
Ryan Mitchell

Web Scraping
with Python
COLLECTING MORE DATA FROM THE MODERN WEB

2nd Edition

Ryan Mitchell

Web Scraping with Python
Collecting More Data from the Modern Web

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-98557-1

[LSI]

Web Scraping with Python
by Ryan Mitchell

Copyright © 2018 Ryan Mitchell. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Justin Billing
Copyeditor: Sharon Wilkey
Proofreader: Christina Edwards

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2018: Second Edition

Revision History for the Second Edition
2018-03-20: First Release
2018-11-21: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491985571 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Web Scraping with Python, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491985571

Table of Contents

Preface. ix

Part I. Building Scrapers

1. Your First Web Scraper. 3
Connecting 3
An Introduction to BeautifulSoup 6

Installing BeautifulSoup 6
Running BeautifulSoup 8
Connecting Reliably and Handling Exceptions 10

2. Advanced HTML Parsing. 15
You Don’t Always Need a Hammer 15
Another Serving of BeautifulSoup 16

find() and find_all() with BeautifulSoup 18
Other BeautifulSoup Objects 20
Navigating Trees 21

Regular Expressions 25
Regular Expressions and BeautifulSoup 29
Accessing Attributes 30
Lambda Expressions 31

3. Writing Web Crawlers. 33
Traversing a Single Domain 33
Crawling an Entire Site 37

Collecting Data Across an Entire Site 40
Crawling Across the Internet 42

4. Web Crawling Models. 49
Planning and Defining Objects 50
Dealing with Different Website Layouts 53

iii

Structuring Crawlers 58
Crawling Sites Through Search 58
Crawling Sites Through Links 61
Crawling Multiple Page Types 63

Thinking About Web Crawler Models 65

5. Scrapy. 67
Installing Scrapy 67

Initializing a New Spider 68
Writing a Simple Scraper 69
Spidering with Rules 70
Creating Items 74
Outputting Items 76
The Item Pipeline 77
Logging with Scrapy 80
More Resources 81

6. Storing Data. 83
Media Files 83
Storing Data to CSV 86
MySQL 88

Installing MySQL 89
Some Basic Commands 91
Integrating with Python 94
Database Techniques and Good Practice 97
“Six Degrees” in MySQL 100

Email 103

Part II. Advanced Scraping

7. Reading Documents. 107
Document Encoding 107
Text 108

Text Encoding and the Global Internet 109
CSV 113

Reading CSV Files 113
PDF 115
Microsoft Word and .docx 117

8. Cleaning Your Dirty Data. 121
Cleaning in Code 121

iv | Table of Contents

Data Normalization 124
Cleaning After the Fact 126

OpenRefine 126

9. Reading and Writing Natural Languages. 131
Summarizing Data 132
Markov Models 135

Six Degrees of Wikipedia: Conclusion 139
Natural Language Toolkit 142

Installation and Setup 142
Statistical Analysis with NLTK 143
Lexicographical Analysis with NLTK 145

Additional Resources 149

10. Crawling Through Forms and Logins. 151
Python Requests Library 151
Submitting a Basic Form 152
Radio Buttons, Checkboxes, and Other Inputs 154
Submitting Files and Images 155
Handling Logins and Cookies 156

HTTP Basic Access Authentication 157
Other Form Problems 158

11. Scraping JavaScript. 161
A Brief Introduction to JavaScript 162

Common JavaScript Libraries 163
Ajax and Dynamic HTML 165

Executing JavaScript in Python with Selenium 166
Additional Selenium Webdrivers 171

Handling Redirects 172
A Final Note on JavaScript 174

12. Crawling Through APIs. 175
A Brief Introduction to APIs 175

HTTP Methods and APIs 177
More About API Responses 178

Parsing JSON 179
Undocumented APIs 181

Finding Undocumented APIs 182
Documenting Undocumented APIs 184
Finding and Documenting APIs Automatically 184

Combining APIs with Other Data Sources 187

Table of Contents | v

More About APIs 190

13. Image Processing and Text Recognition. 193
Overview of Libraries 194

Pillow 194
Tesseract 195
NumPy 197

Processing Well-Formatted Text 197
Adjusting Images Automatically 200
Scraping Text from Images on Websites 203

Reading CAPTCHAs and Training Tesseract 206
Training Tesseract 207

Retrieving CAPTCHAs and Submitting Solutions 211

14. Avoiding Scraping Traps. 215
A Note on Ethics 215
Looking Like a Human 216

Adjust Your Headers 217
Handling Cookies with JavaScript 218
Timing Is Everything 220

Common Form Security Features 221
Hidden Input Field Values 221
Avoiding Honeypots 223

The Human Checklist 225

15. Testing Your Website with Scrapers. 227
An Introduction to Testing 227

What Are Unit Tests? 228
Python unittest 228

Testing Wikipedia 230
Testing with Selenium 233

Interacting with the Site 233
unittest or Selenium? 237

16. Web Crawling in Parallel. 239
Processes versus Threads 239
Multithreaded Crawling 240

Race Conditions and Queues 242
The threading Module 245

Multiprocess Crawling 247
Multiprocess Crawling 249
Communicating Between Processes 251

vi | Table of Contents

Multiprocess Crawling—Another Approach 253

17. Scraping Remotely. 255
Why Use Remote Servers? 255

Avoiding IP Address Blocking 256
Portability and Extensibility 257

Tor 257
PySocks 259

Remote Hosting 259
Running from a Website-Hosting Account 260
Running from the Cloud 261

Additional Resources 262

18. The Legalities and Ethics of Web Scraping. 263
Trademarks, Copyrights, Patents, Oh My! 263

Copyright Law 264
Trespass to Chattels 266
The Computer Fraud and Abuse Act 268
robots.txt and Terms of Service 269
Three Web Scrapers 272

eBay versus Bidder’s Edge and Trespass to Chattels 272
United States v. Auernheimer and The Computer Fraud and Abuse Act 274
Field v. Google: Copyright and robots.txt 275

Moving Forward 276

Index. 279

Table of Contents | vii

Preface

To those who have not developed the skill, computer programming can seem like a
kind of magic. If programming is magic, web scraping is wizardry: the application of
magic for particularly impressive and useful—yet surprisingly effortless—feats.

In my years as a software engineer, I’ve found that few programming practices cap‐
ture the excitement of both programmers and laymen alike quite like web scraping.
The ability to write a simple bot that collects data and streams it down a terminal or
stores it in a database, while not difficult, never fails to provide a certain thrill and
sense of possibility, no matter how many times you might have done it before.

Unfortunately, when I speak to other programmers about web scraping, there’s a lot
of misunderstanding and confusion about the practice. Some people aren’t sure it’s
legal (it is), or how to handle problems like JavaScript-heavy pages or required logins.
Many are confused about how to start a large web scraping project, or even where to
find the data they’re looking for. This book seeks to put an end to many of these com‐
mon questions and misconceptions about web scraping, while providing a compre‐
hensive guide to most common web scraping tasks.

Web scraping is a diverse and fast-changing field, and I’ve tried to provide both high-
level concepts and concrete examples to cover just about any data collection project
you’re likely to encounter. Throughout the book, code samples are provided to
demonstrate these concepts and allow you to try them out. The code samples them‐
selves can be used and modified with or without attribution (although acknowledg‐
ment is always appreciated). All code samples are available on GitHub for viewing
and downloading.

What Is Web Scraping?
The automated gathering of data from the internet is nearly as old as the internet
itself. Although web scraping is not a new term, in years past the practice has been
more commonly known as screen scraping, data mining, web harvesting, or similar

ix

http://www.pythonscraping.com/code/

variations. General consensus today seems to favor web scraping, so that is the term I
use throughout the book, although I also refer to programs that specifically traverse
multiple pages as web crawlers or refer to the web scraping programs themselves as
bots.

In theory, web scraping is the practice of gathering data through any means other
than a program interacting with an API (or, obviously, through a human using a web
browser). This is most commonly accomplished by writing an automated program
that queries a web server, requests data (usually in the form of HTML and other files
that compose web pages), and then parses that data to extract needed information.

In practice, web scraping encompasses a wide variety of programming techniques
and technologies, such as data analysis, natural language parsing, and information
security. Because the scope of the field is so broad, this book covers the fundamental
basics of web scraping and crawling in Part I and delves into advanced topics in
Part II. I suggest that all readers carefully study the first part and delve into the more
specific in the second part as needed.

Why Web Scraping?
If the only way you access the internet is through a browser, you’re missing out on a
huge range of possibilities. Although browsers are handy for executing JavaScript,
displaying images, and arranging objects in a more human-readable format (among
other things), web scrapers are excellent at gathering and processing large amounts of
data quickly. Rather than viewing one page at a time through the narrow window of a
monitor, you can view databases spanning thousands or even millions of pages at
once.

In addition, web scrapers can go places that traditional search engines cannot. A
Google search for “cheapest flights to Boston” will result in a slew of advertisements
and popular flight search sites. Google knows only what these websites say on their
content pages, not the exact results of various queries entered into a flight search
application. However, a well-developed web scraper can chart the cost of a flight to
Boston over time, across a variety of websites, and tell you the best time to buy your
ticket.

You might be asking: “Isn’t data gathering what APIs are for?” (If you’re unfamiliar
with APIs, see Chapter 12.) Well, APIs can be fantastic, if you find one that suits your
purposes. They are designed to provide a convenient stream of well-formatted data
from one computer program to another. You can find an API for many types of data
you might want to use, such as Twitter posts or Wikipedia pages. In general, it is pref‐
erable to use an API (if one exists), rather than build a bot to get the same data. How‐
ever, an API might not exist or be useful for your purposes, for several reasons:

x | Preface

• You are gathering relatively small, finite sets of data across a large collection of
websites without a cohesive API.

• The data you want is fairly small or uncommon, and the creator did not think it
warranted an API.

• The source does not have the infrastructure or technical ability to create an API.
• The data is valuable and/or protected and not intended to be spread widely.

Even when an API does exist, the request volume and rate limits, the types of data, or
the format of data that it provides might be insufficient for your purposes.

This is where web scraping steps in. With few exceptions, if you can view data in your
browser, you can access it via a Python script. If you can access it in a script, you can
store it in a database. And if you can store it in a database, you can do virtually any‐
thing with that data.

There are obviously many extremely practical applications of having access to nearly
unlimited data: market forecasting, machine-language translation, and even medical
diagnostics have benefited tremendously from the ability to retrieve and analyze data
from news sites, translated texts, and health forums, respectively.

Even in the art world, web scraping has opened up new frontiers for creation. The
2006 project “We Feel Fine” by Jonathan Harris and Sep Kamvar scraped a variety of
English-language blog sites for phrases starting with “I feel” or “I am feeling.” This led
to a popular data visualization, describing how the world was feeling day by day and
minute by minute.

Regardless of your field, web scraping almost always provides a way to guide business
practices more effectively, improve productivity, or even branch off into a brand-new
field entirely.

About This Book
This book is designed to serve not only as an introduction to web scraping, but as a
comprehensive guide to collecting, transforming, and using data from uncooperative
sources. Although it uses the Python programming language and covers many
Python basics, it should not be used as an introduction to the language.

If you don’t know any Python at all, this book might be a bit of a challenge. Please do
not use it as an introductory Python text. With that said, I’ve tried to keep all con‐
cepts and code samples at a beginning-to-intermediate Python programming level in
order to make the content accessible to a wide range of readers. To this end, there are
occasional explanations of more advanced Python programming and general com‐
puter science topics where appropriate. If you are a more advanced reader, feel free to
skim these parts!

Preface | xi

http://wefeelfine.org/

If you’re looking for a more comprehensive Python resource, Introducing Python by
Bill Lubanovic (O’Reilly) is a good, if lengthy, guide. For those with shorter attention
spans, the video series Introduction to Python by Jessica McKellar (O’Reilly) is an
excellent resource. I’ve also enjoyed Think Python by a former professor of mine,
Allen Downey (O’Reilly). This last book in particular is ideal for those new to pro‐
gramming, and teaches computer science and software engineering concepts along
with the Python language.

Technical books are often able to focus on a single language or technology, but web
scraping is a relatively disparate subject, with practices that require the use of data‐
bases, web servers, HTTP, HTML, internet security, image processing, data science,
and other tools. This book attempts to cover all of these, and other topics, from the
perspective of “data gathering.” It should not be used as a complete treatment of any
of these subjects, but I believe they are covered in enough detail to get you started
writing web scrapers!

Part I covers the subject of web scraping and web crawling in depth, with a strong
focus on a small handful of libraries used throughout the book. Part I can easily be
used as a comprehensive reference for these libraries and techniques (with certain
exceptions, where additional references will be provided). The skills taught in the first
part will likely be useful for everyone writing a web scraper, regardless of their partic‐
ular target or application.

Part II covers additional subjects that the reader might find useful when writing web
scrapers, but that might not be useful for all scrapers all the time. These subjects are,
unfortunately, too broad to be neatly wrapped up in a single chapter. Because of this,
frequent references are made to other resources for additional information.

The structure of this book enables you to easily jump around among chapters to find
only the web scraping technique or information that you are looking for. When a
concept or piece of code builds on another mentioned in a previous chapter, I explic‐
itly reference the section that it was addressed in.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xii | Preface

http://bit.ly/1CbHTcE
http://oreil.ly/2HOqSNM
http://oreil.ly/2fjbT2F

Constant width bold

Shows commands or other text that should be typed by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/REMitchell/python-scraping.

This book is here to help you get your job done. If the example code in this book is
useful to you, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Web Scraping with Python, Second
Edition by Ryan Mitchell (O’Reilly). Copyright 2018 Ryan Mitchell,
978-1-491-998557-1.”

Preface | xiii

https://github.com/REMitchell/python-scraping

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Unfortunately, printed books are difficult to keep up-to-date. With web scraping, this
provides an additional challenge, as the many libraries and websites that the book ref‐
erences and that the code often depends on may occasionally be modified, and code
samples may fail or produce unexpected results. If you choose to run the code sam‐
ples, please run them from the GitHub repository rather than copying from the book
directly. I, and readers of this book who choose to contribute (including, perhaps,
you!), will strive to keep the repository up-to-date with required modifications and
notes.

In addition to code samples, terminal commands are often provided to illustrate how
to install and run software. In general, these commands are geared toward Linux-
based operating systems, but will usually be applicable for Windows users with a
properly configured Python environment and pip installation. When this is not the
case, I have provided instructions for all major operating systems, or external refer‐
ences for Windows users to accomplish the task.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

xiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/1ePG2Uj.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Just as some of the best products arise out of a sea of user feedback, this book never
could have existed in any useful form without the help of many collaborators, cheer‐
leaders, and editors. Thank you to the O’Reilly staff and their amazing support for
this somewhat unconventional subject; to my friends and family who have offered
advice and put up with impromptu readings; and to my coworkers at HedgeServ,
whom I now likely owe many hours of work.

Thank you, in particular, to Allyson MacDonald, Brian Anderson, Miguel Grinberg,
and Eric VanWyk for their feedback, guidance, and occasional tough love. Quite a few
sections and code samples were written as a direct result of their inspirational sugges‐
tions.

Thank you to Yale Specht for his limitless patience for the past four years and two
editions, providing the initial encouragement to pursue this project, and stylistic
feedback during the writing process. Without him, this book would have been written
in half the time but would not be nearly as useful.

Finally, thanks to Jim Waldo, who really started this whole thing many years ago
when he mailed a Linux box and The Art and Science of C to a young and impression‐
able teenager.

Preface | xv

http://oreil.ly/1ePG2Uj
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Building Scrapers

This first part of this book focuses on the basic mechanics of web scraping: how to
use Python to request information from a web server, how to perform basic handling
of the server’s response, and how to begin interacting with a website in an automated
fashion. By the end, you’ll be cruising around the internet with ease, building scrapers
that can hop from one domain to another, gather information, and store that infor‐
mation for later use.

To be honest, web scraping is a fantastic field to get into if you want a huge payout for
relatively little upfront investment. In all likelihood, 90% of web scraping projects
you’ll encounter will draw on techniques used in just the next six chapters. This sec‐
tion covers what the general (albeit technically savvy) public tends to think of when
they think of “web scrapers”:

• Retrieving HTML data from a domain name
• Parsing that data for target information
• Storing the target information
• Optionally, moving to another page to repeat the process

This will give you a solid foundation before moving on to more complex projects in
Part II. Don’t be fooled into thinking that this first section isn’t as important as some
of the more advanced projects in the second half. You will use nearly all the informa‐
tion in the first half of this book on a daily basis while writing web scrapers!

CHAPTER 1

Your First Web Scraper

Once you start web scraping, you start to appreciate all the little things that browsers
do for you. The web, without a layer of HTML formatting, CSS styling, JavaScript
execution, and image rendering, can look a little intimidating at first, but in this
chapter, as well as the next one, we’ll cover how to format and interpret data without
the help of a browser.

This chapter starts with the basics of sending a GET request (a request to fetch, or
“get,” the content of a web page) to a web server for a specific page, reading the
HTML output from that page, and doing some simple data extraction in order to iso‐
late the content that you are looking for.

Connecting
If you haven’t spent much time in networking or network security, the mechanics of
the internet might seem a little mysterious. You don’t want to think about what,
exactly, the network is doing every time you open a browser and go to http://
google.com, and, these days, you don’t have to. In fact, I would argue that it’s fantastic
that computer interfaces have advanced to the point where most people who use the
internet don’t have the faintest idea about how it works.

However, web scraping requires stripping away some of this shroud of interface—not
just at the browser level (how it interprets all of this HTML, CSS, and JavaScript), but
occasionally at the level of the network connection.

To give you an idea of the infrastructure required to get information to your browser,
let’s use the following example. Alice owns a web server. Bob uses a desktop com‐
puter, which is trying to connect to Alice’s server. When one machine wants to talk to
another machine, something like the following exchange takes place:

3

http://google.com
http://google.com

1. Bob’s computer sends along a stream of 1 and 0 bits, indicated by high and low
voltages on a wire. These bits form some information, containing a header and
body. The header contains an immediate destination of his local router’s MAC
address, with a final destination of Alice’s IP address. The body contains his
request for Alice’s server application.

2. Bob’s local router receives all these 1s and 0s and interprets them as a packet,
from Bob’s own MAC address, destined for Alice’s IP address. His router stamps
its own IP address on the packet as the “from” IP address, and sends it off across
the internet.

3. Bob’s packet traverses several intermediary servers, which direct his packet
toward the correct physical/wired path, on to Alice’s server.

4. Alice’s server receives the packet at her IP address.
5. Alice’s server reads the packet port destination in the header, and passes it off to

the appropriate application—the web server application. (The packet port desti‐
nation is almost always port 80 for web applications; this can be thought of as an
apartment number for packet data, whereas the IP address is like the street
address.)

6. The web server application receives a stream of data from the server processor.
This data says something like the following:
- This is a GET request.
- The following file is requested: index.html.

7. The web server locates the correct HTML file, bundles it up into a new packet to
send to Bob, and sends it through to its local router, for transport back to Bob’s
machine, through the same process.

And voilà! We have The Internet.

So, where in this exchange did the web browser come into play? Absolutely nowhere.
In fact, browsers are a relatively recent invention in the history of the internet, con‐
sidering Nexus was released in 1990.

