimized for performance. It was faster than the oth-
ers in a recent test.

You can compare the frameworks by viewing this online table.

If you want to build a website backed by a relational database, you don’t necessarily
need one of these larger frameworks. You can use bottle, flask, and others directly
with relational database modules, or use SQLAlchemy to help gloss over the differ-
ences. Then, youre writing generic SQL instead of specific ORM code, and more
developers know SQL than any particular ORM’s syntax.

Also, there’s nothing written in stone demanding that your database must be a rela-
tional one. If your data schema varies significantly—columns that differ markedly
across rows—it might be worthwhile to consider a schemaless database, such as one of
the NoSQL databases discussed in “NoSQL Data Stores” on page 209. I once worked
on a website that initially stored its data in a NoSQL database, switched to a relational
one, on to another relational one, to a different NoSQL one, and then finally back to
one of the relational ones.

Other Python Web Servers
Following are some of the independent Python-based WSGI servers that work like
apache or nginx, using multiple processes and/or threads (see “Concurrency” on
page 268) to handle simultaneous requests:

e uwsgi

e cherrypy

e pylons
Here are some event-based servers, which use a single process but avoid blocking on
any single request:

» tornado

e gevent

e gunicorn

I have more to say about events in the discussion about concurrency in Chapter 11.

242 | Chapter9: The Web, Untangled

http://turbogears.org/
http://pythonhosted.org/wheezy.web/
http://bit.ly/wheezyweb
http://bit.ly/web-frames
http://projects.unbit.it/uwsgi/
http://www.cherrypy.org/
http://www.pylonsproject.org/
http://www.tornadoweb.org
http://gevent.org/
http://gunicorn.org/

Web Services and Automation

We've just looked at traditional web client and server applications, consuming and
generating HTML pages. Yet the Web has turned out to be a powerful way to glue
applications and data in many more formats than HTML.

The webbrowser Module

Let’s start begin a little surprise. Start a Python session in a terminal window and type
the following:

>>> import antigravity

This secretly calls the standard library’s webbrowser module and directs your browser
to an enlightening Python link.!

You can use this module directly. This program loads the main Python site’s page in
your browser:

>>> import webbrowser

>>> url = 'http://www.python.org/'
>>> webbrowser.open(url)

True

This opens it in a new window:

>>> webbrowser.open_new(url)
True

And this opens it in a new tab, if your browser supports tabs:

>>> webbrowser.open_new_tab('http://www.python.org/")
True

The webbrowser makes your browser do all the work.

Web APIs and Representational State Transfer

Often, data is only available within web pages. If you want to access it, you need to
access the pages through a web browser and read it. If the authors of the website
made any changes since the last time you visited, the location and style of the data
might have changed.

Instead of publishing web pages, you can provide data through a web application pro-
gramming interface (API). Clients access your service by making requests to URLs
and getting back responses containing status and data. Instead of HTML pages, the

1 If you don't see it for some reason, visit xkcd.

Web Services and Automation | 243

http://xkcd.com/353/

data is in formats that are easier for programs to consume, such as JSON or XML
(refer to Chapter 8 for more about these formats).

Representational State Transfer (REST) was defined by Roy Fielding in his doctoral
thesis. Many products claim to have a REST interface or a RESTful interface. In prac-
tice, this often only means that they have a web interface—definitions of URLs to
access a web service.

A RESTful service uses the HTTP verbs in specific ways, as is described here:

HEAD
Gets information about the resource, but not its data.

GET
As its name implies, GET retrieves the resource’s data from the server. This is the
standard method used by your browser. Any time you see a URL with a question
mark (?) followed by a bunch of arguments, that’s a GET request. GET should not
be used to create, change, or delete data.

POST
This verb updates data on the server. It’s often used by HTML forms and web
APIs.

PUT
This verb creates a new resource.

DELETE
This one speaks for itself: DELETE deletes. Truth in advertising!

A RESTful client can also request one or more content types from the server by using
HTTP request headers. For example, a complex service with a REST interface might
prefer its input and output to be JSON strings.

JSON

Chapter 1 shows two Python code samples to get information on popular YouTube
videos, and Chapter 8 introduces JSON. JSON is especially well suited to web client-
server data interchange. It’s especially popular in web-based APIs, such as OpenStack.

Crawl and Scrape

Sometimes, you might want a little bit of information—a movie rating, stock price, or
product availability—but the information is available only in HTML pages, surroun-
ded by ads and extraneous content.

You could extract what you're looking for manually by doing the following:

244 | Chapter9: The Web, Untangled

Type the URL into your browser.
Wait for the remote page to load.
Look through the displayed page for the information you want.

Write it down somewhere.

ok B

Possibly repeat the process for related URLs.

However, it's much more satisfying to automate some or all of these steps. An auto-
mated web fetcher is called a crawler or spider (unappealing terms to arachnophobes).
After the contents have been retrieved from the remote web servers, a scraper parses
it to find the needle in the haystack.

If you need an industrial-strength combined crawler and scraper, Scrapy is worth
downloading:

$ pip install scrapy

Scrapy is a framework, not a module such as BeautifulSoup. It does more, but its
more complex to set up. To learn more about Scrapy, read the documentation or the
online introduction.

Scrape HTML with BeautifulSoup

If you already have the HTML data from a website and just want to extract data from
it, BeautifulSoup is a good choice. HTML parsing is harder than it sounds. This is
because much of the HTML on public web pages is technically invalid: unclosed tags,
incorrect nesting, and other complications. If you try to write your own HTML
parser by using regular expressions (discussed in Chapter 7) you'll soon encounter
these messes.

