
PY THON

Introducing Python

ISBN: 978-1-449-35936-2

US $39.99	 CAN $41.99

“	Bill Lubanovic has
achieved a tour de
force, laying down
the foundations for
programming and then
teaching you how to deal
with real life problems
through the huge Python
toolbox. This book is a
sure path for learning
how to solve problems
the Python way.”

—Loïc Pefferkorn
open source systems engineer

Twitter: @oreillymedia
facebook.com/oreilly

Easy to understand and fun to read, Introducing Python is ideal for
beginning programmers as well as those new to the language. Author Bill
Lubanovic takes you from the basics to more involved and varied topics,
mixing tutorials with cookbook-style code recipes to explain concepts in
Python 3. End-of-chapter exercises help you practice what you’ve learned.

You’ll gain a strong foundation in the language, including best practices for
testing, debugging, code reuse, and other development tips. This book
also shows you how to use Python for applications in business, science,
and the arts, using various Python tools and open source packages.

■■ Learn simple data types, and basic math and text operations

■■ 	Use data-wrangling techniques with Python’s built-in data
structures

■■ 	Explore Python code structure, including the use of functions

■■ 	Write large programs in Python, with modules and packages

■■ 	Dive into objects, classes, and other object-oriented features

■■ 	Examine storage from flat files to relational databases and
NoSQL

■■ 	Use Python to build web clients, servers, APIs, and services

■■ 	Manage system tasks such as programs, processes, and
threads

■■ 	Understand the basics of concurrency and network
programming

Bill Lubanovic has developed software with UNIX since 1977, GUIs since 1981,
databases since 1990, and web applications since 1993. Recently, he developed
core services and distributed systems with a remote team for a startup. Currently,
he’s integrating OpenStack services for a supercomputer company.

Introducing Python
Lubanovic

Bill Lubanovic

Introducing

Python
MODERN COMPUTING IN
SIMPLE PACKAGES

Bill Lubanovic

Boston

Introducing Python

978-1-449-35936-2

[LSI]

Introducing Python
By Bill Lubanovic

Copyright © 2015 Bill Lubanovic. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Allyson MacDonald
Production Editor: Nicole Shelby
Copyeditor: Octal Publishing
Proofreader: Sonia Saruba

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

November, 2014: First Edition

Revision History for the First Edition
2014-11-07: First release
2015-02-20: Second release
2016-02-26: Third release

See http://oreilly.com/catalog/errata.csp?isbn=9781449359362 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introducing Python, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449359362

To Mary, Karin, Tom, and Roxie.

Table of Contents

Preface. xv

1. A Taste of Py. 1
Python in the Real World 7
Python versus Language X 8
So, Why Python? 10
When Not to Use Python 11
Python 2 versus Python 3 12
Installing Python 12
Running Python 12

Using the Interactive Interpreter 13
Use Python Files 14
What’s Next? 14

Your Moment of Zen 15
Things to Do 15

2. Py Ingredients: Numbers, Strings, and Variables. 17
Variables, Names, and Objects 17
Numbers 21

Integers 21
Precedence 25
Bases 26
Type Conversions 27
How Big Is an int? 28
Floats 29
Math Functions 29

Strings 30
Create with Quotes 30

v

Convert Data Types by Using str() 32
Escape with \ 32
Combine with + 33
Duplicate with * 34
Extract a Character with [] 34
Slice with [start : end : step] 35
Get Length with len() 37
Split with split() 38
Combine with join() 38
Playing with Strings 38
Case and Alignment 39
Substitute with replace() 41
More String Things 41

Things to Do 41

3. Py Filling: Lists, Tuples, Dictionaries, and Sets. 43
Lists and Tuples 43
Lists 44

Create with [] or list() 44
Convert Other Data Types to Lists with list() 45
Get an Item by Using [offset] 45
Lists of Lists 46
Change an Item by [offset] 47
Get a Slice to Extract Items by Offset Range 47
Add an Item to the End with append() 48
Combine Lists by Using extend() or += 48
Add an Item by Offset with insert() 48
Delete an Item by Offset with del 49
Delete an Item by Value with remove() 49
Get an Item by Offset and Delete It by Using pop() 49
Find an Item’s Offset by Value with index() 50
Test for a Value with in 50
Count Occurrences of a Value by Using count() 51
Convert to a String with join() 51
Reorder Items with sort() 51
Get Length by Using len() 52
Assign with =, Copy with copy() 52

Tuples 54
Create a Tuple by Using () 54
Tuples versus Lists 55

Dictionaries 55
Create with {} 56

vi | Table of Contents

Convert by Using dict() 56
Add or Change an Item by [key] 57
Combine Dictionaries with update() 59
Delete an Item by Key with del 59
Delete All Items by Using clear() 60
Test for a Key by Using in 60
Get an Item by [key] 60
Get All Keys by Using keys() 61
Get All Values by Using values() 61
Get All Key-Value Pairs by Using items() 62
Assign with =, Copy with copy() 62

Sets 62
Create with set() 63
Convert from Other Data Types with set() 63
Test for Value by Using in 64
Combinations and Operators 65

Compare Data Structures 68
Make Bigger Data Structures 68
Things to Do 69

4. Py Crust: Code Structures. 71
Comment with # 71
Continue Lines with \ 72
Compare with if, elif, and else 73

What Is True? 76
Do Multiple Comparisons with in 77
Repeat with while 78

Cancel with break 78
Skip Ahead with continue 79
Check break Use with else 79

Iterate with for 80
Cancel with break 82
Skip with continue 82
Check break Use with else 82
Iterate Multiple Sequences with zip() 83
Generate Number Sequences with range() 83
Other Iterators 84

Comprehensions 84
List Comprehensions 84
Dictionary Comprehensions 87
Set Comprehensions 87
Generator Comprehensions 88

Table of Contents | vii

Functions 89
Positional Arguments 92
Keyword Arguments 93
Specify Default Parameter Values 93
Gather Positional Arguments with * 94
Gather Keyword Arguments with ** 95
Docstrings 96
Functions Are First-Class Citizens 96
Inner Functions 98
Closures 99
Anonymous Functions: the lambda() Function 100

Generators 101
Decorators 102
Namespaces and Scope 104

Uses of _ and __ in Names 106
Handle Errors with try and except 107
Make Your Own Exceptions 109
Things to Do 110

5. Py Boxes: Modules, Packages, and Programs. 111
Standalone Programs 111
Command-Line Arguments 112
Modules and the import Statement 112

Import a Module 112
Import a Module with Another Name 114
Import Only What You Want from a Module 114
Module Search Path 115

Packages 115
The Python Standard Library 116

Handle Missing Keys with setdefault() and defaultdict() 116
Count Items with Counter() 118
Order by Key with OrderedDict() 120
Stack + Queue == deque 120
Iterate over Code Structures with itertools 121
Print Nicely with pprint() 122

More Batteries: Get Other Python Code 123
Things to Do 123

6. Oh Oh: Objects and Classes. 125
What Are Objects? 125
Define a Class with class 126
Inheritance 128

viii | Table of Contents

Override a Method 129
Add a Method 130
Get Help from Your Parent with super 131
In self Defense 132
Get and Set Attribute Values with Properties 133
Name Mangling for Privacy 135
Method Types 136
Duck Typing 137
Special Methods 139
Aggregation and Composition 142
When to Use Classes and Objects versus Modules 143

Named Tuples 144
Things to Do 145

7. Mangle Data Like a Pro. 147
Text Strings 147

Unicode 147
Format 154
Match with Regular Expressions 159

Binary Data 166
bytes and bytearray 167
Convert Binary Data with struct 168
Other Binary Data Tools 171
Convert Bytes/Strings with binascii() 172
Bit Operators 172

Things to Do 173

8. Data Has to Go Somewhere. 177
File Input/Output 177

Write a Text File with write() 178
Read a Text File with read(), readline(), or readlines() 180
Write a Binary File with write() 181
Read a Binary File with read() 182
Close Files Automatically by Using with 182
Change Position with seek() 183

Structured Text Files 185
CSV 185
XML 187
HTML 189
JSON 189
YAML 192
A Security Note 193

Table of Contents | ix

Configuration Files 194
Other Interchange Formats 195
Serialize by Using pickle 195

Structured Binary Files 196
Spreadsheets 196
HDF5 196

Relational Databases 197
SQL 198
DB-API 200
SQLite 200
MySQL 202
PostgreSQL 203
SQLAlchemy 203

NoSQL Data Stores 209
The dbm Family 209
Memcached 210
Redis 211
Other NoSQL 219

Full-Text Databases 220
Things to Do 220

9. The Web, Untangled. 223
Web Clients 224

Test with telnet 225
Python’s Standard Web Libraries 226
Beyond the Standard Library: Requests 229

Web Servers 230
The Simplest Python Web Server 230
Web Server Gateway Interface 232
Frameworks 232
Bottle 233
Flask 235
Non-Python Web Servers 239
Other Frameworks 241

Web Services and Automation 243
The webbrowser Module 243
Web APIs and Representational State Transfer 243
JSON 244
Crawl and Scrape 244
Scrape HTML with BeautifulSoup 245

Things to Do 246

x | Table of Contents

10. Systems. 247
Files 247

Create with open() 247
Check Existence with exists() 248
Check Type with isfile() 248
Copy with copy() 249
Change Name with rename() 249
Link with link() or symlink() 249
Change Permissions with chmod() 249
Change Ownership with chown() 250
Get a Pathname with abspath() 250
Get a symlink Pathname with realpath() 250
Delete a File with remove() 250

Directories 250
Create with mkdir() 251
Delete with rmdir() 251
List Contents with listdir() 251
Change Current Directory with chdir() 252
List Matching Files with glob() 252

Programs and Processes 253
Create a Process with subprocess 253
Create a Process with multiprocessing 255
Kill a Process with terminate() 255

Calendars and Clocks 256
The datetime Module 257
Using the time Module 260
Read and Write Dates and Times 261
Alternative Modules 265

Things to Do 265

11. Concurrency and Networks. 267
Concurrency 268

Queues 269
Processes 270
Threads 271
Green Threads and gevent 273
twisted 276
asyncio 277
Redis 277
Beyond Queues 281

Networks 282
Patterns 282

Table of Contents | xi

The Publish-Subscribe Model 282
TCP/IP 286
Sockets 287
ZeroMQ 291
Scapy 295
Internet Services 296
Web Services and APIs 297
Remote Processing 298
Big Fat Data and MapReduce 304
Working in the Clouds 305

Things to Do 308

12. Be a Pythonista. 311
About Programming 311
Find Python Code 312
Install Packages 313

Use pip 313
Use a Package Manager 314
Install from Source 314

Integrated Development Environments 314
IDLE 314
PyCharm 315
IPython 315

Name and Document 315
Testing Your Code 317

Check with pylint, pyflakes, and pep8 317
Test with unittest 319
Test with doctest 323
Test with nose 324
Other Test Frameworks 325
Continuous Integration 325

Debugging Python Code 326
Debug with pdb 327
Logging Error Messages 332
Optimize Your Code 335

Measure Timing 335
Algorithms and Data Structures 337
Cython, NumPy, and C Extensions 338
PyPy 338

Source Control 339
Mercurial 339
Git 339

xii | Table of Contents

Clone This Book 342
How You Can Learn More 342

Books 342
Websites 343
Groups 343
Conferences 343

Coming Attractions 343

A. Py Art. 345

B. Py at Work. 359

C. Py Sci. 373

D. Install Python 3. 393

E. Answers to Exercises. 403

F. Cheat Sheets. 437

Index. 441

Table of Contents | xiii

Preface

This book will introduce you to the Python programming language. It’s aimed at
beginning programmers, but even if you’ve written programs before and just want to
add Python to your list of languages, Introducing Python will get you started.

It’s an unhurried introduction, taking small steps from the basics to more involved
and varied topics. I mix cookbook and tutorial styles to explain new terms and ideas,
but not too many at once. Real Python code is included early and often.

Even though this is an introduction, I include some topics that might seem advanced,
such as NoSQL databases and message-passing libraries. I chose these because they
can solve some problems better than standard solutions. You’ll download and install
external Python packages, which is good to know when the “batteries included” with
Python don’t fit your application. And it’s fun to try something new.

I also include some examples of what not to do, especially if you’ve programmed in
other languages and try to adapt those styles to Python. And I won’t pretend that
Python is perfect; I’ll show you what to avoid.

Sometimes, I’ll include a note such as this when something might
be confusing or there’s a more appropriate Pythonic way to do it.

Audience
This book is for anybody interested in learning what seems to be emerging as the
world’s most popular computing language, whether or not you have learned any pro‐
gramming before.

xv

Outline
The first seven chapters explain Python’s basics, and you should read them in order.
The later chapters show how Python is used in specific application areas such as the
Web, databases, networks, and so on; read them in any order you like. The first three
appendices showcase Python in the arts, business, and science. Then, you see how to
install Python 3 if you don’t have it. Next are answers to the end-of-chapter exercises,
and then finally, a few cheat sheets of useful things.

Chapter 1

Programs are like directions for making socks or grilling potatoes. Some real Python
programs give a little demonstration of the language’s look, capabilities, and uses in
the real world. Python fares well when compared with other languages, but it has
some imperfections. An older version of Python (Python 2) is giving way to a newer
one (Python 3). If you have Python 2, install Python 3 on your computer. Use the
interactive interpreter to try examples from this book yourself.

Chapter 2

This chapter shows Python’s simplest data types: booleans, integers, floating-point
numbers, and text strings. You also learn the basic math and text operations.

Chapter 3

We step up to Python’s higher-level built-in data structures: lists, tuples, dictionaries,
and sets. You use these as you would Legos to build much more complicated struc‐
tures. You learn how to step through them by using iterators and comprehensions.

Chapter 4

In Chapter 4, you weave the data structures of the previous chapters with code struc‐
tures to compare, choose, or repeat. You see how to package code in functions and
handle errors with exceptions.

Chapter 5

This chapter demonstrates how to scale out to larger code structures: modules, pack‐
ages, and programs. You see where to put code and data, get data in and out, handle
options, tour the Python Standard Library, and take a glance at what lies beyond.

Chapter 6

If you’ve done object-oriented programming in other languages, Python is a bit more
relaxed. Chapter 6 explains when to use objects and classes, and when it’s better to
use modules or even lists and dictionaries.

xvi | Preface

Chapter 7

Learn to manage data like a pro. This chapter is all about text and binary data, the joy
of Unicode characters, and I/O.

Chapter 8

Data needs to go somewhere. In this chapter, you begin with basic flat files, directo‐
ries, and filesystems. Then, you see how to handle common file formats such as CSV,
JSON, and XML. You also explore how to store and retrieve with relational databases,
and even some recent NoSQL data stores.

Chapter 9

The Web gets its own chapter, which covers clients, servers, scraping, APIs, and
frameworks. In Chapter 9, you work up a real website with request parameters and
templates.

Chapter 10

This is the hard-core system chapter. In this one, you learn to manage programs, pro‐
cesses, and threads; deal with dates and times; and automate some system administra‐
tion tasks.

Chapter 11

Networking is the subject here: services, protocols, and APIs. Examples range from
low-level TCP sockets, to messaging libraries and queuing systems, to cloud deploy‐
ment.

Chapter 12

This chapter contains tips for Python developers, including installing, using IDEs,
testing, debugging, logging, source control, and documentation. Chapter 12 also
helps you to find and install useful third-party packages, package your own code for
reuse, and learn where to get more information. Good luck.

Appendix A

The first appendix delves into what people are doing with Python in the arts: graph‐
ics, music, animation, and games.

Appendix B

Python has specific applications for business: data visualization (plots, graphs, and
maps), security, and regulation.

Appendix C

Python has a strong presence in science: math and statistics, physical science, bio‐
science, and medicine. Appendix C features NumPy, SciPy, and Pandas.

Preface | xvii

Appendix D

If you don’t already have Python 3 on your computer, this appendix shows you how
to install it, no matter if you’re running Windows, Mac OS/X, Linux, or Unix.

Appendix E

This has the answers to the end-of-chapter exercises. Don’t peek here until you’ve
tried the exercises yourself.

Appendix F

This appendix contains cheat sheets to use as a quick reference.

Python Versions
Computer languages change over time as developers add features and fix mistakes.
The examples in this book were written and tested while running Python version 3.3.
Version 3.4 was released as this book was being edited, and I’ll talk about a few of its
additions. If you want to know what was added to Python and when, try the What’s
New in Python page. It’s a technical reference; a bit heavy when you’re just starting
with Python, but may be useful in the future if you ever have to get programs to work
on computers with different Python versions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variables, functions, and data types.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

xviii | Preface

https://docs.python.org/3/whatsnew/
https://docs.python.org/3/whatsnew/

This icon indicates a warning or caution.

Using Code Examples
The substantial code examples in this book—although not the exercises, which are
challenges for the reader—are available online for you to download. This book is here
to help you get your job done. In general, you may use the code in this book in your
programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission. Selling
or distributing a CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Introducing Python by Bill Lubanovic
(O’Reilly). Copyright 2015 Bill Lubanovic, 978-1-449-35936-2.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,

Preface | xix

https://github.com/madscheme/introducing-python
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/introducing_python.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks go to the many people who read and commented on my draft. I’d like to par‐
ticularly mention the careful reviews by Eli Bessert, Henry Canival, Jeremy Elliott,
Monte Milanuk, Loïc Pefferkorn, and Steven Wayne.

xx | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/introducing_python
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

A Taste of Py

Let’s begin with a mini-mystery and its solution. What do you think the following two
lines mean?

(Row 1): (RS) K18,ssk,k1,turn work.
(Row 2): (WS) Sl 1 pwise,p5,p2tog,p1,turn.

It looks technical, like some kind of computer program. Actually, it’s a knitting pat‐
tern; specifically, a fragment describing how to turn the heel of a sock. This makes as
much sense to me as the New York Times crossword puzzle does to my cat, but my
wife understands it perfectly. If you’re a knitter, you do, too.

Let’s try another example. You’ll figure out its purpose right away, although you might
not know its final product.

 1/2 c. butter or margarine
 1/2 c. cream
 2 1/2 c. flour
 1 t. salt
 1 T. sugar
 4 c. riced potatoes (cold)

Be sure all ingredients are cold before adding flour.
Mix all ingredients.
Knead thoroughly.
Form into 20 balls. Store cold until the next step.
For each ball:
 Spread flour on cloth.
 Roll ball into a circle with a grooved rolling pin.
 Fry on griddle until brown spots appear.
 Turn over and fry other side.

Even if you don’t cook, you probably recognized that it’s a recipe: a list of food ingre‐
dients followed by directions for preparation. But what does it make? It’s lefse, a Nor‐

1

wegian delicacy that resembles a tortilla. Slather on some butter and jam or whatever
you like, roll it up, and enjoy.

The knitting pattern and the recipe share some features:

• A fixed vocabulary of words, abbreviations, and symbols. Some might be famil‐
iar, others mystifying.

• Rules about what can be said, and where—their syntax.
• A sequence of operations to be performed in order.
• Sometimes, a repetition of some operations (a loop), such as the method for fry‐

ing each piece of lefse.
• Sometimes, a reference to another sequence of operations (in computer terms, a

function). In the recipe, you might need to refer to another recipe for ricing pota‐
toes.

• Assumed knowledge about the context. The recipe assumes you know what water
is and how to boil it. The knitting pattern assumes that you can knit and purl
without stabbing yourself too often.

• An expected result. In our examples, something for your feet and something for
your stomach. Just don’t mix them up.

You’ll see all of these ideas in computer programs. I used these nonprograms to
demonstrate that programming isn’t that mysterious. It’s just a matter of learning the
right words and the rules.

Let’s leave these stand-ins and see a real program. What does this do?

for countdown in 5, 4, 3, 2, 1, "hey!":
 print(countdown)

If you guessed that it’s a Python program that prints the lines:

5
4
3
2
1
hey!

then you know that Python can be easier to learn than a recipe or knitting pattern.
And, you can practice writing Python programs from the comfort and safety of your
desk, far from the harrowing dangers of hot water and pointy sticks.

The Python program has some special words and symbols—for, in, print, commas,
colons, parentheses, and so on—that are important parts of the language’s syntax. The
good news is that Python has a nicer syntax, and less of it to remember, than most
computer languages. It seems more natural—almost like a recipe.

2 | Chapter 1: A Taste of Py

Here’s another tiny Python program that selects a television news cliché from a
Python list and prints it:

cliches = [
 "At the end of the day",
 "Having said that",
 "The fact of the matter is",
 "Be that as it may",
 "The bottom line is",
 "If you will",
]
print(cliches[3])

The program prints the fourth cliché:

Be that as it may

A Python list such as cliches is a sequence of values, accessed by their offset from the
beginning of the list. The first value is at offset 0, and the fourth value is at offset 3.

People count from 1, so it might seem weird to count from 0. It
helps to think in terms of offsets instead of positions.

Lists are very common in Python, and Chapter 3 shows how to use them.

Following is another program that also prints a quote, but this time referenced by the
person who said it rather than its position in a list:

quotes = {
 "Moe": "A wise guy, huh?",
 "Larry": "Ow!",
 "Curly": "Nyuk nyuk!",
 }
stooge = "Curly"
print(stooge, "says:", quotes[stooge])

If you were to run this little program, it would print the following:

Curly says: Nyuk nyuk!

quotes is a Python dictionary—a collection of unique keys (in this example, the name
of the Stooge) and associated values (here, a notable quote of that Stooge). Using a
dictionary, you can store and look up things by name, which is often a useful alterna‐
tive to a list. You can read much more about dictionaries in Chapter 3.

The cliché example uses square brackets ([and]) to make a Python list, and the
stooge example uses curly brackets ({ and }, which are no relation to Curly), to make

A Taste of Py | 3

a Python dictionary. These are examples of Python’s syntax, and in the next few chap‐
ters, you’ll see much more.

And now for something completely different: Example 1-1 presents a Python pro‐
gram performing a more complex series of tasks. Don’t expect to understand how the
program works yet; that’s what this book is for! The intent is to introduce you to the
look and feel of a typical nontrivial Python program. If you know other computer
languages, evaluate how Python compares.

In earlier printings of this book, this sample program connected to a YouTube website
and retrieved information on its most highly rated videos, like “Charlie Bit My Fin‐
ger.” It worked well until shortly after the ink was dry on the second printing. That’s
when Google dropped support for this service and the marquee sample program
stopped working. Our new Example 1-1 goes to another site—the Wayback Machine
at the Internet Archive, which has saved billions of web pages (and movies, TV
shows, music, games, and other digital artifacts) over twenty years.

The program will ask you to type a URL and a date. Then it asks the Wayback
Machine if it has a copy of that website around that date. If it found one, it prints the
URL and displays it in your web browser. The point is to show how Python handles a
variety of tasks—get your typed input, talk across the Internet to a website, get back
some content, extract a URL from it, and convince your web browser to display that
URL.

If we got back a normal web page full of HTML-formatted text, it would be hard to
dig out the information we want (I talk about web scraping in “Crawl and Scrape” on
page 244). Instead, the program returns data in JSON format, which is meant for pro‐
cessing by computers. JSON, or JavaScript Object Notation, is a human-readable text
format that describes the types, values, and order of the values within it. It’s like a lit‐
tle programming language and has become a popular way to exchange data among
different computer languages and systems. You read about JSON in “JSON” on page
189.

Python programs can translate JSON text into Python data structures—the kind you’ll
see in the next two chapters—as though you wrote a program to create them yourself.
Our little program just selects one piece (the URL of the old page from the Archive).
Again, this is a complete Python program that you can run yourself. We’ve included
only a little error-checking, just to keep the example short.

Example 1-1. intro/archive.py

import webbrowser
import json
from urllib.request import urlopen

print("Let's find an old website.")

4 | Chapter 1: A Taste of Py

http://archive.org

site = input("Type a website URL: ")
era = input("Type a year, month, and day, like 20150613: ")
url = "http://archive.org/wayback/available?url=%s×tamp=%s" % (site, era)
response = urlopen(url)
contents = response.read()
text = contents.decode("utf-8")
data = json.loads(text)
try:
 old_site = data["archived_snapshots"]["closest"]["url"]
 print("Found this copy: ", old_site)
 print("It should appear in your browser now.")
 webbrowser.open(old_site)
except:
 print("Sorry, no luck finding", site)

When I ran this in a terminal window, I typed a site URL and a date, and got this text
output:

$ python archive.py
Let's find an old website.
Type a website URL: lolcats.com
Type a year, month, and day, like 20150613: 20151022
Found this copy: http://web.archive.org/web/20151102055938/http://www.lolcats.com/
It should appear in your browser now.

And this appeared in my browser:

A Taste of Py | 5

This little Python program did a lot in a few fairly readable lines. You don’t know all
these terms, but don’t worry; you will within the next few chapters:

• Line 1: import (make available to this program) all the code from the Python
standard library called webbrowser

• Line 2: import all the code from the Python standard library called json
• Line 3: import only the urlopen function from the standard library url
lib.request

• Line 4: a blank line, because we don’t want to feel crowded
• Line 5: print some initial text to your display
• Line 6: print a question about a URL, read what you type, and save it in a pro‐

gram variable called site
• Line 7: print another question, this time reading a year, month and day, and sav‐

ing it in a variable called era
• Line 8: construct another variable called url to make the Wayback Machine look

up its copy of the site and date that you typed
• Line 9: connect to the web server at that URL and request a particular web service
• Line 10: get the response data and assign to the variable contents
• Line 11: decode contents to a text string in JSON format, and assign to the vari‐

able text
• Line 12: convert text to data—Python data structures
• Line 13: error-checking: try to run the next four lines, and if any fail, run the last

line of the program (after the except)
• Line 14: if we got back a match for this site and date, extract its value from a

three-level Python dictionary
• Line 15: print the URL that we found
• Line 16: print another messsage about what will happen in your browser now
• Line 17: display the URL we found in your web browser
• Line 18: if anything failed in the previous four lines, Python jumps down to here
• Line 19: if it failed, print a message and the site that we were looking for

In the previous example, we used some of Python’s standard library modules (pro‐
grams that are included with Python when it’s installed), but there’s nothing sacred
about them. The code that follows shows a rewrite that uses an external Python soft‐
ware package called requests:

6 | Chapter 1: A Taste of Py

import webbrowser
import requests

print("Let's find an old website.")
site = input("Type a website URL: ")
era = input("Type a year, month, and day, like 20150613: ")
url = "http://archive.org/wayback/available?url=%s×tamp=%s" % (site, era)
response = requests.get(url)
data = response.json()
try:
 old_site = data["archived_snapshots"]["closest"]["url"]
 print("Found this copy: ", old_site)
 print("It should appear in your browser now.")
 webbrowser.open(old_site)
except:
 print("Sorry, no luck finding", site)

The new version is shorter, and I’d guess it’s more readable for most people. I have a
lot more to say about requests and other externally authored Python software in
Chapter 5.

Python in the Real World
So, is learning Python worth the time and effort? Is it a fad or a toy? Actually, it’s been
around since 1991 (longer than Java), and is consistently in the top 10 most popular
computing languages. People are paid to write Python programs—serious stuff that
you use every day, such as Google, YouTube, Dropbox, Netflix, and Hulu. I’ve used it
for production applications as varied as an email search appliance and an ecommerce
website. Python has a reputation for productivity that appeals to fast-moving organi‐
zations.

You’ll find Python in many computing environments, including the following:

• The command line in a monitor or terminal window
• Graphical user interfaces, including the Web
• The Web, on the client and server sides
• Backend servers supporting large popular sites
• The cloud (servers managed by third parties)
• Mobile devices
• Embedded devices

Python programs range from one-off scripts—such as those you’ve seen so far in this
chapter—to million-line systems. We’ll look at its uses in websites, system administra‐
tion, and data manipulation. We’ll also look at specific uses of Python in the arts, sci‐
ence, and business.

Python in the Real World | 7

Python versus Language X
How does Python compare against other languages? Where and when would you
choose one over the other? In this section, I’ll show code samples from other lan‐
guages, just so you can see what the competition looks like. You are not expected to
understand these if you haven’t worked with them. (By the time you get to the final
Python sample, you might be relieved that you haven’t had to work with some of the
others.) If you’re only interested in Python, you won’t miss anything if you just skip to
the next section.

Each program is supposed to print a number and say a little about the language.

If you use a terminal or terminal window, the program that reads what you type, runs
it, and displays the results is called the shell program. The Windows shell is called
cmd; it runs batch files with the suffix .bat. Linux and other Unix-like systems
(including Mac OS X) have many shell programs, the most popular is called bash or
sh. The shell has simple abilities, such as simple logic and expanding wildcard sym‐
bols such as * into filenames. You can save commands in files called shell scripts and
run them later. These might be the first programs you encountered as a programmer.
The problem is that shell scripts don’t scale well beyond a few hundred lines, and they
are much slower than the alternative languages. The next snippet shows a little shell
program:

#!/bin/sh
language=0
echo "Language $language: I am the shell. So there."

If you saved this in a file as meh.sh and ran it with sh meh.sh, you would see the
following on your display:

Language 0: I am the shell. So there.

Old stalwarts C and C++ are fairly low-level languages, used when speed is most
important. They’re harder to learn, and require you to keep track of many details,
which can lead to crashes and problems that are hard to diagnose. Here’s a look at a
little C program:

#include <stdio.h>
int main(int argc, char *argv[]) {
 int language = 1;
 printf("Language %d: I am C! Behold me and tremble!\n", language);
 return 0;
}

C++ has the C family resemblance but with distinctive features:

#include <iostream>
using namespace std;
int main() {

8 | Chapter 1: A Taste of Py

 int language = 2;
 cout << "Language " << language << \
 ": I am C++! Pay no attention to that C behind the curtain!" << \
 endl;
 return(0);
}

Java and C# are successors to C and C++ that avoid some of the latters’ problems, but
are somewhat verbose and restrictive. The example that follows shows some Java:

public class Overlord {
 public static void main (String[] args) {
 int language = 3;
 System.out.format("Language %d: I am Java! Scarier than C!\n", language);
 }
}

If you haven’t written programs in any of these languages, you might wonder: what is
all that stuff? Some languages carry substantial syntactic baggage. They’re sometimes
called static languages because they require you to specify some low-level details for
the computer. Let me explain.

Languages have variables—names for values that you want to use in a program. Static
languages make you declare the type of each variable: how much room it will use in
memory, and what you can do with it. The computer uses this information to compile
the program into very low-level machine language (specific to the computer’s hard‐
ware and easier for it to understand, but harder for humans). Computer language
designers often must decide between making things easier for people or for comput‐
ers. Declaring variable types helps the computer to catch some mistakes and run
faster, but it does require more up-front human thinking and typing. Much of the
code that you saw in the C, C++, and Java examples was required to declare types. For
example, in all of them the int declaration was needed to treat the variable language
as an integer. (Other types include floating-point numbers such as 3.14159 and char‐
acter or text data, which are stored differently.)

Then why are they called static languages? Because variables in those languages can’t
ever change their type; they’re static. An integer is an integer, forever and ever.

In contrast, dynamic languages (also called scripting languages) do not force you to
declare variable types before using them. If you type something such as x = 5, a
dynamic language knows that 5 is an integer; thus, the variable x is, too. These lan‐
guages let you accomplish more with fewer lines of code. Instead of being compiled,
they are interpreted by a program called—surprise!—an interpreter. Dynamic lan‐
guages are often slower than compiled static languages, but their speed is improving
as their interpreters become more optimized. For a long time, dynamic languages
were used mainly for short programs (scripts), often to prepare data for processing by
longer programs written in static languages. Such programs have been called glue

Python versus Language X | 9

code. Although dynamic languages are well suited for this purpose, today they are
able to tackle most big processing tasks as well.

The all-purpose dynamic language for many years was Perl. Perl is very powerful and
has extensive libraries. Yet, its syntax can be awkward, and the language seems to
have lost momentum in the last few years to Python and Ruby. This example regales
you with a Perl bon mot:

my $language = 4;
print "Language $language: I am Perl, the camel of languages.\n";

Ruby is a more recent language. It borrows a little from Perl, and is popular mostly
because of Ruby on Rails, a web development framework. It’s used in many of the
same areas as Python, and the choice of one or the other might boil down to a matter
of taste, or available libraries for your particular application. The code example here
depicts a Ruby snippet:

language = 5
puts "Language #{language}: I am Ruby, ready and aglow."

PHP, which you can see in the example that follows, is very popular for web develop‐
ment because it makes it easy to combine HTML and code. However, the PHP lan‐
guage itself has a number of gotchas, and PHP has not caught on as a general
language outside of the Web.

<?PHP
$language = 6;
echo "Language $language: I am PHP. The web is <i>mine</i>, I say.\n";
?>

The example that follows presents Python’s rebuttal:

language = 7
print("Language %s: I am Python. What's for supper?" % language)

So, Why Python?
Python is a good general-purpose, high-level language. Its design makes it very reada‐
ble, which is more important than it sounds. Every computer program is written only
once, but read and revised many times, often by many people. Being readable also
makes it easier to learn and remember, hence more writeable. Compared with other
popular languages, Python has a gentle learning curve that makes you productive
sooner, yet it has depths that you can explore as you gain expertise.

Python’s relative terseness makes it possible for you to write a program that’s much
smaller than its equivalent in a static language. Studies have shown that programmers
tend to produce roughly the same number of lines of code per day—regardless of the
language—so, writing half the lines of code doubles your productivity, just like that.
Python is the not-so-secret weapon of many companies that think this is important.

10 | Chapter 1: A Taste of Py

http://www.perl.org/
http://www.ruby-lang.org/
http://www.php.net/

Python is the most popular language for introductory computer science courses at
the top American colleges. It is also the most popular language for evaluating pro‐
gramming skill by over two thousand employers.

And of course, it’s free, as in beer and speech. Write anything you want with Python,
and use it anywhere, freely. No one can read your Python program and say, “That’s a
nice little program you have there. It would be too bad if something happened to it.”

Python runs almost everywhere and has “batteries included”—a metric boatload of
useful software in its standard library.

But, maybe the best reason to use Python is an unexpected one: people generally like
it. They actually enjoy programming with it, rather than treating it as just another
tool to get stuff done. Often they’ll say that they miss some feature of Python when
they need to work in another language. And that’s what separates Python from most
of its peers.

When Not to Use Python
Python isn’t the best language for every situation.

It is not installed everywhere by default. Appendix D shows you how to install Python
if you don’t already have it on your computer.

It’s fast enough for most applications, but it might not be fast enough for some of the
more demanding ones. If your program spends most of its time calculating things
(the technical term is CPU-bound), a program written in C, C++, or Java will gener‐
ally run faster than its Python equivalent. But not always!

• Sometimes a better algorithm (a stepwise solution) in Python beats an inefficient
one in C. The greater speed of development in Python gives you more time to
experiment with alternatives.

• In many applications, a program twiddles its thumbs while awaiting a response
from some server across a network. The CPU (central processing unit, the com‐
puter’s chip that does all the calculating) is barely involved; consequently, end-to-
end times between static and dynamic programs will be close.

• The standard Python interpreter is written in C and can be extended with C
code. I discuss this a little in “Optimize Your Code” on page 335.

• Python interpreters are becoming faster. Java was terribly slow in its infancy, and
a lot of research and money went into speeding it up. Python is not owned by a
corporation, so its enhancements have been more gradual. In “PyPy” on page
338, I talk about the PyPy project and its implications.

• You might have an extremely demanding application, and no matter what you
do, Python doesn’t meet your needs. Then, as Ian Holm said in the movie Alien,

When Not to Use Python | 11

http://bit.ly/popular-py
http://bit.ly/langs-2014

you have my sympathies. The usual alternatives are C, C++, and Java, but a newer
language called Go (which feels like Python but performs like C) could be an
answer.

Python 2 versus Python 3
The biggest issue that you’ll confront at the moment is that there are two versions of
Python out there. Python 2 has been around forever and is preinstalled on Linux and
Apple computers. It has been an excellent language, but nothing’s perfect. In com‐
puter languages, as in many other areas, some mistakes are cosmetic and easy to fix,
whereas others are hard. Hard fixes are incompatible: new programs written with
them will not work on the old Python system, and old programs written before the
fix will not work on the new system.

Python’s creator (Guido van Rossum) and others decided to bundle the hard fixes
together and call it Python 3. Python 2 is the past, and Python 3 is the future. The last
version of Python 2 is 2.7, and it will be supported for a long time, but it’s the end of
the line; there will be no Python 2.8. New development will be in Python 3.

This book features Python 3. If you’ve been using Python 2, it’s almost identical. The
most obvious change is how to call print. The most important change is the handling
of Unicode characters, which is covered in Chapter 2 and Chapter 7. Conversion of
popular Python software has been gradual, with the usual chicken-and-egg analogies.
But now, it looks like we’ve finally reached a tipping point.

Installing Python
Rather than cluttering this chapter, the details on how to install Python 3 are in
Appendix D. If you don’t have Python 3, or aren’t sure, go there and see what to do
for your computer.

Running Python
After you have installed a working copy of Python 3, you can use it to run the Python
programs in this book as well as your own Python code. How do you actually run a
Python program? There are two main ways:

• Python’s built-in interactive interpreter (also called its shell) is the easy way to
experiment with small programs. You type commands line by line and see the
results immediately. With the tight coupling between typing and seeing, you can
experiment faster. I’ll use the interactive interpreter to demonstrate language fea‐
tures, and you can type the same commands in your own Python environment.

12 | Chapter 1: A Taste of Py

http://golang.org
https://www.python.org/~guido

• For everything else, store your Python programs in text files, normally with
the .py extension, and run them by typing python followed by those filenames.

Let’s try both methods now.

Using the Interactive Interpreter
Most of the code examples in this book use the interactive interpreter. When you type
the same commands as you see in the examples and get the same results, you’ll know
you’re on the right track.

You start the interpreter by typing just the name of the main Python program on
your computer: it should be python, python3, or something similar. For the rest of
this book, we’ll assume it’s called python; if yours has a different name, type that
wherever you see python in a code example.

The interactive interpreter works almost exactly the same as Python works on files,
with one exception: when you type something that has a value, the interactive inter‐
preter prints its value for you automatically. For example, if you start Python and type
the number 61 in the interpreter, it will be echoed to your terminal.

In the example that follows, $ is a sample system prompt for you to
type a command like python in the terminal window. We’ll use it
for the code examples in this book, although your prompt might be
different.

$ python
Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 61
61
>>>

This automatic printing of a value is a time-saving feature of the interactive inter‐
preter, not a part of the Python language.

By the way, print() also works within the interpreter whenever you want to print
something:

>>> print(61)
61

If you tried these examples with the interactive interpreter and saw the same results,
you just ran some real (though tiny) Python code. In the next few chapters, you’ll
graduate from one-liners to longer Python programs.

Running Python | 13

1 If you’re not sure what this means, see Appendix D for details for different operating systems.

Use Python Files
If you put 61 in a file by itself and run it through Python, it will run, but it won’t print
anything. In normal noninteractive Python programs, you need to call the print
function to print things, as is demonstrated in the code that follows:

print(61)

Let’s make a Python program file and run it:

1. Open your text editor.
2. Type the line print(61), as it appears above.
3. Save this to a file called 61.py. Make sure you save it as plain text, rather than a

“rich” format such as RTF or Word. You don’t need to use the .py suffix for your
Python program files, but it does help you remember what they are.

4. If you’re using a graphical user interface—that’s almost everyone—open a termi‐
nal window.1

5. Run your program by typing the following:

$ python 61.py

You should see a single line of output:

61

Did that work? If it did, congratulations on running your first standalone Python
program.

What’s Next?
You’ll be typing commands to an actual Python system, and they need to follow legal
Python syntax. Rather than dumping the syntax rules on you all at once, we’ll stroll
through them over the next few chapters.

The basic way to develop Python programs is by using a plain-text editor and a ter‐
minal window. I use plain-text displays in this book, sometimes showing interactive
terminal sessions and sometimes pieces of Python files. You should know that there
are also many good integrated development environments (IDEs) for Python. These
may feature graphical user interfaces with advanced text editing and help displays.
You can learn about details for some of these in Chapter 12.

14 | Chapter 1: A Taste of Py

Your Moment of Zen
Each computing language has its own style. In the preface, I mentioned that there is
often a Pythonic way to express yourself. Embedded in Python is a bit of free verse
that expresses the Python philosophy succinctly (as far as I know, Python is the only
language to include such an Easter egg). Just type import this into your interactive
interpreter and then press the Enter key whenever you need this moment of Zen:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one--and preferably only one--obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea--let's do more of those!

I’ll bring up examples of these sentiments throughout the book.

Things to Do
This chapter was an introduction to the Python language—what it does, how it looks,
and where it fits in the computing world. At the end of each chapter, I’ll suggest some
mini-projects to help you remember what you just read and prepare you for what’s to
come.

1.1 If you don’t already have Python 3 installed on your computer, do it now. Read
Appendix D for the details for your computer system.

1.2 Start the Python 3 interactive interpreter. Again, details are in Appendix D. It
should print a few lines about itself and then a single line starting with >>>. That’s
your prompt to type Python commands.

1.3 Play with the interpreter a little. Use it like a calculator and type this: 8 * 9. Press
the Enter key to see the result. Python should print 72.

Your Moment of Zen | 15

1.4 Type the number 47 and press the Enter key. Did it print 47 for you on the next
line?

1.5 Now, type print(47) and press Enter. Did that also print 47 for you on the next
line?

16 | Chapter 1: A Taste of Py

CHAPTER 2

Py Ingredients: Numbers, Strings,
and Variables

In this chapter we’ll begin by looking at Python’s simplest built-in data types:

• booleans (which have the value True or False)
• integers (whole numbers such as 42 and 100000000)
• floats (numbers with decimal points such as 3.14159, or sometimes exponents

like 1.0e8, which means one times ten to the eighth power, or 100000000.0)
• strings (sequences of text characters)

In a way, they’re like atoms. We’ll use them individually in this chapter. Chapter 3
shows how to combine them into larger “molecules.”

Each type has specific rules for its usage and is handled differently by the computer.
We’ll also introduce variables (names that refer to actual data; more on these in a
moment).

The code examples in this chapter are all valid Python, but they’re snippets. We’ll be
using the Python interactive interpreter, typing these snippets and seeing the results
immediately. Try running them yourself with the version of Python on your com‐
puter. You’ll recognize these examples by the >>> prompt. In Chapter 4, we start writ‐
ing Python programs that can run on their own.

Variables, Names, and Objects
In Python, everything—booleans, integers, floats, strings, even large data structures,
functions, and programs—is implemented as an object. This gives the language a con‐
sistency (and useful features) that some other languages lack.

17

An object is like a clear plastic box that contains a piece of data (Figure 2-1). The
object has a type, such as boolean or integer, that determines what can be done with
the data. A real-life box marked “Pottery” would tell you certain things (it’s probably
heavy, and don’t drop it on the floor). Similarly, in Python, if an object has the type
int, you know that you could add it to another int.

Figure 2-1. An object is like a box

The type also determines if the data value contained by the box can be changed
(mutable) or is constant (immutable). Think of an immutable object as a closed box
with a clear window: you can see the value but you can’t change it. By the same anal‐
ogy, a mutable object is like an open box: not only can you see the value inside, you
can also change it; however, you can’t change its type.

Python is strongly typed, which means that the type of an object does not change,
even if its value is mutable (Figure 2-2).

Figure 2-2. Strong typing does not mean push the keys harder

Programming languages allow you to define variables. These are names that refer to
values in the computer’s memory that you can define for use with your program. In
Python, you use = to assign a value to a variable.

18 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

We all learned in grade school math that = means equal to. So why
do many computer languages, including Python, use = for assign‐
ment? One reason is that standard keyboards lack logical alterna‐
tives such as a left arrow key, and = didn’t seem too confusing. Also,
in computer programs you use assignment much more than you
test for equality.

The following is a two-line Python program that assigns the integer value 7 to the
variable named a, and then prints the value currently associated with a:

>>> a = 7
>>> print(a)
7

Now, it’s time to make a crucial point about Python variables: variables are just names.
Assignment does not copy a value; it just attaches a name to the object that contains
the data. The name is a reference to a thing rather than the thing itself. Think of a
name as a sticky note (see Figure 2-3).

Figure 2-3. Names stick to objects

Try this with the interactive interpreter:

1. As before, assign the value 7 to the name a. This creates an object box containing
the integer value 7.

2. Print the value of a.
3. Assign a to b, making b also stick to the object box containing 7.
4. Print the value of b.

>>> a = 7
>>> print(a)
7
>>> b = a
>>> print(b)
7

Variables, Names, and Objects | 19

In Python, if you want to know the type of anything (a variable or a literal value), use
type(thing). Let’s try it with different literal values (58, 99.9, abc) and different vari‐
ables (a, b):

>>> type(a)
<class 'int'>
>>> type(b)
<class 'int'>
>>> type(58)
<class 'int'>
>>> type(99.9)
<class 'float'>
>>> type('abc')
<class 'str'>

A class is the definition of an object; Chapter 6 covers classes in greater detail. In
Python, “class” and “type” mean pretty much the same thing.

Variable names can only contain these characters:

• Lowercase letters (a through z)
• Uppercase letters (A through Z)
• Digits (0 through 9)
• Underscore (_)

Names cannot begin with a digit. Also, Python treats names that begin with an under‐
score in special ways (which you can read about in Chapter 4). These are valid names:

• a

• a1

• a_b_c___95

• _abc

• _1a

These names, however, are not valid:

• 1

• 1a

• 1_

Finally, don’t use any of these for variable names, because they are Python’s reserved
words:

20 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

These words, and some punctuation, are used to define Python’s syntax. You’ll see all
of them as you progress through this book.

Numbers
Python has built-in support for integers (whole numbers such as 5 and 1,000,000,000)
and floating point numbers (such as 3.1416, 14.99, and 1.87e4). You can calculate
combinations of numbers with the simple math operators in this table:

Operator Description Example Result

+ addition 5 + 8 13

- subtraction 90 - 10 80

* multiplication 4 * 7 28

/ floating point division 7 / 2 3.5

// integer (truncating) division 7 // 2 3

% modulus (remainder) 7 % 3 1

** exponentiation 3 ** 4 81

For the next few pages, I’ll show simple examples of Python acting as a glorified
calculator.

Integers
Any sequence of digits in Python is assumed to be a literal integer:

>>> 5
5

You can use a plain zero (0):

>>> 0
0

But don’t put it in front of other digits:

Numbers | 21

>>> 05
 File "<stdin>", line 1
 05
 ^
SyntaxError: invalid token

This is the first time you’ve seen a Python exception—a program
error. In this case, it’s a warning that 05 is an “invalid token.” I’ll
explain what this means in “Bases” on page 26. You’ll see many
more examples of exceptions in this book because they’re Python’s
main error handling mechanism.

A sequence of digits specifies a positive integer. If you put a + sign before the digits,
the number stays the same:

>>> 123
123
>>> +123
123

To specify a negative integer, insert a – before the digits:

>>> -123
-123

You can do normal arithmetic with Python, much as you would with a calculator, by
using the operators listed in the table on the previous page. Addition and subtraction
work as you’d expect:

>>> 5 + 9
14
>>> 100 - 7
93
>>> 4 - 10
-6

You can include as many numbers and operators as you’d like:

>>> 5 + 9 + 3
17
>>> 4 + 3 - 2 - 1 + 6
10

A style note: you’re not required to have a space between each number and operator:

>>> 5+9 + 3
17

It just looks better and is easier to read.

Multiplication is also straightforward:

22 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

>>> 6 * 7
42
>>> 7 * 6
42
>>> 6 * 7 * 2 * 3
252

Division is a little more interesting, because it comes in two flavors:

• / carries out floating-point (decimal) division
• // performs integer (truncating) division

Even if you’re dividing an integer by an integer, using a / will give you a floating-
point result:

>>> 9 / 5
1.8

Truncating integer division gives you an integer answer, throwing away any remain‐
der:

>>> 9 // 5
1

Dividing by zero with either kind of division causes a Python exception:

>>> 5 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> 7 // 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by z

All of the preceding examples used literal integers. You can mix literal integers and
variables that have been assigned integer values:

>>> a = 95
>>> a
95
>>> a - 3
92

Earlier, when we said a - 3, we didn’t assign the result to a, so the value of a did not
change:

>>> a
95

If you wanted to change a, you would do this:

Numbers | 23

>>> a = a - 3
>>> a
92

This usually confuses beginning programmers, again because of our ingrained grade
school math training, we see that = sign and think of equality. In Python, the expres‐
sion on the right side of the = is calculated first, then assigned to the variable on the
left side.

If it helps, think of it this way:

• Subtract 3 from a
• Assign the result of that subtraction to a temporary variable
• Assign the value of the temporary variable to a:

>>> a = 95
>>> temp = a - 3
>>> a = temp

So, when you say:

>>> a = a - 3

Python is calculating the subtraction on the righthand side, remembering the result,
and then assigning it to a on the left side of the = sign. It’s faster and neater than using
a temporary variable.

You can combine the arithmetic operators with assignment by putting the operator
before the =. Here, a -= 3 is like saying a = a - 3:

>>> a = 95
>>> a -= 3
>>> a
92

This is like a = a + 8:

>>> a += 8
>>> a
100

And this is like a = a * 2:

>>> a *= 2
>>> a
200

Here’s a floating-point division example, such as a = a / 3:

>>> a /= 3
>>> a
66.66666666666667

24 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

Let’s assign 13 to a, and then try the shorthand for a = a // 4 (truncating integer
division):

>>> a = 13
>>> a //= 4
>>> a
3

The % character has multiple uses in Python. When it’s between two numbers, it pro‐
duces the remainder when the first number is divided by the second:

>>> 9 % 5
4

Here’s how to get both the (truncated) quotient and remainder at once:

>>> divmod(9,5)
(1, 4)

Otherwise, you could have calculated them separately:

>>> 9 // 5
1
>>> 9 % 5
4

You just saw some new things here: a function named divmod is given the integers 9
and 5 and returns a two-item result called a tuple. Tuples will take a bow in Chapter 3;
functions will make their debut in Chapter 4.

Precedence
What would you get if you typed the following?

>>> 2 + 3 * 4

If you do the addition first, 2 + 3 is 5, and 5 * 4 is 20. But if you do the multiplica‐
tion first, 3 * 4 is 12, and 2 + 12 is 14. In Python, as in most languages, multiplica‐
tion has higher precedence than addition, so the second version is what you’d see:

>>> 2 + 3 * 4
14

How do you know the precedence rules? There’s a big table in Appendix F that lists
them all, but I’ve found that in practice I never look up these rules. It’s much easier to
just add parentheses to group your code as you intend the calculation to be carried
out:

>>> 2 + (3 * 4)
14

This way, anyone reading the code doesn’t need to guess its intent or look up prece‐
dence rules.

Numbers | 25

Bases
Integers are assumed to be decimal (base 10) unless you use a prefix to specify
another base. You might never need to use these other bases, but you’ll probably see
them in Python code somewhere, sometime.

We generally have 10 fingers or toes (one of my cats has a few more, but rarely uses
them for counting). So, we count 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Next, we run out of digits
and carry the one to the “ten’s place” and put a 0 in the one’s place: 10 means “1 ten
and 0 ones”. We don’t have a single digit that represents “ten.” Then, it’s 11, 12, up to
19, carry the one to make 20 (2 tens and 0 ones), and so on.

A base is how many digits you can use until you need to “carry the one.” In base 2
(binary), the only digits are 0 and 1. 0 is the same as a plain old decimal 0, and 1 is
the same as a decimal 1. However, in base 2, if you add a 1 to a 1, you get 10 (1 deci‐
mal two plus 0 decimal ones).

In Python, you can express literal integers in three bases besides decimal:

• 0b or 0B for binary (base 2).
• 0o or 0O for octal (base 8).
• 0x or 0X for hex (base 16).

The interpreter prints these for you as decimal integers. Let’s try each of these bases.
First, a plain old decimal 10, which means 1 ten and 0 ones:

>>> 10
10

Now, a binary (base two), which means 1 (decimal) two and 0 ones:
>>> 0b10
2

Octal (base 8) for 1 (decimal) eight and 0 ones:
>>> 0o10
8

Hexadecimal (base 16) for 1 (decimal) 16 and 0 ones:
>>> 0x10
16

In case you’re wondering what “digits” base 16 uses, they are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
a, b, c, d, e, and f. 0xa is a decimal 10, and 0xf is a decimal 15. Add 1 to 0xf and you
get 0x10 (decimal 16).

26 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

Why use a different base from 10? It’s useful in bit-level operations, which are
described in Chapter 7, along with more details about converting numbers from one
base to another.

Type Conversions
To change other Python data types to an integer, use the int() function. This will
keep the whole number and discard any fractional part.

Python’s simplest data type is the boolean, which has only the values True and False.
When converted to integers, they represent the values 1 and 0:

>>> int(True)
1
>>> int(False)
0

Converting a floating-point number to an integer just lops off everything after the
decimal point:

>>> int(98.6)
98
>>> int(1.0e4)
10000

Finally, here’s an example of converting a text string (you’ll see more about strings in
a few pages) that contains only digits, possibly with + or - signs:

>>> int('99')
99
>>> int('-23')
-23
>>> int('+12')
12

Converting an integer to an integer doesn’t change anything but doesn’t hurt either:

>>> int(12345)
12345

If you try to convert something that doesn’t look like a number, you’ll get an excep‐
tion:

>>> int('99 bottles of beer on the wall')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '99 bottles of beer on the wall'
>>> int('')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: ''

Numbers | 27

The preceding text string started with valid digit characters (99), but it kept on going
with others that the int() function just wouldn’t stand for.

We’ll get to exceptions in Chapter 4. For now, just know that it’s
how Python alerts you that an error occurred (rather than crashing
the program, as some languages might do). Instead of assuming
that things always go right, I’ll show many examples of exceptions
throughout this book, so you can see what Python does when they
go wrong.

int() will make integers from floats or strings of digits, but won’t handle strings con‐
taining decimal points or exponents:

>>> int('98.6')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '98.6'
>>> int('1.0e4')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '1.0e4'

If you mix numeric types, Python will sometimes try to automatically convert them
for you:

>>> 4 + 7.0
11.0

The boolean value False is treated as 0 or 0.0 when mixed with integers or floats,
and True is treated as 1 or 1.0:

>>> True + 2
3
>>> False + 5.0
5.0

How Big Is an int?
In Python 2, the size of an int was limited to 32 bits. This was enough room to store
any integer from –2,147,483,648 to 2,147,483,647.

A long had even more room: 64 bits, allowing values from
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. In Python 3, long is long
gone, and an int can be any size—even greater than 64 bits. Thus, you can say things
like the following (10**100 is called a googol, and was the original name of Google
before they decided on the easier spelling):

28 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

>>>
>>> googol = 10**100
>>> googol
1000
00000000000000000000000
>>> googol * googol
1000
00
000

In many languages, trying this would cause something called integer overflow, where
the number would need more space than the computer allowed for it, causing various
bad effects. Python handles humungous integers with no problem. Score one for
Python.

Floats
Integers are whole numbers, but floating-point numbers (called floats in Python) have
decimal points. Floats are handled similarly to integers: you can use the operators (+,
–, *, /, //, **, and %) and divmod() function.

To convert other types to floats, you use the float() function. As before, booleans act
like tiny integers:

>>> float(True)
1.0
>>> float(False)
0.0

Converting an integer to a float just makes it the proud possessor of a decimal point:

>>> float(98)
98.0
>>> float('99')
99.0

And, you can convert a string containing characters that would be a valid float (digits,
signs, decimal point, or an e followed by an exponent) to a real float:

>>> float('98.6')
98.6
>>> float('-1.5')
-1.5
>>> float('1.0e4')
10000.0

Math Functions
Python has the usual math functions such as square roots, cosines, and so on. We’ll
save them for Appendix C, in which we also discuss Python uses in science.

Numbers | 29

Strings
Nonprogrammers often think that programmers must be good at math because they
work with numbers. Actually, most programmers work with strings of text much
more than numbers. Logical (and creative!) thinking is often more important than
math skills.

Because of its support for the Unicode standard, Python 3 can contain characters
from any written language in the world, plus a lot of symbols. Its handling of that
standard was a big reason for its split from Python 2. It’s also a good reason to use
version 3. I’ll get into Unicode in various places, because it can be daunting at times.
In the string examples that follow, I’ll mostly use ASCII examples.

Strings are our first example of a Python sequence. In this case, they’re a sequence of
characters.

Unlike other languages, strings in Python are immutable. You can’t change a string in-
place, but you can copy parts of strings to another string to get the same effect. You’ll
see how to do this shortly.

Create with Quotes
You make a Python string by enclosing characters in either single quotes or double
quotes, as demonstrated in the following:

>>> 'Snap'
'Snap'
>>> "Crackle"
'Crackle'

The interactive interpreter echoes strings with a single quote, but all are treated
exactly the same by Python.

Why have two kinds of quote characters? The main purpose is so that you can create
strings containing quote characters. You can have single quotes inside double-quoted
strings, or double quotes inside single-quoted strings:

>>> "'Nay,' said the naysayer."
"'Nay,' said the naysayer."
>>> 'The rare double quote in captivity: ".'
'The rare double quote in captivity: ".'
>>> 'A "two by four" is actually 1 1⁄2" × 3 1⁄2".'
'A "two by four is" actually 1 1⁄2" × 3 1⁄2".'
>>> "'There's the man that shot my paw!' cried the limping hound."
"'There's the man that shot my paw!' cried the limping hound."

You can also use three single quotes (''') or three double quotes ("""):

>>> '''Boom!'''
'Boom'

30 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

>>> """Eek!"""
'Eek!'

Triple quotes aren’t very useful for short strings like these. Their most common use is
to create multiline strings, like this classic poem from Edward Lear:

>>> poem = '''There was a Young Lady of Norway,
... Who casually sat in a doorway;
... When the door squeezed her flat,
... She exclaimed, "What of that?"
... This courageous Young Lady of Norway.'''
>>>

(This was entered in the interactive interpreter, which prompted us with >>> for the
first line and ... until we entered the final triple quotes and went to the next line.)

If you tried to create that poem with single quotes, Python would make a fuss when
you went to the second line:

>>> poem = 'There was a young lady of Norway,
 File "<stdin>", line 1
 poem = 'There was a young lady of Norway,
 ^
SyntaxError: EOL while scanning string literal
>>>

If you have multiple lines within triple quotes, the line ending characters will be pre‐
served in the string. If you have leading or trailing spaces, they’ll also be kept:

>>> poem2 = '''I do not like thee, Doctor Fell.
... The reason why, I cannot tell.
... But this I know, and know full well:
... I do not like thee, Doctor Fell.
... '''
>>> print(poem2)
I do not like thee, Doctor Fell.
 The reason why, I cannot tell.
 But this I know, and know full well:
 I do not like thee, Doctor Fell.

>>>

By the way, there’s a difference between the output of print() and the automatic
echoing done by the interactive interpreter:

>>> poem2
'I do not like thee, Doctor Fell.\n The reason why, I cannot tell.\n But
this I know, and know full well:\n I do not like thee, Doctor Fell.\n'

print() strips quotes from strings and prints their contents. It’s meant for human
output. It helpfully adds a space between each of the things it prints, and a newline at
the end:

Strings | 31

>>> print(99, 'bottles', 'would be enough.')
99 bottles would be enough.

If you don’t want the space or newline, you’ll see how to avoid them shortly.

The interpreter prints the string with single quotes and escape characters such as \n,
which are explained in “Escape with \” on page 32.

Finally, there is the empty string, which has no characters at all but is perfectly valid.
You can create an empty string with any of the aforementioned quotes:

>>> ''
''
>>> ""
''
>>> ''''''
''
>>> """"""
''
>>>

Why would you need an empty string? Sometimes you might want to build a string
from other strings, and you need to start with a blank slate.

>>> bottles = 99
>>> base = ''
>>> base += 'current inventory: '
>>> base += str(bottles)
>>> base
'current inventory: 99'

Convert Data Types by Using str()
You can convert other Python data types to strings by using the str() function:

>>> str(98.6)
'98.6'
>>> str(1.0e4)
'10000.0'
>>> str(True)
'True'

Python uses the str() function internally when you call print() with objects that are
not strings and when doing string interpolation, which you’ll see in Chapter 7.

Escape with \
Python lets you escape the meaning of some characters within strings to achieve
effects that would otherwise be hard to express. By preceding a character with a back‐
slash (\), you give it a special meaning. The most common escape sequence is \n,

32 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

which means to begin a new line. With this you can create multiline strings from a
one-line string.

>>> palindrome = 'A man,\nA plan,\nA canal:\nPanama.'
>>> print(palindrome)
A man,
A plan,
A canal:
Panama.

You will see the escape sequence \t (tab) used to align text:

>>> print('\tabc')
 abc
>>> print('a\tbc')
a bc
>>> print('ab\tc')
ab c
>>> print('abc\t')
abc

(The final string has a terminating tab which, of course, you can’t see.)

You might also need \' or \" to specify a literal single or double quote inside a string
that’s quoted by the same character:

>>> testimony = "\"I did nothing!\" he said. \"Not that either! Or the other
 thing.\""
>>> print(testimony)
"I did nothing!" he said. "Not that either! Or the other thing."
>>> fact = "The world's largest rubber duck was 54'2\" by 65'7\" by 105'"
>>> print(fact)
The world's largest rubber duck was 54'2" by 65'7" by 105'

And if you need a literal backslash, just type two of them:

>>> speech = 'Today we honor our friend, the backslash: \\.'
>>> print(speech)
Today we honor our friend, the backslash: \.

Combine with +
You can combine literal strings or string variables in Python by using the + operator,
as demonstrated here:

>>> 'Release the kraken! ' + 'No, wait!'
'Release the kraken! No, wait!'

You can also combine literal strings (not string variables) just by having one after the
other:

>>> "My word! " "A gentleman caller!"
'My word! A gentleman caller!'

Strings | 33

Python does not add spaces for you when concatenating strings, so in the preceding
example, we needed to include spaces explicitly. It does add a space between each
argument to a print() statement, and a newline at the end:

>>> a = 'Duck.'
>>> b = a
>>> c = 'Grey Duck!'
>>> a + b + c
'Duck.Duck.Grey Duck!'
>>> print(a, b, c)
Duck. Duck. Grey Duck!

Duplicate with *
You use the * operator to duplicate a string. Try typing these lines into your interac‐
tive interpreter and see what they print:

>>> start = 'Na ' * 4 + '\n'
>>> middle = 'Hey ' * 3 + '\n'
>>> end = 'Goodbye.'
>>> print(start + start + middle + end)

Extract a Character with []
To get a single character from a string, specify its offset inside square brackets after
the string’s name. The first (leftmost) offset is 0, the next is 1, and so on. The last
(rightmost) offset can be specified with –1 so you don’t have to count; going to the left
are –2, –3, and so on.

>>> letters = 'abcdefghijklmnopqrstuvwxyz'
>>> letters[0]
'a'
>>> letters[1]
'b'
>>> letters[-1]
'z'
>>> letters[-2]
'y'
>>> letters[25]
'z'
>>> letters[5]
'f'

If you specify an offset that is the length of the string or longer (remember, offsets go
from 0 to length–1), you’ll get an exception:

>>> letters[100]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

34 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

Indexing works the same with the other sequence types (lists and tuples), which we
cover in Chapter 3.

Because strings are immutable, you can’t insert a character directly into one or change
the character at a specific index. Let’s try to change 'Henny' to 'Penny' and see what
happens:

>>> name = 'Henny'
>>> name[0] = 'P'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

Instead you need to use some combination of string functions such as replace() or a
slice (which you’ll see in a moment):

>>> name = 'Henny'
>>> name.replace('H', 'P')
'Penny'
>>> 'P' + name[1:]
'Penny'

Slice with [start : end : step]
You can extract a substring (a part of a string) from a string by using a slice. You
define a slice by using square brackets, a start offset, an end offset, and an optional
step size. Some of these can be omitted. The slice will include characters from offset
start to one before end.

• [:] extracts the entire sequence from start to end.
• [start :] specifies from the start offset to the end.
• [: end] specifies from the beginning to the end offset minus 1.
• [start : end] indicates from the start offset to the end offset minus 1.
• [start : end : step] extracts from the start offset to the end offset minus 1,

skipping characters by step.

As before, offsets go 0, 1, and so on from the start to the right, and –1,–2, and so forth
from the end to the left. If you don’t specify start, the slice uses 0 (the beginning). If
you don’t specify end, it uses the end of the string.

Let’s make a string of the lowercase English letters:

>>> letters = 'abcdefghijklmnopqrstuvwxyz'

Using a plain : is the same as 0: (the entire string):

>>> letters[:]
'abcdefghijklmnopqrstuvwxyz'

Strings | 35

Here’s an example from offset 20 to the end:

>>> letters[20:]
'uvwxyz'

Now, from offset 10 to the end:

>>> letters[10:]
'klmnopqrstuvwxyz'

And another, offset 12 to 14 (Python does not include the last offset):

>>> letters[12:15]
'mno'

The three last characters:

>>> letters[-3:]
'xyz'

In this next example, we go from offset 18 to the fourth before the end; notice the
difference from the previous example, in which starting at –3 gets the x, but ending at
–3 actually stops at –4, the w:

>>> letters[18:-3]
'stuvw'

In the following, we extract from 6 before the end to 3 before the end:

>>> letters[-6:-2]
'uvwx'

If you want a step size other than 1, specify it after a second colon, as shown in the
next series of examples.

From the start to the end, in steps of 7 characters:

>>> letters[::7]
'ahov'

From offset 4 to 19, by 3:

>>> letters[4:20:3]
'ehknqt'

From offset 19 to the end, by 4:

>>> letters[19::4]
'tx'

From the start to offset 20 by 5:

>>> letters[:21:5]
'afkpu'

(Again, the end needs to be one more than the actual offset.)

36 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

And that’s not all! Given a negative step size, this handy Python slicer can also step
backward. This starts at the end and ends at the start, skipping nothing:

>>> letters[-1::-1]
'zyxwvutsrqponmlkjihgfedcba'

It turns out that you can get the same result by using this:

>>> letters[::-1]
'zyxwvutsrqponmlkjihgfedcba'

Slices are more forgiving of bad offsets than are single-index lookups. A slice offset
earlier than the beginning of a string is treated as 0, and one after the end is treated as
-1, as is demonstrated in this next series of examples.

From 50 before the end to the end:

>>> letters[-50:]
'abcdefghijklmnopqrstuvwxyz'

From 51 before the end to 50 before the end:

>>> letters[-51:-50]
''

From the start to 69 after the start:

>>> letters[:70]
'abcdefghijklmnopqrstuvwxyz'

From 70 after the start to 70 after the start:

>>> letters[70:71]
''

Get Length with len()
So far, we’ve used special punctuation characters such as + to manipulate strings. But
there are only so many of these. Now, we start to use some of Python’s built-in func‐
tions: named pieces of code that perform certain operations.

The len() function counts characters in a string:

>>> len(letters)
26
>>> empty = ""
>>> len(empty)
0

You can use len() with other sequence types, too, as is described in Chapter 3.

Strings | 37

Split with split()
Unlike len(), some functions are specific to strings. To use a string function, type the
name of the string, a dot, the name of the function, and any arguments that the func‐
tion needs: string . function (arguments). You’ll see a longer discussion of func‐
tions in “Functions” on page 89.

You can use the built-in string split() function to break a string into a list of smaller
strings based on some separator. You’ll see lists in the next chapter. A list is a
sequence of values, separated by commas and surrounded by square brackets.

>>> todos = 'get gloves,get mask,give cat vitamins,call ambulance'
>>> todos.split(',')
['get gloves', 'get mask', 'give cat vitamins', 'call ambulance']

In the preceding example, the string was called todos and the string function was
called split(), with the single separator argument ','. If you don’t specify a separa‐
tor, split() uses any sequence of white space characters—newlines, spaces, and tabs.

>>> todos.split()
['get', 'gloves,get', 'mask,give', 'cat', 'vitamins,call', 'ambulance']

You still need the parentheses when calling split with no arguments—that’s how
Python knows you’re calling a function.

Combine with join()
In what may not be an earthshaking revelation, the join() function is the opposite of
split(): it collapses a list of strings into a single string. It looks a bit backward
because you specify the string that glues everything together first, and then the list of
strings to glue: string .join(list). So, to join the list lines with separating new‐
lines, you would say '\n'.join(lines). In the following example, let’s join some
names in a list with a comma and a space:

>>> crypto_list = ['Yeti', 'Bigfoot', 'Loch Ness Monster']
>>> crypto_string = ', '.join(crypto_list)
>>> print('Found and signing book deals:', crypto_string)
Found and signing book deals: Yeti, Bigfoot, Loch Ness Monster

Playing with Strings
Python has a large set of string functions. Let’s explore how the most common of
them work. Our test subject is the following string containing the text of the immor‐
tal poem “What Is Liquid?” by Margaret Cavendish, Duchess of Newcastle:

>>> poem = '''All that doth flow we cannot liquid name
Or else would fire and water be the same;
But that is liquid which is moist and wet
Fire that property can never get.

38 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

Then 'tis not cold that doth the fire put out
But 'tis the wet that makes it die, no doubt.'''

To begin, get the first 13 characters (offsets 0 to 12):

>>> poem[:13]
'All that doth'

How many characters are in this poem? (Spaces and newlines are included in the
count.)

>>> len(poem)
250

Does it start with the letters All?

>>> poem.startswith('All')
True

Does it end with That's all, folks!?

>>> poem.endswith('That\'s all, folks!')
False

Now, let’s find the offset of the first occurrence of the word the in the poem:

>>> word = 'the'
>>> poem.find(word)
73

And the offset of the last the:

>>> poem.rfind(word)
214

How many times does the three-letter sequence the occur?

>>> poem.count(word)
3

Are all of the characters in the poem either letters or numbers?

>>> poem.isalnum()
False

Nope, there were some punctuation characters.

Case and Alignment
In this section, we’ll look at some more uses of the built-in string functions. Our test
string is the following:

>>> setup = 'a duck goes into a bar...'

Remove . sequences from both ends:

Strings | 39

>>> setup.strip('.')
'a duck goes into a bar'

Because strings are immutable, none of these examples actually
changes the setup string. Each example just takes the value of
setup, does something to it, and returns the result as a new string.

Capitalize the first word:

>>> setup.capitalize()
'A duck goes into a bar...'

Capitalize all the words:

>>> setup.title()
'A Duck Goes Into A Bar...'

Convert all characters to uppercase:

>>> setup.upper()
'A DUCK GOES INTO A BAR...'

Convert all characters to lowercase:

>>> setup.lower()
'a duck goes into a bar...'

Swap upper- and lowercase:

>>> setup.swapcase()
'A DUCK GOES INTO A BAR...'

Now, we’ll work with some layout alignment functions. The string is aligned within
the specified total number of spaces (30 here).

Center the string within 30 spaces:

>>> setup.center(30)
' a duck goes into a bar... '

Left justify:

>>> setup.ljust(30)
'a duck goes into a bar... '

Right justify:

>>> setup.rjust(30)
' a duck goes into a bar...'

I have much more to say about string formatting and conversions in Chapter 7,
including how to use % and format().

40 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

Substitute with replace()
You use replace() for simple substring substitution. You give it the old substring, the
new one, and how many instances of the old substring to replace. If you omit this
final count argument, it replaces all instances. In this example, only one string is
matched and replaced:

>>> setup.replace('duck', 'marmoset')
'a marmoset goes into a bar...'

Change up to 100 of them:

>>> setup.replace('a ', 'a famous ', 100)
'a famous duck goes into a famous bar...'

When you know the exact substring(s) you want to change, replace() is a good
choice. But watch out. In the second example, if we had substituted for the single
character string 'a' rather than the two character string 'a ' (a followed by a space),
we would have also changed a in the middle of other words:

>>> setup.replace('a', 'a famous', 100)
'a famous duck goes into a famous ba famousr...'

Sometimes, you want to ensure that the substring is a whole word, or the beginning
of a word, and so on. In those cases, you need regular expressions, which are described
in detail in Chapter 7.

More String Things
Python has many more string functions than I’ve shown here. Some will turn up in
later chapters, but you can find all the details at the standard documentation link.

Things to Do
This chapter introduced the atoms of Python: numbers, strings, and variables. Let’s
try a few small exercises with them in the interactive interpreter.

2.1 How many seconds are in an hour? Use the interactive interpreter as a calculator
and multiply the number of seconds in a minute (60) by the number of minutes in an
hour (also 60).

2.2 Assign the result from the previous task (seconds in an hour) to a variable called
seconds_per_hour.

2.3 How many seconds are in a day? Use your seconds_per_hour variable.

2.4 Calculate seconds per day again, but this time save the result in a variable called
seconds_per_day.

Things to Do | 41

http://bit.ly/py-docs-strings

2.5 Divide seconds_per_day by seconds_per_hour. Use floating-point (/) division.

2.6 Divide seconds_per_day by seconds_per_hour, using integer (//) division. Did
this number agree with the floating-point value from the previous question, aside
from the final .0?

42 | Chapter 2: Py Ingredients: Numbers, Strings, and Variables

CHAPTER 3

Py Filling: Lists, Tuples,
Dictionaries, and Sets

In Chapter 2 we started at the bottom with Python’s basic data types: booleans, inte‐
gers, floats, and strings. If you think of those as atoms, the data structures in this
chapter are like molecules. That is, we combine those basic types in more complex
ways. You will use these every day. Much of programming consists of chopping and
glueing data into specific forms, and these are your hacksaws and glue guns.

Lists and Tuples
Most computer languages can represent a sequence of items indexed by their integer
position: first, second, and so on down to the last. You’ve already seen Python strings,
which are sequences of characters. You’ve also had a little preview of lists, which
you’ll now see are sequences of anything.

Python has two other sequence structures: tuples and lists. These contain zero or
more elements. Unlike strings, the elements can be of different types. In fact, each ele‐
ment can be any Python object. This lets you create structures as deep and complex as
you like.

Why does Python contain both lists and tuples? Tuples are immutable; when you
assign elements to a tuple, they’re baked in the cake and can’t be changed. Lists are
mutable, meaning you can insert and delete elements with great enthusiasm. I’ll show
many examples of each, with an emphasis on lists.

43

By the way, you might hear two different pronunciations for tuple.
Which is right? If you guess wrong, do you risk being considered a
Python poseur? No worries. Guido van Rossum, the creator of
Python, tweeted “I pronounce tuple too-pull on Mon/Wed/Fri and
tub-pull on Tue/Thu/Sat. On Sunday I don’t talk about them. :)”

Lists
Lists are good for keeping track of things by their order, especially when the order
and contents might change. Unlike strings, lists are mutable. You can change a list in-
place, add new elements, and delete or overwrite existing elements. The same value
can occur more than once in a list.

Create with [] or list()
A list is made from zero or more elements, separated by commas, and surrounded by
square brackets:

>>> empty_list = []
>>> weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
>>> big_birds = ['emu', 'ostrich', 'cassowary']
>>> first_names = ['Graham', 'John', 'Terry', 'Terry', 'Michael']

You can also make an empty list with the list() function:

>>> another_empty_list = list()
>>> another_empty_list
[]

“Comprehensions” on page 84 shows one more way to create a list,
called a list comprehension.

The weekdays list is the only one that actually takes advantage of list order. The
first_names list shows that values do not need to be unique.

If you only want to keep track of unique values and don’t care
about order, a Python set might be a better choice than a list. In the
previous example, big_birds could have been a set. You’ll read
about sets a little later in this chapter.

44 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

http://bit.ly/tupletweet

Convert Other Data Types to Lists with list()
Python’s list() function converts other data types to lists. The following example
converts a string to a list of one-character strings:

>>> list('cat')
['c', 'a', 't']

This example converts a tuple (coming up after lists in this chapter) to a list:

>>> a_tuple = ('ready', 'fire', 'aim')
>>> list(a_tuple)
['ready', 'fire', 'aim']

As I mentioned earlier in “Split with split()” on page 38, use split() to chop a string
into a list by some separator string:

>>> birthday = '1/6/1952'
>>> birthday.split('/')
['1', '6', '1952']

What if you have more than one separator string in a row in your original string?
Well, you get an empty string as a list item:

>>> splitme = 'a/b//c/d///e'
>>> splitme.split('/')
['a', 'b', '', 'c', 'd', '', '', 'e']

If you had used the two-character separator string // instead, you would get this:

>>> splitme = 'a/b//c/d///e'
>>> splitme.split('//')
>>>
['a/b', 'c/d', '/e']

Get an Item by Using [offset]
As with strings, you can extract a single value from a list by specifying its offset:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[0]
'Groucho'
>>> marxes[1]
'Chico'
>>> marxes[2]
'Harpo'

Lists | 45

Again, as with strings, negative indexes count backward from the end:

>>> marxes[-1]
'Harpo'
>>> marxes[-2]
'Chico'
>>> marxes[-3]
'Groucho'
>>>

The offset has to be a valid one for this list—a position you have
assigned a value previously. If you specify an offset before the
beginning or after the end, you’ll get an exception (error). Here’s
what happens if we try to get the sixth Marx brother (offset 5
counting from 0), or the fifth before the end:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[5]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

>>> marxes[-5]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Lists of Lists
Lists can contain elements of different types, including other lists, as illustrated here:

>>> small_birds = ['hummingbird', 'finch']
>>> extinct_birds = ['dodo', 'passenger pigeon', 'Norwegian Blue']
>>> carol_birds = [3, 'French hens', 2, 'turtledoves']
>>> all_birds = [small_birds, extinct_birds, 'macaw', carol_birds]

So what does all_birds, a list of lists, look like?

>>> all_birds
[['hummingbird', 'finch'], ['dodo', 'passenger pigeon', 'Norwegian Blue'], 'macaw',
[3, 'French hens', 2, 'turtledoves']]

Let’s look at the first item in it:

>>> all_birds[0]
['hummingbird', 'finch']

The first item is a list: in fact, it’s small_birds, the first item we specified when creat‐
ing all_birds. You should be able to guess what the second item is:

>>> all_birds[1]
['dodo', 'passenger pigeon', 'Norwegian Blue']

46 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

It’s the second item we specified, extinct_birds. If we want the first item of
extinct_birds, we can extract it from all_birds by specifying two indexes:

>>> all_birds[1][0]
'dodo'

The [1] refers to the list that’s the second item in all_birds, whereas the [0] refers
to the first item in that inner list.

Change an Item by [offset]
Just as you can get the value of a list item by its offset, you can change it:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[2] = 'Wanda'
>>> marxes
['Groucho', 'Chico', 'Wanda']

Again, the list offset needs to be a valid one for this list.

You can’t change a character in a string in this way, because strings are immutable.
Lists are mutable. You can change how many items a list contains, and the items
themselves.

Get a Slice to Extract Items by Offset Range
You can extract a subsequence of a list by using a slice:

>>> marxes = ['Groucho', 'Chico,' 'Harpo']
>>> marxes[0:2]
['Groucho', 'Chico']

A slice of a list is also a list.

As with strings, slices can step by values other than one. The next example starts at
the beginning and goes right by 2:

>>> marxes[::2]
['Groucho', 'Harpo']

Here, we start at the end and go left by 2:

>>> marxes[::-2]
['Harpo', 'Groucho']

And finally, the trick to reverse a list:

>>> marxes[::-1]
['Harpo', 'Chico', 'Groucho']

Lists | 47

Add an Item to the End with append()
The traditional way of adding items to a list is to append() them one by one to the
end. In the previous examples, we forgot Zeppo, but that’s all right because the list is
mutable, so we can add him now:

>>> marxes.append('Zeppo')
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo']

Combine Lists by Using extend() or +=
You can merge one list into another by using extend(). Suppose that a well-meaning
person gave us a new list of Marxes called others, and we’d like to merge them into
the main marxes list:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> others = ['Gummo', 'Karl']
>>> marxes.extend(others)
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', 'Gummo', 'Karl']

Alternatively, you can use +=:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> others = ['Gummo', 'Karl']
>>> marxes += others
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', 'Gummo', 'Karl']

If we had used append(), others would have been added as a single list item rather
than merging its items:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> others = ['Gummo', 'Karl']
>>> marxes.append(others)
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', ['Gummo', 'Karl']]

This again demonstrates that a list can contain elements of different types. In this
case, four strings, and a list of two strings.

Add an Item by Offset with insert()
The append() function adds items only to the end of the list. When you want to add
an item before any offset in the list, use insert(). Offset 0 inserts at the beginning.
An offset beyond the end of the list inserts at the end, like append(), so you don’t
need to worry about Python throwing an exception.

>>> marxes.insert(3, 'Gummo')
>>> marxes

48 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo']
>>> marxes.insert(10, 'Karl')
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo', 'Karl']

Delete an Item by Offset with del
Our fact checkers have just informed us that Gummo was indeed one of the Marx
Brothers, but Karl wasn’t. Let’s undo that last insertion:

>>> del marxes[-1]
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo']

When you delete an item by its position in the list, the items that follow it move back
to take the deleted item’s space, and the list’s length decreases by one. If we delete
'Harpo' from the last version of the marxes list, we get this as a result:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo']
>>> marxes[2]
'Harpo'
>>> del marxes[2]
>>> marxes
['Groucho', 'Chico', 'Gummo', 'Zeppo']
>>> marxes[2]
'Gummo'

del is a Python statement, not a list method—you don’t say
marxes[-2].del(). It’s sort of the reverse of assignment (=): it
detaches a name from a Python object and can free up the object’s
memory if that name was the last reference to it.

Delete an Item by Value with remove()
If you’re not sure or don’t care where the item is in the list, use remove() to delete it
by value. Goodbye, Gummo:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Gummo', 'Zeppo']
>>> marxes.remove('Gummo')
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo']

Get an Item by Offset and Delete It by Using pop()
You can get an item from a list and delete it from the list at the same time by using
pop(). If you call pop() with an offset, it will return the item at that offset; with no
argument, it uses -1. So, pop(0) returns the head (start) of the list, and pop() or
pop(-1) returns the tail (end), as shown here:

Lists | 49

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> marxes.pop()
'Zeppo'
>>> marxes
['Groucho', 'Chico', 'Harpo']
>>> marxes.pop(1)
'Chico'
>>> marxes
['Groucho', 'Harpo']

It’s computing jargon time! Don’t worry, these won’t be on the final
exam. If you use append() to add new items to the end and pop()
to remove them from the same end, you’ve implemented a data
structure known as a LIFO (last in, first out) queue. This is more
commonly known as a stack. pop(0) would create a FIFO (first in,
first out) queue. These are useful when you want to collect data as
they arrive and work with either the oldest first (FIFO) or the new‐
est first (LIFO).

Find an Item’s Offset by Value with index()
If you want to know the offset of an item in a list by its value, use index():

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> marxes.index('Chico')
1

Test for a Value with in
The Pythonic way to check for the existence of a value in a list is using in:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> 'Groucho' in marxes
True
>>> 'Bob' in marxes
False

The same value may be in more than one position in the list. As long as it’s in there at
least once, in will return True:

>>> words = ['a', 'deer', 'a' 'female', 'deer']
>>> 'deer' in words
True

If you check for the existence of some value in a list often and don’t
care about the order of items, a Python set is a more appropriate
way to store and look up unique values. We’ll talk about sets a little
later in this chapter.

50 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

Count Occurrences of a Value by Using count()
To count how many times a particular value occurs in a list, use count():

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes.count('Harpo')
1
>>> marxes.count('Bob')
0

>>> snl_skit = ['cheeseburger', 'cheeseburger', 'cheeseburger']
>>> snl_skit.count('cheeseburger')
3

Convert to a String with join()
“Combine with join()” on page 38 discusses join() in greater detail, but here’s
another example of what you can do with it:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> ', '.join(marxes)
'Groucho, Chico, Harpo'

But wait: you might be thinking that this seems a little backward. join() is a string
method, not a list method. You can’t say marxes.join(', '), even though it seems
more intuitive. The argument to join() is a string or any iterable sequence of strings
(including a list), and its output is a string. If join() were just a list method, you
couldn’t use it with other iterable objects such as tuples or strings. If you did want it
to work with any iterable type, you’d need special code for each type to handle the
actual joining. It might help to remember: join()` is the opposite of `split(),
as demonstrated here:

>>> friends = ['Harry', 'Hermione', 'Ron']
>>> separator = ' * '
>>> joined = separator.join(friends)
>>> joined
'Harry * Hermione * Ron'
>>> separated = joined.split(separator)
>>> separated
['Harry', 'Hermione', 'Ron']
>>> separated == friends
True

Reorder Items with sort()
You’ll often need to sort the items in a list by their values rather than their offsets.
Python provides two functions:

• The list function sort() sorts the list itself, in place.

Lists | 51

• The general function sorted() returns a sorted copy of the list.

If the items in the list are numeric, they’re sorted by default in ascending numeric
order. If they’re strings, they’re sorted in alphabetical order:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> sorted_marxes = sorted(marxes)
>>> sorted_marxes
['Chico', 'Groucho', 'Harpo']

sorted_marxes is a copy, and creating it did not change the original list:

>>> marxes
['Groucho', 'Chico', 'Harpo']

But, calling the list function sort() on the marxes list does change marxes:

>>> marxes.sort()
>>> marxes
['Chico', 'Groucho', 'Harpo']

If the elements of your list are all of the same type (such as strings in marxes), sort()
will work correctly. You can sometimes even mix types—for example, integers and
floats—because they are automatically converted to one another by Python in expres‐
sions:

>>> numbers = [2, 1, 4.0, 3]
>>> numbers.sort()
>>> numbers
[1, 2, 3, 4.0]

The default sort order is ascending, but you can add the argument reverse=True to
set it to descending:

>>> numbers = [2, 1, 4.0, 3]
>>> numbers.sort(reverse=True)
>>> numbers
[4.0, 3, 2, 1]

Get Length by Using len()
len() returns the number of items in a list:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> len(marxes)
3

Assign with =, Copy with copy()
When you assign one list to more than one variable, changing the list in one place
also changes it in the other, as illustrated here:

52 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

>>> a = [1, 2, 3]
>>> a
[1, 2, 3]
>>> b = a
>>> b
[1, 2, 3]
>>> a[0] = 'surprise'
>>> a
['surprise', 2, 3]

So what’s in b now? Is it still [1, 2, 3], or ['surprise', 2, 3]? Let’s see:

>>> b
['surprise', 2, 3]

Remember the sticky note analogy in Chapter 2? b just refers to the same list object as
a; therefore, whether we change the list contents by using the name a or b, it’s reflec‐
ted in both:

>>> b
['surprise', 2, 3]
>>> b[0] = 'I hate surprises'
>>> b
['I hate surprises', 2, 3]
>>> a
['I hate surprises', 2, 3]

You can copy the values of a list to an independent, fresh list by using any of these
methods:

• The list copy() function
• The list() conversion function
• The list slice [:]

Our original list will be a again. We’ll make b with the list copy() function, c with the
list() conversion function, and d with a list slice:

>>> a = [1, 2, 3]
>>> b = a.copy()
>>> c = list(a)
>>> d = a[:]

Again, b, c, and d are copies of a: they are new objects with their own values and no
connection to the original list object [1, 2, 3] to which a refers. Changing a does
not affect the copies b, c, and d:

>>> a[0] = 'integer lists are boring'
>>> a
['integer lists are boring', 2, 3]
>>> b
[1, 2, 3]

Lists | 53

>>> c
[1, 2, 3]
>>> d
[1, 2, 3]

Tuples
Similar to lists, tuples are sequences of arbitrary items. Unlike lists, tuples are immut‐
able, meaning you can’t add, delete, or change items after the tuple is defined. So, a
tuple is similar to a constant list.