Yes, the web browser is a useful application for creating these packets of information,
telling your operating system to send them off, and interpreting the data you get back
as pretty pictures, sounds, videos, and text. However, a web browser is just code, and
code can be taken apart, broken into its basic components, rewritten, reused, and
made to do anything you want. A web browser can tell the processor to send data to
the application that handles your wireless (or wired) interface, but you can do the
same thing in Python with just three lines of code:

4 | Chapter 1: Your First Web Scraper

from urllib.request import urlopen

html = urlopen('http://pythonscraping.com/pages/page1.html')
print(html.read())

To run this, you can use the iPython notebook for Chapter 1 in the GitHub reposi‐
tory, or you can save it locally as scrapetest.py and run it in your terminal by using
this command:

$ python scrapetest.py

Note that if you also have Python 2.x installed on your machine and are running both
versions of Python side by side, you may need to explicitly call Python 3.x by running
the command this way:

$ python3 scrapetest.py

This command outputs the complete HTML code for page1 located at the URL http://
pythonscraping.com/pages/page1.html. More accurately, this outputs the HTML file
page1.html, found in the directory <web root>/pages, on the server located at the
domain name http://pythonscraping.com.

Why is it important to start thinking of these addresses as “files” rather than “pages”?
Most modern web pages have many resource files associated with them. These could
be image files, JavaScript files, CSS files, or any other content that the page you are
requesting is linked to. When a web browser hits a tag such as <img src="cuteKit
ten.jpg">, the browser knows that it needs to make another request to the server to
get the data at the file cuteKitten.jpg in order to fully render the page for the user.

Of course, your Python script doesn’t have the logic to go back and request multiple
files (yet); it can only read the single HTML file that you’ve directly requested.

from urllib.request import urlopen

means what it looks like it means: it looks at the Python module request (found
within the urllib library) and imports only the function urlopen.

urllib is a standard Python library (meaning you don’t have to install anything extra
to run this example) and contains functions for requesting data across the web, han‐
dling cookies, and even changing metadata such as headers and your user agent. We
will be using urllib extensively throughout the book, so I recommend you read the
Python documentation for the library.

urlopen is used to open a remote object across a network and read it. Because it is a
fairly generic function (it can read HTML files, image files, or any other file stream
with ease), we will be using it quite frequently throughout the book.

Connecting | 5

https://github.com/REMitchell/python-scraping/blob/master/Chapter01_BeginningToScrape.ipynb
http://pythonscraping.com
https://docs.python.org/3/library/urllib.html

An Introduction to BeautifulSoup
Beautiful Soup, so rich and green,
Waiting in a hot tureen!
Who for such dainties would not stoop?
Soup of the evening, beautiful Soup!

The BeautifulSoup library was named after a Lewis Carroll poem of the same name in
Alice’s Adventures in Wonderland. In the story, this poem is sung by a character called
the Mock Turtle (itself a pun on the popular Victorian dish Mock Turtle Soup made
not of turtle but of cow).

Like its Wonderland namesake, BeautifulSoup tries to make sense of the nonsensical;
it helps format and organize the messy web by fixing bad HTML and presenting us
with easily traversable Python objects representing XML structures.

Installing BeautifulSoup
Because the BeautifulSoup library is not a default Python library, it must be installed.
If you’re already experienced at installing Python libraries, please use your favorite
installer and skip ahead to the next section, “Running BeautifulSoup” on page 8.

For those who have not installed Python libraries (or need a refresher), this general
method will be used for installing multiple libraries throughout the book, so you may
want to reference this section in the future.

We will be using the BeautifulSoup 4 library (also known as BS4) throughout this
book. The complete instructions for installing BeautifulSoup 4 can be found at
Crummy.com; however, the basic method for Linux is shown here:

$ sudo apt-get install python-bs4

And for Macs:

$ sudo easy_install pip

This installs the Python package manager pip. Then run the following to install the
library:

$ pip install beautifulsoup4

Again, note that if you have both Python 2.x and 3.x installed on your machine, you
might need to call python3 explicitly:

$ python3 myScript.py

Make sure to also use this when installing packages, or the packages might be
installed under Python 2.x, but not Python 3.x:

$ sudo python3 setup.py install

If using pip, you can also call pip3 to install the Python 3.x versions of packages:

6 | Chapter 1: Your First Web Scraper

http://www.crummy.com/software/BeautifulSoup/bs4/doc/

$ pip3 install beautifulsoup4

Installing packages in Windows is nearly identical to the process for Mac and Linux.
Download the most recent BeautifulSoup 4 release from the download page, navigate
to the directory you unzipped it to, and run this:

> python setup.py install

And that’s it! BeautifulSoup will now be recognized as a Python library on your
machine. You can test this out by opening a Python terminal and importing it:

$ python
> from bs4 import BeautifulSoup

The import should complete without errors.

In addition, there is an .exe installer for pip on Windows, so you can easily install and
manage packages:

 > pip install beautifulsoup4

Keeping Libraries Straight with Virtual Environments
If you intend to work on multiple Python projects, or you need a way to easily bundle
projects with all associated libraries, or you’re worried about potential conflicts
between installed libraries, you can install a Python virtual environment to keep
everything separated and easy to manage.

When you install a Python library without a virtual environment, you are installing
it globally. This usually requires that you be an administrator, or run as root, and that
the Python library exists for every user and every project on the machine. Fortu‐
nately, creating a virtual environment is easy:

$ virtualenv scrapingEnv

This creates a new environment called scrapingEnv, which you must activate to use:

$ cd scrapingEnv/
$ source bin/activate

After you have activated the environment, you will see that environment’s name in
your command-line prompt, reminding you that you’re currently working with it.
Any libraries you install or scripts you run will be under that virtual environment
only.

Working in the newly created scrapingEnv environment, you can install and use
BeautifulSoup; for instance:

(scrapingEnv)ryan$ pip install beautifulsoup4
(scrapingEnv)ryan$ python
> from bs4 import BeautifulSoup
>

An Introduction to BeautifulSoup | 7

http://www.crummy.com/software/BeautifulSoup/#Download
https://pypi.python.org/pypi/setuptools

You can leave the environment with the deactivate command, after which you can
no longer access any libraries that were installed inside the virtual environment:

(scrapingEnv)ryan$ deactivate
ryan$ python
> from bs4 import BeautifulSoup
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'bs4'

Keeping all your libraries separated by project also makes it easy to zip up the entire
environment folder and send it to someone else. As long as they have the same ver‐
sion of Python installed on their machine, your code will work from the virtual envi‐
ronment without requiring them to install any libraries themselves.

Although I won’t explicitly instruct you to use a virtual environment in all of this
book’s examples, keep in mind that you can apply a virtual environment anytime sim‐
ply by activating it beforehand.

Running BeautifulSoup
The most commonly used object in the BeautifulSoup library is, appropriately, the
BeautifulSoup object. Let’s take a look at it in action, modifying the example found
in the beginning of this chapter:

from urllib.request import urlopen
from bs4 import BeautifulSoup

html = urlopen('http://www.pythonscraping.com/pages/page1.html')
bs = BeautifulSoup(html.read(), 'html.parser')
print(bs.h1)

The output is as follows:

<h1>An Interesting Title</h1>

Note that this returns only the first instance of the h1 tag found on the page. By con‐
vention, only one h1 tag should be used on a single page, but conventions are often
broken on the web, so you should be aware that this will retrieve the first instance of
the tag only, and not necessarily the one that you’re looking for.

As in previous web scraping examples, you are importing the urlopen function and
calling html.read() in order to get the HTML content of the page. In addition to the
text string, BeautifulSoup can also use the file object directly returned by urlopen,
without needing to call .read() first:

bs = BeautifulSoup(html, 'html.parser')

This HTML content is then transformed into a BeautifulSoup object, with the fol‐
lowing structure:

8 | Chapter 1: Your First Web Scraper

• html → <html><head>...</head><body>...</body></html>
— head → <head><title>A Useful Page<title></head>

— title → <title>A Useful Page</title>
— body → <body><h1>An Int...</h1><div>Lorem ip...</div></body>

— h1 → <h1>An Interesting Title</h1>
— div → <div>Lorem Ipsum dolor...</div>

Note that the h1 tag that you extract from the page is nested two layers deep into your
BeautifulSoup object structure (html → body → h1). However, when you actually
fetch it from the object, you call the h1 tag directly:

bs.h1

In fact, any of the following function calls would produce the same output:

bs.html.body.h1
bs.body.h1
bs.html.h1

When you create a BeautifulSoup object, two arguments are passed in:

bs = BeautifulSoup(html.read(), 'html.parser')

The first is the HTML text the object is based on, and the second specifies the parser
that you want BeautifulSoup to use in order to create that object. In the majority of
cases, it makes no difference which parser you choose.

html.parser is a parser that is included with Python 3 and requires no extra installa‐
tions in order to use. Except where required, we will use this parser throughout the
book.

Another popular parser is lxml. This can be installed through pip:

$ pip3 install lxml

lxml can be used with BeautifulSoup by changing the parser string provided:

bs = BeautifulSoup(html.read(), 'lxml')

lxml has some advantages over html.parser in that it is generally better at parsing
“messy” or malformed HTML code. It is forgiving and fixes problems like unclosed
tags, tags that are improperly nested, and missing head or body tags. It is also some‐
what faster than html.parser, although speed is not necessarily an advantage in web
scraping, given that the speed of the network itself will almost always be your largest
bottleneck.

One of the disadvantages of lxml is that it has to be installed separately and depends
on third-party C libraries to function. This can cause problems for portability and
ease of use, compared to html.parser.

An Introduction to BeautifulSoup | 9

http://lxml.de/parsing.html

Another popular HTML parser is html5lib. Like lxml, html5lib is an extremely for‐
giving parser that takes even more initiative correcting broken HTML. It also
depends on an external dependency, and is slower than both lxml and html.parser.
Despite this, it may be a good choice if you are working with messy or handwritten
HTML sites.

It can be used by installing and passing the string html5lib to the BeautifulSoup
object:

bs = BeautifulSoup(html.read(), 'html5lib')

I hope this small taste of BeautifulSoup has given you an idea of the power and sim‐
plicity of this library. Virtually any information can be extracted from any HTML (or
XML) file, as long as it has an identifying tag surrounding it or near it. Chapter 2
delves more deeply into more-complex BeautifulSoup function calls, and presents
regular expressions and how they can be used with BeautifulSoup in order to extract
information from websites.

Connecting Reliably and Handling Exceptions
The web is messy. Data is poorly formatted, websites go down, and closing tags go
missing. One of the most frustrating experiences in web scraping is to go to sleep
with a scraper running, dreaming of all the data you’ll have in your database the next
day—only to find that the scraper hit an error on some unexpected data format and
stopped execution shortly after you stopped looking at the screen. In situations like
these, you might be tempted to curse the name of the developer who created the web‐
site (and the oddly formatted data), but the person you should really be kicking is
yourself, for not anticipating the exception in the first place!

Let’s take a look at the first line of our scraper, after the import statements, and figure
out how to handle any exceptions this might throw:

html = urlopen('http://www.pythonscraping.com/pages/page1.html')

Two main things can go wrong in this line:

• The page is not found on the server (or there was an error in retrieving it).
• The server is not found.

In the first situation, an HTTP error will be returned. This HTTP error may be “404
Page Not Found,” “500 Internal Server Error,” and so forth. In all of these cases, the
urlopen function will throw the generic exception HTTPError. You can handle this
exception in the following way:

from urllib.request import urlopen
from urllib.error import HTTPError

try:

10 | Chapter 1: Your First Web Scraper

 html = urlopen('http://www.pythonscraping.com/pages/page1.html')
except HTTPError as e:
 print(e)
 # return null, break, or do some other "Plan B"
else:
 # program continues. Note: If you return or break in the
 # exception catch, you do not need to use the "else" statement

If an HTTP error code is returned, the program now prints the error, and does not
execute the rest of the program under the else statement.

If the server is not found at all (if, say, http://www.pythonscraping.com is down, or the
URL is mistyped), urlopen will throw an URLError. This indicates that no server
could be reached at all, and, because the remote server is responsible for returning
HTTP status codes, an HTTPError cannot be thrown, and the more serious URLError
must be caught. You can add a check to see whether this is the case:

from urllib.request import urlopen
from urllib.error import HTTPError
from urllib.error import URLError

try:
 html = urlopen('https://pythonscrapingthisurldoesnotexist.com')
except HTTPError as e:
 print(e)
except URLError as e:
 print('The server could not be found!')
else:
 print('It Worked!')

Of course, if the page is retrieved successfully from the server, there is still the issue of
the content on the page not quite being what you expected. Every time you access a
tag in a BeautifulSoup object, it’s smart to add a check to make sure the tag actually
exists. If you attempt to access a tag that does not exist, BeautifulSoup will return a
None object. The problem is, attempting to access a tag on a None object itself will
result in an AttributeError being thrown.

The following line (where nonExistentTag is a made-up tag, not the name of a real
BeautifulSoup function)

print(bs.nonExistentTag)

returns a None object. This object is perfectly reasonable to handle and check for. The
trouble comes if you don’t check for it, but instead go on and try to call another func‐
tion on the None object, as illustrated in the following:

print(bs.nonExistentTag.someTag)

This returns an exception:

AttributeError: 'NoneType' object has no attribute 'someTag'

An Introduction to BeautifulSoup | 11

So how can you guard against these two situations? The easiest way is to explicitly
check for both situations:

try:
 badContent = bs.nonExistingTag.anotherTag
except AttributeError as e:
 print('Tag was not found')
else:
 if badContent == None:
 print ('Tag was not found')
 else:
 print(badContent)

This checking and handling of every error does seem laborious at first, but it’s easy to
add a little reorganization to this code to make it less difficult to write (and, more
important, much less difficult to read). This code, for example, is our same scraper
written in a slightly different way:

from urllib.request import urlopen
from urllib.error import HTTPError
from bs4 import BeautifulSoup

def getTitle(url):
 try:
 html = urlopen(url)
 except HTTPError as e:
 return None
 try:
 bs = BeautifulSoup(html.read(), 'html.parser')
 title = bs.body.h1
 except AttributeError as e:
 return None
 return title

title = getTitle('http://www.pythonscraping.com/pages/page1.html')
if title == None:
 print('Title could not be found')
else:
 print(title)

In this example, you’re creating a function getTitle, which returns either the title of
the page, or a None object if there was a problem retrieving it. Inside getTitle, you
check for an HTTPError, as in the previous example, and encapsulate two of the Beau‐
tifulSoup lines inside one try statement. An AttributeError might be thrown from
either of these lines (if the server did not exist, html would be a None object, and
html.read() would throw an AttributeError). You could, in fact, encompass as
many lines as you want inside one try statement, or call another function entirely,
which can throw an AttributeError at any point.

12 | Chapter 1: Your First Web Scraper

When writing scrapers, it’s important to think about the overall pattern of your code
in order to handle exceptions and make it readable at the same time. You’ll also likely
want to heavily reuse code. Having generic functions such as getSiteHTML and
getTitle (complete with thorough exception handling) makes it easy to quickly—
and reliably—scrape the web.

An Introduction to BeautifulSoup | 13

CHAPTER 2

Advanced HTML Parsing

When Michelangelo was asked how he could sculpt a work of art as masterful as his
David, he is famously reported to have said, “It is easy. You just chip away the stone
that doesn’t look like David.”

Although web scraping is unlike marble sculpting in most other respects, you must
take a similar attitude when it comes to extracting the information you’re seeking
from complicated web pages. You can use many techniques to chip away the content
that doesn’t look like the content that you’re searching for, until you arrive at the
information you’re seeking. In this chapter, you’ll take look at parsing complicated
HTML pages in order to extract only the information you’re looking for.

You Don’t Always Need a Hammer
It can be tempting, when faced with a Gordian knot of tags, to dive right in and use
multiline statements to try to extract your information. However, keep in mind that
layering the techniques used in this section with reckless abandon can lead to code
that is difficult to debug, fragile, or both. Before getting started, let’s take a look at
some of the ways you can avoid altogether the need for advanced HTML parsing!

Let’s say you have some target content. Maybe it’s a name, statistic, or block of text.
Maybe it’s buried 20 tags deep in an HTML mush with no helpful tags or HTML
attributes to be found. Let’s say you decide to throw caution to the wind and write
something like the following line to attempt extraction:

bs.find_all('table')[4].find_all('tr')[2].find('td').find_all('div')[1].find('a')

That doesn’t look so great. In addition to the aesthetics of the line, even the slightest
change to the website by a site administrator might break your web scraper alto‐
gether. What if the site’s web developer decides to add another table or another col‐
umn of data? What if the developer adds another component (with a few div tags) to

15

the top of the page? The preceding line is precarious and depends on the structure of
the site never changing.

So what are your options?

• Look for a “Print This Page” link, or perhaps a mobile version of the site that has
better-formatted HTML (more on presenting yourself as a mobile device—and
receiving mobile site versions—in Chapter 14).

• Look for the information hidden in a JavaScript file. Remember, you might need
to examine the imported JavaScript files in order to do this. For example, I once
collected street addresses (along with latitude and longitude) off a website in a
neatly formatted array by looking at the JavaScript for the embedded Google Map
that displayed a pinpoint over each address.

• This is more common for page titles, but the information might be available in
the URL of the page itself.

• If the information you are looking for is unique to this website for some reason,
you’re out of luck. If not, try to think of other sources you could get this informa‐
tion from. Is there another website with the same data? Is this website displaying
data that it scraped or aggregated from another website?

Especially when faced with buried or poorly formatted data, it’s important not to just
start digging and write yourself into a hole that you might not be able to get out of.
Take a deep breath and think of alternatives.

If you’re certain no alternatives exist, the rest of this chapter explains standard and
creative ways of selecting tags based on their position, context, attributes, and con‐
tents. The techniques presented here, when used correctly, will go a long way toward
writing more stable and reliable web crawlers.

Another Serving of BeautifulSoup
In Chapter 1, you took a quick look at installing and running BeautifulSoup, as well
as selecting objects one at a time. In this section, we’ll discuss searching for tags by
attributes, working with lists of tags, and navigating parse trees.

Nearly every website you encounter contains stylesheets. Although you might think
that a layer of styling on websites that is designed specifically for browser and human
interpretation might be a bad thing, the advent of CSS is a boon for web scrapers. CSS
relies on the differentiation of HTML elements that might otherwise have the exact
same markup in order to style them differently. Some tags might look like this:

16 | Chapter 2: Advanced HTML Parsing

Others look like this:

Web scrapers can easily separate these two tags based on their class; for example, they
might use BeautifulSoup to grab all the red text but none of the green text. Because
CSS relies on these identifying attributes to style sites appropriately, you are almost
guaranteed that these class and ID attributes will be plentiful on most modern web‐
sites.

Let’s create an example web scraper that scrapes the page located at http://
www.pythonscraping.com/pages/warandpeace.html.

On this page, the lines spoken by characters in the story are in red, whereas the
names of characters are in green. You can see the span tags, which reference the
appropriate CSS classes, in the following sample of the page’s source code:

Heavens! what a virulent attack! replied
the prince, not in the least disconcerted
by this reception.