To install BeautifulSoup, type the following command (don’t forget the final 4, or
pip will try to install an older version and probably fail):

$ pip install beautifulsoup4

Now, let’s use it to get all the links from a web page. The HTML a element represents
a link, and href is its attribute representing the link destination. In the following
example, we'll define the function get_links() to do the grunt work, and a main
program to get one or more URLs as command-line arguments:

def get_links(url):
import requests
from bs4 import BeautifulSoup as soup
result = requests.get(url)
page = result.text
doc = soup(page)
links = [element.get('href') for element in doc.find_all('a')]
return links

Web Services and Automation | 245

http://scrapy.org/
http://scrapy.org
http://bit.ly/using-scrapy
http://www.crummy.com/software/BeautifulSoup/

if __name__ == '_main__
import sys
for url in sys.argv[1:]:
print('Links in', url)
for num, link in enumerate(get_links(url), start=1):
print(num, link)
print()

I saved this program as links.py and then ran this command:
$ python links.py http://boingboing.net
Here are the first few lines that it printed:

Links in http://boingboing.net/

1 http://boingboing.net/suggest.html

2 http://boingboing.net/category/feature/
3 http://boingboing.net/category/review/
4 http://boingboing.net/category/podcasts
5 http://boingboing.net/category/video/

6 http://bbs.boingboing.net/

7 javascript:void(0)

8 http://shop.boingboing.net/

9 http://boingboing.net/about

10 http://boingboing.net/contact

Things to Do

9.1. If you haven't installed flask yet, do so now. This will also install werkzeug,
jinja2, and possibly other packages.

9.2. Build a skeleton website, using Flask’s debug/reload development web server.
Ensure that the server starts up for hostname localhost on default port 5000. If your
computer is already using port 5000 for something else, use another port number.

9.3. Add a home() function to handle requests for the home page. Set it up to return
the string It's alive!.

9.4. Create a Jinja2 template file called home . html with the following contents:

<html>

<head>

<title>It's alive!</title>

<body>

I'm of course referring to {{thing}}, which is {{height}} feet tall and {{color}}.
</body>

</html>

9.5. Modify your server’s home() function to use the home.html template. Provide it
with three GET parameters: thing, height, and color.

246 | Chapter9: The Web, Untangled

CHAPTER 10
Systems

One thing a computer can do that most humans can’t is be sealed up in a cardboard box and
sit in a warehouse.

—Jack Handey

In your everyday use of a computer, you do such things as list the contents of a folder
or directory, create and remove files, and other housekeeping that’s necessary if not
particularly exciting. You can also carry out these tasks, and more, within your own
Python programs. Will this power drive you mad or cure your insomnia? We'll see.

Python provides many system functions through a module named os (for “operating
system”), which we'll import for all the programs in this chapter.

Files

Python, like many other languages, patterned its file operations after Unix. Some
functions, such as chown() and chmod(), have the same names, but there are a few
new ones.

Create with open()

“File Input/Output” on page 177 introduced you to the open() function and explains
how you can use it to open a file or create one if it doesn’t already exist. Let’s create a
text file called oops.txt:

>>> fout = open('oops.txt', 'wt')

>>> print('Oops, I created a file.', file=fout)
>>> fout.close()

With that done, let’s perform some tests with it.

247

Check Existence with exists()

To verify whether the file or directory is really there or you just imagined it, you can
provide exists(), with a relative or absolute pathname, as demonstrated here:

>>> import os

>>> o0s.path.exists('oops.txt")
True

>>> o0s.path.exists('./oops.txt")
True

>>> os.path.exists('waffles"')
False

>>> os.path.exists('.")

True

>>> os.path.exists('..")

True

Check Type with isfile()

The functions in this section check whether a name refers to a file, directory, or sym-
bolic link (see the examples that follow for a discussion of links).

The first function we'll look at, isfile, asks a simple question: is it a plain old law-
abiding file?

>>> name = 'oops.txt'
>>> os.path.isfile(name)
True

Here’s how you determine a directory:

>>> o0s.path.isdir(name)
False

A single dot (.) is shorthand for the current directory, and two dots (. .) stands for
the parent directory. These always exist, so a statement such as the following will
always report True:

>>> os.path.isdir('.")
True

The os module contains many functions dealing with pathnames (fully qualified file-
names, starting with / and including all parents). One such function, isabs(), deter-
mines whether its argument is an absolute pathname. The argument doesn’t need to
be the name of a real file:

>>> 0s.path.isabs(name)

False

>>> os.path.isabs('/big/fake/name")

True

>>> os.path.isabs('big/fake/name/without/a/leading/slash')
False

248 | Chapter 10: Systems

Copy with copy()

The copy() function comes from another module, shutil. This example copies the
file oops.txt to the file ohno.txt:

>>> import shutil
>>> shutil.copy('oops.txt', 'ohno.txt")

The shutil.move() function copies a file and then removes the original.

Change Name with rename()

This function does exactly what it says. In the example here, it renames ohno.txt to
ohwell.txt:

>>> import os
>>> os.rename('ohno.txt', 'ohwell.txt")

Link with link() or symlink()

In Unix, a file exists in one place, but it can have multiple names, called links. In low-
level hard links, it's not easy to find all the names for a given file. A symbolic link is an
alternative method that stores the new name as its own file, making it possible for you
to get both the original and new names at once. The 1ink() call creates a hard link,
and symlink() makes a symbolic link. The is1ink() function checks whether the file
is a symbolic link.

Here’s how to make a hard link to the existing file oops.txt from the new file yikes.txt:

>>> os.link('oops.txt', 'yikes.txt')
>>> os.path.isfile('yikes.txt")
True

To create a symbolic link to the existing file oops.txt from the new file jeepers.txt, use
the following:

>>> os.path.islink('yikes.txt")

False

>>> os.symlink('oops.txt', 'jeepers.txt')
>>> os.path.islink('jeepers.txt"')

True

Change Permissions with chmody)

On a Unix system, chmod() changes file permissions.There are read, write, and exe-
cute permissions for the user (that’s usually you, if you created the file), the main
group that the user is in, and the rest of the world. The command takes an intensely
compressed octal (base 8) value that combines user, group, and other permissions.
For instance, to make oops.txt only readable by its owner, type the following:

Files | 249

>>> 0s.chmod('oops.txt', 00400)