Create a Tuple by Using ()
The syntax to make tuples is a little inconsistent, as we’ll demonstrate in the examples
that follow.

Let’s begin by making an empty tuple using ():

>>> empty_tuple = ()
>>> empty_tuple
()

To make a tuple with one or more elements, follow each element with a comma. This
works for one-element tuples:

>>> one_marx = 'Groucho',
>>> one_marx
('Groucho',)

If you have more than one element, follow all but the last one with a comma:

>>> marx_tuple = 'Groucho', 'Chico', 'Harpo'
>>> marx_tuple
('Groucho', 'Chico', 'Harpo')

Python includes parentheses when echoing a tuple. You don’t need them—it’s the
trailing commas that really define a tuple—but using parentheses doesn’t hurt. You
can use them to enclose the values, which helps to make the tuple more visible:

>>> marx_tuple = ('Groucho', 'Chico', 'Harpo')
>>> marx_tuple
('Groucho', 'Chico', 'Harpo')

Tuples let you assign multiple variables at once:

>>> marx_tuple = ('Groucho', 'Chico', 'Harpo')
>>> a, b, c = marx_tuple
>>> a
'Groucho'
>>> b
'Chico'

54 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

>>> c
'Harpo'

This is sometimes called tuple unpacking.

You can use tuples to exchange values in one statement without using a temporary
variable:

>>> password = 'swordfish'
>>> icecream = 'tuttifrutti'
>>> password, icecream = icecream, password
>>> password
'tuttifrutti'
>>> icecream
'swordfish'
>>>

The tuple() conversion function makes tuples from other things:

>>> marx_list = ['Groucho', 'Chico', 'Harpo']
>>> tuple(marx_list)
('Groucho', 'Chico', 'Harpo')

Tuples versus Lists
You can often use tuples in place of lists, but they have many fewer functions—there
is no append(), insert(), and so on—because they can’t be modified after creation.
Why not just use lists instead of tuples everywhere?

• Tuples use less space.
• You can’t clobber tuple items by mistake.
• You can use tuples as dictionary keys (see the next section).
• Named tuples (see “Named Tuples” on page 144) can be a simple alternative to

objects.
• Function arguments are passed as tuples (see “Functions” on page 89).

I won’t go into much more detail about tuples here. In everyday programming, you’ll
use lists and dictionaries more. Which is a perfect segue to…

Dictionaries
A dictionary is similar to a list, but the order of items doesn’t matter, and they aren’t
selected by an offset such as 0 or 1. Instead, you specify a unique key to associate with
each value. This key is often a string, but it can actually be any of Python’s immutable
types: boolean, integer, float, tuple, string, and others that you’ll see in later chapters.
Dictionaries are mutable, so you can add, delete, and change their key-value ele‐
ments.

Dictionaries | 55

If you’ve worked with languages that support only arrays or lists, you’ll love diction‐
aries.

In other languages, dictionaries might be called associative arrays,
hashes, or hashmaps. In Python, a dictionary is also called a dict to
save syllables.

Create with {}
To create a dictionary, you place curly brackets ({}) around comma-separated key :
value pairs. The simplest dictionary is an empty one, containing no keys or values at
all:

>>> empty_dict = {}
>>> empty_dict
{}

Let’s make a small dictionary with quotes from Ambrose Bierce’s The Devil’s Dictio‐
nary:

>>> bierce = {
... "day": "A period of twenty-four hours, mostly misspent",
... "positive": "Mistaken at the top of one's voice",
... "misfortune": "The kind of fortune that never misses",
... }
>>>

Typing the dictionary’s name in the interactive interpreter will print its keys and val‐
ues:

>>> bierce
{'misfortune': 'The kind of fortune that never misses',
'positive': "Mistaken at the top of one's voice",
'day': 'A period of twenty-four hours, mostly misspent'}

In Python, it’s okay to leave a comma after the last item of a list,
tuple, or dictionary. Also, you don’t need to indent, as I did in the
preceding example, when you’re typing keys and values within the
curly braces. It just helps readability.

Convert by Using dict()
You can use the dict() function to convert two-value sequences into a dictionary.
(You might run into such key-value sequences at times, such as “Strontium, 90, Car‐
bon, 14”, or “Vikings, 20, Packers, 7”.) The first item in each sequence is used as the
key and the second as the value.

56 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

First, here’s a small example using lol (a list of two-item lists):

>>> lol = [['a', 'b'], ['c', 'd'], ['e', 'f']]
>>> dict(lol)
{'c': 'd', 'a': 'b', 'e': 'f'}

Remember that the order of keys in a dictionary is arbitrary, and
might differ depending on how you add items.

We could have used any sequence containing two-item sequences. Here are other
examples.

A list of two-item tuples:

>>> lot = [('a', 'b'), ('c', 'd'), ('e', 'f')]
>>> dict(lot)
{'c': 'd', 'a': 'b', 'e': 'f'}

A tuple of two-item lists:

>>> tol = (['a', 'b'], ['c', 'd'], ['e', 'f'])
>>> dict(tol)
{'c': 'd', 'a': 'b', 'e': 'f'}

A list of two-character strings:

>>> los = ['ab', 'cd', 'ef']
>>> dict(los)
{'c': 'd', 'a': 'b', 'e': 'f'}

A tuple of two-character strings:

>>> tos = ('ab', 'cd', 'ef')
>>> dict(tos)
{'c': 'd', 'a': 'b', 'e': 'f'}

The section “Iterate Multiple Sequences with zip()” on page 83 introduces you to a
function called zip() that makes it easy to create these two-item sequences.

Add or Change an Item by [key]
Adding an item to a dictionary is easy. Just refer to the item by its key and assign a
value. If the key was already present in the dictionary, the existing value is replaced by
the new one. If the key is new, it’s added to the dictionary with its value. Unlike lists,
you don’t need to worry about Python throwing an exception during assignment by
specifying an index that’s out of range.

Let’s make a dictionary of most of the members of Monty Python, using their last
names as keys, and first names as values:

Dictionaries | 57

>>> pythons = {
... 'Chapman': 'Graham',
... 'Cleese': 'John',
... 'Idle': 'Eric',
... 'Jones': 'Terry',
... 'Palin': 'Michael',
... }
>>> pythons
{'Cleese': 'John', 'Jones': 'Terry', 'Palin': 'Michael',
'Chapman': 'Graham', 'Idle': 'Eric'}

We’re missing one member: the one born in America, Terry Gilliam. Here’s an
attempt by an anonymous programmer to add him, but he’s botched the first name:

>>> pythons['Gilliam'] = 'Gerry'
>>> pythons
{'Cleese': 'John', 'Gilliam': 'Gerry', 'Palin': 'Michael',
'Chapman': 'Graham', 'Idle': 'Eric', 'Jones': 'Terry'}

And here’s some repair code by another programmer who is Pythonic in more than
one way:

>>> pythons['Gilliam'] = 'Terry'
>>> pythons
{'Cleese': 'John', 'Gilliam': 'Terry', 'Palin': 'Michael',
'Chapman': 'Graham', 'Idle': 'Eric', 'Jones': 'Terry'}

By using the same key ('Gilliam'), we replaced the original value 'Gerry' with
'Terry'.

Remember that dictionary keys must be unique. That’s why we used last names for
keys instead of first names here—two members of Monty Python have the first name
Terry! If you use a key more than once, the last value wins:

>>> some_pythons = {
... 'Graham': 'Chapman',
... 'John': 'Cleese',
... 'Eric': 'Idle',
... 'Terry': 'Gilliam',
... 'Michael': 'Palin',
... 'Terry': 'Jones',
... }
>>> some_pythons
{'Terry': 'Jones', 'Eric': 'Idle', 'Graham': 'Chapman',
'John': 'Cleese', 'Michael': 'Palin'}

We first assigned the value 'Gilliam' to the key 'Terry' and then replaced it with
the value 'Jones'.

58 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

Combine Dictionaries with update()
You can use the update() function to copy the keys and values of one dictionary into
another.

Let’s define the pythons dictionary, with all members:

>>> pythons = {
... 'Chapman': 'Graham',
... 'Cleese': 'John',
... 'Gilliam': 'Terry',
... 'Idle': 'Eric',
... 'Jones': 'Terry',
... 'Palin': 'Michael',
... }
>>> pythons
{'Cleese': 'John', 'Gilliam': 'Terry', 'Palin': 'Michael',
'Chapman': 'Graham', 'Idle': 'Eric', 'Jones': 'Terry'}

We also have a dictionary of other humorous persons called others:

>>> others = { 'Marx': 'Groucho', 'Howard': 'Moe' }

Now, along comes another anonymous programmer who thinks the members of
others should be members of Monty Python:

>>> pythons.update(others)
>>> pythons
{'Cleese': 'John', 'Howard': 'Moe', 'Gilliam': 'Terry',
'Palin': 'Michael', 'Marx': 'Groucho', 'Chapman': 'Graham',
'Idle': 'Eric', 'Jones': 'Terry'}

What happens if the second dictionary has the same key as the dictionary into which
it’s being merged? The value from the second dictionary wins:

>>> first = {'a': 1, 'b': 2}
>>> second = {'b': 'platypus'}
>>> first.update(second)
>>> first
{'b': 'platypus', 'a': 1}

Delete an Item by Key with del
Our anonymous programmer’s code was correct—technically. But, he shouldn’t have
done it! The members of others, although funny and famous, were not in Monty
Python. Let’s undo those last two additions:

>>> del pythons['Marx']
>>> pythons
{'Cleese': 'John', 'Howard': 'Moe', 'Gilliam': 'Terry',
'Palin': 'Michael', 'Chapman': 'Graham', 'Idle': 'Eric',
'Jones': 'Terry'}
>>> del pythons['Howard']

Dictionaries | 59

>>> pythons
{'Cleese': 'John', 'Gilliam': 'Terry', 'Palin': 'Michael',
'Chapman': 'Graham', 'Idle': 'Eric', 'Jones': 'Terry'}

Delete All Items by Using clear()
To delete all keys and values from a dictionary, use clear() or just reassign an empty
dictionary ({}) to the name:

>>> pythons.clear()
>>> pythons
{}
>>> pythons = {}
>>> pythons
{}

Test for a Key by Using in
If you want to know whether a key exists in a dictionary, use in. Let’s redefine the
pythons dictionary again, this time omitting a name or two:

>>> pythons = {'Chapman': 'Graham', 'Cleese': 'John',
'Jones': 'Terry', 'Palin': 'Michael'}

Now let’s see who’s in there:

>>> 'Chapman' in pythons
True
>>> 'Palin' in pythons
True

Did we remember to add Terry Gilliam this time?

>>> 'Gilliam' in pythons
False

Drat.

Get an Item by [key]
This is the most common use of a dictionary. You specify the dictionary and key to
get the corresponding value:

>>> pythons['Cleese']
'John'

If the key is not present in the dictionary, you’ll get an exception:

>>> pythons['Marx']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'Marx'

60 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

There are two good ways to avoid this. The first is to test for the key at the outset by
using in, as you saw in the previous section:

>>> 'Marx' in pythons
False

The second is to use the special dictionary get() function. You provide the dictio‐
nary, key, and an optional value. If the key exists, you get its value:

>>> pythons.get('Cleese')
'John'

If not, you get the optional value, if you specified one:

>>> pythons.get('Marx', 'Not a Python')
'Not a Python'

Otherwise, you get None (which displays nothing in the interactive interpreter):

>>> pythons.get('Marx')
>>>

Get All Keys by Using keys()
You can use keys() to get all the keys in a dictionary. We’ll use a different sample
dictionary for the next few examples:

>>> signals = {'green': 'go', 'yellow': 'go faster', 'red': 'smile for the camera'}
>>> signals.keys()
dict_keys(['green', 'red', 'yellow'])

In Python 2, keys() just returns a list. Python 3 returns
dict_keys(), which is an iterable view of the keys. This is handy
with large dictionaries because it doesn’t use the time and memory
to create and store a list that you might not use. But often you
actually do want a list. In Python 3, you need to call list() to con‐
vert a dict_keys object to a list.

>>> list(signals.keys())
['green', 'red', 'yellow']

In Python 3, you also need to use the list() function to turn the
results of values() and items() into normal Python lists. I’m
using that in these examples.

Get All Values by Using values()
To obtain all the values in a dictionary, use values():

>>> list(signals.values())
['go', 'smile for the camera', 'go faster']

Dictionaries | 61

Get All Key-Value Pairs by Using items()
When you want to get all the key-value pairs from a dictionary, use the items() func‐
tion:

>>> list(signals.items())
[('green', 'go'), ('red', 'smile for the camera'), ('yellow', 'go faster')]

Each key and value is returned as a tuple, such as ('green', 'go').

Assign with =, Copy with copy()
As with lists, if you make a change to a dictionary, it will be reflected in all the names
that refer to it.

>>> signals = {'green': 'go', 'yellow': 'go faster', 'red': 'smile for the camera'}
>>> save_signals = signals
>>> signals['blue'] = 'confuse everyone'
>>> save_signals
{'blue': 'confuse everyone', 'green': 'go',
'red': 'smile for the camera', 'yellow': 'go faster'}

To actually copy keys and values from a dictionary to another dictionary and avoid
this, you can use copy():

>>> signals = {'green': 'go', 'yellow': 'go faster', 'red': 'smile for the camera'}
>>> original_signals = signals.copy()
>>> signals['blue'] = 'confuse everyone'
>>> signals
{'blue': 'confuse everyone', 'green': 'go',
'red': 'smile for the camera', 'yellow': 'go faster'}
>>> original_signals
{'green': 'go', 'red': 'smile for the camera', 'yellow': 'go faster'}

Sets
A set is like a dictionary with its values thrown away, leaving only the keys. As with a
dictionary, each key must be unique. You use a set when you only want to know that
something exists, and nothing else about it. Use a dictionary if you want to attach
some information to the key as a value.

At some bygone time, in some places, set theory was taught in elementary school
along with basic mathematics. If your school skipped it (or covered it and you were
staring out the window as I often did), Figure 3-1 shows the ideas of union and inter‐
section.

Suppose that you take the union of two sets that have some keys in common. Because
a set must contain only one of each item, the union of two sets will contain only one
of each key. The null or empty set is a set with zero elements. In Figure 3-1, an exam‐
ple of a null set would be female names beginning with X.

62 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

Figure 3-1. Common things to do with sets

Create with set()
To create a set, you use the set() function or enclose one or more comma-separated
values in curly brackets, as shown here:

>>> empty_set = set()
>>> empty_set
set()
>>> even_numbers = {0, 2, 4, 6, 8}
>>> even_numbers
{0, 8, 2, 4, 6}
>>> odd_numbers = {1, 3, 5, 7, 9}
>>> odd_numbers
{9, 3, 1, 5, 7}

As with dictionary keys, sets are unordered.

Because [] creates an empty list, you might expect {} to create an
empty set. Instead, {} creates an empty dictionary. That’s also why
the interpreter prints an empty set as set() instead of {}. Why?
Dictionaries were in Python first and took possession of the curly
brackets.

Convert from Other Data Types with set()
You can create a set from a list, string, tuple, or dictionary, discarding any duplicate
values.

First, let’s take a look at a string with more than one occurrence of some letters:

>>> set('letters')
{'l', 'e', 't', 'r', 's'}

Sets | 63

Notice that the set contains only one 'e' or 't', even though 'letters' contained
two of each.

Now, let’s make a set from a list:

>>> set(['Dasher', 'Dancer', 'Prancer', 'Mason-Dixon'])
{'Dancer', 'Dasher', 'Prancer', 'Mason-Dixon'}

This time, a set from a tuple:

>>> set(('Ummagumma', 'Echoes', 'Atom Heart Mother'))
{'Ummagumma', 'Atom Heart Mother', 'Echoes'}

When you give set() a dictionary, it uses only the keys:

>>> set({'apple': 'red', 'orange': 'orange', 'cherry': 'red'})
{'apple', 'cherry', 'orange'}

Test for Value by Using in
This is the most common use of a set. We’ll make a dictionary called drinks. Each
key is the name of a mixed drink, and the corresponding value is a set of its ingredi‐
ents:

>>> drinks = {
... 'martini': {'vodka', 'vermouth'},
... 'black russian': {'vodka', 'kahlua'},
... 'white russian': {'cream', 'kahlua', 'vodka'},
... 'manhattan': {'rye', 'vermouth', 'bitters'},
... 'screwdriver': {'orange juice', 'vodka'}
... }

Even though both are enclosed by curly braces ({ and }), a set is just a sequence of
values, and a dictionary is one or more key : value pairs.

Which drinks contain vodka? (Note that I’m previewing the use of for, if, and, and
or from the next chapter for these tests.)

>>> for name, contents in drinks.items():
... if 'vodka' in contents:
... print(name)
...
screwdriver
martini
black russian
white russian

We want something with vodka but are lactose intolerant, and think vermouth tastes
like kerosene:

>>> for name, contents in drinks.items():
... if 'vodka' in contents and not ('vermouth' in contents or
... 'cream' in contents):

64 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

... print(name)

...
screwdriver
black russian

We’ll rewrite this a bit more succinctly in the next section.

Combinations and Operators
What if you want to check for combinations of set values? Suppose that you want to
find any drink that has orange juice or vermouth? We’ll use the set intersection opera‐
tor, which is an ampersand (&):

>>> for name, contents in drinks.items():
... if contents & {'vermouth', 'orange juice'}:
... print(name)
...
screwdriver
martini
manhattan

The result of the & operator is a set, which contains all the items that appear in both
lists that you compare. If neither of those ingredients were in contents, the & returns
an empty set, which is considered False.

Now, let’s rewrite the example from the previous section, in which we wanted vodka
but neither cream nor vermouth:

>>> for name, contents in drinks.items():
... if 'vodka' in contents and not contents & {'vermouth', 'cream'}:
... print(name)
...
screwdriver
black russian

Let’s save the ingredient sets for these two drinks in variables, just to save typing in
the coming examples:

>>> bruss = drinks['black russian']
>>> wruss = drinks['white russian']

The following are examples of all the set operators. Some have special punctuation,
some have special functions, and some have both. We’ll use test sets a (contains 1 and
2) and b (contains 2 and 3):

>>> a = {1, 2}
>>> b = {2, 3}

You get the intersection (members common to both sets) with the special punctuation
symbol & or the set intersection() function, as demonstrated here:

Sets | 65

>>> a & b
{2}
>>> a.intersection(b)
{2}

This snippet uses our saved drink variables:

>>> bruss & wruss
{'kahlua', 'vodka'}

In this example, you get the union (members of either set) by using | or the set
union() function:

>>> a | b
{1, 2, 3}
>>> a.union(b)
{1, 2, 3}

And here’s the alcoholic version:

>>> bruss | wruss
{'cream', 'kahlua', 'vodka'}

The difference (members of the first set but not the second) is obtained by using the
character - or difference():

>>> a - b
{1}
>>> a.difference(b)
{1}

>>> bruss - wruss
set()
>>> wruss - bruss
{'cream'}

By far, the most common set operations are union, intersection, and difference. I’ve
included the others for completeness in the examples that follow, but you might never
use them.

The exclusive or (items in one set or the other, but not both) uses ^ or
symmetric_difference():

>>> a ^ b
{1, 3}
>>> a.symmetric_difference(b)
{1, 3}

This finds the exclusive ingredient in our two russian drinks:

>>> bruss ^ wruss
{'cream'}

You can check whether one set is a subset of another (all members of the first set are
also in the second set) by using <= or issubset():

66 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

>>> a <= b
False
>>> a.issubset(b)
False

Adding cream to a black russian makes a white russian, so wruss is a superset of
bruss:

>>> bruss <= wruss
True

Is any set a subset of itself? Yup.

>>> a <= a
True
>>> a.issubset(a)
True

To be a proper subset, the second set needs to have all the members of the first and
more. Calculate it by using <, as in this example:

>>> a < b
False
>>> a < a
False

>>> bruss < wruss
True

A superset is the opposite of a subset (all members of the second set are also members
of the first). This uses >= or issuperset():

>>> a >= b
False
>>> a.issuperset(b)
False

>>> wruss >= bruss
True

Any set is a superset of itself:

>>> a >= a
True
>>> a.issuperset(a)
True

And finally, you can find a proper superset (the first set has all members of the second,
and more) by using >, as shown here:

>>> a > b
False

>>> wruss > bruss
True

Sets | 67

You can’t be a proper superset of yourself:

>>> a > a
False

Compare Data Structures
To review: you make a list by using square brackets ([]), a tuple by using commas,
and a dictionary by using curly brackets ({}). In each case, you access a single ele‐
ment with square brackets:

>>> marx_list = ['Groucho', 'Chico', 'Harpo']
>>> marx_tuple = 'Groucho', 'Chico', 'Harpo'
>>> marx_dict = {'Groucho': 'banjo', 'Chico': 'piano', 'Harpo': 'harp'}
>>> marx_list[2]
'Harpo'
>>> marx_tuple[2]
'Harpo'
>>> marx_dict['Harpo']
'harp'

For the list and tuple, the value between the square brackets is an integer offset. For
the dictionary, it’s a key. For all three, the result is a value.

Make Bigger Data Structures
We worked up from simple booleans, numbers, and strings to lists, tuples, sets, and
dictionaries. You can combine these built-in data structures into bigger, more com‐
plex structures of your own. Let’s start with three different lists:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> pythons = ['Chapman', 'Cleese', 'Gilliam', 'Jones', 'Palin']
>>> stooges = ['Moe', 'Curly', 'Larry']

We can make a tuple that contains each list as an element:

>>> tuple_of_lists = marxes, pythons, stooges
>>> tuple_of_lists
(['Groucho', 'Chico', 'Harpo'],
['Chapman', 'Cleese', 'Gilliam', 'Jones', 'Palin'],
['Moe', 'Curly', 'Larry'])

And, we can make a list that contains the three lists:

>>> list_of_lists = [marxes, pythons, stooges]
>>> list_of_lists
[['Groucho', 'Chico', 'Harpo'],
['Chapman', 'Cleese', 'Gilliam', 'Jones', 'Palin'],
['Moe', 'Curly', 'Larry']]

Finally, let’s create a dictionary of lists. In this example, let’s use the name of the com‐
edy group as the key and the list of members as the value:

68 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

>>> dict_of_lists = {'Marxes': marxes, 'Pythons': pythons, 'Stooges': stooges}
>> dict_of_lists
{'Stooges': ['Moe', 'Curly', 'Larry'],
'Marxes': ['Groucho', 'Chico', 'Harpo'],
'Pythons': ['Chapman', 'Cleese', 'Gilliam', 'Jones', 'Palin']}

Your only limitations are those in the data types themselves. For example, dictionary
keys need to be immutable, so a list, dictionary, or set can’t be a key for another dic‐
tionary. But a tuple can be. For example, you could index sites of interest by GPS
coordinates (latitude, longitude, and altitude; see “Maps” on page 366 for more map‐
ping examples):

>>> houses = {
 (44.79, -93.14, 285): 'My House',
 (38.89, -77.03, 13): 'The White House'
 }

Things to Do
In this chapter, you saw more complex data structures: lists, tuples, dictionaries, and
sets. Using these and those from Chapter 2 (numbers and strings), you can represent
elements in the real world with great variety.

3.1. Create a list called years_list, starting with the year of your birth, and each year
thereafter until the year of your fifth birthday. For example, if you were born in 1980.
the list would be years_list = [1980, 1981, 1982, 1983, 1984, 1985].

If you’re less than five years old and reading this book, I don’t know what to tell you.

3.2. In which year in years_list was your third birthday? Remember, you were 0
years of age for your first year.

3.3. In which year in years_list were you the oldest?

3.4. Make a list called things with these three strings as elements: "mozzarella",
"cinderella", "salmonella".

3.5. Capitalize the element in things that refers to a person and then print the list.
Did it change the element in the list?

3.6. Make the cheesy element of things all uppercase and then print the list.

3.7. Delete the disease element from things, collect your Nobel Prize, and print the
list.

3.8. Create a list called surprise with the elements "Groucho", "Chico", and "Harpo".

3.9. Lowercase the last element of the surprise list, reverse it, and then capitalize it.

Things to Do | 69

3.10. Make an English-to-French dictionary called e2f and print it. Here are your
starter words: dog is chien, cat is chat, and walrus is morse.

3.11. Using your three-word dictionary e2f, print the French word for walrus.

3.12. Make a French-to-English dictionary called f2e from e2f. Use the items
method.

3.13. Using f2e, print the English equivalent of the French word chien.

3.14. Make and print a set of English words from the keys in e2f.

3.15. Make a multilevel dictionary called life. Use these strings for the topmost keys:
'animals', 'plants', and 'other'. Make the 'animals' key refer to another dictio‐
nary with the keys 'cats', 'octopi', and 'emus'. Make the 'cats' key refer to a list
of strings with the values 'Henri', 'Grumpy', and 'Lucy'. Make all the other keys
refer to empty dictionaries.

3.16. Print the top-level keys of life.

3.17. Print the keys for life['animals'].

3.18. Print the values for life['animals']['cats'].

70 | Chapter 3: Py Filling: Lists, Tuples, Dictionaries, and Sets

CHAPTER 4

Py Crust: Code Structures

In Chapters 1 through 3, you’ve seen many examples of data but have not done much
with them. Most of the code examples used the interactive interpreter and were short.
Now you’ll see how to structure Python code, not just data.

Many computer languages use characters such as curly braces ({ and }) or keywords
such as begin and end to mark off sections of code. In those languages, it’s good prac‐
tice to use consistent indentation to make your program more readable for yourself
and others. There are even tools to make your code line up nicely.

When he was designing the language that became Python, Guido van Rossum deci‐
ded that the indentation itself was enough to define a program’s structure, and avoi‐
ded typing all those parentheses and curly braces. Python is unusual in this use of
white space to define program structure. It’s one of the first aspects that newcomers
notice, and it can seem odd to those who have experience with other languages. It
turns out that after writing Python for a little while, it feels natural and you stop
noticing it. You even get used to doing more while typing less.

Comment with #
A comment is a piece of text in your program that is ignored by the Python inter‐
preter. You might use comments to clarify nearby Python code, make notes to your‐
self to fix something someday, or for whatever purpose you like. You mark a
comment by using the # character; everything from that point on to the end of the
current line is part of the comment. You’ll usually see a comment on a line by itself, as
shown here:

>>> # 60 sec/min * 60 min/hr * 24 hr/day
>>> seconds_per_day = 86400

71

1 Like that eight-legged green thing that’s right behind you.
2 Please don’t call it. It might come back.

Or, on the same line as the code it’s commenting:

>>> seconds_per_day = 86400 # 60 sec/min * 60 min/hr * 24 hr/day

The # character has many names: hash, sharp, pound, or the sinister-sounding octo‐
thorpe.1 Whatever you call it,2 its effect lasts only to the end of the line on which it
appears.

Python does not have a multiline comment. You need to explicitly begin each com‐
ment line or section with a #.

>>> # I can say anything here, even if Python doesn't like it,
... # because I'm protected by the awesome
... # octothorpe.
...
>>>

However, if it’s in a text string, the all-powerful octothorpe reverts back to its role as a
plain old # character:

>>> print("No comment: quotes make the # harmless.")
No comment: quotes make the # harmless.

Continue Lines with \
Programs are more readable when lines are reasonably short. The recommended (not
required) maximum line length is 80 characters. If you can’t say everything you want
to say in that length, you can use the continuation character: \ (backslash). Just put \
at the end of a line, and Python will suddenly act as though you’re still on the same
line.

For example, if I wanted to build a long string from smaller ones, I could do it in
steps:

>>> alphabet = ''
>>> alphabet += 'abcdefg'
>>> alphabet += 'hijklmnop'
>>> alphabet += 'qrstuv'
>>> alphabet += 'wxyz'

Or, I could do it in one step, using the continuation character:

>>> alphabet = 'abcdefg' + \
... 'hijklmnop' + \
... 'qrstuv' + \
... 'wxyz'

72 | Chapter 4: Py Crust: Code Structures

Line continuation is also needed if a Python expression spans multiple lines:

>>> 1 + 2 +
 File "<stdin>", line 1
 1 + 2 +
 ^
SyntaxError: invalid syntax
>>> 1 + 2 + \
... 3
6
>>>

Compare with if, elif, and else
So far in this book, we’ve talked almost entirely about data structures. Now, we finally
take our first step into the code structures that weave data into programs. (You got a
little preview of these in the previous chapter’s section on sets. I hope no lasting dam‐
age was done.) Our first example is this tiny Python program that checks the value of
the boolean variable disaster and prints an appropriate comment:

>>> disaster = True
>>> if disaster:
... print("Woe!")
... else:
... print("Whee!")
...
Woe!
>>>

The if and else lines are Python statements that check whether a condition (here,
the value of disaster) is True. Remember, print() is Python’s built-in function to
print things, normally to your screen.

If you’ve programmed in other languages, note that you don’t need
parentheses for the if test. Don’t say something such as if (disas
ter == True). You do need the colon (:) at the end. If, like me,
you forget to type the colon at times, Python will display an error
message.

Each print() line is indented under its test. I used four spaces to indent each subsec‐
tion. Although you can use any indentation you like, Python expects you to be consis‐
tent with code within a section—the lines need to be indented the same amount, lined
up on the left. The recommended style, called PEP-8, is to use four spaces. Don’t use
tabs, or mix tabs and spaces; it messes up the indent count.

Compare with if, elif, and else | 73

http://bit.ly/pep-8

We did a number of things here, which I’ll explain more fully as the chapter pro‐
gresses:

• Assigned the boolean value True to the variable named disaster
• Performed a conditional comparison by using if and else, executing different

code depending on the value of disaster
• Called the print() function to print some text

You can have tests within tests, as many levels deep as needed:

>>> furry = True
>>> small = True
>>> if furry:
... if small:
... print("It's a cat.")
... else:
... print("It's a bear!")
... else:
... if small:
... print("It's a skink!")
... else:
... print("It's a human. Or a hairless bear.")
...
It's a cat.

In Python, indentation determines how the if and else sections are paired. Our first
test was to check furry. Because furry is True, Python goes to the indented if small
test. Because we had set small to True, if small is evaluated as True. This makes
Python run the next line and print It's a cat.

If there are more than two possibilities to test, use if, elif (meaning else if), and
else:

>>> color = "puce"
>>> if color == "red":
... print("It's a tomato")
... elif color == "green":
... print("It's a green pepper")
... elif color == "bee purple":
... print("I don't know what it is, but only bees can see it")
... else:
... print("I've never heard of the color", color)
...
I've never heard of the color puce

In the preceding example, we tested for equality with the == operator. Python’s com‐
parison operators are:

74 | Chapter 4: Py Crust: Code Structures

equality ==

inequality !=

less than <

less than or equal <=

greater than >

greater than or equal >=

membership in …

These return the boolean values True or False. Let’s see how these all work, but first,
assign a value to x:

>>> x = 7

Now, let’s try some tests:

>>> x == 5
False
>>> x == 7
True
>>> 5 < x
True
>>> x < 10
True

Note that two equals signs (==) are used to test equality; remember, a single equals
sign (=) is what you use to assign a value to a variable.

If you need to make multiple comparisons at the same time, you use the boolean oper‐
ators and, or, and not to determine the final boolean result.

Boolean operators have lower precedence than the chunks of code that they’re com‐
paring. This means that the chunks are calculated first, then compared. In this exam‐
ple, because we set x to 7, 5 < x is calculated to be True and x < 10 is also True, so
we finally end up with True and True:

>>> 5 < x and x < 10
True

As “Precedence” on page 25 points out, the easiest way to avoid confusion about
precedence is to add parentheses:

>>> (5 < x) and (x < 10)
True

Compare with if, elif, and else | 75

Here are some other tests:

>>> 5 < x or x < 10
True
>>> 5 < x and x > 10
False
>>> 5 < x and not x > 10
True

If you’re and-ing multiple comparisons with one variable, Python lets you do this:

>>> 5 < x < 10
True

It’s the same as 5 < x and x < 10. You can also write longer comparisons:

>>> 5 < x < 10 < 999
True

What Is True?
What if the element we’re checking isn’t a boolean? What does Python consider True
and False?

A false value doesn’t necessarily need to explicitly be False. For example, these are
all considered False:

boolean False

null None

zero integer 0

zero float 0.0

empty string ''

empty list []

empty tuple ()

empty dict {}

empty set set()

Anything else is considered True. Python programs use this definition of “truthiness”
(or in this case, “falsiness”) to check for empty data structures as well as False
conditions:

76 | Chapter 4: Py Crust: Code Structures

>>> some_list = []
>>> if some_list:
... print("There's something in here")
... else:
... print("Hey, it's empty!")
...
Hey, it's empty!

If what you’re testing is an expression rather than a simple variable, Python evaluates
the expression and returns a boolean result. So, if you type the following:

if color == "red":

Python evaluates color == "red". In our example, we assigned the string "puce" to
color earlier, so color == "red" is False, and Python moves on to the next test:

elif color == "green":

Do Multiple Comparisons with in
Say you have a letter and want to know if it’s a vowel. One way would be to write a
long if statement:

>>> letter = 'o'
>>> if letter == 'a' or letter == 'e' or letter == 'i' \
... or letter == 'o' or letter == 'u':
... print(letter, 'is a vowel')
... else:
... print(letter, 'is not a vowel')
...
o is a vowel
>>>

Whenever you need to make a lot of comparisons like that, separated by or, use
Python’s in feature instead. Here’s how to check vowel-ness more Pythonically, using
in with a string made of vowel characters:

>>> vowels = 'aeiou'
>>> letter = 'o'
>>> letter in vowels
True
>>> if letter in vowels:
... print(letter, 'is a vowel')
...
o is a vowel

In earlier chapters, we used in to see if a value exists in any of Python’s iterable data
types, notably lists, tuples, sets, strings. So, we could define vowels with any of those
data types too:

>>> vowel_set = {'a', 'e', 'i', 'o', 'u'}
>>> letter in vowel_set

Do Multiple Comparisons with in | 77

True
>>> vowel_list = ['a', 'e', 'i', 'o', 'u']
>>> letter in vowel_list
True
>>> vowel_tuple = ('a', 'e', 'i', 'o', 'u')
>>> letter in vowel_tuple
True
>>> vowel_dict = {'a': 'apple', 'e': 'elephant',
... 'i': 'impala', 'o': 'ocelot', 'u': 'unicorn'}
>>> letter in vowel_dict
True

For the dictionary, in looks at the keys instead of their values.

Repeat with while
Testing with if, elif, and else runs from top to bottom. Sometimes, we need to do
something more than once. We need a loop, and the simplest looping mechanism in
Python is while. Using the interactive interpreter, try this next example, which is a
simple loop that prints the numbers from 1 to 5:

>>> count = 1
>>> while count <= 5:
... print(count)
... count += 1
...
1
2
3
4
5
>>>

We first assigned the value 1 to count. The while loop compared the value of count
to 5 and continued if count was less than or equal to 5. Inside the loop, we printed the
value of count and then incremented its value by one with the statement count += 1.
Python goes back to the top of the loop, and again compares count with 5. The value
of count is now 2, so the contents of the while loop are again executed, and count is
incremented to 3.

This continues until count is incremented from 5 to 6 at the bottom of the loop. On
the next trip to the top, count <= 5 is now False, and the while loop ends. Python
moves on to the next lines.

Cancel with break
If you want to loop until something occurs, but you’re not sure when that might hap‐
pen, you can use an infinite loop with a break statement. This time we’ll read a line of

78 | Chapter 4: Py Crust: Code Structures

input from the keyboard via Python’s input() function and then print it with the first
letter capitalized. We break out of the loop when a line containing only the letter q is
typed:

>>> while True:
... stuff = input("String to capitalize [type q to quit]: ")
... if stuff == "q":
... break
... print(stuff.capitalize())
...
String to capitalize [type q to quit]: test
Test
String to capitalize [type q to quit]: hey, it works
Hey, it works
String to capitalize [type q to quit]: q
>>>

Skip Ahead with continue
Sometimes you don’t want to break out of a loop but just want to skip ahead to the
next iteration for some reason. Here’s a contrived example: let’s read an integer, print
its square if it’s odd, and skip it if it’s even. We even added a few comments. Again,
we’ll use q to stop the loop:

>>> while True:
... value = input("Integer, please [q to quit]: ")
... if value == 'q': # quit
... break
... number = int(value)
... if number % 2 == 0: # an even number
... continue
... print(number, "squared is", number*number)
...
Integer, please [q to quit]: 1
1 squared is 1
Integer, please [q to quit]: 2
Integer, please [q to quit]: 3
3 squared is 9
Integer, please [q to quit]: 4
Integer, please [q to quit]: 5
5 squared is 25
Integer, please [q to quit]: q
>>>

Check break Use with else
If the while loop ended normally (no break call), control passes to an optional else.
You use this when you’ve coded a while loop to check for something, and breaking as
soon as it’s found. The else would be run if the while loop completed but the object
was not found:

Repeat with while | 79

>>> numbers = [1, 3, 5]
>>> position = 0
>>> while position < len(numbers):
... number = numbers[position]
... if number % 2 == 0:
... print('Found even number', number)
... break
... position += 1
... else: # break not called
... print('No even number found')
...
No even number found

This use of else might seem nonintuitive. Consider it a break
checker.

Iterate with for
Python makes frequent use of iterators, for good reason. They make it possible for
you to traverse data structures without knowing how large they are or how they are
implemented. You can even iterate over data that is created on the fly, allowing pro‐
cessing of data streams that would otherwise not fit in the computer’s memory all at
once.

It’s legal Python to step through a sequence like this:

>>> rabbits = ['Flopsy', 'Mopsy', 'Cottontail', 'Peter']
>>> current = 0
>>> while current < len(rabbits):
... print(rabbits[current])
... current += 1
...
Flopsy
Mopsy
Cottontail
Peter

But there’s a better, more Pythonic way:

>>> for rabbit in rabbits:
... print(rabbit)
...
Flopsy
Mopsy
Cottontail
Peter

80 | Chapter 4: Py Crust: Code Structures

Lists such as rabbits are one of Python’s iterable objects, along with strings, tuples,
dictionaries, sets, and some other elements. Tuple or list iteration produces an item at
a time. String iteration produces a character at a time, as shown here:

>>> word = 'cat'
>>> for letter in word:
... print(letter)
...
c
a
t

Iterating over a dictionary (or its keys() function) returns the keys. In this example,
the keys are the types of cards in the board game Clue (Cluedo outside of North
America):

>>> accusation = {'room': 'ballroom', 'weapon': 'lead pipe',
 'person': 'Col. Mustard'}
>>> for card in accusation: # or, for card in accusation.keys():
... print(card)
...
room
weapon
person

To iterate over the values rather than the keys, you use the dictionary’s values()
function:

>>> for value in accusation.values():
... print(value)
...
ballroom
lead pipe
Col. Mustard

To return both the key and value in a tuple, you can use the items() function:

>>> for item in accusation.items():
... print(item)
...
('room', 'ballroom')
('weapon', 'lead pipe')
('person', 'Col. Mustard')

Remember that you can assign to a tuple in one step. For each tuple returned by
items(), assign the first value (the key) to card and the second (the value) to con
tents:

>>> for card, contents in accusation.items():
... print('Card', card, 'has the contents', contents)
...
Card weapon has the contents lead pipe

Iterate with for | 81

Card person has the contents Col. Mustard
Card room has the contents ballroom

Cancel with break
A break in a for loop breaks out of the loop, as it does for a while loop.

Skip with continue
Inserting a continue in a for loop jumps to the next iteration of the loop, as it does
for a while loop.

Check break Use with else
Similar to while, for has an optional else that checks if the for completed normally.
If break was not called, the else statement is run.

This is useful when you want to verify that the previous for loop ran to completion,
instead of being stopped early with a break. The for loop in the following example
prints the name of the cheese and breaks if any cheese is found in the cheese shop:

>>> cheeses = []
>>> for cheese in cheeses:
... print('This shop has some lovely', cheese)
... break
... else: # no break means no cheese
... print('This is not much of a cheese shop, is it?')
...
This is not much of a cheese shop, is it?

As with while, the use of else with for might seem nonintuitive. It
makes more sense if you think of the for as looking for something,
and else being called if you didn’t find it. To get the same effect
without else, use some variable to indicate whether you found
what you wanted in the for loop, as demonstrated here:

>>> cheeses = []
>>> found_one = False
>>> for cheese in cheeses:
... found_one = True
... print('This shop has some lovely', cheese)
... break
...
>>> if not found_one:
... print('This is not much of a cheese shop, is it?')
...
This is not much of a cheese shop, is it?

82 | Chapter 4: Py Crust: Code Structures

Iterate Multiple Sequences with zip()
There’s one more nice iteration trick: iterating over multiple sequences in parallel by
using the zip() function:

>>> days = ['Monday', 'Tuesday', 'Wednesday']
>>> fruits = ['banana', 'orange', 'peach']
>>> drinks = ['coffee', 'tea', 'beer']
>>> desserts = ['tiramisu', 'ice cream', 'pie', 'pudding']
>>> for day, fruit, drink, dessert in zip(days, fruits, drinks, desserts):
... print(day, ": drink", drink, "- eat", fruit, "- enjoy", dessert)
...
Monday : drink coffee - eat banana - enjoy tiramisu
Tuesday : drink tea - eat orange - enjoy ice cream
Wednesday : drink beer - eat peach - enjoy pie

zip() stops when the shortest sequence is done. One of the lists (desserts) was
longer than the others, so no one gets any pudding unless we extend the other lists.

“Dictionaries” on page 55 shows you how the dict() function can create dictionaries
from two-item sequences like tuples, lists, or strings. You can use zip() to walk
through multiple sequences and make tuples from items at the same offsets. Let’s
make two tuples of corresponding English and French words:

>>> english = 'Monday', 'Tuesday', 'Wednesday'
>>> french = 'Lundi', 'Mardi', 'Mercredi'

Now, use zip() to pair these tuples. The value returned by zip() is itself not a tuple
or list, but an iterable value that can be turned into one:

>>> list(zip(english, french))
[('Monday', 'Lundi'), ('Tuesday', 'Mardi'), ('Wednesday', 'Mercredi')]

Feed the result of zip() directly to dict() and voilà: a tiny English-French dictio‐
nary!

>>> dict(zip(english, french))
{'Monday': 'Lundi', 'Tuesday': 'Mardi', 'Wednesday': 'Mercredi'}

Generate Number Sequences with range()
The range() function returns a stream of numbers within a specified range. without
first having to create and store a large data structure such as a list or tuple. This lets
you create huge ranges without using all the memory in your computer and crashing
your program.

You use range() similar to how to you use slices: range(start, stop, step). If you
omit start, the range begins at 0. The only required value is stop; as with slices, the
last value created will be just before stop. The default value of step is 1, but you can
go backward with -1.

Iterate with for | 83

Like zip(), range() returns an iterable object, so you need to step through the values
with for ... in, or convert the object to a sequence like a list. Let’s make the range
0, 1, 2:

>>> for x in range(0,3):
... print(x)
...
0
1
2
>>> list(range(0, 3))
[0, 1, 2]

Here’s how to make a range from 2 down to 0:

>>> for x in range(2, -1, -1):
... print(x)
...
2
1
0
>>> list(range(2, -1, -1))
[2, 1, 0]

The following snippet uses a step size of 2 to get the even numbers from 0 to 10:

>>> list(range(0, 11, 2))
[0, 2, 4, 6, 8, 10]

Other Iterators
Chapter 8 shows iteration over files. In Chapter 6, you can see how to enable iteration
over objects that you’ve defined yourself.

Comprehensions
A comprehension is a compact way of creating a Python data structure from one or
more iterators. Comprehensions make it possible for you to combine loops and con‐
ditional tests with a less verbose syntax. Using a comprehension is sometimes taken
as a sign that you know Python at more than a beginner’s level. In other words, it’s
more Pythonic.

List Comprehensions
You could build a list of integers from 1 to 5, one item at a time, like this:

>>> number_list = []
>>> number_list.append(1)
>>> number_list.append(2)
>>> number_list.append(3)

84 | Chapter 4: Py Crust: Code Structures

>>> number_list.append(4)
>>> number_list.append(5)
>>> number_list
[1, 2, 3, 4, 5]

Or, you could also use an iterator and the range() function:

>>> number_list = []
>>> for number in range(1, 6):
... number_list.append(number)
...
>>> number_list
[1, 2, 3, 4, 5]

Or, you could just turn the output of range() into a list directly:

>>> number_list = list(range(1, 6))
>>> number_list
[1, 2, 3, 4, 5]

All of these approaches are valid Python code and will produce the same result. How‐
ever, a more Pythonic way to build a list is by using a list comprehension. The simplest
form of list comprehension is:

[expression for item in iterable]

Here’s how a list comprehension would build the integer list:

>>> number_list = [number for number in range(1,6)]
>>> number_list
[1, 2, 3, 4, 5]

In the first line, you need the first number variable to produce values for the list: that
is, to put a result of the loop into number_list. The second number is part of the for
loop. To show that the first number is an expression, try this variant:

>>> number_list = [number-1 for number in range(1,6)]
>>> number_list
[0, 1, 2, 3, 4]

The list comprehension moves the loop inside the square brackets. This comprehen‐
sion example really wasn’t simpler than the previous example, but there’s more. A list
comprehension can include a conditional expression, looking something like this:

[expression for item in iterable if condition]

Let’s make a new comprehension that builds a list of only the odd numbers between 1
and 5 (remember that number % 2 is True for odd numbers and False for even
numbers):

>>> a_list = [number for number in range(1,6) if number % 2 == 1]
>>> a_list
[1, 3, 5]

Comprehensions | 85

Now, the comprehension is a little more compact than its traditional counterpart:

>>> a_list = []
>>> for number in range(1,6):
... if number % 2 == 1:
... a_list.append(number)
...
>>> a_list
[1, 3, 5]

Finally, just as there can be nested loops, there can be more than one set of for ...
clauses in the corresponding comprehension. To show this, let’s first try a plain, old
nested loop and print the results:

>>> rows = range(1,4)
>>> cols = range(1,3)
>>> for row in rows:
... for col in cols:
... print(row, col)
...
1 1
1 2
2 1
2 2
3 1
3 2

Now, let’s use a comprehension and assign it to the variable cells, making it a list of
(row, col) tuples:

>>> rows = range(1,4)
>>> cols = range(1,3)
>>> cells = [(row, col) for row in rows for col in cols]
>>> for cell in cells:
... print(cell)
...
(1, 1)
(1, 2)
(2, 1)
(2, 2)
(3, 1)
(3, 2)

By the way, you can also use tuple unpacking to yank the row and col values from
each tuple as you iterate over the cells list:

>>> for row, col in cells:
... print(row, col)
...
1 1
1 2
2 1
2 2

86 | Chapter 4: Py Crust: Code Structures

3 1
3 2

The for row ... and for col ... fragments in the list comprehension could also
have had their own if tests.

Dictionary Comprehensions
Not to be outdone by mere lists, dictionaries also have comprehensions. The simplest
form looks familiar:

{ key_expression : value_expression for expression in iterable }

Similar to list comprehensions, dictionary comprehensions can also have if tests and
multiple for clauses:

>>> word = 'letters'
>>> letter_counts = {letter: word.count(letter) for letter in word}
>>> letter_counts
{'l': 1, 'e': 2, 't': 2, 'r': 1, 's': 1}

We are running a loop over each of the seven letters in the string 'letters' and
counting how many times that letter appears. Two of our uses of word.count(let
ter) are a waste of time because we have to count all the e’s twice and all the t’s twice.
But, when we count the e’s the second time, we do no harm because we just replace
the entry in the dictionary that was already there; the same goes for counting the t’s.
So, the following would have been a teeny bit more Pythonic:

>>> word = 'letters'
>>> letter_counts = {letter: word.count(letter) for letter in set(word)}
>>> letter_counts
{'t': 2, 'l': 1, 'e': 2, 'r': 1, 's': 1}

The dictionary’s keys are in a different order than the previous example, because iter‐
ating set(word) returns letters in a different order than iterating the string word.

Set Comprehensions
No one wants to be left out, so even sets have comprehensions. The simplest version
looks like the list and dictionary comprehensions that you’ve just seen:

{ expression for expression in iterable }

The longer versions (if tests, multiple for clauses) are also valid for sets:

>>> a_set = {number for number in range(1,6) if number % 3 == 1}
>>> a_set
{1, 4}

Comprehensions | 87

Generator Comprehensions
Tuples do not have comprehensions! You might have thought that changing the
square brackets of a list comprehension to parentheses would create a tuple compre‐
hension. And it would appear to work because there’s no exception if you type this:

>>> number_thing = (number for number in range(1, 6))

The thing between the parentheses is a generator comprehension, and it returns a gen‐
erator object:

>>> type(number_thing)
<class 'generator'>

I’ll get into generators in more detail in “Generators” on page 101. A generator is one
way to provide data to an iterator.

You can iterate over this generator object directly, as illustrated here:

>>> for number in number_thing:
... print(number)
...
1
2
3
4
5

Or, you can wrap a list() call around a generator comprehension to make it work
like a list comprehension:

>>> number_list = list(number_thing)
>>> number_list
[1, 2, 3, 4, 5]

A generator can be run only once. Lists, sets, strings, and dictionar‐
ies exist in memory, but a generator creates its values on the fly and
hands them out one at a time through an iterator. It doesn’t
remember them, so you can’t restart or back up a generator.

If you try to re-iterate this generator, you’ll find that it’s tapped out:

>>> try_again = list(number_thing)
>>> try_again
[]

You can create a generator from a generator comprehension, as we did here, or from
a generator function. We’ll talk about functions in general first, and then we’ll get to
the special case of generator functions.

88 | Chapter 4: Py Crust: Code Structures

Functions
So far, all our Python code examples have been little fragments. These are good for
small tasks, but no one wants to retype fragments all the time. We need some way of
organizing larger code into manageable pieces.

The first step to code reuse is the function: a named piece of code, separate from all
others. A function can take any number and type of input parameters and return any
number and type of output results.

You can do two things with a function:

• Define it
• Call it

To define a Python function, you type def, the function name, parentheses enclosing
any input parameters to the function, and then finally, a colon (:). Function names
have the same rules as variable names (they must start with a letter or _ and contain
only letters, numbers, or _).

Let’s take things one step at a time, and first define and call a function that has no
parameters. Here’s the simplest Python function:

>>> def do_nothing():
... pass

Even for a function with no parameters like this one, you still need the parentheses
and the colon in its definition. The next line needs to be indented, just as you would
indent code under an if statement. Python requires the pass statement to show that
this function does nothing. It’s the equivalent of This page intentionally left blank
(even though it isn’t anymore).

You call this function just by typing its name and parentheses. It works as advertised,
doing nothing very well:

>>> do_nothing()
>>>

Now, let’s define and call another function that has no parameters but prints a single
word:

>>> def make_a_sound():
... print('quack')
...
>>> make_a_sound()
quack

When you called the make_a_sound() function, Python ran the code inside its defini‐
tion. In this case, it printed a single word and returned to the main program.

Functions | 89

Let’s try a function that has no parameters but returns a value:

>>> def agree():
... return True
...

You can call this function and test its returned value by using if:

>>> if agree():
... print('Splendid!')
... else:
... print('That was unexpected.')
...
Splendid!

You’ve just made a big step. The combination of functions with tests such as if and
loops such as while make it possible for you to do things that you could not do
before.

At this point, it’s time to put something between those parentheses. Let’s define the
function echo() with one parameter called anything. It uses the return statement to
send the value of anything back to its caller twice, with a space between:

>>> def echo(anything):
... return anything + ' ' + anything
...
>>>

Now let’s call echo() with the string 'Rumplestiltskin':

>>> echo('Rumplestiltskin')
'Rumplestiltskin Rumplestiltskin'

The values you pass into the function when you call it are known as arguments. When
you call a function with arguments, the values of those arguments are copied to their
corresponding parameters inside the function. In the previous example, the function
echo() was called with the argument string 'Rumplestiltskin'. This value was
copied within echo() to the parameter anything, and then returned (in this case
doubled, with a space) to the caller.

These function examples were pretty basic. Let’s write a function that takes an input
argument and actually does something with it. We’ll adapt the earlier code fragment
that comments on a color. Call it commentary and have it take an input string parame‐
ter called color. Make it return the string description to its caller, which can decide
what to do with it:

>>> def commentary(color):
... if color == 'red':
... return "It's a tomato."
... elif color == "green":
... return "It's a green pepper."
... elif color == 'bee purple':

90 | Chapter 4: Py Crust: Code Structures

... return "I don't know what it is, but only bees can see it."

... else:

... return "I've never heard of the color " + color + "."

...
>>>

Call the function commentary() with the string argument 'blue'.

>>> comment = commentary('blue')

The function does the following:

• Assigns the value 'blue' to the function’s internal color parameter
• Runs through the if-elif-else logic chain
• Returns a string
• Assigns the string to the variable comment

What do we get back?

>>> print(comment)
I've never heard of the color blue.

A function can take any number of input arguments (including zero) of any type. It
can return any number of output results (also including zero) of any type. If a func‐
tion doesn’t call return explicitly, the caller gets the result None.

>>> print(do_nothing())
None

None Is Useful
None is a special Python value that holds a place when there is nothing to say. It is not
the same as the boolean value False, although it looks false when evaluated as a
boolean. Here’s an example:

>>> thing = None
>>> if thing:
... print("It's some thing")
... else:
... print("It's no thing")
...
It's no thing

To distinguish None from a boolean False value, use Python’s is operator:

>>> if thing is None:
... print("It's nothing")
... else:
... print("It's something")

Functions | 91

...
It's nothing

This seems like a subtle distinction, but it’s important in Python. You’ll need None to
distinguish a missing value from an empty value. Remember that zero-valued integers
or floats, empty strings (''), lists ([]), tuples ((,)), dictionaries ({}), and sets(set())
are all False, but are not equal to None.

Let’s write a quick function that prints whether its argument is None:

>>> def is_none(thing):
... if thing is None:
... print("It's None")
... elif thing:
... print("It's True")
... else:
... print("It's False")
...

Now, let’s run some tests:

>>> is_none(None)
It's None
>>> is_none(True)
It's True
>>> is_none(False)
It's False
>>> is_none(0)
It's False
>>> is_none(0.0)
It's False
>>> is_none(())
It's False
>>> is_none([])
It's False
>>> is_none({})
It's False
>>> is_none(set())
It's False

Positional Arguments
Python handles function arguments in a manner that’s unusually flexible, when com‐
pared to many languages. The most familiar types of arguments are positional argu‐
ments, whose values are copied to their corresponding parameters in order.

This function builds a dictionary from its positional input arguments and returns it:

>>> def menu(wine, entree, dessert):
... return {'wine': wine, 'entree': entree, 'dessert': dessert}
...

92 | Chapter 4: Py Crust: Code Structures

>>> menu('chardonnay', 'chicken', 'cake')
{'dessert': 'cake', 'wine': 'chardonnay', 'entree': 'chicken'}

Although very common, a downside of positional arguments is that you need to
remember the meaning of each position. If we forgot and called menu() with wine as
the last argument instead of the first, the meal would be very different:

>>> menu('beef', 'bagel', 'bordeaux')
{'dessert': 'bordeaux', 'wine': 'beef', 'entree': 'bagel'}

Keyword Arguments
To avoid positional argument confusion, you can specify arguments by the names of
their corresponding parameters, even in a different order from their definition in the
function:

>>> menu(entree='beef', dessert='bagel', wine='bordeaux')
{'dessert': 'bagel', 'wine': 'bordeaux', 'entree': 'beef'}

You can mix positional and keyword arguments. Let’s specify the wine first, but use
keyword arguments for the entree and dessert:

>>> menu('frontenac', dessert='flan', entree='fish')
{'entree': 'fish', 'dessert': 'flan', 'wine': 'frontenac'}

If you call a function with both positional and keyword arguments, the positional
arguments need to come first.

Specify Default Parameter Values
You can specify default values for parameters. The default is used if the caller does not
provide a corresponding argument. This bland-sounding feature can actually be quite
useful. Using the previous example:

>>> def menu(wine, entree, dessert='pudding'):
... return {'wine': wine, 'entree': entree, 'dessert': dessert}

This time, try calling menu() without the dessert argument:

>>> menu('chardonnay', 'chicken')
{'dessert': 'pudding', 'wine': 'chardonnay', 'entree': 'chicken'}

If you do provide an argument, it’s used instead of the default:

>>> menu('dunkelfelder', 'duck', 'doughnut')
{'dessert': 'doughnut', 'wine': 'dunkelfelder', 'entree': 'duck'}

Default argument values are calculated when the function is
defined, not when it is run. A common error with new (and some‐
times not-so-new) Python programmers is to use a mutable data
type such as a list or dictionary as a default argument.

Functions | 93

In the following test, the buggy() function is expected to run each time with a fresh
empty result list, add the arg argument to it, and then print a single-item list. How‐
ever, there’s a bug: it’s empty only the first time it’s called. The second time, result
still has one item from the previous call:

>>> def buggy(arg, result=[]):
... result.append(arg)
... print(result)
...
>>> buggy('a')
['a']
>>> buggy('b') # expect ['b']
['a', 'b']

It would have worked if it had been written like this:

>>> def works(arg):
... result = []
... result.append(arg)
... return result
...
>>> works('a')
['a']
>>> works('b')
['b']

The fix is to pass in something else to indicate the first call:

>>> def nonbuggy(arg, result=None):
... if result is None:
... result = []
... result.append(arg)
... print(result)
...
>>> nonbuggy('a')
['a']
>>> nonbuggy('b')
['b']

Gather Positional Arguments with *
If you’ve programmed in C or C++, you might assume that an asterisk (*) in a Python
program has something to do with a pointer. Nope, Python doesn’t have pointers.

When used inside the function with a parameter, an asterisk groups a variable num‐
ber of positional arguments into a tuple of parameter values. In the following exam‐
ple, args is the parameter tuple that resulted from the arguments that were passed to
the function print_args():

>>> def print_args(*args):
... print('Positional argument tuple:', args)
...

94 | Chapter 4: Py Crust: Code Structures

If you call it with no arguments, you get nothing in *args:

>>> print_args()
Positional argument tuple: ()

Whatever you give it will be printed as the args tuple:

>>> print_args(3, 2, 1, 'wait!', 'uh...')
Positional argument tuple: (3, 2, 1, 'wait!', 'uh...')

This is useful for writing functions such as print() that accept a variable number of
arguments. If your function has required positional arguments as well, *args goes at
the end and grabs all the rest:

>>> def print_more(required1, required2, *args):
... print('Need this one:', required1)
... print('Need this one too:', required2)
... print('All the rest:', args)
...
>>> print_more('cap', 'gloves', 'scarf', 'monocle', 'mustache wax')
Need this one: cap
Need this one too: gloves
All the rest: ('scarf', 'monocle', 'mustache wax')

When using *, you don’t need to call the tuple parameter args, but it’s a common
idiom in Python.

Gather Keyword Arguments with **
You can use two asterisks (**) to group keyword arguments into a dictionary, where
the argument names are the keys, and their values are the corresponding dictionary
values. The following example defines the function print_kwargs() to print its key‐
word arguments:

>>> def print_kwargs(**kwargs):
... print('Keyword arguments:', kwargs)
...

Now, try calling it with some keyword arguments:

>>> print_kwargs(wine='merlot', entree='mutton', dessert='macaroon')
Keyword arguments: {'dessert': 'macaroon', 'wine': 'merlot', 'entree': 'mutton'}

Inside the function, kwargs is a dictionary.

If you mix positional parameters with *args and **kwargs, they need to occur in that
order. As with args, you don’t need to call this keyword parameter kwargs, but it’s
common usage.

Functions | 95

Docstrings
Readability counts, says the Zen of Python. You can attach documentation to a func‐
tion definition by including a string at the beginning of the function body. This is the
function’s docstring:

>>> def echo(anything):
... 'echo returns its input argument'
... return anything

You can make a docstring quite long and even add rich formatting, if you want, as is
demonstrated in the following:

def print_if_true(thing, check):
 '''
 Prints the first argument if a second argument is true.
 The operation is:
 1. Check whether the *second* argument is true.
 2. If it is, print the *first* argument.
 '''
 if check:
 print(thing)

To print a function’s docstring, call the Python help() function. Pass the function’s
name to get a listing of arguments along with the nicely formatted docstring:

>>> help(echo)
Help on function echo in module __main__:

echo(anything)
 echo returns its input argument

If you want to see just the raw docstring, without the formatting:

>>> print(echo.__doc__)
echo returns its input argument

That odd-looking __doc__ is the internal name of the docstring as a variable within
the function. “Uses of _ and __ in Names” on page 106 explains the reason behind all
those underscores.

Functions Are First-Class Citizens
I’ve mentioned the Python mantra, everything is an object. This includes numbers,
strings, tuples, lists, dictionaries—and functions, as well. Functions are first-class citi‐
zens in Python. You can assign them to variables, use them as arguments to other
functions, and return them from functions. This gives you the capability to do some
things in Python that are difficult-to-impossible to carry out in many other lan‐
guages.

96 | Chapter 4: Py Crust: Code Structures

To test this, let’s define a simple function called answer() that doesn’t have any argu‐
ments; it just prints the number 42:

>>> def answer():
... print(42)

If you run this function, you know what you’ll get:

>>> answer()
42

Now, let’s define another function named run_something. It has one argument called
func, a function to run. Once inside, it just calls the function.

>>> def run_something(func):
... func()

If we pass answer to run_something(), we’re using a function as data, just as with
anything else:

>>> run_something(answer)
42

Notice that you passed answer, not answer(). In Python, those parentheses mean call
this function. With no parentheses, Python just treats the function like any other
object. That’s because, like everything else in Python, it is an object:

>>> type(run_something)
<class 'function'>

Let’s try running a function with arguments. Define a function add_args() that prints
the sum of its two numeric arguments, arg1 and arg2:

>>> def add_args(arg1, arg2):
... print(arg1 + arg2)

And what is add_args()?

>>> type(add_args)
<class 'function'>

At this point, let’s define a function called run_something_with_args() that takes
three arguments:

• func—The function to run
• arg1—The first argument for func
• arg2—The second argument for func

>>> def run_something_with_args(func, arg1, arg2):
... func(arg1, arg2)

Functions | 97

When you call run_something_with_args(), the function passed by the caller is
assigned to the func parameter, whereas arg1 and arg2 get the values that follow in
the argument list. Then, running func(arg1, arg2) executes that function with
those arguments because the parentheses told Python to do so.

Let’s test it by passing the function name add_args and the arguments 5 and 9 to
run_something_with_args():

>>> run_something_with_args(add_args, 5, 9)
14

Within the function run_something_with_args(), the function name argument
add_args was assigned to the parameter func, 5 to arg1, and 9 to arg2. This ended
up running:

add_args(5, 9)

You can combine this with the *args and **kwargs techniques.

Let’s define a test function that takes any number of positional arguments, calculates
their sum by using the sum() function, and then returns that sum:

>>> def sum_args(*args):
... return sum(args)

I haven’t mentioned sum() before. It’s a built-in Python function that calculates the
sum of the values in its iterable numeric (int or float) argument.

We’ll define the new function run_with_positional_args(), which takes a function
and any number of positional arguments to pass to it:

>>> def run_with_positional_args(func, *args):
... return func(*args)

Now, go ahead and call it:

>>> run_with_positional_args(sum_args, 1, 2, 3, 4)
10

You can use functions as elements of lists, tuples, sets, and dictionaries. Functions are
immutable, so you can also use them as dictionary keys.

Inner Functions
You can define a function within another function:

>>> def outer(a, b):
... def inner(c, d):
... return c + d
... return inner(a, b)
...
>>>

98 | Chapter 4: Py Crust: Code Structures

>>> outer(4, 7)
11

An inner function can be useful when performing some complex task more than
once within another function, to avoid loops or code duplication. For a string exam‐
ple, this inner function adds some text to its argument:

>>> def knights(saying):
... def inner(quote):
... return "We are the knights who say: '%s'" % quote
... return inner(saying)
...
>>> knights('Ni!')
"We are the knights who say: 'Ni!'"

Closures
An inner function can act as a closure. This is a function that is dynamically generated
by another function and can both change and remember the values of variables that
were created outside the function.

The following example builds on the previous knights() example. Let’s call the new
one knights2(), because we have no imagination, and turn the inner() function into
a closure called inner2(). Here are the differences:

• inner2() uses the outer saying parameter directly instead of getting it as an
argument.

• knights2() returns the inner2 function name instead of calling it.

>>> def knights2(saying):
... def inner2():
... return "We are the knights who say: '%s'" % saying
... return inner2
...

The inner2() function knows the value of saying that was passed in and remembers
it. The line return inner2 returns this specialized copy of the inner2 function (but
doesn’t call it). That’s a closure: a dynamically created function that remembers where
it came from.

Let’s call knights2() twice, with different arguments:

>>> a = knights2('Duck')
>>> b = knights2('Hasenpfeffer')

Okay, so what are a and b?

>>> type(a)
<class 'function'>

Functions | 99

>>> type(b)
<class 'function'>

They’re functions, but they’re also closures:

>>> a
<function knights2.<locals>.inner2 at 0x10193e158>
>>> b
<function knights2.<locals>.inner2 at 0x10193e1e0>

If we call them, they remember the saying that was used when they were created by
knights2:

>>> a()
"We are the knights who say: 'Duck'"
>>> b()
"We are the knights who say: 'Hasenpfeffer'"

Anonymous Functions: the lambda() Function
In Python, a lambda function is an anonymous function expressed as a single state‐
ment. You can use it instead of a normal tiny function.

To illustrate it, let’s first make an example that uses normal functions. To begin, we’ll
define the function edit_story(). Its arguments are the following:

• words—a list of words
• func—a function to apply to each word in words

>>> def edit_story(words, func):
... for word in words:
... print(func(word))

Now, we need a list of words and a function to apply to each word. For the words,
here’s a list of (hypothetical) sounds made by my cat if he (hypothetically) missed one
of the stairs:

>>> stairs = ['thud', 'meow', 'thud', 'hiss']

And for the function, this will capitalize each word and append an exclamation point,
perfect for feline tabloid newspaper headlines:

>>> def enliven(word): # give that prose more punch
... return word.capitalize() + '!'

Mixing our ingredients:

>>> edit_story(stairs, enliven)
Thud!
Meow!
Thud!
Hiss!

100 | Chapter 4: Py Crust: Code Structures

Finally, we get to the lambda. The enliven() function was so brief that we could
replace it with a lambda:

>>>
>>> edit_story(stairs, lambda word: word.capitalize() + '!')
Thud!
Meow!
Thud!
Hiss!
>>>

The lambda takes one argument, which we call word here. Everything between the
colon and the terminating parenthesis is the definition of the function.

Often, using real functions such as enliven() is much clearer than using lambdas.
Lambdas are mostly useful for cases in which you would otherwise need to define
many tiny functions and remember what you called them all. In particular, you can
use lambdas in graphical user interfaces to define callback functions; see Appendix A
for examples.

Generators
A generator is a Python sequence creation object. With it, you can iterate through
potentially huge sequences without creating and storing the entire sequence in mem‐
ory at once. Generators are often the source of data for iterators. If you recall, we
already used one of them, range(), in earlier code examples to generate a series of
integers. In Python 2, range() returns a list, which limits it to fit in memory. Python
2 also has the generator xrange(), which became the normal range() in Python 3.
This example adds all the integers from 1 to 100:

>>> sum(range(1, 101))
5050

Every time you iterate through a generator, it keeps track of where it was the last time
it was called and returns the next value. This is different from a normal function,
which has no memory of previous calls and always starts at its first line with the same
state.

If you want to create a potentially large sequence, and the code is too large for a gen‐
erator comprehension, write a generator function. It’s a normal function, but it returns
its value with a yield statement rather than return. Let’s write our own version of
range():

>>> def my_range(first=0, last=10, step=1):
... number = first
... while number < last:
... yield number

Generators | 101

... number += step

...

It’s a normal function:

>>> my_range
<function my_range at 0x10193e268>

And it returns a generator object:

>>> ranger = my_range(1, 5)
>>> ranger
<generator object my_range at 0x101a0a168>

We can iterate over this generator object:

>>> for x in ranger:
... print(x)
...
1
2
3
4

Decorators
Sometimes, you want to modify an existing function without changing its source
code. A common example is adding a debugging statement to see what arguments
were passed in.

A decorator is a function that takes one function as input and returns another func‐
tion. We’ll dig into our bag of Python tricks and use the following:

• *args and **kwargs
• Inner functions
• Functions as arguments

The function document_it() defines a decorator that will do the following:

• Print the function’s name and the values of its arguments
• Run the function with the arguments
• Print the result
• Return the modified function for use

Here’s what the code looks like:

>>> def document_it(func):
... def new_function(*args, **kwargs):
... print('Running function:', func.__name__)

102 | Chapter 4: Py Crust: Code Structures

... print('Positional arguments:', args)

... print('Keyword arguments:', kwargs)

... result = func(*args, **kwargs)

... print('Result:', result)

... return result

... return new_function

Whatever func you pass to document_it(), you get a new function that includes the
extra statements that document_it() adds. A decorator doesn’t actually have to run
any code from func, but document_it() calls func part way through so that you get
the results of func as well as all the extras.

So, how do you use this? You can apply the decorator manually:

>>> def add_ints(a, b):
... return a + b
...
>>> add_ints(3, 5)
8
>>> cooler_add_ints = document_it(add_ints) # manual decorator assignment
>>> cooler_add_ints(3, 5)
Running function: add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 8
8

As an alternative to the manual decorator assignment above, just add
@decorator_name before the function that you want to decorate:

>>> @document_it
... def add_ints(a, b):
... return a + b
...
>>> add_ints(3, 5)
Start function add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 8
8

You can have more than one decorator for a function. Let’s write another decorator
called square_it() that squares the result:

>>> def square_it(func):
... def new_function(*args, **kwargs):
... result = func(*args, **kwargs)
... return result * result
... return new_function
...

Decorators | 103

The decorator that’s used closest to the function (just above the def) runs first and
then the one above it. Either order gives the same end result, but you can see how the
intermediate steps change:

>>> @document_it
... @square_it
... def add_ints(a, b):
... return a + b
...
>>> add_ints(3, 5)
Running function: new_function
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 64
64

Let’s try reversing the decorator order:

>>> @square_it
... @document_it
... def add_ints(a, b):
... return a + b
...
>>> add_ints(3, 5)
Running function: add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 8
64

Namespaces and Scope
A name can refer to different things, depending on where it’s used. Python programs
have various namespaces—sections within which a particular name is unique and
unrelated to the same name in other namespaces.

Each function defines its own namespace. If you define a variable called x in a main
program and another variable called x in a function, they refer to different things. But
the walls can be breached: if you need to, you can access names in other namespaces
in various ways.

The main part of a program defines the global namespace; thus, the variables in that
namespace are global variables.

You can get the value of a global variable from within a function:

>>> animal = 'fruitbat'
>>> def print_global():
... print('inside print_global:', animal)
...
>>> print('at the top level:', animal)

104 | Chapter 4: Py Crust: Code Structures

at the top level: fruitbat
>>> print_global()
inside print_global: fruitbat

But, if you try to get the value of the global variable and change it within the function,
you get an error:

>>> def change_and_print_global():
... print('inside change_and_print_global:', animal)
... animal = 'wombat'
... print('after the change:', animal)
...
>>> change_and_print_global()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in change_and_print_global
UnboundLocalError: local variable 'animal' referenced before assignment

If you just change it, it changes a different variable also named animal, but this vari‐
able is inside the function:

>>> def change_local():
... animal = 'wombat'
... print('inside change_local:', animal, id(animal))
...
>>> change_local()
inside change_local: wombat 4330406160
>>> animal
'fruitbat'
>>> id(animal)
4330390832

What happened here? The first line assigned the string 'fruitbat' to a global vari‐
able named animal. The change_local() function also has a variable named animal,
but that’s in its local namespace.

We used the Python function id() here to print the unique value for each object and
prove that the variable animal inside change_local() is not the same as animal at
the main level of the program.

To access the global variable rather than the local one within a function, you need to
be explicit and use the global keyword (you knew this was coming: explicit is better
than implicit):

>>> animal = 'fruitbat'
>>> def change_and_print_global():
... global animal
... animal = 'wombat'
... print('inside change_and_print_global:', animal)
...
>>> animal
'fruitbat'

Namespaces and Scope | 105

>>> change_and_print_global()
inside change_and_print_global: wombat
>>> animal
'wombat'

If you don’t say global within a function, Python uses the local namespace and the
variable is local. It goes away after the function completes.

Python provides two functions to access the contents of your namespaces:

• locals() returns a dictionary of the contents of the local namespace.
• globals() returns a dictionary of the contents of the global namespace.

And, here they are in use:

>>> animal = 'fruitbat'
>>> def change_local():
... animal = 'wombat' # local variable
... print('locals:', locals())
...
>>> animal
'fruitbat'
>>> change_local()
locals: {'animal': 'wombat'}
>>> print('globals:', globals()) # reformatted a little for presentation
globals: {'animal': 'fruitbat',
'__doc__': None,
'change_local': <function change_it at 0x1006c0170>,
'__package__': None,
'__name__': '__main__',
'__loader__': <class '_frozen_importlib.BuiltinImporter'>,
'__builtins__': <module 'builtins'>}
>>> animal
'fruitbat'

The local namespace within change_local() contained only the local variable
animal. The global namespace contained the separate global variable animal and a
number of other things.

Uses of _ and __ in Names
Names that begin and end with two underscores (__) are reserved for use within
Python, so you should not use them with your own variables. This naming pattern
was chosen because it seemed unlikely to be selected by application developers for
their own variables.

For instance, the name of a function is in the system variable function .__name__,
and its documentation string is function .__doc__:

106 | Chapter 4: Py Crust: Code Structures

>>> def amazing():
... '''This is the amazing function.
... Want to see it again?'''
... print('This function is named:', amazing.__name__)
... print('And its docstring is:', amazing.__doc__)
...
>>> amazing()
This function is named: amazing
And its docstring is: This is the amazing function.
 Want to see it again?

As you saw in the earlier globals printout, the main program is assigned the special
name __main__.

Handle Errors with try and except
Do, or do not. There is no try.

—Yoda

In some languages, errors are indicated by special function return values. Python uses
exceptions: code that is executed when an associated error occurs.

You’ve seen some of these already, such as accessing a list or tuple with an out-of-
range position, or a dictionary with a nonexistent key. When you run code that might
fail under some circumstances, you also need appropriate exception handlers to inter‐
cept any potential errors.

It’s good practice to add exception handling anywhere an exception might occur to let
the user know what is happening. You might not be able to fix the problem, but at
least you can note the circumstances and shut your program down gracefully. If an
exception occurs in some function and is not caught there, it bubbles up until it is
caught by a matching handler in some calling function. If you don’t provide your own
exception handler, Python prints an error message and some information about
where the error occurred and then terminates the program, as demonstrated in the
following snippet.

>>> short_list = [1, 2, 3]
>>> position = 5
>>> short_list[position]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Rather than leaving it to chance, use try to wrap your code, and except to provide
the error handling:

>>> short_list = [1, 2, 3]
>>> position = 5
>>> try:

Handle Errors with try and except | 107

... short_list[position]

... except:

... print('Need a position between 0 and', len(short_list)-1, ' but got',

... position)

...
Need a position between 0 and 2 but got 5

The code inside the try block is run. If there is an error, an exception is raised and
the code inside the except block runs. If there are no errors, the except block is skip‐
ped.

Specifying a plain except with no arguments, as we did here, is a catchall for any
exception type. If more than one type of exception could occur, it’s best to provide a
separate exception handler for each. No one forces you to do this; you can use a bare
except to catch all exceptions, but your treatment of them would probably be generic
(something akin to printing Some error occurred). You can use any number of specific
exception handlers.

Sometimes, you want exception details beyond the type. You get the full exception
object in the variable name if you use the form:

except exceptiontype as name

The example that follows looks for an IndexError first, because that’s the exception
type raised when you provide an illegal position to a sequence. It saves an IndexError
exception in the variable err, and any other exception in the variable other. The
example prints everything stored in other to show what you get in that object.

>>> short_list = [1, 2, 3]
>>> while True:
... value = input('Position [q to quit]? ')
... if value == 'q':
... break
... try:
... position = int(value)
... print(short_list[position])
... except IndexError as err:
... print('Bad index:', position)
... except Exception as other:
... print('Something else broke:', other)
...
Position [q to quit]? 1
2
Position [q to quit]? 0
1
Position [q to quit]? 2
3
Position [q to quit]? 3
Bad index: 3
Position [q to quit]? 2
3

108 | Chapter 4: Py Crust: Code Structures

Position [q to quit]? two
Something else broke: invalid literal for int() with base 10: 'two'
Position [q to quit]? q

Inputting position 3 raised an IndexError as expected. Entering two annoyed the
int() function, which we handled in our second, catchall except code.

Make Your Own Exceptions
The previous section discussed handling exceptions, but all of the exceptions (such as
IndexError) were predefined in Python or its standard library. You can use any of
these for your own purposes. You can also define your own exception types to handle
special situations that might arise in your own programs.

This requires defining a new object type with a class—something
we don’t get into until Chapter 6. So, if you’re unfamiliar with
classes, you might want to return to this section later.

An exception is a class. It is a child of the class Exception. Let’s make an exception
called UppercaseException and raise it when we encounter an uppercase word in a
string.

>>> class UppercaseException(Exception):
... pass
...
>>> words = ['eeenie', 'meenie', 'miny', 'MO']
>>> for word in words:
... if word.isupper():
... raise UppercaseException(word)
...
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
__main__.UppercaseException: MO

We didn’t even define any behavior for UppercaseException (notice we just used
pass), letting its parent class Exception figure out what to print when the exception
was raised.

You can access the exception object itself and print it:

>>> try:
... raise OopsException('panic')
... except OopsException as exc:
... print(exc)
...
panic

Make Your Own Exceptions | 109

Things to Do
4.1 Assign the value 7 to the variable guess_me. Then, write the conditional tests (if,
else, and elif) to print the string 'too low' if guess_me is less than 7, 'too high' if
greater than 7, and 'just right' if equal to 7.

4.2 Assign the value 7 to the variable guess_me and the value 1 to the variable start.
Write a while loop that compares start with guess_me. Print too low if start is less
than guess me. If start equals guess_me, print 'found it!' and exit the loop. If
start is greater than guess_me, print 'oops' and exit the loop. Increment start at
the end of the loop.

4.3 Use a for loop to print the values of the list [3, 2, 1, 0].

4.4 Use a list comprehension to make a list of the even numbers in range(10).

4.5 Use a dictionary comprehension to create the dictionary squares. Use range(10)
to return the keys, and use the square of each key as its value.

4.6 Use a set comprehension to create the set odd from the odd numbers in
range(10).

4.7 Use a generator comprehension to return the string 'Got ' and a number for the
numbers in range(10). Iterate through this by using a for loop.

4.8 Define a function called good that returns the list ['Harry', 'Ron', 'Her
mione'].

4.9 Define a generator function called get_odds that returns the odd numbers from
range(10). Use a for loop to find and print the third value returned.

4.10 Define a decorator called test that prints 'start' when a function is called and
'end' when it finishes.

4.11 Define an exception called OopsException. Raise this exception to see what hap‐
pens. Then write the code to catch this exception and print 'Caught an oops'.

4.12 Use zip() to make a dictionary called movies that pairs these lists: titles =
['Creature of Habit', 'Crewel Fate'] and plots = ['A nun turns into a mon
ster', 'A haunted yarn shop'].

110 | Chapter 4: Py Crust: Code Structures

CHAPTER 5

Py Boxes: Modules, Packages,
and Programs

During your bottom-up climb, you’ve progressed from built-in data types to con‐
structing ever-larger data and code structures. In this chapter, you’ll finally get down
to brass tacks and learn how to write realistic, large programs in Python.

Standalone Programs
Thus far, you’ve been writing and running code fragments such as the following
within Python’s interactive interpreter:

>>> print("This interactive snippet works.")
This interactive snippet works.

Now let’s make your first standalone program. On your computer, create a file called
test1.py containing this single line of Python code:

print("This standalone program works!")

Notice that there’s no >>> prompt, just a single line of Python code. Ensure that there
is no indentation in the line before print.

If you’re running Python in a text terminal or terminal window, type the name of
your Python program followed by the program filename:

$ python test1.py
This standalone program works!

111

You can save all of the interactive snippets that you’ve seen in this
book so far to files and run them directly. If you’re cutting and
pasting, ensure that you delete the initial >>> and … (include the
final space).

Command-Line Arguments
On your computer, create a file called test2.py that contains these two lines:

import sys
print('Program arguments:', sys.argv)

Now, use your version of Python to run this program. Here’s how it might look in a
Linux or Mac OS X terminal window using a standard shell program:

$ python test2.py
Program arguments: ['test2.py']
$ python test2.py tra la la
Program arguments: ['test2.py', 'tra', 'la', 'la']

Modules and the import Statement
We’re going to step up another level, creating and using Python code in more than
one file. A module is just a file of Python code.

The text of this book is organized in a hierarchy: words, sentences, paragraphs, and
chapters. Otherwise, it would be unreadable after a page or two. Code has a roughly
similar bottom-up organization: data types are like words, statements are like senten‐
ces, functions are like paragraphs, and modules are like chapters. To continue the
analogy, in this book, when I say that something will be explained in Chapter 8, in
programming, that’s like referring to code in another module.

We refer to code of other modules by using the import statement. This makes the
code and variables in the imported module available to your program.

Import a Module
The simplest use of the import statement is import module, where module is the
name of another Python file, without the .py extension. Let’s simulate a weather sta‐
tion and print a weather report. One main program prints the report, and a separate
module with a single function returns the weather description used by the report.

Here’s the main program (call it weatherman.py):

import report

description = report.get_description()
print("Today's weather:", description)

112 | Chapter 5: Py Boxes: Modules, Packages, and Programs

And here is the module (report.py):

def get_description(): # see the docstring below?
 """Return random weather, just like the pros"""
 from random import choice
 possibilities = ['rain', 'snow', 'sleet', 'fog', 'sun', 'who knows']
 return choice(possibilities)

If you have these two files in the same directory and instruct Python to run weather‐
man.py as the main program, it will access the report module and run its
get_description() function. We wrote this version of get_description() to return
a random result from a list of strings, so that’s what the main program will get back
and print:

$ python weatherman.py
Today's weather: who knows
$ python weatherman.py
Today's weather: sun
$ python weatherman.py
Today's weather: sleet

We used imports in two different places:

• The main program weatherman.py imported the module report.
• In the module file report.py, the get_description() function imported the
choice function from Python’s standard random module.

We also used imports in two different ways:

• The main program called import report and then ran report.get_descrip
tion().

• The get_description() function in report.py called from random import

choice and then ran choice(possibilities).

In the first case, we imported the entire report module but needed to use report. as
a prefix to get_description(). After this import statement, everything in report.py is
available to the main program, as long as we tack report. before its name. By qualify‐
ing the contents of a module with the module’s name, we avoid any nasty naming
conflicts. There could be a get_description() function in some other module, and
we would not call it by mistake.

In the second case, we’re within a function and know that nothing else named choice
is here, so we imported the choice() function from the random module directly. We
could have written the function like the following snippet, which returns random
results:

Modules and the import Statement | 113

def get_description():
 import random
 possibilities = ['rain', 'snow', 'sleet', 'fog', 'sun', 'who knows']
 return random.choice(possibilities)

Like many aspects of programming, pick the style that seems the most clear to you.
The module-qualified name (random.choice) is safer but requires a little more typ‐
ing.

These get_description() examples showed variations of what to import, but but not
where to do the importing—they all called import from inside the function. We could
have imported random from outside the function:

>>> import random
>>> def get_description():
... possibilities = ['rain', 'snow', 'sleet', 'fog', 'sun', 'who knows']
... return random.choice(possibilities)
...
>>> get_description()
'who knows'
>>> get_description()
'rain'

You should consider importing from outside the function if the imported code might
be used in more than one place, and from inside if you know its use will be limited.
Some people prefer to put all their imports at the top of the file, just to make all the
dependencies of their code explicit. Either way works.

Import a Module with Another Name
In our main weatherman.py program, we called import report. But what if you have
another module with the same name or want to use a name that is more mnemonic
or shorter? In such a situation, you can import using an alias. Let’s use the alias wr:

import report as wr
description = wr.get_description()
print("Today's weather:", description)

Import Only What You Want from a Module
With Python, you can import one or more parts of a module. Each part can keep its
original name or you can give it an alias. First, let’s import get_description() from
the report module with its original name:

from report import get_description
description = get_description()
print("Today's weather:", description)

Now, import it as do_it:

114 | Chapter 5: Py Boxes: Modules, Packages, and Programs

from report import get_description as do_it
description = do_it()
print("Today's weather:", description)

Module Search Path
Where does Python look for files to import? It uses a list of directory names and ZIP
archive files stored in the standard sys module as the variable path. You can access
and modify this list. Here’s the value of sys.path for Python 3.3 on my Mac:

>>> import sys
>>> for place in sys.path:
... print(place)
...

/Library/Frameworks/Python.framework/Versions/3.3/lib/python33.zip
/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3
/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/plat-darwin
/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/lib-dynload
/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-packages

That initial blank output line is the empty string '', which stands for the current
directory. If '' is first in sys.path, Python looks in the current directory first when
you try to import something: import report looks for report.py.

The first match will be used. This means that if you define a module named random
and it’s in the search path before the standard library, you won’t be able to access the
standard library’s random now.

Packages
We went from single lines of code, to multiline functions, to standalone programs, to
multiple modules in the same directory. To allow Python applications to scale even
more, you can organize modules into file hierarchies called packages.

Maybe we want different types of text forecasts: one for the next day and one for the
next week. One way to structure this is to make a directory named sources, and cre‐
ate two modules within it: daily.py and weekly.py. Each has a function called fore
cast. The daily version returns a string, and the weekly version returns a list of seven
strings.

Here’s the main program and the two modules. (The enumerate() function takes
apart a list and feeds each item of the list to the for loop, adding a number to each
item as a little bonus.)

from sources import daily, weekly

print("Daily forecast:", daily.forecast())
print("Weekly forecast:")

Packages | 115

for number, outlook in enumerate(weekly.forecast(), 1):
 print(number, outlook)

def forecast():
 'fake daily forecast'
 return 'like yesterday'

def forecast():
 """Fake weekly forecast"""
 return ['snow', 'more snow', 'sleet',
 'freezing rain', 'rain', 'fog', 'hail']

You’ll need one more thing in the sources directory: a file named __init__.py. This
can be empty, but Python needs it to treat the directory containing it as a package.