You can grab the entire page and create a BeautifulSoup object with it by using a
program similar to the one used in Chapter 1:

from urllib.request import urlopen
from bs4 import BeautifulSoup

html = urlopen('http://www.pythonscraping.com/pages/page1.html')
bs = BeautifulSoup(html.read(), 'html.parser')

Using this BeautifulSoup object, you can use the find_all function to extract a
Python list of proper nouns found by selecting only the text within tags (find_all is an extremely flexible function you’ll be
using a lot later in this book):

nameList = bs.find_all('span', {'class':'green'})
for name in nameList:
 print(name.get_text())

When run, it should list all the proper nouns in the text, in the order they appear in
War and Peace. So what’s going on here? Previously, you’ve called bs.tagName to get
the first occurrence of that tag on the page. Now, you’re calling
bs.find_all(tagName, tagAttributes) to get a list of all of the tags on the page,
rather than just the first.

After getting a list of names, the program iterates through all names in the list, and
prints name.get_text() in order to separate the content from the tags.

Another Serving of BeautifulSoup | 17

http://www.pythonscraping.com/pages/warandpeace.html
http://www.pythonscraping.com/pages/warandpeace.html

1 If you’re looking to get a list of all h<some_level> tags in the document, there are more succinct ways of
writing this code to accomplish the same thing. We’ll take a look at other ways of approaching these types of
problems in the section reg_expressions.

When to get_text() and When to Preserve Tags

.get_text() strips all tags from the document you are working
with and returns a Unicode string containing the text only. For
example, if you are working with a large block of text that contains
many hyperlinks, paragraphs, and other tags, all those will be strip‐
ped away, and you’ll be left with a tagless block of text.
Keep in mind that it’s much easier to find what you’re looking for
in a BeautifulSoup object than in a block of text. Call‐
ing .get_text() should always be the last thing you do, immedi‐
ately before you print, store, or manipulate your final data. In
general, you should try to preserve the tag structure of a document
as long as possible.

find() and find_all() with BeautifulSoup
BeautifulSoup’s find() and find_all() are the two functions you will likely use the
most. With them, you can easily filter HTML pages to find lists of desired tags, or a
single tag, based on their various attributes.

The two functions are extremely similar, as evidenced by their definitions in the
BeautifulSoup documentation:

find_all(tag, attributes, recursive, text, limit, keywords)
find(tag, attributes, recursive, text, keywords)

In all likelihood, 95% of the time you will need to use only the first two arguments:
tag and attributes. However, let’s take a look at all the arguments in greater detail.

The tag argument is one that you’ve seen before; you can pass a string name of a tag
or even a Python list of string tag names. For example, the following returns a list of
all the header tags in a document:1

.find_all(['h1','h2','h3','h4','h5','h6'])

The attributes argument takes a Python dictionary of attributes and matches tags
that contain any one of those attributes. For example, the following function would
return both the green and red span tags in the HTML document:

.find_all('span', {'class':{'green', 'red'}})

The recursive argument is a boolean. How deeply into the document do you want to
go? If recursive is set to True, the find_all function looks into children, and child‐

18 | Chapter 2: Advanced HTML Parsing

ren’s children, for tags that match your parameters. If it is False, it will look only at
the top-level tags in your document. By default, find_all works recursively (recur
sive is set to True); it’s generally a good idea to leave this as is, unless you really know
what you need to do and performance is an issue.

The text argument is unusual in that it matches based on the text content of the tags,
rather than properties of the tags themselves. For instance, if you want to find the
number of times “the prince” is surrounded by tags on the example page, you could
replace your .find_all() function in the previous example with the following lines:

nameList = bs.find_all(text='the prince')
print(len(nameList))

The output of this is 7.

The limit argument, of course, is used only in the find_all method; find is equiva‐
lent to the same find_all call, with a limit of 1. You might set this if you’re interested
only in retrieving the first x items from the page. Be aware, however, that this gives
you the first items on the page in the order that they occur, not necessarily the first
ones that you want.

The keyword argument allows you to select tags that contain a particular attribute or
set of attributes. For example:

title = bs.find_all(id='title', class_='text')

This returns the first tag with the word “text” in the class_ attribute and “title” in the
id attribute. Note that, by convention, each value for an id should be used only once
on the page. Therefore, in practice, a line like this may not be particularly useful, and
should be equivalent to the following:

title = bs.find(id='title')

Keyword Arguments and “Class”
The keyword argument can be helpful in some situations. However, it is technically
redundant as a BeautifulSoup feature. Keep in mind that anything that can be done
with keyword can also be accomplished using techniques covered later in this chapter
(see regular_express and lambda_express).

For instance, the following two lines are identical:

bs.find_all(id='text')
bs.find_all('', {'id':'text'})

In addition, you might occasionally run into problems using keyword, most notably
when searching for elements by their class attribute, because class is a protected
keyword in Python. That is, class is a reserved word in Python that cannot be used
as a variable or argument name (no relation to the BeautifulSoup.find_all()

Another Serving of BeautifulSoup | 19

2 The Python Language Reference provides a complete list of protected keywords.

keyword argument, previously discussed).2 For example, if you try the following call,
you’ll get a syntax error due to the nonstandard use of class:

bs.find_all(class='green')

Instead, you can use BeautifulSoup’s somewhat clumsy solution, which involves
adding an underscore:

 bs.find_all(class_='green')

Alternatively, you can enclose class in quotes:

 bs.find_all('', {'class':'green'})

At this point, you might be asking yourself, “But wait, don’t I already know how to get
a tag with a list of attributes by passing attributes to the function in a dictionary list?”

Recall that passing a list of tags to .find_all() via the attributes list acts as an “or”
filter (it selects a list of all tags that have tag1, tag2, or tag3...). If you have a lengthy
list of tags, you can end up with a lot of stuff you don’t want. The keyword argument
allows you to add an additional “and” filter to this.

Other BeautifulSoup Objects
So far in the book, you’ve seen two types of objects in the BeautifulSoup library:

BeautifulSoup objects
Instances seen in previous code examples as the variable bs

Tag objects
Retrieved in lists, or retrieved individually by calling find and find_all on a
BeautifulSoup object, or drilling down, as follows:

bs.div.h1

However, there are two more objects in the library that, although less commonly
used, are still important to know about:

NavigableString objects
Used to represent text within tags, rather than the tags themselves (some func‐
tions operate on and produce NavigableStrings, rather than tag objects).

Comment object
Used to find HTML comments in comment tags, <!--like this one-->.

20 | Chapter 2: Advanced HTML Parsing

https://docs.python.org/3/reference/lexical_analysis.html#keywords

These four objects are the only objects you will ever encounter in the BeautifulSoup
library (at the time of this writing).

Navigating Trees
The find_all function is responsible for finding tags based on their name and
attributes. But what if you need to find a tag based on its location in a document?
That’s where tree navigation comes in handy. In Chapter 1, you looked at navigating a
BeautifulSoup tree in a single direction:

bs.tag.subTag.anotherSubTag

Now let’s look at navigating up, across, and diagonally through HTML trees. You’ll
use our highly questionable online shopping site at http://www.pythonscraping.com/
pages/page3.html, as an example page for scraping, as shown in Figure 2-1.

Figure 2-1. Screenshot from http://www.pythonscraping.com/pages/page3.html

Another Serving of BeautifulSoup | 21

http://www.pythonscraping.com/pages/page3.html

The HTML for this page, mapped out as a tree (with some tags omitted for brevity),
looks like this:

• HTML
— body

— div.wrapper

— h1

— div.content

— table#giftList

— tr

— th

— th

— th

— th

— tr.gift#gift1

— td

— td

— span.excitingNote

— td

— td

— img

— ...table rows continue...
— div.footer

You will use this same HTML structure as an example in the next few sections.

Dealing with children and other descendants
In computer science and some branches of mathematics, you often hear about horri‐
ble things done to children: moving them, storing them, removing them, and even
killing them. Fortunately, this section focuses only on selecting them!

In the BeautifulSoup library, as well as many other libraries, there is a distinction
drawn between children and descendants: much like in a human family tree, children
are always exactly one tag below a parent, whereas descendants can be at any level in
the tree below a parent. For example, the tr tags are children of the table tag,
whereas tr, th, td, img, and span are all descendants of the table tag (at least in our
example page). All children are descendants, but not all descendants are children.

22 | Chapter 2: Advanced HTML Parsing

In general, BeautifulSoup functions always deal with the descendants of the current
tag selected. For instance, bs.body.h1 selects the first h1 tag that is a descendant of
the body tag. It will not find tags located outside the body.

Similarly, bs.div.find_all('img') will find the first div tag in the document, and
then retrieve a list of all img tags that are descendants of that div tag.

If you want to find only descendants that are children, you can use the .children
tag:

from urllib.request import urlopen
from bs4 import BeautifulSoup

html = urlopen('http://www.pythonscraping.com/pages/page3.html')
bs = BeautifulSoup(html, 'html.parser')

for child in bs.find('table',{'id':'giftList'}).children:
 print(child)

This code prints the list of product rows in the giftList table, including the initial
row of column labels. If you were to write it using the descendants() function
instead of the children() function, about two dozen tags would be found within the
table and printed, including img tags, span tags, and individual td tags. It’s definitely
important to differentiate between children and descendants!

Dealing with siblings

The BeautifulSoup next_siblings() function makes it trivial to collect data from
tables, especially ones with title rows:

from urllib.request import urlopen
from bs4 import BeautifulSoup

html = urlopen('http://www.pythonscraping.com/pages/page3.html')
bs = BeautifulSoup(html, 'html.parser')

for sibling in bs.find('table', {'id':'giftList'}).tr.next_siblings:
 print(sibling)

The output of this code is to print all rows of products from the product table, except
for the first title row. Why does the title row get skipped? Objects cannot be siblings
with themselves. Anytime you get siblings of an object, the object itself will not be
included in the list. As the name of the function implies, it calls next siblings only. If
you were to select a row in the middle of the list, for example, and call next_siblings
on it, only the subsequent siblings would be returned. So, by selecting the title row
and calling next_siblings, you can select all the rows in the table, without selecting
the title row itself.

Another Serving of BeautifulSoup | 23

Make Selections Specific

The preceding code will work just as well, if you select
bs.table.tr or even just bs.tr in order to select the first row of
the table. However, in the code, I go through all of the trouble of
writing everything out in a longer form:

bs.find('table',{'id':'giftList'}).tr

Even if it looks like there’s just one table (or other target tag) on the
page, it’s easy to miss things. In addition, page layouts change all
the time. What was once the first of its kind on the page might
someday be the second or third tag of that type found on the page.
To make your scrapers more robust, it’s best to be as specific as pos‐
sible when making tag selections. Take advantage of tag attributes
when they are available.

As a complement to next_siblings, the previous_siblings function can often be
helpful if there is an easily selectable tag at the end of a list of sibling tags that you
would like to get.

And, of course, there are the next_sibling and previous_sibling functions, which
perform nearly the same function as next_siblings and previous_siblings, except
they return a single tag rather than a list of them.

Dealing with parents
When scraping pages, you will likely discover that you need to find parents of tags
less frequently than you need to find their children or siblings. Typically, when you
look at HTML pages with the goal of crawling them, you start by looking at the top
layer of tags, and then figure out how to drill your way down into the exact piece of
data that you want. Occasionally, however, you can find yourself in odd situations
that require BeautifulSoup’s parent-finding functions, .parent and .parents. For
example:

from urllib.request import urlopen
from bs4 import BeautifulSoup

html = urlopen('http://www.pythonscraping.com/pages/page3.html')
bs = BeautifulSoup(html, 'html.parser')
print(bs.find('img',
 {'src':'../img/gifts/img1.jpg'})
 .parent.previous_sibling.get_text())

This code will print the price of the object represented by the image at the loca‐
tion ../img/gifts/img1.jpg (in this case, the price is $15.00).

How does this work? The following diagram represents the tree structure of the por‐
tion of the HTML page you are working with, with numbered steps:

24 | Chapter 2: Advanced HTML Parsing

• <tr>
— td

— td

— td
— "$15.00"

— td
—

The image tag where src="../img/gifts/img1.jpg" is first selected.

You select the parent of that tag (in this case, the td tag).

You select the previous_sibling of the td tag (in this case, the td tag that con‐
tains the dollar value of the product).

You select the text within that tag, “$15.00.”

Regular Expressions
As the old computer science joke goes: “Let’s say you have a problem, and you decide
to solve it with regular expressions. Well, now you have two problems.”

Unfortunately, regular expressions (often shortened to regex) are often taught using
large tables of random symbols, strung together to look like a lot of nonsense. This
tends to drive people away, and later they get out into the workforce and write need‐
lessly complicated searching and filtering functions, when all they needed was a one-
line regular expression in the first place!

Fortunately for you, regular expressions are not all that difficult to get up and run‐
ning with quickly, and can easily be learned by looking at and experimenting with a
few simple examples.

Regular expressions are so called because they are used to identify regular strings; they
can definitively say, “Yes, this string you’ve given me follows the rules, and I’ll return
it,” or “This string does not follow the rules, and I’ll discard it.” This can be exception‐
ally handy for quickly scanning large documents to look for strings that look like
phone numbers or email addresses.

Regular Expressions | 25

3 You might be asking yourself, “Are there ‘irregular’ expressions?” Nonregular expressions are beyond the
scope of this book, but they encompass strings such as “write a prime number of as, followed by exactly twice
that number of bs” or “write a palindrome.” It’s impossible to identify strings of this type with a regular
expression. Fortunately, I’ve never been in a situation where my web scraper needed to identify these kinds of
strings.

Notice that I used the phrase regular string. What is a regular string? It’s any string
that can be generated by a series of linear rules,3 such as these:

1. Write the letter a at least once.
2. Append to this the letter b exactly five times.
3. Append to this the letter c any even number of times.
4. Write either the letter d or e at the end.

Strings that follow these rules are aaaabbbbbccccd, aabbbbbcce, and so on (there are
an infinite number of variations).

Regular expressions are merely a shorthand way of expressing these sets of rules. For
instance, here’s the regular expression for the series of steps just described:

aa*bbbbb(cc)*(d|e)

This string might seem a little daunting at first, but it becomes clearer when you
break it into its components:

aa*

The letter a is written, followed by a* (read as a star), which means “any number
of as, including 0 of them.” In this way, you can guarantee that the letter a is writ‐
ten at least once.

bbbbb

No special effects here—just five bs in a row.

(cc)*

Any even number of things can be grouped into pairs, so in order to enforce this
rule about even things, you can write two cs, surround them in parentheses, and
write an asterisk after it, meaning that you can have any number of pairs of cs
(note that this can mean 0 pairs, as well).

(d|e)

Adding a bar in the middle of two expressions means that it can be “this thing or
that thing.” In this case, you are saying “add a d or an e.” In this way, you can
guarantee that there is exactly one of either of these two characters.

26 | Chapter 2: Advanced HTML Parsing

Experimenting with RegEx

When learning how to write regular expressions, it’s critical to play
around with them and get a feel for how they work. If you don’t feel
like firing up a code editor, writing a few lines, and running your
program in order to see whether a regular expression works as
expected, you can go to a website such as Regex Pal and test your
regular expressions on the fly.

Table 2-1 lists commonly used regular expression symbols, with brief explanations
and examples. This list is by no means complete, and as mentioned before, you might
encounter slight variations from language to language. However, these 12 symbols are
the most commonly used regular expressions in Python, and can be used to find and
collect almost any string type.

Table 2-1. Commonly used regular expression symbols

Symbol(s) Meaning Example Example matches
* Matches the preceding character, subexpression, or bracketed character, 0

or more times.
a*b* aaaaaaaa,

aaabbbbb,
bbbbbb

+ Matches the preceding character, subexpression, or bracketed character, 1
or more times.

a+b+ aaaaaaaab,
aaabbbbb,
abbbbbb

[] Matches any character within the brackets (i.e., “Pick any one of these
things”).

[A-Z]* APPLE,
CAPITALS,
QWERTY

() A grouped subexpression (these are evaluated first, in the “order of
operations” of regular expressions).

(a*b)* aaabaab, abaaab,
ababaaaaab

{m, n} Matches the preceding character, subexpression, or bracketed character
between m and n times (inclusive).

a{2,3}b{2,3} aabbb, aaabbb,
aabb

[^] Matches any single character that is not in the brackets. [^A-Z]* apple,
lowercase,
qwerty

| Matches any character, string of characters, or subexpression, separated
by the I (note that this is a vertical bar, or pipe, not a capital i).

b(a|i|e)d bad, bid, bed

. Matches any single character (including symbols, numbers, a space, etc.). b.d bad, bzd, b$d, b d
^ Indicates that a character or subexpression occurs at the beginning of a

string.
^a apple, asdf, a

\ An escape character (this allows you to use special characters as their
literal meanings).

\^ \| \\ ^ | \

$ Often used at the end of a regular expression, it means “match this up to
the end of the string.” Without it, every regular expression has a de facto
“.*” at the end of it, accepting strings where only the first part of the
string matches. This can be thought of as analogous to the ^ symbol.

[A-Z]*[a-z]*$ ABCabc, zzzyx,
Bob

Regular Expressions | 27

http://regexpal.com/

Symbol(s) Meaning Example Example matches
?! “Does not contain.” This odd pairing of symbols, immediately preceding a

character (or regular expression), indicates that that character should not
be found in that specific place in the larger string. This can be tricky to
use; after all, the character might be found in a different part of the
string. If trying to eliminate a character entirely, use in conjunction with a
^ and $ at either end.

^((?![A-Z]).)*$ no-caps-here,
$ymb0ls a4e f!ne

One classic example of regular expressions can be found in the practice of identifying
email addresses. Although the exact rules governing email addresses vary slightly
from mail server to mail server, we can create a few general rules. The corresponding
regular expression for each of these rules is shown in the second column:

Rule 1
The first part of an email address
contains at least one of the
following: uppercase letters,
lowercase letters, the numbers 0–9,
periods (.), plus signs (+), or
underscores (_).

[A-Za-z0-9._+]+
The regular expression shorthand is pretty smart. For
example, it knows that “A-Z” means “any uppercase
letter, A through Z.” By putting all these possible
sequences and symbols in brackets (as opposed to
parentheses), you are saying, “This symbol can be any one
of these things we’ve listed in the brackets.” Note also
that the + sign means “these characters can occur as
many times as they want to, but must occur at least
once.”

Rule 2
After this, the email address contains
the @ symbol.

@
This is fairly straightforward: the @ symbol must occur in
the middle, and it must occur exactly once.

Rule 3
The email address then must contain
at least one uppercase or lowercase
letter.

[A-Za-z]+
You may use only letters in the first part of the domain
name, after the @ symbol. Also, there must be at least
one character.

Rule 4
This is followed by a period (.).

.
You must include a period (.) before the top-level
domain.

28 | Chapter 2: Advanced HTML Parsing

Rule 5
Finally, the email address ends with
com, org, edu, or net (in reality, there
are many possible top-level
domains, but these four should
suffice for the sake of example).

(com|org|edu|net)
This lists the possible sequences of letters that can occur
after the period in the second part of an email address.

By concatenating all of the rules, you arrive at this regular expression:

[A-Za-z0-9._+]+@[A-Za-z]+.(com|org|edu|net)

When attempting to write any regular expression from scratch, it’s best to first make a
list of steps that concretely outlines what your target string looks like. Pay attention to
edge cases. For instance, if you’re identifying phone numbers, are you considering
country codes and extensions?

Regular Expressions: Not Always Regular!