If you dont want to deal with cryptic octal values and would rather deal with
(slightly) obscure cryptic symbols, you can import some constants from the stat
module and use a statement such as the following:

>>> import stat
>>> 0s.chmod('oops.txt', stat.S_IRUSR)

Change Ownership with chown()

This function is also Unix/Linux/Mac-specific. You can change the owner and/or
group ownership of a file by specifying the numeric user ID (uid) and group ID (gid):
>>> uid = 5

>>> gid = 22
>>> os.chown('oops', uid, gid)

Get a Pathname with abspath()

This function expands a relative name to an absolute one. If your current directory
is /usr/gaberlunzie and the file oops.txt is there, also, you can type the following:

>>> o0s.path.abspath('oops.txt')
' fusr/gaberlunzie/oops.txt'

Get a symlink Pathname with realpath()

In one of the earlier sections, we made a symbolic link to oops.txt from the new file
jeepers.txt. In circumstances such as this, you can get the name of oops.txt from jeep-
ers.txt by using the realpath() function, as shown here:

>>> os.path.realpath('jeepers.txt")
' fusr/gaberlunzie/oops.txt'

Delete a File with remove()

In this snippet, we use the remove() function and say farewell to oops.txt:

>>> os.remove('oops.txt")
>>> os.path.exists('oops.txt")
False

Directories

In most operating systems, files exist in a hierarchy of directories (more often called
folders these days). The container of all of these files and directories is a file system
(sometimes called a volume). The standard os module deals with operating specifics

250 | Chapter 10: Systems

such as these and provides the following functions with which you can manipulate
them.

Create with mkdir()

This example shows how to create a directory called poems to store that precious
verse:

>>> os.mkdir('poems')
>>> 0s.path.exists('poems')
True

Delete with rmdir()

Upon second thought, you decide you don't need that directory after all. Here’s how
to delete it:

>>> os.rmdir('poems')
>>> os.path.exists('poems')
False

List Contents with listdir()

Okay, take two; let's make poems again, with some contents:
>>> 0s.mkdir('poems')
Now, get a list of its contents (none so far):

>>> 0s.listdir('poems')

(]

Next, make a subdirectory:

>>> os.mkdir('poems/mcintyre')
>>> 0s.listdir('poems')
['mcintyre']

Create a file in this subdirectory (don't type all these lines unless you really feel poetic;
just make sure you begin and end with matching quotes, either single or tripled):

>>> fout = open('poems/mcintyre/the_good _man', 'wt')
>>> fout.write('''Cheerful and happy was his mood,
.. He to the poor was kind and good,
. And he oft' times did find them food,
. Also supplies of coal and wood,
. He never spake a word was rude,
. And cheer'd those did o'er sorrows brood,
. He passed away not understood,
. Because no poet in his lays
. Had penned a sonnet in his praise,
. 'Tis sad, but such is world's ways.

o

Directories | 251

344
>>> fout.close()

Finally, let’s see what we have. It had better be there:
>>> 0s.listdir('poems/mcintyre')

['the_good_man']

Change Current Directory with chdir()

With this function, you can go from one directory to another. Let’s leave the current
directory and spend a little time in poenms:

>>> import os

>>> 0s.chdir('poems')
>>> os.listdir('.")
['mcintyre']

List Matching Files with glob()

The glob() function matches file or directory names by using Unix shell rules rather
than the more complete regular expression syntax. Here are those rules:

o * matches everything (re would expect . *)

« ? matches a single character

o [abc] matches character a, b, or ¢

o [!abc] matches any character except a, b, or c

Try getting all files or directories that begin with m:

>>> import glob
>>> glob.glob('m*")
['mcintyre']

How about any two-letter files or directories?

>>> glob.glob('??")
[1

I'm thinking of an eight-letter word that begins with m and ends with e:

['mcintyre']
What about anything that begins with a k, 1, or m, and ends with e?

>>> glob.glob('[klm]*e")
['mcintyre']

252 | Chapter 10: Systems

Programs and Processes

When you run an individual program, your operating system creates a single process.
It uses system resources (CPU, memory, disk space) and data structures in the operat-
ing system’s kernel (file and network connections, usage statistics, and so on). A pro-
cess is isolated from other processes—it can’t see what other processes are doing or
interfere with them.

The operating system keeps track of all the running processes, giving each a little time
to run and then switching to another, with the twin goals of spreading the work
around fairly and being responsive to the user. You can see the state of your processes
with graphical interfaces such as the Mac’s Activity Monitor (OS X), or Task Manager
on Windows-based computers.

You can also access process data from your own programs. The standard library’s os
module provides a common way of accessing some system information. For instance,
the following functions get the process ID and the current working directory of the
running Python interpreter:

>>> import os

>>> o0s.getpid()

76051

>>> 0s.getcwd()

' [Users/williamlubanovic'

And these get my user ID and group ID:

>>> o0s.getuid()
501
>>> 0s.getgid()
20

Create a Process with subprocess

All of the programs that you've seen here so far have been individual processes. You
can start and stop other existing programs from Python by using the standard
library’s subprocess module. If you just want to run another program in a shell and
grab whatever output it created (both standard output and standard error output),
use the getoutput() function. Here, we'll get the output of the Unix date program:

>>> import subprocess

>>> ret = subprocess.getoutput('date")

>>> ret

'Sun Mar 3@ 22:54:37 (DT 2014’
You won't get anything back until the process ends. If you need to call something that
might take a lot of time, see the discussion on concurrency in “Concurrency” on page
268. Because the argument to getoutput() is a string representing a complete shell
command, you can include arguments, pipes, < and > I/O redirection, and so on:

Programs and Processes | 253

>>> ret = subprocess.getoutput('date -u')
>>> ret
'Mon Mar 31 03:55:01 UTC 2014'

Piping that output string to the wc command counts one line, six “words,” and 29
characters:

>>> ret = subprocess.getoutput('date -u | wc')
>>> ret
! 1 6 29'

A variant method called check_output() takes a list of the command and arguments.
By default it only returns standard output as type bytes rather than a string and does
not use the shell:

>>> ret = subprocess.check_output(['date', '-u'l])

>>> ret

b'Mon Mar 31 04:01:50 UTC 2014\n'
To show the exit status of the other program, getstatusoutput() returns a tuple
with the status code and output:

>>> ret = subprocess.getstatusoutput('date')

>>> ret

(6, 'Sat Jan 18 21:36:23 CST 2014')
If you don’t want to capture the output but might want to know its exit status, use
call():

>>> ret = subprocess.call('date')

Sat Jan 18 21:33:11 CST 2014

>>> ret
0

(In Unix-like systems, 0 is usually the exit status for success.)