Run the main weather.py program to see what happens:

$ python weather.py
Daily forecast: like yesterday
Weekly forecast:
1 snow
2 more snow
3 sleet
4 freezing rain
5 rain
6 fog
7 hail

The Python Standard Library
One of Python’s prominent claims is that it has “batteries included”—a large standard
library of modules that perform many useful tasks, and are kept separate to avoid
bloating the core language. When you’re about to write some Python code, it’s often
worthwhile to first check whether there’s a standard module that already does what
you want. It’s surprising how often you encounter little gems in the standard library.
Python also provides authoritative documentation for the modules, along with a tuto‐
rial. Doug Hellmann’s website Python Module of the Week and his book The Python
Standard Library by Example (Addison-Wesley Professional) are also very useful
guides.

Upcoming chapters in this book feature many of the standard modules that are spe‐
cific to the Web, systems, databases, and so on. In this section, I’ll talk about some
standard modules that have generic uses.

Handle Missing Keys with setdefault() and defaultdict()
You’ve seen that trying to access a dictionary with a nonexistent key raises an excep‐
tion. Using the dictionary get() function to return a default value avoids an excep‐

116 | Chapter 5: Py Boxes: Modules, Packages, and Programs

http://docs.python.org/3/library
http://bit.ly/library-tour
http://bit.ly/library-tour
http://bit.ly/py-motw
http://bit.ly/py-libex
http://bit.ly/py-libex

tion. The setdefault() function is like get(), but also assigns an item to the
dictionary if the key is missing:

>>> periodic_table = {'Hydrogen': 1, 'Helium': 2}
>>> print(periodic_table)
{'Helium': 2, 'Hydrogen': 1}

If the key was not already in the dictionary, the new value is used:

>>> carbon = periodic_table.setdefault('Carbon', 12)
>>> carbon
12
>>> periodic_table
{'Helium': 2, 'Carbon': 12, 'Hydrogen': 1}

If we try to assign a different default value to an existing key, the original value is
returned and nothing is changed:

>>> helium = periodic_table.setdefault('Helium', 947)
>>> helium
2
>>> periodic_table
{'Helium': 2, 'Carbon': 12, 'Hydrogen': 1}

defaultdict() is similar, but specifies the default value for any new key up front,
when the dictionary is created. Its argument is a function. In this example, we pass
the function int, which will be called as int() and return the integer 0:

>>> from collections import defaultdict
>>> periodic_table = defaultdict(int)

Now, any missing value will be an integer (int), with the value 0:

>>> periodic_table['Hydrogen'] = 1
>>> periodic_table['Lead']
0
>>> periodic_table
defaultdict(<class 'int'>, {'Lead': 0, 'Hydrogen': 1})

The argument to defaultdict() is a function that returns the value to be assigned to
a missing key. In the following example, no_idea() is executed to return a value
when needed:

>>> from collections import defaultdict
>>>
>>> def no_idea():
... return 'Huh?'
...
>>> bestiary = defaultdict(no_idea)
>>> bestiary['A'] = 'Abominable Snowman'
>>> bestiary['B'] = 'Basilisk'
>>> bestiary['A']
'Abominable Snowman'
>>> bestiary['B']

The Python Standard Library | 117

'Basilisk'
>>> bestiary['C']
'Huh?'

You can use the functions int(), list(), or dict() to return default empty values for
those types: int() returns 0, list() returns an empty list ([]), and dict() returns an
empty dictionary ({}). If you omit the argument, the initial value of a new key will be
set to None.

By the way, you can use lambda to define your default-making function right inside
the call:

>>> bestiary = defaultdict(lambda: 'Huh?')
>>> bestiary['E']
'Huh?'

Using int is one way to make your own counter:

>>> from collections import defaultdict
>>> food_counter = defaultdict(int)
>>> for food in ['spam', 'spam', 'eggs', 'spam']:
... food_counter[food] += 1
...
>>> for food, count in food_counter.items():
... print(food, count)
...
eggs 1
spam 3

In the preceding example, if food_counter had been a normal dictionary instead of a
defaultdict, Python would have raised an exception every time we tried to incre‐
ment the dictionary element food_counter[food] because it would not have been
initialized. We would have needed to do some extra work, as shown here:

>>> dict_counter = {}
>>> for food in ['spam', 'spam', 'eggs', 'spam']:
... if not food in dict_counter:
... dict_counter[food] = 0
... dict_counter[food] += 1
...
>>> for food, count in dict_counter.items():
... print(food, count)
...
spam 3
eggs 1

Count Items with Counter()
Speaking of counters, the standard library has one that does the work of the previous
example and more:

118 | Chapter 5: Py Boxes: Modules, Packages, and Programs

>>> from collections import Counter
>>> breakfast = ['spam', 'spam', 'eggs', 'spam']
>>> breakfast_counter = Counter(breakfast)
>>> breakfast_counter
Counter({'spam': 3, 'eggs': 1})

The most_common() function returns all elements in descending order, or just the top
count elements if given a count:

>>> breakfast_counter.most_common()
[('spam', 3), ('eggs', 1)]
>>> breakfast_counter.most_common(1)
[('spam', 3)]

You can combine counters. First, let’s see again what’s in breakfast_counter:

>>> breakfast_counter
>>> Counter({'spam': 3, 'eggs': 1})

This time, we’ll make a new list called lunch, and a counter called lunch_counter:

>>> lunch = ['eggs', 'eggs', 'bacon']
>>> lunch_counter = Counter(lunch)
>>> lunch_counter
Counter({'eggs': 2, 'bacon': 1})

The first way we combine the two counters is by addition, using +:

>>> breakfast_counter + lunch_counter
Counter({'spam': 3, 'eggs': 3, 'bacon': 1})

As you might expect, you subtract one counter from another by using -. What’s for
breakfast but not for lunch?

>>> breakfast_counter - lunch_counter
Counter({'spam': 3})

Okay, now what can we have for lunch that we can’t have for breakfast?

>>> lunch_counter - breakfast_counter
Counter({'bacon': 1, 'eggs': 1})

Similar to sets in Chapter 4, you can get common items by using the intersection
operator &:

>>> breakfast_counter & lunch_counter
Counter({'eggs': 1})

The intersection picked the common element ('eggs') with the lower count. This
makes sense: breakfast only offered one egg, so that’s the common count.

Finally, you can get all items by using the union operator |:

>>> breakfast_counter | lunch_counter
Counter({'spam': 3, 'eggs': 2, 'bacon': 1})

The Python Standard Library | 119

The item 'eggs' was again common to both. Unlike addition, union didn’t add their
counts, but picked the one with the larger count.

Order by Key with OrderedDict()
Many of the code examples in the early chapters of this book demonstrate that the
order of keys in a dictionary is not predictable: you might add keys a, b, and c in that
order, but keys() might return c, a, b. Here’s a repurposed example from Chapter 1:

>>> quotes = {
... 'Moe': 'A wise guy, huh?',
... 'Larry': 'Ow!',
... 'Curly': 'Nyuk nyuk!',
... }
>>> for stooge in quotes:
... print(stooge)
...
Larry
Curly
Moe

An OrderedDict() remembers the order of key addition and returns them in the
same order from an iterator. Try creating an OrderedDict from a sequence of (key,
value) tuples:

>>> from collections import OrderedDict
>>> quotes = OrderedDict([
... ('Moe', 'A wise guy, huh?'),
... ('Larry', 'Ow!'),
... ('Curly', 'Nyuk nyuk!'),
...])
>>>
>>> for stooge in quotes:
... print(stooge)
...
Moe
Larry
Curly

Stack + Queue == deque
A deque (pronounced deck) is a double-ended queue, which has features of both a
stack and a queue. It’s useful when you want to add and delete items from either end
of a sequence. Here, we’ll work from both ends of a word to the middle to see if it’s a
palindrome. The function popleft() removes the leftmost item from the deque and
returns it; pop() removes the rightmost item and returns it. Together, they work from
the ends toward the middle. As long as the end characters match, it keeps popping
until it reaches the middle:

120 | Chapter 5: Py Boxes: Modules, Packages, and Programs

>>> def palindrome(word):
... from collections import deque
... dq = deque(word)
... while len(dq) > 1:
... if dq.popleft() != dq.pop():
... return False
... return True
...
...
>>> palindrome('a')
True
>>> palindrome('racecar')
True
>>> palindrome('')
True
>>> palindrome('radar')
True
>>> palindrome('halibut')
False

I used this as a simple illustration of deques. If you really wanted a quick palindrome
checker, it would be a lot simpler to just compare a string with its reverse. Python
doesn’t have a reverse() function for strings, but it does have a way to reverse a
string with a slice, as illustrated here:

>>> def another_palindrome(word):
... return word == word[::-1]
...
>>> another_palindrome('radar')
True
>>> another_palindrome('halibut')
False

Iterate over Code Structures with itertools
itertools contains special-purpose iterator functions. Each returns one item at a
time when called within a for … in loop, and remembers its state between calls.

chain() runs through its arguments as though they were a single iterable:

>>> import itertools
>>> for item in itertools.chain([1, 2], ['a', 'b']):
... print(item)
...
1
2
a
b

cycle() is an infinite iterator, cycling through its arguments:

The Python Standard Library | 121

http://bit.ly/py-itertools

>>> import itertools
>>> for item in itertools.cycle([1, 2]):
... print(item)
...
1
2
1
2
.
.
.

…and so on.

accumulate() calculates accumulated values. By default, it calculates the sum:

>>> import itertools
>>> for item in itertools.accumulate([1, 2, 3, 4]):
... print(item)
...
1
3
6
10

You can provide a function as the second argument to accumulate(), and it will be
used instead of addition. The function should take two arguments and return a single
result. This example calculates an accumulated product:

>>> import itertools
>>> def multiply(a, b):
... return a * b
...
>>> for item in itertools.accumulate([1, 2, 3, 4], multiply):
... print(item)
...
1
2
6
24

The itertools module has many more functions, notably some for combinations
and permutations that can be time savers when the need arises.

Print Nicely with pprint()
All of our examples have used print() (or just the variable name, in the interactive
interpreter) to print things. Sometimes, the results are hard to read. We need a pretty
printer such as pprint():

>>> from pprint import pprint
>>> quotes = OrderedDict([

122 | Chapter 5: Py Boxes: Modules, Packages, and Programs

... ('Moe', 'A wise guy, huh?'),

... ('Larry', 'Ow!'),

... ('Curly', 'Nyuk nyuk!'),

...])
>>>

Plain old print() just dumps things out there:

>>> print(quotes)
OrderedDict([('Moe', 'A wise guy, huh?'), ('Larry', 'Ow!'), ('Curly', 'Nyuk nyuk!')])

However, pprint() tries to align elements for better readability:

>>> pprint(quotes)
{'Moe': 'A wise guy, huh?',
 'Larry': 'Ow!',
 'Curly': 'Nyuk nyuk!'}

More Batteries: Get Other Python Code
Sometimes, the standard library doesn’t have what you need, or doesn’t do it in quite
the right way. There’s an entire world of open-source, third-party Python software.
Good resources include:

• PyPi (also known as the Cheese Shop, after an old Monty Python skit)
• github
• readthedocs

You can find many smaller code examples at activestate.

Almost all of the Python code in this book uses the standard Python installation on
your computer, which includes all the built-ins and the standard library. External
packages are featured in some places: I mentioned requests in Chapter 1, and have
more details in “Beyond the Standard Library: Requests” on page 229. Appendix D
shows how to install third-party Python software, along with many other nuts-and-
bolts development details.

Things to Do
5.1. Create a file called zoo.py. In it, define a function called hours() that prints the
string 'Open 9-5 daily'. Then, use the interactive interpreter to import the zoo
module and call its hours() function.

5.2. In the interactive interpreter, import the zoo module as menagerie and call its
hours() function.

More Batteries: Get Other Python Code | 123

http://pypi.python.org
https://github.com/Python
https://readthedocs.org/
http://code.activestate.com/recipes/langs/python/

5.3. Staying in the interpreter, import the hours() function from zoo directly and
call it.

5.4. Import the hours() function as info and call it.

5.5. Make a dictionary called plain with the key-value pairs 'a': 1, 'b': 2, and
'c': 3, and then print it.

5.6. Make an OrderedDict called fancy from the same pairs listed in 5.5 and print it.
Did it print in the same order as plain?

5.7. Make a defaultdict called dict_of_lists and pass it the argument list. Make
the list dict_of_lists['a'] and append the value 'something for a' to it in one
assignment. Print dict_of_lists['a'].

124 | Chapter 5: Py Boxes: Modules, Packages, and Programs

CHAPTER 6

Oh Oh: Objects and Classes

No object is mysterious. The mystery is your eye.
—Elizabeth Bowen

Take an object. Do something to it. Do something else to it.
—Jasper Johns

Up to this point, you’ve seen data structures such as strings and dictionaries, and code
structures such as functions and modules. In this chapter, you’ll deal with custom
data structures: objects.

What Are Objects?
As I mention in Chapter 2, everything in Python, from numbers to modules, is an
object. However, Python hides most of the object machinery by means of special syn‐
tax. You can type num = 7 to create a object of type integer with the value 7, and
assign an object reference to the name num. The only time you need to look inside
objects is when you want to make your own or modify the behavior of existing
objects. You’ll see how to do both in this chapter.

An object contains both data (variables, called attributes) and code (functions, called
methods). It represents a unique instance of some concrete thing. For example, the
integer object with the value 7 is an object that facilitates methods such as addition
and multiplication, as is demonstrated in “Numbers” on page 21. 8 is a different
object. This means there’s an Integer class in Python, to which both 7 and 8 belong.
The strings 'cat' and 'duck' are also objects in Python, and have string methods
that you’ve seen, such as capitalize() and replace().

When you create new objects no one has ever created before, you must create a class
that indicates what they contain.

125

Think of objects as nouns and their methods as verbs. An object represents an indi‐
vidual thing, and its methods define how it interacts with other things.

Unlike modules, you can have multiple objects at the same time, each one with differ‐
ent values for its attributes. They’re like super data structures, with code thrown in.

Define a Class with class
In Chapter 1, I compare an object to a plastic box. A class is like the mold that makes
that box. For instance, a String is the built-in Python class that makes string objects
such as 'cat' and 'duck'. Python has many other built-in classes to create the other
standard data types, including lists, dictionaries, and so on. To create your own cus‐
tom object in Python, you first need to define a class by using the class keyword.
Let’s walk through a simple example.

Suppose that you want to define objects to represent information about people. Each
object will represent one person. You’ll first want to define a class called Person as the
mold. In the examples that follow, we’ll try more than one version of this class as we
build up from the simplest class to ones that actually do something useful.

Our first try is the simplest possible class, an empty one:

>>> class Person():
... pass

Just as with functions, we needed to say pass to indicate that this class was empty.
This definition is the bare minimum to create an object. You create an object from a
class by calling the class name as though it were a function:

>>> someone = Person()

In this case, Person() creates an individual object from the Person class and assigns
it the name someone. But, our Person class was empty, so the someone object that we
create from it just sits there and can’t do anything else. You would never actually
define such a class, and I’m only showing it here to build up to the next example.

Let’s try again, this time including the special Python object initialization method
__init__:

>>> class Person():
... def __init__(self):
... pass

This is what you’ll see in real Python class definitions. I admit that the __init__()
and self look strange. __init__() is the special Python name for a method that

126 | Chapter 6: Oh Oh: Objects and Classes

1 You’ll see many examples of double underscores in Python names; to save syllables, some people pronounce
them as dunder.

initializes an individual object from its class definition. 1 The self argument specifies
that it refers to the individual object itself.

When you define __init__() in a class definition, its first parameter should be self.
Although self is not a reserved word in Python, it’s common usage. No one reading
your code later (including you!) will need to guess what you meant if you use self.

But even that second Person definition didn’t create an object that really did any‐
thing. The third try is the charm that really shows how to create a simple object in
Python. This time, we’ll add the parameter name to the initialization method:

>>> class Person():
... def __init__(self, name):
... self.name = name
...
>>>

Now, we can create an object from the Person class by passing a string for the name
parameter:

>>> hunter = Person('Elmer Fudd')

Here’s what this line of code does:

• Looks up the definition of the Person class
• Instantiates (creates) a new object in memory
• Calls the object’s __init__ method, passing this newly-created object as self and

the other argument ('Elmer Fudd') as name
• Stores the value of name in the object
• Returns the new object
• Attaches the name hunter to the object

This new object is like any other object in Python. You can use it as an element of a
list, tuple, dictionary, or set. You can pass it to a function as an argument, or return it
as a result.

What about the name value that we passed in? It was saved with the object as an
attribute. You can read and write it directly:

>>> print('The mighty hunter: ', hunter.name)
The mighty hunter: Elmer Fudd

Define a Class with class | 127

Remember, inside the Person class definition, you access the name attribute as
self.name. When you create an actual object such as hunter, you refer to it as
hunter.name.

It is not necessary to have an __init__ method in every class definition; it’s used to
do anything that’s needed to distinguish this object from others created from the
same class.

Inheritance
When you’re trying to solve some coding problem, often you’ll find an existing class
that creates objects that do almost what you need. What can you do? You could mod‐
ify this old class, but you’ll make it more complicated, and you might break some‐
thing that used to work.

Of course, you could write a new class, cutting and pasting from the old one and
merging your new code. But this means that you have more code to maintain, and the
parts of the old and new classes that used to work the same might drift apart because
they’re now in separate places.

The solution is inheritance: creating a new class from an existing class but with some
additions or changes. It’s an excellent way to reuse code. When you use inheritance,
the new class can automatically use all the code from the old class but without copy‐
ing any of it.

You define only what you need to add or change in the new class, and this overrides
the behavior of the old class. The original class is called a parent, superclass, or base
class; the new class is called a child, subclass, or derived class. These terms are inter‐
changeable in object-oriented programming.

So, let’s inherit something. We’ll define an empty class called Car. Next, define a sub‐
class of Car called Yugo. You define a subclass by using the same class keyword but
with the parent class name inside the parentheses (class Yugo(Car) below):

>>> class Car():
... pass
...
>>> class Yugo(Car):
... pass
...

Next, create an object from each class:

>>> give_me_a_car = Car()
>>> give_me_a_yugo = Yugo()

A child class is a specialization of a parent class; in object-oriented lingo, Yugo is-a
Car. The object named give_me_a_yugo is an instance of class Yugo, but it also inher‐

128 | Chapter 6: Oh Oh: Objects and Classes

its whatever a Car can do. In this case, Car and Yugo are as useful as deckhands on a
submarine, so let’s try new class definitions that actually do something:

>>> class Car():
... def exclaim(self):
... print("I'm a Car!")
...
>>> class Yugo(Car):
... pass
...

Finally, make one object from each class and call the exclaim method:

>>> give_me_a_car = Car()
>>> give_me_a_yugo = Yugo()
>>> give_me_a_car.exclaim()
I'm a Car!
>>> give_me_a_yugo.exclaim()
I'm a Car!

Without doing anything special, Yugo inherited the exclaim() method from Car. In
fact, Yugo says that it is a Car, which might lead to an identity crisis. Let’s see what we
can do about that.

Override a Method
As you just saw, a new class initially inherits everything from its parent class. Moving
forward, you’ll see how to replace or override a parent method. Yugo should probably
be different from Car in some way; otherwise, what’s the point of defining a new
class? Let’s change how the exclaim() method works for a Yugo:

>>> class Car():
... def exclaim(self):
... print("I'm a Car!")
...
>>> class Yugo(Car):
... def exclaim(self):
... print("I'm a Yugo! Much like a Car, but more Yugo-ish.")
...

Now, make two objects from these classes:

>>> give_me_a_car = Car()
>>> give_me_a_yugo = Yugo()

What do they say?

>>> give_me_a_car.exclaim()
I'm a Car!
>>> give_me_a_yugo.exclaim()
I'm a Yugo! Much like a Car, but more Yugo-ish.

Override a Method | 129

In these examples, we overrode the exclaim() method. We can override any meth‐
ods, including __init__(). Here’s another example that uses our earlier Person class.
Let’s make subclasses that represent doctors (MDPerson) and lawyers (JDPerson):

>>> class Person():
... def __init__(self, name):
... self.name = name
...
>>> class MDPerson(Person):
... def __init__(self, name):
... self.name = "Doctor " + name
...
>>> class JDPerson(Person):
... def __init__(self, name):
... self.name = name + ", Esquire"
...

In these cases, the initialization method __init__() takes the same arguments as the
parent Person class but stores the value of name differently inside the object instance:

>>> person = Person('Fudd')
>>> doctor = MDPerson('Fudd')
>>> lawyer = JDPerson('Fudd')
>>> print(person.name)
Fudd
>>> print(doctor.name)
Doctor Fudd
>>> print(lawyer.name)
Fudd, Esquire

Add a Method
The child class can also add a method that was not present in its parent class. Going
back to classes Car and Yugo, we’ll define the new method need_a_push() for class
Yugo only:

>>> class Car():
... def exclaim(self):
... print("I'm a Car!")
...
>>> class Yugo(Car):
... def exclaim(self):
... print("I'm a Yugo! Much like a Car, but more Yugo-ish.")
... def need_a_push(self):
... print("A little help here?")
...

Next, make a Car and a Yugo:

>>> give_me_a_car = Car()
>>> give_me_a_yugo = Yugo()

130 | Chapter 6: Oh Oh: Objects and Classes

A Yugo object can react to a need_a_push() method call:

>>> give_me_a_yugo.need_a_push()
A little help here?

But a generic Car object cannot:

>>> give_me_a_car.need_a_push()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Car' object has no attribute 'need_a_push'

At this point, a Yugo can do something that a Car cannot, and the distinct personality
of a Yugo can emerge.

Get Help from Your Parent with super
We saw how the child class could add or override a method from the parent. What if
it wanted to call that parent method? “I’m glad you asked,” says super(). We’ll define
a new class called EmailPerson that represents a Person with an email address. First,
our familiar Person definition:

>>> class Person():
... def __init__(self, name):
... self.name = name
...

Notice that the __init__() call in the following subclass has an additional email
parameter:

>>> class EmailPerson(Person):
... def __init__(self, name, email):
... super().__init__(name)
... self.email = email

When you define an __init__() method for your class, you’re replacing the
__init__() method of its parent class, and the latter is not called automatically any‐
more. As a result, we need to call it explicitly. Here’s what’s happening:

• The super() gets the definition of the parent class, Person.
• The __init__() method calls the Person.__init__() method. It takes care of

passing the self argument to the superclass, so you just need to give it any
optional arguments. In our case, the only other argument Person() accepts is
name.

• The self.email = email line is the new code that makes this EmailPerson dif‐
ferent from a Person.

Moving on, let’s make one of these creatures:

Get Help from Your Parent with super | 131

>>> bob = EmailPerson('Bob Frapples', 'bob@frapples.com')

We should be able to access both the name and email attributes:

>>> bob.name
'Bob Frapples'
>>> bob.email
'bob@frapples.com'

Why didn’t we just define our new class as follows?

>>> class EmailPerson(Person):
... def __init__(self, name, email):
... self.name = name
... self.email = email

We could have done that, but it would have defeated our use of inheritance. We used
super() to make Person do its work, the same as a plain Person object would. There’s
another benefit: if the definition of Person changes in the future, using super() will
ensure that the attributes and methods that EmailPerson inherits from Person will
reflect the change.

Use super() when the child is doing something its own way but still needs something
from the parent (as in real life).

In self Defense
One criticism of Python (besides the use of whitespace) is the need to include self as
the first argument to instance methods (the kind of method you’ve seen in the previ‐
ous examples). Python uses the self argument to find the right object’s attributes and
methods. For an example, I’ll show how you would call an object’s method, and what
Python actually does behind the scenes.

Remember class Car from earlier examples? Let’s call its exclaim() method again:

>>> car = Car()
>>> car.exclaim()
I'm a Car!

Here’s what Python actually does, under the hood:

• Look up the class (Car) of the object car.
• Pass the object car to the exclaim() method of the Car class as the self parame‐

ter.

Just for fun, you can even run it this way yourself and it will work the same as the
normal (car.exclaim()) syntax:

>>> Car.exclaim(car)
I'm a Car!

132 | Chapter 6: Oh Oh: Objects and Classes

However, there’s never a reason to use that lengthier style.

Get and Set Attribute Values with Properties
Some object-oriented languages support private object attributes that can’t be
accessed directly from the outside; programmers often need to write getter and setter
methods to read and write the values of such private attributes.

Python doesn’t need getters or setters, because all attributes and methods are public,
and you’re expected to behave yourself. If direct access to attributes makes you nerv‐
ous, you can certainly write getters and setters. But be Pythonic—use properties.

In this example, we’ll define a Duck class with a single attribute called hidden_name.
(In the next section, I’ll show you a better way to name attributes that you want to
keep private.) We don’t want people to access this directly, so we’ll define two meth‐
ods: a getter (get_name()) and a setter (set_name()). I’ve added a print() statement
to each method to show when it’s being called. Finally, we define these methods as
properties of the name attribute:

>>> class Duck():
... def __init__(self, input_name):
... self.hidden_name = input_name
... def get_name(self):
... print('inside the getter')
... return self.hidden_name
... def set_name(self, input_name):
... print('inside the setter')
... self.hidden_name = input_name
... name = property(get_name, set_name)

The new methods act as normal getters and setters until that last line; it defines the
two methods as properties of the attribute called name. The first argument to prop
erty() is the getter method, and the second is the setter. Now, when you refer to the
name of any Duck object, it actually calls the get_name() method to return it:

>>> fowl = Duck('Howard')
>>> fowl.name
inside the getter
'Howard'

You can still call get_name() directly, too, like a normal getter method:

>>> fowl.get_name()
inside the getter
'Howard'

When you assign a value to the name attribute, the set_name() method will be called:

>>> fowl.name = 'Daffy'
inside the setter

Get and Set Attribute Values with Properties | 133

>>> fowl.name
inside the getter
'Daffy'

You can still call the set_name() method directly:

>>> fowl.set_name('Daffy')
inside the setter
>>> fowl.name
inside the getter
'Daffy'

Another way to define properties is with decorators. In this next example, we’ll define
two different methods, each called name() but preceded by different decorators:

• @property, which goes before the getter method
• @name.setter, which goes before the setter method

Here’s how they actually look in the code:

>>> class Duck():
... def __init__(self, input_name):
... self.hidden_name = input_name
... @property
... def name(self):
... print('inside the getter')
... return self.hidden_name
... @name.setter
... def name(self, input_name):
... print('inside the setter')
... self.hidden_name = input_name

You can still access name as though it were an attribute, but there are no visible
get_name() or set_name() methods:

>>> fowl = Duck('Howard')
>>> fowl.name
inside the getter
'Howard'
>>> fowl.name = 'Donald'
inside the setter
>>> fowl.name
inside the getter
'Donald'

If anyone guessed that we called our attribute hidden_name, they
could still read and write it directly as fowl.hidden_name. In the
next section, you’ll see how Python provides a special way to name
private attributes.

134 | Chapter 6: Oh Oh: Objects and Classes

In both of the previous examples, we used the name property to refer to a single
attribute (ours was called hidden_name) stored within the object. A property can refer
to a computed value, as well. Let’s define a Circle class that has a radius attribute and
a computed diameter property:

>>> class Circle():
... def __init__(self, radius):
... self.radius = radius
... @property
... def diameter(self):
... return 2 * self.radius
...

We create a Circle object with an initial value for its radius:

>>> c = Circle(5)
>>> c.radius
5

We can refer to diameter as if it were an attribute such as radius:

>>> c.diameter
10

Here’s the fun part: we can change the radius attribute at any time, and the diameter
property will be computed from the current value of radius:

>>> c.radius = 7
>>> c.diameter
14

If you don’t specify a setter property for an attribute, you can’t set it from the outside.
This is handy for read-only attributes:

>>> c.diameter = 20
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

There’s one more big advantage of using a property over direct attribute access: if you
ever change the definition of the attribute, you only need to fix the code within the
class definition, not in all the callers.

Name Mangling for Privacy
In the Duck class example in the previous section, we called our (not completely) hid‐
den attribute hidden_name. Python has a naming convention for attributes that
should not be visible outside of their class definition: begin by using with two under‐
scores (__).

Let’s rename hidden_name to __name, as demonstrated here:

Name Mangling for Privacy | 135

>>> class Duck():
... def __init__(self, input_name):
... self.__name = input_name
... @property
... def name(self):
... print('inside the getter')
... return self.__name
... @name.setter
... def name(self, input_name):
... print('inside the setter')
... self.__name = input_name
...

Take a moment to see if everything still works:

>>> fowl = Duck('Howard')
>>> fowl.name
inside the getter
'Howard'
>>> fowl.name = 'Donald'
inside the setter
>>> fowl.name
inside the getter
'Donald'

Looks good. And, you can’t access the __name attribute:

>>> fowl.__name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Duck' object has no attribute '__name'

This naming convention doesn’t make it private, but Python does mangle the name to
make it unlikely for external code to stumble upon it. If you’re curious and promise
not to tell everyone, here’s what it becomes:

>>> fowl._Duck__name
'Donald'

Notice that it didn’t print inside the getter. Although this isn’t perfect protection,
name mangling discourages accidental or intentional direct access to the attribute.

Method Types
Some data (attributes) and functions (methods) are part of the class itself, and some
are part of the objects that are created from that class.

When you see an initial self argument in methods within a class definition, it’s an
instance method. These are the types of methods that you would normally write when
creating your own classes. The first parameter of an instance method is self, and
Python passes the object to the method when you call it.

136 | Chapter 6: Oh Oh: Objects and Classes

In contrast, a class method affects the class as a whole. Any change you make to the
class affects all of its objects. Within a class definition, a preceding @classmethod dec‐
orator indicates that that following function is a class method. Also, the first parame‐
ter to the method is the class itself. The Python tradition is to call the parameter cls,
because class is a reserved word and can’t be used here. Let’s define a class method
for A that counts how many object instances have been made from it:

>>> class A():
... count = 0
... def __init__(self):
... A.count += 1
... def exclaim(self):
... print("I'm an A!")
... @classmethod
... def kids(cls):
... print("A has", cls.count, "little objects.")
...
>>>
>>> easy_a = A()
>>> breezy_a = A()
>>> wheezy_a = A()
>>> A.kids()
A has 3 little objects.

Notice that we referred to A.count (the class attribute) rather than self.count
(which would be an object instance attribute). In the kids() method, we used
cls.count, but we could just as well have used A.count.

A third type of method in a class definition affects neither the class nor its objects; it’s
just in there for convenience instead of floating around on its own. It’s a static method,
preceded by a @staticmethod decorator, with no initial self or class parameter.
Here’s an example that serves as a commercial for the class CoyoteWeapon:

>>> class CoyoteWeapon():
... @staticmethod
... def commercial():
... print('This CoyoteWeapon has been brought to you by Acme')
...
>>>
>>> CoyoteWeapon.commercial()
This CoyoteWeapon has been brought to you by Acme

Notice that we didn’t need to create an object from class CoyoteWeapon to access this
method. Very class-y.

Duck Typing
Python has a loose implementation of polymorphism; this means that it applies the
same operation to different objects, regardless of their class.

Duck Typing | 137

Let’s use the same __init__() initializer for all three Quote classes now, but add two
new functions:

• who() just returns the value of the saved person string
• says() returns the saved words string with the specific punctuation

And here they are in action:

>>> class Quote():
... def __init__(self, person, words):
... self.person = person
... self.words = words
... def who(self):
... return self.person
... def says(self):
... return self.words + '.'
...
>>> class QuestionQuote(Quote):
... def says(self):
... return self.words + '?'
...
>>> class ExclamationQuote(Quote):
... def says(self):
... return self.words + '!'
...
>>>

We didn’t change how QuestionQuote or ExclamationQuote were initialized, so we
didn’t override their __init__() methods. Python then automatically calls the
__init__() method of the parent class Quote to store the instance variables person
and words. That’s why we can access self.words in objects created from the sub‐
classes QuestionQuote and ExclamationQuote.

Next up, let’s make some objects:

>>> hunter = Quote('Elmer Fudd', "I'm hunting wabbits")
>>> print(hunter.who(), 'says:', hunter.says())
Elmer Fudd says: I'm hunting wabbits.

>>> hunted1 = QuestionQuote('Bugs Bunny', "What's up, doc")
>>> print(hunted1.who(), 'says:', hunted1.says())
Bugs Bunny says: What's up, doc?

>>> hunted2 = ExclamationQuote('Daffy Duck', "It's rabbit season")
>>> print(hunted2.who(), 'says:', hunted2.says())
Daffy Duck says: It's rabbit season!

Three different versions of the says() method provide different behavior for the
three classes. This is traditional polymorphism in object-oriented languages. Python
goes a little further and lets you run the who() and says() methods of any objects

138 | Chapter 6: Oh Oh: Objects and Classes

that have them. Let’s define a class called BabblingBrook that has no relation to our
previous woodsy hunter and huntees (descendants of the Quote class):

>>> class BabblingBrook():
... def who(self):
... return 'Brook'
... def says(self):
... return 'Babble'
...
>>> brook = BabblingBrook()

Now, run the who() and says() methods of various objects, one (brook) completely
unrelated to the others:

>>> def who_says(obj):
... print(obj.who(), 'says', obj.says())
...
>>> who_says(hunter)
Elmer Fudd says I'm hunting wabbits.
>>> who_says(hunted1)
Bugs Bunny says What's up, doc?
>>> who_says(hunted2)
Daffy Duck says It's rabbit season!
>>> who_says(brook)
Brook says Babble

This behavior is sometimes called duck typing, after the old saying:
If it walks like a duck and quacks like a duck, it’s a duck.

—A Wise Person

Special Methods
You can now create and use basic objects, but now let’s go a bit deeper and do more.

When you type something such as a = 3 + 8, how do the integer objects with values
3 and 8 know how to implement +? Also, how does a know how to use = to get the
result? You can get at these operators by using Python’s special methods (you might
also see them called magic methods). You don’t need Gandalf to perform any magic,
and they’re not even complicated.

The names of these methods begin and end with double underscores (__). You’ve
already seen one: __init__ initializes a newly created object from its class definition
and any arguments that were passed in.

Suppose that you have a simple Word class, and you want an equals() method that
compares two words but ignores case. That is, a Word containing the value 'ha'
would be considered equal to one containing 'HA'.

Special Methods | 139

The example that follows is a first attempt, with a normal method we’re calling
equals(). self.text is the text string that this Word object contains, and the
equals() method compares it with the text string of word2 (another Word object):

>>> class Word():
... def __init__(self, text):
... self.text = text
...
... def equals(self, word2):
... return self.text.lower() == word2.text.lower()
...

Then, make three Word objects from three different text strings:

>>> first = Word('ha')
>>> second = Word('HA')
>>> third = Word('eh')

When strings 'ha' and 'HA' are compared to lowercase, they should be equal:

>>> first.equals(second)
True

But the string 'eh' will not match 'ha':

>>> first.equals(third)
False

We defined the method equals() to do this lowercase conversion and comparison. It
would be nice to just say if first == second, just like Python’s built-in types. So,
let’s do that. We change the equals() method to the special name __eq__() (you’ll
see why in a moment):

>>> class Word():
... def __init__(self, text):
... self.text = text
... def __eq__(self, word2):
... return self.text.lower() == word2.text.lower()
...

Let’s see if it works:

>>> first = Word('ha')
>>> second = Word('HA')
>>> third = Word('eh')
>>> first == second
True
>>> first == third
False

Magic! All we needed was the Python’s special method name for testing equality,
__eq__(). Tables 6-1 and 6-2 list the names of the most useful magic methods.

140 | Chapter 6: Oh Oh: Objects and Classes

Table 6-1. Magic methods for comparison

__eq__(self, other) self == other

__ne__(self, other) self != other

__lt__(self, other) self < other

__gt__(self, other) self > other

__le__(self, other) self <= other

__ge__(self, other) self >= other

Table 6-2. Magic methods for math

__add__(self, other) self + other

__sub__(self, other) self - other

__mul__(self, other) self * other

__floordiv__(self, other) self // other

__truediv__(self, other) self / other

__mod__(self, other) self % other

__pow__(self, other) self ** other

You aren’t restricted to use the math operators such as + (magic method __add__())
and - (magic method __sub__()) with numbers. For instance, Python string objects
use + for concatenation and * for duplication. There are many more, documented
online at Special method names. The most common among them are presented in
Table 6-3.

Table 6-3. Other, miscellaneous magic methods

__str__(self) str(self)

__repr__(self) repr(self)

__len__(self) len(self)

Special Methods | 141

http://bit.ly/pydocs-smn

Besides __init__(), you might find yourself using __str__() the most in your own
methods. It’s how you print your object. It’s used by print(), str(), and the string
formatters that you can read about in Chapter 7. The interactive interpreter uses the
__repr__() function to echo variables to output. If you fail to define either
__str__() or __repr__(), you get Python’s default string version of your object:

>>> first = Word('ha')
>>> first
<__main__.Word object at 0x1006ba3d0>
>>> print(first)
<__main__.Word object at 0x1006ba3d0>

Let’s add both __str__() and __repr__() methods to the Word class to make it pret‐
tier:

>>> class Word():
... def __init__(self, text):
... self.text = text
... def __eq__(self, word2):
... return self.text.lower() == word2.text.lower()
... def __str__(self):
... return self.text
... def __repr__(self):
... return 'Word("' self.text '")'
...
>>> first = Word('ha')
>>> first # uses __repr__
Word("ha")
>>> print(first) # uses __str__
ha

To explore even more special methods, check out the Python documentation.

Aggregation and Composition
Inheritance is a good technique to use when you want a child class to act like its par‐
ent class most of the time (when child is-a parent). It’s tempting to build elaborate
inheritance hierarchies, but sometimes composition or aggregation make more sense.
What’s the difference? In composition, one thing is part of another. A duck is-a bird
(inheritance), but has-a tail (composition). A tail is not a kind of duck, but part of a
duck. In this next example, let’s make bill and tail objects and provide them to a
new duck object:

>>> class Bill():
... def __init__(self, description):
... self.description = description
...
>>> class Tail():
... def __init__(self, length):
... self.length = length

142 | Chapter 6: Oh Oh: Objects and Classes

http://bit.ly/pydocs-smn

...
>>> class Duck():
... def __init__(self, bill, tail):
... self.bill = bill
... self.tail = tail
... def about(self):
... print('This duck has a', self.bill.description,
... 'bill and a', self.tail.length, 'tail')
...
>>> a_tail = Tail('long')
>>> a_bill = Bill('wide orange')
>>> duck = Duck(a_bill, a_tail)
>>> duck.about()
This duck has a wide orange bill and a long tail

Aggregation expresses relationships, but is a little looser: one thing uses another, but
both exist independently. A duck uses a lake, but one is not a part of the other.

When to Use Classes and Objects versus Modules
Here are some guidelines for deciding whether to put your code in a class or a mod‐
ule:

• Objects are most useful when you need a number of individual instances that
have similar behavior (methods), but differ in their internal states (attributes).

• Classes support inheritance, modules don’t.
• If you want only one of something, a module might be best. No matter how many

times a Python module is referenced in a program, only one copy is loaded. (Java
and C++ programmers: if you’re familiar with the book Design Patterns: Elements
of Reusable Object-Oriented Software by Erich Gamma, you can use a Python
module as a singleton.)

• If you have a number of variables that contain multiple values and can be passed
as arguments to multiple functions, it might be better to define them as classes.
For example, you might use a dictionary with keys such as size and color to
represent a color image. You could create a different dictionary for each image in
your program, and pass them as arguments to functions such as scale() or
transform(). This can get messy as you add keys and functions. It’s more coher‐
ent to define an Image class with attributes size or color and methods scale()
and transform(). Then, all the data and methods for a color image are defined in
one place.

• Use the simplest solution to the problem. A dictionary, list, or tuple is simpler,
smaller, and faster than a module, which is usually simpler than a class.

When to Use Classes and Objects versus Modules | 143

Guido’s advice:
Avoid overengineering datastructures. Tuples are better than objects (try namedtuple
too though). Prefer simple fields over getter/setter functions … Built-in datatypes are
your friends. Use more numbers, strings, tuples, lists, sets, dicts. Also check out the
collections library, esp. deque.

—Guido van Rossum

Named Tuples
Because Guido just mentioned them and I haven’t yet, this is a good place to talk
about named tuples. A named tuple is a subclass of tuples with which you can access
values by name (with .name) as well as by position (with [offset]).

Let’s take the example from the previous section and convert the Duck class to a
named tuple, with bill and tail as simple string attributes. We’ll call the namedtuple
function with two arguments:

• The name
• A string of the field names, separated by spaces

Named tuples are not automatically supplied with Python, so you need to load a
module before using them. We do that in the first line of the following example:

>>> from collections import namedtuple
>>> Duck = namedtuple('Duck', 'bill tail')
>>> duck = Duck('wide orange', 'long')
>>> duck
Duck(bill='wide orange', tail='long')
>>> duck.bill
'wide orange'
>>> duck.tail
'long'

You can also make a named tuple from a dictionary:

>>> parts = {'bill': 'wide orange', 'tail': 'long'}
>>> duck2 = Duck(**parts)
>>> duck2
Duck(bill='wide orange', tail='long')

In the preceding code, take a look at **parts. This is a keyword argument. It extracts
the keys and values from the parts dictionary and supplies them as arguments to
Duck(). It has the same effect as:

>>> duck2 = Duck(bill = 'wide orange', tail = 'long')

Named tuples are immutable, but you can replace one or more fields and return
another named tuple:

144 | Chapter 6: Oh Oh: Objects and Classes

http://bit.ly/guido-vr

>>> duck3 = duck2._replace(tail='magnificent', bill='crushing')
>>> duck3
Duck(bill='crushing', tail='magnificent')

We could have defined duck as a dictionary:

>>> duck_dict = {'bill': 'wide orange', 'tail': 'long'}
>>> duck_dict
{'tail': 'long', 'bill': 'wide orange'}

You can add fields to a dictionary:

>>> duck_dict['color'] = 'green'
>>> duck_dict
{'color': 'green', 'tail': 'long', 'bill': 'wide orange'}

But not to a named tuple:

>>> duck.color = 'green'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'color'

To recap, here are some of the pros of a named tuple:

• It looks and acts like an immutable object.
• It is more space- and time-efficient than objects.
• You can access attributes by using dot notation instead of dictionary-style square

brackets.
• You can use it as a dictionary key.

Things to Do
6.1. Make a class called Thing with no contents and print it. Then, create an object
called example from this class and also print it. Are the printed values the same or
different?

6.2. Make a new class called Thing2 and assign the value 'abc' to a class attribute
called letters. Print letters.

6.3. Make yet another class called, of course, Thing3. This time, assign the value
'xyz' to an instance (object) attribute called letters. Print letters. Do you need to
make an object from the class to do this?

6.4. Make a class called Element, with instance attributes name, symbol, and number.
Create an object of this class with the values 'Hydrogen', 'H', and 1.

Things to Do | 145

6.5. Make a dictionary with these keys and values: 'name': 'Hydrogen', 'symbol':
'H', 'number': 1. Then, create an object called hydrogen from class Element using
this dictionary.

6.6. For the Element class, define a method called dump() that prints the values of the
object’s attributes (name, symbol, and number). Create the hydrogen object from this
new definition and use dump() to print its attributes.

6.7. Call print(hydrogen). In the definition of Element, change the name of method
dump to __str__, create a new hydrogen object, and call print(hydrogen) again.

6.8. Modify Element to make the attributes name, symbol, and number private. Define
a getter property for each to return its value.

6.9. Define three classes: Bear, Rabbit, and Octothorpe. For each, define only one
method: eats(). This should return 'berries' (Bear), 'clover' (Rabbit), or
'campers' (Octothorpe). Create one object from each and print what it eats.

6.10. Define these classes: Laser, Claw, and SmartPhone. Each has only one method:
does(). This returns 'disintegrate' (Laser), 'crush' (Claw), or 'ring' (Smart
Phone). Then, define the class Robot that has one instance (object) of each of these.
Define a does() method for the Robot that prints what its component objects do.

146 | Chapter 6: Oh Oh: Objects and Classes

1 This wine has an umlaut in Germany, but loses it in France.

CHAPTER 7

Mangle Data Like a Pro

In this chapter, you’ll learn many techniques for taming data. Most of them concern
these built-in Python data types:

strings
Sequences of Unicode characters, used for text data.

bytes and bytearrays
Sequences of eight-bit integers, used for binary data.

Text Strings
Text is the most familiar type of data to most readers, so we’ll begin with some of the
powerful features of text strings in Python.

Unicode
All of the text examples in this book thus far have been plain old ASCII. ASCII was
defined in the 1960s, when computers were the size of refrigerators and only slightly
better at performing computations. The basic unit of computer storage is the byte,
which can store 256 unique values in its eight bits. For various reasons, ASCII only
used 7 bits (128 unique values): 26 uppercase letters, 26 lowercase letters, 10 digits,
some punctuation symbols, some spacing characters, and some nonprinting control
codes.

Unfortunately, the world has more letters than ASCII provides. You could have a hot
dog at a diner, but never a Gewürztraminer1 at a café. Many attempts have been made

147

1 Base 16, specified with characters 0-9 and A-F.

to add more letters and symbols, and you’ll see them at times. Just a couple of those
include:

• Latin-1, or ISO 8859-1
• Windows code page 1252

Each of these uses all eight bits, but even that’s not enough, especially when you need
non-European languages. Unicode is an ongoing international standard to define the
characters of all the world’s languages, plus symbols from mathematics and other
fields.

Unicode provides a unique number for every character, no matter what the platform,
no matter what the program, no matter what the language.

—The Unicode Consortium

The Unicode Code Charts page has links to all the currently defined character sets
with images. The latest version (6.2) defines over 110,000 characters, each with a
unique name and identification number. The characters are divided into eight-bit sets
called planes. The first 256 planes are the basic multilingual planes. See the Wikipedia
page about Unicode planes for details.

Python 3 Unicode strings
Python 3 strings are Unicode strings, not byte arrays. This is the single largest change
from Python 2, which distinguished between normal byte strings and Unicode char‐
acter strings.

If you know the Unicode ID or name for a character, you can use it in a Python
string. Here are some examples:

• A \u followed by four hex numbers1 specifies a character in one of Unicode’s 256
basic multilingual planes. The first two are the plane number (00 to FF), and the
next two are the index of the character within the plane. Plane 00 is good old
ASCII, and the character positions within that plane are the same as ASCII.

• For characters in the higher planes, we need more bits. The Python escape
sequence for these is \U followed by eight hex characters; the leftmost ones need
to be 0.

• For all characters, \N{ name } lets you specify it by its standard name. The Uni‐
code Character Name Index page lists these.

The Python unicodedata module has functions that translate in both directions:

148 | Chapter 7: Mangle Data Like a Pro

http://www.unicode.org/charts
http://bit.ly/unicode-plane
http://bit.ly/unicode-plane
http://www.unicode.org/charts/charindex.html
http://www.unicode.org/charts/charindex.html

• lookup()—Takes a case-insensitive name and returns a Unicode character
• name()—Takes a Unicode character and returns an uppercase name

In the following example, we’ll write a test function that takes a Python Unicode char‐
acter, looks up its name, and looks up the character again from the name (it should
match the original character):

>>> def unicode_test(value):
... import unicodedata
... name = unicodedata.name(value)
... value2 = unicodedata.lookup(name)
... print('value="%s", name="%s", value2="%s"' % (value, name, value2))
...

Let’s try some characters, beginning with a plain ASCII letter:

>>> unicode_test('A')
value="A", name="LATIN CAPITAL LETTER A", value2="A"

ASCII punctuation:

>>> unicode_test('$')
value="$", name="DOLLAR SIGN", value2="$"

A Unicode currency character:

>>> unicode_test('\u00a2')
value="¢", name="CENT SIGN", value2="¢"

Another Unicode currency character:

>>> unicode_test('\u20ac')
value="€", name="EURO SIGN", value2="€"

The only problem you could potentially run into is limitations in the font you’re
using to display text. All fonts do not have images for all Unicode characters, and
might display some placeholder character. For instance, here’s the Unicode symbol for
SNOWMAN, like symbols in dingbat fonts:

>>> unicode_test('\u2603')
value="☃", name="SNOWMAN", value2="☃"

Suppose that we want to save the word café in a Python string. One way is to copy
and paste it from a file or website and hope that it works:

>>> place = 'café'
>>> place
'café'

This worked because I copied and pasted from a source that used UTF-8 encoding
(which you’ll see in a few pages) for its text.

Text Strings | 149

How can we specify that final é character? If you look at character index for E, you
see that the name E WITH ACUTE, LATIN SMALL LETTER has the value 00E9. Let’s
check with the name() and lookup() functions that we were just playing with. First
give the code to get the name:

>>> unicodedata.name('\u00e9')
'LATIN SMALL LETTER E WITH ACUTE'

Next, give the name to look up the code:

>>> unicodedata.lookup('E WITH ACUTE, LATIN SMALL LETTER')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: "undefined character name 'E WITH ACUTE, LATIN SMALL LETTER'"

The names listed on the Unicode Character Name Index page were
reformatted to make them sort nicely for display. To convert them
to their real Unicode names (the ones that Python uses), remove
the comma and move the part of the name that was after the
comma to the beginning. Accordingly, change E WITH ACUTE,

LATIN SMALL LETTER to LATIN SMALL LETTER E WITH ACUTE:
>>> unicodedata.lookup('LATIN SMALL LETTER E WITH ACUTE')
'é'

Now, we can specify the string café by code or by name:

>>> place = 'caf\u00e9'
>>> place
'café'
>>> place = 'caf\N{LATIN SMALL LETTER E WITH ACUTE}'
>>> place
'café'

In the preceding snippet, we inserted the é directly in the string, but we can also build
a string by appending:

>>> u_umlaut = '\N{LATIN SMALL LETTER U WITH DIAERESIS}'
>>> u_umlaut
'ü'
>>> drink = 'Gew' + u_umlaut + 'rztraminer'
>>> print('Now I can finally have my', drink, 'in a', place)
Now I can finally have my Gewürztraminer in a café

The string len function counts Unicode characters, not bytes:

>>> len('$')
1
>>> len('\U0001f47b')
1

150 | Chapter 7: Mangle Data Like a Pro

http://bit.ly/e-index

Encode and decode with UTF-8
You don’t need to worry about how Python stores each Unicode character when you
do normal string processing.

However, when you exchange data with the outside world, you need a couple of
things:

• A way to encode character strings to bytes
• A way to decode bytes to character strings

If there were fewer than 64,000 characters in Unicode, we could store each Unicode
character ID in two bytes. Unfortunately, there are more. We could encode each ID in
three or four bytes, but that would increase the memory and disk storage space needs
for common text strings by three or four times.

Ken Thompson and Rob Pike, whose names will be familiar to Unix developers,
designed the UTF-8 dynamic encoding scheme one night on a placemat in a New Jer‐
sey diner. It uses one to four bytes per Unicode character:

• One byte for ASCII
• Two bytes for most Latin-derived (but not Cyrillic) languages
• Three bytes for the rest of the basic multilingual plane
• Four bytes for the rest, including some Asian languages and symbols

UTF-8 is the standard text encoding in Python, Linux, and HTML. It’s fast, complete,
and works well. If you use UTF-8 encoding throughout your code, life will be much
easier than trying to hop in and out of various encodings.

If you create a Python string by copying and pasting from another
source such as a web page, be sure the source is encoded in the
UTF-8 format. It’s very common to see text that was encoded as
Latin-1 or Windows 1252 copied into a Python string, which causes
an exception later with an invalid byte sequence.

Encoding

You encode a string to bytes. The string encode() function’s first argument is the
encoding name. The choices include those presented in Table 7-1.

Text Strings | 151

Table 7-1. Encodings

'ascii' Good old seven-bit ASCII

'utf-8' Eight-bit variable-length encoding, and what you almost always want to use

'latin-1' Also known as ISO 8859-1

'cp-1252' A common Windows encoding

'unicode-escape' Python Unicode literal format, `\u`xxxx or `\U`xxxxxxxx

You can encode anything as UTF-8. Let’s assign the Unicode string '\u2603' to the
name snowman:

>>> snowman = '\u2603'

snowman is a Python Unicode string with a single character, regardless of how many
bytes might be needed to store it internally:

>>> len(snowman)
1

Next let’s encode this Unicode character to a sequence of bytes:

>>> ds = snowman.encode('utf-8')

As I mentioned earlier, UTF-8 is a variable-length encoding. In this case, it used three
bytes to encode the single snowman Unicode character:

>>> len(ds)
3
>>> ds
b'\xe2\x98\x83'

Now, len() returns the number of bytes (3) because ds is a bytes variable.

You can use encodings other than UTF-8, but you’ll get errors if the Unicode string
can’t be handled by the encoding. For example, if you use the ascii encoding, it will
fail unless your Unicode characters happen to be valid ASCII characters as well:

>>> ds = snowman.encode('ascii')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character '\u2603'
in position 0: ordinal not in range(128)

The encode() function takes a second argument to help you avoid encoding excep‐
tions. Its default value, which you can see in the previous example, is 'strict'; it

152 | Chapter 7: Mangle Data Like a Pro

raises a UnicodeEncodeError if it sees a non-ASCII character. There are other encod‐
ings. Use 'ignore' to throw away anything that won’t encode:

>>> snowman.encode('ascii', 'ignore')
b''

Use 'replace' to substitute ? for unknown characters:

>>> snowman.encode('ascii', 'replace')
b'?'

Use 'backslashreplace' to produce a Python Unicode character string, like
unicode-escape:

>>> snowman.encode('ascii', 'backslashreplace')
b'\\u2603'

You would use this if you needed a printable version of the Unicode escape sequence.

The following produces character entity strings that you can use in web pages:

>>> snowman.encode('ascii', 'xmlcharrefreplace')
b'☃'

Decoding
We decode byte strings to Unicode strings. Whenever we get text from some external
source (files, databases, websites, network APIs, and so on), it’s encoded as byte
strings. The tricky part is knowing which encoding was actually used, so we can run it
backward and get Unicode strings.

The problem is that nothing in the byte string itself says what encoding was used. I
mentioned the perils of copying and pasting from websites earlier. You’ve probably
visited websites with odd characters where plain old ASCII characters should be.

Let’s create a Unicode string called place with the value 'café':

>>> place = 'caf\u00e9'
>>> place
'café'
>>> type(place)
<class 'str'>

Encode it in UTF-8 format in a bytes variable called place_bytes:

>>> place_bytes = place.encode('utf-8')
>>> place_bytes
b'caf\xc3\xa9'
>>> type(place_bytes)
<class 'bytes'>

Text Strings | 153

Notice that place_bytes has five bytes. The first three are the same as ASCII (a
strength of UTF-8), and the final two encode the 'é'. Now, let’s decode that byte
string back to a Unicode string:

>>> place2 = place_bytes.decode('utf-8')
>>> place2
'café'

This worked because we encoded to UTF-8 and decoded from UTF-8. What if we
told it to decode from some other encoding?

>>> place3 = place_bytes.decode('ascii')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 3:
ordinal not in range(128)

The ASCII decoder threw an exception because the byte value 0xc3 is illegal in
ASCII. There are some 8-bit character set encodings in which values between 128
(hex 80) and 255 (hex FF) are legal but not the same as UTF-8:

>>> place4 = place_bytes.decode('latin-1')
>>> place4
'cafÃ©'
>>> place5 = place_bytes.decode('windows-1252')
>>> place5
'cafÃ©'

Urk.

The moral of this story: whenever possible, use UTF-8 encoding. It works, is sup‐
ported everywhere, can express every Unicode character, and is quickly decoded and
encoded.

For more information
If you would like to learn more, these links are particularly helpful:

• Unicode HOWTO
• Pragmatic Unicode
• The Absolute Minimum Every Software Developer Absolutely, Positively Must

Know About Unicode and Character Sets (No Excuses!)

Format
We’ve pretty much ignored text formatting—until now. Chapter 2 shows a few string
alignment functions, and the code examples have used simple print() statements, or
just let the interactive interpreter display values. But it’s time we look at how to inter‐

154 | Chapter 7: Mangle Data Like a Pro

http://bit.ly/unicode-howto
http://bit.ly/pragmatic-uni
http://bit.ly/jspolsky
http://bit.ly/jspolsky

polate data values into strings—in other words, put the values inside the strings—
using various formats. You can use this to produce reports and other outputs for
which appearances need to be just so.

Python has two ways of formatting strings, loosely called old style and new style. Both
styles are supported in Python 2 and 3 (new style in Python 2.6 and up). Old style is
simpler, so we’ll begin there.

Old style with %

The old style of string formatting has the form string % data. Inside the string are
interpolation sequences. Table 7-2 illustrates that the very simplest sequence is a %
followed by a letter indicating the data type to be formatted.

Table 7-2. Conversion types

%s string

%d decimal integer

%x hex integer

%o octal integer

%f decimal float

%e exponential float

%g decimal or exponential float

%% a literal %

Following are some simple examples. First, an integer:

>>> '%s' % 42
'42'
>>> '%d' % 42
'42'
>>> '%x' % 42
'2a'
>>> '%o' % 42
'52'

A float:

>>> '%s' % 7.03
'7.03'
>>> '%f' % 7.03
'7.030000'

Text Strings | 155

>>> '%e' % 7.03
'7.030000e+00'
>>> '%g' % 7.03
'7.03'

An integer and a literal %:

>>> '%d%%' % 100
'100%'

Some string and integer interpolation:

>>> actor = 'Richard Gere'
>>> cat = 'Chester'
>>> weight = 28

>>> "My wife's favorite actor is %s" % actor
"My wife's favorite actor is Richard Gere"

>>> "Our cat %s weighs %s pounds" % (cat, weight)
'Our cat Chester weighs 28 pounds'

That %s inside the string means to interpolate a string. The number of % appearances
in the string needs match the number of data items after the %. A single data item
such as actor goes right after the %. Multiple data must be grouped into a tuple
(bounded by parentheses, separated by commas) such as (cat, weight).

Even though weight is an integer, the %s inside the string converted it to a string.

You can add other values between the % and the type specifier to designate minimum
and maximum widths, alignment, and character filling:

For variables, let’s define an integer, n; a float, f; and a string, s:

>>> n = 42
>>> f = 7.03
>>> s = 'string cheese'

Format them using default widths:

>>> '%d %f %s' % (n, f, s)
'42 7.030000 string cheese'

Set a minimum field width of 10 characters for each variable, and align them to the
right, filling unused spots on the left with spaces:

>>> '%10d %10f %10s' % (n, f, s)
' 42 7.030000 string cheese'

Use the same field width, but align to the left:

>>> '%-10d %-10f %-10s' % (n, f, s)
'42 7.030000 string cheese'

156 | Chapter 7: Mangle Data Like a Pro

This time, the same field width, but a maximum character width of 4, and aligned to
the right. This setting truncates the string, and limits the float to 4 digits after the dec‐
imal point:

>>> '%10.4d %10.4f %10.4s' % (n, f, s)
' 0042 7.0300 stri'

The same song as before, but right-aligned:

>>> '%.4d %.4f %.4s' % (n, f, s)
'0042 7.0300 stri'

Finally, get the field widths from arguments rather than hard-coding them:

>>> '%*.*d %*.*f %*.*s' % (10, 4, n, 10, 4, f, 10, 4, s)
' 0042 7.0300 stri'

New style formatting with {} and format
Old style formatting is still supported. In Python 2, which will freeze at version 2.7, it
will be supported forever. However, new style formatting is recommended if you’re
using Python 3.

The simplest usage is demonstrated here:

>>> '{} {} {}'.format(n, f, s)
'42 7.03 string cheese'

Old-style arguments needed to be provided in the order in which their % placeholders
appeared in the string. With new-style, you can specify the order:

>>> '{2} {0} {1}'.format(f, s, n)
'42 7.03 string cheese'

The value 0 referred to the first argument, f, whereas 1 referred to the string s, and 2
referred to the last argument, the integer n.

The arguments can be a dictionary or named arguments, and the specifiers can
include their names:

>>> '{n} {f} {s}'.format(n=42, f=7.03, s='string cheese')
'42 7.03 string cheese'

In this next example, let’s try combining our three values into a dictionary, which
looks like this:

>>> d = {'n': 42, 'f': 7.03, 's': 'string cheese'}

In the following example, {0} is the entire dictionary, whereas {1} is the string
'other' that follows the dictionary:

>>> '{0[n]} {0[f]} {0[s]} {1}'.format(d, 'other')
'42 7.03 string cheese other'

Text Strings | 157

These examples all printed their arguments with default formats. Old-style allows a
type specifier after the % in the string, but new-style puts it after a :. First, with posi‐
tional arguments:

>>> '{0:d} {1:f} {2:s}'.format(n, f, s)
'42 7.030000 string cheese'

In this example, we’ll use the same values, but as named arguments:

>>> '{n:d} {f:f} {s:s}'.format(n=42, f=7.03, s='string cheese')
'42 7.030000 string cheese'

The other options (minimum field width, maximum character width, alignment, and
so on) are also supported.

Minimum field width 10, right-aligned (default):

>>> '{0:10d} {1:10f} {2:10s}'.format(n, f, s)
' 42 7.030000 string cheese'

Same as the preceding example, but the > characters make the right-alignment more
explicit:

>>> '{0:>10d} {1:>10f} {2:>10s}'.format(n, f, s)
' 42 7.030000 string cheese'

Minimum field width 10, left-aligned:

>>> '{0:<10d} {1:<10f} {2:<10s}'.format(n, f, s)
'42 7.030000 string cheese'

Minimum field width 10, centered:

>>> '{0:^10d} {1:^10f} {2:^10s}'.format(n, f, s)
' 42 7.030000 string cheese'

There is one change from old-style: the precision value (after the decimal point) still
means the number of digits after the decimal for floats, and the maximum number of
characters for strings, but you can’t use it for integers:

>>> '{0:>10.4d} {1:>10.4f} {2:10.4s}'.format(n, f, s)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: Precision not allowed in integer format specifier
>>> '{0:>10d} {1:>10.4f} {2:>10.4s}'.format(n, f, s)
' 42 7.0300 stri'

The final option is the fill character. If you want something other than spaces to pad
your output fields, put it right after the :, before any alignment (<, >, ^) or width
specifiers:

>>> '{0:!^20s}'.format('BIG SALE')
'!!!!!!BIG SALE!!!!!!'

158 | Chapter 7: Mangle Data Like a Pro

Match with Regular Expressions
Chapter 2 touched on simple string operations. Armed with that introductory infor‐
mation, you’ve probably used simple “wildcard” patterns on the command line, such
as ls *.py, which means list all filenames ending in .py.

It’s time to explore more complex pattern matching by using regular expressions.
These are provided in the standard module re, which we’ll import. You define a
string pattern that you want to match, and the source string to match against. For sim‐
ple matches, usage looks like this:

result = re.match('You', 'Young Frankenstein')

Here, 'You' is the pattern and 'Young Frankenstein' is the source—the string you
want to check. match() checks whether the source begins with the pattern.

For more complex matches, you can compile your pattern first to speed up the match
later:

youpattern = re.compile('You')

Then, you can perform your match against the compiled pattern:

result = youpattern.match('Young Frankenstein')

match() is not the only way to compare the pattern and source. Here are several other
methods you can use:

• search() returns the first match, if any.
• findall() returns a list of all non-overlapping matches, if any.
• split() splits source at matches with pattern and returns a list of the string

pieces.
• sub() takes another replacement argument, and changes all parts of source that

are matched by pattern to replacement.

Exact match with match()

Does the string 'Young Frankenstein' begin with the word 'You'? Here’s some code
with comments:

>>> import re
>>> source = 'Young Frankenstein'
>>> m = re.match('You', source) # match starts at the beginning of source
>>> if m: # match returns an object; do this to see what matched
... print(m.group())
...
You
>>> m = re.match('^You', source) # start anchor does the same

Text Strings | 159

>>> if m:
... print(m.group())
...
You

How about 'Frank'?

>>> m = re.match('Frank', source)
>>> if m:
... print(m.group())
...

This time match() returned nothing and the if did not run the print statement. As I
said earlier, match() works only if the pattern is at the beginning of the source. But
search() works if the pattern is anywhere:

>>> m = re.search('Frank', source)
>>> if m:
... print(m.group())
...
Frank

Let’s change the pattern:

>>> m = re.match('.*Frank', source)
>>> if m: # match returns an object
... print(m.group())
...
Young Frank

Following is a brief explanation of how our new pattern works:

• . means any single character.
• * means any number of the preceding thing. Together, .* mean any number of

characters (even zero).
• Frank is the phrase that we wanted to match, somewhere.

match() returned the string that matched .*Frank: 'Young Frank'.

First match with search()

You can use search() to find the pattern 'Frank' anywhere in the source string
'Young Frankenstein', without the need for the .* wildcards:

>>> m = re.search('Frank', source)
>>> if m: # search returns an object
... print(m.group())
...
Frank

160 | Chapter 7: Mangle Data Like a Pro

All matches with findall()
The preceding examples looked for one match only. But what if you want to know
how many instances of the single-letter string 'n' are in the string?

>>> m = re.findall('n', source)
>>> m # findall returns a list
['n', 'n', 'n', 'n']
>>> print('Found', len(m), 'matches')
Found 4 matches

How about 'n' followed by any character?

>>> m = re.findall('n.', source)
>>> m
['ng', 'nk', 'ns']

Notice that it did not match that final 'n'. We need to say that the character after 'n'
is optional with ?:

>>> m = re.findall('n.?', source)
>>> m
['ng', 'nk', 'ns', 'n']

Split at matches with split()
The example that follows shows you how to split a string into a list by a pattern rather
than a simple string (as the normal string split() method would do):

>>> m = re.split('n', source)
>>> m # split returns a list
['You', 'g Fra', 'ke', 'stei', '']

Replace at matches with sub()

This is like the string replace() method, but for patterns rather than literal strings:

>>> m = re.sub('n', '?', source)
>>> m # sub returns a string
'You?g Fra?ke?stei?'

Patterns: special characters
Many descriptions of regular expressions start with all the details of how to define
them. I think that’s a mistake. Regular expressions are a not-so-little language in their
own right, with too many details to fit in your head at once. They use so much punc‐
tuation that they look like cartoon characters swearing.

With these expressions (match(), search(), findall(), and sub()) under your belt,
let’s get into the details of building them. The patterns you make apply to any of these
functions.

Text Strings | 161

You’ve seen the basics:

• Literal matches with any non-special characters
• Any single character except \n with .
• Any number (including zero) with *
• Optional (zero or one) with ?

First, special characters are shown in Table 7-3.

Table 7-3. Special characters

Pattern Matches

\d a single digit

\D a single non-digit

\w an alphanumeric character

\W a non-alphanumeric character

\s a whitespace character

\S a non-whitespace character

\b a word boundary (between a \w and a \W, in either order)

\B a non-word boundary

The Python string module has predefined string constants that we can use for test‐
ing. We’ll use printable, which contains 100 printable ASCII characters, including
letters in both cases, digits, space characters, and punctuation:

>>> import string
>>> printable = string.printable
>>> len(printable)
100
>>> printable[0:50]
'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMN'
>>> printable[50:]
'OPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'

Which characters in printable are digits?

>>> re.findall('\d', printable)
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

Which characters are digits, letters, or an underscore?

162 | Chapter 7: Mangle Data Like a Pro

>>> re.findall('\w', printable)
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',
'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',
'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', '_']

Which are spaces?

>>> re.findall('\s', printable)
[' ', '\t', '\n', '\r', '\x0b', '\x0c']

Regular expressions are not confined to ASCII. A \d will match whatever Unicode
calls a digit, not just ASCII characters '0' through '9'. Let’s add two non-ASCII low‐
ercase letters from FileFormat.info:

In this test, we’ll throw in the following:

• Three ASCII letters
• Three punctuation symbols that should not match a \w
• A Unicode LATIN SMALL LETTER E WITH CIRCUMFLEX (\u00ea)
• A Unicode LATIN SMALL LETTER E WITH BREVE (\u0115)

>>> x = 'abc' + '-/*' + '\u00ea' + '\u0115'

As expected, this pattern found only the letters:

>>> re.findall('\w', x)
['a', 'b', 'c', 'ê', 'ĕ']

Patterns: using specifiers
Now, let’s make “punctuation pizza,” using the main pattern specifiers for regular
expressions, which are presented in Table 7-4.

In the table, expr and the other italicized words mean any valid regular expression.

Table 7-4. Pattern specifiers

Pattern Matches

abc literal abc

(expr) expr

expr1 | expr2 expr1 or expr2

. any character except \n

Text Strings | 163

http://bit.ly/unicode-letter

Pattern Matches

^ start of source string

$ end of source string

prev ? zero or one prev

prev * zero or more prev, as many as possible

prev *? zero or more prev, as few as possible

prev + one or more prev, as many as possible

prev +? one or more prev, as few as possible

prev { m } m consecutive prev

prev { m, n } m to n consecutive prev, as many as possible

prev { m, n }? m to n consecutive prev, as few as possible

[abc] a or b or c (same as a|b|c)

[^ abc] not (a or b or c)

prev (?= next) prev if followed by next

prev (?! next) prev if not followed by next

(?<= prev) next next if preceded by prev

(?<! prev) next next if not preceded by prev

Your eyes might cross permanently when trying to read these examples. First, let’s
define our source string:

>>> source = '''I wish I may, I wish I might
... Have a dish of fish tonight.'''

First, find wish anywhere:

>>> re.findall('wish', source)
['wish', 'wish']

Next, find wish or fish anywhere:

>>> re.findall('wish|fish', source)
['wish', 'wish', 'fish']

164 | Chapter 7: Mangle Data Like a Pro

Find wish at the beginning:

>>> re.findall('^wish', source)
[]

Find I wish at the beginning:

>>> re.findall('^I wish', source)
['I wish']

Find fish at the end:

>>> re.findall('fish$', source)
[]

Finally, find fish tonight. at the end:

>>> re.findall('fish tonight.$', source)
['fish tonight.']

The characters ^ and $ are called anchors: ^ anchors the search to the beginning of the
search string, and $ anchors it to the end. .$ matches any character at the end of the
line, including a period, so that worked. To be more precise, we should escape the dot
to match it literally:

>>> re.findall('fish tonight\.$', source)
['fish tonight.']

Begin by finding w or f followed by ish:

>>> re.findall('[wf]ish', source)
['wish', 'wish', 'fish']

Find one or more runs of w, s, or h:

>>> re.findall('[wsh]+', source)
['w', 'sh', 'w', 'sh', 'h', 'sh', 'sh', 'h']

Find ght followed by a non-alphanumeric:

>>> re.findall('ght\W', source)
['ght\n', 'ght.']

Find I followed by wish:

>>> re.findall('I (?=wish)', source)
['I ', 'I ']

And last, wish preceded by I:

>>> re.findall('(?<=I) wish', source)
[' wish', ' wish']

There are a few cases in which the regular expression pattern rules conflict with the
Python string rules. The following pattern should match any word that begins with
fish:

Text Strings | 165

>>> re.findall('\bfish', source)
[]

Why doesn’t it? As is discussed in Chapter 2, Python employs a few special escape
characters for strings. For example, \b means backspace in strings, but in the mini-
language of regular expressions it means the beginning of a word. Avoid the acciden‐
tal use of escape characters by using Python’s raw strings when you define your
regular expression string. Always put an r character before your regular expression
pattern string, and Python escape characters will be disabled, as demonstrated here:

>>> re.findall(r'\bfish', source)
['fish']

Patterns: specifying match output

When using match() or search(), all matches are returned from the result object m as
m.group(). If you enclose a pattern in parentheses, the match will be saved to its own
group, and a tuple of them will be available as m.groups(), as shown here:

>>> m = re.search(r'(. dish\b).*(\bfish)', source)
>>> m.group()
'a dish of fish'
>>> m.groups()
('a dish', 'fish')

If you use this pattern (?P< name > expr), it will match expr, saving the match in
group name:

>>> m = re.search(r'(?P<DISH>. dish\b).*(?P<FISH>\bfish)', source)
>>> m.group()
'a dish of fish'
>>> m.groups()
('a dish', 'fish')
>>> m.group('DISH')
'a dish'
>>> m.group('FISH')
'fish'

Binary Data
Text data can be challenging, but binary data can be, well, interesting. You need to
know about concepts such as endianness (how your computer’s processor breaks data
into bytes) and sign bits for integers. You might need to delve into binary file formats
or network packets to extract or even change data. This section will show you the
basics of binary data wrangling in Python.

166 | Chapter 7: Mangle Data Like a Pro

bytes and bytearray
Python 3 introduced the following sequences of eight-bit integers, with possible val‐
ues from 0 to 255, in two types:

• bytes is immutable, like a tuple of bytes
• bytearray is mutable, like a list of bytes

Beginning with a list called blist, this next example creates a bytes variable called
the_bytes and a bytearray variable called the_byte_array:

>> blist = [1, 2, 3, 255]
>>> the_bytes = bytes(blist)
>>> the_bytes
b'\x01\x02\x03\xff'
>>> the_byte_array = bytearray(blist)
>>> the_byte_array
bytearray(b'\x01\x02\x03\xff')

The representation of a bytes value begins with a b and a quote
character, followed by hex sequences such as \x02 or ASCII charac‐
ters, and ends with a matching quote character. Python converts
the hex sequences or ASCII characters to little integers, but shows
byte values that are also valid ASCII encodings as ASCII charac‐
ters.

>>> b'\x61'
b'a'

>>> b'\x01abc\xff'
b'\x01abc\xff'

This next example demonstrates that you can’t change a bytes variable:

>>> the_bytes[1] = 127
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'bytes' object does not support item assignment

But a bytearray variable is mellow and mutable:

>>> the_byte_array = bytearray(blist)
>>> the_byte_array
bytearray(b'\x01\x02\x03\xff')
>>> the_byte_array[1] = 127
>>> the_byte_array
bytearray(b'\x01\x7f\x03\xff')

Each of these would create a 256-element result, with values from 0 to 255:

Binary Data | 167

>>> the_bytes = bytes(range(0, 256))
>>> the_byte_array = bytearray(range(0, 256))

When printing bytes or bytearray data, Python uses \x xx for non-printable bytes
and their ASCII equivalents for printable ones (plus some common escape characters,
such as \n instead of \x0a). Here’s the printed representation of the_bytes (manually
reformatted to show 16 bytes per line):

>>> the_bytes
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f
\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f
!"#$%&\'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\\]^_
`abcdefghijklmno
pqrstuvwxyz{|}~\x7f
\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f
\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f
\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf
\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf
\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf
\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf
\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef
\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff'

This can be confusing, because they’re bytes (teeny integers), not characters.

Convert Binary Data with struct
As you’ve seen, Python has many tools for manipulating text. Tools for binary data
are much less prevalent. The standard library contains the struct module, which
handles data similar to structs in C and C++. Using struct, you can convert binary
data to and from Python data structures.

Let’s see how this works with data from a PNG file—a common image format that
you’ll see along with GIF and JPEG files. We’ll write a small program that extracts the
width and height of an image from some PNG data.

We’ll use the O’Reilly logo—the little bug-eyed tarsier shown in Figure 7-1.

Figure 7-1. The O’Reilly tarsier

168 | Chapter 7: Mangle Data Like a Pro

The PNG file for this image is available on Wikipedia. We don’t show how to read
files until Chapter 8, so I downloaded this file, wrote a little program to print its val‐
ues as bytes, and just typed the values of the first 30 bytes into a Python bytes vari‐
able called data for the example that follows. (The PNG format specification
stipulates that the width and height are stored within the first 24 bytes, so we don’t
need more than that for now.)

>>> import struct
>>> valid_png_header = b'\x89PNG\r\n\x1a\n'
>>> data = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR' + \
... b'\x00\x00\x00\x9a\x00\x00\x00\x8d\x08\x02\x00\x00\x00\xc0'
>>> if data[:8] == valid_png_header:
... width, height = struct.unpack('>LL', data[16:24])
... print('Valid PNG, width', width, 'height', height)
... else:
... print('Not a valid PNG')
...
Valid PNG, width 154 height 141

Here’s what this code does:

• data contains the first 30 bytes from the PNG file. To fit on the page, I joined two
byte strings with + and the continuation character (\).

• valid_png_header contains the 8-byte sequence that marks the start of a valid
PNG file.

• width is extracted from bytes 16-20, and height from bytes 21-24.

The >LL is the format string that instructs unpack() how to interpret its input byte
sequences and assemble them into Python data types. Here’s the breakdown:

• The > means that integers are stored in big-endian format.
• Each L specifies a 4-byte unsigned long integer.

You can examine each 4-byte value directly:

>>> data[16:20]
b'\x00\x00\x00\x9a'
>>> data[20:24]0x9a
b'\x00\x00\x00\x8d'

Big-endian integers have the most significant bytes to the left. Because the width and
height are each less than 255, they fit into the last byte of each sequence. You can ver‐
ify that these hex values match the expected decimal values:

>>> 0x9a
154
>>> 0x8d
141

Binary Data | 169

http://bit.ly/orm-logo

When you want to go in the other direction and convert Python data to bytes, use the
struct pack() function:

>>> import struct
>>> struct.pack('>L', 154)
b'\x00\x00\x00\x9a'
>>> struct.pack('>L', 141)
b'\x00\x00\x00\x8d'

Table 7-5 and Table 7-6 show the format specifiers for pack() and unpack().

The endian specifiers go first in the format string.

Table 7-5. Endian specifiers

Specifier Byte order

< little endian

> big endian

Table 7-6. Format specifiers

Specifier Description Bytes

x skip a byte 1

b signed byte 1

B unsigned byte 1

h signed short integer 2

H unsigned short integer 2

i signed integer 4

I unsigned integer 4

l signed long integer 4

L unsigned long integer 4

Q unsigned long long integer 8

f single precision float 4

d double precision float 8

170 | Chapter 7: Mangle Data Like a Pro

Specifier Description Bytes

p count and characters 1 + count

s characters count

The type specifiers follow the endian character. Any specifier may be preceded by a
number that indicates the count; 5B is the same as BBBBB.

You can use a count prefix instead of >LL:

>>> struct.unpack('>2L', data[16:24])
(154, 141)

We used the slice data[16:24] to grab the interesting bytes directly. We could also
use the x specifier to skip the uninteresting parts:

>>> struct.unpack('>16x2L6x', data)
(154, 141)

This means:

• Use big-endian integer format (>)
• Skip 16 bytes (16x)
• Read 8 bytes—two unsigned long integers (2L)
• Skip the final 6 bytes (6x)

Other Binary Data Tools
Some third-party open source packages offer the following, more declarative ways of
defining and extracting binary data:

• bitstring
• construct
• hachoir
• binio

Appendix D has details on how to download and install external packages such as
these. For the next example, you need to install construct. Here’s all you need to do:

$ pip install construct

Here’s how to extract the PNG dimensions from our data bytestring by using
construct:

Binary Data | 171

http://bit.ly/py-bitstring
http://bit.ly/py-construct
http://bit.ly/hachoir-pkg
http://spika.net/py/binio/

>>> from construct import Struct, Magic, UBInt32, Const, String
>>> # adapted from code at https://github.com/construct
>>> fmt = Struct('png',
... Magic(b'\x89PNG\r\n\x1a\n'),
... UBInt32('length'),
... Const(String('type', 4), b'IHDR'),
... UBInt32('width'),
... UBInt32('height')
...)
>>> data = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR' + \
... b'\x00\x00\x00\x9a\x00\x00\x00\x8d\x08\x02\x00\x00\x00\xc0'
>>> result = fmt.parse(data)
>>> print(result)
Container:
 length = 13
 type = b'IHDR'
 width = 154
 height = 141
>>> print(result.width, result.height)
154, 141

Convert Bytes/Strings with binascii()
The standard binascii module has functions with which you can convert between
binary data and various string representations: hex (base 16), base 64, uuencoded,
and others. For example, in the next snippet, let’s print that 8-byte PNG header as a
sequence of hex values, instead of the mixture of ASCII and \x xx escapes that
Python uses to display bytes variables:

>>> import binascii
>>> valid_png_header = b'\x89PNG\r\n\x1a\n'
>>> print(binascii.hexlify(valid_png_header))
b'89504e470d0a1a0a'

Hey, this thing works backwards, too:

>>> print(binascii.unhexlify(b'89504e470d0a1a0a'))
b'\x89PNG\r\n\x1a\n'

Bit Operators
Python provides bit-level integer operators, similar to those in the C language.
Table 7-7 summarizes them and includes examples with the integers a (decimal 5,
binary 0b0101) and b (decimal 1, binary 0b0001).

172 | Chapter 7: Mangle Data Like a Pro

Table 7-7. Bit-level integer operators

Operator Description Example Decimal result Binary result

& and a & b 1 0b0001

| or a | b 5 0b0101

^ exclusive or a ^ b 4 0b0100

~ flip bits ~a -6 binary representation depends on int size

<< left shift a << 1 10 0b1010

>> right shift a >> 1 2 0b0010

These operators work something like the set operators in Chapter 3. The & operator
returns bits that are the same in both arguments, and | returns bits that are set in
either of them. The ^ operator returns bits that are in one or the other, but not both.
The ~ operator reverses all the bits in its single argument; this also reverses the sign
because an integer’s highest bit indicates its sign (1 = negative) in two’s complement
arithmetic, used in all modern computers. The << and >> operators just move bits to
the left or right. A left shift of one bit is the same as multiplying by two, and a right
shift is the same as dividing by two.

Things to Do
7.1. Create a Unicode string called mystery and assign it the value '\U0001f4a9'.
Print mystery. Look up the Unicode name for mystery.

7.2. Encode mystery, this time using UTF-8, into the bytes variable pop_bytes. Print
pop_bytes.

7.3. Using UTF-8, decode pop_bytes into the string variable pop_string. Print
pop_string. Is pop_string equal to mystery?

7.4. Write the following poem by using old-style formatting. Substitute the strings
'roast beef', 'ham', 'head', and 'clam' into this string:

My kitty cat likes %s,
My kitty cat likes %s,
My kitty cat fell on his %s
And now thinks he's a %s.

Things to Do | 173

7.5. Write a form letter by using new-style formatting. Save the following string as
letter (you’ll use it in the next exercise):

Dear {salutation} {name},

Thank you for your letter. We are sorry that our {product} {verbed} in your
{room}. Please note that it should never be used in a {room}, especially
near any {animals}.

Send us your receipt and {amount} for shipping and handling. We will send
you another {product} that, in our tests, is {percent}% less likely to
have {verbed}.

Thank you for your support.

Sincerely,
{spokesman}
{job_title}

7.6. Make a dictionary called response with values for the string keys 'salutation',
'name', 'product', 'verbed' (past tense verb), 'room', 'animals', 'amount', 'per
cent', 'spokesman', and 'job_title'. Print letter with the values from response.

7.7. When you’re working with text, regular expressions come in very handy. We’ll
apply them in a number of ways to our featured text sample. It’s a poem titled “Ode
on the Mammoth Cheese,” written by James McIntyre in 1866 in homage to a seven-
thousand-pound cheese that was crafted in Ontario and sent on an international tour.
If you’d rather not type all of it, use your favorite search engine and cut and paste the
words into your Python program. Or, just grab it from Project Gutenberg. Call the
text string mammoth.

We have seen thee, queen of cheese,
Lying quietly at your ease,
Gently fanned by evening breeze,
Thy fair form no flies dare seize.

All gaily dressed soon you'll go
To the great Provincial show,
To be admired by many a beau
In the city of Toronto.

Cows numerous as a swarm of bees,
Or as the leaves upon the trees,
It did require to make thee please,
And stand unrivalled, queen of cheese.

May you not receive a scar as
We have heard that Mr. Harris
Intends to send you off as far as
The great world's show at Paris.

Of the youth beware of these,
For some of them might rudely squeeze

174 | Chapter 7: Mangle Data Like a Pro

http://bit.ly/mcintyre-poetry

And bite your cheek, then songs or glees
We could not sing, oh! queen of cheese.

We'rt thou suspended from balloon,
You'd cast a shade even at noon,
Folks would think it was the moon
About to fall and crush them soon.

7.8. Import the re module to use Python’s regular expression functions. Use
re.findall() to print all the words that begin with c.

7.9. Find all four-letter words that begin with c.

7.10. Find all the words that end with r.

7.11. Find all words that contain exactly three vowels in a row.

7.12. Use unhexlify to convert this hex string (combined from two strings to fit on a
page) to a bytes variable called gif:

'47494638396101000100800000000000ffffff21f9' +
'0401000000002c000000000100010000020144003b'

7.13. The bytes in gif define a one-pixel transparent GIF file, one of the most com‐
mon graphics file formats. A legal GIF starts with the string GIF89a. Does gif match
this?

7.14. The pixel width of a GIF is a 16-bit little-endian integer beginning at byte offset
6, and the height is the same size, starting at offset 8. Extract and print these values
for gif. Are they both 1?

Things to Do | 175

CHAPTER 8

Data Has to Go Somewhere

It is a capital mistake to theorize before one has data.
—Arthur Conan Doyle

An active program accesses data that is stored in Random Access Memory, or RAM.
RAM is very fast, but it is expensive and requires a constant supply of power; if the
power goes out, all the data in memory is lost. Disk drives are slower than RAM but
have more capacity, cost less, and retain data even after someone trips over the power
cord. Thus, a huge amount of effort in computer systems has been devoted to making
the best tradeoffs between storing data on disk and RAM. As programmers, we need
persistence: storing and retrieving data using nonvolatile media such as disks.

This chapter is all about the different flavors of data storage, each optimized for dif‐
ferent purposes: flat files, structured files, and databases. File operations other than
input and output are covered in “Files” on page 247.

This is also the first chapter to show examples of nonstandard
Python modules; that is, Python code apart from the standard
library. You’ll install them by using the pip command, which is
painless. There are more details on its usage in Appendix D.

File Input/Output
The simplest kind of persistence is a plain old file, sometimes called a flat file. This is
just a sequence of bytes stored under a filename. You read from a file into memory
and write from memory to a file. Python makes these jobs easy. Its file operations
were modeled on the familiar and popular Unix equivalents.

Before reading or writing a file, you need to open it:

177

fileobj = open(filename, mode)

Here’s a brief explanation of the pieces of this call:

• fileobj is the file object returned by open()
• filename is the string name of the file
• mode is a string indicating the file’s type and what you want to do with it

The first letter of mode indicates the operation:

• r means read.
• w means write. If the file doesn’t exist, it’s created. If the file does exist, it’s over‐

written.
• x means write, but only if the file does not already exist.
• a means append (write after the end) if the file exists.

The second letter of mode is the file’s type:

• t (or nothing) means text.
• b means binary.

After opening the file, you call functions to read or write data; these will be shown in
the examples that follow.

Last, you need to close the file.

Let’s create a file from a Python string in one program and then read it back in the
next.