The standard version of regular expressions (the one covered in
this book and used by Python and BeautifulSoup) is based on syn‐
tax used by Perl. Most modern programming languages use this or
one similar to it. Be aware, however, that if you are using regular
expressions in another language, you might encounter problems.
Even some modern languages, such as Java, have slight differences
in the way they handle regular expressions. When in doubt, read
the docs!

Regular Expressions and BeautifulSoup
If the previous section on regular expressions seemed a little disjointed from the mis‐
sion of this book, here’s where it all ties together. BeautifulSoup and regular expres‐
sions go hand in hand when it comes to scraping the web. In fact, most functions that
take in a string argument (e.g., find(id="aTagIdHere")) will also take in a regular
expression just as well.

Let’s take a look at some examples, scraping the page found at http://www.python‐
scraping.com/pages/page3.html.

Notice that the site has many product images, which take the following form:

If you wanted to grab URLs to all of the product images, it might seem fairly straight‐
forward at first: just grab all the image tags by using .find_all("img"), right? But
there’s a problem. In addition to the obvious “extra” images (e.g., logos), modern web‐

Regular Expressions and BeautifulSoup | 29

http://www.pythonscraping.com/pages/page3.html
http://www.pythonscraping.com/pages/page3.html

sites often have hidden images, blank images used for spacing and aligning elements,
and other random image tags you might not be aware of. Certainly, you can’t count
on the only images on the page being product images.

Let’s also assume that the layout of the page might change, or that, for whatever rea‐
son, you don’t want to depend on the position of the image in the page in order to
find the correct tag. This might be the case when you are trying to grab specific ele‐
ments or pieces of data that are scattered randomly throughout a website. For
instance, a featured product image might appear in a special layout at the top of some
pages, but not others.

The solution is to look for something identifying about the tag itself. In this case, you
can look at the file path of the product images:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

html = urlopen('http://www.pythonscraping.com/pages/page3.html')
bs = BeautifulSoup(html, 'html.parser')
images = bs.find_all('img',
 {'src':re.compile('..\/img\/gifts/img.*.jpg')})
for image in images:
 print(image['src'])

This prints only the relative image paths that start with ../img/gifts/img and end
in .jpg, the output of which is the following:

../img/gifts/img1.jpg

../img/gifts/img2.jpg

../img/gifts/img3.jpg

../img/gifts/img4.jpg

../img/gifts/img6.jpg

A regular expression can be inserted as any argument in a BeautifulSoup expression,
allowing you a great deal of flexibility in finding target elements.

Accessing Attributes
So far, you’ve looked at how to access and filter tags and access content within them.
However, often in web scraping you’re not looking for the content of a tag; you’re
looking for its attributes. This becomes especially useful for tags such as a, where the
URL it is pointing to is contained within the href attribute; or the img tag, where the
target image is contained within the src attribute.

With tag objects, a Python list of attributes can be automatically accessed by calling
this:

myTag.attrs

30 | Chapter 2: Advanced HTML Parsing

Keep in mind that this literally returns a Python dictionary object, which makes
retrieval and manipulation of these attributes trivial. The source location for an
image, for example, can be found using the following line:

myImgTag.attrs['src']

Lambda Expressions
If you have a formal education in computer science, you probably learned about
lambda expressions once in school and then never used them again. If you don’t, they
might be unfamiliar to you (or familiar only as “that thing I’ve been meaning to learn
at some point”). This section doesn’t go deeply into these types of functions, but does
show how they can be useful in web scraping.

Essentially, a lambda expression is a function that is passed into another function as a
variable; instead of defining a function as f(x, y), you may define a function as f(g(x),
y) or even f(g(x), h(x)).

BeautifulSoup allows you to pass certain types of functions as parameters into the
find_all function.

The only restriction is that these functions must take a tag object as an argument and
return a boolean. Every tag object that BeautifulSoup encounters is evaluated in this
function, and tags that evaluate to True are returned, while the rest are discarded.

For example, the following retrieves all tags that have exactly two attributes:

bs.find_all(lambda tag: len(tag.attrs) == 2)

Here, the function that you are passing as the argument is len(tag.attrs) == 2.
Where this is True, the find_all function will return the tag. That is, it will find tags
with two attributes, such as the following:

<div class="body" id="content"></div>

Lambda functions are so useful you can even use them to replace existing Beauti‐
fulSoup functions:

bs.find_all(lambda tag: tag.get_text() ==
 'Or maybe he\'s only resting?')

This can also be accomplished without a lambda function:

bs.find_all('', text='Or maybe he\'s only resting?')

However, if you remember the syntax for the lambda function, and how to access tag
properties, you may never need to remember any other BeautifulSoup syntax again!

Lambda Expressions | 31

Because the provided lambda function can be any function that returns a True or
False value, you can even combine them with regular expressions to find tags with
an attribute matching a certain string pattern.

32 | Chapter 2: Advanced HTML Parsing

1 Thanks to The Oracle of Bacon for satisfying my curiosity about this particular chain.

CHAPTER 3

Writing Web Crawlers

So far, you’ve seen single static pages with somewhat artificial canned examples. In
this chapter, you’ll start looking at real-world problems, with scrapers traversing mul‐
tiple pages and even multiple sites.

Web crawlers are called such because they crawl across the web. At their core is an
element of recursion. They must retrieve page contents for a URL, examine that page
for another URL, and retrieve that page, ad infinitum.

Beware, however: just because you can crawl the web doesn’t mean that you always
should. The scrapers used in previous examples work great in situations where all the
data you need is on a single page. With web crawlers, you must be extremely consci‐
entious of how much bandwidth you are using and make every effort to determine
whether there’s a way to make the target server’s load easier.

Traversing a Single Domain
Even if you haven’t heard of Six Degrees of Wikipedia, you’ve almost certainly heard
of its namesake, Six Degrees of Kevin Bacon. In both games, the goal is to link two
unlikely subjects (in the first case, Wikipedia articles that link to each other, and in
the second case, actors appearing in the same film) by a chain containing no more
than six total (including the two original subjects).

For example, Eric Idle appeared in Dudley Do-Right with Brendan Fraser, who
appeared in The Air I Breathe with Kevin Bacon.1 In this case, the chain from Eric Idle
to Kevin Bacon is only three subjects long.

33

http://oracleofbacon.org

In this section, you’ll begin a project that will become a Six Degrees of Wikipedia sol‐
ution finder: You’ll be able to take the Eric Idle page and find the fewest number of
link clicks that will take you to the Kevin Bacon page.

But What About Wikipedia’s Server Load?
According to the Wikimedia Foundation (the parent organization behind Wikipedia),
the site’s web properties receive approximately 2,500 hits per second, with more than
99% of them to the Wikipedia domain (see the “Traffic Volume” section of the “Wiki‐
media in Figures” page). Because of the sheer volume of traffic, your web scrapers are
unlikely to have any noticeable impact on Wikipedia’s server load. However, if you
run the code samples in this book extensively, or create your own projects that scrape
Wikipedia, I encourage you to make a tax-deductible donation to the Wikimedia
Foundation—not just to offset your server load, but also to help make education
resources available for everyone else.

Also keep in mind that if you plan on doing a large project involving data from Wiki‐
pedia, you should check to make sure that data isn’t already available from the Wiki‐
pedia API. Wikipedia is often used as a website to demonstrate scrapers and crawlers
because it has a simple HTML structure and is relatively stable. However, its APIs
often make this same data more efficiently accessible.

You should already know how to write a Python script that retrieves an arbitrary
Wikipedia page and produces a list of links on that page:

from urllib.request import urlopen
from bs4 import BeautifulSoup

html = urlopen('http://en.wikipedia.org/wiki/Kevin_Bacon')
bs = BeautifulSoup(html, 'html.parser')
for link in bs.find_all('a'):
 if 'href' in link.attrs:
 print(link.attrs['href'])

If you look at the list of links produced, you’ll notice that all the articles you’d expect
are there: “Apollo 13,” “Philadelphia,” “Primetime Emmy Award,” and so on. However,
there are some things that you don’t want as well:

//wikimediafoundation.org/wiki/Privacy_policy
//en.wikipedia.org/wiki/Wikipedia:Contact_us

In fact, Wikipedia is full of sidebar, footer, and header links that appear on every
page, along with links to the category pages, talk pages, and other pages that do not
contain different articles:

/wiki/Category:Articles_with_unsourced_statements_from_April_2014
/wiki/Talk:Kevin_Bacon

34 | Chapter 3: Writing Web Crawlers

https://en.wikipedia.org/wiki/Eric_Idle
https://en.wikipedia.org/wiki/Kevin_Bacon
https://meta.wikimedia.org/wiki/Wikimedia_in_figures_-_Wikipedia#Traffic_volume
https://meta.wikimedia.org/wiki/Wikimedia_in_figures_-_Wikipedia#Traffic_volume
https://wikimediafoundation.org/wiki/Ways_to_Give
https://wikimediafoundation.org/wiki/Ways_to_Give
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Main_page

Recently a friend of mine, while working on a similar Wikipedia-scraping project,
mentioned he had written a large filtering function, with more than 100 lines of code,
in order to determine whether an internal Wikipedia link was an article page.
Unfortunately, he had not spent much time upfront trying to find patterns between
“article links” and “other links,” or he might have discovered the trick. If you examine
the links that point to article pages (as opposed to other internal pages), you’ll see that
they all have three things in common:

• They reside within the div with the id set to bodyContent.
• The URLs do not contain colons.
• The URLs begin with /wiki/.

You can use these rules to revise the code slightly to retrieve only the desired article
links by using the regular expression ^(/wiki/)((?!:).)*$"):

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

html = urlopen('http://en.wikipedia.org/wiki/Kevin_Bacon')
bs = BeautifulSoup(html, 'html.parser')
for link in bs.find('div', {'id':'bodyContent'}).find_all(
 'a', href=re.compile('^(/wiki/)((?!:).)*$')):
 if 'href' in link.attrs:
 print(link.attrs['href'])

If you run this, you should see a list of all article URLs that the Wikipedia article on
Kevin Bacon links to.

Of course, having a script that finds all article links in one, hardcoded Wikipedia arti‐
cle, while interesting, is fairly useless in practice. You need to be able to take this code
and transform it into something more like the following:

• A single function, getLinks, that takes in a Wikipedia article URL of the
form /wiki/<Article_Name> and returns a list of all linked article URLs in the
same form.

• A main function that calls getLinks with a starting article, chooses a random
article link from the returned list, and calls getLinks again, until you stop the
program or until no article links are found on the new page.

Here is the complete code that accomplishes this:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import datetime
import random
import re

Traversing a Single Domain | 35

random.seed(datetime.datetime.now())
def getLinks(articleUrl):
 html = urlopen('http://en.wikipedia.org{}'.format(articleUrl))
 bs = BeautifulSoup(html, 'html.parser')
 return bs.find('div', {'id':'bodyContent'}).find_all('a',
 href=re.compile('^(/wiki/)((?!:).)*$'))

links = getLinks('/wiki/Kevin_Bacon')
while len(links) > 0:
 newArticle = links[random.randint(0, len(links)-1)].attrs['href']
 print(newArticle)
 links = getLinks(newArticle)

The first thing the program does, after importing the needed libraries, is set the
random-number generator seed with the current system time. This practically
ensures a new and interesting random path through Wikipedia articles every time the
program is run.

Pseudorandom Numbers and Random Seeds
The previous example used Python’s random-number generator to select an article at
random on each page in order to continue a random traversal of Wikipedia. However,
random numbers should be used with caution.

Although computers are great at calculating correct answers, they’re terrible at mak‐
ing things up. For this reason, random numbers can be a challenge. Most random-
number algorithms strive to produce an evenly distributed and hard-to-predict
sequence of numbers, but a “seed” number is needed to give these algorithms some‐
thing to work with initially. The exact same seed will produce the exact same
sequence of “random” numbers every time, so for this reason I’ve used the system
clock as a starter for producing new sequences of random numbers, and, thus, new
sequences of random articles. This makes the program a little more exciting to run.

For the curious, the Python pseudorandom number generator is powered by the
Mersenne Twister algorithm. While it produces random numbers that are difficult to
predict and uniformly distributed, it is slightly processor intensive. Random numbers
this good don’t come cheap!

Next, the program defines the getLinks function, which takes in an article URL of
the form /wiki/..., prepends the Wikipedia domain name, http://en.wikipe
dia.org, and retrieves the BeautifulSoup object for the HTML at that domain. It
then extracts a list of article link tags, based on the parameters discussed previously,
and returns them.

The main body of the program begins with setting a list of article link tags (the
links variable) to the list of links in the initial page: https://en.wikipedia.org/wiki/

36 | Chapter 3: Writing Web Crawlers

2 See “Exploring a ‘Deep Web’ that Google Can’t Grasp” by Alex Wright.

Kevin_Bacon. It then goes into a loop, finding a random article link tag in the page,
extracting the href attribute from it, printing the page, and getting a new list of links
from the extracted URL.

Of course, there’s a bit more to solving a Six Degrees of Wikipedia problem than
building a scraper that goes from page to page. You must also be able to store and
analyze the resulting data. For a continuation of the solution to this problem, see
Chapter 6.

Handle Your Exceptions!

Although these code examples omit most exception handling for
the sake of brevity, be aware that many potential pitfalls could arise.
What if Wikipedia changes the name of the bodyContent tag, for
example? When the program attempts to extract the text from the
tag, it throws an AttributeError.
So although these scripts might be fine to run as closely watched
examples, autonomous production code requires far more excep‐
tion handling than can fit into this book. Look back to Chapter 1
for more information about this.

Crawling an Entire Site
In the previous section, you took a random walk through a website, going from link
to link. But what if you need to systematically catalog or search every page on a site?
Crawling an entire site, especially a large one, is a memory-intensive process that is
best suited to applications for which a database to store crawling results is readily
available. However, you can explore the behavior of these types of applications
without running them full-scale. To learn more about running these applications by
using a database, see Chapter 6.

The Dark and Deep Webs
You’ve likely heard the terms deep web, dark web, or hidden web being thrown around
a lot, especially in the media lately. What do they mean?

The deep web is any part of the web that’s not part of the surface web.2 The surface is
part of the internet that is indexed by search engines. Estimates vary widely, but the
deep web almost certainly makes up about 90% of the internet. Because Google can’t
do things like submit forms, find pages that haven’t been linked to by a top-level

Crawling an Entire Site | 37

http://nyti.ms/2pohZmu

3 See “Hacker Lexicon: What is the Dark Web?” by Andy Greenberg.

domain, or investigate sites where robots.txt prohibits it, the surface web stays rela‐
tively small.

The dark web, also known as the darknet, is another beast entirely.3 It is run over the
existing network hardware infrastructure but uses Tor, or another client, with an
application protocol that runs on top of HTTP, providing a secure channel to
exchange information. Although it is possible to scrape the dark web, just as you’d
scrape any other website, doing so is outside the scope of this book.

Unlike the dark web, the deep web is relatively easy to scrape. Many tools in this book
will teach you how to crawl and scrape information from many places that Google
bots can’t go.

When might crawling an entire website be useful, and when might it be harmful?
Web scrapers that traverse an entire site are good for many things, including the fol‐
lowing:

Generating a site map
A few years ago, I was faced with a problem: an important client wanted an esti‐
mate for a website redesign, but did not want to provide my company with access
to the internals of their current content management system, and did not have a
publicly available site map. I was able to use a crawler to cover the entire site,
gather all internal links, and organize the pages into the actual folder structure
used on the site. This allowed me to quickly find sections of the site I wasn’t even
aware existed, and accurately count how many page designs would be required
and how much content would need to be migrated.

Gathering data
Another client of mine wanted to gather articles (stories, blog posts, news arti‐
cles, etc.) in order to create a working prototype of a specialized search platform.
Although these website crawls didn’t need to be exhaustive, they did need to be
fairly expansive (we were interested in getting data from only a few sites). I was
able to create crawlers that recursively traversed each site and collected only data
found on article pages.

The general approach to an exhaustive site crawl is to start with a top-level page (such
as the home page), and search for a list of all internal links on that page. Every one of
those links is then crawled, and additional lists of links are found on each one of
them, triggering another round of crawling.

Clearly, this is a situation that can blow up quickly. If every page has 10 internal links,
and a website is 5 pages deep (a fairly typical depth for a medium-size website), then

38 | Chapter 3: Writing Web Crawlers

http://bit.ly/2psIw2M

the number of pages you need to crawl is 105, or 100,000 pages, before you can be
sure that you’ve exhaustively covered the website. Strangely enough, although “5
pages deep and 10 internal links per page” are fairly typical dimensions for a website,
very few websites have 100,000 or more pages. The reason, of course, is that the vast
majority of internal links are duplicates.

To avoid crawling the same page twice, it is extremely important that all internal links
discovered are formatted consistently, and kept in a running set for easy lookups,
while the program is running. A set is similar to a list, but elements do not have a
specific order, and only unique elements will be stored, which is ideal for our needs.
Only links that are “new” should be crawled and searched for additional links:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

pages = set()
def getLinks(pageUrl):
 global pages
 html = urlopen('http://en.wikipedia.org{}'.format(pageUrl))
 bs = BeautifulSoup(html, 'html.parser')
 for link in bs.find_all('a', href=re.compile('^(/wiki/)')):
 if 'href' in link.attrs:
 if link.attrs['href'] not in pages:
 #We have encountered a new page
 newPage = link.attrs['href']
 print(newPage)
 pages.add(newPage)
 getLinks(newPage)
getLinks('')

To show you the full effect of how this web crawling business works, I’ve relaxed the
standards of what constitutes an internal link (from previous examples). Rather than
limit the scraper to article pages, it looks for all links that begin with /wiki/, regardless
of where they are on the page, and regardless of whether they contain colons.
Remember: article pages do not contain colons, but file-upload pages, talk pages, and
the like do contain colons in the URL.

Initially, getLinks is called with an empty URL. This is translated as “the front page
of Wikipedia” as soon as the empty URL is prepended with http://en.wikipe
dia.org inside the function. Then, each link on the first page is iterated through and
a check is made to see whether it is in the global set of pages (a set of pages that the
script has encountered already). If not, it is added to the list, printed to the screen,
and the getLinks function is called recursively on it.

Crawling an Entire Site | 39

A Warning Regarding Recursion

This is a warning rarely seen in software books, but I thought you
should be aware: if left running long enough, the preceding pro‐
gram will almost certainly crash.
Python has a default recursion limit (the number of times a pro‐
gram can recursively call itself) of 1,000. Because Wikipedia’s net‐
work of links is extremely large, this program will eventually hit
that recursion limit and stop, unless you put in a recursion counter
or something to prevent that from happening.
For “flat” sites that are fewer than 1,000 links deep, this method
usually works well, with a few unusual exceptions. For instance, I
once encountered a bug in a dynamically generated URL that
depended on the address of the current page to write the link on
that page. This resulted in infinitely repeating paths like /blogs/
blogs.../blogs/blog-post.php.
For the most part, however, this recursive technique should be fine
for any typical website you’re likely to encounter.

Collecting Data Across an Entire Site
Web crawlers would be fairly boring if all they did was hop from one page to the
other. To make them useful, you need to be able to do something on the page while
you’re there. Let’s look at how to build a scraper that collects the title, the first para‐
graph of content, and the link to edit the page (if available).