That date and time was printed to output but not captured within our program. So,
we saved the return code as ret.

You can run programs with arguments in two ways. The first is to specify them in a
single string. Our sample command is date -u, which prints the current date and
time in UTC (you’ll read more about UTC in a few pages):

>>> ret = subprocess.call('date -u', shell=True)

Tue Jan 21 04:40:04 UTC 2014
You need that shell=True to recognize the command line date -u, splitting it into
separate strings and possibly expanding any wildcard characters such as * (we didn’t
use any in this example).

The second method makes a list of the arguments, so it doesn’t need to call the shell:

>>> ret = subprocess.call(['date', "-u'])
Tue Jan 21 04:41:59 UTC 2014

254 | Chapter 10: Systems

Create a Process with multiprocessing

You can run a Python function as a separate process or even run multiple independ-
ent processes in a single program with the multiprocessing module. Here’s a short
example that does nothing useful; save it as mp.py and then run it by typing python
mp.py:

import multiprocessing
import os

def do_this(what):
whoami(what)

def whoami(what):
print("Process %s says: %s" % (os.getpid(), what))

if __name__ == "__main__
whoami("I'm the main program")
for n in range(4):
p = multiprocessing.Process(target=do_this,
args=("I'm function %s" % n,))
p.start()

When I run this, my output looks like this:

Process 6224 says: I'm the main program
Process 6225 says: I'm function 0
Process 6226 says: I'm function 1
Process 6227 says: I'm function 2
Process 6228 says: I'm function 3

The Process() function spawned a new process and ran the do_this() function in it.
Because we did this in a loop that had four passes, we generated four new processes
that executed do_this() and then exited.

The multiprocessing module has more bells and whistles than a clown on a calliope.
It’s really intended for those times when you need to farm out some task to multiple
processes to save overall time; for example, downloading web pages for scraping,
resizing images, and so on. It includes ways to queue tasks, enable intercommunica-
tion among processes, and wait for all the processes to finish. “Concurrency” on page
268 delves into some of these details.

Kill a Process with terminate()

If you created one or more processes and want to terminate one for some reason
(perhaps it’s stuck in a loop, or maybe youre bored, or you want to be an evil over-
lord), use terminate(). In the example that follows, our process would count to a
million, sleeping at each step for a second, and printing an irritating message. How-
ever, our main program runs out of patience in five seconds and nukes it from orbit:

Programs and Processes | 255

import multiprocessing
import time
import os

def whoami(name):

print("I'm %s, in process %s" % (name, os.getpid()))

def loopy(name):

if

__name__ == "__main__

whoami(name)

start = 1

stop = 1000000

for num in range(start, stop):
print("\tNumber %s of %s. Honk!" % (num, stop))
time.sleep(1)

whoami("main"

p = multiprocessing.Process(target=1loopy, args=("loopy",))
p.start()

time.sleep(5)

p.terminate()

When I run this program, I get the following:

I'm main, in process 97080
I'm loopy, in process 97081

Number 1 of 1000000. Honk!
Number 2 of 1000000. Honk!
Number 3 of 1000000. Honk!
Number 4 of 1000000. Honk!
Number 5 of 1000000. Honk!

Calendars and Clocks

Programmers devote a surprising amount of effort to dates and times. Let’s talk about
some of the problems they encounter, and then get to some best practices and tricks

to make the situation a little less messy.

Dates can be represented in many ways—too many ways, actually. Even in English

with the Roman calendar, you'll see many variants of a simple date:

Among other problems, date representations can be ambiguous. In the previous
examples, it’s easy to determine that 7 stands for the month and 29 is the day of the

July 29 1984
29 Jul 1984
29/7/1984
7/29/1984

256

Chapter 10: Systems

month, largely because months don’t go to 29. But how about 1/6/20127? Is that refer-
ring to January 6 or June 1?

The month name varies by language within the Roman calendar. Even the year and
month can have a different definition in other cultures.

Leap years are another wrinkle. You probably know that every four years is a leap year
(and the summer Olympics and the American presidential election). Did you also
know that every 100 years is not a leap year, but that every 400 years is? Here’s code to
test various years for leapiness:

>>> import calendar

>>> calendar.isleap(1900)
False

>>> calendar.isleap(1996)
True

>>> calendar.isleap(1999)
False

>>> calendar.isleap(2000)
True

>>> calendar.isleap(2002)
False

>>> calendar.isleap(2004)
True

Times have their own sources of grief, especially because of time zones and daylight
savings time. If you look at a time zone map, the zones follow political and historic
boundaries rather than every 15 degrees (360 degrees / 24) of longitude. And coun-
tries start and end daylight saving times on different days of the year. In fact, coun-
tries in the southern hemisphere advance their clocks when the northern hemisphere
is winding them back, and vice versa. (If you think about it a bit, you will see why.)

Python’s standard library has many date and time modules: datetime, time, calen
dar, dateutil, and others. There’s some overlap, and it’s a bit confusing.