Write a Text File with write()
For some reason, there aren’t many limericks about special relativity. This one will
just have to do for our data source:

>>> poem = '''There was a young lady named Bright,
... Whose speed was far faster than light;
... She started one day
... In a relative way,
... And returned on the previous night.'''
>>> len(poem)
150

The following code writes the entire poem to the file 'relativity' in one call:

>>> fout = open('relativity', 'wt')
>>> fout.write(poem)

178 | Chapter 8: Data Has to Go Somewhere

150
>>> fout.close()

The write() function returns the number of bytes written. It does not add any spaces
or newlines, as print() does. You can also print() to a text file:

>>> fout = open('relativity', 'wt')
>>> print(poem, file=fout)
>>> fout.close()

This brings up the question: should I use write() or print()? By default, print()
adds a space after each argument and a newline at the end. In the previous example, it
appended a newline to the relativity file. To make print() work like write(), pass
the following two arguments:

• sep (separator, which defaults to a space, ' ')
• end (end string, which defaults to a newline, '\n')

print() uses the defaults unless you pass something else. We’ll pass empty strings to
suppress all of the fussiness normally added by print():

>>> fout = open('relativity', 'wt')
>>> print(poem, file=fout, sep='', end='')
>>> fout.close()

If you have a large source string, you can also write chunks until the source is done:

>>> fout = open('relativity', 'wt')
>>> size = len(poem)
>>> offset = 0
>>> chunk = 100
>>> while True:
... if offset > size:
... break
... fout.write(poem[offset:offset+chunk])
... offset += chunk
...
100
50
>>> fout.close()

This wrote 100 characters on the first try and the last 50 characters on the next.

If the relativity file is precious to us, let’s see if using mode x really protects us from
overwriting it:

>>> fout = open('relativity', 'xt')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileExistsError: [Errno 17] File exists: 'relativity'

You can use this with an exception handler:

File Input/Output | 179

>>> try:
... fout = open('relativity', 'xt')]
... fout.write('stomp stomp stomp')
... except FileExistsError:
... print('relativity already exists!. That was a close one.')
...
relativity already exists!. That was a close one.

Read a Text File with read(), readline(), or readlines()
You can call read() with no arguments to slurp up the entire file at once, as shown in
the example that follows. Be careful when doing this with large files; a gigabyte file
will consume a gigabyte of memory.

>>> fin = open('relativity', 'rt')
>>> poem = fin.read()
>>> fin.close()
>>> len(poem)
150

You can provide a maximum character count to limit how much read() returns at
one time. Let’s read 100 characters at a time and append each chunk to a poem string
to rebuild the original:

>>> poem = ''
>>> fin = open('relativity', 'rt')
>>> chunk = 100
>>> while True:
... fragment = fin.read(chunk)
... if not fragment:
... break
... poem += fragment
...
>>> fin.close()
>>> len(poem)
150

After you’ve read all the way to the end, further calls to read() will return an empty
string (''), which is treated as False in if not fragment. This breaks out of the
while True loop.

You can also read the file a line at a time by using readline(). In this next example,
we’ll append each line to the poem string to rebuild the original:

>>> poem = ''
>>> fin = open('relativity', 'rt')
>>> while True:
... line = fin.readline()
... if not line:
... break
... poem += line
...

180 | Chapter 8: Data Has to Go Somewhere

>>> fin.close()
>>> len(poem)
150

For a text file, even a blank line has a length of one (the newline character), and is
evaluated as True. When the file has been read, readline() (like read()) also returns
an empty string, which is also evaluated as False.

The easiest way to read a text file is by using an iterator. This returns one line at a
time. It’s similar to the previous example, but with less code:

>>> poem = ''
>>> fin = open('relativity', 'rt')
>>> for line in fin:
... poem += line
...
>>> fin.close()
>>> len(poem)
150

All of the preceding examples eventually built the single string poem. The read
lines() call reads a line at a time, and returns a list of one-line strings:

>>> fin = open('relativity', 'rt')
>>> lines = fin.readlines()
>>> fin.close()
>>> print(len(lines), 'lines read')
5 lines read
>>> for line in lines:
... print(line, end='')
...
There was a young lady named Bright,
Whose speed was far faster than light;
She started one day
In a relative way,
And returned on the previous night.>>>

We told print() to suppress the automatic newlines because the first four lines
already had them. The last line did not, causing the interactive prompt >>> to occur
right after the last line.

Write a Binary File with write()
If you include a 'b' in the mode string, the file is opened in binary mode. In this case,
you read and write bytes instead of a string.

We don’t have a binary poem lying around, so we’ll just generate the 256 byte values
from 0 to 255:

>>> bdata = bytes(range(0, 256))
>>> len(bdata)
256

File Input/Output | 181

Open the file for writing in binary mode and write all the data at once:

>>> fout = open('bfile', 'wb')
>>> fout.write(bdata)
256
>>> fout.close()

Again, write() returns the number of bytes written.

As with text, you can write binary data in chunks:

>>> fout = open('bfile', 'wb')
>>> size = len(bdata)
>>> offset = 0
>>> chunk = 100
>>> while True:
... if offset > size:
... break
... fout.write(bdata[offset:offset+chunk])
... offset += chunk
...
100
100
56
>>> fout.close()

Read a Binary File with read()
This one is simple; all you need to do is just open with 'rb':

>>> fin = open('bfile', 'rb')
>>> bdata = fin.read()
>>> len(bdata)
256
>>> fin.close()

Close Files Automatically by Using with
If you forget to close a file that you’ve opened, it will be closed by Python after it’s no
longer referenced. This means that if you open a file within a function and don’t close
it explicitly, it will be closed automatically when the function ends. But you might
have opened the file in a long-running function or the main section of the program.
The file should be closed to force any remaining writes to be completed.

Python has context managers to clean up things such as open files. You use the form
with expression as variable:

>>> with open('relativity', 'wt') as fout:
... fout.write(poem)
...

182 | Chapter 8: Data Has to Go Somewhere

That’s it. After the block of code under the context manager (in this case, one line)
completes (normally or by a raised exception), the file is closed automatically.

Change Position with seek()
As you read and write, Python keeps track of where you are in the file. The tell()
function returns your current offset from the beginning of the file, in bytes. The
seek() function lets you jump to another byte offset in the file. This means that you
don’t have to read every byte in a file to read the last one; you can seek() to the last
one and just read one byte.

For this example, use the 256-byte binary file 'bfile' that you wrote earlier:

>>> fin = open('bfile', 'rb')
>>> fin.tell()
0

Use seek() to one byte before the end of the file:

>>> fin.seek(255)
255

Read until the end of the file:

>>> bdata = fin.read()
>>> len(bdata)
1
>>> bdata[0]
255

seek() also returns the current offset.

You can call seek() with a second argument: seek(offset, origin):

• If origin is 0 (the default), go offset bytes from the start
• If origin is 1, go offset bytes from the current position
• If origin is 2, go offset bytes relative to the end

These values are also defined in the standard os module:

>>> import os
>>> os.SEEK_SET
0
>>> os.SEEK_CUR
1
>>> os.SEEK_END
2

So, we could have read the last byte in different ways:

>>> fin = open('bfile', 'rb')

File Input/Output | 183

One byte before the end of the file:

>>> fin.seek(-1, 2)
255
>>> fin.tell()
255

Read until the end of the file:

>>> bdata = fin.read()
>>> len(bdata)
1
>>> bdata[0]
255

You don’t need to call tell() for seek() to work. I just wanted to
show that they both report the same offset.

Here’s an example of seeking from the current position in the file:

>>> fin = open('bfile', 'rb')

This next example ends up two bytes before the end of the file:

>>> fin.seek(254, 0)
254
>>> fin.tell()
254

Now, go forward one byte:

>>> fin.seek(1, 1)
255
>>> fin.tell()
255

Finally, read until the end of the file:

>>> bdata = fin.read()
>>> len(bdata)
1
>>> bdata[0]
255

These functions are most useful for binary files. You can use them with text files, but
unless the file is ASCII (one byte per character), you would have a hard time calculat‐
ing offsets. These would depend on the text encoding, and the most popular encod‐
ing (UTF-8) uses varying numbers of bytes per character.

184 | Chapter 8: Data Has to Go Somewhere

Structured Text Files
With simple text files, the only level of organization is the line. Sometimes, you want
more structure than that. You might want to save data for your program to use later,
or send data to another program.

There are many formats, and here’s how you can distinguish them:

• A separator, or delimiter, character like tab ('\t'), comma (','), or vertical bar
('|'). This is an example of the comma-separated values (CSV) format.

• '<' and '>' around tags. Examples include XML and HTML.
• Punctuation. An example is JavaScript Object Notation (JSON).
• Indentation. An example is YAML (which depending on the source you use

means “YAML Ain’t Markup Language;” you’ll need to research that one your‐
self).

• Miscellaneous, such as configuration files for programs.

Each of these structured file formats can be read and written by at least one Python
module.

CSV
Delimited files are often used as an exchange format for spreadsheets and databases.
You could read CSV files manually, a line at a time, splitting each line into fields at
comma separators, and adding the results to data structures such as lists and diction‐
aries. But it’s better to use the standard csv module, because parsing these files can
get more complicated than you think.

• Some have alternate delimiters besides a comma: '|' and '\t' (tab) are com‐
mon.

• Some have escape sequences. If the delimiter character can occur within a field,
the entire field might be surrounded by quote characters or preceded by some
escape character.

• Files have different line-ending characters. Unix uses '\n', Microsoft uses '\r
\n', and Apple used to use '\r' but now uses '\n'.

• There can be column names in the first line.

First, we’ll see how to read and write a list of rows, each containing a list of columns:

>>> import csv
>>> villains = [
... ['Doctor', 'No'],
... ['Rosa', 'Klebb'],

Structured Text Files | 185

... ['Mister', 'Big'],

... ['Auric', 'Goldfinger'],

... ['Ernst', 'Blofeld'],

...]
>>> with open('villains', 'wt') as fout: # a context manager
... csvout = csv.writer(fout)
... csvout.writerows(villains)

This creates the file villains with these lines:

Doctor,No
Rosa,Klebb
Mister,Big
Auric,Goldfinger
Ernst,Blofeld

Now, we’ll try to read it back in:

>>> import csv
>>> with open('villains', 'rt') as fin: # context manager
... cin = csv.reader(fin)
... villains = [row for row in cin] # This uses a list comprehension
...
>>> print(villains)
[['Doctor', 'No'], ['Rosa', 'Klebb'], ['Mister', 'Big'],
['Auric', 'Goldfinger'], ['Ernst', 'Blofeld']]

Take a moment to think about list comprehensions (feel free to go to “Comprehen‐
sions” on page 84 and brush up on that syntax). We took advantage of the structure
created by the reader() function. It obligingly created rows in the cin object that we
can extract in a for loop.

Using reader() and writer() with their default options, the columns are separated
by commas and the rows by line feeds.

The data can be a list of dictionaries rather than a list of lists. Let’s read the villains
file again, this time using the new DictReader() function and specifying the column
names:

>>> import csv
>>> with open('villains', 'rt') as fin:
... cin = csv.DictReader(fin, fieldnames=['first', 'last'])
... villains = [row for row in cin]
...
>>> print(villains)
[{'last': 'No', 'first': 'Doctor'},
{'last': 'Klebb', 'first': 'Rosa'},
{'last': 'Big', 'first': 'Mister'},
{'last': 'Goldfinger', 'first': 'Auric'},
{'last': 'Blofeld', 'first': 'Ernst'}]

Let’s rewrite the CSV file by using the new DictWriter() function. We’ll also call
writeheader() to write an initial line of column names to the CSV file:

186 | Chapter 8: Data Has to Go Somewhere

import csv
villains = [
 {'first': 'Doctor', 'last': 'No'},
 {'first': 'Rosa', 'last': 'Klebb'},
 {'first': 'Mister', 'last': 'Big'},
 {'first': 'Auric', 'last': 'Goldfinger'},
 {'first': 'Ernst', 'last': 'Blofeld'},
]
with open('villains', 'wt') as fout:
 cout = csv.DictWriter(fout, ['first', 'last'])
 cout.writeheader()
 cout.writerows(villains)

That creates a villains file with a header line:

first,last
Doctor,No
Rosa,Klebb
Mister,Big
Auric,Goldfinger
Ernst,Blofeld

Now we’ll read it back. By omitting the fieldnames argument in the DictReader()
call, we instruct it to use the values in the first line of the file (first,last) as column
labels and matching dictionary keys:

>>> import csv
>>> with open('villains', 'rt') as fin:
... cin = csv.DictReader(fin)
... villains = [row for row in cin]
...
>>> print(villains)
[{'last': 'No', 'first': 'Doctor'},
{'last': 'Klebb', 'first': 'Rosa'},
{'last': 'Big', 'first': 'Mister'},
{'last': 'Goldfinger', 'first': 'Auric'},
{'last': 'Blofeld', 'first': 'Ernst'}]

XML
Delimited files convey only two dimensions: rows (lines) and columns (fields within a
line). If you want to exchange data structures among programs, you need a way to
encode hierarchies, sequences, sets, and other structures as text.

XML is the most prominent markup format that suits the bill. It uses tags to delimit
data, as in this sample menu.xml file:

<?xml version="1.0"?>
<menu>
 <breakfast hours="7-11">
 <item price="$6.00">breakfast burritos</item>
 <item price="$4.00">pancakes</item>

Structured Text Files | 187

 </breakfast>
 <lunch hours="11-3">
 <item price="$5.00">hamburger</item>
 </lunch>
 <dinner hours="3-10">
 <item price="8.00">spaghetti</item>
 </dinner>
</menu>

Following are a few important characteristics of XML:

• Tags begin with a < character. The tags in this sample were menu, breakfast,
lunch, dinner, and item.

• Whitespace is ignored.
• Usually a start tag such as <menu> is followed by other content and then a final

matching end tag such as </menu>.
• Tags can nest within other tags to any level. In this example, item tags are chil‐

dren of the breakfast, lunch, and dinner tags; they, in turn, are children of
menu.

• Optional attributes can occur within the start tag. In this example, price is an
attribute of item.

• Tags can contain values. In this example, each item has a value, such as pancakes
for the second breakfast item.

• If a tag named thing has no values or children, it can be expressed as the single
tag by including a forward slash just before the closing angle bracket, such as
<thing/>, rather than a start and end tag, like <thing></thing>.

• The choice of where to put data—attributes, values, child tags—is somewhat
arbitrary. For instance, we could have written the last item tag as <item
price="$8.00" food="spaghetti"/>.

XML is often used for data feeds and messages, and has subformats like RSS and
Atom. Some industries have many specialized XML formats, such as the finance field.

XML’s über-flexibility has inspired multiple Python libraries that differ in approach
and capabilities.

The simplest way to parse XML in Python is by using ElementTree. Here’s a little pro‐
gram to parse the menu.xml file and print some tags and attributes:

>>> import xml.etree.ElementTree as et
>>> tree = et.ElementTree(file='menu.xml')
>>> root = tree.getroot()
>>> root.tag
'menu'
>>> for child in root:

188 | Chapter 8: Data Has to Go Somewhere

http://bit.ly/xml-finance

... print('tag:', child.tag, 'attributes:', child.attrib)

... for grandchild in child:

... print('\ttag:', grandchild.tag, 'attributes:', grandchild.attrib)

...
tag: breakfast attributes: {'hours': '7-11'}
 tag: item attributes: {'price': '$6.00'}
 tag: item attributes: {'price': '$4.00'}
tag: lunch attributes: {'hours': '11-3'}
 tag: item attributes: {'price': '$5.00'}
tag: dinner attributes: {'hours': '3-10'}
 tag: item attributes: {'price': '8.00'}
>>> len(root) # number of menu sections
3
>>> len(root[0]) # number of breakfast items
2

For each element in the nested lists, tag is the tag string and attrib is a dictionary of
its attributes. ElementTree has many other ways of searching XML-derived data,
modifying it, and even writing XML files. The ElementTree documentation has the
details.

Other standard Python XML libraries include:

xml.dom

The Document Object Model (DOM), familiar to JavaScript developers, repre‐
sents Web documents as hierarchical structures. This module loads the entire
XML file into memory and lets you access all the pieces equally.

xml.sax

Simple API for XML, or SAX, parses XML on the fly, so it does not have to load
everything into memory at once. Therefore, it can be a good choice if you need to
process very large streams of XML.

HTML
Enormous amounts of data are saved as Hypertext Markup Language (HTML), the
basic document format of the Web. The problem is so much of it doesn’t follow the
HTML rules, which can make it difficult to parse. Also, much of HTML is intended
more to format output than interchange data. Because this chapter is intended to
describe fairly well-defined data formats, I have separated out the discussion about
HTML to Chapter 9.

JSON
JavaScript Object Notation (JSON) has become a very popular data interchange for‐
mat, beyond its JavaScript origins. The JSON format is a subset of JavaScript, and
often legal Python syntax as well. Its close fit to Python makes it a good choice for

Structured Text Files | 189

http://bit.ly/elementtree
http://www.json.org

data interchange among programs. You’ll see many examples of JSON for web devel‐
opment in Chapter 9.

Unlike the variety of XML modules, there’s one main JSON module, with the unfor‐
gettable name json. This program encodes (dumps) data to a JSON string and
decodes (loads) a JSON string back to data. In this next example, let’s build a Python
data structure containing the data from the earlier XML example:

>>> menu = \
... {
... "breakfast": {
... "hours": "7-11",
... "items": {
... "breakfast burritos": "$6.00",
... "pancakes": "$4.00"
... }
... },
... "lunch" : {
... "hours": "11-3",
... "items": {
... "hamburger": "$5.00"
... }
... },
... "dinner": {
... "hours": "3-10",
... "items": {
... "spaghetti": "$8.00"
... }
... }
... }
.

Next, encode the data structure (menu) to a JSON string (menu_json) by using
dumps():

>>> import json
>>> menu_json = json.dumps(menu)
>>> menu_json
'{"dinner": {"items": {"spaghetti": "$8.00"}, "hours": "3-10"},
"lunch": {"items": {"hamburger": "$5.00"}, "hours": "11-3"},
"breakfast": {"items": {"breakfast burritos": "$6.00", "pancakes":
"$4.00"}, "hours": "7-11"}}'

And now, let’s turn the JSON string menu_json back into a Python data structure
(menu2) by using loads():

>>> menu2 = json.loads(menu_json)
>>> menu2
{'breakfast': {'items': {'breakfast burritos': '$6.00', 'pancakes':
'$4.00'}, 'hours': '7-11'}, 'lunch': {'items': {'hamburger': '$5.00'},
'hours': '11-3'}, 'dinner': {'items': {'spaghetti': '$8.00'}, 'hours': '3-10'}}

190 | Chapter 8: Data Has to Go Somewhere

menu and menu2 are both dictionaries with the same keys and values. As always with
standard dictionaries, the order in which you get the keys varies.

You might get an exception while trying to encode or decode some objects, including
objects such as datetime (covered in detail in “Calendars and Clocks” on page 256),
as demonstrated here.

>>> import datetime
>>> now = datetime.datetime.utcnow()
>>> now
datetime.datetime(2013, 2, 22, 3, 49, 27, 483336)
>>> json.dumps(now)
Traceback (most recent call last):
... (deleted stack trace to save trees)
TypeError: datetime.datetime(2013, 2, 22, 3, 49, 27, 483336) is not JSON serializable
>>>

This can happen because the JSON standard does not define date or time types; it
expects you to define how to handle them. You could convert the datetime to some‐
thing JSON understands, such as a string or an epoch value (coming in Chapter 10):

>>> now_str = str(now)
>>> json.dumps(now_str)
'"2013-02-22 03:49:27.483336"'
>>> from time import mktime
>>> now_epoch = int(mktime(now.timetuple()))
>>> json.dumps(now_epoch)
'1361526567'

If the datetime value could occur in the middle of normally converted data types, it
might be annoying to make these special conversions. You can modify how JSON is
encoded by using inheritance, which is described in “Inheritance” on page 128.
Python’s JSON documentation gives an example of this for complex numbers, which
also makes JSON play dead. Let’s modify it for datetime:

>>> class DTEncoder(json.JSONEncoder):
... def default(self, obj):
... # isinstance() checks the type of obj
... if isinstance(obj, datetime.datetime):
... return int(mktime(obj.timetuple()))
... # else it's something the normal decoder knows:
... return json.JSONEncoder.default(self, obj)
...
>>> json.dumps(now, cls=DTEncoder)
'1361526567'

The new class DTEncoder is a subclass, or child class, of JSONEncoder. We only need
to override its default() method to add datetime handling. Inheritance ensures that
everything else will be handled by the parent class.

Structured Text Files | 191

http://bit.ly/json-docs

The isinstance() function checks whether the object obj is of the class date
time.datetime. Because everything in Python is an object, isinstance() works
everywhere:

>>> type(now)
<class 'datetime.datetime'>
>>> isinstance(now, datetime.datetime)
True
>>> type(234)
<class 'int'>
>>> isinstance(234, int)
True
>>> type('hey')
<class 'str'>
>>> isinstance('hey', str)
True

For JSON and other structured text formats, you can load from a
file into data structures without knowing anything about the struc‐
tures ahead of time. Then, you can walk through the structures by
using isinstance() and type-appropriate methods to examine
their values. For example, if one of the items is a dictionary, you
can extract contents through keys(), values(), and items().

YAML
Similar to JSON, YAML has keys and values, but handles more data types such as
dates and times. The standard Python library does not yet include YAML handling,
so you need to install a third-party library named yaml to manipulate it. load() con‐
verts a YAML string to Python data, whereas dump() does the opposite.

The following YAML file, mcintyre.yaml, contains information on the Canadian poet
James McIntyre, including two of his poems:

name:
 first: James
 last: McIntyre
dates:
 birth: 1828-05-25
 death: 1906-03-31
details:
 bearded: true
 themes: [cheese, Canada]
books:
 url: http://www.gutenberg.org/files/36068/36068-h/36068-h.htm
poems:
 - title: 'Motto'
 text: |
 Politeness, perseverance and pluck,

192 | Chapter 8: Data Has to Go Somewhere

http://www.yaml.org
http://pyyaml.org/wiki/PyYAML

 To their possessor will bring good luck.
 - title: 'Canadian Charms'
 text: |
 Here industry is not in vain,
 For we have bounteous crops of grain,
 And you behold on every field
 Of grass and roots abundant yield,
 But after all the greatest charm
 Is the snug home upon the farm,
 And stone walls now keep cattle warm.

Values such as true, false, on, and off are converted to Python Booleans. Integers
and strings are converted to their Python equivalents. Other syntax creates lists and
dictionaries:

>>> import yaml
>>> with open('mcintyre.yaml', 'rt') as fin:
>>> text = fin.read()
>>> data = yaml.load(text)
>>> data['details']
{'themes': ['cheese', 'Canada'], 'bearded': True}
>>> len(data['poems'])
2

The data structures that are created match those in the YAML file, which in this case
are more than one level deep in places. You can get the title of the second poem with
this dict/list/dict reference:

>>> data['poems'][1]['title']
'Canadian Charms'

PyYAML can load Python objects from strings, and this is danger‐
ous. Use safe_load() instead of load() if you’re importing YAML
that you don’t trust. Better yet, always use safe_load(). Read war
is peace for a description of how unprotected YAML loading com‐
promised the Ruby on Rails platform.

A Security Note
You can use all the formats described in this chapter to save objects to files and read
them back again. It’s possible to exploit this process and cause security problems.

For example, the following XML snippet from the billion laughs Wikipedia page
defines ten nested entities, each expanding the lower level ten times for a total expan‐
sion of one billion:

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

Structured Text Files | 193

http://bit.ly/war-is-peace
http://bit.ly/war-is-peace

 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

The bad news: billion laughs would blow up all of the XML libraries mentioned in the
previous sections. Defused XML lists this attack and others, along with the vulnera‐
bility of Python libraries. The link shows how to change the settings for many of the
libraries to avoid these problems. Also, you can use the defusedxml library as a secu‐
rity frontend for the other libraries:

>>> # insecure:
>>> from xml.etree.ElementTree import parse
>>> et = parse(xmlfile)
>>> # protected:
>>> from defusedxml.ElementTree import parse
>>> et = parse(xmlfile)

Configuration Files
Most programs offer various options or settings. Dynamic ones can be provided as
program arguments, but long-lasting ones need to be kept somewhere. The tempta‐
tion to define your own quick and dirty config file format is strong—but resist it. It
often turns out to be dirty, but not so quick. You need to maintain both the writer
program and the reader program (sometimes called a parser). There are good alterna‐
tives that you can just drop into your program, including those in the previous sec‐
tions.

Here, we’ll use the standard configparser module, which handles Windows-style .ini
files. Such files have sections of key = value definitions. Here’s a minimal settings.cfg
file:

[english]
greeting = Hello

[french]
greeting = Bonjour

[files]
home = /usr/local
simple interpolation:
bin = %(home)s/bin

Here’s the code to read it into Python data structures:

194 | Chapter 8: Data Has to Go Somewhere

https://bitbucket.org/tiran/defusedxml

>>> import configparser
>>> cfg = configparser.ConfigParser()
>>> cfg.read('settings.cfg')
['settings.cfg']
>>> cfg
<configparser.ConfigParser object at 0x1006be4d0>
>>> cfg['french']
<Section: french>
>>> cfg['french']['greeting']
'Bonjour'
>>> cfg['files']['bin']
'/usr/local/bin'

Other options are available, including fancier interpolation. See the configparser
documentation. If you need deeper nesting than two levels, try YAML or JSON.

Other Interchange Formats
These binary data interchange formats are usually more compact and faster than
XML or JSON:

• MsgPack
• Protocol Buffers
• Avro
• Thrift

Because they are binary, none can be easily edited by a human with a text editor.

Serialize by Using pickle
Saving data structures to a file is called serializing. Formats such as JSON might
require some custom converters to serialize all the data types from a Python program.
Python provides the pickle module to save and restore any object in a special binary
format.

Remember how JSON lost its mind when encountering a datetime object? Not a
problem for pickle:

>>> import pickle
>>> import datetime
>>> now1 = datetime.datetime.utcnow()
>>> pickled = pickle.dumps(now1)
>>> now2 = pickle.loads(pickled)
>>> now1
datetime.datetime(2014, 6, 22, 23, 24, 19, 195722)
>>> now2
datetime.datetime(2014, 6, 22, 23, 24, 19, 195722)

Structured Text Files | 195

http://bit.ly/configparser
http://msgpack.org
https://code.google.com/p/protobuf/
http://avro.apache.org/docs/current/
http://thrift.apache.org/

pickle works with your own classes and objects, too. We’ll define a little class called
Tiny that returns the string 'tiny' when treated as a string:

>>> import pickle
>>> class Tiny():
... def __str__(self):
... return 'tiny'
...
>>> obj1 = Tiny()
>>> obj1
<__main__.Tiny object at 0x10076ed10>
>>> str(obj1)
'tiny'
>>> pickled = pickle.dumps(obj1)
>>> pickled
b'\x80\x03c__main__\nTiny\nq\x00)\x81q\x01.'
>>> obj2 = pickle.loads(pickled)
>>> obj2
<__main__.Tiny object at 0x10076e550>
>>> str(obj2)
'tiny'

pickled is the pickled binary string made from the object obj1. We converted that
back to the object obj2 to make a copy of obj1. Use dump() to pickle to a file, and
load() to unpickle from one.

Because pickle can create Python objects, the same security warn‐
ings that were discussed in earlier sections apply. Don’t unpickle
something that you don’t trust.

Structured Binary Files
Some file formats were designed to store particular data structures but are neither
relational nor NoSQL databases. The sections that follow present some of them.

Spreadsheets
Spreadsheets, notably Microsoft Excel, are widespread binary data formats. If you can
save your spreadsheet to a CSV file, you can read it by using the standard csv module
that was described earlier. If you have a binary xls file, xlrd is a third-party package
for reading and writing.

HDF5
HDF5 is a binary data format for multidimensional or hierarchical numeric data. It’s
used mainly in science, where fast random access to large datasets (gigabytes to tera‐

196 | Chapter 8: Data Has to Go Somewhere

http://pypi.python.org/pypi/xlrd
http://www.hdfgroup.org/why_hdf

bytes) is a common requirement. Even though HDF5 could be a good alternative to
databases in some cases, for some reason HDF5 is almost unknown in the business
world. It’s best suited to WORM (write once/read many) applications for which data‐
base protection against conflicting writes is not needed. Here are a couple of modules
that you might find useful:

• h5py is a full-featured low-level interface. Read the documentation and code.
• PyTables is a bit higher-level, with database-like features. Read the documenta‐

tion and code.

Both of these are discussed in terms of scientific applications of Python in Appendix
C. I’m mentioning HDF5 here in case you have a need to store and retrieve large
amounts of data and are willing to consider something outside the box, as well as the
usual database solutions. A good example is the Million Song dataset, which has
downloadable song data in HDF5 format.

Relational Databases
Relational databases are only about 40 years old but are ubiquitous in the computing
world. You’ll almost certainly have to deal with them at one time or another. When
you do, you’ll appreciate what they provide:

• Access to data by multiple simultaneous users
• Protection from corruption by those users
• Efficient methods to store and retrieve the data
• Data defined by schemas and limited by constraints
• Joins to find relationships across diverse types of data
• A declarative (rather than imperative) query language: SQL (Structured Query

Language)

These are called relational because they show relationships among different kinds of
data in the form of tables (as they are usually called nowadays). For instance, in our
menu example earlier, there is a relationship between each item and its price.

A table is a grid of rows and columns, similar to a spreadsheet. To create a table,
name it and specify the order, names, and types of its columns. Each row has the
same columns, although a column may be defined to allow missing data (called
nulls). In the menu example, you could create a table with one row for each item
being sold. Each item has the same columns, including one for the price.

A column or group of columns is usually the table’s primary key; its values must be
unique in the table. This prevents adding the same data to the table more than once.

Relational Databases | 197

http://www.h5py.org/
https://github.com/h5py/h5py
http://www.pytables.org/
http://www.pytables.org/
http://pytables.github.com/
http://bit.ly/millionsong

This key is indexed for fast lookups during queries. An index works a little like a book
index, making it fast to find a particular row.

Each table lives within a parent database, like a file within a directory. Two levels of
hierarchy help keep things organized a little better.

Yes, the word database is used in multiple ways: as the server, the
table container, and the data stored therein. If you’ll be referring to
all of them at the same time, it might help to call them database
server, database, and data.

If you want to find rows by some non-key column value, define a secondary index on
that column. Otherwise, the database server must perform a table scan—a brute-force
search of every row for matching column values.

Tables can be related to each other with foreign keys, and column values can be con‐
strained to these keys.

SQL
SQL is not an API or a protocol, but a declarative language: you say what you want
rather than how to do it. It’s the universal language of relational databases. SQL quer‐
ies are text strings, that a client sends to the database server, which figures out what to
do with them.

There have been various SQL standard definitions, but all database vendors have
added their own tweaks and extensions, resulting in many SQL dialects. If you store
your data in a relational database, SQL gives you some portability. Still, dialect and
operational differences can make it difficult to move your data to another type of
database.

There are two main categories of SQL statements:

DDL (data definition language)
Handles creation, deletion, constraints, and permissions for tables, databases,
and uses

DML (data manipulation language)
Handles data insertions, selects, updates, and deletions

Table 8-1 lists the basic SQL DDL commands.

198 | Chapter 8: Data Has to Go Somewhere

Table 8-1. Basic SQL DDL commands

Operation SQL pattern SQL example

Create a database CREATE DATABASE dbname CREATE DATABASE d

Select current database USE dbname USE d

Delete a database and its tables DROP DATABASE dbname DROP DATABASE d

Create a table CREATE TABLE tbname (coldefs) CREATE TABLE t (id INT, count

INT)

Delete a table DROP TABLE tbname DROP TABLE t

Remove all rows from a table TRUNCATE TABLE tbname TRUNCATE TABLE t

Why all the CAPITAL LETTERS? SQL is case-insensitive, but it’s
tradition (don’t ask me why) to SHOUT its keywords in code
examples to distinguish them from column names.

The main DML operations of a relational database are often known by the acronym
CRUD:

• Create by using the SQL INSERT statement
• Read by using SELECT
• Update by using UPDATE
• Delete by using DELETE

Table 8-2 looks at the commands available for SQL DML.

Table 8-2. Basic SQL DML commands

Operation SQL pattern SQL example

Add a row INSERT INTO tbname VAL
UES(…)

INSERT INTO t VALUES(7, 40)

Select all rows and columns SELECT * FROM tbname SELECT * FROM t

Select all rows, some columns SELECT cols FROM tbname SELECT id, count FROM t

Relational Databases | 199

Operation SQL pattern SQL example

Select some rows, some
columns

SELECT cols FROM tbname WHERE
condition

SELECT id, count from t WHERE

count > 5 AND id = 9

Change some rows in a column UPDATE tbname SET col = value
WHERE condition

UPDATE t SET count=3 WHERE id=5

Delete some rows DELETE FROM tbname WHERE
condition

DELETE FROM t WHERE count <= 10

OR id = 16

DB-API
An application programming interface (API) is a set of functions that you can call to
get access to some service. DB-API is Python’s standard API for accessing relational
databases. Using it, you can write a single program that works with multiple kinds of
relational databases instead of writing a separate program for each one. It’s similar to
Java’s JDBC or Perl’s dbi.

Its main functions are the following:

connect()

Make a connection to the database; this can include arguments such as username,
password, server address, and others.

cursor()

Create a cursor object to manage queries.

execute() and executemany()
Run one or more SQL commands against the database.

fetchone(), fetchmany(), and fetchall()
Get the results from execute.

The Python database modules in the coming sections conform to DB-API, often with
extensions and some differences in details.

SQLite
SQLite is a good, light, open source relational database. It’s implemented as a stan‐
dard Python library, and stores databases in normal files. These files are portable
across machines and operating systems, making SQLite a very portable solution for
simple relational database applications. It isn’t as full-featured as MySQL or Post‐
greSQL, but it does support SQL, and it manages multiple simultaneous users. Web
browsers, smart phones, and other applications use SQLite as an embedded database.

200 | Chapter 8: Data Has to Go Somewhere

http://bit.ly/db-api
http://www.sqlite.org

You begin with a connect() to the local SQLite database file that you want to use or
create. This file is the equivalent of the directory-like database that parents tables in
other servers. The special string ':memory:' creates the database in memory only;
this is fast and useful for testing but will lose data when your program terminates or if
your computer goes down.

For the next example, let’s make a database called enterprise.db and the table zoo to
manage our thriving roadside petting zoo business. The table columns are as follows:

critter

A variable length string, and our primary key

count

An integer count of our current inventory for this animal

damages

The dollar amount of our current losses from animal-human interactions

>>> import sqlite3
>>> conn = sqlite3.connect('enterprise.db')
>>> curs = conn.cursor()
>>> curs.execute('''CREATE TABLE zoo
 (critter VARCHAR(20) PRIMARY KEY,
 count INT,
 damages FLOAT)''')
<sqlite3.Cursor object at 0x1006a22d0>

Python’s triple quotes are handy when creating long strings such as SQL queries.

Now, add some animals to the zoo:

>>> curs.execute('INSERT INTO zoo VALUES("duck", 5, 0.0)')
<sqlite3.Cursor object at 0x1006a22d0>
>>> curs.execute('INSERT INTO zoo VALUES("bear", 2, 1000.0)')
<sqlite3.Cursor object at 0x1006a22d0>

There’s a safer way to insert data, using a placeholder:

>>> ins = 'INSERT INTO zoo (critter, count, damages) VALUES(?, ?, ?)'
>>> curs.execute(ins, ('weasel', 1, 2000.0))
<sqlite3.Cursor object at 0x1006a22d0>

This time, we used three question marks in the SQL to indicate that we plan to insert
three values, and then pass those three values as a tuple to the execute() function.
Placeholders handle tedious details such as quoting. They protect you against SQL
injection—a kind of external attack that is common on the Web that inserts malicious
SQL commands into the system.

Now, let’s see if we can get all our animals out again:

Relational Databases | 201

>>> curs.execute('SELECT * FROM zoo')
<sqlite3.Cursor object at 0x1006a22d0>
>>> rows = curs.fetchall()
>>> print(rows)
[('duck', 5, 0.0), ('bear', 2, 1000.0), ('weasel', 1, 2000.0)]

Let’s get them again, but ordered by their counts:

>>> curs.execute('SELECT * from zoo ORDER BY count')
<sqlite3.Cursor object at 0x1006a22d0>
>>> curs.fetchall()
[('weasel', 1, 2000.0), ('bear', 2, 1000.0), ('duck', 5, 0.0)]

Hey, we wanted them in descending order:

>>> curs.execute('SELECT * from zoo ORDER BY count DESC')
<sqlite3.Cursor object at 0x1006a22d0>
>>> curs.fetchall()
[('duck', 5, 0.0), ('bear', 2, 1000.0), ('weasel', 1, 2000.0)]

Which type of animal is costing us the most?

>>> curs.execute('''SELECT * FROM zoo WHERE
... damages = (SELECT MAX(damages) FROM zoo)''')
<sqlite3.Cursor object at 0x1006a22d0>
>>> curs.fetchall()
[('weasel', 1, 2000.0)]

You would have thought it was the bears. It’s always best to check the actual data.

Before we leave SQLite, we need to clean up. If we opened a connection and a cursor,
we need to close them when we’re done:

>>> curs.close()
>>> conn.close()

MySQL
MySQL is a very popular open source relational database. Unlike SQLite, it’s an actual
server, so clients can access it from different devices across the network.

MysqlDB has been the most popular MySQL driver, but it has not yet been ported to
Python 3. Table 8-3 lists the drivers you can use to access MySQL from Python.

Table 8-3. MySQL drivers

Name Link Pypi package Import as Notes

MySQL
Connector

http://bit.ly/mysql-cpdg mysql-connector-
python

mysql.connector

PYMySQL https://github.com/petehunt/
PyMySQL/

pymysql pymysql

202 | Chapter 8: Data Has to Go Somewhere

http://www.mysql.com
http://sourceforge.net/projects/mysql-python
http://bit.ly/mysql-cpdg
https://github.com/petehunt/PyMySQL/
https://github.com/petehunt/PyMySQL/

Name Link Pypi package Import as Notes

oursql http://pythonhosted.org/oursql/ oursql oursql Requires the MySQL C
client libraries.

PostgreSQL
PostgreSQL is a full-featured open source relational database, in many ways more
advanced than MySQL. Table 8-4 presents the Python drivers you can use to access it.

Table 8-4. PostgreSQL drivers

Name Link Pypi package Import as Notes

psycopg2 http://initd.org/psycopg/ psycopg2 psycopg2 Needs pg_config from PostgreSQL
client tools

py-postgresql http://python.projects.pgfoundry.org/ py-postgresql postgresql

The most popular driver is psycopg2, but its installation requires the PostgreSQL cli‐
ent libraries.

SQLAlchemy
SQL is not quite the same for all relational databases, and DB-API takes you only so
far. Each database implements a particular dialect reflecting its features and philoso‐
phy. Many libraries try to bridge these differences in one way or another. The most
popular cross-database Python library is SQLAlchemy.

It isn’t in the standard library, but it’s well known and used by many people. You can
install it on your system by using this command:

$ pip install sqlalchemy

You can use SQLAlchemy on several levels:

• The lowest level handles database connection pools, executing SQL commands,
and returning results. This is closest to the DB-API.

• Next up is the SQL expression language, a Pythonic SQL builder.
• Highest is the ORM (Object Relational Model) layer, which uses the SQL Expres‐

sion Language and binds application code with relational data structures.

As we go along, you’ll understand what the terms mean in those levels. SQLAlchemy
works with the database drivers documented in the previous sections. You don’t need
to import the driver; the initial connection string you provide to SQLAlchemy will
determine it. That string looks like this:

Relational Databases | 203

http://pythonhosted.org/oursql/
http://www.postgresql.org
http://initd.org/psycopg/
http://python.projects.pgfoundry.org/
http://www.sqlalchemy.org

dialect + driver :// user : password @ host : port / dbname

The values you put in this string are as follows:

dialect

The database type

driver

The particular driver you want to use for that database

user and password
Your database authentication strings

host and port
The database server’s location (: port is only needed if it’s not the standard one
for this server)

dbname

The database to initially connect to on the server

Table 8-5 lists the dialects and drivers.

Table 8-5. SQLAlchemy connection

dialect driver

sqlite pysqlite (or omit)

mysql mysqlconnector

mysql pymysql

mysql oursql

postgresql psycopg2

postgresql pypostgresql

The engine layer
First, we’ll try the lowest level of SQLAlchemy, which does little more than the base
DB-API functions.

Let’s try it with SQLite, which is already built into Python. The connection string for
SQLite skips the host, port, user, and password. The dbname informs SQLite as to
what file to use to store your database. If you omit the dbname, SQLite builds a data‐
base in memory. If the dbname starts with a slash (/), it’s an absolute filename on your

204 | Chapter 8: Data Has to Go Somewhere

computer (as in Linux and OS X; for example, C:\\ on Windows). Otherwise, it’s rela‐
tive to your current directory.

The following segments are all part of one program, separated here for explanation.

To begin, you need to import what we need. The following is an example of an import
alias, which lets us use the string sa to refer to SQLAlchemy methods. I do this
mainly because sa is a lot easier to type than sqlalchemy:

>>> import sqlalchemy as sa

Connect to the database and create the storage for it in memory (the argument string
'sqlite:///:memory:' also works):

>>> conn = sa.create_engine('sqlite://')

Create a database table called zoo that comprises three columns:

>>> conn.execute('''CREATE TABLE zoo
... (critter VARCHAR(20) PRIMARY KEY,
... count INT,
... damages FLOAT)''')
<sqlalchemy.engine.result.ResultProxy object at 0x1017efb10>

Running conn.execute() returns a SQLAlchemy object called a ResultProxy. You’ll
soon see what to do with it.

By the way, if you’ve never made a database table before, congratulations. Check that
one off your bucket list.

Now, insert three sets of data into your new empty table:

>>> ins = 'INSERT INTO zoo (critter, count, damages) VALUES (?, ?, ?)'
>>> conn.execute(ins, 'duck', 10, 0.0)
<sqlalchemy.engine.result.ResultProxy object at 0x1017efb50>
>>> conn.execute(ins, 'bear', 2, 1000.0)
<sqlalchemy.engine.result.ResultProxy object at 0x1017ef090>
>>> conn.execute(ins, 'weasel', 1, 2000.0)
<sqlalchemy.engine.result.ResultProxy object at 0x1017ef450>

Next, ask the database for everything that we just put in:

>>> rows = conn.execute('SELECT * FROM zoo')

In SQLAlchemy, rows is not a list; it’s that special ResultProxy thing that we can’t
print directly:

>>> print(rows)
<sqlalchemy.engine.result.ResultProxy object at 0x1017ef9d0>

However, you can iterate over it like a list, so we can get a row at a time:

>>> for row in rows:
... print(row)
...

Relational Databases | 205

('duck', 10, 0.0)
('bear', 2, 1000.0)
('weasel', 1, 2000.0)

That was almost the same as the SQLite DB-API example that you saw earlier. The
one advantage is that we didn’t need to import the database driver at the top; SQLAl‐
chemy figured that out from the connection string. Just changing the connection
string would make this code portable to another type of database. Another plus is
SQLAlchemy’s connection pooling, which you can read about at its documentation
site.

The SQL Expression Language
The next level up is SQLAlchemy’s SQL Expression Language. It introduces functions
to create the SQL for various operations. The Expression Language handles more of
the SQL dialect differences than the lower-level engine layer does. It can be a handy
middle-ground approach for relational database applications.

Here’s how to create and populate the zoo table. Again, these are successive fragments
of a single program.

The import and connection are the same as before:

>>> import sqlalchemy as sa
>>> conn = sa.create_engine('sqlite://')

To define the zoo table, we’ll begin using some of the Expression Language instead of
SQL:

>>> meta = sa.MetaData()
>>> zoo = sa.Table('zoo', meta,
... sa.Column('critter', sa.String, primary_key=True),
... sa.Column('count', sa.Integer),
... sa.Column('damages', sa.Float)
...)
>>> meta.create_all(conn)

Check out the parentheses in that multiline call in the preceding example. The struc‐
ture of the Table() method matches the structure of the table. Just as our table con‐
tains three columns, there are three calls to Column() inside the parentheses of the
Table() method call.

Meanwhile, zoo is some magic object that bridges the SQL database world and the
Python data structure world.

Insert the data with more Expression Language functions:

... conn.execute(zoo.insert(('bear', 2, 1000.0)))
<sqlalchemy.engine.result.ResultProxy object at 0x1017ea910>
>>> conn.execute(zoo.insert(('weasel', 1, 2000.0)))
<sqlalchemy.engine.result.ResultProxy object at 0x1017eab10>

206 | Chapter 8: Data Has to Go Somewhere

http://bit.ly/conn-pooling
http://bit.ly/conn-pooling

>>> conn.execute(zoo.insert(('duck', 10, 0)))
<sqlalchemy.engine.result.ResultProxy object at 0x1017eac50>

Next, create the SELECT statement (zoo.select() selects everything from the table
represented by the zoo object, such as SELECT * FROM zoo would do in plain SQL):

>>> result = conn.execute(zoo.select())

Finally, get the results:

>>> rows = result.fetchall()
>>> print(rows)
[('bear', 2, 1000.0), ('weasel', 1, 2000.0), ('duck', 10, 0.0)]

The Object-Relational Mapper

In the last section, the zoo object was a mid-level connection between SQL and
Python. At the top layer of SQLAlchemy, the Object-Relational Mapper (ORM) uses
the SQL Expression Language but tries to make the actual database mechanisms
invisible. You define classes, and the ORM handles how to get their data in and out of
the database. The basic idea behind that complicated phrase, “object-relational map‐
per,” is that you can refer to objects in your code, and thus stay close to the way
Python likes to operate, while still using a relational database.

We’ll define a Zoo class and hook it into the ORM. This time, we’ll make SQLite use
the file zoo.db so that we can confirm that the ORM worked.

As in the previous two sections, the snippets that follow are actually one program
separated by explanations. Don’t worry if you don’t understand some if it. The
SQLAlchemy documentation has all the details, and this stuff can get complex. I just
want you to get an idea of how much work it is to do this, so that you can decide
which of the approaches discussed in this chapter suits you.

The initial import is the same, but this time we need another something also:

>>> import sqlalchemy as sa
>>> from sqlalchemy.ext.declarative import declarative_base

Here, we make the connection:

>>> conn = sa.create_engine('sqlite:///zoo.db')

Now, we get into SQLAlchemy’s ORM. We define the Zoo class and associate its
attributes with table columns:

>>> Base = declarative_base()
>>> class Zoo(Base):
... __tablename__ = 'zoo'
... critter = sa.Column('critter', sa.String, primary_key=True)
... count = sa.Column('count', sa.Integer)
... damages = sa.Column('damages', sa.Float)
... def __init__(self, critter, count, damages):

Relational Databases | 207

... self.critter = critter

... self.count = count

... self.damages = damages

... def __repr__(self):

... return "<Zoo({}, {}, {})>".format(self.critter, self.count, self.damages)

The following line magically creates the database and table:

>>> Base.metadata.create_all(conn)

You can then insert data by creating Python objects. The ORM manages these
internally:

>>> first = Zoo('duck', 10, 0.0)
>>> second = Zoo('bear', 2, 1000.0)
>>> third = Zoo('weasel', 1, 2000.0)
>>> first
<Zoo(duck, 10, 0.0)>

Next, we get the ORM to take us to SQL land. We create a session to talk to the data‐
base:

>>> from sqlalchemy.orm import sessionmaker
>>> Session = sessionmaker(bind=conn)
>>> session = Session()

Within the session, we write the three objects that we created to the database. The
add() function adds one object, and add_all() adds a list:

>>> session.add(first)
>>> session.add_all([second, third])

Finally, we need to force everything to complete:

>>> session.commit()

Did it work? Well, it created a zoo.db file in the current directory. You can use the
command-line sqlite3 program to check it:

$ sqlite3 zoo.db
SQLite version 3.6.12
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
zoo
sqlite> select * from zoo;
duck|10|0.0
bear|2|1000.0
weasel|1|2000.0

The purpose of this section was to show what an ORM is and how it works at a high
level. The author of SQLAlchemy has written a full tutorial. After reading this, decide
which of the following levels would best fit your needs:

208 | Chapter 8: Data Has to Go Somewhere

http://bit.ly/obj-rel-tutorial

• Plain DB-API, as in the earlier SQLite section
• The SQLAlchemy engine room
• The SQLAlchemy Expression Language
• The SQLAlchemy ORM

It seems like a natural choice to use an ORM to avoid the complexities of SQL. Should
you use one? Some people think ORMs should be avoided, but others think the criti‐
cism is overdone. Whoever’s right, an ORM is an abstraction, and all abstractions
break down at some point; they’re leaky. When your ORM doesn’t do what you want,
you must figure out both how it works and how to fix it in SQL. To borrow an Inter‐
net meme: Some people, when confronted with a problem, think, “I know, I’ll use an
ORM.” Now they have two problems. Use ORMs sparingly, and mostly for simple
applications. If the application is that simple, maybe you can just use straight SQL (or
the SQL Expression Language), anyhow.

Or, you can try something simpler such as dataset. It’s built on SQLAlchemy and
provides a simple ORM for SQL, JSON, and CSV storage.

NoSQL Data Stores
Some databases are not relational and don’t support SQL. These were written to han‐
dle very large data sets, allow more flexible data definitions, or support custom data
operations. They’ve been collectively labeled NoSQL (formerly meaning no SQL; now
the less confrontational not only SQL).

The dbm Family
The dbm formats were around long before NoSQL was coined. They’re key-value
stores, often embedded in applications such as web browsers to maintain various set‐
tings. A dbm database is like a Python dictionary in the following ways:

• You can assign a value to a key, and it’s automatically saved to the database on
disk.

• You can get a value from a key.

The following is a quick example. The second argument to the following open()
method is 'r' to read, 'w' to write, and 'c' for both, creating the file if it doesn’t
exist:

>>> import dbm
>>> db = dbm.open('definitions', 'c')

To create key-value pairs, just assign a value to a key just as you would a dictionary:

NoSQL Data Stores | 209

http://bit.ly/obj-rel-map
http://bit.ly/fowler-orm
http://bit.ly/fowler-orm
http://bit.ly/leaky-law
https://dataset.readthedocs.org/

>>> db['mustard'] = 'yellow'
>>> db['ketchup'] = 'red'
>>> db['pesto'] = 'green'

Let’s pause and check what we have so far:

>>> len(db)
3
>>> db['pesto']
b'green'

Now close, then reopen to see if it actually saved what we gave it:

>>> db.close()
>>> db = dbm.open('definitions', 'r')
>>> db['mustard']
b'yellow'

Keys and values are stored as bytes. You cannot iterate over the database object db,
but you can get the number of keys by using len(). Note that get() and setde
fault() work as they do for dictionaries.

Memcached
memcached is a fast in-memory key-value cache server. It’s often put in front of a data‐
base, or used to store web server session data. You can download versions for Linux
and OS X, and for Windows. If you want to try out this section, you’ll need a memc‐
ached server and Python driver.

There are many Python drivers; one that works with Python 3 is python3-memcached,
which you can install by using this command:

$ pip install python-memcached

To use it, connect to a memcached server, after which you can do the following:

• Set and get values for keys
• Increment or decrement a value
• Delete a key

Data is not persistent, and data that you wrote earlier might disappear. This is inher‐
ent in memcached, being that it’s a cache server. It avoids running out of memory by
discarding old data.

You can connect to multiple memcached servers at the same time. In this next exam‐
ple, we’re just talking to one on the same computer:

>>> import memcache
>>> db = memcache.Client(['127.0.0.1:11211'])
>>> db.set('marco', 'polo')

210 | Chapter 8: Data Has to Go Somewhere

http://memcached.org/
http://bit.ly/install-osx
http://bit.ly/install-osx
http://bit.ly/memcache-win
https://github.com/eguven/python3-memcached

True
>>> db.get('marco')
'polo'
>>> db.set('ducks', 0)
True
>>> db.get('ducks')
0
>>> db.incr('ducks', 2)
2
>>> db.get('ducks')
2

Redis
Redis is a data structure server. Like memcached, all of the data in a Redis server
should fit in memory (although there is now an option to save the data to disk).
Unlike memcached, Redis can do the following:

• Save data to disk for reliability and restarts
• Keep old data
• Provide more data structures than simple strings

The Redis data types are a close match to Python’s, and a Redis server can be a useful
intermediary for one or more Python applications to share data. I’ve found it so use‐
ful that it’s worth a little extra coverage here.

The Python driver redis-py has its source code and tests on GitHub, as well as
online documentation. You can install it by using this command:

$ pip install redis

The Redis server itself has good documentation. If you install and start the Redis
server on your local computer (with the network nickname localhost), you can try
the programs in the following sections.

Strings
A key with a single value is a Redis string. Simple Python data types are automatically
converted. Connect to a Redis server at some host (default is localhost) and port
(default is 6379):

>>> import redis
>>> conn = redis.Redis()

redis.Redis('localhost') or redis.Redis('localhost', 6379) would have given
the same result.

List all keys (none so far):

NoSQL Data Stores | 211

http://redis.io
https://github.com/andymccurdy/redis-py
http://bit.ly/redis-py-docs
http://redis.io

>>> conn.keys('*')
[]

Set a simple string (key 'secret'), integer (key 'carats'), and float (key 'fever'):

>>> conn.set('secret', 'ni!')
True
>>> conn.set('carats', 24)
True
>>> conn.set('fever', '101.5')
True

Get the values back by key:

>>> conn.get('secret')
b'ni!'
>>> conn.get('carats')
b'24'
>>> conn.get('fever')
b'101.5'

Here, the setnx() method sets a value only if the key does not exist:

>>> conn.setnx('secret', 'icky-icky-icky-ptang-zoop-boing!')
False

It failed because we had already defined 'secret':

>>> conn.get('secret')
b'ni!'

The getset() method returns the old value and sets it to a new one at the same time:

>>> conn.getset('secret', 'icky-icky-icky-ptang-zoop-boing!')
b'ni!'

Let’s not get too far ahead of ourselves. Did it work?

>>> conn.get('secret')
b'icky-icky-icky-ptang-zoop-boing!'

Now, get a substring by using getrange() (as in Python, offset 0=start, -1=end):

>>> conn.getrange('secret', -6, -1)
b'boing!'

Replace a substring by using setrange() (using a zero-based offset):

>>> conn.setrange('secret', 0, 'ICKY')
32
>>> conn.get('secret')
b'ICKY-icky-icky-ptang-zoop-boing!'

Next, set multiple keys at once by using mset():

>>> conn.mset({'pie': 'cherry', 'cordial': 'sherry'})
True

212 | Chapter 8: Data Has to Go Somewhere

Get more than one value at once by using mget():

>>> conn.mget(['fever', 'carats'])
[b'101.5', b'24']

Delete a key by using delete():

>>> conn.delete('fever')
True

Increment by using the incr() or incrbyfloat() commands, and decrement with
decr():

>>> conn.incr('carats')
25
>>> conn.incr('carats', 10)
35
>>> conn.decr('carats')
34
>>> conn.decr('carats', 15)
19
>>> conn.set('fever', '101.5')
True
>>> conn.incrbyfloat('fever')
102.5
>>> conn.incrbyfloat('fever', 0.5)
103.0

There’s no decrbyfloat(). Use a negative increment to reduce the fever:

>>> conn.incrbyfloat('fever', -2.0)
101.0

Lists
Redis lists can contain only strings. The list is created when you do your first inser‐
tion. Insert at the beginning by using lpush():

>>> conn.lpush('zoo', 'bear')
1

Insert more than one item at the beginning:

>>> conn.lpush('zoo', 'alligator', 'duck')
3

Insert before or after a value by using linsert():

>>> conn.linsert('zoo', 'before', 'bear', 'beaver')
4
>>> conn.linsert('zoo', 'after', 'bear', 'cassowary')
5

Insert at an offset by using lset() (the list must exist already):

NoSQL Data Stores | 213

>>> conn.lset('zoo', 2, 'marmoset')
True

Insert at the end by using rpush():

>>> conn.rpush('zoo', 'yak')
6

Get the value at an offset by using lindex():

>>> conn.lindex('zoo', 3)
b'bear'

Get the values in an offset range by using lrange() (0 to -1 for all):

>>> conn.lrange('zoo', 0, 2)
[b'duck', b'alligator', b'marmoset']

Trim the list with ltrim(), keeping only those in a range of offsets:

>>> conn.ltrim('zoo', 1, 4)
True

Get a range of values (use 0 to -1 for all) by using lrange():

>>> conn.lrange('zoo', 0, -1)
[b'alligator', b'marmoset', b'bear', b'cassowary']

Chapter 10 shows you how you can use Redis lists and publish-subscribe to implement
job queues.

Hashes
Redis hashes are similar to Python dictionaries but can contain only strings. Thus,
you can go only one level deep, not make deep-nested structures. Here are examples
that create and play with a Redis hash called song:

Set the fields do and re in hash song at once by using hmset():

>>> conn.hmset('song', {'do': 'a deer', 're': 'about a deer'})
True

Set a single field value in a hash by using hset():

>>> conn.hset('song', 'mi', 'a note to follow re')
1

Get one field’s value by using hget():

>>> conn.hget('song', 'mi')
b'a note to follow re'

Get multiple field values by using hmget():

>>> conn.hmget('song', 're', 'do')
[b'about a deer', b'a deer']

214 | Chapter 8: Data Has to Go Somewhere

Get all field keys for the hash by using hkeys():

>>> conn.hkeys('song')
[b'do', b're', b'mi']

Get all field values for the hash by using hvals():

>>> conn.hvals('song')
[b'a deer', b'about a deer', b'a note to follow re']

Get the number of fields in the hash by using hlen():

>>> conn.hlen('song')
3

Get all field keys and values in the hash by using hgetall():

>>> conn.hgetall('song')
{b'do': b'a deer', b're': b'about a deer', b'mi': b'a note to follow re'}

Set a field if its key doesn’t exist by using hsetnx():

>>> conn.hsetnx('song', 'fa', 'a note that rhymes with la')
1

Sets
Redis sets are similar to Python sets, as you can see in the series of examples that fol‐
low.

Add one or more values to a set:

>>> conn.sadd('zoo', 'duck', 'goat', 'turkey')
3

Get the number of values from the set:

>>> conn.scard('zoo')
3

Get all the set’s values:

>>> conn.smembers('zoo')
{b'duck', b'goat', b'turkey'}

Remove a value from the set:

>>> conn.srem('zoo', 'turkey')
True

Let’s make a second set to show some set operations:

>>> conn.sadd('better_zoo', 'tiger', 'wolf', 'duck')
0

Intersect (get the common members of) the zoo and better_zoo sets:

NoSQL Data Stores | 215

>>> conn.sinter('zoo', 'better_zoo')
{b'duck'}

Get the intersection of zoo and better_zoo, and store the result in the set fowl_zoo:

>>> conn.sinterstore('fowl_zoo', 'zoo', 'better_zoo')
1

Who’s in there?

>>> conn.smembers('fowl_zoo')
{b'duck'}

Get the union (all members) of zoo and better_zoo:

>>> conn.sunion('zoo', 'better_zoo')
{b'duck', b'goat', b'wolf', b'tiger'}

Store that union result in the set fabulous_zoo:

>>> conn.sunionstore('fabulous_zoo', 'zoo', 'better_zoo')
4
>>> conn.smembers('fabulous_zoo')
{b'duck', b'goat', b'wolf', b'tiger'}

What does zoo have that better_zoo doesn’t? Use sdiff() to get the set difference,
and sdiffstore() to save it in the zoo_sale set:

>>> conn.sdiff('zoo', 'better_zoo')
{b'goat'}
>>> conn.sdiffstore('zoo_sale', 'zoo', 'better_zoo')
1
>>> conn.smembers('zoo_sale')
{b'goat'}

Sorted sets
One of the most versatile Redis data types is the sorted set, or zset. It’s a set of unique
values, but each value has an associated floating point score. You can access each item
by its value or score. Sorted sets have many uses:

• Leader boards
• Secondary indexes
• Timeseries, using timestamps as scores

We’ll show the last use case, tracking user logins via timestamps. We’re using the Unix
epoch value (more on this in Chapter 10) that’s returned by the Python time() func‐
tion:

>>> import time
>>> now = time.time()

216 | Chapter 8: Data Has to Go Somewhere

>>> now
1361857057.576483

Let’s add our first guest, looking nervous:

>>> conn.zadd('logins', 'smeagol', now)
1

Five minutes later, another guest:

>>> conn.zadd('logins', 'sauron', now+(5*60))
1

Two hours later:

>>> conn.zadd('logins', 'bilbo', now+(2*60*60))
1

One day later, not hasty:

>>> conn.zadd('logins', 'treebeard', now+(24*60*60))
1

In what order did bilbo arrive?

>>> conn.zrank('logins', 'bilbo')
2

When was that?

>>> conn.zscore('logins', 'bilbo')
1361864257.576483

Let’s see everyone in login order:

>>> conn.zrange('logins', 0, -1)
[b'smeagol', b'sauron', b'bilbo', b'treebeard']

With their times, please:

>>> conn.zrange('logins', 0, -1, withscores=True)
[(b'smeagol', 1361857057.576483), (b'sauron', 1361857357.576483),
(b'bilbo', 1361864257.576483), (b'treebeard', 1361943457.576483)]

Bits
This is a very space-efficient and fast way to deal with large sets of numbers. Suppose
that you have a website with registered users. You’d like to track how often people log
in, how many users visit on a particular day, how often the same user visits on follow‐
ing days, and so on. You could use Redis sets, but if you’ve assigned increasing
numeric user IDs, bits are more compact and faster.

Let’s begin by creating a bitset for each day. For this test, we’ll just use three days and a
few user IDs:

NoSQL Data Stores | 217

>>> days = ['2013-02-25', '2013-02-26', '2013-02-27']
>>> big_spender = 1089
>>> tire_kicker = 40459
>>> late_joiner = 550212

Each date is a separate key. Set the bit for a particular user ID for that date. For exam‐
ple, on the first date (2013-02-25), we had visits from big_spender (ID 1089) and
tire_kicker (ID 40459):

>>> conn.setbit(days[0], big_spender, 1)
0
>>> conn.setbit(days[0], tire_kicker, 1)
0

The next day, big_spender came back:

>>> conn.setbit(days[1], big_spender, 1)
0

The next day had yet another visit from our friend, big_spender, and a new person
whom we’re calling late_joiner:

>>> conn.setbit(days[2], big_spender, 1)
0
>>> conn.setbit(days[2], late_joiner, 1)
0

Let’s get the daily visitor count for these three days:

>>> for day in days:
... conn.bitcount(day)
...
2
1
2

Did a particular user visit on a particular day?

>>> conn.getbit(days[1], tire_kicker)
0

So, tire_kicker did not visit on the second day.

How many users visited every day?

>>> conn.bitop('and', 'everyday', *days)
68777
>>> conn.bitcount('everyday')
1

I’ll give you three guesses who it was:

>>> conn.getbit('everyday', big_spender)
1

Finally, what was the number of total unique users in these three days?

218 | Chapter 8: Data Has to Go Somewhere

>>> conn.bitop('or', 'alldays', *days)
68777
>>> conn.bitcount('alldays')
3

Caches and expiration
All Redis keys have a time-to-live, or expiration date. By default, this is forever. We
can use the expire() function to instruct Redis how long to keep the key. As is
demonstrated here, the value is a number of seconds:

>>> import time
>>> key = 'now you see it'
>>> conn.set(key, 'but not for long')
True
>>> conn.expire(key, 5)
True
>>> conn.ttl(key)
5
>>> conn.get(key)
b'but not for long'
>>> time.sleep(6)
>>> conn.get(key)
>>>

The expireat() command expires a key at a given epoch time. Key expiration is use‐
ful to keep caches fresh and to limit login sessions.

Other NoSQL
The NoSQL servers listed here handle data larger than memory, and many of them
use multiple computers. Table 8-6 presents notable servers and their Python libraries.

Table 8-6. NoSQL databases

Site Python API

Cassandra pycassa

CouchDB couchdb-python

HBase happybase

Kyoto Cabinet kyotocabinet

MongoDB mongodb

Riak riak-python-client

NoSQL Data Stores | 219

http://cassandra.apache.org/
https://github.com/pycassa/pycassa
http://couchdb.apache.org/
https://github.com/djc/couchdb-python
http://hbase.apache.org/
https://github.com/wbolster/happybase
http://fallabs.com/kyotocabinet/
http://bit.ly/kyotocabinet
http://www.mongodb.org/
http://api.mongodb.org/python/current/
http://basho.com/riak/
https://github.com/basho/riak-python-client

Full-Text Databases
Finally, there’s a special category of databases for full-text search. They index every‐
thing, so you can find that poem that talks about windmills and giant wheels of
cheese. You can see some popular open source examples, and their Python APIs, in
Table 8-7.

Table 8-7. Full-text databases

Site Python API

Lucene pylucene

Solr SolPython

ElasticSearch pyes

Sphinx sphinxapi

Xapian xappy

Whoosh (written in Python, includes an API)

Things to Do
8.1. Assign the string 'This is a test of the emergency text system' to the
variable test1, and write test1 to a file called test.txt.

8.2. Open the file test.txt and read its contents into the string test2. Are test1 and
test2 the same?

8.3. Save these text lines to a file called books.csv. Notice that if the fields are separated
by commas, you need to surround a field with quotes if it contains a comma.

author,book
J R R Tolkien,The Hobbit
Lynne Truss,"Eats, Shoots & Leaves"

8.4. Use the csv module and its DictReader method to read books.csv to the variable
books. Print the values in books. Did DictReader handle the quotes and commas in
the second book’s title?

8.5. Create a CSV file called books.csv by using these lines:

title,author,year
The Weirdstone of Brisingamen,Alan Garner,1960
Perdido Street Station,China Miéville,2000
Thud!,Terry Pratchett,2005

220 | Chapter 8: Data Has to Go Somewhere

http://lucene.apache.org/
http://lucene.apache.org/pylucene/
http://lucene.apache.org/solr/
http://wiki.apache.org/solr/SolPython
http://www.elasticsearch.org/
https://github.com/aparo/pyes/
http://sphinxsearch.com/
http://bit.ly/sphinxapi
http://xapian.org/
https://code.google.com/p/xappy/
http://bit.ly/mchaput-whoosh

The Spellman Files,Lisa Lutz,2007
Small Gods,Terry Pratchett,1992

8.6. Use the sqlite3 module to create a SQLite database called books.db, and a table
called books with these fields: title (text), author (text), and year (integer).

8.7. Read books.csv and insert its data into the book table.

8.8. Select and print the title column from the book table in alphabetical order.

8.9. Select and print all columns from the book table in order of publication.

8.10. Use the sqlalchemy module to connect to the sqlite3 database books.db that you
just made in exercise 8.6. As in 8.8, select and print the title column from the book
table in alphabetical order.

8.11. Install the Redis server and the Python redis library (pip install redis) on
your computer. Create a Redis hash called test with the fields count (1) and name
('Fester Bestertester'). Print all the fields for test.

8.12. Increment the count field of test and print it.

Things to Do | 221

CHAPTER 9

The Web, Untangled

Straddling the French-Swiss border is CERN—a particle physics research institute
that would seem a good lair for a Bond villain. Luckily, its quest is not world domina‐
tion but to understand how the universe works. This has always led CERN to gener‐
ate prodigious amounts of data, challenging physicists and computer scientists just to
keep up.

In 1989, the English scientist Tim Berners-Lee first circulated a proposal to help dis‐
seminate information within CERN and the research community. He called it the
World Wide Web, and soon distilled its design into three simple ideas:

HTTP (Hypertext Transfer Protocol)
A specification for web clients and servers to interchange requests and responses

HTML (Hypertext Markup Language)
A presentation format for results

URL (Uniform Resource Locator)
A way to uniquely represent a server and a resource on that server

In its simplest usage, a web client (I think Berners-Lee was the first to use the term
browser) connected to a web server with HTTP, requested a URL, and received
HTML.

He wrote the first web browser and server on a NeXT computer, invented by a short-
lived company Steve Jobs founded during his hiatus from Apple Computer. Web
awareness really expanded in 1993, when a group of students at the University of Illi‐
nois released the Mosaic web browser (for Windows, the Macintosh, and Unix) and
NCSA httpd server. When I downloaded these and started building sites, I had no
idea that the Web and the Internet would soon become part of everyday life. At the
time, the Internet was still officially noncommercial; there were about 500 known

223

http://home.web.cern.ch/about/birth-web

web servers in the world. By the end of 1994, the number of web servers had grown
to 10,000. The Internet was opened to commercial use, and the authors of Mosaic
founded Netscape to write commercial web software. Netscape went public as part of
the Internet frenzy that was occurring at the time, and the Web’s explosive growth has
never stopped.

Almost every computer language has been used to write web clients and web servers.
The dynamic languages Perl, PHP, and Ruby have been especially popular. In this
chapter, I’ll show why Python is a particularly good language for web work at every
level:

• Clients, to access remote sites
• Servers, to provide data for websites and web APIs
• Web APIs and services, to interchange data in other ways than viewable web

pages

And while we’re at it, we’ll build an actual interactive website in the exercises at the
end of this chapter.

Web Clients
The low-level network plumbing of the Internet is called Transmission Control Pro‐
tocol/Internet Protocol, or more commonly, simply TCP/IP (“TCP/IP” on page 286
goes into more detail about this). It moves bytes among computers, but doesn’t care
about what those bytes mean. That’s the job of higher-level protocols—syntax defini‐
tions for specific purposes. HTTP is the standard protocol for web data interchange.

The Web is a client-server system. The client makes a request to a server: it opens a
TCP/IP connection, sends the URL and other information via HTTP, and receives a
response.

The format of the response is also defined by HTTP. It includes the status of the
request, and (if the request succeeded) the response’s data and format.

The most well-known web client is a web browser. It can make HTTP requests in a
number of ways. You might initiate a request manually by typing a URL into the loca‐
tion bar or clicking on a link in a web page. Very often, the data returned is used to
display a website—HTML documents, JavaScript files, CSS files, and images—but it
can be any type of data, not just that intended for display.

An important aspect of HTTP is that it’s stateless. Each HTTP connection that you
make is independent of all the others. This simplifies basic web operations but com‐
plicates others. Here are just a few samples of the challenges:

224 | Chapter 9: The Web, Untangled

http://home.web.cern.ch/about/birth-web

Caching
Remote content that doesn’t change should be saved by the web client and used
to avoid downloading from the server again.

Sessions
A shopping website should remember the contents of your shopping cart.

Authentication
Sites that require your username and password should remember them while
you’re logged in.

Solutions to statelessness include cookies, in which the server sends the client enough
specific information to be able to identify it uniquely when the client sends the cookie
back.

Test with telnet
HTTP is a text-based protocol, so you can actually type it yourself for web testing.
The ancient telnet program lets you connect to any server and port and type com‐
mands.

Let’s ask everyone’s favorite test site, Google, some basic information about its home
page. Type this:

$ telnet www.google.com 80

If there is a web server on port 80 at google.com (I think that’s a safe bet), telnet will
print some reassuring information and then display a final blank line that’s your cue
to type something else:

Trying 74.125.225.177...
Connected to www.google.com.
Escape character is '^]'.

Now, type an actual HTTP command for telnet to send to the Google web server.
The most common HTTP command (the one your browser uses when you type a
URL in its location bar) is GET. This retrieves the contents of the specified resource,
such as an HTML file, and returns it to the client. For our first test, we’ll use the
HTTP command HEAD, which just retrieves some basic information about the
resource:

HEAD / HTTP/1.1

That HEAD / sends the HTTP HEAD verb (command) to get information about the
home page (/). Add an extra carriage return to send a blank line so the remote server
knows you’re all done and want a response. You’ll receive a response such as this (we
trimmed some of the long lines using … so they wouldn’t stick out of the book):

Web Clients | 225

HTTP/1.1 200 OK
Date: Sat, 26 Oct 2013 17:05:17 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: PREF=ID=962a70e9eb3db9d9:FF=0:TM=1382807117:LM=1382807117:S=y...
 expires=Mon, 26-Oct-2015 17:05:17 GMT;
 path=/;
 domain=.google.com
Set-Cookie: NID=67=hTvtVC7dZJmZzGktimbwVbNZxPQnaDijCz716B1L56GM9qvsqqeIGb...
 expires=Sun, 27-Apr-2014 17:05:17 GMT
 path=/;
 domain=.google.com;
 HttpOnly
P3P: CP="This is not a P3P policy! See http://www.google.com/support/accounts...
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic
Transfer-Encoding: chunked

These are HTTP response headers and their values. Some, like Date and Content-
Type, are required. Others, such as Set-Cookie, are used to track your activity across
multiple visits (we’ll talk about state management a little later in this chapter). When
you make an HTTP HEAD request, you get back only headers. If you had used the
HTTP GET or POST commands, you would also receive data from the home page (a
mixture of HTML, CSS, JavaScript, and whatever else Google decided to throw into
its home page).

I don’t want to leave you stranded in telnet. To close telnet, type the following:

q

Python’s Standard Web Libraries
In Python 2, web client and server modules were a bit scattered. One of the Python 3
goals was to bundle these modules into two packages (remember from Chapter 5 that
a package is just a directory containing module files):

• http manages all the client-server HTTP details:
— client does the client-side stuff
— server helps you write Python web servers
— cookies and cookiejar manage cookies, which save data between site visits

• urllib runs on top of http:
— request handles the client request
— response handles the server response

226 | Chapter 9: The Web, Untangled

— parse cracks the parts of a URL

Let’s use the standard library to get something from a website. The URL in the follow‐
ing example returns information about movies from the IMDB movie database:

>>> import urllib.request as ur
>>> from urllib.parse import quote
>>> import json
>>>
>>> title = input('Type a movie title: ')
Type a movie title: eegah
>>> url = 'http://www.omdbapi.com/?t=%s' % quote(title)
>>> conn = ur.urlopen(url)

For our example, we typed the movie title eegah; as you’ll soon see, there was a movie
with that name. But first, some web computing details.

This little chunk of Python opened a TCP/IP connection to the remote quote server,
made an HTTP request, and received an HTTP response. The response contained
more than just the page data (the movie info). In the official documentation, we find
that conn is an HTTPResponse object with a number of methods and attributes. One of
the most important parts of the response is the HTTP status code:

>>> print(conn.status)
200

A 200 means that everything was peachy. There are dozens of HTTP status codes,
grouped into five ranges by their first (hundreds) digit:

1xx (information)
The server received the request but has some extra information for the client.

2xx (success)
It worked; every success code other than 200 conveys extra details.

3xx (redirection)
The resource moved, so the response returns the new URL to the client.

4xx (client error)
Some problem from the client side, such as the famous 404 (not found). 418 (I’m
a teapot) was an April Fool’s joke.

5xx (server error)
500 is the generic whoops; you might see a 502 (bad gateway) if there’s some dis‐
connect between a web server and a backend application server.

To get the actual data contents from the web page, use the read() method of the conn
variable:

Web Clients | 227

http://bit.ly/httpresponse-docs

>>> data = conn.read()
>>> print(data)

b'{"Title":"Eegah","Year":"1962","Rated":"UNRATED","Released":"01 Apr
1965","Runtime":"90 min","Genre":"Comedy","Director":"Arch Hall
Sr.","Writer":"Bob Wehling (screenplay), Arch Hall Sr. (original
story)","Actors":"Arch Hall Jr., Marilyn Manning, Richard Kiel, Arch
Hall Sr.","Plot":"Teenagers stumble across a prehistoric caveman, who
goes on a rampage.","Language":"English","Country":"USA","Awards":"N/A",
"Poster":"http://ia.media-imdb.com/images/M/MV5BMTY4MDE3NDQ1MF5BMl5BanB
nXkFtZTcwODI3MDQyMQ@@._V1_SX300.jpg","Metascore":"N/A","imdbRating":"2.2",
"imdbVotes":"4,387","imdbID":"tt0055946","Type":"movie","Response":"True"}'

That didn’t look like plain text or HTML. Web servers can send data back to you in
any format they like. The data format is specified by the HTTP response header value
with the name Content-Type, which we also saw in our google.com example:

>>> print(conn.getheader('Content-Type'))
application/json; charset=utf-8

That application/json string is a MIME type, and it means JSON format, not plain
text or HTML. The MIME type for HTML, which the google.com example sent, is
text/html. I’ll show you more MIME types in this chapter.

Now that we know it’s JSON, we can convert it into Python data structures and print
the ones we want:

>>> try:
... str_data = data.decode('utf8')
... js_data = json.loads(str_data)
... print('title:', js_data['Title'])
... print('plot:', js_data['Plot'])
... except:
... print('Sorry, no match for', title)
...
title: Eegah
plot: Teenagers stumble across a prehistoric caveman, who goes on a rampage.

In this example, the returned JSON string was converted to a Python dictionary, and
we printed the two elements with the string keys Title and Plot.

Out of sheer curiosity, what other HTTP headers were sent back to us?

>>> for key, value in conn.getheaders():
... print(key, value)
...

Date Tue, 09 Feb 2016 02:57:47 GMT
Content-Type application/json; charset=utf-8
Content-Length 627
Connection close
Set-Cookie __cfduid=dc4315212f945a15f879910e5f92c79651454986667;
expires=Wed, 08-Feb-17 02:57:47 GMT; path=/; domain=.omdbapi.com;
HttpOnly

228 | Chapter 9: The Web, Untangled

Cache-Control public, max-age=14400
Expires Tue, 09 Feb 2016 06:57:47 GMT
Last-Modified Tue, 09 Feb 2016 01:43:08 GMT
Vary Accept-Encoding
X-AspNet-Version 4.0.30319
X-Powered-By ASP.NET
Access-Control-Allow-Origin *
CF-Cache-Status HIT
Server cloudflare-nginx
CF-RAY 271c4f0fe6da109f-ORD

Remember that telnet example a little earlier? Now, our Python library is parsing all
those HTTP response headers and providing them in a dictionary. Date and Server
seem straightforward; some of the others, less so. It’s helpful to know that HTTP has a
set of standard headers such as Content-Type, and many optional ones.

Beyond the Standard Library: Requests
At the beginning of Chapter 1, there’s a program that accessed a Wayback Machine
API by using the standard libraries urllib.request and json. Following that exam‐
ple is a version that uses the third-party module requests. The requests version is
shorter and easier to understand.

For most purposes, I think web client development with requests is easier. You can
browse the documentation (which is pretty good) for full details. I’ll show the basics
of requests in this section and use it throughout this book for web client tasks.

First, install the requests library into your Python environment. From a terminal
window (Windows users, type cmd to make one), type the following command to
make the Python package installer pip download the latest version of the requests
package and install it:

$ pip install requests

If you have trouble, read Appendix D for details on how to install and use pip.

Let’s redo our previous call to the movie service with requests. This time, just for
cinematic variety, we’ll input the name of a different wretched movie from days gone
by:

>>> import requests
>>> import json
>>>
>>> url = 'http://www.omdbapi.com'
>>> title = input('Type a movie title: ')
Type a movie title: from hell it came
>>> args = {'t': title}
>>> resp = requests.get(url, params=args)
>>> resp
<Response [200]>

Web Clients | 229

http://docs.python-requests.org/

>>> js_data = resp.json()
>>> try:
... print('title:', js_data['Title'])
... print('plot:', js_data['Plot'])
... except:
... print('Sorry, no match for', title)
...

title: From Hell It Came
plot: A wrongfully accused South Seas prince is executed, and returns
as a walking tree stump.

It isn’t that different from using urllib.request.urlopen, but I think it’s a little more
convenient and less wordy.

Web Servers
Web developers have found Python to be an excellent language for writing web
servers and server-side programs. This has led to such a variety of Python-based web
frameworks that it can be hard to navigate among them and make choices—not to
mention deciding what deserves to go into a book.

A web framework provides features with which you can build websites, so it does
more than a simple web (HTTP) server. You’ll see features such as routing (URL to
server function), templates (HTM with dynamic inclusions), debugging, and more.

I’m not going to cover all of the frameworks here—just those that I’ve found to be
relatively simple to use and suitable for real websites. I’ll also show how to run the
dynamic parts of a website with Python and other parts with a traditional web server.

The Simplest Python Web Server
You can run a simple web server by typing just one line of Python:

$ python -m http.server

This implements a bare-bones Python HTTP server. If there are no problems, this
will print an initial status message:

Serving HTTP on 0.0.0.0 port 8000 ...

That 0.0.0.0 means any TCP address, so web clients can access it no matter what
address the server has. There’s more low-level details on TCP and other network
plumbing for you to read about in Chapter 11.

You can now request files, with paths relative to your current directory, and they will
be returned. If you type http://localhost:8000 in your web browser, you should
see a directory listing there, and the server will print access log lines such as this:

127.0.0.1 - - [20/Feb/2013 22:02:37] "GET / HTTP/1.1" 200 -

230 | Chapter 9: The Web, Untangled

localhost and 127.0.0.1 are TCP synonyms for your local computer, so this works
regardless of whether you’re connected to the Internet. You can interpret this line as
follows:

• 127.0.0.1 is the client’s IP address
• The first "-" is the remote username, if found
• The second "-" is the login username, if required
• [20/Feb/2013 22:02:37] is the access date and time
• "GET / HTTP/1.1" is the command sent to the web server:

— The HTTP method (GET)
— The resource requested (/, the top)
— The HTTP version (HTTP/1.1)

• The final 200 is the HTTP status code returned by the web server

Click any file. If your browser can recognize the format (HTML, PNG, GIF, JPEG,
and so on) it should display it, and the server will log the request. For instance, if you
have the file oreilly.png in your current directory, a request for http://localhost:8000/
oreilly.png should return the image of the unsettling fellow in Figure 7-1, and the log
should show something such as this:

127.0.0.1 - - [20/Feb/2013 22:03:48] "GET /oreilly.png HTTP/1.1" 200 -

If you have other files in the same directory on your computer, they should show up
in a listing on your display, and you can click any one to download it. If your browser
is configured to display that file’s format, you’ll see the results on your screen; other‐
wise, your browser will ask you if you want to download and save the file.

The default port number used is 8000, but you can specify another:

$ python -m http.server 9999

You should see this:

Serving HTTP on 0.0.0.0 port 9999 ...

This Python-only server is best suited for quick tests. You can stop it by killing its
process; in most terminals, press Ctrl+C.

You should not use this basic server for a busy production website. Traditional web
servers such as Apache and Nginx are much faster for serving static files. In addition,
this simple server has no way to handle dynamic content, which more extensive
servers can do by accepting parameters.

Web Servers | 231

http://localhost:8000/oreilly.png
http://localhost:8000/oreilly.png

Web Server Gateway Interface
All too soon, the allure of serving simple files wears off, and we want a web server
that can also run programs dynamically. In the early days of the Web, the Common
Gateway Interface (CGI) was designed for clients to make web servers run external
programs and return the results. CGI also handled getting input arguments from the
client through the server to the external programs. However, the programs were
started anew for each client access. This could not scale well, because even small pro‐
grams have appreciable startup time.

To avoid this startup delay, people began merging the language interpreter into the
web server. Apache ran PHP within its mod_php module, Perl in mod_perl, and
Python in mod_python. Then, code in these dynamic languages could be executed
within the long-running Apache process itself rather than in external programs.

An alternative method was to run the dynamic language within a separate long-
running program and have it communicate with the web server. FastCGI and SCGI
are examples.

Python web development made a leap with the definition of Web Server Gateway
Interface (WSGI), a universal API between Python web applications and web servers.
All of the Python web frameworks and web servers in the rest of this chapter use
WSGI. You don’t normally need to know how WSGI works (there really isn’t much to
it), but it helps to know what some of the parts under the hood are called.

Frameworks
Web servers handle the HTTP and WSGI details, but you use web frameworks to
actually write the Python code that powers the site. So, we’ll talk about frameworks
for a while and then get back to alternative ways of actually serving sites that use
them.

If you want to write a website in Python, there are many Python web frameworks
(some might say too many). A web framework handles, at a minimum, client requests
and server responses. It might provide some or all of these features:

Routes
Interpret URLs and find the corresponding server files or Python server code

Templates
Merge server-side data into pages of HTML

Authentication and authorization
Handle usernames, passwords, permissions

Sessions
Maintain transient data storage during a user’s visit to the website

232 | Chapter 9: The Web, Untangled

In the coming sections, we’ll write example code for two frameworks (bottle and
flask). Then, we’ll talk about alternatives, especially for database-backed websites.
You can find a Python framework to power any site that you can think of.

Bottle
Bottle consists of a single Python file, so it’s very easy to try out, and it’s easy to deploy
later. Bottle isn’t part of standard Python, so to install it, type the following command:

$ pip install bottle

Here’s code that will run a test web server and return a line of text when your browser
accesses the URL http://localhost:9999/. Save it as bottle1.py:

from bottle import route, run

@route('/')
def home():
 return "It isn't fancy, but it's my home page"

run(host='localhost', port=9999)

Bottle uses the route decorator to associate a URL with the following function; in this
case, / (the home page) is handled by the home() function. Make Python run this
server script by typing this:

$ python bottle1.py

You should see this on your browser when you access http://localhost:9999:
It isn't fancy, but it's my home page

The run() function executes bottle’s built-in Python test web server. You don’t need
to use this for bottle programs, but it’s useful for initial development and testing.

Now, instead of creating text for the home page in code, let’s make a separate HTML
file called index.html that contains this line of text:

My new and <i>improved</i> home page!!!

Make bottle return the contents of this file when the home page is requested. Save
this script as bottle2.py:

from bottle import route, run, static_file

@route('/')
def main():
 return static_file('index.html', root='.')

run(host='localhost', port=9999)

Web Servers | 233

http://localhost:9999/
http://localhost:9999:

In the call to static_file(), we want the file index.html in the directory indicated
by root (in this case, '.', the current directory). If your previous server example
code was still running, stop it. Now, run the new server:

$ python bottle2.py

When you ask your browser to get http:/localhost:9999/, you should see:

My new and improved home page!!!

Let’s add one last example that shows how to pass arguments to a URL and use them.
Of course, this will be bottle3.py:

from bottle import route, run, static_file

@route('/')
def home():
 return static_file('index.html', root='.')

@route('/echo/<thing>')
def echo(thing):
 return "Say hello to my little friend: %s!" % thing

run(host='localhost', port=9999)

We have a new function called echo() and want to pass it a string argument in a URL.
That’s what the line @route('/echo/<thing>') in the preceding example does. That
<thing> in the route means that whatever was in the URL after /echo/ is assigned to
the string argument thing, which is then passed to the echo function. To see what
happens, stop the old server if it’s still running, and start it with the new code:

$ python bottle3.py

Then, access http://localhost:9999/echo/Mothra in your web browser. You should see
the following:

Say hello to my little friend: Mothra!

Now, leave bottle3.py running for a minute so that we can try something else. You’ve
been verifying that these examples work by typing URLs into your browser and look‐
ing at the displayed pages. You can also use client libraries such as requests to do
your work for you. Save this as bottle_test.py:

import requests

resp = requests.get('http://localhost:9999/echo/Mothra')
if resp.status_code == 200 and \
 resp.text == 'Say hello to my little friend: Mothra!':
 print('It worked! That almost never happens!')
else:
 print('Argh, got this:', resp.text)

234 | Chapter 9: The Web, Untangled

http://localhost:9999/echo/Mothra

Great! Now, run it:

$ python bottle_test.py

You should see this in your terminal:

It worked! That almost never happens!