As always, the first step to determine how best to do this is to look at a few pages
from the site and determine a pattern. By looking at a handful of Wikipedia pages
(both articles and nonarticle pages such as the privacy policy page), the following
things should be clear:

• All titles (on all pages, regardless of their status as an article page, an edit history
page, or any other page) have titles under h1 → span tags, and these are the only
h1 tags on the page.

• As mentioned before, all body text lives under the div#bodyContent tag. How‐
ever, if you want to get more specific and access just the first paragraph of text,
you might be better off using div#mw-content-text → p (selecting the first para‐
graph tag only). This is true for all content pages except file pages (for example,
https://en.wikipedia.org/wiki/File:Orbit_of_274301_Wikipedia.svg), which do not
have sections of content text.

40 | Chapter 3: Writing Web Crawlers

https://en.wikipedia.org/wiki/File:Orbit_of_274301_Wikipedia.svg

• Edit links occur only on article pages. If they occur, they will be found in the
li#ca-edit tag, under li#ca-edit → span → a.

By modifying our basic crawling code, you can create a combination crawler/data-
gathering (or, at least, data-printing) program:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

pages = set()
def getLinks(pageUrl):
 global pages
 html = urlopen('http://en.wikipedia.org{}'.format(pageUrl))
 bs = BeautifulSoup(html, 'html.parser')
 try:
 print(bs.h1.get_text())
 print(bs.find(id ='mw-content-text').find_all('p')[0])
 print(bs.find(id='ca-edit').find('span')
 .find('a').attrs['href'])
 except AttributeError:
 print('This page is missing something! Continuing.')

 for link in bs.find_all('a', href=re.compile('^(/wiki/)')):
 if 'href' in link.attrs:
 if link.attrs['href'] not in pages:
 #We have encountered a new page
 newPage = link.attrs['href']
 print('-'*20)
 print(newPage)
 pages.add(newPage)
 getLinks(newPage)
getLinks('')

The for loop in this program is essentially the same as it was in the original crawling
program (with the addition of printed dashes for clarity, separating the printed con‐
tent).

Because you can never be entirely sure that all the data is on each page, each print
statement is arranged in the order that it is likeliest to appear on the site. That is, the
h1 title tag appears on every page (as far as I can tell, at any rate) so you attempt to get
that data first. The text content appears on most pages (except for file pages), so that
is the second piece of data retrieved. The Edit button appears only on pages in which
both titles and text content already exist, but it does not appear on all of those pages.

Crawling an Entire Site | 41

Different Patterns for Different Needs

Obviously, some dangers are involved with wrapping multiple lines
in an exception handler. You cannot tell which line threw the
exception, for one thing. Also, if for some reason a page contains
an Edit button but no title, the Edit button would never be logged.
However, it suffices for many instances in which there is an order
of likeliness of items appearing on the site, and inadvertently miss‐
ing a few data points or keeping detailed logs is not a problem.

You might notice that in this and all the previous examples, you haven’t been “collect‐
ing” data so much as “printing” it. Obviously, data in your terminal is hard to manip‐
ulate. You’ll look more at storing information and creating databases in Chapter 5.

Handling Redirects
Redirects allow a web server to point one domain name or URL to a piece of content
at a different location. There are two types of redirects:

• Server-side redirects, where the URL is changed before the page is loaded
• Client-side redirects, sometimes seen with a “You will be redirected in 10 sec‐

onds” type of message, where the page loads before redirecting to the new one

With server-side redirects, you usually don’t have to worry. If you’re using the urllib
library with Python 3.x, it handles redirects automatically! If you’re using the requests
library, make sure to set the allow-redirects flag to True:

r = requests.get('http://github.com', allow_redirects=True)

Just be aware that, occasionally, the URL of the page you’re crawling might not be
exactly the URL that you entered the page on.

For more information on client-side redirects, which are performed using JavaScript
or HTML, see Chapter 12.

Crawling Across the Internet
Whenever I give a talk on web scraping, someone inevitably asks, “How do you build
Google?” My answer is always twofold: “First, you get many billions of dollars so that
you can buy the world’s largest data warehouses and place them in hidden locations
all around the world. Second, you build a web crawler.”

When Google started in 1996, it was just two Stanford graduate students with an old
server and a Python web crawler. Now that you know how to scrape the web, you offi‐
cially have the tools you need to become the next tech multibillionaire!

42 | Chapter 3: Writing Web Crawlers

In all seriousness, web crawlers are at the heart of what drives many modern web
technologies, and you don’t necessarily need a large data warehouse to use them. To
do any cross-domain data analysis, you do need to build crawlers that can interpret
and store data across the myriad of pages on the internet.

Just as in the previous example, the web crawlers you are going to build will follow
links from page to page, building out a map of the web. But this time, they will not
ignore external links; they will follow them.

Unknown Waters Ahead

Keep in mind that the code from the next section can go any‐
where on the internet. If we’ve learned anything from Six Degrees
of Wikipedia, it’s that it’s entirely possible to go from a site such as
http://www.sesamestreet.org/ to something less savory in just a few
hops.
Kids, ask your parents before running this code. For those with
sensitive constitutions or with religious restrictions that might pro‐
hibit seeing text from a prurient site, follow along by reading the
code examples but be careful when running them.

Before you start writing a crawler that follows all outbound links willy-nilly, you
should ask yourself a few questions:

• What data am I trying to gather? Can this be accomplished by scraping just a few
predefined websites (almost always the easier option), or does my crawler need to
be able to discover new websites I might not know about?

• When my crawler reaches a particular website, will it immediately follow the next
outbound link to a new website, or will it stick around for a while and drill down
into the current website?

• Are there any conditions under which I would not want to scrape a particular
site? Am I interested in non-English content?

• How am I protecting myself against legal action if my web crawler catches the
attention of a webmaster on one of the sites it runs across? (Check out Chap‐
ter 18 for more information on this subject.)

A flexible set of Python functions that can be combined to perform a variety of types
of web scraping can be easily written in fewer than 60 lines of code:

from urllib.request import urlopen
from urllib.parse import urlparse
from bs4 import BeautifulSoup
import re
import datetime
import random

Crawling Across the Internet | 43

http://www.sesamestreet.org/

pages = set()
random.seed(datetime.datetime.now())

#Retrieves a list of all Internal links found on a page
def getInternalLinks(bs, includeUrl):
 includeUrl = '{}://{}'.format(urlparse(includeUrl).scheme,
 urlparse(includeUrl).netloc)
 internalLinks = []
 #Finds all links that begin with a "/"
 for link in bs.find_all('a',
 href=re.compile('^(/|.*'+includeUrl+')')):
 if link.attrs['href'] is not None:
 if link.attrs['href'] not in internalLinks:
 if(link.attrs['href'].startswith('/')):
 internalLinks.append(
 includeUrl+link.attrs['href'])
 else:
 internalLinks.append(link.attrs['href'])
 return internalLinks

#Retrieves a list of all external links found on a page
def getExternalLinks(bs, excludeUrl):
 externalLinks = []
 #Finds all links that start with "http" or "www" that do
 #not contain the current URL
 for link in bs.find_all('a',
 href=re.compile('^(http|www)((?!'+excludeUrl+').)*$')):
 if link.attrs['href'] is not None:
 if link.attrs['href'] not in externalLinks:
 externalLinks.append(link.attrs['href'])
 return externalLinks

def getRandomExternalLink(startingPage):
 html = urlopen(startingPage)
 bs = BeautifulSoup(html, 'html.parser')
 externalLinks = getExternalLinks(bs,
 urlparse(startingPage).netloc)
 if len(externalLinks) == 0:
 print('No external links, looking around the site for one')
 domain = '{}://{}'.format(urlparse(startingPage).scheme,
 urlparse(startingPage).netloc)
 internalLinks = getInternalLinks(bs, domain)
 return getRandomExternalLink(internalLinks[random.randint(0,
 len(internalLinks)-1)])
 else:
 return externalLinks[random.randint(0, len(externalLinks)-1)]

def followExternalOnly(startingSite):
 externalLink = getRandomExternalLink(startingSite)
 print('Random external link is: {}'.format(externalLink))
 followExternalOnly(externalLink)

44 | Chapter 3: Writing Web Crawlers

followExternalOnly('http://oreilly.com')

The preceding program starts at http://oreilly.com and randomly hops from external
link to external link. Here’s an example of the output it produces:

http://igniteshow.com/
http://feeds.feedburner.com/oreilly/news
http://hire.jobvite.com/CompanyJobs/Careers.aspx?c=q319
http://makerfaire.com/

External links are not always guaranteed to be found on the first page of a website. To
find external links in this case, a method similar to the one used in the previous
crawling example is employed to recursively drill down into a website until it finds an
external link.

Figure 3-1 illustrates the operation as a flowchart.

Figure 3-1. Flowchart for our script that crawls through sites on the internet

Don’t Put Example Programs into Production

I keep bringing this up, but for the sake of space and readability,
the example programs in this book do not always contain the nec‐
essary checks and exception handling required for production-
ready code. For example, if an external link is not found anywhere
on a site that this crawler encounters (unlikely, but it’s bound to
happen at some point if you run it for long enough), this program
will keep running until it hits Python’s recursion limit.
One easy way to increase the robustness of this crawler would be to
combine it with the connection exception-handling code in Chap‐
ter 1. This would allow the code to choose a different URL to go to
if an HTTP error or server exception was encountered when
retrieving the page.
Before running this code for any serious purpose, make sure that
you are putting checks in place to handle potential pitfalls.

Crawling Across the Internet | 45

http://oreilly.com

The nice thing about breaking up tasks into simple functions such as “find all external
links on this page” is that the code can later be easily refactored to perform a different
crawling task. For example, if your goal is to crawl an entire site for external links,
and make a note of each one, you can add the following function:

Collects a list of all external URLs found on the site
allExtLinks = set()
allIntLinks = set()

def getAllExternalLinks(siteUrl):
 html = urlopen(siteUrl)
 domain = '{}://{}'.format(urlparse(siteUrl).scheme,
 urlparse(siteUrl).netloc)
 bs = BeautifulSoup(html, 'html.parser')
 internalLinks = getInternalLinks(bs, domain)
 externalLinks = getExternalLinks(bs, domain)

 for link in externalLinks:
 if link not in allExtLinks:
 allExtLinks.add(link)
 print(link)
 for link in internalLinks:
 if link not in allIntLinks:
 allIntLinks.add(link)
 getAllExternalLinks(link)

allIntLinks.add('http://oreilly.com')
getAllExternalLinks('http://oreilly.com')

This code can be thought of as two loops—one gathering internal links, one gathering
external links—working in conjunction with each other. The flowchart looks some‐
thing like Figure 3-2.

46 | Chapter 3: Writing Web Crawlers

Figure 3-2. Flow diagram for the website crawler that collects all external links

Jotting down or making diagrams of what the code should do before you write the
code itself is a fantastic habit to get into, and one that can save you a lot of time and
frustration as your crawlers get more complicated.

Crawling Across the Internet | 47

CHAPTER 4

Web Crawling Models

Writing clean and scalable code is difficult enough when you have control over your
data and your inputs. Writing code for web crawlers, which may need to scrape and
store a variety of data from diverse sets of websites that the programmer has no con‐
trol over, often presents unique organizational challenges.

You may be asked to collect news articles or blog posts from a variety of websites,
each with different templates and layouts. One website’s h1 tag contains the title of the
article, another’s h1 tag contains the title of the website itself, and the article title is in
.

You may need flexible control over which websites are scraped and how they’re scra‐
ped, and a way to quickly add new websites or modify existing ones, as fast as possi‐
ble, without writing multiple lines of code.

You may be asked to scrape product prices from different websites, with the ultimate
aim of comparing prices for the same product. Perhaps these prices are in different
currencies, and perhaps you’ll also need to combine this with external data from
some other nonweb source.

Although the applications of web crawlers are nearly endless, large scalable crawlers
tend to fall into one of several patterns. By learning these patterns and recognizing
the situations they apply to, you can vastly improve the maintainability and robust‐
ness of your web crawlers.

This chapter focuses primarily on web crawlers that collect a limited number of
“types” of data (such as restaurant reviews, news articles, company profiles) from a
variety of websites, and that store these data types as Python objects that read and
write from a database.

49

Planning and Defining Objects
One common trap of web scraping is defining the data that you want to collect based
entirely on what’s available in front of your eyes. For instance, if you want to collect
product data, you may first look at a clothing store and decide that each product you
scrape needs to have the following fields:

• Product name
• Price
• Description
• Sizes
• Colors
• Fabric type
• Customer rating

Looking at another website, you find that it has SKUs (stock keeping units, used to
track and order items) listed on the page. You definitely want to collect that data as
well, even if it doesn’t appear on the first site! You add this field:

• Item SKU

Although clothing may be a great start, you also want to make sure you can extend
this crawler to other types of products. You start perusing product sections of other
websites and decide you also need to collect this information:

• Hardcover/Paperback
• Matte/Glossy print
• Number of customer reviews
• Link to manufacturer

Clearly, this is an unsustainable approach. Simply adding attributes to your product
type every time you see a new piece of information on a website will lead to far too
many fields to keep track of. Not only that, but every time you scrape a new website,
you’ll be forced to perform a detailed analysis of the fields the website has and the
fields you’ve accumulated so far, and potentially add new fields (modifying your
Python object type and your database structure). This will result in a messy and
difficult-to-read dataset that may lead to problems using it.

One of the best things you can do when deciding which data to collect is often to
ignore the websites altogether. You don’t start a project that’s designed to be large and
scalable by looking at a single website and saying, “What exists?” but by saying,

50 | Chapter 4: Web Crawling Models

“What do I need?” and then finding ways to seek the information that you need from
there.

Perhaps what you really want to do is compare product prices among multiple stores
and track those product prices over time. In this case, you need enough information
to uniquely identify the product, and that’s it:

• Product title
• Manufacturer
• Product ID number (if available/relevant)

It’s important to note that none of this information is specific to a particular store. For
instance, product reviews, ratings, price, and even description are specific to the
instance of that product at a particular store. That can be stored separately.

Other information (colors the product comes in, what it’s made of) is specific to the
product, but may be sparse—it’s not applicable to every product. It’s important to take
a step back and perform a checklist for each item you consider and ask yourself the
following questions:

• Will this information help with the project goals? Will it be a roadblock if I don’t
have it, or is it just “nice to have” but won’t ultimately impact anything?

• If it might help in the future, but I’m unsure, how difficult will it be to go back
and collect the data at a later time?

• Is this data redundant to data I’ve already collected?
• Does it make logical sense to store the data within this particular object? (As

mentioned before, storing a description in a product doesn’t make sense if that
description changes from site to site for the same product.)

If you do decide that you need to collect the data, it’s important to ask a few more
questions to then decide how to store and handle it in code:

• Is this data sparse or dense? Will it be relevant and populated in every listing, or
just a handful out of the set?

• How large is the data?
• Especially in the case of large data, will I need to regularly retrieve it every time I

run my analysis, or only on occasion?
• How variable is this type of data? Will I regularly need to add new attributes,

modify types (such as fabric patterns, which may be added frequently), or is it set
in stone (shoe sizes)?

Planning and Defining Objects | 51

Let’s say you plan to do some meta analysis around product attributes and prices: for
example, the number of pages a book has, or the type of fabric a piece of clothing is
made of, and potentially other attributes in the future, correlated to price. You run
through the questions and realize that this data is sparse (relatively few products have
any one of the attributes), and that you may decide to add or remove attributes fre‐
quently. In this case, it may make sense to create a product type that looks like this:

• Product title
• Manufacturer
• Product ID number (if available/relevant)
• Attributes (optional list or dictionary)

And an attribute type that looks like this:

• Attribute name
• Attribute value

This allows you to flexibly add new product attributes over time, without requiring
you to redesign your data schema or rewrite code. When deciding how to store these
attributes in the database, you can write JSON to the attribute field, or store each
attribute in a separate table with a product ID. See Chapter 6 for more information
about implementing these types of database models.

You can apply the preceding questions to the other information you’ll need to store as
well. For keeping track of the prices found for each product, you’ll likely need the fol‐
lowing:

• Product ID
• Store ID
• Price
• Date/Timestamp price was found at

But what if you have a situation in which the product’s attributes actually modify the
price of the product? For instance, stores might charge more for a large shirt than a
small one, because the large shirt requires more labor or materials. In this case, you
may consider splitting the single shirt product into separate product listings for each
size (so that each shirt product can be priced independently) or creating a new item
type to store information about instances of a product, containing these fields:

• Product ID
• Instance type (the size of the shirt, in this case)

52 | Chapter 4: Web Crawling Models

And each price would then look like this:

• Product Instance ID
• Store ID
• Price
• Date/Timestamp price was found at

While the subject of “products and prices” may seem overly specific, the basic ques‐
tions you need to ask yourself, and the logic used when designing your Python
objects, apply in almost every situation.

If you’re scraping news articles, you may want basic information such as the follow‐
ing:

• Title
• Author
• Date
• Content

But say some articles contain a “revision date,” or “related articles, or a “number of
social media shares.” Do you need these? Are they relevant to your project? How do
you efficiently and flexibly store the number of social media shares when not all news
sites use all forms of social media, and social media sites may grow or wane in popu‐
larity over time?

It can be tempting, when faced with a new project, to dive in and start writing Python
to scrape websites immediately. The data model, left as an afterthought, often
becomes strongly influenced by the availability and format of the data on the first
website you scrape.

However, the data model is the underlying foundation of all the code that uses it. A
poor decision in your model can easily lead to problems writing and maintaining
code down the line, or difficulty in extracting and efficiently using the resulting
data. Especially when dealing with a variety of websites—both known and unknown
—it becomes vital to give serious thought and planning to what, exactly, you need to
collect and how you need to store it.

Dealing with Different Website Layouts
One of the most impressive feats of a search engine such as Google is that it manages
to extract relevant and useful data from a variety of websites, having no upfront
knowledge about the website structure itself. Although we, as humans, are able to

Dealing with Different Website Layouts | 53

immediately identify the title and main content of a page (barring instances of
extremely poor web design), it is far more difficult to get a bot to do the same thing.

Fortunately, in most cases of web crawling, you’re not looking to collect data from
sites you’ve never seen before, but from a few, or a few dozen, websites that are pre-
selected by a human. This means that you don’t need to use complicated algorithms
or machine learning to detect which text on the page “looks most like a title” or which
is probably the “main content.” You can determine what these elements are manually.

The most obvious approach is to write a separate web crawler or page parser for each
website. Each might take in a URL, string, or BeautifulSoup object, and return a
Python object for the thing that was scraped.