The datetime Module

Let’s begin by investigating the standard datetime module. It defines four main
objects, each with many methods:

o date for years, months, and days

o time for hours, minutes, seconds, and fractions

o datetime for dates and times together

o timedelta for date and/or time intervals

You can make a date object by specifying a year, month, and day. Those values are
then available as attributes:

Calendarsand Clocks | 257

>>> from datetime import date

>>> halloween = date(2014, 10, 31)
>>> halloween

datetime.date(2014, 10, 31)

>>> halloween.day

31

>>> halloween.month

10

>>> halloween.year

2014

You can print a date with its isoformat() method:

>>> halloween.1isoformat()
'2014-10-31"

The iso refers to ISO 8601, an international standard for representing dates and
times. It goes from most general (year) to most specific (day). It also sorts correctly:
by year, then month, then day. I usually pick this format for date representation in
programs, and for filenames that save data by date. The next section describes the
more complex strptime() and strftime() methods for parsing and formatting
dates.

This example uses the today() method to generate today’s date:

>>> from datetime import date
>>> now = date.today()

>>> NOwW

datetime.date(2014, 2, 2)

This one makes use of a timedelta object to add some time interval to a date:

>>> from datetime import timedelta
>>> one_day = timedelta(days=1)
>>> tomorrow = now + one_day

>>> tomorrow

datetime.date(2014, 2, 3)

>>> now + 17*one_day
datetime.date(2014, 2, 19)

>>> yesterday = now - one_day

>>> yesterday

datetime.date(2014, 2, 1)

The range of date is from date.min (year=1, month=1, day=1) to date.max
(year=9999, month=12, day=31). As a result, you can’t use it for historic or astronom-
ical calculations.

The datetime module’s time object is used to represent a time of day:

>>> from datetime import time
>>> noon = time(12, 0, 0)

>>> noon

datetime.time(12, 0)

258 | Chapter 10: Systems

>>> noon.hour
12
>>> noon.minute

>>> noon.second

>>> noon.microsecond
[¢]

The arguments go from the largest time unit (hours) to the smallest (microseconds).
If you don’t provide all the arguments, time assumes all the rest are zero. By the way,
just because you can store and retrieve microseconds doesn’t mean you can retrieve
time from your computer to the exact microsecond. The accuracy of subsecond
measurements depends on many factors in the hardware and operating system.

The datetime object includes both the date and time of day. You can create one
directly, such as the one that follows, which is for January 2, 2014, at 3:04 A.M., plus 5
seconds and 6 microseconds:

>>> from datetime import datetime

>>> some_day = datetime(2014, 1, 2, 3, 4, 5, 6)
>>> some_day

datetime.datetime(2014, 1, 2, 3, 4, 5, 6)

The datetime object also has an isoformat() method:

>>> some_day.isoformat()
'2014-01-02T03:04:05.000006'

That middle T separates the date and time parts.

datetime has a now() method with which you can get the current date and time:

>>> from datetime import datetime

>>> now = datetime.now()

>>> NOwW

datetime.datetime(2014, 2, 2, 23, 15, 34, 694988)
14

>>> now.month

2

>>> now.day

>>> now.hour

23

>>> now.minute

15

>>> now.second

34

>>> now.microsecond
694988

You can merge a date object and a time object into a datetime object by using
combine():

Calendarsand Clocks | 259

>>> from datetime import datetime, time, date
>>> noon = time(12)

>>> this_day = date.today()

>>> noon_today = datetime.combine(this_day, noon)
>>> noon_today

datetime.datetime(2014, 2, 2, 12, 0)

You can yank the date and time from a datetime by using the date() and time()
methods:

>>> noon_today.date()
datetime.date(2014, 2, 2)
>>> noon_today.time()
datetime.time(12, 0)

Using the time Module

It is confusing that Python has a datetime module with a time object, and a separate
time module. Furthermore, the time module has a function called—wait for it—
time().

One way to represent an absolute time is to count the number of seconds since some
starting point. Unix time uses the number of seconds since midnight on January 1,
1970.! This value is often called the epoch, and it is often the simplest way to exchange
dates and times among systems.

The time module’s time() function returns the current time as an epoch value:

>>> import time

>>> now = time.time()

>>> Now

1391488263.664645
If you do the math, you'll see that it has been over one billion seconds since New
Year’s, 1970. Where did the time go?

You can convert an epoch value to a string by using ctime():

>>> time.ctime(now)

'Mon Feb 3 22:31:03 2014'
In the next section, you’ll see how to produce more attractive formats for dates and
times.

Epoch values are a useful least-common denominator for date and time exchange
with different systems, such as JavaScript. Sometimes, though, you need actual days,
hours, and so forth, which time provides as struct_time objects. localtime() pro-
vides the time in your system’s time zone, and gmtime() provides it in UTC:

1 This starting point is roughly when Unix was born.

260 | Chapter 10: Systems

>>> time.localtime(now)

time.struct_time(tm_year=2014, tm_mon=2, tm_mday=3, tm_hour=22, tm_min=31,

tm_sec=3, tm_wday=0, tm_yday=34, tm_isdst=0)

>>> time.gmtime(now)

time.struct_time(tm_year=2014, tm_mon=2, tm_mday=4, tm_hour=4, tm_min=31,

tm_sec=3, tm_wday=1, tm_yday=35, tm_1isdst=0)
In my (Central) time zone, 22:31 was 04:31 of the next day in UTC (formerly called
Greenwich time or Zulu time). If you omit the argument to localtime() or gmtime(),
they assume the current time.

The opposite of these is mktime(), which converts a struct_time object to epoch
seconds:

>>> tm = time.localtime(now)
>>> time.mktime(tm)
1391488263.0

This doesn’t exactly match our earlier epoch value of now() because the struct_time
object preserves time only to the second.

Some advice: wherever possible, use UTC instead of time zones. UTC is an absolute
time, independent of time zones. If you have a server, set its time to UTC; do not use
local time.

Here’s some more advice (free of charge, no less): never use daylight savings time if
you can avoid it. If you use daylight savings time, an hour disappears at one time of
year (“spring ahead”) and occurs twice at another time (“fall back”). For some reason,
many organizations use daylight savings in their computer systems, but are mystified
every year by data duplicates and dropouts. It all ends in tears.

Remember, your friends are UTC for times, and UTEF-8 for strings
(for more about UTF-8, see Chapter 7).