This is a little example of a unit test. Chapter 8 provides more details on why tests are
good and how to write them in Python.

There’s more to bottle than I’ve shown here. In particular, you can try adding these
arguments when you call run():

• debug=True creates a debugging page if you get an HTTP error;
• reloader=True reloads the page in the browser if you change any of the Python

code.

It’s well documented at the developer site.

Flask
Bottle is a good initial web framework. If you need a few more cowbells and whistles,
try Flask. It started in 2010 as an April Fools’ joke, but enthusiastic response encour‐
aged the author, Armin Ronacher, to make it a real framework. He named the result
Flask as a wordplay on bottle.

Flask is about as simple to use as Bottle, but it supports many extensions that are use‐
ful in professional web development, such as Facebook authentication and database
integration. It’s my personal favorite among Python web frameworks because it balan‐
ces ease of use with a rich feature set.

The Flask package includes the werkzeug WSGI library and the jinja2 template
library. You can install it from a terminal:

$ pip install flask

Let’s replicate the final bottle example code in flask. First, though, we need to make
a few changes:

• Flask’s default directory home for static files is static, and URLs for files there
also begin with /static. We change the folder to '.' (current directory) and the
URL prefix to '' (empty) to allow the URL / to map to the file index.html.

• In the run() function, setting debug=True also activates the automatic reloader;
bottle used separate arguments for debugging and reloading.

Save this file to flask1.py:

Web Servers | 235

http://bottlepy.org/docs/dev/

from flask import Flask

app = Flask(__name__, static_folder='.', static_url_path='')

@app.route('/')
def home():
 return app.send_static_file('index.html')

@app.route('/echo/<thing>')
def echo(thing):
 return "Say hello to my little friend: %s" % thing

app.run(port=9999, debug=True)

Then, run the server from a terminal or window:

$ python flask1.py

Test the home page by typing this URL into your browser:

http://localhost:9999/

You should see the following (as you did for bottle):

My new and improved home page!!!

Try the /echo endpoint:

http://localhost:9999/echo/Godzilla

You should see this:

Say hello to my little friend: Godzilla

There’s another benefit to setting debug to True when calling run. If an exception
occurs in the server code, Flask returns a specially formatted page with useful details
about what went wrong, and where. Even better, you can type some commands to see
the values of variables in the server program.

Do not set debug = True in production web servers. It exposes too
much information about your server to potential intruders.

So far, the Flask example just replicates what we did with bottle. What can Flask do
that bottle can’t? Flask includes jinja2, a more extensive templating system. Here’s a
tiny example of how to use jinja2 and flask together.

Create a directory called templates, and a file within it called flask2.html:
<html>
<head>

236 | Chapter 9: The Web, Untangled

<title>Flask2 Example</title>
</head>
<body>
Say hello to my little friend: {{ thing }}
</body>
</html>

Next, we’ll write the server code to grab this template, fill in the value of thing that we
passed it, and render it as HTML (I’m dropping the home() function here to save
space). Save this as flask2.py:

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/echo/<thing>')
def echo(thing):
 return render_template('flask2.html', thing=thing)

app.run(port=9999, debug=True)

That thing = thing argument means to pass a variable named thing to the template,
with the value of the string thing.

Ensure that flask1.py isn’t still running, and start flask2.py:

$ python flask2.py

Now, type this URL:

http://localhost:9999/echo/Gamera

You should see the following:

Say hello to my little friend: Gamera

Let’s modify our template and save it in the templates directory as flask3.html:
<html>
<head>
<title>Flask3 Example</title>
</head>
<body>
Say hello to my little friend: {{ thing }}.
Alas, it just destroyed {{ place }}!
</body>
</html>

You can pass this second argument to the echo URL in many ways.

Pass an argument as part of the URL path
Using this method, you simply extend the URL itself (save this as flask3a.py):

Web Servers | 237

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/echo/<thing>/<place>')
def echo(thing, place):
 return render_template('flask3.html', thing=thing, place=place)

app.run(port=9999, debug=True)

As usual, stop the previous test server script if it’s still running and then try this new
one:

$ python flask3a.py

The URL would look like this:

http://localhost:9999/echo/Rodan/McKeesport

And you should see the following:

Say hello to my little friend: Rodan. Alas, it just destroyed McKeesport!

Or, you can provide the arguments as GET parameters (save this as flask3b.py):

from flask import Flask, render_template, request

app = Flask(__name__)

@app.route('/echo/')
def echo():
 thing = request.args.get('thing')
 place = request.args.get('place')
 return render_template('flask3.html', thing=thing, place=place)

app.run(port=9999, debug=True)

Run the new server script:

$ python flask3b.py

This time, use this URL:

http://localhost:9999/echo?thing=Gorgo&place=Wilmerding

You should get back what you see here:

Say hello to my little friend: Gorgo. Alas, it just destroyed Wilmerding!

When a GET command is used for a URL, any arguments are passed in the form
&key1=val1&key2=val2&...

You can also use the dictionary ** operator to pass multiple arguments to a template
from a single dictionary (call this flask3c.py):

238 | Chapter 9: The Web, Untangled

from flask import Flask, render_template, request

app = Flask(__name__)

@app.route('/echo/')
def echo():
 kwargs = {}
 kwargs['thing'] = request.args.get('thing')
 kwargs['place'] = request.args.get('place')
 return render_template('flask3.html', **kwargs)

app.run(port=9999, debug=True)

That **kwargs acts like thing=thing, place=place. It saves some typing if there are
a lot of input arguments.

The jinja2 templating language does a lot more than this. If you’ve programmed in
PHP, you’ll see many similarities.

Non-Python Web Servers
So far, the web servers we’ve used have been simple: the standard library’s
http.server or the debugging servers in Bottle and Flask. In production, you’ll want
to run Python with a faster web server. The usual choices are the following:

• apache with the mod_wsgi module
• nginx with the uWSGI app server

Both work well; apache is probably the most popular, and nginx has a reputation for
stability and lower memory use.

Apache

The apache web server’s best WSGI module is mod_wsgi. This can run Python code
within the Apache process or in separate processes that communicate with Apache.

You should already have apache if your system is Linux or OS X. For Windows, you’ll
need to install apache.

Finally, install your preferred WSGI-based Python web framework. Let’s try bottle
here. Almost all of the work involves configuring Apache, which can be a dark art.

Create this test file and save it as /var/www/test/home.wsgi:
import bottle

application = bottle.default_app()

@bottle.route('/')

Web Servers | 239

http://httpd.apache.org/
https://code.google.com/p/modwsgi/
http://bit.ly/apache-http

def home():
 return "apache and wsgi, sitting in a tree"

Do not call run() this time, because that starts the built-in Python web server. We
need to assign to the variable application because that’s what mod_wsgi looks for to
marry the web server and the Python code.

If apache and its mod_wsgi module are working correctly, we just need to connect
them to our Python script. We want to add one line to the file that defines the default
website for this apache server, but finding that file is a task in and of itself. It could
be /etc/apache2/httpd.conf, or /etc/apache2/sites-available/default, or the Latin name of
someone’s pet salamander.

Let’s assume for now that you understand apache and found that file. Add this line
inside the <VirtualHost> section that governs the default website:

 WSGIScriptAlias / /var/www/test/home.wsgi

That section might then look like this:

<VirtualHost *:80>
 DocumentRoot /var/www

 WSGIScriptAlias / /var/www/test/home.wsgi

 <Directory /var/www/test>
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

Start apache, or restart it if it was running to make it use this new configuration. If
you then browse to http://localhost/, you should see:

apache and wsgi, sitting in a tree

This runs mod_wsgi in embedded mode, as part of apache itself.

You can also run it in daemon mode: as one or more processes, separate from apache.
To do this, add two new directive lines to your apache config file:

$ WSGIDaemonProcess domain-name user=user-name group=group-name threads=25
WSGIProcessGroup domain-name

In the preceding example, user-name and group-name are the operating system user
and group names, and the domain-name is the name of your Internet domain. A mini‐
mal apache config might look like this:

<VirtualHost *:80>
 DocumentRoot /var/www

 WSGIScriptAlias / /var/www/test/home.wsgi

240 | Chapter 9: The Web, Untangled

http://localhost/

 WSGIDaemonProcess mydomain.com user=myuser group=mygroup threads=25
 WSGIProcessGroup mydomain.com

 <Directory /var/www/test>
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

The nginx Web Server

The nginx web server does not have an embedded Python module. Instead, it com‐
municates by using a separate WSGI server such as uWSGI. Together they make a
very fast and configurable platform for Python web development.

You can install nginx from its website. You also need to install uWSGI. uWSGI is a
large system, with many levers and knobs to adjust. A short documentation page
gives you instructions on how to combine Flask, nginx, and uWSGI.

Other Frameworks
Websites and databases are like peanut butter and jelly—you see them together a lot.
The smaller frameworks such as bottle and flask do not include direct support for
databases, although some of their contributed add-ons do.

If you need to crank out database-backed websites, and the database design doesn’t
change very often, it might be worth the effort to try one of the larger Python web
frameworks. The current main contenders include:

django

This is the most popular, especially for large sites. It’s worth learning for many
reasons, among them the frequent requests for django experience in Python job
ads. It includes ORM code (we talked about ORMs in “The Object-Relational
Mapper” on page 207) to create automatic web pages for the typical database
CRUD functions (create, replace, update, delete) that I discussed in “SQL” on
page 198. You don’t have to use django’s ORM if you prefer another, such as
SQLAlchemy, or direct SQL queries.

web2py

This covers much the same ground as django, with a different style.

pyramid

This grew from the earlier pylons project, and is similar to django in scope.

Web Servers | 241

http://nginx.org/
http://wiki.nginx.org/Install
http://bit.ly/uWSGI
http://bit.ly/flask-uwsgi
https://www.djangoproject.com/
http://www.web2py.com/
http://www.pylonsproject.org/

turbogears

This framework supports an ORM, many databases, and multiple template lan‐
guages.

wheezy.web

This is a newer framework optimized for performance. It was faster than the oth‐
ers in a recent test.

You can compare the frameworks by viewing this online table.

If you want to build a website backed by a relational database, you don’t necessarily
need one of these larger frameworks. You can use bottle, flask, and others directly
with relational database modules, or use SQLAlchemy to help gloss over the differ‐
ences. Then, you’re writing generic SQL instead of specific ORM code, and more
developers know SQL than any particular ORM’s syntax.

Also, there’s nothing written in stone demanding that your database must be a rela‐
tional one. If your data schema varies significantly—columns that differ markedly
across rows—it might be worthwhile to consider a schemaless database, such as one of
the NoSQL databases discussed in “NoSQL Data Stores” on page 209. I once worked
on a website that initially stored its data in a NoSQL database, switched to a relational
one, on to another relational one, to a different NoSQL one, and then finally back to
one of the relational ones.

Other Python Web Servers
Following are some of the independent Python-based WSGI servers that work like
apache or nginx, using multiple processes and/or threads (see “Concurrency” on
page 268) to handle simultaneous requests:

• uwsgi

• cherrypy

• pylons

Here are some event-based servers, which use a single process but avoid blocking on
any single request:

• tornado

• gevent

• gunicorn

I have more to say about events in the discussion about concurrency in Chapter 11.

242 | Chapter 9: The Web, Untangled

http://turbogears.org/
http://pythonhosted.org/wheezy.web/
http://bit.ly/wheezyweb
http://bit.ly/web-frames
http://projects.unbit.it/uwsgi/
http://www.cherrypy.org/
http://www.pylonsproject.org/
http://www.tornadoweb.org
http://gevent.org/
http://gunicorn.org/

1 If you don’t see it for some reason, visit xkcd.

Web Services and Automation
We’ve just looked at traditional web client and server applications, consuming and
generating HTML pages. Yet the Web has turned out to be a powerful way to glue
applications and data in many more formats than HTML.

The webbrowser Module
Let’s start begin a little surprise. Start a Python session in a terminal window and type
the following:

>>> import antigravity

This secretly calls the standard library’s webbrowser module and directs your browser
to an enlightening Python link.1

You can use this module directly. This program loads the main Python site’s page in
your browser:

>>> import webbrowser
>>> url = 'http://www.python.org/'
>>> webbrowser.open(url)
True

This opens it in a new window:

>>> webbrowser.open_new(url)
True

And this opens it in a new tab, if your browser supports tabs:

>>> webbrowser.open_new_tab('http://www.python.org/')
True

The webbrowser makes your browser do all the work.

Web APIs and Representational State Transfer
Often, data is only available within web pages. If you want to access it, you need to
access the pages through a web browser and read it. If the authors of the website
made any changes since the last time you visited, the location and style of the data
might have changed.

Instead of publishing web pages, you can provide data through a web application pro‐
gramming interface (API). Clients access your service by making requests to URLs
and getting back responses containing status and data. Instead of HTML pages, the

Web Services and Automation | 243

http://xkcd.com/353/

data is in formats that are easier for programs to consume, such as JSON or XML
(refer to Chapter 8 for more about these formats).

Representational State Transfer (REST) was defined by Roy Fielding in his doctoral
thesis. Many products claim to have a REST interface or a RESTful interface. In prac‐
tice, this often only means that they have a web interface—definitions of URLs to
access a web service.

A RESTful service uses the HTTP verbs in specific ways, as is described here:

HEAD

Gets information about the resource, but not its data.

GET

As its name implies, GET retrieves the resource’s data from the server. This is the
standard method used by your browser. Any time you see a URL with a question
mark (?) followed by a bunch of arguments, that’s a GET request. GET should not
be used to create, change, or delete data.

POST

This verb updates data on the server. It’s often used by HTML forms and web
APIs.

PUT

This verb creates a new resource.

DELETE

This one speaks for itself: DELETE deletes. Truth in advertising!

A RESTful client can also request one or more content types from the server by using
HTTP request headers. For example, a complex service with a REST interface might
prefer its input and output to be JSON strings.

JSON
Chapter 1 shows two Python code samples to get information on popular YouTube
videos, and Chapter 8 introduces JSON. JSON is especially well suited to web client-
server data interchange. It’s especially popular in web-based APIs, such as OpenStack.

Crawl and Scrape
Sometimes, you might want a little bit of information—a movie rating, stock price, or
product availability—but the information is available only in HTML pages, surroun‐
ded by ads and extraneous content.

You could extract what you’re looking for manually by doing the following:

244 | Chapter 9: The Web, Untangled

1. Type the URL into your browser.
2. Wait for the remote page to load.
3. Look through the displayed page for the information you want.
4. Write it down somewhere.
5. Possibly repeat the process for related URLs.

However, it’s much more satisfying to automate some or all of these steps. An auto‐
mated web fetcher is called a crawler or spider (unappealing terms to arachnophobes).
After the contents have been retrieved from the remote web servers, a scraper parses
it to find the needle in the haystack.

If you need an industrial-strength combined crawler and scraper, Scrapy is worth
downloading:

$ pip install scrapy

Scrapy is a framework, not a module such as BeautifulSoup. It does more, but it’s
more complex to set up. To learn more about Scrapy, read the documentation or the
online introduction.

Scrape HTML with BeautifulSoup
If you already have the HTML data from a website and just want to extract data from
it, BeautifulSoup is a good choice. HTML parsing is harder than it sounds. This is
because much of the HTML on public web pages is technically invalid: unclosed tags,
incorrect nesting, and other complications. If you try to write your own HTML
parser by using regular expressions (discussed in Chapter 7) you’ll soon encounter
these messes.

To install BeautifulSoup, type the following command (don’t forget the final 4, or
pip will try to install an older version and probably fail):

$ pip install beautifulsoup4

Now, let’s use it to get all the links from a web page. The HTML a element represents
a link, and href is its attribute representing the link destination. In the following
example, we’ll define the function get_links() to do the grunt work, and a main
program to get one or more URLs as command-line arguments:

def get_links(url):
 import requests
 from bs4 import BeautifulSoup as soup
 result = requests.get(url)
 page = result.text
 doc = soup(page)
 links = [element.get('href') for element in doc.find_all('a')]
 return links

Web Services and Automation | 245

http://scrapy.org/
http://scrapy.org
http://bit.ly/using-scrapy
http://www.crummy.com/software/BeautifulSoup/

if __name__ == '__main__':
 import sys
 for url in sys.argv[1:]:
 print('Links in', url)
 for num, link in enumerate(get_links(url), start=1):
 print(num, link)
 print()

I saved this program as links.py and then ran this command:

$ python links.py http://boingboing.net

Here are the first few lines that it printed:

Links in http://boingboing.net/
1 http://boingboing.net/suggest.html
2 http://boingboing.net/category/feature/
3 http://boingboing.net/category/review/
4 http://boingboing.net/category/podcasts
5 http://boingboing.net/category/video/
6 http://bbs.boingboing.net/
7 javascript:void(0)
8 http://shop.boingboing.net/
9 http://boingboing.net/about
10 http://boingboing.net/contact

Things to Do
9.1. If you haven’t installed flask yet, do so now. This will also install werkzeug,
jinja2, and possibly other packages.

9.2. Build a skeleton website, using Flask’s debug/reload development web server.
Ensure that the server starts up for hostname localhost on default port 5000. If your
computer is already using port 5000 for something else, use another port number.

9.3. Add a home() function to handle requests for the home page. Set it up to return
the string It's alive!.

9.4. Create a Jinja2 template file called home.html with the following contents:

<html>
<head>
<title>It's alive!</title>
<body>
I'm of course referring to {{thing}}, which is {{height}} feet tall and {{color}}.
</body>
</html>

9.5. Modify your server’s home() function to use the home.html template. Provide it
with three GET parameters: thing, height, and color.

246 | Chapter 9: The Web, Untangled

CHAPTER 10

Systems

One thing a computer can do that most humans can’t is be sealed up in a cardboard box and
sit in a warehouse.

—Jack Handey

In your everyday use of a computer, you do such things as list the contents of a folder
or directory, create and remove files, and other housekeeping that’s necessary if not
particularly exciting. You can also carry out these tasks, and more, within your own
Python programs. Will this power drive you mad or cure your insomnia? We’ll see.

Python provides many system functions through a module named os (for “operating
system”), which we’ll import for all the programs in this chapter.

Files
Python, like many other languages, patterned its file operations after Unix. Some
functions, such as chown() and chmod(), have the same names, but there are a few
new ones.

Create with open()
“File Input/Output” on page 177 introduced you to the open() function and explains
how you can use it to open a file or create one if it doesn’t already exist. Let’s create a
text file called oops.txt:

>>> fout = open('oops.txt', 'wt')
>>> print('Oops, I created a file.', file=fout)
>>> fout.close()

With that done, let’s perform some tests with it.

247

Check Existence with exists()
To verify whether the file or directory is really there or you just imagined it, you can
provide exists(), with a relative or absolute pathname, as demonstrated here:

>>> import os
>>> os.path.exists('oops.txt')
True
>>> os.path.exists('./oops.txt')
True
>>> os.path.exists('waffles')
False
>>> os.path.exists('.')
True
>>> os.path.exists('..')
True

Check Type with isfile()
The functions in this section check whether a name refers to a file, directory, or sym‐
bolic link (see the examples that follow for a discussion of links).

The first function we’ll look at, isfile, asks a simple question: is it a plain old law-
abiding file?

>>> name = 'oops.txt'
>>> os.path.isfile(name)
True

Here’s how you determine a directory:

>>> os.path.isdir(name)
False

A single dot (.) is shorthand for the current directory, and two dots (..) stands for
the parent directory. These always exist, so a statement such as the following will
always report True:

>>> os.path.isdir('.')
True

The os module contains many functions dealing with pathnames (fully qualified file‐
names, starting with / and including all parents). One such function, isabs(), deter‐
mines whether its argument is an absolute pathname. The argument doesn’t need to
be the name of a real file:

>>> os.path.isabs(name)
False
>>> os.path.isabs('/big/fake/name')
True
>>> os.path.isabs('big/fake/name/without/a/leading/slash')
False

248 | Chapter 10: Systems

Copy with copy()
The copy() function comes from another module, shutil. This example copies the
file oops.txt to the file ohno.txt:

>>> import shutil
>>> shutil.copy('oops.txt', 'ohno.txt')

The shutil.move() function copies a file and then removes the original.

Change Name with rename()
This function does exactly what it says. In the example here, it renames ohno.txt to
ohwell.txt:

>>> import os
>>> os.rename('ohno.txt', 'ohwell.txt')

Link with link() or symlink()
In Unix, a file exists in one place, but it can have multiple names, called links. In low-
level hard links, it’s not easy to find all the names for a given file. A symbolic link is an
alternative method that stores the new name as its own file, making it possible for you
to get both the original and new names at once. The link() call creates a hard link,
and symlink() makes a symbolic link. The islink() function checks whether the file
is a symbolic link.

Here’s how to make a hard link to the existing file oops.txt from the new file yikes.txt:
>>> os.link('oops.txt', 'yikes.txt')
>>> os.path.isfile('yikes.txt')
True

To create a symbolic link to the existing file oops.txt from the new file jeepers.txt, use
the following:

>>> os.path.islink('yikes.txt')
False
>>> os.symlink('oops.txt', 'jeepers.txt')
>>> os.path.islink('jeepers.txt')
True

Change Permissions with chmod()
On a Unix system, chmod() changes file permissions.There are read, write, and exe‐
cute permissions for the user (that’s usually you, if you created the file), the main
group that the user is in, and the rest of the world. The command takes an intensely
compressed octal (base 8) value that combines user, group, and other permissions.
For instance, to make oops.txt only readable by its owner, type the following:

Files | 249

>>> os.chmod('oops.txt', 0o400)

If you don’t want to deal with cryptic octal values and would rather deal with
(slightly) obscure cryptic symbols, you can import some constants from the stat
module and use a statement such as the following:

>>> import stat
>>> os.chmod('oops.txt', stat.S_IRUSR)

Change Ownership with chown()
This function is also Unix/Linux/Mac–specific. You can change the owner and/or
group ownership of a file by specifying the numeric user ID (uid) and group ID (gid):

>>> uid = 5
>>> gid = 22
>>> os.chown('oops', uid, gid)

Get a Pathname with abspath()
This function expands a relative name to an absolute one. If your current directory
is /usr/gaberlunzie and the file oops.txt is there, also, you can type the following:

>>> os.path.abspath('oops.txt')
'/usr/gaberlunzie/oops.txt'

Get a symlink Pathname with realpath()
In one of the earlier sections, we made a symbolic link to oops.txt from the new file
jeepers.txt. In circumstances such as this, you can get the name of oops.txt from jeep‐
ers.txt by using the realpath() function, as shown here:

>>> os.path.realpath('jeepers.txt')
'/usr/gaberlunzie/oops.txt'

Delete a File with remove()
In this snippet, we use the remove() function and say farewell to oops.txt:

>>> os.remove('oops.txt')
>>> os.path.exists('oops.txt')
False

Directories
In most operating systems, files exist in a hierarchy of directories (more often called
folders these days). The container of all of these files and directories is a file system
(sometimes called a volume). The standard os module deals with operating specifics

250 | Chapter 10: Systems

such as these and provides the following functions with which you can manipulate
them.

Create with mkdir()
This example shows how to create a directory called poems to store that precious
verse:

>>> os.mkdir('poems')
>>> os.path.exists('poems')
True

Delete with rmdir()
Upon second thought, you decide you don’t need that directory after all. Here’s how
to delete it:

>>> os.rmdir('poems')
>>> os.path.exists('poems')
False

List Contents with listdir()
Okay, take two; let’s make poems again, with some contents:

>>> os.mkdir('poems')

Now, get a list of its contents (none so far):

>>> os.listdir('poems')
[]

Next, make a subdirectory:

>>> os.mkdir('poems/mcintyre')
>>> os.listdir('poems')
['mcintyre']

Create a file in this subdirectory (don’t type all these lines unless you really feel poetic;
just make sure you begin and end with matching quotes, either single or tripled):

>>> fout = open('poems/mcintyre/the_good_man', 'wt')
>>> fout.write('''Cheerful and happy was his mood,
... He to the poor was kind and good,
... And he oft' times did find them food,
... Also supplies of coal and wood,
... He never spake a word was rude,
... And cheer'd those did o'er sorrows brood,
... He passed away not understood,
... Because no poet in his lays
... Had penned a sonnet in his praise,
... 'Tis sad, but such is world's ways.
... ''')

Directories | 251

344
>>> fout.close()

Finally, let’s see what we have. It had better be there:

>>> os.listdir('poems/mcintyre')
['the_good_man']

Change Current Directory with chdir()
With this function, you can go from one directory to another. Let’s leave the current
directory and spend a little time in poems:

>>> import os
>>> os.chdir('poems')
>>> os.listdir('.')
['mcintyre']

List Matching Files with glob()
The glob() function matches file or directory names by using Unix shell rules rather
than the more complete regular expression syntax. Here are those rules:

• * matches everything (re would expect .*)
• ? matches a single character
• [abc] matches character a, b, or c
• [!abc] matches any character except a, b, or c

Try getting all files or directories that begin with m:

>>> import glob
>>> glob.glob('m*')
['mcintyre']

How about any two-letter files or directories?

>>> glob.glob('??')
[]

I’m thinking of an eight-letter word that begins with m and ends with e:

>>> glob.glob('m??????e')
['mcintyre']

What about anything that begins with a k, l, or m, and ends with e?

>>> glob.glob('[klm]*e')
['mcintyre']

252 | Chapter 10: Systems

Programs and Processes
When you run an individual program, your operating system creates a single process.
It uses system resources (CPU, memory, disk space) and data structures in the operat‐
ing system’s kernel (file and network connections, usage statistics, and so on). A pro‐
cess is isolated from other processes—it can’t see what other processes are doing or
interfere with them.

The operating system keeps track of all the running processes, giving each a little time
to run and then switching to another, with the twin goals of spreading the work
around fairly and being responsive to the user. You can see the state of your processes
with graphical interfaces such as the Mac’s Activity Monitor (OS X), or Task Manager
on Windows-based computers.

You can also access process data from your own programs. The standard library’s os
module provides a common way of accessing some system information. For instance,
the following functions get the process ID and the current working directory of the
running Python interpreter:

>>> import os
>>> os.getpid()
76051
>>> os.getcwd()
'/Users/williamlubanovic'

And these get my user ID and group ID:

>>> os.getuid()
501
>>> os.getgid()
20

Create a Process with subprocess
All of the programs that you’ve seen here so far have been individual processes. You
can start and stop other existing programs from Python by using the standard
library’s subprocess module. If you just want to run another program in a shell and
grab whatever output it created (both standard output and standard error output),
use the getoutput() function. Here, we’ll get the output of the Unix date program:

>>> import subprocess
>>> ret = subprocess.getoutput('date')
>>> ret
'Sun Mar 30 22:54:37 CDT 2014'

You won’t get anything back until the process ends. If you need to call something that
might take a lot of time, see the discussion on concurrency in “Concurrency” on page
268. Because the argument to getoutput() is a string representing a complete shell
command, you can include arguments, pipes, < and > I/O redirection, and so on:

Programs and Processes | 253

>>> ret = subprocess.getoutput('date -u')
>>> ret
'Mon Mar 31 03:55:01 UTC 2014'

Piping that output string to the wc command counts one line, six “words,” and 29
characters:

>>> ret = subprocess.getoutput('date -u | wc')
>>> ret
' 1 6 29'

A variant method called check_output() takes a list of the command and arguments.
By default it only returns standard output as type bytes rather than a string and does
not use the shell:

>>> ret = subprocess.check_output(['date', '-u'])
>>> ret
b'Mon Mar 31 04:01:50 UTC 2014\n'

To show the exit status of the other program, getstatusoutput() returns a tuple
with the status code and output:

>>> ret = subprocess.getstatusoutput('date')
>>> ret
(0, 'Sat Jan 18 21:36:23 CST 2014')

If you don’t want to capture the output but might want to know its exit status, use
call():

>>> ret = subprocess.call('date')
Sat Jan 18 21:33:11 CST 2014
>>> ret
0

(In Unix-like systems, 0 is usually the exit status for success.)

That date and time was printed to output but not captured within our program. So,
we saved the return code as ret.

You can run programs with arguments in two ways. The first is to specify them in a
single string. Our sample command is date -u, which prints the current date and
time in UTC (you’ll read more about UTC in a few pages):

>>> ret = subprocess.call('date -u', shell=True)
Tue Jan 21 04:40:04 UTC 2014

You need that shell=True to recognize the command line date -u, splitting it into
separate strings and possibly expanding any wildcard characters such as * (we didn’t
use any in this example).

The second method makes a list of the arguments, so it doesn’t need to call the shell:

>>> ret = subprocess.call(['date', '-u'])
Tue Jan 21 04:41:59 UTC 2014

254 | Chapter 10: Systems

Create a Process with multiprocessing
You can run a Python function as a separate process or even run multiple independ‐
ent processes in a single program with the multiprocessing module. Here’s a short
example that does nothing useful; save it as mp.py and then run it by typing python
mp.py:

import multiprocessing
import os

def do_this(what):
 whoami(what)

def whoami(what):
 print("Process %s says: %s" % (os.getpid(), what))

if __name__ == "__main__":
 whoami("I'm the main program")
 for n in range(4):
 p = multiprocessing.Process(target=do_this,
 args=("I'm function %s" % n,))
 p.start()

When I run this, my output looks like this:

Process 6224 says: I'm the main program
Process 6225 says: I'm function 0
Process 6226 says: I'm function 1
Process 6227 says: I'm function 2
Process 6228 says: I'm function 3

The Process() function spawned a new process and ran the do_this() function in it.
Because we did this in a loop that had four passes, we generated four new processes
that executed do_this() and then exited.

The multiprocessing module has more bells and whistles than a clown on a calliope.
It’s really intended for those times when you need to farm out some task to multiple
processes to save overall time; for example, downloading web pages for scraping,
resizing images, and so on. It includes ways to queue tasks, enable intercommunica‐
tion among processes, and wait for all the processes to finish. “Concurrency” on page
268 delves into some of these details.

Kill a Process with terminate()
If you created one or more processes and want to terminate one for some reason
(perhaps it’s stuck in a loop, or maybe you’re bored, or you want to be an evil over‐
lord), use terminate(). In the example that follows, our process would count to a
million, sleeping at each step for a second, and printing an irritating message. How‐
ever, our main program runs out of patience in five seconds and nukes it from orbit:

Programs and Processes | 255

import multiprocessing
import time
import os

def whoami(name):
 print("I'm %s, in process %s" % (name, os.getpid()))

def loopy(name):
 whoami(name)
 start = 1
 stop = 1000000
 for num in range(start, stop):
 print("\tNumber %s of %s. Honk!" % (num, stop))
 time.sleep(1)

if __name__ == "__main__":
 whoami("main")
 p = multiprocessing.Process(target=loopy, args=("loopy",))
 p.start()
 time.sleep(5)
 p.terminate()

When I run this program, I get the following:

I'm main, in process 97080
I'm loopy, in process 97081
 Number 1 of 1000000. Honk!
 Number 2 of 1000000. Honk!
 Number 3 of 1000000. Honk!
 Number 4 of 1000000. Honk!
 Number 5 of 1000000. Honk!

Calendars and Clocks
Programmers devote a surprising amount of effort to dates and times. Let’s talk about
some of the problems they encounter, and then get to some best practices and tricks
to make the situation a little less messy.

Dates can be represented in many ways—too many ways, actually. Even in English
with the Roman calendar, you’ll see many variants of a simple date:

• July 29 1984
• 29 Jul 1984
• 29/7/1984
• 7/29/1984

Among other problems, date representations can be ambiguous. In the previous
examples, it’s easy to determine that 7 stands for the month and 29 is the day of the

256 | Chapter 10: Systems

month, largely because months don’t go to 29. But how about 1/6/2012? Is that refer‐
ring to January 6 or June 1?

The month name varies by language within the Roman calendar. Even the year and
month can have a different definition in other cultures.

Leap years are another wrinkle. You probably know that every four years is a leap year
(and the summer Olympics and the American presidential election). Did you also
know that every 100 years is not a leap year, but that every 400 years is? Here’s code to
test various years for leapiness:

>>> import calendar
>>> calendar.isleap(1900)
False
>>> calendar.isleap(1996)
True
>>> calendar.isleap(1999)
False
>>> calendar.isleap(2000)
True
>>> calendar.isleap(2002)
False
>>> calendar.isleap(2004)
True

Times have their own sources of grief, especially because of time zones and daylight
savings time. If you look at a time zone map, the zones follow political and historic
boundaries rather than every 15 degrees (360 degrees / 24) of longitude. And coun‐
tries start and end daylight saving times on different days of the year. In fact, coun‐
tries in the southern hemisphere advance their clocks when the northern hemisphere
is winding them back, and vice versa. (If you think about it a bit, you will see why.)

Python’s standard library has many date and time modules: datetime, time, calen
dar, dateutil, and others. There’s some overlap, and it’s a bit confusing.

The datetime Module
Let’s begin by investigating the standard datetime module. It defines four main
objects, each with many methods:

• date for years, months, and days
• time for hours, minutes, seconds, and fractions
• datetime for dates and times together
• timedelta for date and/or time intervals

You can make a date object by specifying a year, month, and day. Those values are
then available as attributes:

Calendars and Clocks | 257

>>> from datetime import date
>>> halloween = date(2014, 10, 31)
>>> halloween
datetime.date(2014, 10, 31)
>>> halloween.day
31
>>> halloween.month
10
>>> halloween.year
2014

You can print a date with its isoformat() method:

>>> halloween.isoformat()
'2014-10-31'

The iso refers to ISO 8601, an international standard for representing dates and
times. It goes from most general (year) to most specific (day). It also sorts correctly:
by year, then month, then day. I usually pick this format for date representation in
programs, and for filenames that save data by date. The next section describes the
more complex strptime() and strftime() methods for parsing and formatting
dates.

This example uses the today() method to generate today’s date:

>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2014, 2, 2)

This one makes use of a timedelta object to add some time interval to a date:

>>> from datetime import timedelta
>>> one_day = timedelta(days=1)
>>> tomorrow = now + one_day
>>> tomorrow
datetime.date(2014, 2, 3)
>>> now + 17*one_day
datetime.date(2014, 2, 19)
>>> yesterday = now - one_day
>>> yesterday
datetime.date(2014, 2, 1)

The range of date is from date.min (year=1, month=1, day=1) to date.max
(year=9999, month=12, day=31). As a result, you can’t use it for historic or astronom‐
ical calculations.

The datetime module’s time object is used to represent a time of day:

>>> from datetime import time
>>> noon = time(12, 0, 0)
>>> noon
datetime.time(12, 0)

258 | Chapter 10: Systems

>>> noon.hour
12
>>> noon.minute
0
>>> noon.second
0
>>> noon.microsecond
0

The arguments go from the largest time unit (hours) to the smallest (microseconds).
If you don’t provide all the arguments, time assumes all the rest are zero. By the way,
just because you can store and retrieve microseconds doesn’t mean you can retrieve
time from your computer to the exact microsecond. The accuracy of subsecond
measurements depends on many factors in the hardware and operating system.

The datetime object includes both the date and time of day. You can create one
directly, such as the one that follows, which is for January 2, 2014, at 3:04 A.M., plus 5
seconds and 6 microseconds:

>>> from datetime import datetime
>>> some_day = datetime(2014, 1, 2, 3, 4, 5, 6)
>>> some_day
datetime.datetime(2014, 1, 2, 3, 4, 5, 6)

The datetime object also has an isoformat() method:

>>> some_day.isoformat()
'2014-01-02T03:04:05.000006'

That middle T separates the date and time parts.

datetime has a now() method with which you can get the current date and time:

>>> from datetime import datetime
>>> now = datetime.now()
>>> now
datetime.datetime(2014, 2, 2, 23, 15, 34, 694988)
14
>>> now.month
2
>>> now.day
2
>>> now.hour
23
>>> now.minute
15
>>> now.second
34
>>> now.microsecond
694988

You can merge a date object and a time object into a datetime object by using
combine():

Calendars and Clocks | 259

1 This starting point is roughly when Unix was born.

>>> from datetime import datetime, time, date
>>> noon = time(12)
>>> this_day = date.today()
>>> noon_today = datetime.combine(this_day, noon)
>>> noon_today
datetime.datetime(2014, 2, 2, 12, 0)

You can yank the date and time from a datetime by using the date() and time()
methods:

>>> noon_today.date()
datetime.date(2014, 2, 2)
>>> noon_today.time()
datetime.time(12, 0)

Using the time Module
It is confusing that Python has a datetime module with a time object, and a separate
time module. Furthermore, the time module has a function called—wait for it—
time().

One way to represent an absolute time is to count the number of seconds since some
starting point. Unix time uses the number of seconds since midnight on January 1,
1970.1 This value is often called the epoch, and it is often the simplest way to exchange
dates and times among systems.

The time module’s time() function returns the current time as an epoch value:

>>> import time
>>> now = time.time()
>>> now
1391488263.664645

If you do the math, you’ll see that it has been over one billion seconds since New
Year’s, 1970. Where did the time go?

You can convert an epoch value to a string by using ctime():

>>> time.ctime(now)
'Mon Feb 3 22:31:03 2014'

In the next section, you’ll see how to produce more attractive formats for dates and
times.

Epoch values are a useful least-common denominator for date and time exchange
with different systems, such as JavaScript. Sometimes, though, you need actual days,
hours, and so forth, which time provides as struct_time objects. localtime() pro‐
vides the time in your system’s time zone, and gmtime() provides it in UTC:

260 | Chapter 10: Systems

>>> time.localtime(now)
time.struct_time(tm_year=2014, tm_mon=2, tm_mday=3, tm_hour=22, tm_min=31,
tm_sec=3, tm_wday=0, tm_yday=34, tm_isdst=0)
>>> time.gmtime(now)
time.struct_time(tm_year=2014, tm_mon=2, tm_mday=4, tm_hour=4, tm_min=31,
tm_sec=3, tm_wday=1, tm_yday=35, tm_isdst=0)

In my (Central) time zone, 22:31 was 04:31 of the next day in UTC (formerly called
Greenwich time or Zulu time). If you omit the argument to localtime() or gmtime(),
they assume the current time.

The opposite of these is mktime(), which converts a struct_time object to epoch
seconds:

>>> tm = time.localtime(now)
>>> time.mktime(tm)
1391488263.0

This doesn’t exactly match our earlier epoch value of now() because the struct_time
object preserves time only to the second.

Some advice: wherever possible, use UTC instead of time zones. UTC is an absolute
time, independent of time zones. If you have a server, set its time to UTC; do not use
local time.

Here’s some more advice (free of charge, no less): never use daylight savings time if
you can avoid it. If you use daylight savings time, an hour disappears at one time of
year (“spring ahead”) and occurs twice at another time (“fall back”). For some reason,
many organizations use daylight savings in their computer systems, but are mystified
every year by data duplicates and dropouts. It all ends in tears.

Remember, your friends are UTC for times, and UTF-8 for strings
(for more about UTF-8, see Chapter 7).

Read and Write Dates and Times
isoformat() is not the only way to write dates and times. You already saw the
ctime() function in the time module, which you can use to convert epochs to strings:

>>> import time
>>> now = time.time()
>>> time.ctime(now)
'Mon Feb 3 21:14:36 2014'

You can also convert dates and times to strings by using strftime(). This is provided
as a method in the datetime, date, and time objects, and as a function in the time

Calendars and Clocks | 261

module. strftime() uses format strings to specify the output, which you can see in
Table 10-1.

Table 10-1. Outut specifiers for strftime()

Format string Date/time unit Range

%Y year 1900-…

%m month 01-12

%B month name January, …

%b month abbrev Jan, …

%d day of month 01-31

%A weekday name Sunday, …

a weekday abbrev Sun, …

%H hour (24 hr) 00-23

%I hour (12 hr) 01-12

%p AM/PM AM, PM

%M minute 00-59

%S second 00-59

Numbers are zero-padded on the left.

Here’s the strftime() function provided by the time module. It converts a
struct_time object to a string. We’ll first define the format string fmt and use it again
later:

>>> import time
>>> fmt = "It's %A, %B %d, %Y, local time %I:%M:%S%p"
>>> t = time.localtime()
>>> t
time.struct_time(tm_year=2014, tm_mon=2, tm_mday=4, tm_hour=19,
tm_min=28, tm_sec=38, tm_wday=1, tm_yday=35, tm_isdst=0)
>>> time.strftime(fmt, t)
"It's Tuesday, February 04, 2014, local time 07:28:38PM"

If we try this with a date object, only the date parts will work, and the time defaults to
midnight:

262 | Chapter 10: Systems

>>> from datetime import date
>>> some_day = date(2014, 7, 4)
>>> fmt = "It's %B %d, %Y, local time %I:%M:%S%p"
>>> some_day.strftime(fmt)
"It's Friday, July 04, 2014, local time 12:00:00AM"

For a time object, only the time parts are converted:

>>> from datetime import time
>>> some_time = time(10, 35)
>>> some_time.strftime(fmt)
"It's Monday, January 01, 1900, local time 10:35:00AM"

Clearly, you won’t want to use the day parts from a time object, because they’re mean‐
ingless.

To go the other way and convert a string to a date or time, use strptime() with the
same format string. There’s no regular expression pattern matching; the nonformat
parts of the string (without %) need to match exactly. Let’s specify a format that
matches year-month-day, such as 2012-01-29. What happens if the date string you
want to parse has spaces instead of dashes?

>>> import time
>>> fmt = "%Y-%m-%d"
>>> time.strptime("2012 01 29", fmt)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Library/Frameworks/Python.framework/Versions/3.3/lib/
 python3.3/_strptime.py", line 494, in _strptime_time
 tt = _strptime(data_string, format)[0]
 File "/Library/Frameworks/Python.framework/Versions/3.3/lib/
 python3.3/_strptime.py", line 337, in _strptime
 (data_string, format))
ValueError: time data '2012 01 29' does not match format '%Y-%m-%d'

If we feed strptime() some dashes, is it happy now?

>>> time.strptime("2012-01-29", fmt)
time.struct_time(tm_year=2012, tm_mon=1, tm_mday=29, tm_hour=0, tm_min=0,
tm_sec=0, tm_wday=6, tm_yday=29, tm_isdst=-1)

Yes.

Even if the string seems to match its format, an exception is raised if a value is out of
range:

>>> time.strptime("2012-13-29", fmt)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Library/Frameworks/Python.framework/Versions/3.3/lib/
 python3.3/_strptime.py", line 494, in _strptime_time
 tt = _strptime(data_string, format)[0]
 File "/Library/Frameworks/Python.framework/Versions/3.3/lib/

Calendars and Clocks | 263

 python3.3/_strptime.py", line 337, in _strptime
 (data_string, format))
ValueError: time data '2012-13-29' does not match format '%Y-%m-%d'

Names are specific to your locale—internationalization settings for your operating
system. To print different month and day names, change your locale by using
setlocale(); its first argument is locale.LC_TIME for dates and times, and the sec‐
ond is a string combining the language and country abbreviation. Let’s invite some
international friends to a Halloween party. We’ll print the month, day, and day of
week in US English, French, German, Spanish, and Icelandic. (What? You think Ice‐
landers don’t enjoy a good party as much as anyone else? They even have real elves.)

>>> import locale
>>> from datetime import date
>>> halloween = date(2014, 10, 31)
>>> for lang_country in ['en_us', 'fr_fr', 'de_de', 'es_es', 'is_is',]:
... locale.setlocale(locale.LC_TIME, lang_country)
... halloween.strftime('%A, %B %d')
...
'en_us'
'Friday, October 31'
'fr_fr'
'Vendredi, octobre 31'
'de_de'
'Freitag, Oktober 31'
'es_es'
'viernes, octubre 31'
'is_is'
'föstudagur, október 31'
>>>

Where do you find these magic values for lang_country? This is a bit wonky, but you
can try this to get all of them (there are a few hundred):

>>> import locale
>>> names = locale.locale_alias.keys()

From names, let’s get just locale names that seem to work with setlocale(), such as
the ones we used in the preceding example—a two-character language code followed
by an underscore and a two-character country code:

>>> good_names = [name for name in names if \
len(name) == 5 and name[2] == '_']

What do the first five look like?

>>> good_names[:5]
['sr_cs', 'de_at', 'nl_nl', 'es_ni', 'sp_yu']

So, if you wanted all the German language locales, try this:

264 | Chapter 10: Systems

http://bit.ly/iso-639-1
http://bit.ly/iso-3166-1

>>> de = [name for name in good_names if name.startswith('de')]
>>> de
['de_at', 'de_de', 'de_ch', 'de_lu', 'de_be']

Alternative Modules
If you find the standard library modules confusing, or lacking a particular conversion
that you want, there are many third-party alternatives. Here are just a few of them:

arrow

This combines many date and time functions with a simple API.

dateutil

This module parses almost any date format and handles relative dates and times
well.

iso8601

This fills in gaps in the standard library for the ISO8601 format.

fleming

This module offers many time zone functions.

Things to Do
10.1 Write the current date as a string to the text file today.txt.

10.2 Read the text file today.txt into the string today_string.

10.3 Parse the date from today_string.

10.4 List the files in your current directory.

10.5 List the files in your parent directory.

10.6 Use multiprocessing to create three separate processes. Make each one wait a
random number of seconds between one and five, print the current time, and then
exit.

10.7 Create a date object of your day of birth.

10.8 What day of the week was your day of birth?

10.9 When will you be (or when were you) 10,000 days old?

Things to Do | 265

http://crsmithdev.com/arrow/
http://labix.org/python-dateutil
https://pypi.python.org/pypi/iso8601
https://github.com/ambitioninc/fleming

CHAPTER 11

Concurrency and Networks

Time is nature’s way of keeping everything from happening at once. Space is what prevents
everything from happening to me.

—Quotes about Time

So far, most of the programs that you’ve written run in one place (a single machine)
and one line at a time (sequential). But, we can do more than one thing at a time
(concurrency) and in more than one place (distributed computing or networking).
There are many good reasons to challenge time and space:

Performance
Your goal is to keep fast components busy, not waiting for slow ones.

Robustness
There’s safety in numbers, so you want to duplicate tasks to work around hard‐
ware and software failures.

Simplicity
It’s best practice to break complex tasks into many little ones that are easier to
create, understand, and fix.

Communication
It’s just plain fun to send your footloose bytes to distant places, and bring friends
back with them.

We’ll start with concurrency, first building on the non-networking techniques that are
described in Chapter 10—processes and threads. Then we’ll look at other approaches,
such as callbacks, green threads, and coroutines. Finally, we’ll arrive at networking,
initially as a concurrency technique, and then spreading outward.

267

http://bit.ly/wiki-time

Some Python packages discussed in this chapter were not yet por‐
ted to Python 3 when this was written. In many cases, I’ll show
example code that would need to be run with a Python 2 inter‐
preter, which we’re calling python2.

Concurrency
The official Python site discusses concurrency in general and in the standard library.
Those pages have many links to various packages and techniques; we’ll show the most
useful ones in this chapter.

In computers, if you’re waiting for something, it’s usually for one of two reasons:

I/O bound
This is by far more common. Computer CPUs are ridiculously fast—hundreds of
times faster than computer memory and many thousands of times faster than
disks or networks.

CPU bound
This happens with number crunching tasks such as scientific or graphic calcula‐
tions.

Two more terms are related to concurrency:

synchronous
One thing follows the other, like a funeral procession.

asynchronous
Tasks are independent, like party-goers dropping in and tearing off in separate
cars.

As you progress from simple systems and tasks to real-life problems, you’ll need at
some point to deal with concurrency. Consider a website, for example. You can usu‐
ally provide static and dynamic pages to web clients fairly quickly. A fraction of a sec‐
ond is considered interactive, but if the display or interaction takes longer, people
become impatient. Tests by companies such as Google and Amazon showed that traf‐
fic drops off quickly if the page loads even a little slower.

But what if you can’t help it when something takes a long time, such as uploading a
file, resizing an image, or querying a database? You can’t do it within your synchro‐
nous web server code anymore, because someone’s waiting.

On a single machine, if you want to perform multiple tasks as fast as possible, you
want to make them independent. Slow tasks shouldn’t block all the others.

“Programs and Processes” on page 253 demonstrates how multiprocessing can be
used to overlap work on a single machine. If you needed to resize an image, your web

268 | Chapter 11: Concurrency and Networks

http://bit.ly/concur-lib

server code could call a separate, dedicated image resizing process to run asynchro‐
nously and concurrently. It could scale your application horizontally by invoking
multiple resizing processes.

The trick is getting them all to work with one another. Any shared control or state
means that there will be bottlenecks. An even bigger trick is dealing with failures,
because concurrent computing is harder than regular computing. Many more things
can go wrong, and your odds of end-to-end success are lower.

All right. What methods can help you to deal with these complexities? Let’s begin
with a good way to manage multiple tasks: queues.

Queues
A queue is like a list: things are added at one end and taken away from the other. The
most common is referred to as FIFO (first in, first out).

Suppose that you’re washing dishes. If you’re stuck with the entire job, you need to
wash each dish, dry it, and put it away. You can do this in a number of ways. You
might wash the first dish, dry it, and then put it away. You then repeat with the sec‐
ond dish, and so on. Or, you might batch operations and wash all the dishes, dry
them all, and then put them away; this assumes you have space in your sink and
drainer for all the dishes that accumulate at each step. These are all synchronous
approaches—one worker, one thing at a time.

As an alternative, you could get a helper or two. If you’re the washer, you can hand
each cleaned dish to the dryer, who hands each dried dish to the put-away-er (look it
up; it’s absolutely a real word!). As long as each of you works at the same pace, you
should finish much faster than by yourself.

However, what if you wash faster than the dryer dries? Wet dishes either fall on the
floor, or you pile them up between you and the dryer, or you just whistle off-key until
the dryer is ready. And if the last person is slower than the dryer, dry dishes can end
up falling on the floor, or piling up, or the dryer does the whistling. You have multiple
workers, but the overall task is still synchronous and can proceed only as fast as the
slowest worker.

Many hands make light work, goes the old saying (I always thought it was Amish,
because it makes me think of barn building). Adding workers can build a barn, or do
the dishes, faster. This involves queues.

In general, queues transport messages, which can be any kind of information. In this
case, we’re interested in queues for distributed task management, also known as work
queues, job queues, or task queues. Each dish in the sink is given to an available
washer, who washes and hands it off to the first available dryer, who dries and hands
it to a put-away-er. This can be synchronous (workers wait for a dish to handle and

Concurrency | 269

another worker to whom to give it), or asynchronous (dishes are stacked between
workers with different paces). As long as you have enough workers, and they keep up
with the dishes, things move a lot faster.

Processes
You can implement queues in many ways. For a single machine, the standard library’s
multiprocessing module (which you can see in “Programs and Processes” on page
253) contains a Queue function. Let’s simulate just a single washer and multiple dryer
processes (someone can put the dishes away later) and an intermediate dish_queue.
Call this program dishes.py:

import multiprocessing as mp

def washer(dishes, output):
 for dish in dishes:
 print('Washing', dish, 'dish')
 output.put(dish)

def dryer(input):
 while True:
 dish = input.get()
 print('Drying', dish, 'dish')
 input.task_done()

dish_queue = mp.JoinableQueue()
dryer_proc = mp.Process(target=dryer, args=(dish_queue,))
dryer_proc.daemon = True
dryer_proc.start()

dishes = ['salad', 'bread', 'entree', 'dessert']
washer(dishes, dish_queue)
dish_queue.join()

Run your new program thusly:

$ python dishes.py
Washing salad dish
Washing bread dish
Washing entree dish
Washing dessert dish
Drying salad dish
Drying bread dish
Drying entree dish
Drying dessert dish

This queue looked a lot like a simple Python iterator, producing a series of dishes. It
actually started up separate processes along with the communication between the
washer and dryer. I used a JoinableQueue and the final join() method to let the

270 | Chapter 11: Concurrency and Networks

washer know that all the dishes have been dried. There are other queue types in the
multiprocessing module, and you can read the documentation for more examples.

Threads
A thread runs within a process with access to everything in the process, similar to a
multiple personality. The multiprocessing module has a cousin called threading
that uses threads instead of processes (actually, multiprocessing was designed later
as its process-based counterpart). Let’s redo our process example with threads:

import threading

def do_this(what):
 whoami(what)

def whoami(what):
 print("Thread %s says: %s" % (threading.current_thread(), what))

if __name__ == "__main__":
 whoami("I'm the main program")
 for n in range(4):
 p = threading.Thread(target=do_this,
 args=("I'm function %s" % n,))
 p.start()

Here’s what prints for me:

Thread <_MainThread(MainThread, started 140735207346960)> says: I'm the main
program
Thread <Thread(Thread-1, started 4326629376)> says: I'm function 0
Thread <Thread(Thread-2, started 4342157312)> says: I'm function 1
Thread <Thread(Thread-3, started 4347412480)> says: I'm function 2
Thread <Thread(Thread-4, started 4342157312)> says: I'm function 3

We can reproduce our process-based dish example by using threads:

import threading, queue
import time

def washer(dishes, dish_queue):
 for dish in dishes:
 print ("Washing", dish)
 time.sleep(5)
 dish_queue.put(dish)

def dryer(dish_queue):
 while True:
 dish = dish_queue.get()
 print ("Drying", dish)
 time.sleep(10)
 dish_queue.task_done()

Concurrency | 271

http://bit.ly/multi-docs

dish_queue = queue.Queue()
for n in range(2):
 dryer_thread = threading.Thread(target=dryer, args=(dish_queue,))
 dryer_thread.start()

dishes = ['salad', 'bread', 'entree', 'dessert']
washer(dishes, dish_queue)
dish_queue.join()

One difference between multiprocessing and threading is that threading does not
have a terminate() function. There’s no easy way to terminate a running thread,
because it can cause all sorts of problems in your code, and possibly in the space-time
continuum itself.

Threads can be dangerous. Like manual memory management in languages such as C
and C++, they can cause bugs that are extremely hard to find, let alone fix. To use
threads, all the code in the program—and in external libraries that it uses—must be
thread-safe. In the preceding example code, the threads didn’t share any global vari‐
ables, so they could run independently without breaking anything.

Imagine that you’re a paranormal investigator in a haunted house. Ghosts roam the
halls, but none are aware of the others, and at any time, any of them can view, add,
remove, or move any of the house’s contents.

You’re walking apprehensively through the house, taking readings with your impres‐
sive instruments. Suddenly you notice that the candlestick you passed seconds ago is
now missing.

The contents of the house are like the variables in a program. The ghosts are threads
in a process (the house). If the ghosts only looked at the house’s contents, there would
be no problem. It’s like a thread reading the value of a constant or variable without
trying to change it.

Yet, some unseen entity could grab your flashlight, blow cold air down your neck, put
marbles on the stairs, or make the fireplace come ablaze. The really subtle ghosts
would change things in other rooms that you might never notice.

Despite your fancy instruments, you’d have a very hard time figuring out who did it,
and how, and when.

If you used multiple processes instead of threads, it would be like having a number of
houses but with only one (living) person in each. If you put your brandy in front of
the fireplace, it would still be there an hour later. Some lost to evaporation, perhaps,
but in the same place.

Threads can be useful and safe when global data is not involved. In particular, threads
are useful for saving time while waiting for some I/O operation to complete. In these

272 | Chapter 11: Concurrency and Networks

cases, they don’t have to fight over data, because each has completely separate vari‐
ables.

But threads do sometimes have good reasons to change global data. In fact, one com‐
mon reason to launch multiple threads is to let them divide up the work on some
data, so a certain degree of change to the data is expected.

The usual way to share data safely is to apply a software lock before modifying a vari‐
able in a thread. This keeps the other threads out while the change is made. It’s like
having a Ghostbuster guard the room you want to remain unhaunted. The trick,
though, is that you need to remember to unlock it. Plus, locks can be nested—what if
another Ghostbuster is also watching the same room, or the house itself? The use of
locks is traditional but notoriously hard to get right.

In Python, threads do not speed up CPU-bound tasks because of
an implementation detail in the standard Python system called the
Global Interpreter Lock (GIL). This exists to avoid threading prob‐
lems in the Python interpreter, and can actually make a multithrea‐
ded program slower than its single-threaded counterpart, or even a
multi-process version.

So for Python, the recommendations are as follows:

• Use threads for I/O bound problems
• Use processes, networking, or events (discussed in the next section) for CPU-

bound problems

Green Threads and gevent
As you’ve seen, developers traditionally avoid slow spots in programs by running
them in separate threads or processes. The Apache web server is an example of this
design.

One alternative is event-based programming. An event-based program runs a central
event loop, doles out any tasks, and repeats the loop. The nginx web server follows
this design, and is generally faster than Apache.

The gevent library is event-based and accomplishes a cool trick: you write normal
imperative code, and it magically converts pieces to coroutines. These are like genera‐
tors that can communicate with one another and keep track of where they are. gevent
modifies many of Python’s standard objects such as socket to use its mechanism
instead of blocking. This does not work with Python add-in code that was written in
C, as some database drivers are.

Concurrency | 273

As of this writing, gevent was not completely ported to Python 3,
so these code examples use the Python 2 tools pip2 and python2.

You install gevent by using the Python 2 version of pip:

$ pip2 install gevent

Here’s a variation of sample code at the gevent website. You’ll see the socket module’s
gethostbyname() function in the upcoming DNS section. This function is synchro‐
nous, so you wait (possibly many seconds) while it chases name servers around the
world to look up that address. But you could use the gevent version to look up multi‐
ple sites independently. Save this as gevent_test.py:

import gevent
from gevent import socket
hosts = ['www.crappytaxidermy.com', 'www.walterpottertaxidermy.com',
 'www.antique-taxidermy.com']
jobs = [gevent.spawn(gevent.socket.gethostbyname, host) for host in hosts]
gevent.joinall(jobs, timeout=5)
for job in jobs:
 print(job.value)

There’s a one-line for-loop in the preceding example. Each hostname is submitted in
turn to a gethostbyname() call, but they can run asynchronously because it’s the
gevent version of gethostbyname().

Run gevent_test.py with Python 2 by typing the following (in bold):

$ python2 gevent_test.py
66.6.44.4
74.125.142.121
78.136.12.50

gevent.spawn() creates a greenlet (also known sometimes as a green thread or a
microthread) to execute each gevent.socket.gethostbyname(url).

The difference from a normal thread is that it doesn’t block. If something occurred
that would have blocked a normal thread, gevent switches control to one of the other
greenlets.

The gevent.joinall() method waits for all the spawned jobs to finish. Finally, we
dump the IP addresses that we got for these hostnames.

Instead of the gevent version of socket, you can use its evocatively named monkey-
patching functions. These modify standard modules such as socket to use greenlets
rather than calling the gevent version of the module. This is useful when you want

274 | Chapter 11: Concurrency and Networks

http://www.gevent.org

gevent to be applied all the way down, even into code that you might not be able to
access.

At the top of your program, add the following call:

from gevent import monkey
monkey.patch_socket()

This inserts the gevent socket everywhere the normal socket is called, anywhere in
your program, even in the standard library. Again, this works only for Python code,
not libraries written in C.

Another function monkey-patches even more standard library modules:

from gevent import monkey
monkey.patch_all()

Use this at the top of your program to get as many gevent speedups as possible.

Save this program as gevent_monkey.py:

import gevent
from gevent import monkey; monkey.patch_all()
import socket
hosts = ['www.crappytaxidermy.com', 'www.walterpottertaxidermy.com',
 'www.antique-taxidermy.com']
jobs = [gevent.spawn(socket.gethostbyname, host) for host in hosts]
gevent.joinall(jobs, timeout=5)
for job in jobs:
 print(job.value)

Again, using Python 2, run the program:

$ python2 gevent_monkey.py
66.6.44.4
74.125.192.121
78.136.12.50

There are potential dangers when using gevent. As with any event-based system,
each chunk of code that you execute should be relatively quick. Although it’s non‐
blocking, code that does a lot of work is still slow.

The very idea of monkey-patching makes some people nervous. Yet, many large sites
such as Pinterest use gevent to speed up their sites significantly. Like the fine print on
a bottle of pills, use gevent as directed.

Two other popular event-driven frameworks are tornado and guni
corn. They provide both the low-level event handling and a fast
web server. They’re worth a look if you’d like to build a fast website
without messing with a traditional web server such as Apache.

Concurrency | 275

http://www.tornadoweb.org
http://gunicorn.org/
http://gunicorn.org/

twisted
twisted is an asynchronous, event-driven networking framework. You connect func‐
tions to events such as data received or connection closed, and those functions are
called when those events occur. This is a callback design, and if you’ve written any‐
thing in JavaScript, it might seem familiar. If it’s new to you, it can seem backwards.
For some developers, callback-based code becomes harder to manage as the applica‐
tion grows.

Like gevent, twisted has not yet been ported to Python 3. We’ll use the Python 2
installer and interpreter for this section. Type the following to install it:

$ pip2 install twisted

twisted is a large package, with support for many Internet protocols on top of TCP
and UDP. To be short and simple, we’ll show a little knock-knock server and client,
adapted from twisted examples. First, let’s look at the server, knock_server.py (notice
the Python 2 syntax for print()):

from twisted.internet import protocol, reactor

class Knock(protocol.Protocol):
 def dataReceived(self, data):
 print 'Client:', data
 if data.startswith("Knock knock"):
 response = "Who's there?"
 else:
 response = data + " who?"
 print 'Server:', response
 self.transport.write(response)

class KnockFactory(protocol.Factory):
 def buildProtocol(self, addr):
 return Knock()

reactor.listenTCP(8000, KnockFactory())
reactor.run()

Now, let’s take a glance at its trusty companion, knock_client.py:

from twisted.internet import reactor, protocol

class KnockClient(protocol.Protocol):
 def connectionMade(self):
 self.transport.write("Knock knock")

 def dataReceived(self, data):
 if data.startswith("Who's there?"):
 response = "Disappearing client"
 self.transport.write(response)
 else:

276 | Chapter 11: Concurrency and Networks

http://twistedmatrix.com/trac/
http://bit.ly/twisted-ex

 self.transport.loseConnection()
 reactor.stop()

class KnockFactory(protocol.ClientFactory):
 protocol = KnockClient

def main():
 f = KnockFactory()
 reactor.connectTCP("localhost", 8000, f)
 reactor.run()

if __name__ == '__main__':
 main()

Start the server first:

$ python2 knock_server.py

Then start the client:

$ python2 knock_client.py

The server and client exchange messages, and the server prints the conversation:

Client: Knock knock
Server: Who's there?
Client: Disappearing client
Server: Disappearing client who?

Our trickster client then ends, keeping the server waiting for the punch line.

If you’d like to enter the twisted passages, try some of the other examples from its
documentation.

asyncio
Recently, Guido van Rossum (remember him?) became involved with the Python
concurrency issue. Many packages had their own event loop, and each event loop
kind of likes to be the only one. How could he reconcile mechanisms such as call‐
backs, greenlets, and others? After many discussions and visits, he proposed Asyn‐
chronous IO Support Rebooted: the “asyncio” Module, code-named Tulip. This first
appeared in Python 3.4 as the asyncio module. For now, it offers a common event
loop that could be compatible with twisted, gevent, and other asynchronous meth‐
ods. The goal is to provide a standard, clean, well-performing asynchronous API.
Watch it expand in future releases of Python.

Redis
Our earlier dishwashing code examples, using processes or threads, were run on a
single machine. Let’s take another approach to queues that can run on a single
machine or across a network. Even with multiple singing processes and dancing

Concurrency | 277

http://bit.ly/pep-3156
http://bit.ly/pep-3156

threads, sometimes one machine isn’t enough, You can treat this section as a bridge
between single-box (one machine) and multiple-box concurrency.

To try the examples in this section, you’ll need a Redis server and its Python module.
You can see where to get them in “Redis” on page 211. In that chapter, Redis’s role is
that of a database. Here, we’re featuring its concurrency personality.

A quick way to make a queue is with a Redis list. A Redis server runs on one
machine; this can be the same one as its clients, or another that the clients can access
through a network. In either case, clients talk to the server via TCP, so they’re net‐
working. One or more provider clients pushes messages onto one end of the list. One
or more client workers watches this list with a blocking pop operation. If the list is
empty, they all just sit around playing cards. As soon as a message arrives, the first
eager worker gets it.

Like our earlier process- and thread-based examples, redis_washer.py generates a
sequence of dishes:

import redis
conn = redis.Redis()
print('Washer is starting')
dishes = ['salad', 'bread', 'entree', 'dessert']
for dish in dishes:
 msg = dish.encode('utf-8')
 conn.rpush('dishes', msg)
 print('Washed', dish)
conn.rpush('dishes', 'quit')
print('Washer is done')

The loop generates four messages containing a dish name, followed by a final mes‐
sage that says “quit.” It appends each message to a list called dishes in the Redis
server, similar to appending to a Python list.

And as soon as the first dish is ready, redis_dryer.py does its work:

import redis
conn = redis.Redis()
print('Dryer is starting')
while True:
 msg = conn.blpop('dishes')
 if not msg:
 break
 val = msg[1].decode('utf-8')
 if val == 'quit':
 break
 print('Dried', val)
print('Dishes are dried')

This code waits for messages whose first token is “dishes” and prints that each one is
dried. It obeys the quit message by ending the loop.

278 | Chapter 11: Concurrency and Networks

Start the dryer, and then the washer. Using the & at the end puts the first program in
the background; it keeps running, but doesn’t listen to the keyboard anymore. This
works on Linux, OS X, and Windows, although you might see different output on the
next line. In this case (OS X), it’s some information about the background dryer pro‐
cess. Then, we start the washer process normally (in the foreground). You’ll see the
mingled output of the two processes:

$ python redis_dryer.py &
[2] 81691
Dryer is starting
$ python redis_washer.py
Washer is starting
Washed salad
Dried salad
Washed bread
Dried bread
Washed entree
Dried entree
Washed dessert
Washer is done
Dried dessert
Dishes are dried
[2]+ Done python redis_dryer.py

As soon as dish IDs started arriving at Redis from the washer process, our hard-
working dryer process started pulling them back out. Each dish ID was a number,
except the final sentinel value, the string 'quit'. When the dryer process read that
quit dish ID, it quit, and some more background process information printed to the
terminal (also system-dependent). You can use a sentinel (an otherwise invalid value)
to indicate something special from the data stream itself—in this case, that we’re
done. Otherwise, we’d need to add a lot more program logic, such as the following:

• Agreeing ahead of time on some maximum dish number, which would kind of be
a sentinel anyway.

• Doing some special out-of-band (not in the data stream) interprocess
communication.

• Timing out after some interval with no new data.

Let’s make a few last changes:

• Create multiple dryer processes.
• Add a timeout to each dryer rather than looking for a sentinel.

The new redis_dryer2.py:

Concurrency | 279

def dryer():
 import redis
 import os
 import time
 conn = redis.Redis()
 pid = os.getpid()
 timeout = 20
 print('Dryer process %s is starting' % pid)
 while True:
 msg = conn.blpop('dishes', timeout)
 if not msg:
 break
 val = msg[1].decode('utf-8')
 if val == 'quit':
 break
 print('%s: dried %s' % (pid, val))
 time.sleep(0.1)
 print('Dryer process %s is done' % pid)

import multiprocessing
DRYERS=3
for num in range(DRYERS):
 p = multiprocessing.Process(target=dryer)
 p.start()

Start the dryer processes in the background, and then the washer process in the fore‐
ground:

$ python redis_dryer2.py &
Dryer process 44447 is starting
Dryer process 44448 is starting
Dryer process 44446 is starting
$ python redis_washer.py
Washer is starting
Washed salad
44447: dried salad
Washed bread
44448: dried bread
Washed entree
44446: dried entree
Washed dessert
Washer is done
44447: dried dessert

One dryer process reads the quit ID and quits:

Dryer process 44448 is done

After 20 seconds, the other dryer processes get a return value of None from their
blpop calls, indicating that they’ve timed out. They say their last words and exit:

Dryer process 44447 is done
Dryer process 44446 is done

280 | Chapter 11: Concurrency and Networks

After the last dryer subprocess quits, the main dryer program ends:

[1]+ Done python redis_dryer2.py

Beyond Queues
With more moving parts, there are more possibilities for our lovely assembly lines to
be disrupted. If we need to wash the dishes from a banquet, do we have enough work‐
ers? What if the dryers get drunk? What if the sink clogs? Worries, worries!

How will you cope with it all? Fortunately, there are some techniques available that
you can apply. They include the following:

Fire and forget
Just pass things on and don’t worry about the consequences, even if no one is
there. That’s the dishes-on-the-floor approach.

Request-reply
The washer receives an acknowledgement from the dryer, and the dryer from the
put-away-er, for each dish in the pipeline.

Back pressure or throttling
This technique directs a fast worker to take it easy if someone downstream can’t
keep up.

In real systems, you need to be careful that workers are keeping up with the demand;
otherwise, you hear the dishes hitting the floor. You might add new tasks to a pending
list, while some worker process pops the latest message and adds it to a working list.
When the message is done, it’s removed from the working list and added to a comple‐
ted list. This lets you know what tasks have failed or are taking too long. You can do
this with Redis yourself, or use a system that someone else has already written and
tested. Some Python-based queue packages that add this extra level of management—
some of which use Redis—include:

celery

This particular package is well worth a look. It can execute distributed tasks syn‐
chronously or asynchronously, using the methods we’ve discussed: multiprocess
ing, gevent, and others.

thoonk

This package builds on Redis to provide job queues and pub-sub (coming in the
next section).

rq
This is a Python library for job queues, also based on Redis.

Concurrency | 281

http://www.celeryproject.org
https://github.com/andyet/thoonk.py
http://python-rq.org/

Queues
This site offers a discussion of queuing software, Python-based and otherwise.

Networks
In our discussion of concurrency, we talked mostly about time: single-machine solu‐
tions (processes, threads, green threads). We also briefly touched upon some solu‐
tions that can span networks (Redis, ZeroMQ). Now, we’ll look at networking in its
own right, distributing computing across space.

Patterns
You can build networking applications from some basic patterns.

The most common pattern is request-reply, also known as client-server. This pattern is
synchronous: the client waits until the server responds. You’ve seen many examples of
request-reply in this book. Your web browser is also a client, making an HTTP
request to a web server, which returns a reply.

Another common pattern is push, or fanout: you send data to any available worker in
a pool of processes. An example is a web server behind a load balancer.

The opposite of push is pull, or fanin: you accept data from one or more sources. An
example would be a logger that takes text messages from multiple processes and
writes them to a single log file.

One pattern is similar to radio or television broadcasting: publish-subscribe, or pub-
sub. With this pattern, a publisher sends out data. In a simple pub-sub system, all
subscribers would receive a copy. More often, subscribers can indicate that they’re
interested only in certain types of data (often called a topic), and the publisher will
send just those. So, unlike the push pattern, more than one subscriber might receive a
given piece of data. If there’s no subscriber for a topic, the data is ignored.

Let’s show a few examples of pub-sub code now, before getting into low-level net‐
working details later in the chapter.

The Publish-Subscribe Model
Publish-subscribe is not a queue but a broadcast. One or more processes publish
messages. Each subscriber process indicates what type of messages it would like to
receive. A copy of each message is sent to each subscriber that matched its type. Thus,
a given message might be processed once, more than once, or not at all. Each pub‐
lisher is just broadcasting and doesn’t know who—if anyone—is listening.

282 | Chapter 11: Concurrency and Networks

http://queues.io/

Redis
You can build a quick pub-sub system by using Redis. The publisher emits messages
with a topic and a value, and subscribers say which topics they want to receive.

Here’s the publisher, redis_pub.py:

import redis
import random

conn = redis.Redis()
cats = ['siamese', 'persian', 'maine coon', 'norwegian forest']
hats = ['stovepipe', 'bowler', 'tam-o-shanter', 'fedora']
for msg in range(10):
 cat = random.choice(cats)
 hat = random.choice(hats)
 print('Publish: %s wears a %s' % (cat, hat))
 conn.publish(cat, hat)

Each topic is a breed of cat, and the accompanying message is a type of hat.

Here’s a single subscriber, redis_sub.py:

import redis
conn = redis.Redis()

topics = ['maine coon', 'persian']
sub = conn.pubsub()
sub.subscribe(topics)
for msg in sub.listen():
 if msg['type'] == 'message':
 cat = msg['channel']
 hat = msg['data']
 print('Subscribe: %s wears a %s' % (cat, hat))

The subscriber just shown wants all messages for cat types 'maine coon' and
'persian', and no others. The listen() method returns a dictionary. If its type is
'message', it was sent by the publisher and matches our criteria. The 'channel' key
is the topic (cat), and the 'data' key contains the message (hat).

If you start the publisher first and no one is listening, it’s like a mime falling in the
forest (does he make a sound?), so start the subscriber first:

$ python redis_sub.py

Next, start the publisher. It will send 10 messages, and then quit:

$ python redis_pub.py
Publish: maine coon wears a stovepipe
Publish: norwegian forest wears a stovepipe
Publish: norwegian forest wears a tam-o-shanter
Publish: maine coon wears a bowler
Publish: siamese wears a stovepipe
Publish: norwegian forest wears a tam-o-shanter

Networks | 283

Publish: maine coon wears a bowler
Publish: persian wears a bowler
Publish: norwegian forest wears a bowler
Publish: maine coon wears a stovepipe

The subscriber cares about only two types of cat:

$ python redis_sub.py
Subscribe: maine coon wears a stovepipe
Subscribe: maine coon wears a bowler
Subscribe: maine coon wears a bowler
Subscribe: persian wears a bowler
Subscribe: maine coon wears a stovepipe

We didn’t tell the subscriber to quit, so it’s still waiting for messages. If you restart the
publisher, the subscriber will grab a few more messages and print them.

You can have as many subscribers (and publishers) as you want. If there’s no sub‐
scriber for a message, it disappears from the Redis server. However, if there are sub‐
scribers, the messages stay in the server until all subscribers have retrieved them.

ZeroMQ
ZeroMQ is a library for writing networked applications. We’ll go into more detail
about it a little later in this chapter. Right now, we’ll show how the cat-hat pub-sub
example could be handled by ZeroMQ.

ZeroMQ has no central server, so each publisher writes to all subscribers. The pub‐
lisher, zmq_pub.py, looks like this:

import zmq
import random
import time
host = '*'
port = 6789
ctx = zmq.Context()
pub = ctx.socket(zmq.PUB)
pub.bind('tcp://%s:%s' % (host, port))
cats = ['siamese', 'persian', 'maine coon', 'norwegian forest']
hats = ['stovepipe', 'bowler', 'tam-o-shanter', 'fedora']
time.sleep(1)
for msg in range(10):
 cat = random.choice(cats)
 cat_bytes = cat.encode('utf-8')
 hat = random.choice(hats)
 hat_bytes = hat.encode('utf-8')
 print('Publish: %s wears a %s' % (cat, hat))
 pub.send_multipart([cat_bytes, hat_bytes])

Notice how this code uses UTF-8 encoding for the topic and value strings.

The file for the subscriber is zmq_sub.py:

284 | Chapter 11: Concurrency and Networks

import zmq
host = '127.0.0.1'
port = 6789
ctx = zmq.Context()
sub = ctx.socket(zmq.SUB)
sub.connect('tcp://%s:%s' % (host, port))
topics = ['maine coon', 'persian']
for topic in topics:
 sub.setsockopt(zmq.SUBSCRIBE, topic.encode('utf-8'))
while True:
 cat_bytes, hat_bytes = sub.recv_multipart()
 cat = cat_bytes.decode('utf-8')
 hat = hat_bytes.decode('utf-8')
 print('Subscribe: %s wears a %s' % (cat, hat))

In this code, we subscribe to two different byte values: the two strings in topics,
encoded as UTF-8.

It seems a little backward, but if you want all topics, you need to
subscribe to the empty bytestring b''; if you don’t, you’ll get noth‐
ing.

Notice that we call send_multipart() in the publisher and recv_multipart() in the
subscriber. This makes it possible for us to send multipart messages, and use the first
part as the topic. We could also send the topic and message as a single string or byte‐
string, but it seems cleaner to keep cats and hats separate.

Start the subscriber:

$ python zmq_sub.py

Start the publisher. It immediately sends 10 messages, and then quits:

$ python zmq_pub.py
Publish: norwegian forest wears a stovepipe
Publish: siamese wears a bowler
Publish: persian wears a stovepipe
Publish: norwegian forest wears a fedora
Publish: maine coon wears a tam-o-shanter
Publish: maine coon wears a stovepipe
Publish: persian wears a stovepipe
Publish: norwegian forest wears a fedora
Publish: norwegian forest wears a bowler
Publish: maine coon wears a bowler

The subscriber prints what it requested and received:

Subscribe: persian wears a stovepipe
Subscribe: maine coon wears a tam-o-shanter
Subscribe: maine coon wears a stovepipe

Networks | 285

Subscribe: persian wears a stovepipe
Subscribe: maine coon wears a bowler

Other Pub-sub Tools
You might like to explore some of these other Python pub-sub links:

RabbitMQ
This is a well-known messaging broker, and pika is a Python API for it. See the
pika documentation and a pub-sub tutorial.

pypi.python.org

Go to the upper-right corner of the search window and type pubsub to find
Python packages like pypubsub.

pubsubhubbub

This mellifluous protocol enables subscribers to register callbacks with publish‐
ers.

TCP/IP
We’ve been walking through the networking house, taking for granted that whatever’s
in the basement works correctly. Now, let’s actually visit the basement and look at the
wires and pipes that keep everything running above ground.

The Internet is based on rules about how to make connections, exchange data, termi‐
nate connections, handle timeouts, and so on. These are called protocols, and they are
arranged in layers. The purpose of layers is to allow innovation and alternative ways
of doing things; you can do anything you want on one layer as long as you follow the
conventions in dealing with the layers above and below you.

The very lowest layer governs aspects such as electrical signals; each higher layer
builds on those below. In the middle, more or less, is the IP (Internet Protocol) layer,
which specifies how network locations are addressed and how packets (chunks) of
data flow. In the layer above that, two protocols describe how to move bytes between
locations:

UDP (User Datagram Protocol)
This is used for short exchanges. A datagram is a tiny message sent in a single
burst, like a note on a postcard.

TCP (Transmission Control Protocol)
This protocol is used for longer-lived connections. It sends streams of bytes and
ensures that they arrive in order without duplication.

UDP messages are not acknowledged, so you’re never sure if they arrive at their desti‐
nation. If you wanted to tell a joke over UDP:

286 | Chapter 11: Concurrency and Networks

http://pika.readthedocs.org/
http://pika.readthedocs.org/
http://bit.ly/pub-sub-tut
http://pubsub.sourceforge.net/
https://code.google.com/p/pubsubhubbub/

Here's a UDP joke. Get it?

TCP sets up a secret handshake between sender and receiver to ensure a good con‐
nection. A TCP joke would start like this:

Do you want to hear a TCP joke?
Yes, I want to hear a TCP joke.
Okay, I'll tell you a TCP joke.
Okay, I'll hear a TCP joke.
Okay, I'll send you a TCP joke now.
Okay, I'll receive the TCP joke now.
... (and so on)

Your local machine always has the IP address 127.0.0.1 and the name localhost.
You might see this called the loopback interface. If it’s connected to the Internet, your
machine will also have a public IP. If you’re just using a home computer, it’s behind
equipment such as a cable modem or router. You can run Internet protocols even
between processes on the same machine.

Most of the Internet with which we interact—the Web, database servers, and so on—
is based on the TCP protocol running atop the IP protocol; for brevity, TCP/IP. Let’s
first look at some basic Internet services. After that, we’ll explore general networking
patterns.

Sockets
We’ve saved this topic until now because you don’t need to know all the low-level
details to use the higher levels of the Internet. But if you like to know how things
work, this is for you.

The lowest level of network programming uses a socket, borrowed from the C lan‐
guage and the Unix operating system. Socket-level coding is tedious. You’ll have more
fun using something like ZeroMQ, but it’s useful to see what lies beneath. For
instance, messages about sockets often turn up when networking errors take place.

Let’s write a very simple client-server exchange. The client sends a string in a UDP
datagram to a server, and the server returns a packet of data containing a string. The
server needs to listen at a particular address and port—like a post office and a post
office box. The client needs to know these two values to deliver its message, and
receive any reply.

In the following client and server code, address is a tuple of (address, port). The
address is a string, which can be a name or an IP address. When your programs are
just talking to one another on the same machine, you can use the name 'localhost'
or the equivalent address '127.0.0.1'.

First, let’s send a little data from one process to another and return a little data back to
the originator. The first program is the client and the second is the server. In each

Networks | 287

program, we’ll print the time and open a socket. The server will listen for connections
to its socket, and the client will write to its socket, which transmits a message to the
server.

Here’s the first program, udp_server.py:

from datetime import datetime
import socket

server_address = ('localhost', 6789)
max_size = 4096

print('Starting the server at', datetime.now())
print('Waiting for a client to call.')
server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server.bind(server_address)

data, client = server.recvfrom(max_size)

print('At', datetime.now(), client, 'said', data)
server.sendto(b'Are you talking to me?', client)
server.close()

The server has to set up networking through two methods imported from the socket
package. The first method, socket.socket, creates a socket, and the second, bind,
binds to it (listens to any data arriving at that IP address and port). AF_INET means
we’ll create an Internet (IP) socket. (There’s another type for Unix domain sockets, but
those work only on the local machine.) SOCK_DGRAM means we’ll send and receive
datagrams—in other words, we’ll use UDP.

At this point, the server sits and waits for a datagram to come in (recvfrom). When
one arrives, the server wakes up and gets both the data and information about the
client. The client variable contains the address and port combination needed to
reach the client. The server ends by sending a reply and closing its connection.

Let’s take a look at udp_client.py:

import socket
from datetime import datetime

server_address = ('localhost', 6789)
max_size = 4096

print('Starting the client at', datetime.now())
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
client.sendto(b'Hey!', server_address)
data, server = client.recvfrom(max_size)
print('At', datetime.now(), server, 'said', data)
client.close()

288 | Chapter 11: Concurrency and Networks

The client has most of the same methods as the server (with the exception of bind()).
The client sends and then receives, whereas the server receives first.

Start the server first, in its own window. It will print its greeting and then wait with an
eerie calm until a client sends it some data:

$ python udp_server.py
Starting the server at 2014-02-05 21:17:41.945649
Waiting for a client to call.

Next, start the client in another window. It will print its greeting, send data to the
server, print the reply, and then exit:

$ python udp_client.py
Starting the client at 2014-02-05 21:24:56.509682
At 2014-02-05 21:24:56.518670 ('127.0.0.1', 6789) said b'Are you talking to me?'

Finally, the server will print something like this, and then exit:

At 2014-02-05 21:24:56.518473 ('127.0.0.1', 56267) said b'Hey!'

The client needed to know the server’s address and port number but didn’t need to
specify a port number for itself. That was automatically assigned by the system—in
this case, it was 56267.

UDP sends data in single chunks. It does not guarantee delivery. If
you send multiple messages via UDP, they can arrive out of order,
or not at all. It’s fast, light, connectionless, and unreliable.

Which brings us to TCP (Transmission Control Protocol). TCP is used for longer-
lived connections, such as the Web. TCP delivers data in the order in which you send
it. If there were any problems, it tries to send it again. Let’s shoot a few packets from
client to server and back with TCP.

tcp_client.py acts like the previous UDP client, sending only one string to the server,
but there are small differences in the socket calls, illustrated here:

import socket
from datetime import datetime

address = ('localhost', 6789)
max_size = 1000

print('Starting the client at', datetime.now())
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect(address)
client.sendall(b'Hey!')
data = client.recv(max_size)

Networks | 289

print('At', datetime.now(), 'someone replied', data)
client.close()

We’ve replaced SOCK_DGRAM with SOCK_STREAM to get the streaming protocol, TCP. We
also added a connect() call to set up the stream. We didn’t need that for UDP
because each datagram was on its own in the wild, wooly Internet.

tcp_server.py also differs from its UDP cousin:

from datetime import datetime
import socket

address = ('localhost', 6789)
max_size = 1000

print('Starting the server at', datetime.now())
print('Waiting for a client to call.')
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(address)
server.listen(5)

client, addr = server.accept()
data = client.recv(max_size)

print('At', datetime.now(), client, 'said', data)
client.sendall(b'Are you talking to me?')
client.close()
server.close()

server.listen(5) is configured to queue up to five client connections before refus‐
ing new ones. server.accept() gets the first available message as it arrives. The cli
ent.recv(1000) sets a maximum acceptable message length of 1,000 bytes.

As you did earlier, start the server and then the client, and watch the fun. First, the
server:

$ python tcp_server.py
Starting the server at 2014-02-06 22:45:13.306971
Waiting for a client to call.
At 2014-02-06 22:45:16.048865 <socket.socket object, fd=6, family=2, type=1,
 proto=0> said b'Hey!'

Now, start the client. It will send its message to the server, receive a response, and
then exit:

$ python tcp_client.py
Starting the client at 2014-02-06 22:45:16.038642
At 2014-02-06 22:45:16.049078 someone replied b'Are you talking to me?'

The server collects the message, prints it, responds, and then quits:

At 2014-02-06 22:45:16.048865 <socket.socket object, fd=6, family=2, type=1,
 proto=0> said b'Hey!'

290 | Chapter 11: Concurrency and Networks

Notice that the TCP server called client.sendall() to respond, and the earlier UDP
server called client.sendto(). TCP maintains the client-server connection across
multiple socket calls and remembers the client’s IP address.

This didn’t look so bad, but if you try to write anything more complex, you’ll see how
low-level sockets really are. Here are some of the complications with which you need
to cope:

• UDP sends messages, but their size is limited, and they’re not guaranteed to
reach their destination.

• TCP sends streams of bytes, not messages. You don’t know how many bytes the
system will send or receive with each call.

• To exchange entire messages with TCP, you need some extra information to reas‐
semble the full message from its segments: a fixed message size (bytes), or the
size of the full message, or some delimiting character.

• Because messages are bytes, not Unicode text strings, you need to use the Python
bytes type. For more information on that, see Chapter 7.

After all of this, if you find yourself fascinated by socket programming, check out the
Python socket programming HOWTO for more details.

ZeroMQ
We’ve already seen ZeroMQ sockets used for pub-sub. ZeroMQ is a library. Some‐
times described as sockets on steroids, ZeroMQ sockets do the things that you sort of
expected plain sockets to do:

• Exchange entire messages
• Retry connections
• Buffer data to preserve it when the timing between senders and receivers doesn’t

line up

The online guide is well written and witty, and it presents the best description of net‐
working patterns that I’ve seen. The printed version (ZeroMQ: Messaging for Many
Applications, by Pieter Hintjens, from that animal house, O’Reilly) has that good code
smell and a big fish on the cover, rather than the other way around. All the examples
in the printed guide are in the C language, but the online version lets you pick from
multiple languages for each code example. The Python examples are also viewable. In
this chapter, I’ll show you some basic uses for ZeroMQ in Python.