The following is an example of a Content class (representing a piece of content on a
website, such as a news article) and two scraper functions that take in a Beauti
fulSoup object and return an instance of Content:

import requests

class Content:
 def __init__(self, url, title, body):
 self.url = url
 self.title = title
 self.body = body

def getPage(url):
 req = requests.get(url)
 return BeautifulSoup(req.text, 'html.parser')

def scrapeNYTimes(url):
 bs = getPage(url)
 title = bs.find('h1').text
 lines = bs.select('div.StoryBodyCompanionColumn div p')
 body = '\n'.join([line.text for line in lines])
 return Content(url, title, body)

def scrapeBrookings(url):
 bs = getPage(url)
 title = bs.find('h1').text
 body = bs.find('div', {'class', 'post-body'}).text
 return Content(url, title, body)

url = 'https://www.brookings.edu/blog/future-development/2018/01/26/'
 'delivering-inclusive-urban-access-3-uncomfortable-truths/'
content = scrapeBrookings(url)
print('Title: {}'.format(content.title))
print('URL: {}\n'.format(content.url))
print(content.body)

url = 'https://www.nytimes.com/2018/01/25/opinion/sunday/'
 'silicon-valley-immortality.html'

54 | Chapter 4: Web Crawling Models

content = scrapeNYTimes(url)
print('Title: {}'.format(content.title))
print('URL: {}\n'.format(content.url))
print(content.body)

As you start to add scraper functions for additional news sites, you might notice a
pattern forming. Every site’s parsing function does essentially the same thing:

• Selects the title element and extracts the text for the title
• Selects the main content of the article
• Selects other content items as needed
• Returns a Content object instantiated with the strings found previously

The only real site-dependent variables here are the CSS selectors used to obtain each
piece of information. BeautifulSoup’s find and find_all functions take in two argu‐
ments—a tag string and a dictionary of key/value attributes—so you can pass these
arguments in as parameters that define the structure of the site itself and the location
of the target data.

To make things even more convenient, rather than dealing with all of these tag argu‐
ments and key/value pairs, you can use the BeautifulSoup select function with a sin‐
gle string CSS selector for each piece of information you want to collect and put all of
these selectors in a dictionary object:

class Content:
 """
 Common base class for all articles/pages
 """
 def __init__(self, url, title, body):
 self.url = url
 self.title = title
 self.body = body

 def print(self):
 """
 Flexible printing function controls output
 """
 print('URL: {}'.format(self.url))
 print('TITLE: {}'.format(self.title))
 print('BODY:\n{}'.format(self.body))

class Website:
 """
 Contains information about website structure
 """
 def __init__(self, name, url, titleTag, bodyTag):
 self.name = name
 self.url = url

Dealing with Different Website Layouts | 55

 self.titleTag = titleTag
 self.bodyTag = bodyTag

Note that the Website class does not store information collected from the individual
pages themselves, but stores instructions about how to collect that data. It doesn’t
store the title “My Page Title.” It simply stores the string tag h1 that indicates where
the titles can be found. This is why the class is called Website (the information here
pertains to the entire website) and not Content (which contains information from
just a single page).

Using these Content and Website classes you can then write a Crawler to scrape the
title and content of any URL that is provided for a given web page from a given web‐
site:

import requests
from bs4 import BeautifulSoup

class Crawler:
 def getPage(self, url):
 try:
 req = requests.get(url)
 except requests.exceptions.RequestException:
 return None
 return BeautifulSoup(req.text, 'html.parser')

 def safeGet(self, pageObj, selector):
 """
 Utility function used to get a content string from a
 Beautiful Soup object and a selector. Returns an empty
 string if no object is found for the given selector
 """
 selectedElems = pageObj.select(selector)
 if selectedElems is not None and len(selectedElems) > 0:
 return '\n'.join(
 [elem.get_text() for elem in selectedElems])
 return ''

 def parse(self, site, url):
 """
 Extract content from a given page URL
 """
 bs = self.getPage(url)
 if bs is not None:
 title = self.safeGet(bs, site.titleTag)
 body = self.safeGet(bs, site.bodyTag)
 if title != '' and body != '':
 content = Content(url, title, body)
 content.print()

And here’s the code that defines the website objects and kicks off the process:

56 | Chapter 4: Web Crawling Models

crawler = Crawler()

siteData = [
 ['O\'Reilly Media', 'http://oreilly.com',
 'h1', 'section#product-description'],
 ['Reuters', 'http://reuters.com', 'h1',
 'div.StandardArticleBody_body_1gnLA'],
 ['Brookings', 'http://www.brookings.edu',
 'h1', 'div.post-body'],
 ['New York Times', 'http://nytimes.com',
 'h1', 'div.StoryBodyCompanionColumn div p']
]
websites = []
for row in siteData:
 websites.append(Website(row[0], row[1], row[2], row[3]))

crawler.parse(websites[0], 'http://shop.oreilly.com/product/'\
 '0636920028154.do')
crawler.parse(websites[1], 'http://www.reuters.com/article/'\
 'us-usa-epa-pruitt-idUSKBN19W2D0')
crawler.parse(websites[2], 'https://www.brookings.edu/blog/'\
 'techtank/2016/03/01/idea-to-retire-old-methods-of-policy-education/')
crawler.parse(websites[3], 'https://www.nytimes.com/2018/01/'\
 '28/business/energy-environment/oil-boom.html')

While this new method might not seem remarkably simpler than writing a new
Python function for each new website at first glance, imagine what happens when you
go from a system with 4 website sources to a system with 20 or 200 sources.

Each list of strings is relatively easy to write. It doesn’t take up much space. It can be
loaded from a database or a CSV file. It can be imported from a remote source or
handed off to an nonprogrammer with some frontend experience to fill out and add
new websites to, and they never have to look at a line of code.

Of course, the downside is that you are giving up a certain amount of flexibility. In
the first example, each website gets its own free-form function to select and parse
HTML however necessary, in order to get the end result. In the second example, each
website needs to have a certain structure in which fields are guaranteed to exist, data
must be clean coming out of the field, and each target field must have a unique and
reliable CSS selector.

However, I believe that the power and relative flexibility of this approach more than
makes up for its real or perceived shortcomings. The next section covers specific
applications and expansions of this basic template so that you can, for example, deal
with missing fields, collect different types of data, crawl only through specific parts of
a website, and store more-complex information about pages.

Dealing with Different Website Layouts | 57

Structuring Crawlers
Creating flexible and modifiable website layout types doesn’t do much good if you
still have to locate each link you want to scrape by hand. The previous chapter
showed various methods of crawling through websites and finding new pages in an
automated way.

This section shows how to incorporate these methods into a well-structured and
expandable website crawler that can gather links and discover data in an automated
way. I present just three basic web crawler structures here, although I believe that they
apply to the majority of situations that you will likely need when crawling sites in the
wild, perhaps with a few modifications here and there. If you encounter an unusual
situation with your own crawling problem, I also hope that you will use these struc‐
tures as inspiration in order to create an elegant and robust crawler design.

Crawling Sites Through Search
One of the easiest ways to crawl a website is via the same method that humans do:
using the search bar. Although the process of searching a website for a keyword or
topic and collecting a list of search results may seem like a task with a lot of variability
from site to site, several key points make this surprisingly trivial:

• Most sites retrieve a list of search results for a particular topic by passing that
topic as a string through a parameter in the URL. For example: http://exam
ple.com?search=myTopic. The first part of this URL can be saved as a property
of the Website object, and the topic can simply be appended to it.

• After searching, most sites present the resulting pages as an easily identifiable list
of links, usually with a convenient surrounding tag such as <span

class="result">, the exact format of which can also be stored as a property of
the Website object.

• Each result link is either a relative URL (e.g., /articles/page.html) or an absolute
URL (e.g., http://example.com/articles/page.html). Whether or not you are expect‐
ing an absolute or relative URL can be stored as a property of the Website object.

• After you’ve located and normalized the URLs on the search page, you’ve suc‐
cessfully reduced the problem to the example in the previous section—extracting
data from a page, given a website format.

Let’s look at an implementation of this algorithm in code. The Content class is much
the same as in previous examples. You are adding the URL property to keep track of
where the content was found:

class Content:
 """Common base class for all articles/pages"""

58 | Chapter 4: Web Crawling Models

 def __init__(self, topic, url, title, body):
 self.topic = topic
 self.title = title
 self.body = body
 self.url = url

 def print(self):
 """
 Flexible printing function controls output
 """
 print('New article found for topic: {}'.format(self.topic))
 print('URL: {}'.format(self.url))
 print('TITLE: {}'.format(self.title))
 print('BODY:\n{}'.format(self.body))

The Website class has a few new properties added to it. The searchUrl defines where
you should go to get search results if you append the topic you are looking for. The
resultListing defines the “box” that holds information about each result, and the
resultUrl defines the tag inside this box that will give you the exact URL for the
result. The absoluteUrl property is a boolean that tells you whether these search
results are absolute or relative URLs.

class Website:
 """Contains information about website structure"""

 def __init__(self, name, url, searchUrl, resultListing,
 resultUrl, absoluteUrl, titleTag, bodyTag):
 self.name = name
 self.url = url
 self.searchUrl = searchUrl
 self.resultListing = resultListing
 self.resultUrl = resultUrl
 self.absoluteUrl=absoluteUrl
 self.titleTag = titleTag
 self.bodyTag = bodyTag

crawler.py has been expanded a bit and contains our Website data, a list of topics to
search for, and a two loops that iterate through all the topics and all the websites. It
also contains a search function that navigates to the search page for a particular web‐
site and topic, and extracts all the result URLs listed on that page.

import requests
from bs4 import BeautifulSoup

class Crawler:

 def getPage(self, url):
 try:
 req = requests.get(url)
 except requests.exceptions.RequestException:

Structuring Crawlers | 59

 return None
 return BeautifulSoup(req.text, 'html.parser')

 def safeGet(self, pageObj, selector):
 childObj = pageObj.select(selector)
 if childObj is not None and len(childObj) > 0:
 return childObj[0].get_text()
 return ''

 def search(self, topic, site):
 """
 Searches a given website for a given topic and records all pages found
 """
 bs = self.getPage(site.searchUrl + topic)
 searchResults = bs.select(site.resultListing)
 for result in searchResults:
 url = result.select(site.resultUrl)[0].attrs['href']
 # Check to see whether it's a relative or an absolute URL
 if(site.absoluteUrl):
 bs = self.getPage(url)
 else:
 bs = self.getPage(site.url + url)
 if bs is None:
 print('Something was wrong with that page or URL. Skipping!')
 return
 title = self.safeGet(bs, site.titleTag)
 body = self.safeGet(bs, site.bodyTag)
 if title != '' and body != '':
 content = Content(topic, title, body, url)
 content.print()

crawler = Crawler()

siteData = [
 ['O\'Reilly Media', 'http://oreilly.com', 'https://ssearch.oreilly.com/?q=',
 'article.product-result', 'p.title a', True, 'h1',
 'section#product-description'],
 ['Reuters', 'http://reuters.com', 'http://www.reuters.com/search/news?blob=',
 'div.search-result-content', 'h3.search-result-title a', False, 'h1',
 'div.StandardArticleBody_body_1gnLA'],
 ['Brookings', 'http://www.brookings.edu',
 'https://www.brookings.edu/search/?s=', 'div.list-content article',
 'h4.title a', True, 'h1', 'div.post-body']
]
sites = []
for row in siteData:
 sites.append(Website(row[0], row[1], row[2],
 row[3], row[4], row[5], row[6], row[7]))

topics = ['python', 'data science']
for topic in topics:

60 | Chapter 4: Web Crawling Models

 print('GETTING INFO ABOUT: ' + topic)
 for targetSite in sites:
 crawler.search(topic, targetSite)

This script loops through all the topics in the topics list and announces before it
starts scraping for a topic:

GETTING INFO ABOUT python

Then it loops through all of the sites in the sites list and crawls each particular site
for each particular topic. Each time that it successfully scrapes information about a
page, it prints it to the console:

New article found for topic: python
URL: http://example.com/examplepage.html
TITLE: Page Title Here
BODY: Body content is here

Note that it loops through all topics and then loops through all websites in the inner
loop. Why not do it the other way around, collecting all topics from one website, and
then all topics from the next website? Looping through all topics first is a way to
more evenly distribute the load placed on any one web server. This is especially
important if you have a list of hundreds of topics and dozens of websites. You’re not
making tens of thousands of requests to one website at once; you’re making 10
requests, waiting a few minutes, making another 10 requests, waiting a few minutes,
and so forth.

Although the number of requests is ultimately the same either way, it’s generally bet‐
ter to distribute these requests over time as much as is reasonable. Paying attention to
how your loops are structured is an easy way to do this.

Crawling Sites Through Links
The previous chapter covered some ways of identifying internal and external links on
web pages and then using those links to crawl across the site. In this section, you’ll
combine those same basic methods into a more flexible website crawler that can fol‐
low any link matching a specific URL pattern.

This type of crawler works well for projects when you want to gather all the data from
a site—not just data from a specific search result or page listing. It also works well
when the site’s pages may be disorganized or widely dispersed.

These types of crawlers don’t require a structured method of locating links, as in the
previous section on crawling through search pages, so the attributes that describe the
search page aren’t required in the Website object. However, because the crawler isn’t
given specific instructions for the locations/positions of the links it’s looking for, you
do need some rules to tell it what sorts of pages to select. You provide a targetPat

Structuring Crawlers | 61

tern (regular expression for the target URLs) and leave the boolean absoluteUrl
variable to accomplish this:

class Website:
 def __init__(self, name, url, targetPattern, absoluteUrl, titleTag, bodyTag):
 self.name = name
 self.url = url
 self.targetPattern = targetPattern
 self.absoluteUrl = absoluteUrl
 self.titleTag = titleTag
 self.bodyTag = bodyTag

class Content:

 def __init__(self, url, title, body):
 self.url = url
 self.title = title
 self.body = body

 def print(self):
 print('URL: {}'.format(self.url))
 print('TITLE: {}'.format(self.title))
 print('BODY:\n{}'.format(self.body))

The Content class is the same one used in the first crawler example.

The Crawler class is written to start from the home page of each site, locate internal
links, and parse the content from each internal link found:

import re

class Crawler:
 def __init__(self, site):
 self.site = site
 self.visited = []

 def getPage(self, url):
 try:
 req = requests.get(url)
 except requests.exceptions.RequestException:
 return None
 return BeautifulSoup(req.text, 'html.parser')

 def safeGet(self, pageObj, selector):
 selectedElems = pageObj.select(selector)
 if selectedElems is not None and len(selectedElems) > 0:
 return '\n'.join([elem.get_text() for
 elem in selectedElems])
 return ''

 def parse(self, url):
 bs = self.getPage(url)
 if bs is not None:

62 | Chapter 4: Web Crawling Models

 title = self.safeGet(bs, self.site.titleTag)
 body = self.safeGet(bs, self.site.bodyTag)
 if title != '' and body != '':
 content = Content(url, title, body)
 content.print()

 def crawl(self):
 """
 Get pages from website home page
 """
 bs = self.getPage(self.site.url)
 targetPages = bs.find_all('a',
 href=re.compile(self.site.targetPattern))
 for targetPage in targetPages:
 targetPage = targetPage.attrs['href']
 if targetPage not in self.visited:
 self.visited.append(targetPage)
 if not self.site.absoluteUrl:
 targetPage = '{}{}'.format(self.site.url, targetPage)
 self.parse(targetPage)

reuters = Website('Reuters', 'https://www.reuters.com', '^(/article/)', False,
 'h1', 'div.StandardArticleBody_body_1gnLA')
crawler = Crawler(reuters)
crawler.crawl()

Another change here that was not used in previous examples: the Website object (in
this case, the variable reuters) is a property of the Crawler object itself. This works
well to store the visited pages (visited) in the crawler, but means that a new crawler
must be instantiated for each website rather than reusing the same one to crawl a list
of websites.

Whether you choose to make a crawler website-agnostic or choose to make the web‐
site an attribute of the crawler is a design decision that you must weigh in the context
of your own specific needs. Either approach is generally fine.

Another thing to note is that this crawler will get the pages from the home page, but
will not continue crawling after all those pages have been logged. You may want to
write a crawler incorporating one of the patterns in Chapter 3 and have it look for
more targets on each page it visits. You can even follow all the URLs on each page
(not just ones matching the target pattern) to look for URLs containing the target
pattern.

Crawling Multiple Page Types
Unlike crawling through a predetermined set of pages, crawling through all internal
links on a website can present a challenge in that you never know exactly what you’re
getting. Fortunately, there are a few basic ways to identify the page type:

Structuring Crawlers | 63

By the URL
All blog posts on a website might contain a URL (http://example.com/blog/title-of-
post, for example).

By the presence or lack of certain fields on a site
If a page has a date, but no author name, you might categorize it as a press
release. If it has a title, main image, price, but no main content, it might be a
product page.

By the presence of certain tags on the page to identify the page
You can take advantage of tags even if you’re not collecting the data within the
tags. Your crawler might look for an element such as <div id="related-

products"> to identify the page as a product page, even though the crawler is not
interested in the content of the related products.

To keep track of multiple page types, you need to have multiple types of page objects
in Python. This can be done in two ways:

If the pages are all similar (they all have basically the same types of content), you may
want to add a pageType attribute to your existing web-page object:

class Website:
 def __init__(self, name, url, titleTag, bodyTag, pageType):
 self.name = name
 self.url = url
 self.titleTag = titleTag
 self.bodyTag = bodyTag
 self.pageType = pageType

If you’re storing these pages in an SQL-like database, this type of pattern indicates
that all these pages would probably be stored in the same table, and that an extra
pageType column would be added.

If the pages/content you’re scraping are different enough from each other (they con‐
tain different types of fields), this may warrant creating new objects for each page
type. Of course, some things will be common to all web pages—they will all have a
URL, and will likely also have a name or page title. This is an ideal situation in which
to use subclasses:

class Webpage:
 def __init__(self, name, url, titleTag):
 self.name = name
 self.url = url
 self.titleTag = titleTag

This is not an object that will be used directly by your crawler, but an object that will
be referenced by your page types:

class Product(Website):
 """Contains information for scraping a product page"""

64 | Chapter 4: Web Crawling Models

 def __init__(self, name, url, titleTag, productNumberTag, priceTag):
 Website.__init__(self, name, url, TitleTag)
 self.productNumberTag = productNumberTag
 self.priceTag = priceTag

class Article(Website):
 """Contains information for scraping an article page"""
 def __init__(self, name, url, titleTag, bodyTag, dateTag):
 Website.__init__(self, name, url, titleTag)
 self.bodyTag = bodyTag
 self.dateTag = dateTag

This Product page extends the Website base class and adds the attributes prod
uctNumber and price that apply only to products, and the Article class adds the
attributes body and date, which don’t apply to products.

You can use these two classes to scrape, for example, a store website that might con‐
tain blog posts or press releases in addition to products.

Thinking About Web Crawler Models
Collecting information from the internet can be like drinking from a fire hose.
There’s a lot of stuff out there, and it’s not always clear what you need or how you
need it. The first step of any large web scraping project (and even some of the small
ones) should be to answer these questions.

When collecting similar data across multiple domains or from multiple sources, your
goal should almost always be to try to normalize it. Dealing with data with identical
and comparable fields is much easier than dealing with data that is completely depen‐
dent on the format of its original source.

In many cases, you should build scrapers under the assumption that more sources of
data will be added to them in the future, and with the goal to minimize the program‐
ming overhead required to add these new sources. Even if a website doesn’t appear to
fit your model at first glance, there may be more subtle ways that it does conform.
Being able to see these underlying patterns can save you time, money, and a lot of
headaches in the long run.

The connections between pieces of data should also not be ignored. Are you looking
for information that has properties such as “type,” “size,” or “topic” that span across
data sources? How do you store, retrieve, and conceptualize these attributes?

Software architecture is a broad and important topic that can take an entire career to
master. Fortunately, software architecture for web scraping is a much more finite and
manageable set of skills that can be relatively easily acquired. As you continue to
scrape data, you will likely find the same basic patterns occurring over and over. Cre‐

Thinking About Web Crawler Models | 65

ating a well-structured web scraper doesn’t require a lot of arcane knowledge, but it
does require taking a moment to step back and think about your project.