Read and Write Dates and Times

isoformat() is not the only way to write dates and times. You already saw the
ctime() function in the time module, which you can use to convert epochs to strings:
>>> import time
>>> now = time.time()
>>> time.ctime(now)
'Mon Feb 3 21:14:36 2014
You can also convert dates and times to strings by using strftime(). This is provided
as a method in the datetime, date, and time objects, and as a function in the time

Calendarsand Clocks | 261

module. strftime() uses format strings to specify the output, which you can see in
Table 10-1.

Table 10-1. Outut specifiers for strftime()

Format string Date/time unit Range

%Y year 1900-...
%m month 01-12

%B month name January, ...
%b month abbrev Jan, ...

%d dayof month 01-31

%A weekday name Sunday, ...
a weekday abbrev Sun, ...

%H hour (24 hr) 00-23

%I hour (12 hr) 01-12

%p AM/PM AM, PM

%M minute 00-59

%S second 00-59

Numbers are zero-padded on the left.

Here’s the strftime() function provided by the time module. It converts a
struct_time object to a string. We'll first define the format string fmt and use it again
later:

>>> import time

>>> fmt = "It's %A, %B %d, %Y, local time %I:%M:%S%p"

>>> t = time.localtime()

>>> t

time.struct_time(tm_year=2014, tm_mon=2, tm_mday=4, tm_hour=19,
tm_min=28, tm_sec=38, tm_wday=1, tm_yday=35, tm_1isdst=0)

>>> time.strftime(fmt, t)

"It's Tuesday, February 04, 2014, local time 07:28:38PM"

If we try this with a date object, only the date parts will work, and the time defaults to
midnight:

262 | Chapter 10: Systems

>>> from datetime import date

>>> some_day = date(2014, 7, 4)

>>> fmt = "It's %B %d, %Y, local time %I:%M:%S%p"
>>> some_day.strftime(fmt)

"It's Friday, July 04, 2014, local time 12:00:00AM"

For a time object, only the time parts are converted:

>>> from datetime import time

>>> some_time = time(10, 35)

>>> some_time.strftime(fmt)

"It's Monday, January 01, 1900, local time 10:35:00AM"

Clearly, you won’t want to use the day parts from a time object, because theyre mean-
ingless.

To go the other way and convert a string to a date or time, use strptime() with the
same format string. There’s no regular expression pattern matching; the nonformat
parts of the string (without %) need to match exactly. Let’s specify a format that
matches year-month-day, such as 2012-01-29. What happens if the date string you
want to parse has spaces instead of dashes?

>>> import time
>>> fmt = "%Y-%m-%d"
>>> time.strptime("2012 01 29", fmt)

File "<stdin>", line 1, in <module>
File "/Library/Frameworks/Python.framework/Versions/3.3/1ib/
python3.3/_strptime.py", line 494, in _strptime_time
tt = _strptime(data_string, format)[0]
File "/Library/Frameworks/Python.framework/Versions/3.3/1ib/
python3.3/_strptime.py", line 337, in _strptime
(data_string, format))
ValueError: time data '2012 01 29' does not match format '%Y-%m-%d'

If we feed strptime() some dashes, is it happy now?

>>> time.strptime("2012-01-29", fmt)
time.struct_time(tm_year=2012, tm_mon=1, tm_mday=29, tm_hour=0, tm_min=0,
tm_sec=0, tm_wday=6, tm_yday=29, tm_isdst=-1)

Yes.

Even if the string seems to match its format, an exception is raised if a value is out of
range:

>>> time.strptime("2012-13-29", fmt)

File "<stdin>", line 1, in <module>
File "/Library/Frameworks/Python.framework/Versions/3.3/1ib/
python3.3/_strptime.py", line 494, in _strptime_time
tt = _strptime(data_string, format)[0]
File "/Library/Frameworks/Python.framework/Versions/3.3/1ib/

Calendarsand Clocks | 263

python3.3/_strptime.py", line 337, in _strptime
(data_string, format))
ValueError: time data '2012-13-29' does not match format '%Y-%m-%d’

Names are specific to your locale—internationalization settings for your operating
system. To print different month and day names, change your locale by using
setlocale(); its first argument is locale.LC_TIME for dates and times, and the sec-
ond is a string combining the language and country abbreviation. Let’s invite some
international friends to a Halloween party. We'll print the month, day, and day of
week in US English, French, German, Spanish, and Icelandic. (What? You think Ice-
landers don’t enjoy a good party as much as anyone else? They even have real elves.)

>>> import locale

>>> from datetime import date

>>> halloween = date(2014, 10, 31)

>>> for lang_country in ['en_us', 'fr_fr', 'de_de', 'es_es', 'is_is',]:
locale.setlocale(locale.LC_TIME, lang_country)
halloween.strftime('%A, %B %d')

'en_us'

'Friday, October 31'
"fr_fr'

'Vendredi, octobre 31'
'de_de'

'Freitag, Oktober 31'
'es_es'

'viernes, octubre 31'
'is_1is'

'fostudagur, oktoéber 31'
>>>

Where do you find these magic values for lang_country? This is a bit wonky, but you
can try this to get all of them (there are a few hundred):

>>> import locale
>>> names = locale.locale_alias.keys()

From names, let’s get just locale names that seem to work with setlocale(), such as
the ones we used in the preceding example—a two-character language code followed
by an underscore and a two-character country code:

>>> good_names = [name for name in names if \
len(name) == 5 and name[2] == '_']

What do the first five look like?

>>> good_names[:5]
['sr_cs', 'de_at', 'nl_nl', 'es_ni', 'sp_yu'l]

So, if you wanted all the German language locales, try this:

264 | Chapter 10: Systems

http://bit.ly/iso-639-1
http://bit.ly/iso-3166-1

>>> de = [name for name in good_names if name.startswith('de')]
>>> de
['de_at', 'de_de', 'de_ch', 'de_lu', 'de_be']

Alternative Modules

If you find the standard library modules confusing, or lacking a particular conversion
that you want, there are many third-party alternatives. Here are just a few of them:

arrow
This combines many date and time functions with a simple API.

dateutil
This module parses almost any date format and handles relative dates and times
well.