ZeroMQ is like a Lego set, and we all know that you can build an amazing variety of
things from a few Lego shapes. In this case, you construct networks from a few socket
types and patterns. The basic “Lego pieces” presented in the following list are the

Networks | 291

http://bit.ly/socket-howto
http://zguide.zeromq.org/
http://bit.ly/zeromq-py

ZeroMQ socket types, which by some twist of fate look like the network patterns
we’ve already discussed:

• REQ (synchronous request)
• REP (synchronous reply)
• DEALER (asynchronous request)
• ROUTER (asynchronous reply)
• PUB (publish)
• SUB (subscribe)
• PUSH (fanout)
• PULL (fanin)

To try these yourself, you’ll need to install the Python ZeroMQ library by typing this
command:

$ pip install pyzmq

The simplest pattern is a single request-reply pair. This is synchronous: one socket
makes a request and then the other replies. First, the code for the reply (server),
zmq_server.py:

import zmq

host = '127.0.0.1'
port = 6789
context = zmq.Context()
server = context.socket(zmq.REP)
server.bind("tcp://%s:%s" % (host, port))
while True:
 # Wait for next request from client
 request_bytes = server.recv()
 request_str = request_bytes.decode('utf-8')
 print("That voice in my head says: %s" % request_str)
 reply_str = "Stop saying: %s" % request_str
 reply_bytes = bytes(reply_str, 'utf-8')
 server.send(reply_bytes)

We create a Context object: this is a ZeroMQ object that maintains state. Then, we
make a ZeroMQ socket of type REP (for REPly). We call bind() to make it listen on a
particular IP address and port. Notice that they’re specified in a string such as
'tcp://localhost:6789' rather than a tuple, as in the plain socket examples.

This example keeps receiving requests from a sender and sending a response. The
messages can be very long—ZeroMQ takes care of the details.

292 | Chapter 11: Concurrency and Networks

Following is the code for the corresponding request (client), zmq_client.py. Its type is
REQ (for REQuest), and it calls connect() rather than bind().

import zmq

host = '127.0.0.1'
port = 6789
context = zmq.Context()
client = context.socket(zmq.REQ)
client.connect("tcp://%s:%s" % (host, port))
for num in range(1, 6):
 request_str = "message #%s" % num
 request_bytes = request_str.encode('utf-8')
 client.send(request_bytes)
 reply_bytes = client.recv()
 reply_str = reply_bytes.decode('utf-8')
 print("Sent %s, received %s" % (request_str, reply_str))

Now it’s time to start them. One interesting difference from the plain socket examples
is that you can start the server and client in either order. Go ahead and start the
server in one window in the background:

$ python zmq_server.py &

Start the client in the same window:

$ python zmq_client.py

You’ll see these alternating output lines from the client and server:

That voice in my head says 'message #1'
Sent 'message #1', received 'Stop saying message #1'
That voice in my head says 'message #2'
Sent 'message #2', received 'Stop saying message #2'
That voice in my head says 'message #3'
Sent 'message #3', received 'Stop saying message #3'
That voice in my head says 'message #4'
Sent 'message #4', received 'Stop saying message #4'
That voice in my head says 'message #5'
Sent 'message #5', received 'Stop saying message #5'

Our client ends after sending its fifth message, but we didn’t tell the server to quit, so
it sits by the phone, waiting for another message. If you run the client again, it will
print the same five lines, and the server will print its five also. If you don’t kill the
zmq_server.py process and try to run another one, Python will complain that the
address is already is use:

$ python zmq_server.py

[2] 356
Traceback (most recent call last):
 File "zmq_server.py", line 7, in <module>
 server.bind("tcp://%s:%s" % (host, port))
 File "socket.pyx", line 444, in zmq.backend.cython.socket.Socket.bind

Networks | 293

 (zmq/backend/cython/socket.c:4076)
 File "checkrc.pxd", line 21, in zmq.backend.cython.checkrc._check_rc
 (zmq/backend/cython/socket.c:6032)
zmq.error.ZMQError: Address already in use</pre>

The messages need to be sent as byte strings, so we encoded our example’s text strings
in UTF-8 format. You can send any kind of message you like, as long as you convert it
to bytes. We used simple text strings as the source of our messages, so encode() and
decode() were enough to convert to and from byte strings. If your messages have
other data types, you can use a library such as MessagePack.

Even this basic REQ-REP pattern allows for some fancy communication patterns,
because any number of REQ clients can connect() to a single REP server. The server
handles requests one at a time, synchronously, but doesn’t drop other requests that
are arriving in the meantime. ZeroMQ buffers messages, up to some specified limit,
until they can get through; that’s where it earns the Q in its name. The Q stands for
Queue, the M stands for Message, and the Zero means there doesn’t need to be any
broker.

Although ZeroMQ doesn’t impose any central brokers (intermediaries), you can build
them where needed. For example, use DEALER and ROUTER sockets to connect
multiple sources and/or destinations asynchronously.

Multiple REQ sockets connect to a single ROUTER, which passes each request to a
DEALER, which then contacts any REP sockets that have connected to it
(Figure 11-1). This is similar to a bunch of browsers contacting a proxy server in
front of a web server farm. It lets you add multiple clients and servers as needed.

The REQ sockets connect only to the ROUTER socket; the DEALER connects to the
multiple REP sockets behind it. ZeroMQ takes care of the nasty details, ensuring that
the requests are load balanced and that the replies go back to the right place.

Another networking pattern called the ventilator uses PUSH sockets to farm out
asynchronous tasks, and PULL sockets to gather the results.

The last notable feature of ZeroMQ is that it scales up and down, just by changing the
connection type of the socket when it’s created:

• tcp between processes, on one or more machines
• ipc between processes on one machine
• inproc between threads in a single process

That last one, inproc, is a way to pass data between threads without locks, and an
alternative to the threading example in “Threads” on page 271.

294 | Chapter 11: Concurrency and Networks

http://msgpack.org/

Figure 11-1. Using a broker to connect multiple clients and services

After using ZeroMQ, you might never want to write raw socket code again.

ZeroMQ is certainly not the only message-passing library that
Python supports. Message passing is one of the most popular ideas
in networking, and Python keeps up with other languages. The
Apache project, whose web server we saw in “Apache” on page 239,
also maintains the ActiveMQ project, including several Python
interfaces using the simple-text STOMP protocol. RabbitMQ is
also popular, and has useful online Python tutorials.

Scapy
Sometimes you need to dip into the networking stream and see the bytes swimming
by. You might want to debug a web API, or track down some security issue. The
scapy library is an excellent Python tool for packet investigation, and much easier
than writing and debugging C programs. It’s actually a little language for constructing
and analyzing packets.

I planned to include some example code here but changed my mind for two reasons:

• scapy hasn’t been ported to Python 3 yet. That hasn’t stopped us before, when
we’ve used pip2 and python2, but …

Networks | 295

https://activemq.apache.org
http://stomp.github.io/implementations.html
http://www.rabbitmq.com
http://bit.ly/rabbitmq-tut

• The installation instructions for scapy are, I think, too intimidating for an intro‐
ductory book.

If you’re so inclined, take a look at the examples in the main documentation site.
They might encourage you to brave an installation on your machine.

Finally, don’t confuse scapy with scrapy, which is covered in “Crawl and Scrape” on
page 244.

Internet Services
Python has an extensive networking toolset. In the following sections, we’ll look at
ways to automate some of the most popular Internet services. The official, compre‐
hensive documentation is available online.

Domain Name System

Computers have numeric IP addresses such as 85.2.101.94, but we remember names
better than numbers. The Domain Name System (DNS) is a critical Internet service
that converts IP addresses to and from names via a distributed database. Whenever
you’re using a web browser and suddenly see a message like “looking up host,” you’ve
probably lost your Internet connection, and your first clue is a DNS failure.

Some DNS functions are found in the low-level socket module. gethostbyname()
returns the IP address for a domain name, and the extended edition gethostby
name_ex() returns the name, a list of alternative names, and a list of addresses:

>>> import socket
>>> socket.gethostbyname('www.crappytaxidermy.com')
'66.6.44.4'
>>> socket.gethostbyname_ex('www.crappytaxidermy.com')
('crappytaxidermy.com', ['www.crappytaxidermy.com'], ['66.6.44.4'])

The getaddrinfo() method looks up the IP address, but it also returns enough infor‐
mation to create a socket to connect to it:

>>> socket.getaddrinfo('www.crappytaxidermy.com', 80)
[(2, 2, 17, '', ('66.6.44.4', 80)), (2, 1, 6, '', ('66.6.44.4', 80))]

The preceding call returned two tuples, the first for UDP, and the second for TCP
(the 6 in the 2, 1, 6 is the value for TCP).

You can ask for TCP or UDP information only:

>>> socket.getaddrinfo('www.crappytaxidermy.com', 80, socket.AF_INET,
socket.SOCK_STREAM)
[(2, 1, 6, '', ('66.6.44.4', 80))]

296 | Chapter 11: Concurrency and Networks

http://bit.ly/scapy-install
http://bit.ly/scapy-docs
http://bit.ly/py-internet

Some TCP and UDP port numbers are reserved for certain services by IANA, and are
associated with service names. For example, HTTP is named http and is assigned
TCP port 80.

These functions convert between service names and port numbers:

>>> import socket
>>> socket.getservbyname('http')
80
>>> socket.getservbyport(80)
'http'

Python Email Modules
The standard library contains these email modules:

• smtplib for sending email messages via Simple Mail Transfer Protocol (SMTP)
• email for creating and parsing email messages
• poplib for reading email via Post Office Protocol 3 (POP3)
• imaplib for reading email via Internet Message Access Protocol (IMAP)

The official documentation contains sample code for all of these libraries.

If you want to write your own Python SMTP server, try smtpd.

A pure-python SMTP server called Lamson allows you to store messages in databa‐
ses, and you can even block spam.

Other protocols

Using the standard ftplib module, you can push bytes around by using the File
Transfer Protocol (FTP). Although it’s an old protocol, FTP still performs very well.

You’ve seen many of these modules in various places in this book, but also try the
documentation for standard library support of Internet protocols.

Web Services and APIs
Information providers always have a website, but those are targeted for human eyes,
not automation. If data is published only on a website, anyone who wants to access
and structure the data needs to write scrapers (as shown in “Crawl and Scrape” on
page 244), and rewrite them each time a page format changes. This is usually tedious.
In contrast, if a website offers an API to its data, the data becomes directly available to
client programs. APIs change less often than web page layouts, so client rewrites are
less common. A fast, clean data pipeline also makes it easier to build mashups—com‐
binations that might not have been foreseen but can be useful and even profitable.

Networks | 297

http://bit.ly/tcp-udp-ports
http://bit.ly/py-email
http://bit.ly/py-smtpd
http://lamsonproject.org/
http://bit.ly/py-ftplib
http://bit.ly/py-internet

In many ways, the easiest API is a web interface, but one that provides data in a struc‐
tured format such as JSON or XML rather than plain text or HTML. The API might
be minimal or a full-fledged RESTful API (defined in “Web APIs and Representa‐
tional State Transfer” on page 243), but it provides another outlet for those restless
bytes.

At the very beginning of this book, you can see a web API: it picks up the most popu‐
lar videos from YouTube. This next example might make more sense now that you’ve
read about web requests, JSON, dictionaries, lists, and slices:

import requests
url = "https://gdata.youtube.com/feeds/api/standardfeeds/top_rated?alt=json"
response = requests.get(url)
data = response.json()
for video in data['feed']['entry'][0:6]:
 print(video['title']['$t'])

APIs are especially useful for mining well-known social media sites such as Twitter,
Facebook, and LinkedIn. All these sites provide APIs that are free to use, but they
require you to register and get a key (a long-generated text string, sometimes also
known as a token) to use when connecting. The key lets a site determine who’s access‐
ing its data. It can also serve as a way to limit request traffic to servers. The YouTube
example you just looked at did not require an API key for searching, but it would if
you made calls that updated data at YouTube.

Here are some interesting service APIs:

• New York Times
• YouTube
• Twitter
• Facebook
• Weather Underground
• Marvel Comics

You can see examples of APIs for maps in Appendix B, and others in Appendix C.

Remote Processing
Most of the examples in this book have demonstrated how to call Python code on the
same machine, and usually in the same process. Thanks to Python’s expressiveness,
you can also call code on other machines as though they were local. In advanced set‐
tings, if you run out of space on your single machine, you can expand beyond it. A
network of machines gives you access to more processes and/or threads.

298 | Chapter 11: Concurrency and Networks

http://developer.nytimes.com/
http://gdata.youtube.com/demo/index.html
https://dev.twitter.com/docs/twitter-libraries
https://developers.facebook.com/tools/
http://www.wunderground.com/weather/api/
http://developer.marvel.com/

Remote Procedure Calls
Remote Procedure Calls (RPCs) look like normal functions but execute on remote
machines across a network. Instead of calling a RESTful API with arguments encoded
in the URL or request body, you call an RPC function on your own machine. Here’s
what happens under the hood of the RPC client:

1. It converts your function arguments into bytes (sometimes this is called marshal‐
ling, or serializing, or just encoding).

2. It sends the encoded bytes to the remote machine.

And here’s what happens on the remote machine:

1. It receives the encoded request bytes.
2. After receiving the bytes, the RPC client decodes the bytes back to the original

data structures (or equivalent ones, if the hardware and software differ between
the two machines).

3. The client then finds and calls the local function with the decoded data.
4. Next, it encodes the function results.
5. Last, the client sends the encoded bytes back to the caller.

And finally, the machine that started it all decodes the bytes to return values.

RPC is a popular technique, and people have implemented it in many ways. On the
server side, you start a server program, connect it with some byte transport and
encoding/decoding method, define some service functions, and light up your RPC is
open for business sign. The client connects to the server and calls one of its functions
via RPC.

The standard library includes one RPC implementation that uses XML as the
exchange format: xmlrpc. You define and register functions on the server, and the cli‐
ent calls them as though they were imported. First, let’s explore the file
xmlrpc_server.py:

from xmlrpc.server import SimpleXMLRPCServer

def double(num):
 return num * 2

server = SimpleXMLRPCServer(("localhost", 6789))
server.register_function(double, "double")
server.serve_forever()

The function we’re providing on the server is called double(). It expects a number as
an argument and returns the value of that number times two. The server starts up on

Networks | 299

an address and port. We need to register the function to make it available to clients via
RPC. Finally, start serving and carry on.

Now, you guessed it, xmlrpc_client.py:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:6789/")
num = 7
result = proxy.double(num)
print("Double %s is %s" % (num, result))

The client connects to the server by using ServerProxy(). Then, it calls the function
proxy.double(). Where did that come from? It was created dynamically by the
server. The RPC machinery magically hooks this function name into a call to the
remote server.

Give it a try—start the server and then run the client:

$ python xmlrpc_server.py

Next, run the client:

$ python xmlrpc_client.py
Double 7 is 14

The server then prints the following:

127.0.0.1 - - [13/Feb/2014 20:16:23] "POST / HTTP/1.1" 200 -

Popular transport methods are HTTP and ZeroMQ. Common encodings besides
XML include JSON, Protocol Buffers, and MessagePack. There are many Python
packages for JSON-based RPC, but many of them either don’t support Python 3 or
seem a bit tangled. Let’s look at something different: MessagePack’s own Python RPC
implementation. Here’s how to install it:

$ pip install msgpack-rpc-python

This will also install tornado, a Python event-based web server that this library uses
as a transport. As usual, the server comes first (msgpack_server.py):

from msgpackrpc import Server, Address

class Services():
 def double(self, num):
 return num * 2

server = Server(Services())
server.listen(Address("localhost", 6789))
server.start()

The Services class exposes its methods as RPC services. Go ahead and start the cli‐
ent, msgpack_client.py:

300 | Chapter 11: Concurrency and Networks

http://bit.ly/msgpack-rpc
http://bit.ly/msgpack-rpc

from msgpackrpc import Client, Address

client = Client(Address("localhost", 6789))
num = 8
result = client.call('double', num)
print("Double %s is %s" % (num, result))

To run these, follow the usual drill: start the server, start the client, see the results:

$ python msgpack_server.py

$ python msgpack_client.py
Double 8 is 16

fabric

The fabric package lets you run remote or local commands, upload or download
files, and run as a privileged user with sudo. The package uses Secure Shell (SSH; the
encrypted text protocol that has largely replaced telnet) to run programs on remote
machines. You write functions (in Python) in a so-called fabric file and indicate if they
should be run locally or remotely. When you run these with the fabric program
(called fab, but not as a tribute to the Beatles or detergent) you indicate which remote
machines to use and which functions to call. It’s simpler than the RPC examples we’ve
seen.

As this was written, the author of fabric was merging some fixes
to work with Python 3. If those go through, the examples below
will work. Until then, you’ll need to run them using Python 2.

First, install fabric by typing the following:

$ pip2 install fabric

You can run Python code locally from a fabric file directly without SSH. Save this
first file as fab1.py:

def iso():
 from datetime import date
 print(date.today().isoformat())

Now, type the following to run it:

$ fab -f fab1.py -H localhost iso

[localhost] Executing task 'iso'
2014-02-22

Done.

Networks | 301

The -f fab1.py option specifies to use fabric file fab1.py instead of the default fab‐
file.py. The -H localhost option indicates to run the command on your local
machine. Finally, iso is the name of the function in the fab file to run. It works like
the RPCs that you saw earlier. You can find options on the site’s documentation.

To run external programs on your local or remote machines, they need to have an
SSH server running. On Unix-like systems, this server is sshd; service sshd status
will report if it’s up, and service sshd start will start it, if needed. On a Mac, open
System Preferences, click the Sharing tab, and then click the Remote Login checkbox.
Windows doesn’t have built-in SSH support; your best bet is to install putty.

We’ll reuse the function name iso, but this time have it run a command by using
local(). Here’s the command and its output:

from fabric.api import local

def iso():
 local('date -u')

$ fab -f fab2.py -H localhost iso

[localhost] Executing task 'iso'
[localhost] local: date -u
Sun Feb 23 05:22:33 UTC 2014

Done.
Disconnecting from localhost... done.

The remote counterpart of local() is run(). Here’s fab3.py:

from fabric.api import run

def iso():
 run('date -u')

Using run() instructs fabric to use SSH to connect to whatever hosts were specified
on the command line with -H. If you have a local network and can connect via SSH to
a host, use that hostname in the command after the -H (shown in the example that
follows). If not, use localhost, and it will act as though it were talking to another
machine; this can be handy for testing. For this example, let’s use localhost again:

$ fab -f fab3.py -H localhost iso

[localhost] Executing task 'iso'
[localhost] run: date -u
[localhost] Login password for 'yourname':
[localhost] out: Sun Feb 23 05:26:05 UTC 2014
[localhost] out:

Done.
Disconnecting from localhost... done.

302 | Chapter 11: Concurrency and Networks

http://docs.fabfile.org/
http://bit.ly/putty-ssh

Notice that it prompted for my login password. To avoid this, you can embed your
password in the fabric file as follows:

from fabric.api import run
from fabric.context_managers import env

env.password = "your password goes here"

def iso():
 run('date -u')

Go ahead and run it:

$ fab -f fab4.py -H localhost iso

[localhost] Executing task 'iso'
[localhost] run: date -u
[localhost] out: Sun Feb 23 05:31:00 UTC 2014
[localhost] out:

Done.
Disconnecting from localhost... done.

Putting your password in your code is both brittle and insecure. A
better way to specify the necessary password is to configure SSH
with public and private keys, by using ssh-keygen.

Salt
Salt started as a way to implement remote execution, but it grew to a full-fledged sys‐
tems management platform. Based on ZeroMQ rather than SSH, it can scale to thou‐
sands of servers.

Salt has not yet been ported to Python 3. In this case, I won’t show Python 2 exam‐
ples. If you’re interested in this area, read the documents, and watch for announce‐
ments when they do complete the port.

Alternative products include puppet and chef, which are closely
tied to Ruby. The ansible package, which like Salt is written in
Python, is also comparable. It’s free to download and use, but sup‐
port and some add-on packages require a commercial license. It
uses SSH by default and does not require any special software to be
installed on the machines that it will manage.
salt and ansible are both functional supersets of fabric, han‐
dling initial configuration, deployment, and remote execution.

Networks | 303

http://bit.ly/genkeys
http://www.saltstack.com/
http://puppetlabs.com/
http://www.getchef.com/chef/
http://www.ansible.com/home

Big Fat Data and MapReduce
As Google and other Internet companies grew, they found that traditional computing
solutions didn’t scale. Software that worked for single machines, or even a few dozen,
could not keep up with thousands.

Disk storage for databases and files involved too much seeking, which requires
mechanical movement of disk heads. (Think of a vinyl record, and the time it takes to
move the needle from one track to another manually. And think of the screeching
sound it makes when you drop it too hard, not to mention the sounds made by the
record’s owner.) But you could stream consecutive segments of the disk more quickly.

Developers found that it was faster to distribute and analyze data on many networked
machines than on individual ones. They could use algorithms that sounded simplis‐
tic, but actually worked better overall with massively distributed data. One of these is
MapReduce, which spreads a calculation across many machines and then gathers the
results. It’s similar to working with queues.

After Google published its results in a paper, Yahoo followed with an open source
Java-based package named Hadoop (named after the toy stuffed elephant of the lead
programmer’s son).

The phrase big data applies here. Often it just means “data too big to fit on my
machine”: data that exceeds the disk, memory, CPU time, or all of the above. To some
organizations, if big data is mentioned somewhere in a question, the answer is always
Hadoop. Hadoop copies data among machines, running them through map and
reduce programs, and saving the results on disk at each step.

This batch process can be slow. A quicker method called Hadoop streaming works like
Unix pipes, streaming the data through programs without requiring disk writes at
each step. You can write Hadoop streaming programs in any language, including
Python.

Many Python modules have been written for Hadoop, and some are discussed in the
blog post “A Guide to Python Frameworks for Hadoop”. The Spotify company,
known for streaming music, open sourced its Python component for Hadoop stream‐
ing, Luigi. The Python 3 port is still incomplete.

A rival named Spark was designed to run ten to a hundred times faster than Hadoop.
It can read and process any Hadoop data source and format. Spark includes APIs for
Python and other languages. You can find the installation documents online.

Another alternative to Hadoop is Disco, which uses Python for MapReduce process‐
ing and Erlang for communication. Alas, you can’t install it with pip; see the docu‐
mentation.

304 | Chapter 11: Concurrency and Networks

http://bit.ly/py-hadoop
https://github.com/spotify/luigi
http://bit.ly/about-spark
http://bit.ly/dl-spark
http://discoproject.org/
http://bit.ly/get-disco
http://bit.ly/get-disco

See Appendix C for related examples of parallel programming, in which a large struc‐
tured calculation is distributed among many machines.

Working in the Clouds
Not so long ago, you would buy your own servers, bolt them into racks in data cen‐
ters, and install layers of software on them: operating systems, device drivers, file sys‐
tems, databases, web servers, email servers, name servers, load balancers, monitors,
and more. Any initial novelty wore off as you tried to keep multiple systems alive and
responsive. And you worried constantly about security.

Many hosting services offered to take care of your servers for a fee, but you still leased
the physical devices and had to pay for your peak load configuration at all times.

With more individual machines, failures are no longer infrequent: they’re very com‐
mon. You need to scale services horizontally and store data redundantly. You can’t
assume that the network operates like a single machine. The eight fallacies of dis‐
tributed computing, according to Peter Deutsch, are as follows:

• The network is reliable.
• Latency is zero.
• Bandwidth is infinite.
• The network is secure.
• Topology doesn’t change.
• There is one administrator.
• Transport cost is zero.
• The network is homogeneous.

You can try to build these complex distributed systems, but it’s a lot of work, and a
different toolset is needed. To borrow an analogy, when you have a handful of servers,
you treat them like pets—you give them names, know their personalities, and nurse
them back to health when needed. But at scale, you treat servers more like livestock:
they look alike, have numbers, and are just replaced if they have any problems.

Instead of building, you can rent servers in the cloud. By adopting this model, main‐
tenance is someone else’s problem, and you can concentrate on your service, or blog,
or whatever you want to show the world. Using web dashboards and APIs, you can
spin up servers with whatever configuration you need, quickly and easily—they’re
elastic. You can monitor their status, and be alerted if some metric exceeds a given
threshold. Clouds are currently a pretty hot topic, and corporate spending on cloud
components has spiked.

Let’s see how Python interacts with some popular clouds.

Networks | 305

Google
Google uses Python a lot internally, and it employs some prominent Python develop‐
ers (even Guido van Rossum himself, for some time).

Go to the App Engine site and then, under “Choose a Language,” click in the Python
box. You can type Python code into the Cloud Playground and see results just below.
Just after that are links and directions to download the Python SDK to your machine.
This allows you to develop against Google’s cloud APIs on your own hardware. Fol‐
lowing this are details on how to deploy your application to AppEngine itself.

From Google’s main cloud page, you can find details on its services, including these:

App Engine
A high-level platform, including Python tools such as flask and django.

Compute Engine
Create clusters of virtual machines for large distributed computing tasks.

Cloud Storage
Object storage (objects are files, but there are no directory hierarchies).

Cloud Datastore
A large NoSQL database.

Cloud SQL
A large SQL database.

Cloud Endpoints
Restful access to applications.

BigQuery
Hadoop-like big data.

Google services compete with Amazon and OpenStack, a segue if there ever was one.

Amazon
As Amazon was growing from hundreds to thousands to millions of servers, develop‐
ers ran into all the nasty problems of distributed systems. One day in 2002 or there‐
abouts, CEO Jeff Bezos declared to Amazon employees that, henceforth, all data and
functionality needed to be exposed only via network service interfaces—not files, or
databases, or local function calls. They had to design these interfaces as though they
were being offered to the public. The memo ended with a motivational nugget: “Any‐
one who doesn’t do this will be fired.”

Not surprisingly, developers got to work, and over time built a very large service-
oriented architecture. They borrowed or innovated many solutions, evolving into

306 | Chapter 11: Concurrency and Networks

https://developers.google.com/appengine/
https://cloud.google.com/

Amazon Web Services (AWS), which now dominates the market. It now contains
dozens of services, but the most relevant are the following:

Elastic Beanstalk
High-level application platform

EC2 (Elastic Compute)
Distributed computing

S3 (Simple Storage Service)
Object storage

RDS
Relational databases (MySQL, PostgreSQL, Oracle, MSSQL)

DynamoDB
NoSQL database

Redshift
Data warehouse

EMR
Hadoop

For details on these and other AWS services, download the Amazon Python SDK and
read the help section.

The official Python AWS library, boto, is another footdragger, not yet fully ported to
Python 3. You’ll need to use Python 2, or try an alternative, which you can do by
searching the Python Package Index for “aws” or “amazon.”

OpenStack
The second most popular cloud service provider has been Rackspace. In 2010, it
formed an unusual partnership with NASA to merge some of their cloud infrastruc‐
ture into OpenStack. This is a freely available open source platform to build public,
private, and hybrid clouds. A new release is made every six months, the most recent
containing over 1.25 million lines of Python from many contributors. OpenStack is
used in production by a growing number of organizations, including CERN and Pay‐
Pal.

OpenStack’s main APIs are RESTful, with Python modules providing programmatic
interfaces, and command-line Python programs for shell automation. Here are some
of the standard services in the current release:

Keystone
Identity service, providing authentication (for example, user/password), authori‐
zation (capabilities), and service discovery.

Networks | 307

http://aws.amazon.com/
http://bit.ly/aws-py-sdk
http://docs.pythonboto.org/
http://pypi.python.org
http://www.openstack.org

Nova
Compute service, distributing work across networked servers.

Swift
Object storage, such as Amazon’s S3. It’s used by Rackspace’s Cloud Files service.

Glance
Mid-level image storage service.

Cinder
Low-level block storage service.

Horizon
Web-based dashboard for all the services.

Neutron
Network management service.

Heat
Orchestration (multicloud) service.

Ceilometer
Telemetry (metrics, monitoring, and metering) service.

Other services are proposed from time to time, which then go through an incubation
process and might become part of the standard OpenStack platform.

OpenStack runs on Linux or within a Linux virtual machine (VM). The installation of
its core services is still somewhat involved. The fastest way to install OpenStack on
Linux is to use Devstack and watch all the explanatory text flying by as it runs. You’ll
end up with a web dashboard that can view and control the other services.

If you want to install some or all of OpenStack manually, use your Linux distribution’s
package manager. All of the major Linux vendors support OpenStack and are provid‐
ing official packages on their download servers. Browse the main OpenStack site for
installation documents, news, and related information.

OpenStack development and corporate support are accelerating. It’s been compared
to Linux when it was disrupting the proprietary Unix versions.

Things to Do
11.1 Use a plain socket to implement a current-time-service. When a client sends the
string time to the server, return the current date and time as an ISO string.

11.2 Use ZeroMQ REQ and REP sockets to do the same thing.

11.3 Try the same with XMLRPC.

308 | Chapter 11: Concurrency and Networks

http://devstack.org/

11.4 You may have seen the old I Love Lucy television episode in which Lucy and
Ethel worked in a chocolate factory (it’s a classic). The duo fell behind as the conveyor
belt that supplied the confections for them to process began operating at an ever-
faster rate. Write a simulation that pushes different types of chocolates to a Redis list,
and Lucy is a client doing blocking pops of this list. She needs 0.5 seconds to handle a
piece of chocolate. Print the time and type of each chocolate as Lucy gets it, and how
many remain to be handled.

11.5 Use ZeroMQ to publish the poem from exercise 7.7 (from “Things to Do” on
page 173), one word at a time. Write a ZeroMQ consumer that prints every word that
starts with a vowel, and another that prints every word that contains five letters.
Ignore punctuation characters.

Things to Do | 309

CHAPTER 12

Be a Pythonista

Always wanted to travel back in time to try fighting a younger version of yourself? Software
development is the career for you!

—Elliot Loh

This chapter is devoted to the art and science of Python development, with “best
practice” recommendations. Absorb them, and you too can be a card-carrying Pytho‐
nista.

About Programming
First, a few notes about programming, based on personal experience.

My original career path was science, and I taught myself programming to analyze and
display experimental data. I expected computer programming to be like my impres‐
sion of accounting—precise but dull. I was surprised to find that I enjoyed it. Part of
the fun was its logical aspects—like solving puzzles—but part was creative. You had to
write your program correctly to get the right results, but you had the freedom to write
it any way you wanted. It was an unusual balance of right-brain and left-brain think‐
ing.

After I wandered off into a career in programming, I also learned that the field had
many niches, with very different tasks and types of people. You could delve into com‐
puter graphics, operating systems, business applications—even science.

If you’re a programmer, you might have had a similar experience yourself. If you’re
not, you might try programming a bit to see if it fits your personality, or at least helps
you to get something done. As I may have mentioned much earlier in this book, math
skills are not so important. It seems that the ability to think logically is most impor‐

311

http://bit.ly/loh-tweet

tant, and that an aptitude for languages seems to help. Finally, patience helps, espe‐
cially when you’re tracking down an elusive bug in your code.

Find Python Code
When you need to develop some code, the fastest solution is to steal it. Well…that is,
from a source from which you’re allowed to steal code.

The Python standard library is wide, deep, and mostly clear. Dive in and look for
those pearls.

Like the halls of fame for various sports, it takes time for a module to get into the
standard library. New packages are appearing outside constantly, and throughout this
book I’ve highlighted some that either do something new or do something old better.
Python is advertised as batteries included, but you might need a new kind of battery.

So where, outside the standard library, should you look for good Python code?

The first place to look is the Python Package Index (PyPI). Formerly named the
Cheese Shop after a Monty Python skit, this site is constantly updated with Python
packages—over 39,000 as I write this. When you use pip (see the next section), it
searches PyPI. The main PyPI page shows the most recently added packages. You can
also conduct a direct search. For instance, Table 12-1 lists the results of a search for
genealogy.

Table 12-1. Packages on genealogy that you can find on PyPi

Package Weight* Description

Gramps 3.4.2 5 Research, organize, and share your family genealogy

python-fs-stack 0.2 2 Python wrapper for all FamilySearch APIs

human-names 0.1.1 1 Human names

nameparser 0.2.8 1 A simple Python module for parsing human names into their individual components

The best matches have higher weight values, so Gramps looks like your best bet here.
Go to the Python website to see the documentation and download links.

Another popular repository is GitHub. See what Python packages are currently popu‐
lar.

Popular Python recipes has over four thousand short Python programs on every sub‐
ject.

312 | Chapter 12: Be a Pythonista

http://docs.python.org/3/library/
https://pypi.python.org/pypi
https://pypi.python.org/pypi/Gramps/3.4.2
https://github.com/trending?l=python
https://github.com/trending?l=python
http://bit.ly/popular-recipes

Install Packages
There are three ways to install Python packages:

• Use pip if you can. You can install most of the Python packages you’re likely to
encounter with pip.

• Sometimes, you can use a package manager for your operating system.
• Install from source.

If you’re interested in several packages in the same area, you might find a Python dis‐
tribution that already includes them. For instance, in Appendix C, you can try out a
number of numeric and scientific programs that would be tedious to install individu‐
ally but are included with distributions such as Anaconda.

Use pip
Python packaging has had some limitations. An earlier installation tool called
easy_install has been replaced by one called pip, but neither had been in the stan‐
dard Python installation. If you’re supposed to install things by using pip, from where
did you get pip? Starting with Python 3.4, pip will finally be included with the rest of
Python to avoid such existential crises. If you’re using an earlier version of Python 3
and don’t have pip, you can get it from http://www.pip-installer.org.

The simplest use of pip is to install the latest version of a single package by using the
following command:

$ pip install flask

You will see details on what it’s doing, just so you don’t think it’s goofing off: down‐
loading, running setup.py, installing files on your disk, and other details.

You can also ask pip to install a specific version:

$ pip install flask==0.9.0

Or, a minimum version (this is useful when some feature that you can’t live without
turns up in a particular version):

$ pip install flask≥0.9.0

In the preceding example, those single quotes prevent the > from being interpreted by
the shell to redirect output to a file called =0.9.0.

If you want to install more than one Python package, you can use a requirements file.
Although it has many options, the simplest use is a list of packages, one per line,
optionally with a specific or relative version:

$ pip -r requirements.txt

Install Packages | 313

http://www.pip-installer.org
http://bit.ly/pip-require

Your sample requirements.txt file might contain this:

flask==0.9.0
django
psycopg2

Use a Package Manager
Apple’s OS X includes the third-party packagers homebrew (brew) and ports. They
work a little like pip, but aren’t restricted to Python packages.

Linux has a different manager for each distribution. The most popular are apt-get,
yum, dpkg, and zypper.

Windows has the Windows Installer and package files with a .msi suffix. If you
installed Python for Windows, it was probably in the MSI format.

Install from Source
Occasionally, a Python package is new, or the author hasn’t managed to make it avail‐
able with pip. To build the package, you generally do the following:

1. Download the code.
2. Extract the files by using zip, tar, or another appropriate tool if they’re archived

or compressed.
3. Run python install setup.py in the directory containing a setup.py file.

As always, be careful what you download and install. It’s a little
harder to hide malware in Python programs, which are readable
text, but it has happened.

Integrated Development Environments
I’ve used a plain-text interface for programs in this book, but that doesn’t mean that
you need to run everything in a console or text window. There are many free and
commercial integrated development environments (IDEs), which are GUIs with sup‐
port for such tools as text editors, debuggers, library searching, and so on.

IDLE
IDLE is the only Python IDE that’s included with the standard distribution. It’s based
on tkinter, and its GUI is plain.

314 | Chapter 12: Be a Pythonista

http://brew.sh/
http://www.macports.org/
http://bit.ly/py-idle

PyCharm
PyCharm is a recent graphic IDE with many features. The community edition is free,
and you can get a free license for the professional edition to use in a classroom or an
open source project. Figure 12-1 shows its initial display.

Figure 12-1. Startup screen for PyCharm

IPython
iPython, which you can see in Appendix C, is a publishing platform as well as an
extensive IDE.

Name and Document
You won’t remember what you wrote. There are times when I look at code I wrote
even recently and wonder where on earth it came from. That’s why it helps to docu‐
ment your code. Documentation can include comments and docstrings, but it can
also incorporate informative naming of variables, functions, modules, and classes.
Don’t be obsessive, as in this example:

>>> # I'm going to assign 10 to the variable "num" here:
... num = 10
>>> # I hope that worked
... print(num)
10
>>> # Whew.

Name and Document | 315

http://www.jetbrains.com/pycharm/
http://ipython.org

Instead, say why you assigned the value 10. Point out why you called the variable num.
If you were writing the venerable Fahrenheit to Celsius converter, you might name
variables to explain what they do, rather than a lump of magic code. And a little test
code wouldn’t hurt:

def ftoc(f_temp):
 "Convert Fahrenheit temperature <f_temp> to Celsius and return it."
 f_boil_temp = 212.0
 f_freeze_temp = 32.0
 c_boil_temp = 100.0
 c_freeze_temp = 0.0
 f_range = f_boil_temp - f_freeze_temp
 c_range = c_boil_temp - c_freeze_temp
 f_c_ratio = c_range / f_range
 c_temp = (f_temp - f_freeze_temp) * f_c_ratio + c_freeze_temp
 return c_temp

if __name__ == '__main__':
 for f_temp in [-40.0, 0.0, 32.0, 100.0, 212.0]:
 c_temp = ftoc(f_temp)
 print('%f F => %f C' % (f_temp, c_temp))

Let’s run the tests:

$ python ftoc1.py

-40.000000 F => -40.000000 C
0.000000 F => -17.777778 C
32.000000 F => 0.000000 C
100.000000 F => 37.777778 C
212.000000 F => 100.000000 C

We can make (at least) two improvements:

• Python doesn’t have constants, but the PEP8 stylesheet recommends using capital
letters and underscores (e.g., ALL_CAPS) when naming variables that should be
considered constants. Let’s rename those constant-y variables in our example.

• Because we precompute values based on constant values, let’s move them to the
top level of the module. Then, they’ll only be calculated once rather than in every
call to the ftoc() function.

Here’s the result of our rework:

F_BOIL_TEMP = 212.0
F_FREEZE_TEMP = 32.0
C_BOIL_TEMP = 100.0
C_FREEZE_TEMP = 0.0
F_RANGE = F_BOIL_TEMP - F_FREEZE_TEMP
C_RANGE = C_BOIL_TEMP - C_FREEZE_TEMP
F_C_RATIO = C_RANGE / F_RANGE

316 | Chapter 12: Be a Pythonista

http://bit.ly/pep-constant

def ftoc(f_temp):
 "Convert Fahrenheit temperature <f_temp> to Celsius and return it."
 c_temp = (f_temp - F_FREEZE_TEMP) * F_C_RATIO + C_FREEZE_TEMP
 return c_temp

if __name__ == '__main__':
 for f_temp in [-40.0, 0.0, 32.0, 100.0, 212.0]:
 c_temp = ftoc(f_temp)
 print('%f F => %f C' % (f_temp, c_temp))

Testing Your Code
Once in a while, I’ll make some trivial code change and say to myself, “Looks good,
ship it.” And then it breaks. Oops. Every time I do this (thankfully, less and less over
time) I feel like a doofus, and I swear to write even more tests next time.

The very simplest way to test Python programs is to add print() statements. The
Python interactive interpreter’s Read-Evaluate-Print Loop (REPL) lets you edit and
test changes quickly. However, you probably don’t want print() statements in pro‐
duction code, so you need to remember to take them all out. Furthermore, cut-and-
paste errors are really easy to make.

Check with pylint, pyflakes, and pep8
The next step, before creating actual test programs, is to run a Python code checker.
The most popular are pylint and pyflakes. You can install either or both by using
pip:

$ pip install pylint
$ pip install pyflakes

These check for actual code errors (such as referring to a variable before assigning it a
value) and style faux pas (the code equivalent of wearing plaids and stripes). Here’s a
fairly meaningless program with a bug and style issue:

a = 1
b = 2
print(a)
print(b)
print(c)

Here’s the initial output of pylint:

$ pylint style1.py
No config file found, using default configuration
************* Module style1
C: 1,0: Missing docstring
C: 1,0: Invalid name "a" for type constant
 (should match (([A-Z_][A-Z0-9_]*)|(__.*__))$)
C: 2,0: Invalid name "b" for type constant

Testing Your Code | 317

http://www.pylint.org/
http://bit.ly/pyflakes

 (should match (([A-Z_][A-Z0-9_]*)|(__.*__))$)
E: 5,6: Undefined variable 'c'

Much further down, under Global evaluation, is our score (10.0 is perfect):

Your code has been rated at -3.33/10

Ouch. Let’s fix the bug first. That pylint output line starting with an E indicates an
Error, which occurred because we didn’t assign a value to c before we printed it. Let’s
fix that:

a = 1
b = 2
c = 3
print(a)
print(b)
print(c)

$ pylint style2.py

No config file found, using default configuration
************* Module style2
C: 1,0: Missing docstring
C: 1,0: Invalid name "a" for type constant
 (should match (([A-Z_][A-Z0-9_]*)|(__.*__))$)
C: 2,0: Invalid name "b" for type constant
 (should match (([A-Z_][A-Z0-9_]*)|(__.*__))$)
C: 3,0: Invalid name "c" for type constant
 (should match (([A-Z_][A-Z0-9_]*)|(__.*__))$)

Good, no more E lines. And our score jumped from -3.33 to 4.29:

Your code has been rated at 4.29/10

pylint wants a docstring (a short text at the top of a module or function, describing
the code), and it thinks short variable names such as a, b, and c are tacky. Let’s make
pylint happier and improve style2.py to style3.py:

"Module docstring goes here"

def func():
 "Function docstring goes here. Hi, Mom!"
 first = 1
 second = 2
 third = 3
 print(first)
 print(second)
 print(third)

func()

$ pylint style3.py
No config file found, using default configuration

Hey, no complaints. And our score?

318 | Chapter 12: Be a Pythonista

Your code has been rated at 10.00/10

Not too shabby at all, right?

Another style checker is pep8, which you can install in the usual way:

$ pip install pep8

What does it say about our style makeover?

$ pep8 style3.py
style3.py:3:1: E302 expected 2 blank lines, found 1

To be really stylish, it’s recommending that I add a blank line after the initial module
docstring.

Test with unittest
We’ve verified that we’re no longer insulting the style senses of the code gods, so let’s
move on to actual tests of the logic in your program.

It’s a good practice to write independent test programs first, to ensure that they all
pass before you commit your code to any source control system. Writing tests can
seem tedious at first, but they really do help you find problems faster—especially
regressions (breaking something that used to work). Painful experience teaches all
developers that even the teeniest change, which they swear could not possibly affect
anything else, actually does. If you look at well-written Python packages, they always
include a test suite.

The standard library contains not one, but two test packages. Let’s start with uni
ttest. We’ll write a module that capitalizes words. Our first version just uses the
standard string function capitalize(), with some unexpected results as we’ll see.
Save this as cap.py:

def just_do_it(text):
 return text.capitalize()

The basis of testing is to decide what outcome you want from a certain input (here,
you want the capitalized version of whatever text you input), submit the input to the
function you’re testing, and then check whether it returned the expected results. The
expected result is called an assertion, so in unittest you check your results by using
methods with names that begin with assert, like the assertEqual method shown in
the following example.

Save this test script as test_cap.py:

import unittest
import cap

class TestCap(unittest.TestCase):

Testing Your Code | 319

https://pypi.python.org/pypi/pep8
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

 def setUp(self):
 pass

 def tearDown(self):
 pass

 def test_one_word(self):
 text = 'duck'
 result = cap.just_do_it(text)
 self.assertEqual(result, 'Duck')

 def test_multiple_words(self):
 text = 'a veritable flock of ducks'
 result = cap.just_do_it(text)
 self.assertEqual(result, 'A Veritable Flock Of Ducks')

if __name__ == '__main__':
 unittest.main()

The setUp() method is called before each test method, and the tearDown() method
is called after each. Their purpose is to allocate and free external resources needed by
the tests, such as a database connection or some test data. In this case, our tests are
self-contained, and we wouldn’t even need to define setUp() and tearDown(), but it
doesn’t hurt to have empty versions there. The heart of our test is the two functions
named test_one_word() and test_multiple_words(). Each runs the just_do_it()
function we defined with different input and checks whether we got back what we
expect.

Okay, let’s run it. This will call our two test methods:

$ python test_cap.py

 F.
 ==
 FAIL: test_multiple_words (__main__.TestCap)
 --
 Traceback (most recent call last):
 File "test_cap.py", line 20, in test_multiple_words
 self.assertEqual(result, 'A Veritable Flock Of Ducks')
 AssertionError: 'A veritable flock of ducks' != 'A Veritable Flock Of Ducks'
 - A veritable flock of ducks
 ? ^ ^ ^ ^
 + A Veritable Flock Of Ducks
 ? ^ ^ ^ ^

 --
 Ran 2 tests in 0.001s

 FAILED (failures=1)

320 | Chapter 12: Be a Pythonista

It liked the first test (test_one_word) but not the second (test_multiple_words).
The up arrows (^) shows where the strings actually differed.

What’s special about multiple words? Reading the documentation for the string capi
talize function yields an important clue: it capitalizes only the first letter of the first
word. Maybe we should have read that first.

Consequently, we need another function. Gazing down that page a bit, we find
title(). So, let’s change cap.py to use title() instead of capitalize():

def just_do_it(text):
 return text.title()

Rerun the tests, and let’s see what happens:

$ python test_cap.py

 ..
 --
 Ran 2 tests in 0.000s

 OK

Everything is great. Well, actually, they’re not. We need to add at least one more
method to test_cap.py:

 def test_words_with_apostrophes(self):
 text = "I'm fresh out of ideas"
 result = cap.just_do_it(text)
 self.assertEqual(result, "I'm Fresh Out Of Ideas")

Go ahead and try it again:

$ python test_cap.py

 ..F
 ==
 FAIL: test_words_with_apostrophes (__main__.TestCap)
 --
 Traceback (most recent call last):
 File "test_cap.py", line 25, in test_words_with_apostrophes
 self.assertEqual(result, "I'm Fresh Out Of Ideas")
 AssertionError: "I'M Fresh Out Of Ideas" != "I'm Fresh Out Of Ideas"
 - I'M Fresh Out Of Ideas
 ? ^
 + I'm Fresh Out Of Ideas
 ? ^

 --
 Ran 3 tests in 0.001s

 FAILED (failures=1)

Testing Your Code | 321

https://docs.python.org/3/library/stdtypes.html#str.capitalize
https://docs.python.org/3/library/stdtypes.html#str.capitalize
https://docs.python.org/3/library/stdtypes.html#str.title

Our function capitalized the m in I'm. A quick run back to the documentation for
title() shows that it doesn’t handle apostrophes well. We really should have read the
entire text first.

At the bottom of the standard library’s string documentation is another candidate: a
helper function called capwords(). Let’s use it in cap.py:

def just_do_it(text):
 from string import capwords
 return capwords(text)

$ python test_cap.py

 ...
 --
 Ran 3 tests in 0.004s

 OK

At last, we’re finally done! Uh, no. One more test to add to test_cap.py:

 def test_words_with_quotes(self):
 text = "\"You're despicable,\" said Daffy Duck"
 result = cap.just_do_it(text)
 self.assertEqual(result, "\"You're Despicable,\" Said Daffy Duck")

Did it work?

$ python test_cap.py

 ...F
 ==
 FAIL: test_words_with_quotes (__main__.TestCap)
 --
 Traceback (most recent call last):
 File "test_cap.py", line 30, in test_words_with_quotes
 self.assertEqual(result, "\"You're
 Despicable,\" Said Daffy Duck")
 AssertionError: '"you\'re Despicable," Said Daffy Duck'
 != '"You\'re Despicable," Said Daffy Duck'
 - "you're Despicable," Said Daffy Duck
 ? ^
 + "You're Despicable," Said Daffy Duck
 ? ^

 --
 Ran 4 tests in 0.004s

 FAILED (failures=1)

It looks like that first double quote confused even capwords, our favorite capitalizer
thus far. It tried to capitalize the ", and lowercased the rest (You're). We should have
also tested that our capitalizer left the rest of the string untouched.

322 | Chapter 12: Be a Pythonista

People who do testing for a living have a knack for spotting these edge cases, but
developers often have blind spots when it comes to their own code.

unittest provides a small but powerful set of assertions, letting you check values,
confirm whether you have the class you want, determine whether an error was raised,
and so on.

Test with doctest
The second test package in the standard library is doctest. With this package, you
can write tests within the docstring itself, also serving as documentation. It looks like
the interactive interpreter: the characters >>>, followed by the call, and then the
results on the following line. You can run some tests in the interactive interpreter and
just paste the results into your test file. We’ll modify cap.py (without that troublesome
last test with quotes):

def just_do_it(text):
 """
 >>> just_do_it('duck')
 'Duck'
 >>> just_do_it('a veritable flock of ducks')
 'A Veritable Flock Of Ducks'
 >>> just_do_it("I'm fresh out of ideas")
 "I'm Fresh Out Of Ideas"
 """
 from string import capwords
 return capwords(text)

if __name__ == '__main__':
 import doctest
 doctest.testmod()

When you run it, it doesn’t print anything if all tests passed:

$ python cap.py

Give it the verbose (-v) option to see what actually happened:

$ python cap.py -v

 Trying:
 just_do_it('duck')
 Expecting:
 'Duck'
 ok
 Trying:
 just_do_it('a veritable flock of ducks')
 Expecting:
 'A Veritable Flock Of Ducks'
 ok
 Trying:
 just_do_it("I'm fresh out of ideas")

Testing Your Code | 323

http://bit.ly/py-doctest

 Expecting:
 "I'm Fresh Out Of Ideas"
 ok
 1 items had no tests:
 __main__
 1 items passed all tests:
 3 tests in __main__.just_do_it
 3 tests in 2 items.
 3 passed and 0 failed.
 Test passed.

Test with nose
The third-party package called nose is another alternative to unittest. Here’s the
command to install it:

$ pip install nose

You don’t need to create a class that includes test methods, as we did with unittest.
Any function with a name matching test somewhere in its name will be run. Let’s
modify our last version of our unittest tester and save it as test_cap_nose.py:

import cap
from nose.tools import eq_

def test_one_word():
 text = 'duck'
 result = cap.just_do_it(text)
 eq_(result, 'Duck')

def test_multiple_words():
 text = 'a veritable flock of ducks'
 result = cap.just_do_it(text)
 eq_(result, 'A Veritable Flock Of Ducks')

def test_words_with_apostrophes():
 text = "I'm fresh out of ideas"
 result = cap.just_do_it(text)
 eq_(result, "I'm Fresh Out Of Ideas")

def test_words_with_quotes():
 text = "\"You're despicable,\" said Daffy Duck"
 result = cap.just_do_it(text)
 eq_(result, "\"You're Despicable,\" Said Daffy Duck")

Run the tests:

$ nosetests test_cap_nose.py

 ...F
 ==
 FAIL: test_cap_nose.test_words_with_quotes
 --

324 | Chapter 12: Be a Pythonista

https://nose.readthedocs.org/en/latest/

 Traceback (most recent call last):
 File "/Users/.../site-packages/nose/case.py", line 198, in runTest
 self.test(*self.arg)
 File "/Users/.../book/test_cap_nose.py", line 23, in test_words_with_quotes
 eq_(result, "\"You're Despicable,\" Said Daffy Duck")
 AssertionError: '"you\'re Despicable," Said Daffy Duck'
 != '"You\'re Despicable," Said Daffy Duck'

 --
 Ran 4 tests in 0.005s

 FAILED (failures=1)

This is the same bug we found when we used unittest for testing; fortunately, there’s
an exercise to fix it at the end of this chapter.

Other Test Frameworks
For some reason, people like to write Python test frameworks. If you’re curious, you
can check out some other popular ones, including tox and py.test.

Continuous Integration
When your group is cranking out a lot of code daily, it helps to automate tests as soon
as changes arrive. You can automate source control systems to run tests on all code as
it’s checked in. This way, everyone knows if someone broke the build and just disap‐
peared for an early lunch.

These are big systems, and I’m not going into installation and usage details here. In
case you need them someday, you’ll know where to find them:

buildbot

Written in Python, this source control system automates building, testing, and
releasing.

jenkins

This is written in Java and seems to be the preferred CI tool of the moment.

travis-ci

This automates projects hosted at GitHub, and it’s free for open source projects.

Testing Your Code | 325

http://tox.readthedocs.org/
http://pytest.org/latest/
http://buildbot.net/
http://jenkins-ci.org/
http://travis-ci.com/

Debugging Python Code
Debugging is twice as hard as writing the code in the first place. Therefore, if you write the

code as cleverly as possible, you are, by definition, not smart enough to debug it.
—Brian Kernighan

Test first. The better your tests are, the less you’ll have to fix later. Yet, bugs happen
and need to be fixed when they’re found later. Again, the simplest way to debug in
Python is to print out strings. Some useful things to print include vars(), which
extracts the values of your local variables, including function arguments:

>>> def func(*args, **kwargs):
... print(vars())
...
>>> func(1, 2, 3)
{'args': (1, 2, 3), 'kwargs': {}}
>>> func(['a', 'b', 'argh'])
{'args': (['a', 'b', 'argh'],), 'kwargs': {}}

As you read in “Decorators” on page 102, a decorator can call code before or after a
function without modifying the code within the function itself. This means that you
can use a decorator to do something before or after any Python function, not just
ones that you wrote. Let’s define the decorator dump to print the input arguments and
output values of any function as it’s called (designers know that a dump often needs
decorating):

def dump(func):
 "Print input arguments and output value(s)"
 def wrapped(*args, **kwargs):
 print("Function name: %s" % func.__name__)
 print("Input arguments: %s" % ' '.join(map(str, args)))
 print("Input keyword arguments: %s" % kwargs.items())
 output = func(*args, **kwargs)
 print("Output:", output)
 return output
 return wrapped

Now the decoratee. This is a function called double() that expects numeric argu‐
ments, either named or unnamed, and returns them in a list with their values dou‐
bled:

from dump1 import dump

@dump
def double(*args, **kwargs):
 "Double every argument"
 output_list = [2 * arg for arg in args]
 output_dict = { k:2*v for k,v in kwargs.items() }
 return output_list, output_dict

326 | Chapter 12: Be a Pythonista

if __name__ == '__main__':
 output = double(3, 5, first=100, next=98.6, last=-40)

Take a moment to run it:

$ python test_dump.py

Function name: double
Input arguments: 3 5
Input keyword arguments: dict_items([('last', -40), ('first', 100),
 ('next', 98.6)])
Output: ([6, 10], {'last': -80, 'first': 200, 'next': 197.2})

Debug with pdb
These techniques help, but sometimes there’s no substitute for a real debugger. Most
IDEs include a debugger, with varying features and user interfaces. Here, I’ll describe
use of the standard Python debugger, pdb.

If you run your program with the -i flag, Python will drop you
into its interactive interpreter if the program fails.

Here’s a program with a bug that depends on data—the kind of bug that can be par‐
ticularly hard to find. This is a real bug from the early days of computing, and it baf‐
fled programmers for quite a while.

We’re going to read a file of countries and their capital cities, separated by a comma,
and write them out as capital, country. They might be capitalized incorrectly, so we
should fix that also when we print. Oh, and there might be extra spaces here and
there, and you’ll want to get rid of those, too. Finally, although it would make sense
for the program to just read to the end of the file, for some reason our manager told
us to stop when we encounter the word quit (in any mixture of uppercase and lower‐
case characters). Here’s a sample data file:

France, Paris
venuzuela,caracas
 LithuniA,vilnius
 quit

Let’s design our algorithm (method for solving the problem). This is pseudocode—it
looks like a program, but is just a way to explain the logic in normal language before
converting it to an actual program. One reason programmers like Python is because it
looks a lot like pseudocode, so there’s less work involved to convert it to a working pro‐
gram:

Debug with pdb | 327

https://docs.python.org/3/library/pdb.html

for each line in the text file:
 read the line
 strip leading and trailing spaces
 if `quit` occurs in the lower-case copy of the line:
 stop
 else:
 split the country and capital by the comma character
 trim any leading and trailing spaces
 convert the country and capital to titlecase
 print the capital, a comma, and the country

We need to strip initial and trailing spaces from the names because that was a
requirement. Likewise for the lowercase comparison with quit and converting the
city and country names to title case. That being the case, let’s whip out capitals.py,
which is sure to work perfectly:

def process_cities(filename):
 with open(filename, 'rt') as file:
 for line in file:
 line = line.strip()
 if 'quit' in line.lower():
 return
 country, city = line.split(',')
 city = city.strip()
 country = country.strip()
 print(city.title(), country.title(), sep=',')

if __name__ == '__main__':
 import sys
 process_cities(sys.argv[1])

Let’s try it with that sample data file we made earlier. Ready, fire, aim:

$ python capitals.py cities.csv
Paris,France
Caracas,Venuzuela
Vilnius,Lithunia

Looks great! It passed one test, so let’s put it in production, processing capitals and
countries from around the world—until it fails, but only for this data file:

argentina,buenos aires
bolivia,la paz
brazil,brasilia
chile,santiago
colombia,Bogotá
ecuador,quito
falkland islands,stanley
french guiana,cayenne
guyana,georgetown
paraguay,Asunción
peru,lima
suriname,paramaribo

328 | Chapter 12: Be a Pythonista

uruguay,montevideo
venezuela,caracas
quit

The program ends after printing only 5 lines of the 15 in the data file, as demon‐
strated here:

$ python capitals.py cities2.csv
Buenos Aires,Argentina
La Paz,Bolivia
Brazilia,Brazil
Santiago,Chile
Bogotá,Colombia

What happened? We can keep editing capitals.py, putting print() statements in likely
places, but let’s see if the debugger can help us.

To use the debugger, import the pdb module from the command line by typing -m
pdb, like so:

$ python -m pdb capitals.py cities2.csv

> /Users/williamlubanovic/book/capitals.py(1)<module>()
-> def process_cities(filename):
(Pdb)

This starts the program and places you at the first line. If you type c (continue), the
program will run until it ends, either normally or with an error:

(Pdb) c

Buenos Aires,Argentina
La Paz,Bolivia
Brazilia,Brazil
Santiago,Chile
Bogotá,Colombia
The program finished and will be restarted
> /Users/williamlubanovic/book/capitals.py(1)<module>()
-> def process_cities(filename):

It completed normally, just as it did when we ran it earlier outside of the debugger.
Let’s try again, using some commands to narrow down where the problem lies. It
seems to be a logic error rather than a syntax problem or exception (which would
have printed error messages).

Type s (step) to single-step through Python lines. This steps through all Python code
lines: yours, the standard library’s, and any other modules you might be using. When
you use s, you also go into functions and single-step within them. Type n (next) to
single-step but not to go inside functions; when you get to a function, a single n
causes the entire function to execute and take you to the next line of your program.
Thus, use s when you’re not sure where the problem is; use n when you’re sure that a
particular function isn’t the cause, especially if it’s a long function. Often you’ll single-

Debug with pdb | 329

step through your own code and step over library code, which is presumably well tes‐
ted. We’ll use s to step from the beginning of the program, into the function
process_cities():

(Pdb) s

 > /Users/williamlubanovic/book/capitals.py(12)<module>()
 -> if __name__ == '__main__':

(Pdb) s

 > /Users/williamlubanovic/book/capitals.py(13)<module>()
 -> import sys

(Pdb) s

 > /Users/williamlubanovic/book/capitals.py(14)<module>()
 -> process_cities(sys.argv[1])

(Pdb) s

 --Call--
 > /Users/williamlubanovic/book/capitals.py(1)process_cities()
 -> def process_cities(filename):

(Pdb) s

 > /Users/williamlubanovic/book/capitals.py(2)process_cities()
 -> with open(filename, 'rt') as file:

Type l (list) to see the next few lines of your program:

(Pdb) l

 1 def process_cities(filename):
 2 -> with open(filename, 'rt') as file:
 3 for line in file:
 4 line = line.strip()
 5 if 'quit' in line.lower():
 6 return
 7 country, city = line.split(',')
 8 city = city.strip()
 9 country = country.strip()
 10 print(city.title(), country.title(), sep=',')
 11
 (Pdb)

The arrow (->) denotes the current line.

We could continue using s or n, hoping to spot something, but let’s use one of the
main features of a debugger: breakpoints. A breakpoint stops execution at the line you
indicate. In our case, we want to know why process_cities() bails out before it’s
read all of the input lines. Line 3 (for line in file:) will read every line in the
input file, so that seems innocent. The only other place where we could return from

330 | Chapter 12: Be a Pythonista

the function before reading all of the data is at line 6 (return). Let’s set a breakpoint
on line 6:

(Pdb) b 6

Breakpoint 1 at /Users/williamlubanovic/book/capitals.py:6

Next, let’s continue the program until it either hits the breakpoint or reads all of the
input lines and finishes normally:

(Pdb) c

 Buenos Aires,Argentina
 La Paz,Bolivia
 Brasilia,Brazil
 Santiago,Chile
 Bogotá,Colombia
 > /Users/williamlubanovic/book/capitals.py(6)process_cities()
 -> return

Aha, it stopped at our line 6 breakpoint. This indicates that the program wants to
return early after reading the country after Colombia. Let’s print the value of line to
see what we just read:

(Pdb) p line

'ecuador,quito'

What’s so special about—oh, never mind.

Really? *quit*o? Our manager never expected the string quit to turn up inside nor‐
mal data, so using it as a sentinel (end indicator) value like this was a boneheaded
idea. You march right in there and tell him that, while I wait here.

If at this point you still have a job, you can see all your breakpoints by using a plain b
command:

(Pdb) b

Num Type Disp Enb Where
1 breakpoint keep yes at /Users/williamlubanovic/book/capitals.py:6
 breakpoint already hit 1 time

An l will show your code lines, the current line (->), and any breakpoints (B). A plain
l will start listing from the end of your previous call to l, so include the optional
starting line (here, let’s start from line 1):

(Pdb) l 1

 1 def process_cities(filename):
 2 with open(filename, 'rt') as file:
 3 for line in file:
 4 line = line.strip()
 5 if 'quit' in line.lower():
 6 B-> return

Debug with pdb | 331

 7 country, city = line.split(',')
 8 city = city.strip()
 9 country = country.strip()
 10 print(city.title(), country.title(), sep=',')
 11

Okay, let’s fix that quit test to only match the full line, not within other characters:

def process_cities(filename):
 with open(filename, 'rt') as file:
 for line in file:
 line = line.strip()
 if 'quit' == line.lower():
 return
 country, city = line.split(',')
 city = city.strip()
 country = country.strip()
 print(city.title(), country.title(), sep=',')

if __name__ == '__main__':
 import sys
 process_cities(sys.argv[1])

Once more, with feeling:

$ python capitals2.py cities2.csv

Buenos Aires,Argentina
La Paz,Bolivia
Brasilia,Brazil
Santiago,Chile
Bogotá,Colombia
Quito,Ecuador
Stanley,Falkland Islands
Cayenne,French Guiana
Georgetown,Guyana
Asunción,Paraguay
Lima,Peru
Paramaribo,Suriname
Montevideo,Uruguay
Caracas,Venezuela

That was a skimpy overview of the debugger—just enough to show you what it can
do and what commands you’d use most of the time.

Remember: more tests, less debugging.

Logging Error Messages
At some point you might need to graduate from using print() statements to logging
messages. A log is usually a system file that accumulates messages, often inserting
useful information such as a timestamp or the name of the user who’s running the

332 | Chapter 12: Be a Pythonista

program. Often logs are rotated (renamed) daily and compressed; by doing so, they
don’t fill up your disk and cause problems themselves. When something goes wrong
with your program, you can look at the appropriate log file to see what happened.
The contents of exceptions are especially useful in logs because they show you the
actual line at which your program croaked, and why.

The standard Python library module is logging. I’ve found most descriptions of it
somewhat confusing. After a while it makes more sense, but it does seem overly com‐
plicated at first. The logging module includes these concepts:

• The message that you want to save to the log
• Ranked priority levels and matching functions: debug(), info(), warn(),
error(), and critical()

• One or more logger objects as the main connection with the module
• Handlers that direct the message to your terminal, a file, a database, or some‐

where else
• Formatters that create the output
• Filters that make decisions based on the input

For the simplest logging example, just import the module and use some of its func‐
tions:

>>> import logging
>>> logging.debug("Looks like rain")
>>> logging.info("And hail")
>>> logging.warn("Did I hear thunder?")
WARNING:root:Did I hear thunder?
>>> logging.error("Was that lightning?")
ERROR:root:Was that lightning?
>>> logging.critical("Stop fencing and get inside!")
CRITICAL:root:Stop fencing and get inside!

Did you notice that debug() and info() didn’t do anything, and the other two
printed LEVEL:root: before each message? So far, it’s like a print() statement with
multiple personalities, some of them hostile.

But it is useful. You can scan for a particular value of LEVEL in a log file to find par‐
ticular messages, compare timestamps to see what happened before your server
crashed, and so on.

A lot of digging through the documentation answers the first mystery (we’ll get to the
second one in a page or two): the default priority level is WARNING, and that got locked
in as soon as we called the first function (logging.debug()). We can set the default
level by using basicConfig(). DEBUG is the lowest level, so this enables it and all the
higher levels to flow through:

Logging Error Messages | 333

http://bit.ly/py-logging

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)
>>> logging.debug("It's raining again")
DEBUG:root:It's raining again
>>> logging.info("With hail the size of hailstones")
INFO:root:With hail the size of hailstones

We did all that with the default logging functions, without actually creating a logger
object. Each logger has a name. Let’s make one called bunyan:

>>> import logging
>>> logging.basicConfig(level='DEBUG')
>>> logger = logging.getLogger('bunyan')
>>> logger.debug('Timber!')
DEBUG:bunyan:Timber!

If the logger name contains any dot characters, they separate levels of a hierarchy of
loggers, each with potentially different properties. This means that a logger named
quark is higher than one named quark.charmed. The special root logger is at the top,
and is called ''.

So far, we’ve just printed messages, which is not a great improvement over print().
We use handlers to direct the messages to different places. The most common is a log
file, and here’s how you do it:

>>> import logging
>>> logging.basicConfig(level='DEBUG', filename='blue_ox.log')
>>> logger = logging.getLogger('bunyan')
>>> logger.debug("Where's my axe?")
>>> logger.warn("I need my axe")
>>>

Aha, the lines aren’t on the screen anymore; instead, they’re in the file named
blue_ox.log:

DEBUG:bunyan:Where's my axe?
WARNING:bunyan:I need my axe

Calling basicConfig() with a filename argument created a FileHandler for you and
made it available to your logger. The logging module includes at least 15 handlers to
send messages to places such as email and web servers as well as the screen and files.

Finally, you can control the format of your logged messages. In our first example, our
default gave us something similar to this:

WARNING:root:Message...

If you provide a format string to basicConfig(), you can change to the format of
your preference:

>>> import logging
>>> fmt = '%(asctime)s %(levelname)s %(lineno)s %(message)s'
>>> logging.basicConfig(level='DEBUG', format=fmt)

334 | Chapter 12: Be a Pythonista

>>> logger = logging.getLogger('bunyan')
>>> logger.error("Where's my other plaid shirt?")
2014-04-08 23:13:59,899 ERROR 1 Where's my other plaid shirt?

We let the logger send output to the screen again, but changed the format. The
logging module recognizes a number of variable names in the fmt format string. We
used asctime (date and time as an ISO 8601 string), levelname, lineno (line num‐
ber), and the message itself. There are other built-ins, and you can provide your own
variables, as well.

There’s much more to logging than this little overview can provide. You can log to
more than one place at the same time, with different priorities and formats. The
package has a lot of flexibility, but sometimes at the cost of simplicity.

Optimize Your Code
Python is usually fast enough—until it isn’t. In many cases, you can gain speed by
using a better algorithm or data structure. The trick is knowing where to do this.
Even experienced programmers guess wrong surprisingly often. You need to be like
the careful quiltmaker, and measure before you cut. And this leads us to timers.

Measure Timing
You’ve seen that the time function in the time module returns the current epoch time
as a floating-point number of seconds. A quick way of timing something is to get the
current time, do something, get the new time, and then subtract the original time
from the new time. Let’s write this up and call it time1.py:

from time import time

t1 = time()
num = 5
num *= 2
print(time() - t1)

In this example, we’re measuring the the time it takes to assign the value 5 to the
name num and multiply it by 2. This is not a realistic benchmark, just an example of
how to measure some arbitrary Python code. Try running it a few times, just to see
how much it can vary:

$ python time1.py
2.1457672119140625e-06
$ python time1.py
2.1457672119140625e-06
$ python time1.py
2.1457672119140625e-06
$ python time1.py
1.9073486328125e-06

Optimize Your Code | 335

$ python time1.py
3.0994415283203125e-06

That was about two or three millionths of a second. Let’s try something slower, such
as sleep. If we sleep for a second, our timer should take a tiny bit more than a sec‐
ond. Save this as time2.py:

from time import time, sleep

t1 = time()
sleep(1.0)
print(time() - t1)

Let’s be certain of our results, so run it a few times:

$ python time2.py
1.000797986984253
$ python time2.py
1.0010130405426025
$ python time2.py
1.0010390281677246

As expected, it takes about a second to run. If it didn’t, either our timer or sleep()
should be embarrassed.

There’s a handier way to measure code snippets like this: the standard module
timeit. It has a function called (you guessed it) timeit(), which will run your test
code count times and print some results. The syntax is: timeit.timeit(code, number=
count).

In the examples in this section, the code needs to be within quotes so that it is not
executed after you press the Return key but is executed inside timeit(). (In the next
section, you’ll see how to time a function by passing its name to timeit().) Let’s run
our previous example just once and time it. Call this file timeit1.py:

from timeit import timeit
print(timeit('num = 5; num *= 2', number=1))

Run it a few times:

$ python timeit1.py
2.5600020308047533e-06
$ python timeit1.py
1.9020008039660752e-06
$ python timeit1.py
1.7380007193423808e-06

Again, these two code lines ran in about two millionths of a second. We can use the
repeat argument of the timeit module’s repeat() function to run more sets. Save
this as timeit2.py:

from timeit import repeat
print(repeat('num = 5; num *= 2', number=1, repeat=3))

336 | Chapter 12: Be a Pythonista

http://bit.ly/py-timeit

Try running it to see what transpires:

$ python timeit2.py
[1.691998477326706e-06, 4.070025170221925e-07, 2.4700057110749185e-07]

The first run took two millionths of a second, and the second and third runs were
faster. Why? There could be many reasons. For one thing, we’re testing a very small
piece of code, and its speed could depend on what else the computer was doing in
those instants, how the Python system optimizes calculations, and many other things.

Or, it could be just chance. Let’s try something more realistic than variable assign‐
ment and sleep. We’ll measure some code to help compare the efficiency of a few
algorithms (program logic) and data structures (storage mechanisms).

Algorithms and Data Structures
The Zen of Python declares that There should be one—and preferably only one—obvi‐
ous way to do it. Unfortunately, sometimes it isn’t obvious, and you need to compare
alternatives. For example, is it better to use a for loop or a list comprehension to
build a list? And what do we mean by better? Is it faster, easier to understand, using
less memory, or more “Pythonic”?

In this next exercise, we’ll build a list in different ways, comparing speed, readability,
and Python style. Here’s time_lists.py:

from timeit import timeit

def make_list_1():
 result = []
 for value in range(1000):
 result.append(value)
 return result

def make_list_2():
 result = [value for value in range(1000)]
 return result

print('make_list_1 takes', timeit(make_list_1, number=1000), 'seconds')
print('make_list_2 takes', timeit(make_list_2, number=1000), 'seconds')

In each function, we add 1,000 items to a list, and we call each function 1,000 times.
Notice that in this test we called timeit() with the function name as the first argu‐
ment rather than code as a string. Let’s run it:

$ python time_lists.py

make_list_1 takes 0.14117428699682932 seconds
make_list_2 takes 0.06174145900149597 seconds

The list comprehension is at least twice as fast as adding items to the list by using
append(). In general, comprehensions are faster than manual construction.

Optimize Your Code | 337

http://bit.ly/zen-py

Use these ideas to make your own code faster.

Cython, NumPy, and C Extensions
If you’re pushing Python as hard as you can and still can’t get the performance you
want, you have yet more options.

Cython is a hybrid of Python and C, designed to translate Python with some perfor‐
mance annotations to compiled C code. These annotations are fairly small, like
declaring the types of some variables, function arguments, or function returns. For
scientific-style loops of numeric calculations, adding these hints will make them
much faster—as much as a thousand times faster. See the Cython wiki for documen‐
tation and examples.

You can read much more about NumPy in Appendix C. It’s a Python math library,
written in C for speed.

Many parts of Python and its standard library are written in C for speed and wrapped
in Python for convenience. These hooks are available to you for your applications. If
you know C and Python and really want to make your code fly, writing a C extension
is harder but the improvements can be worth the trouble.

PyPy
When Java first appeared about 20 years ago, it was as slow as an arthritic schnauzer.
When it started to mean real money to Sun and other companies, though, they put
millions into optimizing the Java interpreter and the underlying Java virtual machine
(JVM), borrowing techniques from earlier languages like Smalltalk and LISP. Micro‐
soft likewise put great effort into optimizing its rival C# language and .NET VM.

No one owns Python, so no one has pushed that hard to make it faster. You’re proba‐
bly using the standard Python implementation. It’s written in C, and often called
CPython (not the same as Cython).

Like PHP, Perl, and even Java, Python is not compiled to machine language, but
translated to an intermediate language (with names such as bytecode or p-code)
which is then interpreted in a virtual machine.

PyPy is a new Python interpreter that applies some of the tricks that sped up Java. Its
benchmarks show that PyPy is faster than CPython in every test—over 6 times faster
on average, and up to 20 times faster in some cases. It works with Python 2 and 3.
You can download it and use it instead of CPython. PyPy is constantly being
improved, and it might even replace CPython some day. Read the latest release notes
on the site to see if it could work for your purposes.

338 | Chapter 12: Be a Pythonista

http://cython.org/
https://github.com/cython/cython/wiki
http://pypy.org/
http://speed.pypy.org/

Source Control
When you’re working on a small group of programs, you can usually keep track of
your changes—until you make a boneheaded mistake and clobber a few days of work.
Source control systems help protect your code from dangerous forces, like you. If you
work with a group of developers, source control becomes a necessity. There are many
commercial and open source packages in this area. The most popular in the open
source world where Python lives are Mercurial and Git. Both are examples of dis‐
tributed version control systems, which produce multiple copies of code repositories.
Earlier systems such as Subversion run on a single server.

Mercurial
Mercurial is written in Python. It’s fairly easy to learn, with a handful of subcom‐
mands to download code from a Mercurial repository, add files, check in changes,
and merge changes from different sources. bitbucket and other sites offer free or
commercial hosting.

Git
Git was originally written for Linux kernel development, but now dominates open
source in general. It’s similar to Mercurial, although some find it slightly trickier to
master. GitHub is the largest git host, with over a million repositories, but there are
many other hosts.

The standalone program examples in this book are available in a public git repository
at GitHub. If you have the git program on your computer, you can download these
programs by using this command:

$ git clone https://github.com/madscheme/introducing-python

You can also download the code by pressing the following buttons on the GitHub
page:

• Click “Clone in Desktop” to open your computer’s version of git, if it’s been
installed.

• Click “Download ZIP” to get a zipped archive of the programs.

If you don’t have git but would like to try it, read the installation guide. I’ll talk about
the command-line version here, but you might be interested in sites such as GitHub
that have extra services and might be easier to use in some cases; git has many fea‐
tures, but is not always intuitive.

Let’s take git for a test drive. We won’t go far, but the ride will show a few commands
and their output.

Source Control | 339

http://mercurial.selenic.com/
https://bitbucket.org/
http://bit.ly/merc-host
http://git-scm.com/
http://github.com
http://bit.ly/githost-scm
https://github.com/madscheme/introducing-python
http://bit.ly/git-install

Make a new directory and change to it:

$ mkdir newdir
$ cd newdir

Create a local git repository in your current directory newdir:

$ git init

Initialized empty Git repository in /Users/williamlubanovic/newdir/.git/

Create a Python file called test.py with these contents in newdir:

print('Oops')

Add the file to the git repository:

$ git add test.py

What do you think of that, Mr. Git?

$ git status

On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: test.py

This means that test.py is part of the local repository but its changes have not yet been
committed. Let’s commit it:

$ git commit -m "simple print program"

 [master (root-commit) 52d60d7] my first commit
 1 file changed, 1 insertion(+)
 create mode 100644 test.py

That -m "my first commit" was your commit message. If you omitted that, git
would pop you into an editor and coax you to enter the message that way. This
becomes a part of the git change history for that file.

Let’s see what our current status is:

$ git status

 On branch master
 nothing to commit, working directory clean

Okay, all current changes have been committed. This means that we can change
things and not worry about losing the original version. Make an adjustment now to
test.py—change Oops to Ops! and save the file:

print('Ops!')

340 | Chapter 12: Be a Pythonista

Let’s check to see what git thinks now:

$ git status

On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: test.py

no changes added to commit (use "git add" and/or "git commit -a")

Use git diff to see what lines have changed since the last commit:

$ git diff

diff --git a/test.py b/test.py
index 76b8c39..62782b2 100644
--- a/test.py
+++ b/test.py
@@ -1 +1 @@
-print('Oops')
+print('Ops!')

If you try to commit this change now, git complains:

$ git commit -m "change the print string"

On branch master
Changes not staged for commit:
 modified: test.py

no changes added to commit

That staged for commit phrase means you need to add the file, which roughly
translated means hey git, look over here:

$ git add test.py

You could have also typed git add . to add all changed files in the current directory;
that’s handy when you actually have edited multiple files and want to ensure that you
check in all their changes. Now we can commit the change:

$ git commit -m "my first change"

 [master e1e11ec] my first change
 1 file changed, 1 insertion(+), 1 deletion(-)

If you’d like to see all the terrible things that you’ve done to test.py, most recent first,
use git log:

$ git log test.py

 commit e1e11ecf802ae1a78debe6193c552dcd15ca160a
 Author: William Lubanovic <bill@madscheme.com>

Source Control | 341

 Date: Tue May 13 23:34:59 2014 -0500

 change the print string

 commit 52d60d76594a62299f6fd561b2446c8b1227cfe1
 Author: William Lubanovic <bill@madscheme.com>
 Date: Tue May 13 23:26:14 2014 -0500

 simple print program

Clone This Book
You can get a copy of all the programs in this book. Visit the git repository and follow
the directions to copy it to your local machine. If you have git, run the command
git clone https://github.com/madscheme/introducing-python to make a git
repository on your computer. You can also download the files in zip format.

How You Can Learn More
This is an introduction. It almost certainly says too much about some things that you
don’t care about and not enough about some things that you do. Let me recommend
some Python resources that I’ve found helpful.

Books
I’ve found the books in the list that follows to be especially useful. These range from
introductory to advanced, with mixtures of Python 2 and 3.

• Barry, Paul. Head First Python. O’Reilly, 2010.
• Beazley, David M. Python Essential Reference (4th Edition). Addison-Wesley,

2009.
• Beazley, David M. and Brian K. Jones. Python Cookbook (3rd Edition). O’Reilly,

2013.
• Chun, Wesley. Core Python Applications Programming (3rd Edition). Prentice

Hall, 2012.
• McKinney, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy,

and IPython. O’Reilly, 2012.
• Summerfield, Mark. Python in Practice: Create Better Programs Using Concur‐

rency, Libraries, and Patterns. Addison-Wesley, 2013.

Of course, there are many more.

342 | Chapter 12: Be a Pythonista

https://github.com/madscheme/introducing-python
https://wiki.python.org/moin/PythonBooks

Websites
Here are some websites where you can find helpful tutorials:

• Learn Python the Hard Way by Zed Shaw.
• Dive Into Python 3 by Mark Pilgrim.
• Mouse Vs. Python by Michael Driscoll.

If you’re interested in keeping up with what’s going on in the Pythonic world, check
out these news websites:

• comp.lang.python
• comp.lang.python.announce
• python subreddit
• Planet Python

Finally, here are some good websites for downloading code:

• The Python Package Index
• stackoverflow Python questions
• ActiveState Python recipes
• Python packages trending on GitHub

Groups
Computing communities have varied personalities: enthusiastic, argumentative, dull,
hipster, button-down, and many others across a broad range. The Python community
is friendly and civil. You can find Python groups based on location—meetups and
local user groups around the world. Other groups are distributed and based on com‐
mon interests. For instance, PyLadies is a support network for women who are inter‐
ested in Python and open source.

Conferences
Of the many conferences and workshops around the world, the largest are held annu‐
ally in North America and Europe.

Coming Attractions
But wait, there’s more! Appendixes A, B, and C offer tours of Python in the arts, busi‐
ness, and science. You’ll find at least one package that you’ll want to explore.

Coming Attractions | 343

http://learnpythonthehardway.org/book/
http://www.diveintopython3.net/
http://www.blog.pythonlibrary.org/
http://bit.ly/comp-lang-python
http://bit.ly/comp-lang-py-announce
http://www.reddit.com/r/python
http://planet.python.org/
https://pypi.python.org/pypi
http://stackoverflow.com/questions/tagged/python
http://code.activestate.com/recipes/langs/python/
https://github.com/trending?l=python
http://python.meetup.com/
https://wiki.python.org/moin/LocalUserGroups
http://www.pyladies.com/
http://www.pycon.org/
https://www.python.org/community/workshops/
https://us.pycon.org
https://europython.eu/en/

Bright and shiny objects abound on the net. Only you can tell which are costume jew‐
elry and which are silver bullets. And even if you’re not currently pestered by were‐
wolves, you might want some of those silver bullets in your pocket. Just in case.

Finally, we have answers to those annoying end-of-chapter exercises, details on instal‐
lation of Python and friends, and a few cheat sheets for things that I always need to
look up. Your brain is almost certainly better tuned, but they’re there if you need
them.

344 | Chapter 12: Be a Pythonista

APPENDIX A

Py Art

Well, art is art, isn’t it? Still, on the other hand, water is water! And east is east and west is
west, and if you take cranberries and stew them like applesauce, they taste much more like

prunes than rhubarb does.
—Groucho Marx

Maybe you’re an artist, or a musician. Or maybe you just want to try something crea‐
tive and different.

These first three appendices are explorations of some common human endeavors
using Python. If your interest lies in any of these areas, you might get some ideas
from the chapters, or the urge to try something new.

2-D Graphics
All computer languages have been applied to computer graphics to some degree.
Many of the heavy-duty platforms in this chapter were written in C or C++ for speed,
but added Python libraries for productivity. Let’s begin by looking at some 2-D imag‐
ing libraries.

Standard Library
Only a few graphics-related modules are in the standard library. Here are two of
them:

imghdr

This module detects the file type of some image files.

colorsys

This module converts colors between various systems: RGB, YIQ, HSV, and HLS.

345

If you downloaded the O’Reilly logo to a local file called oreilly.png, you could run
this:

>>> import imghdr
>>> imghdr.what('oreilly.png')
'png'

To do anything serious with graphics in Python, we need to get some third-party
packages. Let’s see what’s out there.

PIL and Pillow
For many years, the Python Image Library (PIL), although not in the standard library,
has been Python’s best-known 2-D image processing library. It predated installers
such as pip, so a “friendly fork” called Pillow was created. Pillow’s imaging code is
backward-compatible with PIL, and its documentation is good, so we’ll use it here.

Installation is simple; just type the following command:

$ pip install Pillow

If you’ve already installed operating system packages such as libjpeg, libfreetype,
and zlib, they’ll be detected and used by Pillow. See the installation page for details
on this.

Open an image file:

>>> from PIL import Image
>>> img = Image.open('oreilly.png')
>>> img.format
'PNG'
>>> img.size
(154, 141)
>>> img.mode
'RGB'

Although the package is called Pillow, you import it as PIL to make it compatible
with the older PIL.

To display the image on your screen using the Image object’s show() method, you’ll
first need to install the ImageMagick package described in the next section, and then
try this:

>>> img.show()

346 | Appendix A: Py Art

http://bit.ly/py-image
http://pillow.readthedocs.org/
http://bit.ly/pillow-install

The image displayed in Figure A-1 opens in another window. (This screenshot was
captured on a Mac, where the show() function used the Preview application. Your
window’s appearance might vary.)

Figure A-1. Image opened via the Python library

Let’s crop the image in memory, save the result as a new object called img2, and dis‐
play it. Images are always measured by horizontal (x) values and vertical (y) values,
with one corner of the image known as the origin and arbitrarily assigned an x and y
of 0. In this library, the origin (0, 0) is at the upper left of the image, x increases to the
right, and y increases as you move down. We want to give the values of left x (55), top
y (70), right x (85), and bottom y (100) to the crop() method, so we’ll pass it a tuple
with those values in that order.

>>> crop = (55, 70, 85, 100)
>>> img2 = img.crop(crop)
>>> img2.show()

The results are shown in Figure A-2.

Py Art | 347

Figure A-2. The cropped image

Save an image file with the save method. It takes a filename and an optional type. If
the filename has a suffix, the library uses that to determine the type. But, you can also
specify the type explicitly. To save our cropped image as a GIF file, do the following:

>>> img2.save('cropped.gif', 'GIF')
>>> img3 = Image.open('cropped.gif')
>>> img3.format
'GIF'
>>> img3.size
(30, 30)

Let’s “improve” our little mascot. First download an image of moustaches to mous‐
taches.png. We’ll load it, crop it suitably, and then overlay it on our spokescritter:

>>> mustache = Image.open('moustaches.png')
>>> handlebar = mustache.crop((316, 282, 394, 310))
>>> handlebar.size
(78, 28)
>>> img.paste(handlebar, (45, 90))
>>> img.show()

Figure A-3 presents the highly satisfactory results.

348 | Appendix A: Py Art

http://bit.ly/moustaches-png

Figure A-3. Our new, dapper mascot

It would be nice to make that moustache background transparent. Hey, there’s an
exercise for you! If you’d like to play with this, look up transparency and alpha channel
in the Pillow tutorial.

ImageMagick
ImageMagick is a suite of programs to convert, modify, and display 2-D bitmap
images. It’s been around for more than 20 years. Various Python libraries have con‐
nected to the ImageMagick C library. A recent one that supports Python 3 is wand.
To install it, type the following command:

$ pip install Wand

You can do many of the same things with wand as you can with Pillow:

>>> from wand.image import Image
>>> from wand.display import display
>>>
>>> img = Image(filename='oreilly.png')
>>> img.size
(154, 141)
>>> img.format
'PNG'

As with Pillow, this displays the image on the screen:

>>> display(img)

wand includes rotation, resizing, text and line drawing, format conversion, and other
features that you can also find in Pillow. Both have good APIs and documentation.

Py Art | 349

http://bit.ly/pil-fork
http://www.imagemagick.org/
http://docs.wand-py.org/

Graphical User Interfaces (GUIs)
The name includes the word graphic, but GUIs concentrate more on the user inter‐
face: widgets to present data, input methods, menus, buttons, and windows to frame
everything.

The GUI programming wiki page and FAQ list many Python-powered GUIs. Let’s
begin with the only one that’s built into the standard library: Tkinter. It’s plain, but it
works on all platforms to produce native-looking windows and widgets.

Here’s a teeny, tiny Tkinter program to display our favorite googly-eyed mascot in a
window:

>>> import tkinter
>>> from PIL import Image, ImageTk
>>>
>>> main = tkinter.Tk()
>>> img = Image.open('oreilly.png')
>>> tkimg = ImageTk.PhotoImage(img)
>>> tkinter.Label(main, image=tkimg).pack()
>>> main.mainloop()

Notice that it used some modules from PIL/Pillow. You should see the O’Reilly logo
again, as shown in Figure A-4.