66 | Chapter 4: Web Crawling Models

CHAPTER 5

Scrapy

The previous chapter presented some techniques and patterns for building large, scal‐
able, and (most important!) maintainable web crawlers. Although this is easy enough
to do by hand, many libraries, frameworks, and even GUI-based tools will do this for
you, or at least try to make your life a little easier.

This chapter introduces one of the best frameworks for developing crawlers: Scrapy.
During the writing of the first edition of Web Scraping with Python, Scrapy had not
yet been released for Python 3.x, and its inclusion in the text was limited to a single
section. Since then, the library has been updated to support Python 3.3+, additional
features have been added, and I’m excited to expand this section into its own chapter.

One of the challenges of writing web crawlers is that you’re often performing the
same tasks again and again: find all links on a page, evaluate the difference between
internal and external links, go to new pages. These basic patterns are useful to know
and to be able to write from scratch, but the Scrapy library handles many of these
details for you.

Of course, Scrapy isn’t a mind reader. You still need to define page templates, give it
locations to start scraping from, and define URL patterns for the pages that you’re
looking for. But in these cases, it provides a clean framework to keep your code
organized.

Installing Scrapy
Scrapy offers the tool for download from its website, as well as instructions for instal‐
ling Scrapy with third-party installation managers such as pip.

Because of its relatively large size and complexity, Scrapy is not usually a framework
that can be installed in the traditional way with

67

http://scrapy.org/download/

$ pip install Scrapy

Note that I say “usually” because, though it is theoretically possible, I usually run into
one or more tricky dependency issues, version mismatches, and unsolvable bugs.

If you’re determined to install Scrapy from pip, using a virtual environment (see the
“Keeping Libraries Straight with Virtual Environments” on page 7 for more on virtual
environments) is highly recommended.

The installation method that I prefer is through the Anaconda package manager.
Anaconda is a product, produced by the company Continuum, designed to reduce
friction when it comes to finding and installing popular Python data science pack‐
ages. Many of the packages it manages, such as NumPy and NLTK, will be used in
later chapters as well.

After Anaconda is installed, you can install Scrapy by using this command:

conda install -c conda-forge scrapy

If you run into issues, or need up-to-date information, check out the Scrapy Installa‐
tion guide for more information.

Initializing a New Spider
Once you’ve installed the Scrapy framework, a small amount of setup needs to be
done for each spider. A spider is a Scrapy project that, like its arachnid namesake, is
designed to crawl webs. Throughout this chapter, I use “spider” to describe a Scrapy
project in particular, and “crawler” to mean “any generic program that crawls the web,
using Scrapy or not.”

To create a new spider in the current directory, run the following from the command
line:

$ scrapy startproject wikiSpider

This creates a new subdirectory in the directory the project was created in, with the
title wikiSpider. Inside this directory is the following file structure:

• scrapy.cfg
• wikiSpider

— spiders
— __init.py__

— items.py
— middlewares.py
— pipelines.py
— settings.py

68 | Chapter 5: Scrapy

https://docs.continuum.io/anaconda/
https://doc.scrapy.org/en/latest/intro/install.html
https://doc.scrapy.org/en/latest/intro/install.html

— __init.py__

These Python files are initialized with stub code to provide a fast means of creating a
new spider project. Each section in this chapter works with this wikiSpider project.

Writing a Simple Scraper
To create a crawler, you will add a new file inside the child wikiSpider directory
at wikiSpider/wikiSpider/article.py. In your newly created article.py file, write the fol‐
lowing:

import scrapy

class ArticleSpider(scrapy.Spider):
 name='article'

 def start_requests(self):
 urls = [
 'http://en.wikipedia.org/wiki/Python_'
 '%28programming_language%29',
 'https://en.wikipedia.org/wiki/Functional_programming',
 'https://en.wikipedia.org/wiki/Monty_Python']
 return [scrapy.Request(url=url, callback=self.parse)
 for url in urls]

 def parse(self, response):
 url = response.url
 title = response.css('h1::text').extract_first()
 print('URL is: {}'.format(url))
 print('Title is: {}'.format(title))

The name of this class (ArticleSpider) is different from the name of the directory
(wikiSpider), indicating that this class in particular is responsible for spidering
through only article pages, under the broader category of wikiSpider, which you may
later want to use to search for other page types.

For large sites with many types of content, you might have separate Scrapy items for
each type (blog posts, press releases, articles, etc.), each with different fields, but all
running under the same Scrapy project. The name of each spider must be unique
within the project.

The other key things to notice about this spider are the two functions
start_requests and parse.

start_requests is a Scrapy-defined entry point to the program used to gener‐
ate Request objects that Scrapy uses to crawl the website.

Writing a Simple Scraper | 69

parse is a callback function defined by the user, and is passed to the Request object
with callback=self.parse. Later, you’ll look at more-powerful things that can be
done with the parse function, but for now it prints the title of the page.

You can run this article spider by navigating to the wikiSpider/wikiSpider directory
and running:

$ scrapy runspider article.py

The default Scrapy output is fairly verbose. Along with debugging information, this
should print out lines like the following:

2018-01-21 23:28:57 [scrapy.core.engine] DEBUG: Crawled (200)
<GET https://en.wikipedia.org/robots.txt> (referer: None)
2018-01-21 23:28:57 [scrapy.downloadermiddlewares.redirect]
DEBUG: Redirecting (301) to <GET https://en.wikipedia.org/wiki/
Python_%28programming_language%29> from <GET http://en.wikipedia.org/
wiki/Python_%28programming_language%29>
2018-01-21 23:28:57 [scrapy.core.engine] DEBUG: Crawled (200)
<GET https://en.wikipedia.org/wiki/Functional_programming>
(referer: None)
URL is: https://en.wikipedia.org/wiki/Functional_programming
Title is: Functional programming
2018-01-21 23:28:57 [scrapy.core.engine] DEBUG: Crawled (200)
<GET https://en.wikipedia.org/wiki/Monty_Python> (referer: None)
URL is: https://en.wikipedia.org/wiki/Monty_Python
Title is: Monty Python

The scraper goes to the three pages listed as the urls, gathers information, and then
terminates.

Spidering with Rules
The spider in the previous section isn’t much of a crawler, confined to scraping only
the list of URLs it’s provided. It has no ability to seek new pages on its own. To turn it
into a fully fledged crawler, you need to use the CrawlSpider class provided by
Scrapy.

70 | Chapter 5: Scrapy

Code Organization Within the GitHub Repository

Unfortunately, the Scrapy framework cannot be easily run from
within a Jupyter notebook, making a linear progression of code dif‐
ficult to capture. For the purpose of presenting all code samples in
the text, the scraper from the previous section is stored in the arti‐
cle.py file, while the following example, creating a Scrapy spider
that traverses many pages, is stored in articles.py (note the use of
the plural).
Later examples will also be stored in separate files, with new file‐
names given in each section. Make sure you are using the correct
filename when running these examples.

This class can be found in articles.py in the Github repository:
from scrapy.contrib.linkextractors import LinkExtractor
from scrapy.contrib.spiders import CrawlSpider, Rule

class ArticleSpider(CrawlSpider):
 name = 'articles'
 allowed_domains = ['wikipedia.org']
 start_urls = ['https://en.wikipedia.org/wiki/'
 'Benevolent_dictator_for_life']
 rules = [Rule(LinkExtractor(allow=r'.*'), callback='parse_items',
 follow=True)]

 def parse_items(self, response):
 url = response.url
 title = response.css('h1::text').extract_first()
 text = response.xpath('//div[@id="mw-content-text"]//text()'
).extract()
 lastUpdated = response.css('li#footer-info-lastmod::text'
).extract_first()
 lastUpdated = lastUpdated.replace(
 'This page was last edited on ', '')
 print('URL is: {}'.format(url))
 print('title is: {} '.format(title))
 print('text is: {}'.format(text))
 print('Last updated: {}'.format(lastUpdated))

This new ArticleSpider extends the CrawlSpider class. Rather than providing a
start_requests function, it provides a list of start_urls and allowed_domains.
This tells the spider where to start crawling from and whether it should follow or
ignore a link based on the domain.

A list of rules is also provided. This provides further instructions on which links to
follow or ignore (in this case, you are allowing all URLs with the regular expres‐
sion .*).

Spidering with Rules | 71

In addition to extracting the title and URL on each page, a couple of new items have
been added. The text content of each page is extracted using an XPath selector. XPath
is often used when retrieving text content including text in child tags (for example, an
<a> tag inside a block of text). If you use the CSS selector to do this, all text within
child tags will be ignored.

The last updated date string is also parsed from the page footer and stored in the
lastUpdated variable.

You can run this example by navigating to the wikiSpider/wikiSpider directory and
running this:

$ scrapy runspider articles.py

Warning: This Will Run Forever

This spider will run from the command line in the same way as the
previous one, but it will not terminate (at least not for a very, very
long time) until you halt execution by using Ctrl-C or by closing
the terminal. Please be kind to Wikipedia’s server load and do not
run it for long.

When run, this spider traverses wikipedia.org, following all links under the domain
wikipedia.org, printing titles of pages, and ignoring all external (offsite) links:

2018-01-21 01:30:36 [scrapy.spidermiddlewares.offsite]
DEBUG: Filtered offsite request to 'www.chicagomag.com':
<GET http://www.chicagomag.com/Chicago-Magazine/June-2009/
Street-Wise/>
2018-01-21 01:30:36 [scrapy.downloadermiddlewares.robotstxt]
DEBUG: Forbidden by robots.txt: <GET https://en.wikipedia.org/w/
index.php?title=Adrian_Holovaty&action=edit§ion=3>
title is: Ruby on Rails
URL is: https://en.wikipedia.org/wiki/Ruby_on_Rails
text is: ['Not to be confused with ', 'Ruby (programming language)',
 '.', '\n', '\n', 'Ruby on Rails', ...]
Last updated: 9 January 2018, at 10:32.

This is a pretty good crawler so far, but it could use a few limits. Instead of just visit‐
ing article pages on Wikipedia, it’s free to roam to nonarticle pages as well, such as:

title is: Wikipedia:General disclaimer

Let’s take a closer look at the line by using Scrapy’s Rule and LinkExtractor:

rules = [Rule(LinkExtractor(allow=r'.*'), callback='parse_items',
 follow=True)]

This line provides a list of Scrapy Rule objects that define the rules that all links
found are filtered through. When multiple rules are in place, each link is checked

72 | Chapter 5: Scrapy

against the rules in order. The first rule that matches is the one that is used to deter‐
mine how the link is handled. If the link doesn’t match any rules, it is ignored.

A Rule can be provided with six arguments:

link_extractor

The only mandatory argument, a LinkExtractor object.

callback

The function that should be used to parse the content on the page.

cb_kwargs

A dictionary of arguments to be passed to the callback function. This dictionary
is formatted as {arg_name1: arg_value1, arg_name2: arg_value2} and can be
a handy tool for reusing the same parsing functions for slightly different tasks.

follow

Indicates whether you want links found at that page to be included in a future
crawl. If no callback function is provided, this defaults to True (after all, if you’re
not doing anything with the page, it makes sense that you’d at least want to use it
to continue crawling through the site). If a callback function is provided, this
defaults to False.

LinkExtractor is a simple class designed solely to recognize and return links in a
page of HTML content based on the rules provided to it. It has a number of argu‐
ments that can be used to accept or deny a link based on CSS and XPath selectors,
tags (you can look for links in more than just anchor tags!), domains, and more.

The LinkExtractor class can even be extended, and custom arguments can be cre‐
ated. See Scrapy’s documentation on link extractors for more information.

Despite all the flexible features of the LinkExtractor class, the most common argu‐
ments you’ll probably use are these:

allow

Allow all links that match the provided regular expression.

deny

Deny all links that match the provided regular expression.

Using two separate Rule and LinkExtractor classes with a single parsing function,
you can create a spider that crawls Wikipedia, identifying all article pages and flag‐
ging nonarticle pages (articlesMoreRules.py):

from scrapy.contrib.linkextractors import LinkExtractor
from scrapy.contrib.spiders import CrawlSpider, Rule

class ArticleSpider(CrawlSpider):

Spidering with Rules | 73

https://doc.scrapy.org/en/latest/topics/link-extractors.html

 name = 'articles'
 allowed_domains = ['wikipedia.org']
 start_urls = ['https://en.wikipedia.org/wiki/'
 'Benevolent_dictator_for_life']
 rules = [
 Rule(LinkExtractor(allow='^(/wiki/)((?!:).)*$'),
 callback='parse_items', follow=True,
 cb_kwargs={'is_article': True}),
 Rule(LinkExtractor(allow='.*'), callback='parse_items',
 cb_kwargs={'is_article': False})
]

 def parse_items(self, response, is_article):
 print(response.url)
 title = response.css('h1::text').extract_first()
 if is_article:
 url = response.url
 text = response.xpath('//div[@id="mw-content-text"]'
 '//text()').extract()
 lastUpdated = response.css('li#footer-info-lastmod'
 '::text').extract_first()
 lastUpdated = lastUpdated.replace('This page was '
 'last edited on ', '')
 print('Title is: {} '.format(title))
 print('title is: {} '.format(title))
 print('text is: {}'.format(text))
 else:
 print('This is not an article: {}'.format(title))

Recall that the rules are applied to each link in the order that they are presented in the
list. All article pages (pages that start with /wiki/ and do not contain a colon) are
passed to the parse_items function first with the default parameter is_arti
cle=True. Then all the other nonarticle links are passed to the parse_items function
with the argument is_article=False.

Of course, if you’re looking to collect only article-type pages and ignore all others,
this approach would be impractical. It would be much easier to ignore pages that
don’t match the article URL pattern and leave out the second rule (and the is_arti
cle variable) altogether. However, this type of approach may be useful in odd cases
where information from the URL, or information collected during crawling, impacts
the way the page should be parsed.

Creating Items
So far, you’ve looked at many ways of finding, parsing, and crawling websites with
Scrapy, but Scrapy also provides useful tools to keep your collected items organized
and stored in custom objects with well-defined fields.

74 | Chapter 5: Scrapy

To help organize all the information you’re collecting, you need to create an Article
object. Define a new item called Article inside the items.py file.

When you open the items.py file, it should look like this:

-*- coding: utf-8 -*-

Define here the models for your scraped items
#
See documentation in:
http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

class WikispiderItem(scrapy.Item):
 # define the fields for your item here like:
 # name = scrapy.Field()
 pass

Replace this default Item stub with a new Article class extending scrapy.Item:

import scrapy

class Article(scrapy.Item):
 url = scrapy.Field()
 title = scrapy.Field()
 text = scrapy.Field()
 lastUpdated = scrapy.Field()

You are defining three fields that will be collected from each page: a title, URL, and
the date the page was last edited.

If you are collecting data for multiple page types, you should define each separate
type as its own class in items.py. If your items are large, or you start to move more
parsing functionality into your item objects, you may also wish to extract each item
into its own file. While the items are small, however, I like to keep them in a single
file.

In the file articleItems.py note the the changes that were made to the ArticleSpider
class in order to create the new Article item:

from scrapy.contrib.linkextractors import LinkExtractor
from scrapy.contrib.spiders import CrawlSpider, Rule
from wikiSpider.items import Article

class ArticleSpider(CrawlSpider):
 name = 'articleItems'
 allowed_domains = ['wikipedia.org']
 start_urls = ['https://en.wikipedia.org/wiki/Benevolent'
 '_dictator_for_life']
 rules = [
 Rule(LinkExtractor(allow='(/wiki/)((?!:).)*$'),

Creating Items | 75

 callback='parse_items', follow=True),
]

 def parse_items(self, response):
 article = Article()
 article['url'] = response.url
 article['title'] = response.css('h1::text').extract_first()
 article['text'] = response.xpath('//div[@id='
 '"mw-content-text"]//text()').extract()
 lastUpdated = response.css('li#footer-info-lastmod::text'
).extract_first()
 article['lastUpdated'] = lastUpdated.replace('This page was '
 'last edited on ', '')
 return article

When this file is run with

$ scrapy runspider articleItems.py

it will output the usual Scrapy debugging data along with each article item as a
Python dictionary:

2018-01-21 22:52:38 [scrapy.spidermiddlewares.offsite] DEBUG:
Filtered offsite request to 'wikimediafoundation.org':
<GET https://wikimediafoundation.org/wiki/Terms_of_Use>
2018-01-21 22:52:38 [scrapy.core.engine] DEBUG: Crawled (200)
<GET https://en.wikipedia.org/wiki/Benevolent_dictator_for_life
#mw-head> (referer: https://en.wikipedia.org/wiki/Benevolent_
dictator_for_life)
2018-01-21 22:52:38 [scrapy.core.scraper] DEBUG: Scraped from
<200 https://en.wikipedia.org/wiki/Benevolent_dictator_for_life>
{'lastUpdated': ' 13 December 2017, at 09:26.',
'text': ['For the political term, see ',
 'Benevolent dictatorship',
 '.',
 ...

Using Scrapy Items isn’t just for promoting good code organization or laying things
out in a readable way. Items provide many tools for outputting and processing data,
covered in the next sections.

Outputting Items
Scrapy uses the Item objects to determine which pieces of information it should save
from the pages it visits. This information can be saved by Scrapy in a variety of ways,
such as CSV, JSON, or XML files, using the following commands:

$ scrapy runspider articleItems.py -o articles.csv -t csv
$ scrapy runspider articleItems.py -o articles.json -t json
$ scrapy runspider articleItems.py -o articles.xml -t xml

76 | Chapter 5: Scrapy

Each of these runs the scraper articleItems and writes the output in the specified
format to the provided file. This file will be created if it does not exist already.

You may have noticed that in the articles spider created in previous examples, the text
variable is a list of strings rather than a single string. Each string in this list represents
text inside a single HTML element, whereas the content inside <div id="mw-

content-text">, from which you are collecting the text data, is composed of many
child elements.

Scrapy manages these more complex values well. In the CSV format, for example, it
converts lists to strings and escapes all commas so that a list of text displays in a single
CSV cell.

In XML, each element of this list is preserved inside child value tags:

<items>
<item>
 <url>https://en.wikipedia.org/wiki/Benevolent_dictator_for_life</url>
 <title>Benevolent dictator for life</title>
 <text>
 <value>For the political term, see </value>
 <value>Benevolent dictatorship</value>
 ...
 </text>
 <lastUpdated> 13 December 2017, at 09:26.</lastUpdated>
</item>
....

In the JSON format, lists are preserved as lists.

Of course, you can use the Item objects yourself and write them to a file or a database
in whatever way you want, simply by adding the appropriate code to the parsing
function in the crawler.

The Item Pipeline
Although Scrapy is single threaded, it is capable of making and handling many
requests asynchronously. This makes it faster than the scrapers written so far in this
book, although I have always been a firm believer that faster is not always better when
it comes to web scraping.

The web server for the site you are trying to scrape must handle each of these
requests, and it’s important to be a good citizen and evaluate whether this sort of
server hammering is appropriate (or even wise for your own self-interests, as many
websites have the ability and the will to block what they might see as malicious scrap‐
ing activity). For more information about the ethics of web scraping, as well as the
importance of appropriately throttling scrapers, see Chapter 18.