1508601
This fills in gaps in the standard library for the ISO8601 format.

fleming
This module offers many time zone functions.

Things to Do

10.1 Write the current date as a string to the text file foday.txt.
10.2 Read the text file today.txt into the string today_string.
10.3 Parse the date from today_string.

10.4 List the files in your current directory.

10.5 List the files in your parent directory.

10.6 Use multiprocessing to create three separate processes. Make each one wait a
random number of seconds between one and five, print the current time, and then
exit.

10.7 Create a date object of your day of birth.
10.8 What day of the week was your day of birth?
10.9 When will you be (or when were you) 10,000 days old?

ThingstoDo | 265

http://crsmithdev.com/arrow/
http://labix.org/python-dateutil
https://pypi.python.org/pypi/iso8601
https://github.com/ambitioninc/fleming

CHAPTER 11
Concurrency and Networks

Time is nature’s way of keeping everything from happening at once. Space is what prevents
everything from happening to me.

—Quotes about Time

So far, most of the programs that you've written run in one place (a single machine)
and one line at a time (sequential). But, we can do more than one thing at a time
(concurrency) and in more than one place (distributed computing or networking).
There are many good reasons to challenge time and space:

Performance
Your goal is to keep fast components busy, not waiting for slow ones.

Robustness
There’s safety in numbers, so you want to duplicate tasks to work around hard-
ware and software failures.

Simplicity
It’s best practice to break complex tasks into many little ones that are easier to
create, understand, and fix.

Communication
It’s just plain fun to send your footloose bytes to distant places, and bring friends
back with them.

We'll start with concurrency, first building on the non-networking techniques that are
described in Chapter 10—processes and threads. Then well look at other approaches,
such as callbacks, green threads, and coroutines. Finally, we'll arrive at networking,
initially as a concurrency technique, and then spreading outward.

267

http://bit.ly/wiki-time

Some Python packages discussed in this chapter were not yet por-
ted to Python 3 when this was written. In many cases, I'll show
example code that would need to be run with a Python 2 inter-
preter, which we're calling python2.

Concurrency

The ofticial Python site discusses concurrency in general and in the standard library.
Those pages have many links to various packages and techniques; we’ll show the most
useful ones in this chapter.

In computers, if you're waiting for something, it’s usually for one of two reasons:

I/0 bound
This is by far more common. Computer CPUs are ridiculously fast—hundreds of
times faster than computer memory and many thousands of times faster than
disks or networks.

CPU bound
This happens with number crunching tasks such as scientific or graphic calcula-
tions.

Two more terms are related to concurrency:

synchronous
One thing follows the other, like a funeral procession.

asynchronous
Tasks are independent, like party-goers dropping in and tearing off in separate
cars.

As you progress from simple systems and tasks to real-life problems, you’ll need at
some point to deal with concurrency. Consider a website, for example. You can usu-
ally provide static and dynamic pages to web clients fairly quickly. A fraction of a sec-
ond is considered interactive, but if the display or interaction takes longer, people
become impatient. Tests by companies such as Google and Amazon showed that traf-
fic drops off quickly if the page loads even a little slower.

But what if you can’t help it when something takes a long time, such as uploading a
file, resizing an image, or querying a database? You can’t do it within your synchro-
nous web server code anymore, because someone’s waiting.

On a single machine, if you want to perform multiple tasks as fast as possible, you
want to make them independent. Slow tasks shouldn’t block all the others.

“Programs and Processes” on page 253 demonstrates how multiprocessing can be
used to overlap work on a single machine. If you needed to resize an image, your web

268 | Chapter 11: Concurrency and Networks

http://bit.ly/concur-lib

server code could call a separate, dedicated image resizing process to run asynchro-
nously and concurrently. It could scale your application horizontally by invoking
multiple resizing processes.

The trick is getting them all to work with one another. Any shared control or state
means that there will be bottlenecks. An even bigger trick is dealing with failures,
because concurrent computing is harder than regular computing. Many more things
can go wrong, and your odds of end-to-end success are lower.

All right. What methods can help you to deal with these complexities? Let’s begin
with a good way to manage multiple tasks: queues.

Queues

A queue is like a list: things are added at one end and taken away from the other. The
most common is referred to as FIFO (first in, first out).

Suppose that youre washing dishes. If youre stuck with the entire job, you need to
wash each dish, dry it, and put it away. You can do this in a number of ways. You
might wash the first dish, dry it, and then put it away. You then repeat with the sec-
ond dish, and so on. Or, you might batch operations and wash all the dishes, dry
them all, and then put them away; this assumes you have space in your sink and
drainer for all the dishes that accumulate at each step. These are all synchronous
approaches—one worker, one thing at a time.

As an alternative, you could get a helper or two. If youre the washer, you can hand
each cleaned dish to the dryer, who hands each dried dish to the put-away-er (look it
up; it’s absolutely a real word!). As long as each of you works at the same pace, you
should finish much faster than by yourself.

However, what if you wash faster than the dryer dries? Wet dishes either fall on the
floor, or you pile them up between you and the dryer, or you just whistle off-key until
the dryer is ready. And if the last person is slower than the dryer, dry dishes can end
up falling on the floor, or piling up, or the dryer does the whistling. You have multiple
workers, but the overall task is still synchronous and can proceed only as fast as the
slowest worker.

Many hands make light work, goes the old saying (I always thought it was Amish,
because it makes me think of barn building). Adding workers can build a barn, or do
the dishes, faster. This involves queues.

In general, queues transport messages, which can be any kind of information. In this
case, we're interested in queues for distributed task management, also known as work
queues, job queues, or task queues. Each dish in the sink is given to an available
washer, who washes and hands it off to the first available dryer, who dries and hands
it to a put-away-er. This can be synchronous (workers wait for a dish to handle and

Concurrency | 269

another worker to whom to give it), or asynchronous (dishes are stacked between
workers with different paces). As long as you have enough workers, and they keep up
with the dishes, things move a lot faster.