Figure A-4. Image shown through Tkinter library

To make the window go away, click its close button, or leave your Python interpreter.

Read more about Tkinter at the tkinter wiki and the Python wiki. Now for the GUIs
that are not in the standard library.

Qt
This is a professional GUI and application toolkit, originated about 20 years ago
by Trolltech in Norway. It’s been used to help build applications such as Google
Earth, Maya, and Skype. It was also used as the base for KDE, a Linux desktop.
There are two main Python libraries for Qt: PySide is free (LGPL license), and
PyQt is licensed either with the GPL or commercially. The Qt folks see these dif‐

350 | Appendix A: Py Art

http://bit.ly/gui-program
http://bit.ly/gui-faq
https://wiki.python.org/moin/TkInter
http://tkinter.unpythonic.net/wiki/
https://wiki.python.org/moin/TkInter
http://qt-project.org/
http://qt-project.org/wiki/PySide
http://bit.ly/pyqt-info
http://bit.ly/qt-diff

ferences. Download PySide from PyPI or Qt and read the tutorial. You can
download Qt for free online.

GTK+
GTK+ is a competitor of Qt, and it, too, has been used to create many applica‐
tions, including GIMP and the Gnome desktop for Linux. The Python binding is
PyGTK. To download the code, go to the PyGTK site, where you can also read
the documents.

WxPython
This is the Python binding for WxWidgets. It’s another hefty package, free to
download online.

Kivy
Kivy is a free modern library for building multimedia user interfaces portably
across platforms—desktop (Windows, OS X, Linux), and mobile (Android, iOS).
It includes multitouch support. You can download for all the platforms on the
Kivy website. Kivy includes application development tutorials.

The Web
Frameworks such as Qt use native components, but some others use the Web.
After all, the Web is a universal GUI, and it has graphics (SVG), text (HTML),
and even multimedia now (in HTML5). Some web-based GUI tools written in
Python include RCTK (Remote Control Toolkit) and Muntjac. You can build web
applications with any combination of frontend (browser-based) and backend
(web server) tools. A thin client lets the backend do most of the work. If the fron‐
tend dominates, it’s a thick, or fat, or rich client; the last adjective sounds more
flattering. It’s common for the sides to communicate with RESTful APIs, AJAX,
and JSON.

3-D Graphics and Animation
Watch the long end-credits for almost any contemporary movie, and you’ll see mass
quantities of people doing special effects and animation. Most of the big studios—
Walt Disney Animation, ILM, Weta, Dreamworks, Pixar—hire people with Python
experience. Do a web search for “python animation jobs” or visit vfxjobs and search
for “python” to see what’s available now.

If you’d like to experiment with Python and 3-D, animation, multimedia, and games,
try Panda3D. It’s open source and free to use, even for commercial applications. You
can download a version for your computer from the Panda3D website. To try some
sample programs, change to the directory /Developer/Examples/Panda3D. Each sub‐
directory contains one or more .py files. Run one of them by using the ppython com‐
mand that came with Panda3D. For example:

Py Art | 351

http://bit.ly/qt-diff
https://pypi.python.org/pypi/PySide
http://qt-project.org/wiki/Get-PySide
http://qt-project.org/wiki/PySide_Tutorials
http://bit.ly/qt-dl
http://www.gtk.org/
http://gtk-apps.org/
http://gtk-apps.org/
http://www.pygtk.org/
http://bit.ly/pygtk-dl
http://bit.ly/py-gtk-docs
http://bit.ly/py-gtk-docs
http://www.wxpython.org/
http://www.wxwidgets.org/
http://wxpython.org/download.php
http://kivy.org/
http://kivy.org/#download
http://kivy.org/#download
http://bit.ly/kivy-intro
https://code.google.com/p/rctk/
http://www.muntiacus.org/
http://vfxjobs.com/search/
http://www.panda3d.org/
http://bit.ly/dl-panda

$ cd /Developer/Examples/Panda3D
$ cd Ball-in-Maze/
$ ppython Tut-Ball-in-Maze.py

DirectStart: Starting the game.
Known pipe types:
 osxGraphicsPipe
(all display modules loaded.)

A window similar to Figure A-5 opens.

Figure A-5. An image shown through the Panda3D library

Use your mouse to tilt the box and move the ball in the maze.

If that all worked, and the base Panda3D installation looks good, then you can start
playing with the Python library.

Here’s a simple example application from the Panda3D documentation; save it as
panda1.py:

from direct.showbase.ShowBase import ShowBase

class MyApp(ShowBase):

352 | Appendix A: Py Art

 def __init__(self):
 ShowBase.__init__(self)

 # Load the environment model.
 self.environ = self.loader.loadModel("models/environment")
 # Reparent the model to render.
 self.environ.reparentTo(self.render)
 # Apply scale and position transforms on the model.
 self.environ.setScale(0.25, 0.25, 0.25)
 self.environ.setPos(-8, 42, 0)

app = MyApp()
app.run()

Run it by using this command:

$ ppython panda1.py

Known pipe types:
 osxGraphicsPipe
(all display modules loaded.)

A window opens displaying the scene in Figure A-6.

The rock and tree are floating above the ground. Click the Next buttons to continue
the guided tour and fix these problems.

Following are some other 3-D packages with Python:

Blender
Blender is a free 3-D animation and game creator. When you download and
install it from www.blender.org/download, it comes bundled with its own copy of
Python 3.

Maya
This is a commercial 3-D animation and graphic system. It also comes bundled
with a version of Python, currently 2.6. Chad Vernon has written a free down‐
loadable book, Python Scripting for Maya Artists. If you search for Python and
Maya on the Web, you’ll find many other resources, both free and commercial,
including videos.

Houdini
Houdini is commercial, although you can download a free version called
Apprentice. Like the other animation packages, it comes with a Python binding.

Py Art | 353

http://www.blender.org/
http://www.blender.org/download/
http://www.autodesk.com/products/autodesk-maya/overview
http://bit.ly/py-maya
https://www.sidefx.com/
http://bit.ly/py-bind

Figure A-6. Scaled image shown through Panda3D library

Plots, Graphs, and Visualization
Python has become a leading solution for plots, graphs, and data visualization. It’s
especially popular in science, which is covered in Appendix C. The official Python
site has an overview. Allow me to take a few moments to say a little more about some
of these.

matplotlib
The free matplotlib 2-D plotting library can be installed by using the following com‐
mand:

$ pip install matplotlib

The examples in the gallery show the breadth of matplotlib. Let’s try the same image
display application (with results shown in Figure A-7), just to see how the code and
presentation look:

import matplotlib.pyplot as plot
import matplotlib.image as image

354 | Appendix A: Py Art

https://wiki.python.org/moin/NumericAndScientific/Plotting
http://matplotlib.org/
http://matplotlib.org/gallery.html

img = image.imread('oreilly.png')
plot.imshow(img)
plot.show()

Figure A-7. Image shown through the matplotlib library

You can see more of matplotlib in Appendix C; it has strong ties to NumPy and
other scientific applications.

bokeh
In the old web days, developers would generate graphics on the server and give the
web browser some URL to access them. More recently, JavaScript has gained perfor‐
mance and client-side graphics generation tools like D3. A page or two ago, I men‐
tioned the possibility of using Python as part of a frontend-backend architecture for
graphics and GUIs. A new tool called bokeh combines the strengths of Python (large
data sets, ease of use) and JavaScript (interactivity, less graphics latency). Its emphasis
is quick visualization of large data sets.

If you’ve already installed its prerequisites (NumPy, Pandas, and Redis) you can
install bokeh by typing this command:

Py Art | 355

http://bokeh.pydata.org/

$ pip install bokeh

(You can see NumPy and Pandas in action in Appendix C.)

Or, install everything at once from the Bokeh website. Although matplotlib runs on
the server, bokeh runs mainly in the browser and can take advantage of recent advan‐
ces on the client side. Click any image in the gallery for an interactive view of the dis‐
play and its Python code.

Games
Python is good at data wrangling, and you’ve seen in this appendix that it’s also good
at multimedia. How about games?

It happens that Python is such a good game development platform that people have
written books about it. Here are a couple of them:

• Invent Your Own Computer Games with Python by Al Sweigart
• The Python Game Book, by Horst Jens (a docuwiki book)

There’s a general discussion at the Python wiki with even more links.

The best known Python game platform is probably pygame. You can download an
executable installer for your platform from the Pygame website, and read a line-by-
line example of a “pummel the chimp” game.

Audio and Music
What about sound, and music, and cats singing Jingle Bells?

Well, maybe just the first two.

The standard library has some rudimentary audio modules under multimedia serv‐
ices. There’s also a discussion of third-party modules.

The following libraries can help you generate music:

• pyknon is used by the book Music for Geeks and Nerds by Pedro Kroger (Create‐
Space).

• mingus is a music sequencer that can read and produce MIDI files.
• remix, as the name implies, is an API to remix music. One example of its use is

morecowbell.dj, which adds more cowbell to uploaded songs.
• sebastian is a library for music theory and analysis.

356 | Appendix A: Py Art

http://bit.ly/bokeh-dl
http://bokeh.pydata.org/docs/gallery.html
http://inventwithpython.com/
http://thepythongamebook.com/
https://wiki.python.org/moin/PythonGames
http://pygame.org/
http://pygame.org/download.shtml
http://bit.ly/line-chimp
http://docs.python.org/3/library/mm.html
http://docs.python.org/3/library/mm.html
https://wiki.python.org/moin/Audio
https://github.com/kroger/pyknon
http://musicforgeeksandnerds.com/
https://code.google.com/p/mingus/
http://echonest.github.io/remix/python.html
http://morecowbell.dj/
https://github.com/jtauber/sebastian/

• Piano lets you play piano on your computer keyboard with the keys C, D, E, F, A, B,
and C.

Finally, the libraries in the following list can help you organize your collection or give
you access to music data:

• Beets manages your music collection.
• Echonest APIs access music metadata.
• Monstermash mashes song fragments together; it’s built on Echonest, Flask,

ZeroMQ, and Amazon EC2.
• Shiva is a RESTful API and server to query your collection.
• Get album art to match your music.

Py Art | 357

http://bit.ly/py-piano
http://beets.radbox.org/
http://developer.echonest.com/
http://bit.ly/mm-karlgrz
http://bit.ly/shiva-api
https://github.com/tooxie/shiva-server
http://jameh.github.io/mpd-album-art/

APPENDIX B

Py at Work

“Business!” cried the Ghost, wringing its hands again. “Mankind was my business...”
—Charles Dickens, A Christmas Carol

The businessman’s uniform is a suit and tie. But for some reason, when he decides to
get down to business, he tosses his jacket over a chair, loosens his tie, rolls up his
sleeves, and pours some coffee. Meanwhile the business woman, with little fanfare, is
actually getting work done. Maybe with a latte.

In business, we use all of the technologies from the earlier chapters—databases, the
Web, systems, and networks. Python’s productivity is making it more popular in the
enterprise and with startups.

Businesses have long sought silver bullets to slay their legacy werewolves—incompati‐
ble file formats, arcane network protocols, language lock-in, and the universal lack of
accurate documentation. However, today we see some technologies and techniques
that can actually interoperate and scale. Businesses can create faster, cheaper, stretch‐
ier applications by employing the following:

• Dynamic languages like Python
• The Web as a universal graphical user interface
• RESTful APIs as language-independent service interfaces
• Relational and NoSQL databases
• “Big data” and analytics
• Clouds for deployment and capital savings

359

http://bit.ly/py-enterprise
http://bit.ly/py-startups

The Microsoft Office Suite
Business is heavily dependent on Microsoft Office applications and file formats.
Although they are not well known, and in some cases poorly documented, there are
some Python libraries that can help. Here are some that process Microsoft Office
documents:

docx
This library creates, reads, and writes Microsoft Office Word 2007 .docx files.

python-excel
This one discusses the xlrd, xlwt, and xlutils modules via a PDF tutorial. Excel
can also read and write Comma-Separated Value (CSV) files, which you know
how to process by using the standard csv module.

oletools
This library extracts data from Office formats.

These modules automate Windows applications:

pywin32
This module automates many Windows applications. However, it’s limited to
Python 2, and has sparse documentation; see this blog post and this one.

pywinauto
This one also automates Windows applications and is limited to Python 2; see
this blog post.

swapy
swapy generates Python code for pywinauto from native controls.

OpenOffice is an open source alternative to Office. It runs on Linux, Unix, Windows,
and OS X, and reads and writes Office file formats, It also installs a version of Python
3 for its own use. You can program OpenOffice in Python with the PyUNO library.

OpenOffice was owned by Sun Microsystems, and when Oracle acquired Sun, some
people feared for its future availability. LibreOffice was spun off as a result. Docu‐
mentHacker describes using the Python UNO library with LibreOffice.

OpenOffice and LibreOffice had to reverse engineer the Microsoft file formats, which
is not easy. The Universal Office Converter module depends on the UNO library in
OpenOffice or LibreOffice. It can convert many file formats: documents, spread‐
sheets, graphics, and presentations.

If you have a mystery file, python-magic can guess its format by analyzing specific
byte sequences.

360 | Appendix B: Py at Work

https://pypi.python.org/pypi/docx
http://www.python-excel.org/
http://bit.ly/py-excel
http://bit.ly/oletools
http://sourceforge.net/projects/pywin32/
http://bit.ly/pywin32-lib
http://bit.ly/pywin-mo
https://code.google.com/p/pywinauto/
http://bit.ly/saju-pywinauto
https://code.google.com/p/swapy/
http://openoffice.org
https://wiki.openoffice.org/wiki/Python
http://www.openoffice.org/udk/python/python-bridge.html
https://www.libreoffice.org/
http://bit.ly/docu-hacker
http://bit.ly/docu-hacker
http://dag.wiee.rs/home-made/unoconv/
https://github.com/ahupp/python-magic

The python open document library lets you provide Python code within templates to
create dynamic documents.

Although not a Microsoft format, Adobe’s PDF is very common in business. Repor‐
tLab has open source and commercial versions of its Python-based PDF generator. If
you need to edit a PDF, you might find some help at StackOverflow.

Carrying Out Business Tasks
You can find a Python module for almost anything. Visit PyPI and type something
into the search box. Many modules are interfaces to the public APIs of various serv‐
ices. You might be interested in some examples related to business tasks:

• Ship via Fedex or UPS.
• Mail with the stamps.com API.
• Read a discussion of Python for business intelligence.
• If Aeropresses are flying off the shelves in Anoka, was it customer activity or pol‐

tergeists? Cubes is an Online Analytical Processing (OLAP) web server and data
browser.

• OpenERP is a large commercial Enterprise Resource Planning (ERP) system
written in Python and JavaScript, with thousands of add-on modules.

Processing Business Data
Businesses have a particular fondness for data. Sadly, many of them conjure up per‐
verse ways of making data harder to use.

Spreadsheets were a good invention, and over time businesses became addicted to
them. Many non-programmers were tricked into programming because they were
called macros instead of programs. But the universe is expanding and data is trying to
keep up. Older versions of Excel were limited to 65,536 rows, and even newer ver‐
sions choke at a million or so. When an organization’s data outgrow the limits of a
single computer, it’s like headcount growing past a hundred people or so—suddenly
you need new layers, intermediaries, and communication.

Excessive data programs aren’t caused by the size of data on single desktops; rather,
they’re the result of the aggregate of data pouring into the business. Relational databa‐
ses handle millions of rows without exploding, but only so many writes or updates at
a time. A plain old text or binary file can grow gigabytes in size, but if you need to
process it all at once, you need enough memory. Traditional desktop software isn’t
designed for all this. Companies such as Google and Amazon had to invent solutions

Py at Work | 361

http://appyframework.org/pod.html
http://www.reportlab.com/opensource/
http://www.reportlab.com/opensource/
http://bit.ly/add-text-pdf
https://pypi.python.org/pypi
https://github.com/gtaylor/python-fedex
https://github.com/openlabs/PyUPS
https://github.com/jzempel/stamps
http://bit.ly/py-biz
http://cubes.databrewery.org/
https://www.openerp.com/

to handle so much data at scale. Netflix is an example built on Amazon’s AWS cloud,
using Python to glue together RESTful APIs, security, deployment, and databases.

Extracting, Transforming, and Loading
The underwater portions of the data icebergs include all the work to get the data in
the first place. If you speak enterprise, the common term is extract, transform, load,
or ETL. Synonyms such as data munging or data wrangling give the impression of
taming an unruly beast, which might be apt metaphors. This would seem to be a
solved engineering matter by now, but it remains largely an art. We’ll address data
science more broadly in Appendix C, because this is where most developers spend a
large part of their time.

If you’ve seen The Wizard of Oz, you probably remember (besides the flying mon‐
keys) the part at the end—when the good witch told Dorothy that she could always go
home to Kansas just by clicking her ruby slippers. Even when I was young I thought,
“Now she tells her!” Although, in retrospect, I realize the movie would have been
much shorter if she’d shared that tip earlier.

But this isn’t a movie; we’re talking about the world of business here, where making
tasks shorter is a good thing. So, let me share some tips with you now. Most of the
tools that you need for day-to-day data work in business are those that you’ve already
read about here. Those include high-level data structures such as dictionaries and
objects, thousands of standard and third-party libraries, and an expert community
that’s just a google away.

If you’re a computer programmer working for some business, your workflow almost
always includes:

1. Extracting data from weird file formats or databases
2. “Cleaning up” the data, which covers a lot of ground, all strewn with pointy

objects
3. Converting things like dates, times, and character sets
4. Actually doing something with the data
5. Storing resulting data in a file or database
6. Rolling back to step 1 again; lather, rinse, repeat

Here’s an example: you want to move data from a spreadsheet to a database. You can
save the spreadsheet in CSV format and use the Python libraries from Chapter 8. Or,
you can look for a module that reads the binary spreadsheet format directly. Your fin‐
gers know how to type python excel into Google, and find sites such as Working
with Excel files in Python. You can install one of the packages by using pip, and
locate a Python database driver for the last part of the task. I mentioned SQLAlchemy

362 | Appendix B: Py at Work

http://bit.ly/py-netflix
http://www.python-excel.org/
http://www.python-excel.org/

and the direct low-level database drivers in that same chapter. Now you need some
code in the middle, and that’s where Python’s data structures and libraries can save
you time.

Let’s try an example here, and then we’ll try again with a library that saves a few steps.
We’ll read a CSV file, aggregate the counts in one column by unique values in
another, and print the results. If we did this in SQL, we would use SELECT, JOIN,
and GROUP BY.

First, the file, zoo.csv, which has columns for the type of animal, how many times it
has bitten a visitor, the number of stitches required, and how much we’ve paid the
visitor not to tell local television stations:

animal,bites,stitches,hush
bear,1,35,300
marmoset,1,2,250
bear,2,42,500
elk,1,30,100
weasel,4,7,50
duck,2,0,10

We want to see which animal is costing us the most, so we’ll aggregate the total hush
money by the type of animal. (We’ll leave bites and stitches to an intern.) We’ll use the
csv module from “CSV” on page 185 and Counter from “Count Items with
Counter()” on page 118. Save this code as zoo_counts.py:

import csv
from collections import Counter

counts = Counter()
with open('zoo.csv', 'rt') as fin:
 cin = csv.reader(fin)
 for num, row in enumerate(cin):
 if num > 0:
 counts[row[0]] += int(row[-1])
for animal, hush in counts.items():
 print("%10s %10s" % (animal, hush))

We skipped the first row because it contained only the column names. counts is a
Counter object, and takes care of initializing the sum for each animal to zero. We also
applied a little formatting to right-align the output. Let’s try it:

$ python zoo_counts.py
 duck 10
 elk 100
 bear 800
 weasel 50
 marmoset 250

Ha! It was the bear. He was our prime suspect all along, but now we have the num‐
bers.

Py at Work | 363

Next, let’s replicate this with a data processing toolkit called Bubbles. You can install it
by typing this command:

$ pip install bubbles

It requires SQLAlchemy; if you don’t have that, pip install sqlalchemy will do the
trick. Here’s the test program (call it bubbles1.py), adapted from the documentation:

import bubbles

p = bubbles.Pipeline()
p.source(bubbles.data_object('csv_source', 'zoo.csv', infer_fields=True))
p.aggregate('animal', 'hush')
p.pretty_print()

And now, the moment of truth:

$ python bubbles1.py
2014-03-11 19:46:36,806 DEBUG calling aggregate(rows)
2014-03-11 19:46:36,807 INFO called aggregate(rows)
2014-03-11 19:46:36,807 DEBUG calling pretty_print(records)
+--------+--------+------------+
|animal |hush_sum|record_count|
+--------+--------+------------+
duck	10	1
weasel	50	1
bear	800	2
elk	100	1
marmoset	250	1
+--------+--------+------------+
2014-03-11 19:46:36,807 INFO called pretty_print(records)

If you read the documentation, you can avoid those debug print lines, and maybe
change the format of the table.

Looking at the two examples, we see that the bubbles example used a single function
call (aggregate) to replace our manual reading and counting of the CSV format.
Depending on your needs, data toolkits can save a lot of work.

In a more realistic example, our zoo file might have thousands of rows (it’s a danger‐
ous place), with misspellings such as bare, commas in numbers, and so on. For good
examples of practical data problems with Python and Java code, I’d also recommend
Greg Wilson’s book Data Crunching: Solve Everyday Problems Using Java, Python, and
More (Pragmatic Bookshelf).

Data cleanup tools can save a lot of time, and Python has many of them. For another
example, PETL does row and column extraction and renaming. Its related work page
lists many useful modules and products. Appendix C has detailed discussions of some
especially useful data tools: Pandas, NumPy, and IPython. Although they’re currently
best known among scientists, they’re becoming popular among financial and data
developers. At the 2012 Pydata conference, AppData discussed how these three and

364 | Appendix B: Py at Work

http://bubbles.databrewery.org/
http://bit.ly/py-bubbles
http://bit.ly/data_crunching
http://bit.ly/data_crunching
http://petl.readthedocs.org/
http://bit.ly/petl-related
http://bit.ly/py-big-data

other Python tools help process 15 terabytes of data daily. Make no mistake: Python
can handle very large real-world data loads.

Additional Sources of Information
Sometimes, you need data that originates somewhere else. Some business and gov‐
ernment data sources include:

data.gov
A gateway to thousands of data sets and tools. Its APIs are built on CKAN, a
Python data management system.

Opening government with Python
See the video and slides.

python-sunlight
Libraries to access the Sunlight APIs.

froide
A Django-based platform for managing freedom of information requests.

30 places to find open data on the Web
Some handy links.

Python in Finance
Recently, the financial industry has developed a great interest in Python. Adapting
software from Appendix C as well as some of their own, quants are building a new
generation of financial tools:

Quantitative economics
This is a tool for economic modeling, with lots of math and Python code.

Python for finance
This features the book Derivatives Analytics with Python: Data Analytics, Models,
Simulation, Calibration, and Hedging by Yves Hilpisch (Wiley).

Quantopian
Quantopian is an interactive website on which you can write your own Python
code and run it against historic stock data to see how it would have done.

PyAlgoTrade
This is another that you can use for stock backtesting, but on your own com‐
puter.

Quandl
Use this to search millions of financial datasets.

Py at Work | 365

https://www.data.gov/
https://www.data.gov/developers/apis
http://ckan.org/
http://sunlightfoundation.com
http://bit.ly/opengov-py
http://goo.gl/8Yh3s
http://bit.ly/py-sun
http://sunlightfoundation.com/api/
http://stefanw.github.io/froide/
http://blog.visual.ly/data-sources/
http://quant-econ.net/
http://www.python-for-finance.com/
https://www.quantopian.com/
http://gbeced.github.io/pyalgotrade/
http://www.quandl.com/

Ultra-finance
A real-time stock collection library.

Python for Finance (O’Reilly)
A book by Yves Hilpisch with Python examples for financial modeling.

Business Data Security
Security is a special concern for business. Entire books are devoted to this topic, so
we’ll just mention a few Python-related tips here.

• “Scapy” on page 295 discusses scapy, a Python-powered language for packet for‐
ensics. It has been used to explain some major network attacks.

• The Python Security site has discussions of security topics, details on some
Python modules, and cheat sheets.

• The book Violent Python (subtitled A Cookbook for Hackers, Forensic Analysts,
Penetration Testers and Security Engineers) by TJ O’Connor (Syngress) is an
extensive review of Python and computer security.

Maps
Maps have become valuable to many businesses. Python is very good at making
maps, so we’re going to spend a little more time in this area. Managers love graphics,
and if you can quickly whip up a nice map for your organization’s website it wouldn’t
hurt.

In the early days of the Web, I used to visit an experimental mapmaking website at
Xerox. When big sites such as Google Maps came along, they were a revelation (along
the lines of “why didn’t I think of that and make millions?”). Now mapping and
location-based services are everywhere, and are particularly useful in mobile devices.

Many terms overlap here: mapping, cartography, GIS (geographic information sys‐
tem), GPS (Global Positioning System), geospatial analysis, and many more. The blog
at Geospatial Python has an image of the “800-pound gorilla” systems—GDAL/OGR,
GEOS, and PROJ.4 (projections)--and surrounding systems, represented as monkeys.
Many of these have Python interfaces. Let’s talk about some of these, beginning with
the simplest formats.

Formats
The mapping world has lots of formats: vector (lines), raster (images), metadata
(words), and various combinations.

366 | Appendix B: Py at Work

https://code.google.com/p/ultra-finance/
http://bit.ly/python-finance
http://www.pythonsecurity.org/
http://bit.ly/violent-python
http://bit.ly/geospatial-py

Esri, a pioneer of geographic systems, invented the shapefile format over 20 years ago.
A shapefile actually consists of multiple files, including at the very least the following:

.shp

The “shape” (vector) information

.shx

The shape index

.dbf

An attribute database

Some useful Python shapefile modules include the following:

• pyshp is a pure-Python shapefile library.
• shapely addresses geometric questions such as, “What buildings in this town are

within the 50-year flood contour?”
• fiona wraps the OGR library, which handles shapefiles and other vector formats.
• kartograph renders shapefiles into SVG maps on the server or client.
• basemap plots 2-D data on maps, and uses matplotlib.
• cartopy uses matplotlib and shapely to draw maps.

Let’s grab a shapefile for our next example- visit the Natural Earth 1:110m Cultural
Vectors page. Under “Admin 1 - States and Provinces,” click the green download
states and provinces box to download a zip file. After it downloads to your computer,
unzip it; you should see these resulting files:

ne_110m_admin_1_states_provinces_shp.README.html
ne_110m_admin_1_states_provinces_shp.sbn
ne_110m_admin_1_states_provinces_shp.VERSION.txt
ne_110m_admin_1_states_provinces_shp.sbx
ne_110m_admin_1_states_provinces_shp.dbf
ne_110m_admin_1_states_provinces_shp.shp
ne_110m_admin_1_states_provinces_shp.prj
ne_110m_admin_1_states_provinces_shp.shx

We’ll use these for our examples.

Draw a Map
You’ll need this library to read a shapefile:

$ pip install pyshp

Now for the program, map1.py, which I’ve modified from a Geospatial Python blog
post:

Py at Work | 367

https://code.google.com/p/pyshp/
http://toblerity.org/shapely/
https://github.com/Toblerity/Fiona
http://kartograph.org/
http://matplotlib.org/basemap/
http://scitools.org.uk/cartopy/docs/latest/
http://bit.ly/cultural-vectors
http://bit.ly/cultural-vectors
http://bit.ly/dl-states
http://bit.ly/dl-states
http://bit.ly/raster-shape
http://bit.ly/raster-shape

def display_shapefile(name, iwidth=500, iheight=500):
 import shapefile
 from PIL import Image, ImageDraw
 r = shapefile.Reader(name)
 mleft, mbottom, mright, mtop = r.bbox
 # map units
 mwidth = mright - mleft
 mheight = mtop - mbottom
 # scale map units to image units
 hscale = iwidth/mwidth
 vscale = iheight/mheight
 img = Image.new("RGB", (iwidth, iheight), "white")
 draw = ImageDraw.Draw(img)
 for shape in r.shapes():
 pixels = [
 (int(iwidth - ((mright - x) * hscale)), int((mtop - y) * vscale))
 for x, y in shape.points]
 if shape.shapeType == shapefile.POLYGON:
 draw.polygon(pixels, outline='black')
 elif shape.shapeType == shapefile.POLYLINE:
 draw.line(pixels, fill='black')
 img.show()

if __name__ == '__main__':
 import sys
 display_shapefile(sys.argv[1], 700, 700)

This reads the shapefile and iterates through its individual shapes. I’m checking for
only two shape types: a polygon, which connects the last point to the first, and a poly‐
line, which doesn’t. I’ve based my logic on the original post and a quick look at the
documentation for pyshp, so I’m not really sure how it will work. Sometimes, we just
need to make a start and deal with any problems as we find them.

So, let’s run it. The argument is the base name of the shapefile files, without any
extension:

$ python map1.py ne_110m_admin_1_states_provinces_shp

You should see something like Figure B-1.

368 | Appendix B: Py at Work

Figure B-1. Preliminary map

Well, it drew a map that resembles the United States, but:

• It looks like a cat dragged yarn across Alaska and Hawaii; this is a bug.
• The country is squished; I need a projection.
• The picture isn’t pretty; I need better style control.

To address the first point: I have a problem somewhere in my logic, but what should I
do? Chapter 12 discusses development tips, including debugging, but we can consider
other options here. I could write some tests and bear down until I fix this, or I could

Py at Work | 369

just try some other mapping library. Maybe something at a higher level would solve
all three of my problems (the stray lines, squished appearance, and primitive style).

Here are some links to other Python mapping software:

basemap
Based on matplotlib, draws maps and data overlays

mapnik
A C++ library with Python bindings, for vector (line) and raster (image) maps

tilemill
A map design studio based on mapnik

Vincent
Translates to Vega, a JavaScript visualization tool; see the tutorial Mapping data
in Python with pandas and vincent

Python for ArcGIS
Links to Python resources for Esri’s commercial ArcGIS product

Spatial analysis with python
Links to tutorials, packages, and videos

Using geospatial data with python
Video presentations

So you’d like to make a map using Python
Uses pandas, matplotlib, shapely, and other Python modules to create maps of
historic plaque locations

Python Geospatial Development (Packt)
A book by Eric Westra with examples using mapnik and other tools

Learning Geospatial Analysis with Python (Packt)
Another book by Joel Lawhead reviewing formats and libraries, with geospatial
algorithms

These modules all make beautiful maps, but are harder to install and learn. Some
depend on other software you haven’t seen yet, such as numpy or pandas. Will the ben‐
efits outweigh the costs? As developers, we often need to make these trade-offs based
on incomplete information. If you’re interested in maps, try downloading and instal‐
ling one of these packages and see what you can do. Or, you can avoid installing soft‐
ware and try connecting to a remote web service API yourself; Chapter 9 shows you
how to connect to web servers and decode JSON responses.

370 | Appendix B: Py at Work

http://matplotlib.org/basemap/
http://mapnik.org/
https://www.mapbox.com/tilemill/
http://vincent.readthedocs.org/
http://wrobstory.github.io/2013/10/mapping-data-python.html
http://wrobstory.github.io/2013/10/mapping-data-python.html
http://bit.ly/py-arcgis
http://bit.ly/spacial-analysis
http://bit.ly/geos-py
http://bit.ly/pythonmap
http://bit.ly/py-geo-dev
http://bit.ly/learn-geo-py

Applications and Data
We’ve been talking about drawing maps, but you can do a lot more with map data.
Geocoding converts between addresses and geographic coordinates. There are many
geocoding APIs (see ProgrammableWeb’s comparison) and Python libraries: geopy,
pygeocoder, and googlemaps. If you sign up with Google or another source to get an
API key, you can access other services such as step-by-step travel directions or local
search.

Here are a few sources of mapping data:

http://www.census.gov/geo/maps-data/
Overview of the U.S. Census Bureau’s map files

http://www.census.gov/geo/maps-data/data/tiger.html
Heaps of geographic and demographic map data

http://wiki.openstreetmap.org/wiki/Potential_Datasources
Worldwide sources

http://www.naturalearthdata.com/
Vector and raster map data at three scales

We should mention the Data Science Toolkit here. It includes free bidirectional geo‐
coding, coordinates to political boundaries and statistics, and more. You can also
download all the data and software as a virtual machine (VM) and run it self-
contained on your own computer.

Py at Work | 371

http://www.programmableweb.com/apitag/geocoding
http://bit.ly/free-geo-api
https://code.google.com/p/geopy/
https://pypi.python.org/pypi/pygeocoder
http://py-googlemaps.sourceforge.net/
http://www.census.gov/geo/maps-data/
http://www.census.gov/geo/maps-data/data/tiger
http://wiki.openstreetmap.org/wiki/Potential_Datasources
http://www.naturalearthdata.com/
http://www.datasciencetoolkit.org/

APPENDIX C

Py Sci

In her reign the power of steam
On land and sea became supreme,

And all now have strong reliance
In fresh victories of science.

—James McIntyre, Queen’s Jubilee Ode
1887

In the past few years, largely because of the software you’ll see in this appendix,
Python has become extremely popular with scientists. If you’re a scientist or student
yourself, you might have used tools like MATLAB and R, or traditional languages
such as Java, C, or C++. In this appendix, you’ll see how Python makes an excellent
platform for scientific analysis and publishing.

Math and Statistics in the Standard Library
First, let’s take a little trip back to the standard library and visit some features and
modules that we’ve ignored.

Math Functions
Python has a menagerie of math functions in the standard math library. Just type
import math to access them from your programs.

It has a few constants such as pi and e:

>>> import math
>>> math.pi
>>> 3.141592653589793
>>> math.e
2.718281828459045

373

https://docs.python.org/3/library/math.html

Most of it consists of functions, so let’s look at the most useful ones.

fabs() returns the absolute value of its argument:

>>> math.fabs(98.6)
98.6
>>> math.fabs(-271.1)
271.1

Get the integer below (floor()) and above (ceil()) some number:

>>> math.floor(98.6)
98
>>> math.floor(-271.1)
-272
>>> math.ceil(98.6)
99
>>> math.ceil(-271.1)
-271

Calculate the factorial (in math, n !) by using factorial():

>>> math.factorial(0)
1
>>> math.factorial(1)
1
>>> math.factorial(2)
2
>>> math.factorial(3)
6
>>> math.factorial(10)
3628800

Get the logarithm of the argument in base e with log():

>>> math.log(1.0)
0.0
>>> math.log(math.e)
1.0

If you want a different base for the log, provide it as a second argument:

>>> math.log(8, 2)
3.0

The function pow() does the opposite, raising a number to a power:

>>> math.pow(2, 3)
8.0

Python also has the built-in exponentiation operator ** to do the same, but it doesn’t
automatically convert the result to a float if the base and power are both integers:

>>> 2**3
8

374 | Appendix C: Py Sci

>>> 2.0**3
8.0

Get a square root with sqrt():

>>> math.sqrt(100.0)
10.0

Don’t try to trick this function; it’s seen it all before:

>>> math.sqrt(-100.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: math domain error

The usual trigonometric functions are all there, and I’ll just list their names here:
sin(), cos(), tan(), asin(), acos(), atan(), and atan2(). If you remember the
Pythagorean theorem (or can say it fast three times without spitting), the math
library also has a hypot() function to calculate the hypotenuse from two sides:

>>> x = 3.0
>>> y = 4.0
>>> math.hypot(x, y)
5.0

If you don’t trust all these fancy functions, you can work it out yourself:

>>> math.sqrt(x*x + y*y)
5.0
>>> math.sqrt(x**2 + y**2)
5.0

A last set of functions converts angular coordinates:

>>> math.radians(180.0)
3.141592653589793
>>> math.degrees(math.pi)
180.0

Working with Complex Numbers
Complex numbers are fully supported in the base Python language, with their famil‐
iar notation of real and imaginary parts:

>>> # a real number
... 5
5
>>> # an imaginary number
... 8j
8j
>>> # an imaginary number
... 3 + 2j
(3+2j)

Py Sci | 375

Because the imaginary number i (1j in Python) is defined as the square root of –1,
we can execute the following:

>>> 1j * 1j
(-1+0j)
>>> (7 + 1j) * 1j
(-1+7j)

Some complex math functions are in the standard cmath module.

Calculate Accurate Floating Point with decimal
Floating-point numbers in computers are not quite like the real numbers we learned
in school. Because computer CPUs are designed for binary math, numbers that aren’t
exact powers of two often can’t be represented exactly:

>>> x = 10.0 / 3.0
>>> x
3.3333333333333335

Whoa, what’s that 5 at the end? It should be 3 all the way down. With Python’s deci
mal module, you can represent numbers to your desired level of significance. This is
especially important for calculations involving money. US currency doesn’t go lower
than a cent (a hundredth of a dollar), so if we’re calculating money amounts as dollars
and cents, we want to be accurate to the penny. If we try to represent dollars and cents
through floating-point values such as 19.99 and 0.06, we’ll lose some significance way
down in the end bits before we even begin calculating with them. How do we handle
this? Easy. We use the decimal module, instead:

>>> from decimal import Decimal
>>> price = Decimal('19.99')
>>> tax = Decimal('0.06')
>>> total = price + (price * tax)
>>> total
Decimal('21.1894')

We created the price and tax with string values to preserve their significance. The
total calculation maintained all the significant fractions of a cent, but we want to get
the nearest cent:

>>> penny = Decimal('0.01')
>>> total.quantize(penny)
Decimal('21.19')

You might get the same results with plain old floats and rounding, but not always.
You could also multiply everything by 100 and use integer cents in your calculations,
but that will bite you eventually, too. There’s a nice discussion of these issues at
www.itmaybeahack.com.

376 | Appendix C: Py Sci

http://docs.python.org/3/library/cmath.html
http://docs.python.org/3/library/decimal.html
http://docs.python.org/3/library/decimal.html
http://bit.ly/fixed-point-num

Perform Rational Arithmetic with fractions
You can represent numbers as a numerator divided by a denominator through the
standard Python fractions module. Here is a simple operation multiplying one-
third by two-thirds:

>>> from fractions import Fraction
>>> Fraction(1, 3) * Fraction(2, 3)
Fraction(2, 9)

Floating-point arguments can be inexact, so you can use Decimal within Fraction:

>>> Fraction(1.0/3.0)
Fraction(6004799503160661, 18014398509481984)
>>> Fraction(Decimal('1.0')/Decimal('3.0'))
Fraction(3333333333333333333333333333, 10000000000000000000000000000)

Get the greatest common divisor of two numbers with the gcd function:

>>> import fractions
>>> fractions.gcd(24, 16)
8

Use Packed Sequences with array
A Python list is more like a linked list than an array. If you want a one-dimensional
sequence of the same type, use the array type. It uses less space than a list and sup‐
ports many list methods. Create one with array(typecode , initializer). The
typecode specifies the data type (like int or float) and the optional initializer
contains initial values, which you can specify as a list, string, or iterable.

I’ve never used this package for real work. It’s a low-level data structure, useful for
things such as image data. If you actually need an array—especially with more then
one dimension—to do numeric calculations, you’re much better off with NumPy,
which we’ll discuss momentarily.

Handling Simple Stats by Using statistics
Beginning with Python 3.4, statistics is a standard module. It has the usual func‐
tions: mean, media, mode, standard deviation, variance, and so on. Input arguments
are sequences (lists or tuples) or iterators of various numeric data types: int, float,
decimal, and fraction. One function, mode, also accepts strings. Many more statistical
functions are available in packages such as SciPy and Pandas, featured later in this
appendix.

Py Sci | 377

http://docs.python.org/3/library/fractions.html
http://docs.python.org/3/library/array.html
http://docs.python.org/3.4/library/statistics.html

Matrix Multiplication
Starting with Python 3.5, you’ll see the @ character doing something out of character.
It will still be used for decorators, but it will also have a new use for matrix multiplica‐
tion. However, until it arrives, NumPy (coming right up) is your best bet.

Scientific Python
The rest of this appendix covers third-party Python packages for science and math.
Although you can install them individually, you should consider downloading all of
them at once as part of a scientific Python distribution. Here are your main choices:

Anaconda
This package is free, extensive, up-to-the-minute, supports Python 2 and 3, and
won’t clobber your existing system Python.

Enthought Canopy
This package is available in both free and commercial versions.

Python(x,y)
This is a Windows-only release.

Pyzo
This package is based on some tools from Anaconda, plus a few others.

ALGORETE Loopy
This is also based on Anaconda, with extras.

I recommend installing Anaconda. It’s big, but everything in this appendix is in there.
See Appendix D for details on using Python 3 with Anaconda. The examples in the
rest of this appendix will assume that you’ve installed the required packages, either
individually or as part of Anaconda.

NumPy
NumPy is one of the main reasons for Python’s popularity among scientists. You’ve
heard that dynamic languages such as Python are often slower than compiled lan‐
guages like C, or even other interpreted languages such as Java. NumPy was written
to provide fast multidimensional numeric arrays, similar to scientific languages like
FORTRAN. You get the speed of C with the developer-friendliness of Python.

If you’ve downloaded one of the scientific distributions, you already have NumPy. If
not, follow the instructions on the NumPy download page.

To begin with NumPy, you should understand a core data structure, a multidimen‐
sional array called an ndarray (for N-dimensional array) or just an array. Unlike

378 | Appendix C: Py Sci

http://legacy.python.org/dev/peps/pep-0465/
http://legacy.python.org/dev/peps/pep-0465/
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
https://code.google.com/p/pythonxy/
http://www.pyzo.org/
http://algorete.org/
http://www.numpy.org/
http://www.scipy.org/scipylib/download.html

Python’s lists and tuples, each element needs to be of the same type. NumPy refers to
an array’s number of dimensions as its rank. A one-dimensional array is like a row of
values, a two-dimensional array is like a table of rows and columns, and a three-
dimensional array is like a Rubik’s Cube. The lengths of the dimensions need not be
the same.

The NumPy array and the standard Python array are not the
same thing. For the rest of this appendix, when I say array, I’m
referring to a NumPy array.

But why do you need an array?

• Scientific data often consists of large sequences of data.
• Scientific calculations on this data often use matrix math, regression, simulation,

and other techniques that process many data points at a time.
• NumPy handles arrays much faster than standard Python lists or tuples.

There are many ways to make a NumPy array.

Make an Array with array()
You can make an array from a normal list or tuple:

>>> b = np.array([2, 4, 6, 8])
>>> b
array([2, 4, 6, 8])

The attribute ndim returns the rank:

>>> b.ndim
1

The total number of values in the array are given by size:

>>> b.size
4

The number of values in each rank are returned by shape:

>>> b.shape
(4,)

Make an Array with arange()
NumPy’s arange() method is similar to Python’s standard range(). If you call
arange() with a single integer argument num, it returns an ndarray from 0 to num-1:

Py Sci | 379

>>> import numpy as np
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a.ndim
1
>>> a.shape
(10,)
>>> a.size
10

With two values, it creates an array from the first to the last minus one:

>>> a = np.arange(7, 11)
>>> a
array([7, 8, 9, 10])

And you can provide a step size to use instead of one as a third argument:

>>> a = np.arange(7, 11, 2)
>>> a
array([7, 9])

So far, our examples have used integers, but floats work just fine:

>>> f = np.arange(2.0, 9.8, 0.3)
>>> f
array([2. , 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 4.4, 4.7, 5. ,
 5.3, 5.6, 5.9, 6.2, 6.5, 6.8, 7.1, 7.4, 7.7, 8. , 8.3,
 8.6, 8.9, 9.2, 9.5, 9.8])

And one last trick: the dtype argument tells arange what type of values to produce:

>>> g = np.arange(10, 4, -1.5, dtype=np.float)
>>> g
array([10. , 8.5, 7. , 5.5])

Make an Array with zeros(), ones(), or random()
The zeros() method returns an array in which all the values are zero. The argument
you provide is a tuple with the shape that you want. Here’s a one-dimensional array:

>>> a = np.zeros((3,))
>>> a
array([0., 0., 0.])
>>> a.ndim
1
>>> a.shape
(3,)
>>> a.size
3

This one is of rank two:

380 | Appendix C: Py Sci

>>> b = np.zeros((2, 4))
>>> b
array([[0., 0., 0., 0.],
 [0., 0., 0., 0.]])
>>> b.ndim
2
>>> b.shape
(2, 4)
>>> b.size
8

The other special function that fills an array with the same value is ones():

>>> import numpy as np
>>> k = np.ones((3, 5))
>>> k
array([[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]])

One last initializer creates an array with random values between 0.0 and 1.0:

>>> m = np.random.random((3, 5))
>>> m
array([[1.92415699e-01, 4.43131404e-01, 7.99226773e-01,
 1.14301942e-01, 2.85383430e-04],
 [6.53705749e-01, 7.48034559e-01, 4.49463241e-01,
 4.87906915e-01, 9.34341118e-01],
 [9.47575562e-01, 2.21152583e-01, 2.49031209e-01,
 3.46190961e-01, 8.94842676e-01]])

Change an Array’s Shape with reshape()
So far, an array doesn’t seem that different from a list or tuple. One difference is that
you can get it to do tricks, such as change its shape by using reshape():

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a = a.reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])
>>> a.ndim
2
>>> a.shape
(2, 5)
>>> a.size
10

You can reshape the same array in different ways:

>>> a = a.reshape(5, 2)
>>> a

Py Sci | 381

array([[0, 1],
 [2, 3],
 [4, 5],
 [6, 7],
 [8, 9]])
>>> a.ndim
2
>>> a.shape
(5, 2)
>>> a.size
10

Assigning a shapely tuple to shape does the same thing:

>>> a.shape = (2, 5)
>>> a
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])

The only restriction on a shape is that the product of the rank sizes needs to equal the
total number of values (in this case, 10):

>>> a = a.reshape(3, 4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

Get an Element with []
A one-dimensional array works like a list:

>>> a = np.arange(10)
>>> a[7]
7
>>> a[-1]
9

However, if the array has a different shape, use comma-separated indices:

>>> a.shape = (2, 5)
>>> a
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])
>>> a[1,2]
7

That’s different from a two-dimensional Python list:

>>> l = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
>>> l
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
>>> l[1,2]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

382 | Appendix C: Py Sci

TypeError: list indices must be integers, not tuple
>>> l[1][2]
7

One last thing: slices work, but again, only within one set of square brackets. Let’s
make our familiar test array again:

>>> a = np.arange(10)
>>> a = a.reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])

Use a slice to get the first row, elements from offset 2 to the end:

>>> a[0, 2:]
array([2, 3, 4])

Now, get the last row, elements up to the third from the end:

>>> a[-1, :3]
array([5, 6, 7])

You can also assign a value to more than one element with a slice. The following
statement assigns the value 1000 to columns (offsets) 2 and 3 of all rows:

>>> a[:, 2:4] = 1000
>>> a
array([[0, 1, 1000, 1000, 4],
 [5, 6, 1000, 1000, 9]])

Array Math
Making and reshaping arrays was so much fun that we almost forgot to actually do
something with them. For our first trick, we’ll use NumPy’s redefined multiplication
(*) operator to multiply all the values in a NumPy array at once:

>>> from numpy import *
>>> a = arange(4)
>>> a
array([0, 1, 2, 3])
>>> a *= 3
>>> a
array([0, 3, 6, 9])

If you tried to multiply each element in a normal Python list by a number, you’d need
a loop or a list comprehension:

>>> plain_list = list(range(4))
>>> plain_list
[0, 1, 2, 3]
>>> plain_list = [num * 3 for num in plain_list]
>>> plain_list
[0, 3, 6, 9]

Py Sci | 383

This all-at-once behavior also applies to addition, subtraction, division, and other
functions in the NumPy library. For example, you can initialize all members of an
array to any value by using zeros() and +:

>>> from numpy import *
>>> a = zeros((2, 5)) + 17.0
>>> a
array([[17., 17., 17., 17., 17.],
 [17., 17., 17., 17., 17.]])

Linear Algebra
NumPy includes many functions for linear algebra. For example, let’s define this sys‐
tem of linear equations:

4x + 5y = 20
 x + 2y = 13

How do we solve for x and y? We’ll build two arrays:

• The coefficients (multipliers for x and y)
• The dependent variables (right side of the equation)

>>> import numpy as np
>>> coefficients = np.array([[4, 5], [1, 2]])
>>> dependents = np.array([20, 13])

Now, use the solve() function in the linalg module:

>>> answers = np.linalg.solve(coefficients, dependents)
>>> answers
array([-8.33333333, 10.66666667])

The result says that x is about –8.3 and y is about 10.6. Did these numbers solve the
equation?

>>> 4 * answers[0] + 5 * answers[1]
20.0
>>> 1 * answers[0] + 2 * answers[1]
13.0

How about that. To avoid all that typing, you can also ask NumPy to get the dot prod‐
uct of the arrays for you:

>>> product = np.dot(coefficients, answers)
>>> product
array([20., 13.])

384 | Appendix C: Py Sci

The values in the product array should be close to the values in dependents if this
solution is correct. You can use the allclose() function to check whether the arrays
are approximately equal (they might not be exactly equal because of floating-point
rounding):

>>> np.allclose(product, dependents)
True

NumPy also has modules for polynomials, Fourier transforms, statistics, and some
probability distributions.

The SciPy Library
There’s even more in a library of mathematical and statistical functions built on top of
NumPy: SciPy. The SciPy release includes NumPy, SciPy, Pandas (coming later in this
appendix), and other libraries.

SciPy includes many modules, including some for the following tasks:

• Optimization
• Statistics
• Interpolation
• Linear regression
• Integration
• Image processing
• Signal processing

If you’ve worked with other scientific computing tools, you’ll find that Python,
NumPy, and SciPy cover some of the same ground as the commercial MATLAB or
open source R.

The SciKit Library
In the same pattern of building on earlier software, SciKit is a group of scientific
packages built on SciPy. SciKit’s specialty is machine learning: it supports modeling,
classification, clustering, and various algorithms.

Py Sci | 385

http://www.scipy.org/
http://www.scipy.org/scipylib/download.html
http://www.mathworks.com/products/matlab/
http://www.r-project.org/
https://scikits.appspot.com/scikits

The IPython Library
IPython is worth your time for many reasons. Here are some of them:

• An improved interactive interpreter (an alternative to the >>> examples that
we’ve used throughout this book)

• Publishing code, plots, text, and other media in web-based notebooks
• Support for parallel computing

Let’s look at the interpreter and notebooks.

A Better Interpreter
IPython has different versions for Python 2 and 3, and both are installed by Ana‐
conda or other modern scientific Python releases. Use ipython3 for the Python 3 ver‐
sion.

$ ipython3
Python 3.3.3 (v3.3.3:c3896275c0f6, Nov 16 2013, 23:39:35)
Type "copyright", "credits" or "license" for more information.

IPython 0.13.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]:

The standard Python interpreter uses the input prompts >>> and ... to indicate
where and when you should type code. IPython tracks everything you type in a list
called In, and all your output in Out. Each input can be more than one line, so you
submit it by holding the Shift key while pressing Enter. Here’s a one-line example:

In [1]: print("Hello? World?")
Hello? World?

In [2]:

In and Out are automatically numbered lists, letting you access any of the inputs you
typed or outputs you received.

If you type ? after a variable, IPython tells you its type, value, ways of making a vari‐
able of that type, and some explanation:

In [4]: answer = 42

In [5]: answer?

386 | Appendix C: Py Sci

http://ipython.org/
http://bit.ly/parallel-comp

Type: int
String Form:42
Docstring:
int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
4

Name lookup is a popular feature of IDEs such as IPython. If you press the Tab key
right after some characters, IPython shows all variables, keywords, and functions that
begin with those characters. Let’s define some variables and then find everything that
begins with the letter f:

In [6]: fee = 1

In [7]: fie = 2

In [8]: fo = 3

In [9]: fum = 4

In [10]: ftab
%%file fie finally fo format frozenset
fee filter float for from fum

If you type fe followed by the Tab key, it expands to the variable fee, which, in this
program, is the only thing that starts with fe:

In [11]: fee
Out[11]: 1

IPython Notebook
If you prefer graphical interfaces, you might enjoy IPython’s web-based implementa‐
tion. You start from the Anaconda launcher window (Figure C-1).

Py Sci | 387

Figure C-1. The Anaconda home page

To launch the notebook in a web browser, click the “launch” icon to the right of
“ipython-notebook.” Figure C-2 shows the initial display.

Figure C-2. The iPython home page

Now, click the New Notebook button. A window similar to Figure C-3 opens.

388 | Appendix C: Py Sci

Figure C-3. The iPython Notebook page

For a graphical version of our previous text-based example, type the same command
that we used in the previous section, as shown in Figure C-4.

Figure C-4. Entering code in iPython

Click the solid black triangle icon to run it. The result is depicted in Figure C-5.

Figure C-5. Running code in iPython

The notebook is more than just a graphical version of an improved interpreter.
Besides code, it can contain text, images, and formatted mathematical expressions.

In the row of icons at the top of the notebook, there’s a pull-down menu (Figure C-6)
that specifies how you can enter content. Here are the choices:

Code
The default, for Python code

Markdown
An alternative to HTML that serves as readable text and a preprocessor format

Py Sci | 389

Raw Text
Unformatted text Heading 1 through Heading 6: HTML <H1> through <H6>
heading tags

Figure C-6. Menu of content choices

Let’s intersperse some text with our code, making it sort of a wiki. Select Heading 1
from the pull-down menu, type “Humble Brag Example,” and then hold the Shift key
while pressing the Enter key. You should see those three words in a large bold font.
Then, select Code from the pull-down menu and type some code like this:

print("Some people say this code is ingenious")

Again, press Shift + Enter to complete this entry. You should now see your formatted
title and code, as shown in Figure C-7.

Figure C-7. Formatted text and code

By interspersing code input, output results, text, and even images, you can create an
interactive notebook. Because it’s served over the Web, you can access it from any
browser.

You can see some notebooks converted to static HTML or in a gallery. For a specific
example, try the notebook about the passengers on the Titanic. It includes charts
showing how gender, wealth, and position on the ship affected survival. As a bonus,
you can read how to apply different machine learning techniques.

390 | Appendix C: Py Sci

http://nbviewer.ipython.org
http://bit.ly/ipy-notebooks
http://bit.ly/titanic-noteb

Scientists are starting to use IPython notebooks to publish their research, including
all the code and data used to reach their conclusions.

Pandas
Recently, the phrase data science has become common. Some definitions that I’ve
seen include “statistics done on a Mac,” or “statistics done in San Francisco.” However
you define it, the tools we’ve talked about in this chapter—NumPy, SciPy, and the
subject of this section, Pandas—are components of a growing popular data-science
toolkit. (Mac and San Francisco are optional.)

Pandas is a new package for interactive data analysis. It’s especially useful for real
world data manipulation, combining the matrix math of NumPy with the processing
ability of spreadsheets and relational databases. The book Python for Data Analysis:
Data Wrangling with Pandas, NumPy, and IPython by Wes McKinney (O’Reilly) cov‐
ers data wrangling with NumPy, IPython, and Pandas.

NumPy is oriented toward traditional scientific computing, which tends to manipu‐
late multidimensional data sets of a single type, usually floating point. Pandas is more
like a database editor, handling multiple data types in groups. In some languages,
such groups are called records or structures. Pandas defines a base data structure
called a DataFrame. This is an ordered collection of columns with names and types. It
has some resemblance to a database table, a Python named tuple, and a Python nes‐
ted dictionary. Its purpose is to simplify the handling of the kind of data you’re likely
to encounter not just in science, but also in business. In fact, Pandas was originally
designed to manipulate financial data, for which the most common alternative is a
spreadsheet.

Pandas is an ETL tool for real world, messy data—missing values, oddball formats,
scattered measurements—of all data types. You can split, join, extend, fill in, convert,
reshape, slice, and load and save files. It integrates with the tools we’ve just discussed
—NumPy, SciPy, iPython—to calculate statistics, fit data to models, draw plots, pub‐
lish, and so on.

Most scientists just want to get their work done, without spending months to become
experts in esoteric computer languages or applications. With Python, they can
become productive more quickly.

Python and Scientific Areas
We’ve been looking at Python tools that could be used in almost any area of science.
What about software and documentation targeted to specific scientific domains?
Here’s a small sample of Python’s use for specific problems, and some special-purpose
libraries:

Py Sci | 391

http://pandas.pydata.org/
http://bit.ly/python_for_data_analysis
http://bit.ly/python_for_data_analysis

General
• Python computations in science and engineering
• A crash course in Python for scientists

Physics
• Computational physics

Biology and medicine
• Python for biologists
• Neuroimaging in Python

International conferences on Python and scientific data include the following:

• PyData
• SciPy
• EuroSciPy

392 | Appendix C: Py Sci

http://bit.ly/py-comp-sci
http://bit.ly/pyforsci
http://bit.ly/comp-phys-py
http://pythonforbiologists.com/
http://nipy.org/
http://pydata.org
http://conference.scipy.org/
https://www.euroscipy.org/

APPENDIX D

Install Python 3

By the time Python 3 is preinstalled on every machine, toasters will be replaced by 3-
D printers that crank out daily doughnuts with sprinkles. Windows doesn’t have
Python at all, and OS X, Linux, and Unix tend to have old versions. Until they catch
up, you’ll probably need to install Python 3 yourself.

The following sections describe how to carry out these tasks:

• Find out what version of Python you have on your computer, if any
• Install the standard distribution of Python 3, if you don’t have it
• Install the Anaconda distribution of scientific Python modules
• Install pip and virtualenv, if you can’t modify your system
• Install conda as an alternative to pip

Most of the examples in this book were written and tested with Python 3.3, the most
recent stable version at the time of writing. Some used 3.4, which was released during
the editing process. The What’s New in Python page presents what was added in each
version. There are many sources of Python and many ways to install a new version. In
this appendix, I’ll describe two of these ways:

• If you just want the standard interpreter and libraries, I recommend going to the
official language site.

• If you would like Python together with the standard library, and the great scien‐
tific libraries described in Appendix C, use Anaconda.

393

https://docs.python.org/3/whatsnew/
http://www.python.org

Install Standard Python
Go to the Python download page with your web browser. It tries to guess your operat‐
ing system and present the appropriate choices, but if it guesses wrong, you can use
these:

• Python Releases for Windows
• Python Releases for Mac OS X
• Python Source Releases (Linux and Unix)

You’ll see a page similar to that shown in Figure D-1.

Figure D-1. Sample download page

394 | Appendix D: Install Python 3

http://www.python.org/download/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/source/

Click the Download link for the most recent version. In our case, that’s 3.4.1. This
takes you to an information page like the one shown in Figure D-2.

Figure D-2. Detail page for download

You need to scroll down the page to see the actual download link (Figure D-3).

Install Python 3 | 395

Figure D-3. Bottom of page offering download

Click the download link to get to the actual release-specific page (Figure D-4).

396 | Appendix D: Install Python 3

Figure D-4. Files to download

Now, click the correct version for your computer.

Mac OS X
Click the Mac OS X 64-bit/32-bit installer link to download a Mac .dmg file. Double-
click it after the download completes. A window with four icons opens. Right-click
Python.mpkg and then, in the dialog box that opens, click Open. Click the Continue
button three times or so to step through the legalese, and then, when the appropriate
dialog box opens, click Install. Python 3 will be installed as /usr/local/bin/python3,
leaving any existing Python 2 on your computer unchanged.

Install Python 3 | 397

http://bit.ly/macosx-64

Windows
For Windows, download one of these:

• Windows x86 MSI installer (32-bit)
• Windows x86-64 MSI installer (64-bit)

To determine whether you have a 32-bit or 64-bit version of Windows, do the follow‐
ing:

1. Click the Start button.
2. Right-click Computer.
3. Click Properties and find the bit value.

Click the appropriate installer (.msi file). After it’s downloaded, double-click it and
follow the installer directions.

Linux or Unix
Linux and Unix users get a choice of compressed source formats:

• XZ compressed source tarball
• Gzipped source tarball

Download either one. Decompress it by using tar xJ (.xz file) or tar xz (.tgz file)
and then run the resulting shell script.

Install Anaconda
Anaconda is an all-in-one installer with an emphasis on science: it includes Python,
the standard library, and many useful third-party libraries. Until recently, it included
Python 2 as its standard interpreter, although there was a workaround to install
Python 3.

The new upgrade, Anaconda 2.0, installs the latest version of Python and its standard
library (3.4 when this was written). Other goodies include libraries that we’ve talked
about in this book: beautifulsoup4, flask, ipython, matplotlib, nose, numpy,
pandas, pillow, pip, scipy, tables, zmq, and many others. It includes a cross-
platform installation program called conda that improves on pip; we’ll talk about that
shortly.

398 | Appendix D: Install Python 3

http://bit.ly/win-x86
http://bit.ly/win-x86-64
http://bit.ly/xz-tarball
http://bit.ly/gzip-tarball

To install Anaconda 2, go to the download page for the Python 3 versions. Click the
appropriate link for your platform (version numbers might have changed since this
was written, but you can figure it out):

• To download for the Mac, click Anaconda3-2.0.0-MacOSX-x86_64.pkg. Double-
click the file when it’s done downloading, and then follow the usual steps for
installing Mac software. It will install everything to the anaconda directory under
your home directory.

• For Windows, click the 32-bit version or 64-bit version. Double-click the .exe file
after it downloads.

• For Linux, click the 32-bit version or 64-bit version. When it has downloaded,
execute it (it’s a big shell script).

Ensure that the name of the file you download starts with Ana‐
conda3. If it starts with just Anaconda, that’s the Python 2 version.

Anaconda installs everything to its own directory (anaconda under your home direc‐
tory). This means that it won’t interfere with any versions of Python that might
already be on your computer. It also means that you don’t need any special permis‐
sion (names like admin or root) to install it either.

To see what packages are included, visit the Anaconda docs page and then, in the box
at the top of the page, click “Python version: 3.4.” It listed 141 packages when I last
looked.

After installing Anaconda 2, you can see what Santa put on your computer by typing
this command:

$./conda list

packages in environment at /Users/williamlubanovic/anaconda:
#
anaconda 2.0.0 np18py34_0
argcomplete 0.6.7 py34_0
astropy 0.3.2 np18py34_0
backports.ssl-match-hostname 3.4.0.2 <pip>
beautiful-soup 4.3.1 py34_0
beautifulsoup4 4.3.1 <pip>
binstar 0.5.3 py34_0
bitarray 0.8.1 py34_0
blaze 0.5.0 np18py34_0
blz 0.6.2 np18py34_0
bokeh 0.4.4 np18py34_1
cdecimal 2.3 py34_0

Install Python 3 | 399

https://www.continuum.io/downloads
http://bit.ly/ana-3-2
http://bit.ly/win-32b
http://bit.ly/win-64b
http://bit.ly/linux-32
http://bit.ly/linux-64
http://docs.continuum.io/anaconda/pkg-docs.html

colorama 0.2.7 py34_0
conda 3.5.2 py34_0
conda-build 1.3.3 py34_0
configobj 5.0.5 py34_0
curl 7.30.0 2
cython 0.20.1 py34_0
datashape 0.2.0 np18py34_1
dateutil 2.1 py34_2
docutils 0.11 py34_0
dynd-python 0.6.2 np18py34_0
flask 0.10.1 py34_1
freetype 2.4.10 1
future 0.12.1 py34_0
greenlet 0.4.2 py34_0
h5py 2.3.0 np18py34_0
hdf5 1.8.9 2
ipython 2.1.0 py34_0
ipython-notebook 2.1.0 py34_0
ipython-qtconsole 2.1.0 py34_0
itsdangerous 0.24 py34_0
jdcal 1.0 py34_0
jinja2 2.7.2 py34_0
jpeg 8d 1
libdynd 0.6.2 0
libpng 1.5.13 1
libsodium 0.4.5 0
libtiff 4.0.2 0
libxml2 2.9.0 1
libxslt 1.1.28 2
llvm 3.3 0
llvmpy 0.12.4 py34_0
lxml 3.3.5 py34_0
markupsafe 0.18 py34_0
matplotlib 1.3.1 np18py34_1
mock 1.0.1 py34_0
multipledispatch 0.4.3 py34_0
networkx 1.8.1 py34_0
nose 1.3.3 py34_0
numba 0.13.1 np18py34_0
numexpr 2.3.1 np18py34_0
numpy 1.8.1 py34_0
openpyxl 2.0.2 py34_0
openssl 1.0.1g 0
pandas 0.13.1 np18py34_0
patsy 0.2.1 np18py34_0
pillow 2.4.0 py34_0
pip 1.5.6 py34_0
ply 3.4 py34_0
psutil 2.1.1 py34_0
py 1.4.20 py34_0
pycosat 0.6.1 py34_0
pycparser 2.10 py34_0

400 | Appendix D: Install Python 3

pycrypto 2.6.1 py34_0
pyflakes 0.8.1 py34_0
pygments 1.6 py34_0
pyparsing 2.0.1 py34_0
pyqt 4.10.4 py34_0
pytables 3.1.1 np18py34_0
pytest 2.5.2 py34_0
python 3.4.1 0
python-dateutil 2.1 <pip>
python.app 1.2 py34_2
pytz 2014.3 py34_0
pyyaml 3.11 py34_0
pyzmq 14.3.0 py34_0
qt 4.8.5 3
readline 6.2 2
redis 2.6.9 0
redis-py 2.9.1 py34_0
requests 2.3.0 py34_0
rope 0.9.4 py34_1
rope-py3k 0.9.4 <pip>
runipy 0.1.0 py34_0
scikit-image 0.9.3 np18py34_0
scipy 0.14.0 np18py34_0
setuptools 3.6 py34_0
sip 4.15.5 py34_0
six 1.6.1 py34_0
sphinx 1.2.2 py34_0
spyder 2.3.0rc1 py34_0
spyder-app 2.3.0rc1 py34_0
sqlalchemy 0.9.4 py34_0
sqlite 3.8.4.1 0
ssl_match_hostname 3.4.0.2 py34_0
sympy 0.7.5 py34_0
tables 3.1.1 <pip>
tk 8.5.15 0
tornado 3.2.1 py34_0
ujson 1.33 py34_0
werkzeug 0.9.4 py34_0
xlrd 0.9.3 py34_0
xlsxwriter 0.5.5 py34_0
yaml 0.1.4 1
zeromq 4.0.4 0
zlib 1.2.7 1

Install and Use pip and virtualenv
The pip package is the most popular way to install third-party (nonstandard) Python
packages. It has been annoying that such a useful tool isn’t part of standard Python,
and that you’ve needed to download and install it yourself. As a friend of mine used

Install Python 3 | 401

to say, it’s a cruel hazing ritual. The good news is that pip is a standard part of
Python, starting with the 3.4 release.

Often used with pip, the virtualenv program is a way to install Python packages in a
specified directory (folder) to avoid interactions with any preexisting system Python
packages. This lets you use whatever Python goodies you want, even if you don’t have
permission to change the existing installation.

If you have Python 3 but only the Python 2 version of pip, here’s how to get the
Python 3 version on Linux or OS X:

$ curl -O http://python-distribute.org/distribute_setup.py
$ sudo python3 distribute_setup.py
$ curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
$ sudo python3 get-pip.py

This installs pip-3.3 in the bin directory of your Python 3 installation. Then, use
pip-3.3 to install third-party Python packages rather than Python 2’s pip.

Some good guides to pip and virtualenv are:

• A non-magical introduction to Pip and Virtualenv for Python beginners
• The hitchhiker’s guide to packaging: pip

Install and Use conda
Until recently, pip always downloaded source files rather than binaries. This can be a
problem with Python modules that are built on C libraries. Recently, the Anaconda
developers built conda to address the problems they’ve seen with pip and other tools.
pip is a Python package manager, but conda works with any software and language.
conda also avoids the need for something like virtualenv to keep installations from
stepping on one another.

If you installed the Anaconda distribution, you already have the conda program. If
not, you can get Python 3 and conda from the miniconda page. As with Anaconda,
make sure the file you download starts with Miniconda3; if it starts with Miniconda
alone, it’s the Python 2 version.

conda works with pip. Although it has its own public package repository, commands
like conda search will also search the PyPi repository. If you have problems with
pip, conda might be a good alternative.

402 | Appendix D: Install Python 3

http://bit.ly/jm-pip-vlenv
http://bit.ly/hhgp-pip
http://www.continuum.io/blog/conda
http://conda.pydata.org/miniconda.html
http://binstar.org
http://pypi.python.org

APPENDIX E

Answers to Exercises

Chapter 1, A Taste of Py
1.1 If you don’t already have Python 3 installed on your computer, do it now. Read
Appendix D for the details for your computer system.

1.2 Start the Python 3 interactive interpreter. Again, details are in Appendix D. It should
print a few lines about itself and then a single line starting with >>>. That’s your prompt
to type Python commands.

Here’s what it looks like on my MacBook Pro:

$ python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 01:25:11)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

1.3 Play with the interpreter a little. Use it like a calculator and type this: 8 * 9. Press
the Enter key to see the result. Python should print 72.

>>> 8 * 9
72

1.4 Type the number 47 and press the Enter key. Did it print 47 for you on the next line?
>>> 47
47

1.5 Now type print(47) and press Enter. Did that also print 47 for you on the next line?
>>> print(47)
47

403

Chapter 2, Py Ingredients: Numbers, Strings,
and Variables
2.1 How many seconds are in an hour? Use the interactive interpreter as a calculator
and multiply the number of seconds in a minute (60) by the number of minutes in an
hour (also 60).

>>> 60 * 60
3600

2.2 Assign the result from the previous task (seconds in an hour) to a variable called
seconds_per_hour.

>>> seconds_per_hour = 60 * 60
>>> seconds_per_hour
3600

2.3 How many seconds are in a day? Use your seconds_per_hour variable.
>>> seconds_per_hour * 24
86400

2.4 Calculate seconds per day again, but this time save the result in a variable called
seconds_per_day.

>>> seconds_per_day = seconds_per_hour * 24
>>> seconds_per_day
86400

2.5 Divide seconds_per_day by seconds_per_hour. Use floating-point (/) division.
>>> seconds_per_day / seconds_per_hour
24.0

2.6 Divide seconds_per_day by seconds_per_hour, using integer (//) division. Did
this number agree with the floating-point value from the previous question, aside from
the final `.0`?

>>> seconds_per_day // seconds_per_hour
24

Chapter 3, Py Filling: Lists, Tuples, Dictionaries, and Sets
3.1 Create a list called years_list, starting with the year of your birth, and each year
thereafter until the year of your fifth birthday. For example, if you were born in 1980,
the list would be years_list = [1980, 1981, 1982, 1983, 1984, 1985].

If you were born in 1980, you would type:

>>> years_list = [1980, 1981, 1982, 1983, 1984, 1985]

404 | Appendix E: Answers to Exercises

3.2 In which of these years was your third birthday? Remember, you were 0 years of age
for your first year.

You want offset 3. Thus, if you were born in 1980:

>>> years_list[3]
1983

3.3 In which year in years_list were you the oldest?

You want the last year, so use offset -1. You could also say 5 because you know this list
has six items, but -1 gets the last item from a list of any size. For a 1980-vintage per‐
son:

>>> years_list[-1]
1985

3.4. Make and print a list called things with these three strings as elements:
"mozzarella", "cinderella", "salmonella".

>>> things = ["mozzarella", "cinderella", "salmonella"]
>>> things
['mozzarella', 'cinderella', 'salmonella']

3.5. Capitalize the element in things that refers to a person and then print the list. Did
it change the element in the list?

This capitalizes the word, but doesn’t change it in the list:

>>> things[1].capitalize()
'Cinderella'
>>> things
['mozzarella', 'cinderella', 'salmonella']

If you want to change it in the list, you need to assign it back:

>>> things[1] = things[1].capitalize()
>>> things
['mozzarella', 'Cinderella', 'salmonella']

3.6. Make the cheesy element of things all uppercase and then print the list.
>>> things[0] = things[0].upper()
>>> things
['MOZZARELLA', 'Cinderella', 'salmonella']

3.7. Delete the disease element, collect your Nobel Prize, and then print the list.

This would remove it by value:

>>> things.remove("salmonella")
>>> things
['MOZZARELLA', 'Cinderella']

Because it was last in the list, the following would have worked also:

Answers to Exercises | 405

>>> del things[-1]

And you could have deleted by offset from the beginning:

>>> del things[2]

3.8. Create a list called surprise with the elements "Groucho", "Chico", and "Harpo".

>>> surprise = ['Groucho', 'Chico', 'Harpo']
>>> surprise
['Groucho', 'Chico', 'Harpo']

3.9. Lowercase the last element of the surprise list, reverse it, and then capitalize it.
>>> surprise[-1] = surprise[-1].lower()
>>> surprise[-1] = surprise[-1][::-1]
>>> surprise[-1].capitalize()
'Oprah'

3.10. Make an English-to-French dictionary called e2f and print it. Here are your
starter words: dog is chien, cat is chat, and walrus is morse.

>>> e2f = {'dog': 'chien', 'cat': 'chat', 'walrus': 'morse'}
>>> e2f
{'cat': 'chat', 'walrus': 'morse', 'dog': 'chien'}

3.11. Using your three-word dictionary e2f, print the French word for walrus.

>>> e2f['walrus']
'morse'

3.12. Make a French-to-English dictionary called f2e from e2f. Use the items method.
>>> f2e = {}
>>> for english, french in e2f.items():
 f2e[french] = english
>>> f2e
{'morse': 'walrus', 'chien': 'dog', 'chat': 'cat'}

3.13. Print the English equivalent of the French word chien.

>>> f2e['chien']
'dog'

3.14. Print the set of English words from e2f.

>>> set(e2f.keys())
{'cat', 'walrus', 'dog'}

3.15. Make a multilevel dictionary called life. Use these strings for the topmost keys:
'animals', 'plants', and 'other'. Make the 'animals' key refer to another dictio‐
nary with the keys 'cats', 'octopi', and 'emus'. Make the 'cats' key refer to a list of
strings with the values 'Henri', 'Grumpy', and 'Lucy'. Make all the other keys refer to
empty dictionaries.

This is a hard one, so don’t feel bad if you peeked here first.

406 | Appendix E: Answers to Exercises

>>> life = {
... 'animals': {
... 'cats': [
... 'Henri', 'Grumpy', 'Lucy'
...],
... 'octopi': {},
... 'emus': {}
... },
... 'plants': {},
... 'other': {}
... }
>>>

3.16. Print the top-level keys of life.

>>> print(life.keys())
dict_keys(['animals', 'other', 'plants'])

Python 3 includes that dict_keys stuff. To print them as a plain list, use this:

>>> print(list(life.keys()))
['animals', 'other', 'plants']

By the way, you can use spaces to make your code easier to read:

>>> print (list (life.keys()))
['animals', 'other', 'plants']

3.17. Print the keys for life['animals'].

>>> print(life['animals'].keys())
dict_keys(['cats', 'octopi', 'emus'])

3.18. Print the values for life['animals']['cats'].

>>> print(life['animals']['cats'])
['Henri', 'Grumpy', 'Lucy']

Chapter 4, Py Crust: Code Structures
4.1. Assign the value 7 to the variable guess_me. Then, write the conditional tests (if,
else, and elif) to print the string 'too low' if guess_me is less than 7, 'too high' if
greater than 7, and 'just right' if equal to 7.

guess_me = 7
if guess_me < 7:
 print('too low')
elif guess_me > 7:
 print('too high')
else:
 print('just right')

Run this program and you should see the following:

Answers to Exercises | 407

just right

4.2. Assign the value 7 to the variable guess_me and the value 1 to the variable start.
Write a while loop that compares start with guess_me. Print 'too low' if start is
less than guess me. If start equals guess_me, print 'found it!' and exit the loop. If
start is greater than guess_me, print 'oops' and exit the loop. Increment start at the
end of the loop.

guess_me = 7
start = 1
while True:
 if start < guess_me:
 print('too low')
 elif start == guess_me:
 print('found it!')
 break
 elif start > guess_me:
 print('oops')
 break
 start += 1

If you did this right, you should see this:

too low
too low
too low
too low
too low
too low
found it!

Notice that the elif start > guess_me: line could have been a simple else:,
because if start is not less than or equal to guess_me, it must be greater. At least in
this universe.

4.3. Use a for loop to print the values of the list [3, 2, 1, 0].

>>> for value in [3, 2, 1, 0]:
... print(value)
...
3
2
1
0

4.4. Use a list comprehension to make a list called even of the even numbers in
range(10).

>>> even = [number for number in range(10) if number % 2 == 0]
>>> even
[0, 2, 4, 6, 8]

408 | Appendix E: Answers to Exercises

4.5. Use a dictionary comprehension to create the dictionary squares. Use range(10) to
return the keys, and use the square of each key as its value.

>>> squares = {key: key*key for key in range(10)}
>>> squares
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

4.6. Use a set comprehension to create the set odd from the odd numbers in range(10).

>>> odd = {number for number in range(10) if number % 2 == 1}
>>> odd
{1, 3, 9, 5, 7}

4.7. Use a generator comprehension to return the string 'Got ' and a number for the
numbers in range(10). Iterate through this by using a for loop.

>>> for thing in ('Got %s' % number for number in range(10)):
... print(thing)
...
Got 0
Got 1
Got 2
Got 3
Got 4
Got 5
Got 6
Got 7
Got 8
Got 9

4.8. Define a function called good() that returns the list ['Harry', 'Ron', 'Her
mione'].

>>> def good():
... return ['Harry', 'Ron', 'Hermione']
...
>>> good()
['Harry', 'Ron', 'Hermione']

4.9. Define a generator function called get_odds() that returns the odd numbers from
range(10). Use a for loop to find and print the third value returned.

>>> def get_odds():
... for number in range(1, 10, 2):
... yield number
...
>>> count = 1
>>> for number in get_odds():
... if count == 3:
... print("The third odd number is", number)
... break
... count += 1

Answers to Exercises | 409

...
The third odd number is 5

4.10. Define a decorator called test that prints 'start' when a function is called and
'end' when it finishes.

>>> def test(func):
... def new_func(*args, **kwargs):
... print('start')
... result = func(*args, **kwargs)
... print('end')
... return result
... return new_func
...
>>>
>>> @test
... def greeting():
... print("Greetings, Earthling")
...
>>> greeting()
start
Greetings, Earthling
end

4.11. Define an exception called OopsException. Raise this exception to see what hap‐
pens. Then, write the code to catch this exception and print 'Caught an oops'.

>>> class OopsException(Exception):
... pass
...
>>> raise OopsException()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.OopsException
>>>
>>> try:
... raise OopsException
... except OopsException:
... print('Caught an oops')
...
Caught an oops

4.12. Use zip() to make a dictionary called movies that pairs these lists: titles =
['Creature of Habit', 'Crewel Fate'] and plots = ['A nun turns into a mon
ster', 'A haunted yarn shop'].

>>> titles = ['Creature of Habit', 'Crewel Fate']
>>> plots = ['A nun turns into a monster', 'A haunted yarn shop']
>>> movies = dict(zip(titles, plots))
>>> movies
{'Crewel Fate': 'A haunted yarn shop', 'Creature of Habit': 'A nun turns
into a monster'}

410 | Appendix E: Answers to Exercises

Chapter 5, Py Boxes: Modules, Packages, and Programs
5.1. Make a file called zoo.py. In it, define a function called hours that prints the string
'Open 9-5 daily'. Then, use the interactive interpreter to import the zoo module and
call its hours function. Here’s zoo.py:

def hours():
 print('Open 9-5 daily')

And now, let’s import it interactively:

>>> import zoo
>>> zoo.hours()
Open 9-5 daily

5.2. In the interactive interpreter, import the zoo module as menagerie and call its
hours() function.

>>> import zoo as menagerie
>>> menagerie.hours()
Open 9-5 daily

5.3. Staying in the interpreter, import the hours() function from zoo directly and call it.
>>> from zoo import hours
>>> hours()
Open 9-5 daily

5.4. Import the hours() function as info and call it.
>>> from zoo import hours as info
>>> info()
Open 9-5 daily

5.5 Make a dictionary called plain with the key-value pairs 'a': 1, 'b': 2, and 'c':
3, and then print it.

>>> plain = {'a': 1, 'b': 2, 'c': 3}
>>> plain
{'a': 1, 'c': 3, 'b': 2}

5.6. Make an OrderedDict called fancy from the same pairs and print it. Did it print in
the same order as plain?

>>> from collections import OrderedDict
>>> fancy = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> fancy
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

5.7. Make a defaultdict called dict_of_lists and pass it the argument list. Make
the list dict_of_lists['a'] and append the value 'something for a' to it in one
assignment. Print dict_of_lists['a'].

Answers to Exercises | 411

>>> from collections import defaultdict
>>> dict_of_lists = defaultdict(list)
>>> dict_of_lists['a'].append('something for a')
>>> dict_of_lists['a']
['something for a']

Chapter 6, Oh Oh: Objects and Classes
6.1. Make a class called Thing with no contents and print it. Then, create an object
called example from this class and also print it. Are the printed values the same or dif‐
ferent?

>>> class Thing:
... pass
...
>>> print(Thing)
<class '__main__.Thing'>
>>> example = Thing()
>>> print(example)
<__main__.Thing object at 0x1006f3fd0>

6.2. Make a new class called Thing2 and assign the value 'abc' to a class variable called
letters. Print letters.

>>> class Thing2:
... letters = 'abc'
...
>>> print(Thing2.letters)
abc

6.3. Make yet another class called (of course) Thing3. This time, assign the value 'xyz'
to an instance (object) variable called letters. Print letters. Do you need to make an
object from the class to do this?

>>> class Thing3:
... def __init__(self):
... self.letters = 'xyz'
...

The variable letters belongs to any objects made from Thing3, not the Thing3 class
itself:

>>> print(Thing3.letters)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: type object 'Thing3' has no attribute 'letters'
>>> something = Thing3()
>>> print(something.letters)
xyz

6.4. Make a class called Element, with instance attributes name, symbol, and number.
Create an object called hydrogen of this class with the values 'Hydrogen', 'H', and 1.

412 | Appendix E: Answers to Exercises

>>> class Element:
... def __init__(self, name, symbol, number):
... self.name = name
... self.symbol = symbol
... self.number = number
...
>>> hydrogen = Element('Hydrogen', 'H', 1)

6.5. Make a dictionary with these keys and values: 'name': 'Hydrogen', 'symbol':
'H', 'number': 1. Then, create an object called hydrogen from class Element using
this dictionary.

Start with the dictionary:

>>> el_dict = {'name': 'Hydrogen', 'symbol': 'H', 'number': 1}

This works, although it takes a bit of typing:

>>> hydrogen = Element(el_dict['name'], el_dict['symbol'], el_dict['number'])

Let’s check that it worked:

>>> hydrogen.name
'Hydrogen'

However, you can also initialize the object directly from the dictionary, because its
key names match the arguments to __init__ (refer to Chapter 3 for a discussion of
keyword arguments):

>>> hydrogen = Element(**el_dict)
>>> hydrogen.name
'Hydrogen'

6.6. For the Element class, define a method called dump() that prints the values of the
object’s attributes (name, symbol, and number). Create the hydrogen object from this
new definition and use dump() to print its attributes.

>>> class Element:
... def __init__(self, name, symbol, number):
... self.name = name
... self.symbol = symbol
... self.number = number
... def dump(self):
... print('name=%s, symbol=%s, number=%s' %
... (self.name, self.symbol, self.number))
...
>>> hydrogen = Element(**el_dict)
>>> hydrogen.dump()
name=Hydrogen, symbol=H, number=1

6.7. Call print(hydrogen). In the definition of Element, change the name of method
dump to __str__, create a new hydrogen object, and call print(hydrogen) again.

Answers to Exercises | 413

>>> print(hydrogen)
<__main__.Element object at 0x1006f5310>
>>> class Element:
... def __init__(self, name, symbol, number):
... self.name = name
... self.symbol = symbol
... self.number = number
... def __str__(self):
... return ('name=%s, symbol=%s, number=%s' %
... (self.name, self.symbol, self.number))
...
>>> hydrogen = Element(**el_dict)
>>> print(hydrogen)
name=Hydrogen, symbol=H, number=1

__str__() is one of Python’s magic methods. The print function calls an object’s
__str__() method to get its string representation. If it doesn’t have a __str__()
method, it gets the default method from its parent Object class, which returns a
string like <__main__.Element object at 0x1006f5310>.

6.8. Modify Element to make the attributes name, symbol, and number private. Define a
getter property for each to return its value.

>>> class Element:
... def __init__(self, name, symbol, number):
... self.__name = name
... self.__symbol = symbol
... self.__number = number
... @property
... def name(self):
... return self.__name
... @property
... def symbol(self):
... return self.__symbol
... @property
... def number(self):
... return self.__number
...
>>> hydrogen = Element('Hydrogen', 'H', 1)
>>> hydrogen.name
'Hydrogen'
>>> hydrogen.symbol
'H'
>>> hydrogen.number
1

6.9 Define three classes: Bear, Rabbit, and Octothorpe. For each, define only one
method: eats(). This should return 'berries' (Bear), 'clover' (Rabbit), and 'camp
ers' (Octothorpe). Create one object from each and print what it eats.

>> class Bear:
... def eats(self):

414 | Appendix E: Answers to Exercises

... return 'berries'

...
>>> class Rabbit:
... def eats(self):
... return 'clover'
...
>>> class Octothorpe:
... def eats(self):
... return 'campers'
...
>>> b = Bear()
>>> r = Rabbit()
>>> o = Octothorpe()
>>> print(b.eats())
berries
>>> print(r.eats())
clover
>>> print(o.eats())
campers

6.10. Define these classes: Laser, Claw, and SmartPhone. Each has only one method:
does(). This returns 'disintegrate' (Laser), 'crush' (Claw), or 'ring' (Smart
Phone). Then, define the class Robot that has one instance (object) of each of these.
Define a does() method for the Robot that prints what its component objects do.

>>> class Laser:
... def does(self):
... return 'disintegrate'
...
>>> class Claw:
... def does(self):
... return 'crush'
...
>>> class SmartPhone:
... def does(self):
... return 'ring'
...
>>> class Robot:
... def __init__(self):
... self.laser = Laser()
... self.claw = Claw()
... self.smartphone = SmartPhone()
... def does(self):
... return '''I have many attachments:
... My laser, to %s.
... My claw, to %s.
... My smartphone, to %s.''' % (
... self.laser.does(),
... self.claw.does(),
... self.smartphone.does())
...
>>> robbie = Robot()

Answers to Exercises | 415

>>> print(robbie.does())
I have many attachments:
My laser, to disintegrate.
My claw, to crush.
My smartphone, to ring.

Chapter 7, Mangle Data Like a Pro
7.1. Create a Unicode string called mystery and assign it the value '\U0001f4a9'. Print
mystery. Look up the Unicode name for mystery.

>>> import unicodedata
>>> mystery = '\U0001f4a9'
>>> mystery
'💩'
>>> unicodedata.name(mystery)
'PILE OF POO'

Oh my. What else have they got in there?