Processes

You can implement queues in many ways. For a single machine, the standard library’s
multiprocessing module (which you can see in “Programs and Processes” on page
253) contains a Queue function. Let’s simulate just a single washer and multiple dryer
processes (someone can put the dishes away later) and an intermediate dish_queue.
Call this program dishes.py:

import multiprocessing as mp

def washer(dishes, output):
for dish in dishes:
print('Washing', dish, 'dish')
output.put(dish)

def dryer(input):
while True:
dish = input.get()
print('Drying', dish, 'dish')
input.task_done()

dish_queue = mp.JoinableQueue()

dryer_proc = mp.Process(target=dryer, args=(dish_gqueue,))
dryer_proc.daemon = True

dryer_proc.start()

dishes = ['salad', 'bread', 'entree', 'dessert']
washer(dishes, dish_queue)
dish_gueue. join()

Run your new program thusly:

$ python dishes.py
Washing salad dish
Washing bread dish
Washing entree dish
Washing dessert dish
Drying salad dish
Drying bread dish
Drying entree dish
Drying dessert dish

This queue looked a lot like a simple Python iterator, producing a series of dishes. It
actually started up separate processes along with the communication between the
washer and dryer. I used a JoinableQueue and the final join() method to let the

270 | Chapter 11: Concurrency and Networks

washer know that all the dishes have been dried. There are other queue types in the
multiprocessing module, and you can read the documentation for more examples.

Threads

A thread runs within a process with access to everything in the process, similar to a
multiple personality. The multiprocessing module has a cousin called threading
that uses threads instead of processes (actually, multiprocessing was designed later
as its process-based counterpart). Let’s redo our process example with threads:

import threading

def do_this(what):
whoami(what)

def whoami(what):
print("Thread %s says: %s" % (threading.current_thread(), what))
if __name__ == "__main__
whoami("I'm the main program")
for n in range(4):
p = threading.Thread(target=do_this,
args=("I'm function %s" % n,))
p.start()

Here’s what prints for me:

Thread <_MainThread(MainThread, started 140735207346960)> says: I'm the main
program

Thread <Thread(Thread-1, started 4326629376)> says: I'm function
Thread <Thread(Thread-2, started 4342157312)> says: I'm function
Thread <Thread(Thread-3, started 4347412480)> says: I'm function
Thread <Thread(Thread-4, started 4342157312)> says: I'm function

w N R o

We can reproduce our process-based dish example by using threads:

import threading, queue
import time

def washer(dishes, dish_queue):
for dish in dishes:
print ("Washing", dish)
time.sleep(5)
dish_queue.put(dish)

def dryer(dish_queue):
while True:
dish = dish_queue.get()
print ("Drying", dish)
time.sleep(10)
dish_gqueue.task_done()

Concurrency | 271

http://bit.ly/multi-docs

dish_queue = queue.Queue()

for n in range(2):
dryer_thread = threading.Thread(target=dryer, args=(dish_queue,))
dryer_thread.start()

dishes = ['salad', 'bread', 'entree', 'dessert']

washer(dishes, dish_gqueue)

dish_gueue. join()
One difference between multiprocessing and threading is that threading does not
have a terminate() function. There’s no easy way to terminate a running thread,
because it can cause all sorts of problems in your code, and possibly in the space-time
continuum itself.

Threads can be dangerous. Like manual memory management in languages such as C
and C++, they can cause bugs that are extremely hard to find, let alone fix. To use
threads, all the code in the program—and in external libraries that it uses—must be
thread-safe. In the preceding example code, the threads didn’t share any global vari-
ables, so they could run independently without breaking anything.

Imagine that youre a paranormal investigator in a haunted house. Ghosts roam the
halls, but none are aware of the others, and at any time, any of them can view, add,
remove, or move any of the house’s contents.

You're walking apprehensively through the house, taking readings with your impres-
sive instruments. Suddenly you notice that the candlestick you passed seconds ago is
now missing.

The contents of the house are like the variables in a program. The ghosts are threads
in a process (the house). If the ghosts only looked at the house’s contents, there would
be no problem. Its like a thread reading the value of a constant or variable without
trying to change it.

Yet, some unseen entity could grab your flashlight, blow cold air down your neck, put
marbles on the stairs, or make the fireplace come ablaze. The really subtle ghosts
would change things in other rooms that you might never notice.

Despite your fancy instruments, youd have a very hard time figuring out who did it,
and how, and when.

If you used multiple processes instead of threads, it would be like having a number of
houses but with only one (living) person in each. If you put your brandy in front of
the fireplace, it would still be there an hour later. Some lost to evaporation, perhaps,
but in the same place.

Threads can be useful and safe when global data is not involved. In particular, threads
are useful for saving time while waiting for some I/O operation to complete. In these

272 | Chapter 11: Concurrency and Networks

cases, they don’t have to fight over data, because each has completely separate vari-
ables.

But threads do sometimes have good reasons to change global data. In fact, one com-
mon reason to launch multiple threads is to let them divide up the work on some
data, so a certain degree of change to the data is expected.

The usual way to share data safely is to apply a software lock before modifying a vari-
able in a thread. This keeps the other threads out while the change is made. It’s like
having a Ghostbuster guard the room you want to remain unhaunted. The trick,
though, is that you need to remember to unlock it. Plus, locks can be nested—what if
another Ghostbuster is also watching the same room, or the house itself? The use of
locks is traditional but notoriously hard to get right.

In Python, threads do not speed up CPU-bound tasks because of
an implementation detail in the standard Python system called the
Global Interpreter Lock (GIL). This exists to avoid threading prob-
lems in the Python interpreter, and can actually make a multithrea-
ded program slower than its single-threaded counterpart, or even a
multi-process version.

So for Python, the recommendations are as follows:

o Use threads for I/O bound problems

o Use processes, networking, or events (discussed in the next section) for CPU-
bound problems

Green Threads and gevent

As y