7.2. Encode mystery, this time using UTF-8, into the bytes variable pop_bytes. Print
pop_bytes.

>>> pop_bytes = mystery.encode('utf-8')
>>> pop_bytes
b'\xf0\x9f\x92\xa9'

7.3. Using UTF-8, decode pop_bytes into the string variable pop_string. Print
pop_string. Is pop_string equal to mystery?

>>> pop_string = pop_bytes.decode('utf-8')
>>> pop_string
'💩'
>>> pop_string == mystery
True

7.4. Write the following poem by using old-style formatting. Substitute the strings
'roast beef', 'ham', 'head', and 'clam' into this string:

My kitty cat likes %s,
My kitty cat likes %s,
My kitty cat fell on his %s
And now thinks he's a %s.

>>> poem = '''
... My kitty cat likes %s,
... My kitty cat likes %s,
... My kitty cat fell on his %s
... And now thinks he's a %s.
... '''
>>> args = ('roast beef', 'ham', 'head', 'clam')
>>> print(poem % args)

416 | Appendix E: Answers to Exercises

My kitty cat likes roast beef,
My kitty cat likes ham,
My kitty cat fell on his head
And now thinks he's a clam.

7.5. Write a form letter by using new-style formatting. Save the following string as let
ter (you’ll use it in the next exercise):

Dear {salutation} {name},

Thank you for your letter. We are sorry that our {product} {verbed} in your
{room}. Please note that it should never be used in a {room}, especially
near any {animals}.

Send us your receipt and {amount} for shipping and handling. We will send
you another {product} that, in our tests, is {percent}% less likely to
have {verbed}.

Thank you for your support.

Sincerely,
{spokesman}
{job_title}

>>> letter = '''
... Dear {salutation} {name},
...
... Thank you for your letter. We are sorry that our {product} {verb} in your
... {room}. Please note that it should never be used in a {room}, especially
... near any {animals}.
...
... Send us your receipt and {amount} for shipping and handling. We will send
... you another {product} that, in our tests, is {percent}% less likely to
... have {verbed}.
...
... Thank you for your support.
...
... Sincerely,
... {spokesman}
... {job_title}
... '''

7.6. Make a dictionary called response with values for the string keys 'salutation',
'name', 'product', 'verbed' (past tense verb), 'room', 'animals', 'percent',
'spokesman', and 'job_title'. Print letter with the values from response.

>>> response = {
... 'salutation': 'Colonel',
... 'name': 'Hackenbush',
... 'product': 'duck blind',
... 'verbed': 'imploded',
... 'room': 'conservatory',
... 'animals': 'emus',
... 'amount': '$1.38',
... 'percent': '1',

Answers to Exercises | 417

... 'spokesman': 'Edgar Schmeltz',

... 'job_title': 'Licensed Podiatrist'

... }

...
>>> print(letter.format(**response))

Dear Colonel Hackenbush,

Thank you for your letter. We are sorry that our duck blind imploded in your
conservatory. Please note that it should never be used in a conservatory,
especially near any emus.

Send us your receipt and $1.38 for shipping and handling. We will send
you another duck blind that, in our tests, is 1% less likely to have imploded.

Thank you for your support.

Sincerely,
Edgar Schmeltz
Licensed Podiatrist

7.7. When you’re working with text, regular expressions come in very handy. We’ll apply
them in a number of ways to our featured text sample. It’s a poem titled “Ode on the
Mammoth Cheese,” written by James McIntyre in 1866 in homage to a seven-thousand-
pound cheese that was crafted in Ontario and sent on an international tour. If you’d
rather not type all of it, use your favorite search engine and cut and paste the words into
your Python program. Or, just grab it from Project Gutenberg. Call the text string mam
moth.

>>> mammoth = '''
... We have seen thee, queen of cheese,
... Lying quietly at your ease,
... Gently fanned by evening breeze,
... Thy fair form no flies dare seize.
...
... All gaily dressed soon you'll go
... To the great Provincial show,
... To be admired by many a beau
... In the city of Toronto.
...
... Cows numerous as a swarm of bees,
... Or as the leaves upon the trees,
... It did require to make thee please,
... And stand unrivalled, queen of cheese.
...
... May you not receive a scar as
... We have heard that Mr. Harris
... Intends to send you off as far as
... The great world's show at Paris.
...
... Of the youth beware of these,

418 | Appendix E: Answers to Exercises

http://bit.ly/mcintyre-poetry

... For some of them might rudely squeeze

... And bite your cheek, then songs or glees

... We could not sing, oh! queen of cheese.

...

... We'rt thou suspended from balloon,

... You'd cast a shade even at noon,

... Folks would think it was the moon

... About to fall and crush them soon.

... '''

7.8 Import the re module to use Python’s regular expression functions. Use re.fin
dall() to print all the words that begin with 'c'.

We’ll define the variable pat for the pattern and then search for it in mammoth:

>>> import re
>>> pat = r'\bc\w*'
>>> re.findall(pat, mammoth)
['cheese', 'city', 'cheese', 'cheek', 'could', 'cheese', 'cast', 'crush']

The \b means to begin at a boundary between a word and a nonword. Use this to
specify either the beginning or end of a word. The literal c is the first letter of the
words we’re looking for. The \w means any word character, which includes letters,
digits, and underscores (_). The * means zero or more of these word characters.
Together, this finds words that begin with c, including 'c' itself. If you didn’t use a
raw string (with an r right before the starting quote), Python would interpret \b as a
backspace and the search would mysteriously fail:

>>> pat = '\bc\w*'
>>> re.findall(pat, mammoth)
[]

7.9 Find all four-letter words that begin with c.

>>> pat = r'\bc\w{3}\b'
>>> re.findall(pat, mammoth)
['city', 'cast']

You need that final \b to indicate the end of the word. Otherwise, you’ll get the first
four letters of all words that begin with c and have at least four letters:

>>> pat = r'\bc\w{3}'
>>> re.findall(pat, mammoth)
['chee', 'city', 'chee', 'chee', 'coul', 'chee', 'cast', 'crus']

7.10. Find all the words that end with r.

This is a little tricky. We get the right result for words that end with r:

>>> pat = r'\b\w*r\b'
>>> re.findall(pat,mammoth)
['your', 'fair', 'Or', 'scar', 'Mr', 'far', 'For', 'your', 'or']

Answers to Exercises | 419

However, the results aren’t so good for words that end with l:

>>> pat = r'\b\w*l\b'
>>> re.findall(pat,mammoth)
['All', 'll', 'Provincial', 'fall']

But what’s that ll doing there? The \w pattern only matches letters, numbers, and
underscores—not ASCII apostrophes. As a result, it grabs the final ll from you'll.
We can handle this by adding an apostrophe to the set of characters to match. Our
first try fails:

>>> >>> pat = r'\b[\w']*l\b'
 File "<stdin>", line 1
 pat = r'\b[\w']*l\b'

Python points to the vicinity of the error, but it might take a while to see that the mis‐
take was that the pattern string is surrounded by the same apostrophe/quote charac‐
ter. One way to solve this is to escape it with a backslash:

>>> pat = r'\b[\w\']*l\b'
>>> re.findall(pat, mammoth)
['All', "you'll", 'Provincial', 'fall']

Another way is to surround the pattern string with double quotes:

>>> pat = r"\b[\w']*l\b"
>>> re.findall(pat, mammoth)
['All', "you'll", 'Provincial', 'fall']

7.11. Find all the words that contain exactly three vowels in a row.

Begin with a word boundary, any number of word characters, three vowels, and then
any non-vowel characters to the end of the word:

>>> pat = r'\b[^aeiou]*[aeiou]{3}[^aeiou]*\b'
>>> re.findall(pat, mammoth)
['queen', 'quietly', 'beau\nIn', 'queen', 'squeeze', 'queen']

This looks right, except for that 'beau\nIn' string. We searched mammoth as a single
multiline string. Our [^aeiou] matches any non-vowels, including \n (line feed,
which marks the end of a text line). We need to add one more thing to the ignore set:
\s matches any space characters, including \n:

>>> pat = r'\b\w*[aeiou]{3}[^aeiou\s]\w*\b'
>>> re.findall(pat, mammoth)
['queen', 'quietly', 'queen', 'squeeze', 'queen']

We didn’t find beau this time, so we need one more tweak to the pattern: match any
number (even zero) of non-vowels after the three vowels. Our previous pattern
always matched one non-vowel.

420 | Appendix E: Answers to Exercises

>>> pat = r'\b\w*[aeiou]{3}[^aeiou\s]*\w*\b'
>>> re.findall(pat, mammoth)
['queen', 'quietly', 'beau', 'queen', 'squeeze', 'queen']

What does all of this show? Among other things, that regular expressions can do a
lot, but they can be very tricky to get right.

7.12. Use unhexlify() to convert this hex string (combined from two strings to fit on a
page) to a bytes variable called gif:

'47494638396101000100800000000000ffffff21f9' +
'0401000000002c000000000100010000020144003b'

>>> import binascii
>>> hex_str = '47494638396101000100800000000000ffffff21f9' + \
... '0401000000002c000000000100010000020144003b'
>>> gif = binascii.unhexlify(hex_str)
>>> len(gif)
42

7.13. The bytes in gif define a one-pixel transparent GIF file, one of the most common
graphics file formats. A legal GIF starts with the string GIF89a. Does gif match this?

>>> gif[:6] == b'GIF89a'
True

Notice that we needed to use a b to define a byte string rather than a Unicode charac‐
ter string. You can compare bytes with bytes, but you cannot compare bytes with
strings:

>>> gif[:6] == 'GIF89a'
False
>>> type(gif)
<class 'bytes'>
>>> type('GIF89a')
<class 'str'>
>>> type(b'GIF89a')
<class 'bytes'>

7.14. The pixel width of a GIF is a 16-bit little-endian integer starting at byte offset 6,
and the height is the same size, starting at offset 8. Extract and print these values for
gif. Are they both 1?

>>> import struct
>>> width, height = struct.unpack('<HH', gif[6:10])
>>> width, height
(1, 1)

Chapter 8, Data Has to Go Somewhere
8.1. Assign the string 'This is a test of the emergency text system' to the vari‐
able test1, and write test1 to a file called test.txt.

Answers to Exercises | 421

>>> test1 = 'This is a test of the emergency text system'
>>> len(test1)
43

Here’s how to do it by using open, write, and close:

>>> outfile = open('test.txt', 'wt')
>>> outfile.write(test1)
43
>>> outfile.close()

Or, you can use with and avoid calling close (Python does it for you):

>>> with open('test.txt', 'wt') as outfile:
... outfile.write(test1)
...
43

8.2. Open the file test.txt and read its contents into the string test2. Are test1 and
test2 the same?

>>> with open('test.txt', 'rt') as infile:
... test2 = infile.read()
...
>>> len(test2)
43
>>> test1 == test2
True

8.3. Save these text lines to a file called test.csv. Notice that if the fields are separated by
commas, you need to surround a field with quotes if it contains a comma.

author,book
J R R Tolkien,The Hobbit
Lynne Truss,"Eats, Shoots & Leaves"

>>> text = '''author,book
... J R R Tolkien,The Hobbit
... Lynne Truss,"Eats, Shoots & Leaves"
... '''
>>> with open('test.csv', 'wt') as outfile:
... outfile.write(text)
...
73

8.4. Use the csv module and its DictReader() method to read test.csv to the variable
books. Print the values in books. Did DictReader() handle the quotes and commas in
the second book’s title?

>>> with open('test.csv', 'rt') as infile:
... books = csv.DictReader(infile)
... for book in books:
... print(book)
...

422 | Appendix E: Answers to Exercises

{'book': 'The Hobbit', 'author': 'J R R Tolkien'}
{'book': 'Eats, Shoots & Leaves', 'author': 'Lynne Truss'}

8.5. Create a CSV file called books.csv by using these lines:
title,author,year
The Weirdstone of Brisingamen,Alan Garner,1960
Perdido Street Station,China Miéville,2000
Thud!,Terry Pratchett,2005
The Spellman Files,Lisa Lutz,2007
Small Gods,Terry Pratchett,1992

>>> text = '''title,author,year
... The Weirdstone of Brisingamen,Alan Garner,1960
... Perdido Street Station,China Miéville,2000
... Thud!,Terry Pratchett,2005
... The Spellman Files,Lisa Lutz,2007
... Small Gods,Terry Pratchett,1992
... '''
>>> with open('books.csv', 'wt') as outfile:
... outfile.write(text)
...
201

8.6. Use the sqlite3 module to create a SQLite database called books.db and a table
called books with these fields: title (text), author (text), and year (integer).

>>> import sqlite3
>>> db = sqlite3.connect('books.db')
>>> curs = db.cursor()
>>> curs.execute('''create table book (title text, author text, year int)''')
<sqlite3.Cursor object at 0x1006e3b90>
>>> db.commit()

8.7. Read the data from books.csv and insert them into the book table.
>>> import csv
>>> import sqlite3
>>> ins_str = 'insert into book values(?, ?, ?)'
>>> with open('books.csv', 'rt') as infile:
... books = csv.DictReader(infile)
... for book in books:
... curs.execute(ins_str, (book['title'], book['author'], book['year']))
...
<sqlite3.Cursor object at 0x1007b21f0>
<sqlite3.Cursor object at 0x1007b21f0>
<sqlite3.Cursor object at 0x1007b21f0>
<sqlite3.Cursor object at 0x1007b21f0>
<sqlite3.Cursor object at 0x1007b21f0>
>>> db.commit()

8.8. Select and print the title column from the book table in alphabetical order.
>>> sql = 'select title from book order by title asc'
>>> for row in db.execute(sql):

Answers to Exercises | 423

... print(row)

...
('Perdido Street Station',)
('Small Gods',)
('The Spellman Files',)
('The Weirdstone of Brisingamen',)
('Thud!',)

If you just wanted to print the title value without that tuple stuff (parentheses and
comma), try this:

>>> for row in db.execute(sql):
... print(row[0])
...
Perdido Street Station
Small Gods
The Spellman Files
The Weirdstone of Brisingamen
Thud!

If you want to ignore the initial 'The' in titles, you need a little extra SQL fairy dust:

>>> sql = '''select title from book order by
... case when (title like "The %") then substr(title, 5) else title end'''
>>> for row in db.execute(sql):
... print(row[0])
...
Perdido Street Station
Small Gods
The Spellman Files
Thud!
The Weirdstone of Brisingamen

8.9. Select and print all columns from the book table in order of publication.
>>> for row in db.execute('select * from book order by year'):
... print(row)
...
('The Weirdstone of Brisingamen', 'Alan Garner', 1960)
('Small Gods', 'Terry Pratchett', 1992)
('Perdido Street Station', 'China Miéville', 2000)
('Thud!', 'Terry Pratchett', 2005)
('The Spellman Files', 'Lisa Lutz', 2007)

To print all the fields in each row, just separate with a comma and space:

>>> for row in db.execute('select * from book order by year'):
... print(*row, sep=', ')
...
The Weirdstone of Brisingamen, Alan Garner, 1960
Small Gods, Terry Pratchett, 1992
Perdido Street Station, China Miéville, 2000
Thud!, Terry Pratchett, 2005
The Spellman Files, Lisa Lutz, 2007

424 | Appendix E: Answers to Exercises

8.10. Use the sqlalchemy module to connect to the sqlite3 database books.db that you
just made in exercise 8.6. As in 8.8, select and print the title column from the book
table in alphabetical order.

>>> import sqlalchemy
>>> conn = sqlalchemy.create_engine('sqlite:///books.db')
>>> sql = 'select title from book order by title asc'
>>> rows = conn.execute(sql)
>>> for row in rows:
... print(row)
...
('Perdido Street Station',)
('Small Gods',)
('The Spellman Files',)
('The Weirdstone of Brisingamen',)
('Thud!',)

8.11. Install the Redis server (see Appendix D) and the Python redis library (pip
install redis) on your machine. Create a Redis hash called test with the fields count
(1) and name ('Fester Bestertester'). Print all the fields for test.

>>> import redis
>>> conn = redis.Redis()
>>> conn.delete('test')
1
>>> conn.hmset('test', {'count': 1, 'name': 'Fester Bestertester'})
True
>>> conn.hgetall('test')
{b'name': b'Fester Bestertester', b'count': b'1'}

8.12. Increment the count field of test and print it.
>>> conn.hincrby('test', 'count', 3)
4
>>> conn.hget('test', 'count')
b'4'

Chapter 9, The Web, Untangled
9.1. If you haven’t installed flask yet, do so now. This will also install werkzeug,
jinja2, and possibly other packages.

9.2. Make a skeleton website, using Flask’s debug/reload development web server. Ensure
that the server starts up for hostname localhost on default port 5000. If your machine
is already using port 5000 for something else, use another port number.

Here’s flask1.py:

from flask import Flask

app = Flask(__name__)

Answers to Exercises | 425

app.run(port=5000, debug=True)

Gentlemen, start your engines:

$ python flask1.py
 * Running on http://127.0.0.1:5000/
 * Restarting with reloader

9.3. Add a home() function to handle requests for the home page. Set it up to return the
string It's alive!.

What should we call this one, flask2.py?

from flask import Flask

app = Flask(__name__)

@app.route('/')
def home():
 return "It's alive!"

app.run(debug=True)

Start the server:

$ python flask2.py
 * Running on http://127.0.0.1:5000/
 * Restarting with reloader

Finally, access the home page via a browser, command-line HTTP program such as
curl or wget, or even telnet:

$ curl http://localhost:5000/
It's alive!

9.4. Create a Jinja2 template file called home.html with the following contents:
I'm of course referring to {{thing}}, which is {{height}} feet tall and {{color}}.

Make a directory called templates and create the file home.html with the contents just
shown. If your Flask server is still running from the previous examples, it will detect
the new content and restart itself.

9.5. Modify your server’s home() function to use the home.html template. Provide it
with three GET parameters: thing, height, and color.

Here comes flask3.py:

from flask import Flask, request, render_template

app = Flask(__name__)

@app.route('/')
def home():

426 | Appendix E: Answers to Exercises

 thing = request.values.get('thing')
 height = request.values.get('height')
 color = request.values.get('color')
 return render_template('home.html',
 thing=thing, height=height, color=color)

app.run(debug=True)

Go to this address in your web client:

http://localhost:5000/?thing=Octothorpe&height=7&color=green

You should see the following:

I'm of course referring to Octothorpe, which is 7 feet tall and green.

Chapter 10, Systems
10.1. Write the current date as a string to the text file today.txt.

>>> from datetime import date
>>> now = date.today()
>>> now_str = now.isoformat()
>>> with open('today', 'wt') as output:
... print(now_str, file=output)
>>>

Instead of print, you could have also said something like output.write(now_str).
Using print adds the final newline.

10.2. Read the text file today.txt into the string today_string.

>>> with open('today', 'rt') as input:
... today_string = input.read()
...
>>> today_string
'2014-02-04\n'

10.3. Parse the date from today_string.

>>> fmt = '%Y-%m-%d\n'
>>> datetime.strptime(today_string, fmt)
datetime.datetime(2014, 2, 4, 0, 0)

If you wrote that final newline to the file, you need to match it in the format string.

10.4. List the files in your current directory.

If your current directory is ohmy and contains three files named after animals, it
might look like this:

>>> import os
>>> os.listdir('.')
['bears', 'lions', 'tigers']

Answers to Exercises | 427

10.5. List the files in your parent directory.

If your parent directory contained two files plus the current ohmy directory, it might
look like this:

>>> import os
>>> os.listdir('..')
['ohmy', 'paws', 'whiskers']

10.6. Use multiprocessing to create three separate processes. Make each one wait a
random number of seconds between zero and one, print the current time, and then exit.

Save this as multi_times.py:

import multiprocessing

def now(seconds):
 from datetime import datetime
 from time import sleep
 sleep(seconds)
 print('wait', seconds, 'seconds, time is', datetime.utcnow())

if __name__ == '__main__':
 import random
 for n in range(3):
 seconds = random.random()
 proc = multiprocessing.Process(target=now, args=(seconds,))
 proc.start()

$ python multi_times.py
wait 0.4670532005508353 seconds, time is 2014-06-03 05:14:22.930541
wait 0.5908421960431798 seconds, time is 2014-06-03 05:14:23.054925
wait 0.8127669040699719 seconds, time is 2014-06-03 05:14:23.275767

10.7. Create a date object of your day of birth.

Let’s say that you were born on August 14, 1982:

>>> my_day = date(1982, 8, 14)
>>> my_day
datetime.date(1982, 8, 14)

10.8. What day of the week was your day of birth?
>>> my_day.weekday()
5
>>> my_day.isoweekday()
6

With weekday(), Monday is 0 and Sunday is 6. With isoweekday(), Monday is 1 and
Sunday is 7. Therefore, this date was a Saturday.

428 | Appendix E: Answers to Exercises

10.9. When will you be (or when were you) 10,000 days old?
>>> from datetime import timedelta
>>> party_day = my_day + timedelta(days=10000)
>>> party_day
datetime.date(2009, 12, 30)

If that was your birthday, you probably missed an excuse for a party.

Chapter 11, Concurrency and Networks
11.1. Use a plain socket to implement a current-time service. When a client sends the
string 'time' to the server, return the current date and time as an ISO string.

Here’s one way to write the server, udp_time_server.py:

from datetime import datetime
import socket

address = ('localhost', 6789)
max_size = 4096

print('Starting the server at', datetime.now())
print('Waiting for a client to call.')
server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server.bind(address)
while True:
 data, client_addr = server.recvfrom(max_size)
 if data == b'time':
 now = str(datetime.utcnow())
 data = now.encode('utf-8')
 server.sendto(data, client_addr)
 print('Server sent', data)
server.close()

And the client, udp_time_client.py:

import socket
from datetime import datetime
from time import sleep

address = ('localhost', 6789)
max_size = 4096

print('Starting the client at', datetime.now())
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
while True:
 sleep(5)
 client.sendto(b'time', address)
 data, server_addr = client.recvfrom(max_size)
 print('Client read', data)
client.close()

Answers to Exercises | 429

I put in a sleep(5) call at the top of the client loop to make the data exchange less
supersonic. Start the server in one window:

$ python udp_time_server.py
Starting the server at 2014-06-02 20:28:47.415176
Waiting for a client to call.

Start the client in another window:

$ python udp_time_client.py
Starting the client at 2014-06-02 20:28:51.454805

After five seconds, you’ll start getting output in both windows. Here are the first three
lines from the server:

Server sent b'2014-06-03 01:28:56.462565'
Server sent b'2014-06-03 01:29:01.463906'
Server sent b'2014-06-03 01:29:06.465802'

And here are the first three from the client:

Client read b'2014-06-03 01:28:56.462565'
Client read b'2014-06-03 01:29:01.463906'
Client read b'2014-06-03 01:29:06.465802'

Both of these programs run forever, so you’ll need to cancel them manually.

11.2. Use ZeroMQ REQ and REP sockets to do the same thing.

Here’s zmq_time_server.py:

import zmq
from datetime import datetime

host = '127.0.0.1'
port = 6789
context = zmq.Context()
server = context.socket(zmq.REP)
server.bind("tcp://%s:%s" % (host, port))
print('Server started at', datetime.utcnow())
while True:
 # Wait for next request from client
 message = server.recv()
 if message == b'time':
 now = datetime.utcnow()
 reply = str(now)
 server.send(bytes(reply, 'utf-8'))
 print('Server sent', reply)

And here’s zmq_time_client.py:

import zmq
from datetime import datetime
from time import sleep

430 | Appendix E: Answers to Exercises

host = '127.0.0.1'
port = 6789
context = zmq.Context()
client = context.socket(zmq.REQ)
client.connect("tcp://%s:%s" % (host, port))
print('Client started at', datetime.utcnow())
while True:
 sleep(5)
 request = b'time'
 client.send(request)
 reply = client.recv()
 print("Client received %s" % reply)

With plain sockets, you need to start the server first. With ZeroMQ, you can start
either the server or client first.

$ python zmq_time_server.py
Server started at 2014-06-03 01:39:36.933532

$ python zmq_time_client.py
Client started at 2014-06-03 01:39:42.538245

After 15 seconds or so, you should have some lines from the server:

Server sent 2014-06-03 01:39:47.539878
Server sent 2014-06-03 01:39:52.540659
Server sent 2014-06-03 01:39:57.541403

Here’s what you should see from the client:

Client received b'2014-06-03 01:39:47.539878'
Client received b'2014-06-03 01:39:52.540659'
Client received b'2014-06-03 01:39:57.541403'

11.3. Try the same with XMLRPC.

The server, xmlrpc_time_server.py:

from xmlrpc.server import SimpleXMLRPCServer

def now():
 from datetime import datetime
 data = str(datetime.utcnow())
 print('Server sent', data)
 return data

server = SimpleXMLRPCServer(("localhost", 6789))
server.register_function(now, "now")
server.serve_forever()

And the client, xmlrpc_time_client.py:

import xmlrpc.client
from time import sleep

proxy = xmlrpc.client.ServerProxy("http://localhost:6789/")

Answers to Exercises | 431

while True:
 sleep(5)
 data = proxy.now()
 print('Client received', data)

Start the server:

$ python xmlrpc_time_server.py

Start the client:

$ python xmlrpc_time_client.py

Wait 15 seconds or so. Here are the first three lines of server output:

Server sent 2014-06-03 02:14:52.299122
127.0.0.1 - - [02/Jun/2014 21:14:52] "POST / HTTP/1.1" 200 -
Server sent 2014-06-03 02:14:57.304741
127.0.0.1 - - [02/Jun/2014 21:14:57] "POST / HTTP/1.1" 200 -
Server sent 2014-06-03 02:15:02.310377
127.0.0.1 - - [02/Jun/2014 21:15:02] "POST / HTTP/1.1" 200 -

And here are the first three lines from the client:

Client received 2014-06-03 02:14:52.299122
Client received 2014-06-03 02:14:57.304741
Client received 2014-06-03 02:15:02.310377

11.4. You may have seen the old I Love Lucy television episode in which Lucy and Ethel
worked in a chocolate factory (it’s a classic). The duo fell behind as the conveyor belt that
supplied the confections for them to process began operating at an ever-faster rate. Write
a simulation that pushes different types of chocolates to a Redis list, and Lucy is a client
doing blocking pops of this list. She needs 0.5 seconds to handle a piece of chocolate.
Print the time and type of each chocolate as Lucy gets it, and how many remain to be
handled.

redis_choc_supply.py supplies the infinite treats:

import redis
import random
from time import sleep

conn = redis.Redis()
varieties = ['truffle', 'cherry', 'caramel', 'nougat']
conveyor = 'chocolates'
while True:
 seconds = random.random()
 sleep(seconds)
 piece = random.choice(varieties)
 conn.rpush(conveyor, piece)

redis_lucy.py might look like this:

import redis
from datetime import datetime

432 | Appendix E: Answers to Exercises

from time import sleep

conn = redis.Redis()
timeout = 10
conveyor = 'chocolates'
while True:
 sleep(0.5)
 msg = conn.blpop(conveyor, timeout)
 remaining = conn.llen(conveyor)
 if msg:
 piece = msg[1]
 print('Lucy got a', piece, 'at', datetime.utcnow(),
 ', only', remaining, 'left')

Start them in either order. Because Lucy takes a half second to handle each, and
they’re being produced every half second on average, it’s a race to keep up. The more
of a head start that you give to the conveyor belt, the harder you make Lucy’s life.

$ python redis_choc_supply.py&

$ python redis_lucy.py
Lucy got a b'nougat' at 2014-06-03 03:15:08.721169 , only 4 left
Lucy got a b'cherry' at 2014-06-03 03:15:09.222816 , only 3 left
Lucy got a b'truffle' at 2014-06-03 03:15:09.723691 , only 5 left
Lucy got a b'truffle' at 2014-06-03 03:15:10.225008 , only 4 left
Lucy got a b'cherry' at 2014-06-03 03:15:10.727107 , only 4 left
Lucy got a b'cherry' at 2014-06-03 03:15:11.228226 , only 5 left
Lucy got a b'cherry' at 2014-06-03 03:15:11.729735 , only 4 left
Lucy got a b'truffle' at 2014-06-03 03:15:12.230894 , only 6 left
Lucy got a b'caramel' at 2014-06-03 03:15:12.732777 , only 7 left
Lucy got a b'cherry' at 2014-06-03 03:15:13.234785 , only 6 left
Lucy got a b'cherry' at 2014-06-03 03:15:13.736103 , only 7 left
Lucy got a b'caramel' at 2014-06-03 03:15:14.238152 , only 9 left
Lucy got a b'cherry' at 2014-06-03 03:15:14.739561 , only 8 left

Poor Lucy.

11.5. Using the poem from exercise 7.7, use ZeroMQ to publish it, one word at a time.
Write a ZeroMQ consumer that prints every word that starts with a vowel, and another
that prints every word that contains five letters. Ignore punctuation characters.

Here’s the server, poem_pub.py, which plucks each word from the poem and publishes
it to the topic vowels if it starts with a vowel, and the topic five if it has five letters.
Some words might be in both topics, some in neither.

import string
import zmq

host = '127.0.0.1'
port = 6789
ctx = zmq.Context()
pub = ctx.socket(zmq.PUB)
pub.bind('tcp://%s:%s' % (host, port))

Answers to Exercises | 433

with open('mammoth.txt', 'rt') as poem:
 words = poem.read()
for word in words.split():
 word = word.strip(string.punctuation)
 data = word.encode('utf-8')
 if word.startswith(('a','e','i','o','u','A','e','i','o','u')):
 pub.send_multipart([b'vowels', data])
 if len(word) == 5:
 pub.send_multipart([b'five', data])

The client, poem_sub.py, subscribes to the topics vowels and five and prints the
topic and word:

import string
import zmq

host = '127.0.0.1'
port = 6789
ctx = zmq.Context()
sub = ctx.socket(zmq.SUB)
sub.connect('tcp://%s:%s' % (host, port))
sub.setsockopt(zmq.SUBSCRIBE, b'vowels')
sub.setsockopt(zmq.SUBSCRIBE, b'five')
while True:
 topic, word = sub.recv_multipart()
 print(topic, word)

If you start these and run them, they almost work. Your code looks fine but nothing
happens. You need to read the ZeroMQ guide to learn about the slow joiner problem:
even if you start the client before the server, the server begins pushing data immedi‐
ately after starting, and the client takes a little time to connect to the server. If you’re
publishing a constant stream of something and don’t really care when the subscribers
jump in, it’s no problem. But in this case, the data stream is so short that it’s flown
past before the subscriber blinks, like a fastball past a batter.

The easiest way to fix this is to make the publisher sleep a second after it calls bind()
and before it starts sending messages. Call this version poem_pub_sleep.py:

import string
import zmq
from time import sleep

host = '127.0.0.1'
port = 6789
ctx = zmq.Context()
pub = ctx.socket(zmq.PUB)
pub.bind('tcp://%s:%s' % (host, port))

sleep(1)

with open('mammoth.txt', 'rt') as poem:

434 | Appendix E: Answers to Exercises

http://zguide.zeromq.org/page:all

 words = poem.read()
for word in words.split():
 word = word.strip(string.punctuation)
 data = word.encode('utf-8')
 if word.startswith(('a','e','i','o','u','A','e','i','o','u')):
 print('vowels', data)
 pub.send_multipart([b'vowels', data])
 if len(word) == 5:
 print('five', data)
 pub.send_multipart([b'five', data])

Start the subscriber and then the sleepy publisher:

$ python poem_sub.py

$ python poem_pub_sleep.py

Now, the subscriber has time to grab its two topics. Here are the first few lines of its
output:

b'five' b'queen'
b'vowels' b'of'
b'five' b'Lying'
b'vowels' b'at'
b'vowels' b'ease'
b'vowels' b'evening'
b'five' b'flies'
b'five' b'seize'
b'vowels' b'All'
b'five' b'gaily'
b'five' b'great'
b'vowels' b'admired'

If you can’t add a sleep() to your publisher, you can synchronize publisher and sub‐
scriber programs by using REQ and REP sockets. See the publisher.py and subscriber.py
examples on GitHub.

Answers to Exercises | 435

http://bit.ly/pyzmq-gh

APPENDIX F

Cheat Sheets

I find myself looking up certain things a little too often. Here are some tables that I
hope you’ll find useful.

Operator Precedence
This table is a remix of the official documentation on precedence in Python 3, with
the highest precedence operators at the top.

Operator Description and examples

[v1, …], { v1, …}, { k1: v1, …}, (…) List/set/dict/generator creation or comprehension, parenthesized
expression

seq [n], seq [n : m], func (args…), obj .attr Index, slice, function call, attribute reference

** Exponentiation

`+`x, `-`x, `~`x Positive, negative, bitwise not

*, /, //, % Multiplication, float division, int division, remainder

+, - Addition, subtraction

<<, >> Bitwise left, right shifts

& Bitwise and

| Bitwise or

437

Operator Description and examples

in, not in, is, is not, <, <=, >, >=, !=, == Membership and equality tests

not x Boolean (logical) not

and Boolean and

or Boolean or

if … else Conditional expression

lambda … lambda expression

String Methods
Python offers both string methods (can be used with any str object) and a string
module with some useful definitions. Let’s use these test variables:

>>> s = "OH, my paws and whiskers!"
>>> t = "I'm late!"

Change Case
>>> s.capitalize()
'Oh, my paws and whiskers!'
>>> s.lower()
'oh, my paws and whiskers!'
>>> s.swapcase()
'oh, MY PAWS AND WHISKERS!'
>>> s.title()
'Oh, My Paws And Whiskers!'
>>> s.upper()
'OH, MY PAWS AND WHISKERS!'

Search
>>> s.count('w')
2
>>> s.find('w')
9
>>> s.index('w')
9
>>> s.rfind('w')
16
>>> s.rindex('w')
16
>>> s.startswith('OH')
True

438 | Appendix F: Cheat Sheets

Modify
>>> ''.join(s)
'OH, my paws and whiskers!'
>>> ' '.join(s)
'O H , m y p a w s a n d w h i s k e r s !'
>>> ' '.join((s, t))
"OH, my paws and whiskers! I'm late!"
>>> s.lstrip('HO')
', my paws and whiskers!'
>>> s.replace('H', 'MG')
'OMG, my paws and whiskers!'
>>> s.rsplit()
['OH,', 'my', 'paws', 'and', 'whiskers!']
>>> s.rsplit(' ', 1)
['OH, my paws and', 'whiskers!']
>>> s.split()
['OH,', 'my', 'paws', 'and', 'whiskers!']
>>> s.split(' ')
['OH,', 'my', 'paws', 'and', 'whiskers!']
>>> s.splitlines()
['OH, my paws and whiskers!']
>>> s.strip()
'OH, my paws and whiskers!'
>>> s.strip('s!')
'OH, my paws and whisker'

Format
>>> s.center(30)
' OH, my paws and whiskers! '
>>> s.expandtabs()
'OH, my paws and whiskers!'
>>> s.ljust(30)
'OH, my paws and whiskers! '
>>> s.rjust(30)
' OH, my paws and whiskers!'

String Type
>>> s.isalnum()
False
>>> s.isalpha()
False
>>> s.isprintable()
True
>>> s.istitle()
False
>>> s.isupper()
False
>>> s.isdecimal()
False

Cheat Sheets | 439

>>> s.isnumeric()
False

String Module Attributes
These are class attributes that are used as constant definitions.

Attribute Example

ascii_letters 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'

ascii_lowercase 'abcdefghijklmnopqrstuvwxyz'

ascii_uppercase 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

digits '0123456789'

hexdigits '0123456789abcdefABCDEF'

octdigits '01234567'

punctuation '!"#$%&\'()*+,-./:;<=>?@[\\]^_\{|}~'`

printable '0123456789abcdefghijklmnopqrstuvwxyz' + 'ABCDEFGHIJKLMNOPQRSTUVW

XYZ' + '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~' + ' \t\n\r\x0b\x0c’`

whitespace ' \t\n\r\x0b\x0c'

Fin
This page intentionally left blank.

No, wait…it isn’t.

440 | Appendix F: Cheat Sheets

Index

Symbols
!= (inequality operator), 74
(hash character), 71
% (modulus (remainder) operator), 21, 25
& (set intersection operator), 65
() (parentheses), 54
* (asterisk), 8, 34, 94
* (multiplication operator), 21
** (exponentiation operator), 21, 95
+ (addition operator), 21, 33
+ (plus sign), 22
+= (merge operator), 48
- (subtraction operator), 21, 66
-i flag, 327
. (full stop), 160
.bat files, 8
/ (floating point division operator), 21, 23
// (integer (truncating) division, 21, 23
2D graphics, 345
3D graphics, 351
<= operator, 66
= (assignment operator), 18
== (equality operator), 74
>= operator, 67
>>> prompt, 15, 17
[key], 57, 60
[offset], 45, 47
[] (square brackets), 4, 34, 44
\ (backslash), 32
\ (continuation character), 72
\" (literal double quote), 33
\' (literal single quote), 33
\n (new line), 32
\t (tab), 33

_ (underscores), 20, 106
__init__(), 127
{ } (curly brackets), 4, 56, 63, 157
| operator, 66

A
abspath() function, 250
accumulate() function, 121
activestate, 123
addition, 22
addition operator (+), 21
aggregation, 142
algebra, 384
algorithms

data structures and, 337
definition of, 11, 327

alias, 114
Amazon Web Services, 306
ampersand (&), 65
Anaconda

installing, 398
listing packages, 399

anchors, 165
animation, 351
anonymous functions, 100
Apache web server, 239
API (application programming interface)

definition of, 200
mashups and, 297
vs. web pages, 243

append() function, 48, 48
arange() function, 379
arguments

default values for, 93

441

definition of, 90
keyword, 93, 95
positional, 92
self argument, 132, 136

arithmetic calculations, 21, 377
array() function, 379
arrays

changing with reshape(), 381
getting elements from, 382
making with arange(), 379
making with array(), 379
making with zeros()/ones()/random(), 380
math functions and, 383

ASCII standard, 147
assertions, 319
assignment

assignment operator (=), 18
vs. copying, 19, 52, 62

associative arrays (see dictionaries)
asterisk (*), 8, 34, 94
asynchronous vs. synchronous, 268
asyncio module, 277
attributes

accessing, 133
definition of, 125
finding, 132
in XML markup format, 188
private, 135

audio, 356
authentication, 224
automatic echoing, 30
Avro, 195

B
back pressure, 281
background programs, 279
backslash (\), 32, 72
base classes, 128
bases, 26
bash shell, definition of, 8
basic multilingual planes, 148
batch files, definition of, 8
batch operations, 269
Berners-Lee, Tim, 223
best practices

code, debugging, 326-332
code, finding, 312
code, optimizing, 335-338
code, source control for, 339-341

code, testing, 317-325
integrated development environments

(IDEs), 314
logging, 333-335
naming and documenting, 315
packages, installing, 313
resources, 342-344

big data, 304
big endian format, 169
binary (base2), 26
binary data

bit-level integer operators, 172
bytes and bytearrays, 167
converting bytes/strings, 172
converting with struct, 168
endianness and sign bits, 166
interchange formats for, 195
practice exercise answers, 416
practice exercises, 173
reading binary files, 182
structured binary files, 196
third-party tools for, 171
writing binary files, 181

binascii module, 172
binio, 171
bit-level integer operators, 172
bits

definition of, 147
in Redis, 217

bitstring, 171
Blender, 353
blocking pop operations, 278
bokeh, 355
boolean operators, 75, 91
booleans

conversion to integers, 27
definition of, 17
object type and, 18

Bottle framework, 233
break checkers, 80, 82
break statements, 78, 82
breakpoints, 330
broadcasts, 282
browsers, 223, 224
business applications

benefits of Python for, 359
business tasks, 361
challenges of, 359
data security, 366

442 | Index

financial, 365
maps, 366
Microsoft Office Suite, 360
processing business data, 361

bytecode, 338
bytes

bytearrays and, 167
converting to strings, 172
definition of, 147

C
C Extensions, 338
C libraries, 402
cache servers, 210
caches, in Redis, 219
caching, 224
calculations, 21
calendars/clocks

alternative modules for, 265
challenges of date representation, 256
datetime module, 257
reading/writing dates and times, 261
time module, 260

call() function, 254
callback design, 276
callback functions, 101
capitalization, 39
case, 39
case sensitivity/insensitivity, 199
Central Processing Unit (see CPU)
CERN (European Organization for Nuclear

Research), 223
chain() function, 121
characters

counting, 37
delimiter, 185
escape, 32, 166
extracting, 34
fill character, 158
special characters, 161
Unicode table of, 148

chdir() function, 252
check_output() function, 254
Cheese Shop, 123, 312
child classes, 128
chip (see CPU (Central Processing Unit))
chmod() command, 249
chown() command, 250
classes

adding methods, 130
calling parent methods, 131
class methods, 136
composition and, 142
creating new from existing, 128
defining, 126
defining empty, 126
definition of term, 126
finding attributes/methods, 132
getter/setter methods, 133
method types, 136
named tuples, 144
overriding methods, 129
polymorphism and, 137
practice exercise answers, 412
practice exercises, 145
private attributes, 135
self argument, 132
special methods, 139
vs. modules, 143
vs. type, 20

clear() function, 60
client-server patterns, 282
client-server systems, 224, 287

(see also World Wide Web)
closures, 99
cloud computing, 305
cmd shell, definition of, 8
code

code counts, 336
debugging, 326-332
finding, 312
optimizing, 335-338
pseudocode, 327
source control for, 339-341
testing, 317-325

code structures
commenting, 71
comparative statements, 73
comprehensions, 84-88
continuing lines, 72
decorators, 102, 134
exceptions, 107
for loops, 80-84
functions, 89-101
generators, 101
hierarchical arrangement of, 112
iterating over, 121
namespaces, 104

Index | 443

PEP-8 style, 73
practice exercise answers, 407
practice exercises, 110
scope, 104
while loops, 78
white space and, 71

command-line arguments, 112
comments, definition of, 71
Common Gateway Interface (CGI), 232
communication, 267

(see also concurrency; networking)
comparisons

conditional, 74
exceptions during, 73
making multiple, 75
operators for, 74
statements for, 73
testing equality, 75

compilation, definition of, 9
completed lists, 281
complex numbers, 375
composition, 142
comprehensions

definition of, 84
dictionary comprehensions, 87
generator comprehensions, 88
list comprehensions, 84
set comprehensions, 87

computed values, 135
computer graphics, 345
concurrency

additional techniques for, 281
asyncio module, 277
definition of, 267
documentation on, 268
green threads, 273
practice exercise answers, 429
practice exercises, 308
processes and, 270
processes requiring, 268
queues and, 269
Redis, 277
threads and, 271
twisted framework, 276

conda, installing, 402
conditional comparisons, 74
configuration files, 194
connect() function, 200, 290
connection pools, 203, 206

constraints, 197
construct, 171
context managers, 182
continuation character (\), 72
continue statement, 79, 82
continuous integration, 325
cookies

definition of, 225
http package for, 226

copy() function, 52, 62, 249
coroutines, 273
count() function, 51
count/count prefix, 171
counter() function, 118
CPU (Central Processing Unit)

CPU-bound programs, 11, 268
static vs. dynamic programs and, 11

CRUD (create, replace, update, delete), 200
CSV (comma-separated values) format, 185
csv module, 185
ctime() function, 260
curly brackets ({ }), 4, 56, 63, 157
cursor() function, 200
cycle() function, 121
Cython, 338

D
daemon mode, 240
data feed, XML format for, 188
data munging, 362
data science, 391
data storage

disk vs. RAM, 177
file input/output, 177-184
full-text databases, 220
NoSQL data stores, 209-219
practice exercise answers, 421
practice exercises, 220
relational databases, 197-209
structured binary files, 196
structured text files, 185-196

data streams, 80
data structure servers, 211
data structures

algorithms and, 337
comparing, 68
converting binary data to, 168
creating complex, 68
creating from one or more iterators, 84

444 | Index

custom (see objects)
definition of, 4
dictionaries

adding/changing items, 57
assignment vs. copying, 62
combining, 59
conversion to, 56
creating, 56
definition of, 3, 55
deleting all items, 60
deleting individual items, 59
getting all key-value pairs, 62
getting all keys, 61
getting all values, 61
getting items by [key], 60
mutability of, 55
square and curly brackets in, 4
testing for keys, 60
vs. sets, 62

FIFO (first-in, first-out) queue, 50, 269
iterating unknown sizes, 80-82
LIFO (last- in, first-out) queue, 50
lists

adding items to end of, 48
assigning to multiple variables, 52
benefits of, 44
changing values, 47
conversion to, 45
converting to strings, 51
counting occurrences of values, 51
creating, 44
deleting items by offset, 49
deleting items by value, 49
determining length of, 52
elements in, 43, 48
extracting items by offset range, 47
extracting values from, 45
finding item’s offset by value, 50
getting/deleting items, 49
inserting items, 48
list order, 44
merging, 48
mutability of, 43
of lists, 46
reordering items, 51
testing for values, 50
vs. tuples, 55

objects (see objects)
practice exercise answers, 404

practice exercises, 69
sets

checking for set values, 65
conversion to, 63
creating, 63
null/empty, 62
testing for values, 64
vs. dictionaries, 62

tuples
advantages of, 55
conversion to lists, 45
creating, 54
elements in, 43
immutability of, 43, 54
tuple unpacking, 55
vs. lists, 55

data types
binary (see binary data)
booleans

conversion to integers, 27
definition of, 17
object type and, 17

converting to lists, 45
floats

definition of, 17
example of, 21

integers
arithmetic operations, 22
bases, 26
conversion to float, 29
definition of, 17, 21
int() function, 28
integer overflow, 29
literal, 21, 23
negative, 22
positive, 22
precedence rules, 25
type conversion to, 27

math operators for, 21
mutable vs. immutable values, 18, 30
practice exercise answers, 404
practice exercises, 41
strings

breaking into smaller strings, 38
combining, 33, 38
conversion to, 32, 51
conversion to integers, 27
counting characters in, 37
creating with quotes, 30

Index | 445

definition of, 17, 30
documentation on, 41
duplicating, 34
empty strings, 32
escape characters, 32
extracting characters from, 34
extracting substrings, 35
handling case and alignment, 39
immutability of, 30, 47
literal, 33
manipulating, 38, 147

(see also text strings)
multiline, 31
substitutions, 41
vs. lists and tuples, 43

variables, names and objects, 17-21
data wrangling, 362
databases

full-text, 220
multiple meanings of, 198
NoSQL data stores, 209-219
relational, 197-209
web framework support for, 241

dates/times, 256
(see also calendars/clocks)

datetime module, 257
DB-API, 200
DDL (data definition language), 198
debugging

best practices and, 326
with pdb, 327

decimal (base 10), 26
decimal point numbers (see floats)
deck (see deque)
declarative languages, 198
decoding, definition of, 6
decorators, 102, 134
defaultdict() function, 116
Defused XML, 194
del statement, 49, 59
delimiters, 185
deque, 120
derived classes, 128
dialects, 198, 203
dict (see dictionaries)
dict() function, 56, 118
dictionaries

adding/changing items, 57
assignment vs. copying, 62

building with comprehensions, 87
combining, 59
conversion to, 56
creating, 56
definition of, 3, 55
deleting all items, 60
deleting individual items, 59
empty, 76
gathering keyword arguments into, 95
getting all key-value pairs, 62
getting all keys, 61
getting all values, 61
getting items by [key], 60
iteration and, 81
mutability of, 55
square and curly brackets in, 4, 63
testing for keys, 60
vs. sets, 62

dict_keys objects, 61
difference() function, 66
directories

changing current, 252
creating, 251
creating subdirectories, 251
definition of, 250
deleting, 251
displaying current working, 253
listing contents of, 251
listing matching files, 252

distributed computing
definition of, 267
fallacies of, 305
MapReduce and, 304
version control systems, 339

division, 23
DML (data manipulation language), 198
docstrings, 96, 318
doctest, 323
documentation, 96, 315
Domain Name System (DNS), 296
duck typing, 137
dynamic languages, definition of, 9

E
echoing, 30
elements, in tuples and lists, 43, 48
ElementTree library, 188
elif (else if) statements, 74
else statement, 73, 79

446 | Index

email modules, 297
embedded mode, 240
empty sets, 62
empty values, 76
encode() function, 151
encoding, 299
end tags, 188
endian specifiers, 170
endianness, 166
enumerate() function, 115
epoch values, 216, 260
equality operator (==), 74
error handling, 22

(see also exceptions)
escape characters, 32, 166
escape sequences, 185
ETL (extract, transform, load), 362
event loops, 273
event-based programming, 273
exceptions

after string copy/paste, 151
creating your own, 109
definition of, 22, 107
during comparisons, 73
during type conversion, 27
exception handlers, 107
logging error messages, 333
logic errors, 329

(see also debugging)
while extracting values, 46

execute permissions, 249
execute() function, 200
executemany() function, 200
exists() function, 248
expiration dates, 219
exponentiation operator (**), 21, 95
expression language, 203, 206
extend() function, 48

F
fabric package, 301
false values, 76, 91
fanin pattern, 282
fanout pattern, 282
FastCGI, 232
feeds, XML format for, 188
fetchall() function, 200
fetchmany() function, 200
fetchone() function, 200

FIFO (first-in, first-out) queue, 50, 269
file handling

changing file names, 249
changing ownership, 250
changing permissions, 249
checking for existence of files, 248
checking type of, 248
copying files, 249
creating files, 247
deleting files, 250
getting pathnames, 250
getting symlink pathnames, 250
linking files, 249

file input/output
basics of, 177
changing positions in file, 183
closing files automatically, 182
reading binary files, 182
reading text files, 180
writing binary files, 181
writing text files, 178

file system, definition of, 250
File Transfer Protocol (FTP), 297
files

.bat, 8
configuration, 194
creating, 251
fabric files, 301
flat, 177
listing matching, 252
log files, 334
opening, 177
structured text files, 185-196

fill character, 158
financial applications, 365
findall() function, 161
fire and forget technique, 281
Flask framework, 235
flat files, 177
float() function, 29
floating point division operator (/), 21, 23
floats (floating point numbers)

calculating, 376
conversion to integers, 27
definition of, 17
example of, 21
type conversion to, 29

folders, definition of, 250
for loops

Index | 447

benefits of, 80
canceling, 82
check break, 82
continuing, 82
generating number sequences, 83
iterating over multiple sequences, 83
itertools and, 121

foreground programs, 279
foreign keys, 198
formatting

curly brackets/format, 157
old and new styles, 154
string % data, 155

frameworks, 230, 232
full-text search, 220
functions

anonymous, 100
arguments and, 90
as first-class citizens, 96
callback functions, 101
closures, 99
default parameter values, 93
defining, 89
definition of term, 2, 37, 89
docstrings, 96
inner functions, 98
keyword arguments and, 93, 95
math, 373
monkey-patching functions, 274
positional arguments and, 92, 94
running as separate process, 255

G
games, 356
generator comprehensions, 88
generators, 101
GET command, 225
get() function, 61
gethostbyname() function, 296
getoutput() function, 253
getstatusoutput() function, 254
getter methods, 133
get_description() function, 113
gevent library, 242, 273
Git, 339
github, 123
glob() function, 252
Global Interpreter Lock (GIL), 273
global namespace, 104

global variables, 104
glue code, 10
Google, 306
graphical user interfaces (GUIs), 350
graphics

2D, 345
3D, 351

graphs, 354
green threads, 273
group ids, 253
GTK+ user interface, 351

H
h5py module, 197
hachoir, 171
Hadoop streaming, 304
hard links, 249
hash character (#), 71
hashes (see dictionaries)
hashmaps (see dictionaries)
HDF5 format, 196
HEAD command, 225
hex (base 16), 26
Houdini, 353
HTML (Hypertext Markup Language), 189, 223
HTTP (Hypertext Transfer Protocol)

client-server communication via, 223, 224
GET command, 225
HEAD command, 225
POST command, 226
response headers, 226
statelessness of, 224
status codes, 227
text-based protocol of, 225
verbs in, 225

http package, 226
human-readable code, 71, 96

I
I/O bound, 268
IDLE, 314
if statement, 73
ImageMagick, 349
images, 346

(see also graphics)
immutable, definition of, 18
import alias, 205
import statement, 112
in statement, 50, 60, 64, 74

448 | Index

indentation, 71, 73
index() function, 50
indexing, 198
inequality operator (!=), 74
inheritance, 128, 142
inner functions, 98
input() function, 78
insert() function, 48
installation

Anaconda, 398
conda, 402
Linux/Unix, 398
Mac OS X, 397
overview of, 393
pip, 402
standard Python, 394
standard vs. scientific libraries, 393
Windows, 398

instance method, 136
instantiation, 127
int() function, 118

size of int, 28
type conversion with, 28

integer (truncating) division (//), 21, 23
integers

arithmetic operations, 22
bases, 26
bit-level operators, 172
definition of, 17, 21
int() function, 28
integer overflow, 29
literal, 21, 23
negative, 22
object type and, 18
positive, 22
precedence rules, 25
type conversion to, 27

integrated development environments (IDEs),
314

interactive interpreter
automatic value printing feature, 12
debugging and, 327
string echoes by, 30

internationalization, 264
Internet Message Access Protocol (IMAP), 297
interpreters, definition of, 9
intersection() function, 65
IP (Internet Protocol) layer, 286
IP addresses, 287

IPython, 315, 386
is operator, 91
isfile() function, 248
islink() function, 249
isoformat() function, 258
issubset() function, 66
issuperset() function, 67
items

adding to end of lists, 48
adding/changing in dictionaries, 57
adding/deleting, 120
changing by [offset], 47
counting, 118
deleting all items, 60
deleting by offset, 49
deleting by value, 49
deleting individual, 59
extracting by offset range, 47
finding offset of by value, 50
getting by using [offset], 45
getting items by [key], 60
getting/deleting, 49
inserting by offset, 48
reordering, 51
returning number of, 52

items() function, 62, 81
iteration

creating data structures with, 84
for statement, 80
of text files, 181
over code structures, 121
over keys, 81
over multiple sequences, 83
over values, 81
tuples vs. strings, 81

itertools, 121

J
job queues, 269
join() function, 38, 51
joins, 197
JSON (JavaScript Object Notation), 4, 190
justification, 39

K
kernel, definition of, 253
key-value pairs, 56, 62, 209
keys

copying, 59

Index | 449

definition of, 3, 55
deleting, 60
expiration of, 219
foreign, 198
getting all, 61
handling missing, 116
iterating over, 81
ordering, 120
primary, 198
requirements for, 58, 62
testing for, 60

keys() function, 61, 81
keyword arguments, 93, 95
Kivy user interface, 351

L
lambda function, 100
language interpreters, 232
languages

declarative, 198
expression, 203, 206
web server interpreters, 232

layers, 286
layout, 39
left justification, 39
len() function, 37, 52
libraries

C libraries, 402
ElementTree, 188
gevent, 242, 273
installation of, 393
installing third-party, 398, 402
IPython library, 386
message passing, 295
Python standard library, 116-123
Python’s standard web libraries, 226
scapy library, 295
SciKit library, 385
SciPy library, 385
security issues with, 193
special-purpose scientific, 391
third-party, 123
xml.dom, 189
xml.sax, 189
yaml library, 192
ZeroMQ library, 291

LIFO (last-in, first-out) queue, 50
link() function, 249
list() function, 44, 61, 118

listdir() function, 251
lists

adding items to end of, 48
assigning to multiple variables, 52
benefits of, 44
building with list comprehensions, 84
changing values, 47
concurrency and, 281
conversion to, 45
converting to strings, 51
counting occurrences of values, 51
creating, 44
definition of, 3, 38
deleting items by offset, 49
deleting items by value, 49
determining length of, 52
elements in, 43, 48
empty, 76
extracting items by offset range, 47
extracting values from, 45
finding item’s offset by value, 50
getting/deleting items, 49
in Redis, 213
inserting items, 48
list order, 44
merging, 48
of lists, 46
reordering items, 51
testing for values, 50
vs. tuples, 55

literal double quote (\"), 33
literal integers, 21, 23
literal single quote (\'), 33
localhost, 231
locks, 273
logging, 333-335

log files, 334
root loggers, 334

logic errors, 329
loopback interface, 287
loops

definition of, 2
event loops, 273
for loops, 80, 121
infinite loops, 78
optional else statement, 79, 82
skipping ahead, 79
while, 78

lowercase, 39

450 | Index

M
machine languages, definition of, 9
Mac’s Activity Monitor (OS X), 253
magic methods, 139
make() function, 251
mangling, 136
MapReduce, 304
maps, 366
markup formats, 187
marshalling, 299
mashups, 297
match() function, 159
math functions, 373
math operators, 21
matplotlib, 354
matrix multiplication, 378
Maya, 353
Mercurial, 339
merge operator (+=), 48
messages

message passing libraries, 295
queue transport of, 269
XML format for, 188

methods
adding, 130
calling, 131
class methods, 136
definition of, 125
finding, 132
getter/setter, 133
instance methods, 136
magic, 139
method types, 136
overriding, 129
special, 139
static methods, 137

Microsoft Excel, 196
Microsoft Office Suite, 360
microthreads, 274
MIME types, 228
modules

asyncio, 277
binascii module, 172
csv module, 185
date/time modules, 265
datetime module, 257
definition of, 112
email modules, 297
for business tasks, 361

graphics-related, 345
h5py, 197
importing, 112
importing individual parts of, 114
importing with another name, 114
json module, 190
locating standard, 116
multiprocessing module, 255, 270
os module, 253
pickle module, 195
PyTables, 197
referring to other modules, 112
requests modules, 229
search path, 115
statistics module, 377
struct module, 168
subprocess module, 253
threading module, 271
time module, 260
unicodedata module, 148
vs. classes and objects, 143

modulus (remainder) operator (%), 21, 25
monkey-patching functions, 274
MsgPack, 195
multiline strings, 31
multiplication, 22, 378
multiplication operator (*), 21
multiprocessing module, 255, 270
multitasking, 268
music, 356
mutable, definition of, 18
MySQL, 202

N
N-dimensional arrays, 378
named tuples, 144
names/naming

avoiding conflicts, 113
best practices, 315
hidden attributes, 135
mangling, 136
of variables, 20
purpose of, 19

(see also variables)
reserved words to avoid, 20

namespaces, 104
negative integers, 22
nesting, 188
networking

Index | 451

cloud computing, 305
definition of, 267
Domain Name System (DNS) and, 296
email modules, 297
File Transfer Protocol (FTP), 297
for big data, 304
Internet services, 296
message passing libraries for, 295
patterns and, 282
practice exercise answers, 429
practice exercises, 308
publish-subscribe model, 282
remote processing, 298
scapy library, 295
sockets and, 287
Transmission Control Protocol/Internet

Protocol (TCP/IP), 286
web services/APIs, 297
ZeroMQ library, 291

new line (\n), 32
nginx web server, 241
None value, 91
nose, 324
NoSQL data stores

additional servers/APIs, 219
benefits of, 209
dbm family, 209
memcached, 210
Redis, 211-219

null sets, 62, 76
nulls, definition of term, 197
number crunching, 268
number sequences, generating, 83
NumPy, 338, 378

O
objects

accessing attributes, 133
adding methods, 130
calling parent methods, 131
composition and, 142
contents of, 125
creating custom, 126
date/time objects, 257
definition of, 17, 96, 125
finding attributes/methods, 132
inheritance and, 128
method types, 136
named tuples, 144

overriding methods, 129
polymorphism in, 137
practice exercise answers, 412
practice exercises, 145
private attributes, 135
restoring in binary format, 195
self argument, 132
special methods, 139
type and, 18
vs. classes, 126
vs. modules, 143

octal (base 8), 26
octothorpe character (#), 71
offset

accessing values by, 3
adding items by, 48
adding items by with insert(), 48
changing items by [offset], 47
deleting items by, 49
extracting items by offset range, 47
extracting values by [offset], 45
getting items by, 49
specifying, 34

ones() function, 380
open() function, 247
OpenStack, 307
operators

for comparisons, 74
math, 21
precedence of, 437

optional else statement, 79, 82
options, 194
OrderedDict() function, 120
ORM (Object Relational Model) layer, 203, 207
os module, 253
out of band communication, 279

P
p-code, 338
pack() function, 169
packages

definition of, 115
fabric package, 301
http package, 226
in Python 3, 226, 268
installing, 313
installing from source, 314
package managers, 314
third-party for science and math, 378

452 | Index

urllib package, 226
xlrd package, 196

packed sequences, 377
packets, 286
Panda3D, 351
Pandas, 391
parameters

default values, 93
definition of, 89

parent classes, 128
parentheses (), 54
parsers, 194
pathnames, 248, 250
pattern specifiers, 163
patterns, 282, 294
pending lists, 281
PEP-8, 73, 317
performance, 267

(see also concurrency; networking)
permissions, 249
persistence, 177, 210
PHP language, 10
pickle module, 195
Pike, Rob, 151
Pillow, 346
pip

installing, 402
using, 313

placeholders, 201
planes, 148
plots, 354
plus sign (+), 22, 33
pointers, lack of, 94
polymorphism, 137
pools, 203, 206
pop() function, 49, 120
popleft() function, 120
poplib library, 297
ports, 287, 297
positional arguments, 92, 94
positive integers, 22
POST command, 226
Post Office Protocol 3 (POP3), 297
PostgreSQL, 203
pound character (#), 71
pprint() function, 122
precedence, 75
precedence rules, 25
precision value, 158

pretty printer, 122
primary keys, 198
print() function

alternative to, 122
testing code and, 317
vs. automatic echoing, 31
within interactive interpreter, 13

process ids, 253
processes

concurrency and, 270
creating with multiprocessing module, 255
creating with subprocess module, 253
definition of, 253
killing, 255
viewing current, 253

programs
background programs, 279
basic development of, 14
basic features of, 2
command-line arguments, 112
CPU-bound, 11, 268
event-based, 273
exceptions, 22

(see also exceptions)
foreground programs, 279
I/O bound, 268
modules, 112-115
packages, 115
practice exercise answers, 411
practice exercises, 123
processes and, 253
readability and writability of, 10, 96
sequential, 267
standalone, 111
static vs. dynamic, 11
thread-safe, 272

prompts
>>> prompt, 15, 17
definition of, 13

proper subsets, 67
properties

computed values and, 135
defining, 134
getting/setting attribute values, 133

Protocol Buffers, 195
protocols

definition of term, 224
layers and, 286
UDP/TCP, 286

Index | 453

pseudocode, 327
public IP addresses, 287
publish-subscribe (pub-sub) pattern, 214, 282
pull pattern, 282
push pattern, 282
PyCharm, 315
pyflakes, 317
pylint, 317
PyPI, 123, 312
PyPy, 338
PyTables module, 197
Python 3

applications in business, 359-371
applications in math and statistics, 373-392
applications in the arts and music, 345-357
benefits of, 10
drawbacks of, 11
installation

Anaconda, 398
conda, 402
Linux/Unix, 398
Mac OS X, 397
overview of, 393
pip, 402
standard Python, 394
standard vs. scientific libraries, 393
virtualenv, 402
Windows, 398

introduction to
basic program features, 2
data structures, 4
dictionaries, 3
lists, 3
practice exercise answers, 403
practice exercises, 15
syntax, 2

operator precedence in, 437
packages in, 226, 268
philosophy of, 15
real-world uses of, 7
resources for learning, 342-344
running

interactive interpreter, 12
main methods of, 12
using Python files, 14

versions in use, 393
vs. other languages, 8
vs. Python 2, 12, 30

Python debugger (pdb), 327

Python Image Library (PIL), 346
Python standard library

adding/deleting items, 120
alternatives to, 123
benefits of, 116
counting items, 118
finding code, 312
graphics-related modules, 345
handling missing keys, 116
importing code from, 6
iterating over code structures, 121
math and statistics in, 373
order by key, 120
pretty printer, 122

Q
Qt user interface, 350
queries, 198
queues, 269
quotes

literal single or double, 33
single vs. double vs. triple, 30

R
random() function, 380
range() function, 83
raw strings, 166
read() function, 180, 182
read, definition of, 177
Read-Evaluate-Print Loop (REPL), 317
read/write permissions, 249
readline() function, 180
readlines() function, 180
readthedocs, 123
realpath() function, 250
Redis

benefits of, 211
bits, 217
caches/expiration, 219
concurrency and, 277
hashes in, 214
lists in, 213, 278
publish-subscribe system with, 283
sets in, 215
sorted sets in, 216
strings in, 211

references, definition of, 19
regressions, 319
regular expressions

454 | Index

all matches, 161
basics of, 159
exact matches, 159
first match, 160
pattern specifiers, 163
replace at match, 161
special characters, 161
specifying match output, 166
split at matches, 161

relational databases
benefits of, 197
DB-API, 200
keys and indexing in, 198
MySQL, 202
PostgreSQL, 203
SQL (structured query language), 198
SQLAlchemy, 203
SQLite, 200
tables in, 197

remote processing
alternative products for, 303
benefits of, 298
fabric package for, 301
Remote Procedure Calls (RPCs), 299
Salt, 303

remove() function, 49, 250
rename() function, 249
replace() function, 35, 41
Representational State Transfer (REST), 243
request-reply patterns, 282
request-reply technique, 281
requests module, 229
requests, definition of, 224
reserved words, 20
reshape() function, 381
resources, 342-344
response headers, 226
responses, definition of, 224
Respresentational State Transfer (REST), 299
results, definition of, 89
reverse() function, 121
right justification, 39
rmdir() function, 251
robustness, 267

(see also concurrency; networking)
Ronacher, Armin, 235
root loggers, 334
Ruby language, 10

S
Salt, 303
scapy library, 295
SCGI, 232
schemas, 197
SciKit library, 385
SciPy library, 385
scope, 104
scripting languages (see dynamic languages)
scripts

definition of, 7
dynamic languages and, 9
shell scripts, 8

search() function, 160
Secure Shell (SSH), 301
security issues

business data, 366
debug in production web servers, 236
passwords, 303
pickle module, 196
Python libraries vulnerability, 193
SQL injection, 201

seek() function, 183
seeking, drawbacks of, 304
self argument, 132, 136
sentinel values, 279, 331
separators, 38, 185
sequences

adding/deleting items, 120
creating with generators, 101
escape sequences, 185
generating number sequences, 83
iterating over multiple, 83
lists (see lists)
packed, 377
strings as, 30
tuples (see tuples)

sequential programs, 267
serialization, 195, 299
sessions, 224
set intersection operator (&), 65
set() function, 63
setdefault() function, 116
setlocale() function, 264
sets

building with set comprehensions, 87
checking for combinations of set values, 65
conversion to, 63
creating, 63

Index | 455

empty, 76
in Redis, 215
null/empty, 62
sorted, 216
testing for values, 64
vs. dictionaries, 62

setter methods, 133
settings, 194
sh (see bash shell)
sharp character (#), 71
shell programs

definition of, 8
for Linux/Unix, 8
for Windows, 8

shell scripts, drawbacks of, 8
sign bits, 166
Simple API for XML (SAX), 189
Simple Mail Transfer Protocol (SMTP), 297
simplicity, 267

(see also concurrency; networking)
singletons, 143
slice, 35, 47
slices

extracting items by offset range, 47
reversing a string with, 121

social media sites, 298
sockets

binding to, 288
client-server exchange using, 287
complications resulting from, 291
creating, 288
IP addresses and, 287
TCP and, 289

software locks, 273
sort() function, 51
sorted() function, 51
source control systems

Git, 339
importance of, 339
Mercurial, 339

spaces, 34
Spark, 304
special characters, 161
special methods, 139
split() function, 38, 45, 51, 161
spreadsheets, 196
SQL (structured query language), 198
SQL expression language, 203
SQL injection, 201

SQLAlchemy
applicable levels for, 203
engine layer, 204
Expression Language, 206
initial connection string, 203
installing, 203
ORM (Object Relational Model) layer, 207

SQLite, 200
square brackets ([]), 4, 34, 44, 63
stack, definition of, 50
standalone programs, 111
start tags, 188
statelessness, 224
statements, 198
static languages, definition of, 9
static methods, 137
statistics module, 377
status codes, 227
str() function, 32
streaming

benefits of, 304
Hadoop streaming, 304
iterators and, 80
Spark, 304
TCP for, 286

strftime() function, 258, 262
string % data conversion types, 155
strings

breaking into smaller strings, 38
combining, 33, 38
conversion to, 32, 51
conversion to integers, 27
converting to binary data, 172
counting characters in, 37
creating multiline, 31
creating with quotes, 30
definition of, 17, 30
docstrings, 96
documentation on, 41
duplicating, 34
empty, 76
empty strings, 32
escape characters, 32
extracting characters from, 34
extracting substrings, 35
handling case and alignment, 39
immutability of, 30, 47
in Redis, 211
iteration and, 81

456 | Index

literal, 33
manipulating, 38, 147

(see also text strings)
raw strings, 166
string methods, 438
string module attributes, 440
substitutions, 41
vs. lists and tuples, 43

strongly typed, definition of, 18
strptime() function, 258, 263
struct module, 168
structured binary files, 196
structured text files

binary interchange formats, 195
configuration files, 194
CSV (comma-separated values), 185
distinguishing formats, 185
HTML (Hypertext Markup Language), 189
JSON (JavaScript Object Notation), 190
security concerns, 193
serialization of, 195
XML (Extensible Markup Language), 187
YAML (YAML Ain’t Markup Language), 192

sub() function, 161
subclasses, 128
subdirectories, creating, 251
subprocess module, 253
subsets, proper, 67
substitutions, 41
substrings, extracting, 35
subtraction, 22
subtraction operator (-), 21, 66
super() function, 131
superclasses, 128
supersets, 67
symbolic links, 249, 250
symlink() function, 249
symmetric_difference() function, 66
synchronous vs. asynchronous, 268
syntax

curly brackets ({ }), 4, 56, 63
definition of, 2
in C/C++, 8
in Python, 2
reserved words for, 20
square brackets ([]), 4, 63

system functions
accessing system information, 253
calendars/clocks, 256-265

directories, 251-252
file handling, 247-250
practice exercise answers, 427
practice exercises, 265
programs/processes, 253-256

T
tab (\t), 33
table scans, 198
tables, 197
tags

in XML format, 187
nesting of, 188
start/end, 188

Task Manager, 253
task queues, 269
tell() function, 183
telnet, 225
terminate() function, 255, 272
testing

additional frameworks for, 325
continuous integration, 325
doctest, 323
nose, 324
Python code checkers, 317
Read-Evaluate-Print Loop (REPL) and, 317
unit tests, 235
unittest, 319

text
aligning, 33, 39
changing case of, 39
forcing new line, 32

text strings
formatting

curly brackets/format, 157
old and new styles, 154
string % data, 155

practice exercise answers, 416
practice exercises, 173
regular expressions

all matches, 161
basics of, 159
exact matches, 159
first match, 160
pattern specifiers, 163
replace at match, 161
special characters, 161
specifying match output, 166
split at matches, 161

Index | 457

Unicode
decoding, 153
encode() function, 151
Python 3 strings, 148
Unicode charts, 149
unicodedata module, 148
UTF-8 encoding/decoding, 151
vs. ASCII format, 147

Thompson, Ken, 151
thread-safe programs, 272
threads

best application of, 272
challenges of, 272
concurrency and, 271
green threads, 273
microthreads, 274
termination of, 272

Thrift, 195
throttling, 281
time module, 260
time() function, 260
timing, measurement of, 335
tokens, 298
topics, definition of, 282
Transmission Control Protocol/Internet Proto‐

col (TCP/IP), 224, 230, 286, 289
true values, 76
truncating integer division, 23
tuples

advantages of, 55
conversion to lists, 45
creating, 54
elements in, 43
empty, 76
immutability of, 43, 54
iteration and, 81
lack of comprehensions, 88
named tuples, 144
tuple unpacking, 55
vs. lists, 55

twisted framework, 276
type

definition of, 9, 17
strongly typed, 18
type conversion, 27
vs. class, 20

typing, duck typing, 137

U
UDP (User Datagram Protocol), 286, 289
underscores (_)

double, 106
in names, 20

Unicode
decoding, 153
encode() function, 151
practice exercise answers, 416
practice exercises, 173
Python 3 strings, 148
standard for, 30
Unicode charts, 149
unicodedata module, 148
UTF-8 encoding/decoding, 151
vs. ASCII format, 147

union() function, 66
unit tests, 235
unittest, 319
Unix

domain sockets, 288
epoch values, 216, 260
shell rules, 252
time representation, 260

unpack() function, 169
unpacking, tuples, 55
update() function, 59
uppercase, 39
URL (Uniform Resource Locator), 223
urllib package, 226
user ids, 253
UTF-8 dynamic encoding, 151

V
values

changing, 47
checking, 73
combinations of set values, 65
computed values, 135
copying, 53, 59
counting occurrences of, 51
default, 93
definition of, 3
deleting, 60
deleting items by, 49
discarding duplicate, 63
extracting, 45
false values, 76, 91
finding item’s offset by, 50

458 | Index

getting all, 61
getting/setting for attributes, 133
in XML markup format, 188
iterating over, 81
keys and, 55
mutable vs. immutable, 18
None, 91
precision value, 158
sentinel values, 279, 331
testing for, 50, 64
true values, 76

values() function, 61, 81
van Rossum, Guido, 71, 277
variables

arithmetic operations and, 23
assigning lists to, 52
assignment of, 18
defining, 18
definition of term, 9, 17
global, 104
naming of, 20
temporary, 24

ventilator pattern, 294
verbs, 225
version control, 339
virtual machines, 338
virtualenv, installing, 402
visualization, 354
volumes, definition of, 250

W
Web Server Gateway Interface (WSGI), 232
web services

connecting to, 6
networking and, 297

while loops, 78
white space, 71
wild-card symbols

* (asterisk), 8, 34, 160
. (full stop), 160
.* (full stop asterisk), 160
Unix shell rules and, 252

Window’s Task Manager, 253
with statement, 182
words, reserved for Python syntax, 20
work queues, 269
working directory, 253
working lists, 281
World Wide Web

basic design of, 223
history of, 223
practice exercise answers, 425
practice exercises, 246
web clients

data interchange through, 224
Python’s standard web libraries, 226
requests module, 229
telnet text-based interaction with, 225

web servers
bare-bones Python HTTP server, 230
Bottle framework, 233
Flask framework, 235
Flask non-Python, 239
for database-backed websites, 241
variety of frameworks available for, 230,

232
web server gateway interface, 232

WORM (write once/read many) applications,
196

write() function, 178, 181
write, definition of, 177
write/read permissions, 249
WxPthon user interface, 351

X
xlrd package, 196
XML (Extensible Markup Language) format,

187
xml.dom library, 189
xml.sax library, 189

Y
YAML (YAML Ain’t Markup Language), 192

Z
zero float, 76
zero integer, 76
ZeroMQ library

alternatives to, 295
benefits of, 291
connecting multiple clients/services, 294
documentation for, 291
network patterns in, 292

zeros() function, 380
zip() function, 83
zsets, 216

Index | 459

About the Author
Bill Lubanovic has developed software with Unix since 1977, GUIs since 1981, data‐
bases since 1990, and the Web since 1993.

In 1982, at a startup named Intran, he developed MetaForm, one of the first commer‐
cial GUIs (before the Mac or Windows), on one of the first graphic workstations. In
the early 1990s, while at Northwest Airlines, he wrote a graphic yield management
system that generated millions of dollars in revenue; established a presence for the
company on the Internet; and wrote its first Internet marketing test. Later, he cofoun‐
ded an ISP (Tela) in 1994, and a web development company (Mad Scheme) in 1999.

Recently, he developed core services and distributed systems with a remote team for a
Manhattan startup. Currently, he’s integrating OpenStack services for a supercom‐
puter company.

Bill enjoys life in Minnesota with his wonderful wife Mary, children Tom and Karin,
and cats Inga, Chester, and Lucy.

Colophon
The animal on the cover of Introducing Python is an Asiatic Python (Python reticula‐
tus). This snake is not quite as scary as it looks: it is nonvenomous and only occasion‐
ally attacks humans. Approaching lengths of seven meters (and sometimes over
nine), this can be the longest snake or reptile in the world, but most individuals are
closer to three or four meters long. The Latin terminology in its name refers to the
netlike appearance of its patterns and coloring. The size and color of the shapes varies
widely, particularly according to location, but diamonds are common on the python’s
back. Their appearance often allows them to blend in well with their surroundings in
the wild.

The Asiatic python lives throughout Southeast Asia. There may be three subspecies
with distinct geographical boundaries, but the scientific community does not for‐
mally recognize this idea. Pythons are most commonly found in rainforests, wood‐
lands, grasslands, and bodies of water, since their swimming skills are superb. They
have even been known to swim out to remote islands. Their diet consists mainly of
mammals and birds.

This is an increasingly popular species to have in captivity, due to their striking
appearance and good behavior, but this species can be unpredictable. There are docu‐
mented instances of Asiatic pythons eating or otherwise killing people. Exact length
measurements are very hard to take on a fairly aggressive snake, so only figures on
dead or anesthetized Asiatic pythons are really considered accurate. While many cap‐

tive pythons are obese, ones in the wild tend to be lighter, and they may be more
fairly described as erratic rather than genuinely dangerous.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to http://animals.oreilly.com.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Audience
	Outline
	Python Versions
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. A Taste of Py
	Python in the Real World
	Python versus Language X
	So, Why Python?
	When Not to Use Python
	Python 2 versus Python 3
	Installing Python
	Running Python
	Using the Interactive Interpreter
	Use Python Files
	What’s Next?

	Your Moment of Zen
	Things to Do

	Chapter 2. Py Ingredients: Numbers, Strings, and Variables
	Variables, Names, and Objects
	Numbers
	Integers
	Precedence
	Bases
	Type Conversions
	How Big Is an int?
	Floats
	Math Functions

	Strings
	Create with Quotes
	Convert Data Types by Using str()
	Escape with \
	Combine with +
	Duplicate with *
	Extract a Character with []
	Slice with [start : end : step]
	Get Length with len()
	Split with split()
	Combine with join()
	Playing with Strings
	Case and Alignment
	Substitute with replace()
	More String Things

	Things to Do

	Chapter 3. Py Filling: Lists, Tuples, Dictionaries, and Sets
	Lists and Tuples
	Lists
	Create with [] or list()
	Convert Other Data Types to Lists with list()
	Get an Item by Using [offset]
	Lists of Lists
	Change an Item by [offset]
	Get a Slice to Extract Items by Offset Range
	Add an Item to the End with append()
	Combine Lists by Using extend() or +=
	Add an Item by Offset with insert()
	Delete an Item by Offset with del
	Delete an Item by Value with remove()
	Get an Item by Offset and Delete It by Using pop()
	Find an Item’s Offset by Value with index()
	Test for a Value with in
	Count Occurrences of a Value by Using count()
	Convert to a String with join()
	Reorder Items with sort()
	Get Length by Using len()
	Assign with =, Copy with copy()

	Tuples
	Create a Tuple by Using ()
	Tuples versus Lists

	Dictionaries
	Create with {}
	Convert by Using dict()
	Add or Change an Item by [key]
	Combine Dictionaries with update()
	Delete an Item by Key with del
	Delete All Items by Using clear()
	Test for a Key by Using in
	Get an Item by [key]
	Get All Keys by Using keys()
	Get All Values by Using values()
	Get All Key-Value Pairs by Using items()
	Assign with =, Copy with copy()

	Sets
	Create with set()
	Convert from Other Data Types with set()
	Test for Value by Using in
	Combinations and Operators

	Compare Data Structures
	Make Bigger Data Structures
	Things to Do

	Chapter 4. Py Crust: Code Structures
	Comment with #
	Continue Lines with \
	Compare with if, elif, and else
	What Is True?

	Do Multiple Comparisons with in
	Repeat with while
	Cancel with break
	Skip Ahead with continue
	Check break Use with else

	Iterate with for
	Cancel with break
	Skip with continue
	Check break Use with else
	Iterate Multiple Sequences with zip()
	Generate Number Sequences with range()
	Other Iterators

	Comprehensions
	List Comprehensions
	Dictionary Comprehensions
	Set Comprehensions
	Generator Comprehensions

	Functions
	Positional Arguments
	Keyword Arguments
	Specify Default Parameter Values
	Gather Positional Arguments with *
	Gather Keyword Arguments with **
	Docstrings
	Functions Are First-Class Citizens
	Inner Functions
	Closures
	Anonymous Functions: the lambda() Function

	Generators
	Decorators
	Namespaces and Scope
	Uses of _ and __ in Names

	Handle Errors with try and except
	Make Your Own Exceptions
	Things to Do

	Chapter 5. Py Boxes: Modules, Packages, and Programs
	Standalone Programs
	Command-Line Arguments
	Modules and the import Statement
	Import a Module
	Import a Module with Another Name
	Import Only What You Want from a Module
	Module Search Path

	Packages
	The Python Standard Library
	Handle Missing Keys with setdefault() and defaultdict()
	Count Items with Counter()
	Order by Key with OrderedDict()
	Stack + Queue == deque
	Iterate over Code Structures with itertools
	Print Nicely with pprint()

	More Batteries: Get Other Python Code
	Things to Do

	Chapter 6. Oh Oh: Objects and Classes
	What Are Objects?
	Define a Class with class
	Inheritance
	Override a Method
	Add a Method
	Get Help from Your Parent with super
	In self Defense
	Get and Set Attribute Values with Properties
	Name Mangling for Privacy
	Method Types
	Duck Typing
	Special Methods
	Aggregation and Composition
	When to Use Classes and Objects versus Modules
	Named Tuples

	Things to Do

	Chapter 7. Mangle Data Like a Pro
	Text Strings
	Unicode
	Format
	Match with Regular Expressions

	Binary Data
	bytes and bytearray
	Convert Binary Data with struct
	Other Binary Data Tools
	Convert Bytes/Strings with binascii()
	Bit Operators

	Things to Do

	Chapter 8. Data Has to Go Somewhere
	File Input/Output
	Write a Text File with write()
	Read a Text File with read(), readline(), or readlines()
	Write a Binary File with write()
	Read a Binary File with read()
	Close Files Automatically by Using with
	Change Position with seek()

	Structured Text Files
	CSV
	XML
	HTML
	JSON
	YAML
	A Security Note
	Configuration Files
	Other Interchange Formats
	Serialize by Using pickle

	Structured Binary Files
	Spreadsheets
	HDF5

	Relational Databases
	SQL
	DB-API
	SQLite
	MySQL
	PostgreSQL
	SQLAlchemy

	NoSQL Data Stores
	The dbm Family
	Memcached
	Redis
	Other NoSQL

	Full-Text Databases
	Things to Do

	Chapter 9. The Web, Untangled
	Web Clients
	Test with telnet
	Python’s Standard Web Libraries
	Beyond the Standard Library: Requests

	Web Servers
	The Simplest Python Web Server
	Web Server Gateway Interface
	Frameworks
	Bottle
	Flask
	Non-Python Web Servers
	Other Frameworks

	Web Services and Automation
	The webbrowser Module
	Web APIs and Representational State Transfer
	JSON
	Crawl and Scrape
	Scrape HTML with BeautifulSoup

	Things to Do

	Chapter 10. Systems
	Files
	Create with open()
	Check Existence with exists()
	Check Type with isfile()
	Copy with copy()
	Change Name with rename()
	Link with link() or symlink()
	Change Permissions with chmod()
	Change Ownership with chown()
	Get a Pathname with abspath()
	Get a symlink Pathname with realpath()
	Delete a File with remove()

	Directories
	Create with mkdir()
	Delete with rmdir()
	List Contents with listdir()
	Change Current Directory with chdir()
	List Matching Files with glob()

	Programs and Processes
	Create a Process with subprocess
	Create a Process with multiprocessing
	Kill a Process with terminate()

	Calendars and Clocks
	The datetime Module
	Using the time Module
	Read and Write Dates and Times
	Alternative Modules

	Things to Do

	Chapter 11. Concurrency and Networks
	Concurrency
	Queues
	Processes
	Threads
	Green Threads and gevent
	twisted
	asyncio
	Redis
	Beyond Queues

	Networks
	Patterns
	The Publish-Subscribe Model
	TCP/IP
	Sockets
	ZeroMQ
	Scapy
	Internet Services
	Web Services and APIs
	Remote Processing
	Big Fat Data and MapReduce
	Working in the Clouds

	Things to Do

	Chapter 12. Be a Pythonista
	About Programming
	Find Python Code
	Install Packages
	Use pip
	Use a Package Manager
	Install from Source

	Integrated Development Environments
	IDLE
	PyCharm
	IPython

	Name and Document
	Testing Your Code
	Check with pylint, pyflakes, and pep8
	Test with unittest
	Test with doctest
	Test with nose
	Other Test Frameworks
	Continuous Integration

	Debugging Python Code
	Debug with pdb
	Logging Error Messages
	Optimize Your Code
	Measure Timing
	Algorithms and Data Structures
	Cython, NumPy, and C Extensions
	PyPy

	Source Control
	Mercurial
	Git

	Clone This Book
	How You Can Learn More
	Books
	Websites
	Groups
	Conferences

	Coming Attractions

	Appendix A. Py Art
	2-D Graphics
	Standard Library
	PIL and Pillow
	ImageMagick

	Graphical User Interfaces (GUIs)
	3-D Graphics and Animation
	Plots, Graphs, and Visualization
	matplotlib
	bokeh

	Games
	Audio and Music

	Appendix B. Py at Work
	The Microsoft Office Suite
	Carrying Out Business Tasks
	Processing Business Data
	Extracting, Transforming, and Loading
	Additional Sources of Information

	Python in Finance
	Business Data Security
	Maps
	Formats
	Draw a Map
	Applications and Data

	Appendix C. Py Sci
	Math and Statistics in the Standard Library
	Math Functions
	Working with Complex Numbers
	Calculate Accurate Floating Point with decimal
	Perform Rational Arithmetic with fractions
	Use Packed Sequences with array
	Handling Simple Stats by Using statistics
	Matrix Multiplication

	Scientific Python
	NumPy
	Make an Array with array()
	Make an Array with arange()
	Make an Array with zeros(), ones(), or random()
	Change an Array’s Shape with reshape()
	Get an Element with []
	Array Math
	Linear Algebra

	The SciPy Library
	The SciKit Library
	The IPython Library
	A Better Interpreter
	IPython Notebook

	Pandas
	Python and Scientific Areas

	Appendix D. Install Python 3
	Install Standard Python
	Mac OS X
	Windows
	Linux or Unix

	Install Anaconda
	Install and Use pip and virtualenv
	Install and Use conda

	Appendix E. Answers to Exercises
	Chapter 1, A Taste of Py
	Chapter 2, Py Ingredients: Numbers, Strings, and Variables
	Chapter 3, Py Filling: Lists, Tuples, Dictionaries, and Sets
	Chapter 4, Py Crust: Code Structures
	Chapter 5, Py Boxes: Modules, Packages, and Programs
	Chapter 6, Oh Oh: Objects and Classes
	Chapter 7, Mangle Data Like a Pro
	Chapter 8, Data Has to Go Somewhere
	Chapter 9, The Web, Untangled
	Chapter 10, Systems
	Chapter 11, Concurrency and Networks

	Appendix F. Cheat Sheets
	Operator Precedence
	String Methods
	Change Case
	Search
	Modify
	Format
	String Type

	String Module Attributes
	Fin

	Index
	About the Author