The Item Pipeline | 77

With that said, using Scrapy’s item pipeline can improve the speed of your web scra‐
per even further by performing all data processing while waiting for requests to be
returned, rather than waiting for data to be processed before making another request.
This type of optimization can sometimes even be necessary when data processing
requires a great deal of time or processor-heavy calculations must be performed.

To create an item pipeline, revisit the settings.py file that was created at the beginning
of the chapter. You should see the following commented lines:

Configure item pipelines
See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
#ITEM_PIPELINES = {
'wikiSpider.pipelines.WikispiderPipeline': 300,
#}

Uncomment the last three lines and replace with the following:

ITEM_PIPELINES = {
 'wikiSpider.pipelines.WikispiderPipeline': 300,
}

This provides a Python class, wikiSpider.pipelines.WikispiderPipeline, that will
be used to process the data, as well as an integer that represents the order in which to
run the pipeline if there are multiple processing classes. Although any integer can be
used here, the numbers 0–1000 are typically used, and will be run in ascending order.

Now you need to add the pipeline class and rewrite your original spider so that the
spider collects data and the pipeline does the heavy lifting of the data processing. It
might be tempting to write the parse_items method in your original spider to return
the response and let the pipeline create the Article object:

 def parse_items(self, response):
 return response

However, the Scrapy framework does not allow this, and an Item object (such as an
Article, which extends Item) must be returned. So the goal of parse_items is now
to extract the raw data, doing as little processing as possible, so that it can be passed
to the pipeline:

from scrapy.contrib.linkextractors import LinkExtractor
from scrapy.contrib.spiders import CrawlSpider, Rule
from wikiSpider.items import Article

class ArticleSpider(CrawlSpider):
 name = 'articlePipelines'
 allowed_domains = ['wikipedia.org']
 start_urls = ['https://en.wikipedia.org/wiki/Benevolent_dictator_for_life']
 rules = [
 Rule(LinkExtractor(allow='(/wiki/)((?!:).)*$'),
 callback='parse_items', follow=True),
]

78 | Chapter 5: Scrapy

 def parse_items(self, response):
 article = Article()
 article['url'] = response.url
 article['title'] = response.css('h1::text').extract_first()
 article['text'] = response.xpath('//div[@id='
 '"mw-content-text"]//text()').extract()
 article['lastUpdated'] = response.css('li#'
 'footer-info-lastmod::text').extract_first()
 return article

This file is saved as articlePipelines.py in the GitHub repository.

Of course, now you need to tie the pipelines.py file and the updated spider together by
adding the pipeline. When the Scrapy project was first initialized, a file was created at
wikiSpider/wikiSpider/pipelines.py:

-*- coding: utf-8 -*-

Define your item pipelines here
#
Don't forget to add your pipeline to the ITEM_PIPELINES setting
See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

class WikispiderPipeline(object):
 def process_item(self, item, spider):
 return item

This stub class should be replaced with your new pipeline code. In previous sections,
you’ve been collecting two fields in a raw format, and these could use additional pro‐
cessing: lastUpdated (which is a badly formatted string object representing a date)
and text (a messy array of string fragments).

The following should be used to replace the stub code in wikiSpider/wikiSpider/pipe‐
lines.py:

from datetime import datetime
from wikiSpider.items import Article
from string import whitespace

class WikispiderPipeline(object):
 def process_item(self, article, spider):
 dateStr = article['lastUpdated']
 article['lastUpdated'] = article['lastUpdated']
 .replace('This page was last edited on', '')
 article['lastUpdated'] = article['lastUpdated'].strip()
 article['lastUpdated'] = datetime.strptime(
 article['lastUpdated'], '%d %B %Y, at %H:%M.')
 article['text'] = [line for line in article['text']
 if line not in whitespace]

The Item Pipeline | 79

 article['text'] = ''.join(article['text'])
 return article

The class WikispiderPipeline has a method process_item that takes in an Article
object, parses the lastUpdated string into a Python datetime object, and cleans and
joins the text into a single string from a list of strings.

process_item is a mandatory method for every pipeline class. Scrapy uses this
method to asynchronously pass Items that are collected by the spider. The parsed
Article object that is returned here will be logged or printed by Scrapy if, for exam‐
ple, you are outputting items to JSON or CSV as was done in the previous section.

You now have two choices when it comes to deciding where to do your data process‐
ing: the parse_items method in the spider, or the process_items method in the
pipeline.

Multiple pipelines with different tasks can be declared in the settings.py file. However,
Scrapy passes all items, regardless of item type, to each pipeline in order. Item-
specific parsing may be better handled in the spider, before the data hits the pipeline.
However, if this parsing takes a long time, you may want to consider moving it to the
pipeline (where it can be processed asynchronously) and adding a check on the item
type:

def process_item(self, item, spider):
 if isinstance(item, Article):
 # Article-specific processing here

Which processing to do and where to do it is an important consideration when it
comes to writing Scrapy projects, especially large ones.

Logging with Scrapy
The debug information generated by Scrapy can be useful, but, as you’ve likely
noticed, it is often too verbose. You can easily adjust the level of logging by adding a
line to the settings.py file in your Scrapy project:

LOG_LEVEL = 'ERROR'

Scrapy uses a standard hierarchy of logging levels, as follows:

• CRITICAL

• ERROR

• WARNING

• DEBUG

• INFO

80 | Chapter 5: Scrapy

If logging is set to ERROR, only CRITICAL and ERROR logs will be displayed. If logging is
set to INFO, all logs will be displayed, and so on.

In addition to controlling logging through the settings.py file, you can control where
the logs go from the command line. To output logs to a separate logfile instead of the
terminal, define a logfile when running from the command line:

$ scrapy crawl articles -s LOG_FILE=wiki.log

This creates a new logfile, if one does not exist, in your current directory and outputs
all logs to it, leaving your terminal clear to display only the Python print statements
you manually add.

More Resources
Scrapy is a powerful tool that handles many problems associated with crawling the
web. It automatically gathers all URLs and compares them against predefined rules,
makes sure all URLs are unique, normalizes relative URLs where needed, and recur‐
ses to go more deeply into pages.

Although this chapter hardly scratches the surface of Scrapy’s capabilities, I encourage
you to check out the Scrapy documentation as well as Learning Scrapy, by Dimitrios
Kouzis-Loukas (O’Reilly), which provides a comprehensive discourse on the frame‐
work.

Scrapy is an extremely large and sprawling library with many features. Its features
work together seamlessly, but have many areas of overlap that allow users to easily
develop their own particular style within it. If there’s something you’d like to do with
Scrapy that has not been mentioned here, there is likely a way (or several) to do it!

More Resources | 81

https://doc.scrapy.org/en/latest/news.html
http://shop.oreilly.com/product/9781784399788.do

CHAPTER 6

Storing Data

Although printing to the terminal is a lot of fun, it’s not incredibly useful when it
comes to data aggregation and analysis. To make the majority of web scrapers
remotely useful, you need to be able to save the information that they scrape.

This chapter covers three main methods of data management that are sufficient for
almost any imaginable application. Do you need to power the backend of a website or
create your own API? You’ll probably want your scrapers to write to a database. Need
a fast and easy way to collect documents off the internet and put them on your hard
drive? You’ll probably want to create a file stream for that. Need occasional alerts, or
aggregated data once a day? Send yourself an email!

Above and beyond web scraping, the ability to store and interact with large amounts
of data is incredibly important for just about any modern programming application.
In fact, the information in this chapter is necessary for implementing many of the
examples in later sections of the book. I highly recommend that you at least skim this
chapter if you’re unfamiliar with automated data storage.

Media Files
You can store media files in two main ways: by reference and by downloading the file
itself. You can store a file by reference by storing the URL where the file is located.
This has several advantages:

• Scrapers run much faster and require much less bandwidth when they don’t have
to download files.

• You save space on your own machine by storing only the URLs.
• It is easier to write code that stores only URLs and doesn’t need to deal with addi‐

tional file downloads.

83

• You can lessen the load on the host server by avoiding large file downloads.

Here are the disadvantages:

• Embedding these URLs in your own website or application is known as hotlink‐
ing, and doing it is a quick way to get you in hot water on the internet.

• You do not want to use someone else’s server cycles to host media for your own
applications.

• The file hosted at any particular URL is subject to change. This might lead to
embarrassing effects if, say, you’re embedding a hotlinked image on a public blog.
If you’re storing the URLs with the intent to store the file later, for further
research, it might eventually go missing or be changed to something completely
irrelevant at a later date.

• Real web browsers do not just request a page’s HTML and move on. They down‐
load all of the assets required by the page as well. Downloading files can help
make your scraper look like a human is browsing the site, which can be an
advantage.

If you’re debating over whether to store a file or a URL to a file, you should ask your‐
self whether you’re likely to view or read that file more than once or twice, or if this
database of files is going to be sitting around gathering electronic dust for most of its
life. If the answer is the latter, it’s probably best to simply store the URL. If it’s the
former, read on!

The urllib library, used to retrieve the content of webpages also contains functions
to retrieve the content of files. The following program uses urllib.request.urlre
trieve to download images from a remote URL:

from urllib.request import urlretrieve
from urllib.request import urlopen
from bs4 import BeautifulSoup

html = urlopen('http://www.pythonscraping.com')
bs = BeautifulSoup(html, 'html.parser')
imageLocation = bs.find('a', {'id': 'logo'}).find('img')['src']
urlretrieve (imageLocation, 'logo.jpg')

This downloads the logo from http://pythonscraping.com and stores it as logo.jpg in
the same directory from which the script is running.

This works well if you need to download only a single file and know what to call it
and what the file extension is. But most scrapers don’t download a single file and call
it a day. The following downloads all internal files, linked to by any tag’s src attribute,
from the home page of http://pythonscraping.com:

84 | Chapter 6: Storing Data

import os
from urllib.request import urlretrieve
from urllib.request import urlopen
from bs4 import BeautifulSoup

downloadDirectory = 'downloaded'
baseUrl = 'http://pythonscraping.com'

def getAbsoluteURL(baseUrl, source):
 if source.startswith('http://www.'):
 url = 'http://{}'.format(source[11:])
 elif source.startswith('http://'):
 url = source
 elif source.startswith('www.'):
 url = source[4:]
 url = 'http://{}'.format(source)
 else:
 url = '{}/{}'.format(baseUrl, source)
 if baseUrl not in url:
 return None
 return url

def getDownloadPath(baseUrl, absoluteUrl, downloadDirectory):
 path = absoluteUrl.replace('www.', '')
 path = path.replace(baseUrl, '')
 path = downloadDirectory+path
 directory = os.path.dirname(path)

 if not os.path.exists(directory):
 os.makedirs(directory)

 return path

html = urlopen('http://www.pythonscraping.com')
bs = BeautifulSoup(html, 'html.parser')
downloadList = bs.find_all(src=True)

for download in downloadList:
 fileUrl = getAbsoluteURL(baseUrl, download['src'])
 if fileUrl is not None:
 print(fileUrl)

urlretrieve(fileUrl, getDownloadPath(baseUrl, fileUrl, downloadDirectory))

Media Files | 85

Run with Caution

You know all those warnings you hear about downloading
unknown files off the internet? This script downloads everything it
comes across to your computer’s hard drive. This includes random
bash scripts, .exe files, and other potential malware.
Think you’re safe because you’d never actually execute anything
sent to your downloads folder? Especially if you run this program
as an administrator, you’re asking for trouble. What happens if you
run across a file on a website that sends itself to ../../../../usr/bin/
python? The next time you run a Python script from the command
line, you could be deploying malware on your machine!
This program is written for illustrative purposes only; it should not
be randomly deployed without more extensive filename checking,
and it should be run only in an account with limited permissions.
As always, backing up your files, not storing sensitive information
on your hard drive, and using a little common sense go a long way.

This script uses a lambda function (introduced in Chapter 2) to select all tags on the
front page that have the src attribute, and then cleans and normalizes the URLs to get
an absolute path for each download (making sure to discard external links). Then,
each file is downloaded to its own path in the local folder downloaded on your own
machine.

Notice that Python’s os module is used briefly to retrieve the target directory for each
download and create missing directories along the path if needed. The os module acts
as an interface between Python and the operating system, allowing it to manipulate
file paths, create directories, get information about running processes and environ‐
ment variables, and many other useful things.

Storing Data to CSV
CSV, or comma-separated values, is one of the most popular file formats in which to
store spreadsheet data. It is supported by Microsoft Excel and many other applica‐
tions because of its simplicity. The following is an example of a perfectly valid CSV
file:

fruit,cost
apple,1.00
banana,0.30
pear,1.25

As with Python, whitespace is important here: each row is separated by a newline
character, while columns within the row are separated by commas (hence the name
“comma-separated”). Other forms of CSV files (sometimes called character-separated

86 | Chapter 6: Storing Data

value files) use tabs or other characters to separate rows, but these file formats are less
common and less widely supported.

If you’re looking to download CSV files directly off the web and store them locally,
without any parsing or modification, you don’t need this section. Download them like
you would any other file, and save them with the CSV file format by using the meth‐
ods described in the previous section.

Modifying a CSV file, or even creating one entirely from scratch, is extremely easy
with Python’s csv library:

import csv

csvFile = open('test.csv', 'w+')
try:
 writer = csv.writer(csvFile)
 writer.writerow(('number', 'number plus 2', 'number times 2'))
 for i in range(10):
 writer.writerow((i, i+2, i*2))
finally:
 csvFile.close()

A precautionary reminder: file creation in Python is fairly bulletproof. If test.csv does
not already exist, Python will create the file (but not the directory) automatically. If it
already exists, Python will overwrite test.csv with the new data.

After running, you should see a CSV file:

number,number plus 2,number times 2
0,2,0
1,3,2
2,4,4
...

One common web scraping task is to retrieve an HTML table and write it as a CSV
file. Wikipedia’s Comparison of Text Editors provides a fairly complex HTML table,
complete with color coding, links, sorting, and other HTML garbage that needs to be
discarded before it can be written to CSV. Using BeautifulSoup and the get_text()
function copiously, you can do that in fewer than 20 lines:

import csv
from urllib.request import urlopen
from bs4 import BeautifulSoup

html = urlopen('http://en.wikipedia.org/wiki/'
 'Comparison_of_text_editors')
bs = BeautifulSoup(html, 'html.parser')
#The main comparison table is currently the first table on the page
table = bs.find_all('table',{'class':'wikitable'})[0]
rows = table.find_all('tr')

csvFile = open('editors.csv', 'wt+')

Storing Data to CSV | 87

https://en.wikipedia.org/wiki/Comparison_of_text_editors

1 Joab Jackson, “YouTube Scales MySQL with Go Code”, PCWorld, December 15, 2012.
2 Jeremy Cole and Davi Arnaut, “MySQL at Twitter”, The Twitter Engineering Blog, April 9, 2012.
3 “MySQL and Database Engineering: Mark Callaghan”, Facebook Engineering, March 4, 2012.

writer = csv.writer(csvFile)
try:
 for row in rows:
 csvRow = []
 for cell in row.find_all(['td', 'th']):
 csvRow.append(cell.get_text())
 writer.writerow(csvRow)
finally:
 csvFile.close()

There Is an Easier Way to Fetch a Single Table

This script is great to integrate into scrapers if you encounter many
HTML tables that need to be converted to CSV files, or many
HTML tables that need to be collected into a single CSV file. How‐
ever, if you only need to do it just once, there’s a better tool for that:
copying and pasting. Selecting and copying all the content of an
HTML table and pasting it into Excel or Google Docs will get you
the CSV file you’re looking for without running a script!

The result should be a well-formatted CSV file saved locally, at editors.csv.

MySQL
MySQL (officially pronounced “my es-kew-el,” although many say, “my sequel”) is the
most popular open source relational database management system today. Somewhat
unusually for an open source project with large competitors, its popularity has histor‐
ically been neck and neck with the two other major closed source database systems:
Microsoft’s SQL Server and Oracle’s DBMS.

Its popularity is not without cause. For most applications, it’s hard to go wrong with
MySQL. It’s a scalable, robust, and full-featured DBMS, used by top websites: You‐
Tube,1 Twitter,2 and Facebook,3 among many others.

Because of its ubiquity, price (“free” is a pretty great price), and out-of-box usability, it
makes a fantastic database for web scraping projects, and we will use it throughout
the remainder of this book.

“Relational” Database?
Relational data is data that has relations. Glad we cleared that up!

88 | Chapter 6: Storing Data

http://bit.ly/1LWVmc8
http://bit.ly/1KHDKns
http://on.fb.me/1RFMqvw

Just kidding! When computer scientists talk about relational data, they’re referring to
data that doesn’t exist in a vacuum—it has properties that relate it to other pieces of
data. For example, “User A goes to school at Institution B,” where User A can be
found in the Users table in the database and Institution B can be found in the Institu‐
tions table in the database.

Later in this chapter, you’ll take a look at modeling different types of relations and
storing data in MySQL (or any other relational database) effectively.

Installing MySQL
If you’re new to MySQL, installing a database might sound a little intimidating (if
you’re an old hat at it, feel free to skip this section). In reality, it’s as simple as instal‐
ling just about any other kind of software. At its core, MySQL is powered by a set of
data files, stored on your server or local machine, that contain all the information
stored in your database. The MySQL software layer on top of that provides a conve‐
nient way of interacting with the data, via a command-line interface. For example, the
following command digs through the data files and returns a list of all users in your
database whose first name is “Ryan”:

SELECT * FROM users WHERE firstname = "Ryan"

If you’re on a Debian-based Linux distribution (or anything with apt-get), installing
MySQL is as easy as this:

$ sudo apt-get install mysql-server

Just keep an eye on the installation process, approve the memory requirements, and
enter a new password for your new root user when prompted.

For macOS and Windows, things are a little trickier. If you haven’t already, you need
to create an Oracle account before downloading the package.

If you’re on macOS, you need to first get the installation package.

Select the .dmg package, and log in with or create your Oracle account to download
the file. After opening, you should be guided through a fairly straightforward installa‐
tion wizard (Figure 6-1).

MySQL | 89

http://dev.mysql.com/downloads/mysql/

Figure 6-1. The macOS MySQL installer

The default installation steps should suffice, and for the purposes of this book, I
assume you have a default MySQL installation.

If downloading and running an installer seems a little tedious, and you’re using a
Mac, you can always install the package manager, Homebrew. With Homebrew
installed, you can also install MySQL by running the following:

$ brew install mysql

Homebrew is a great open source project with good Python package integration.
Most of the third-party Python modules used in this book can be installed easily with
Homebrew. If you don’t have it already, I highly recommend checking it out!

After MySQL is installed on macOS, you can start the MySQL server as follows:

$ cd /usr/local/mysql
$ sudo ./bin/mysqld_safe

On Windows, installing and running MySQL is slightly more complicated, but the
good news is that a convenient installer simplifies the process. Once downloaded, it
will guide you through the steps you need to take (see Figure 6-2).

90 | Chapter 6: Storing Data

http://brew.sh/
http://dev.mysql.com/downloads/windows/installer/

Figure 6-2. The Windows MySQL Installer

You should be able to install MySQL by using the default selections, with one excep‐
tion: on the Setup Type page, I recommend you choose Server Only to avoid instal‐
ling a lot of additional Microsoft software and libraries. From there, you should be
able to use the default installation settings and follow the prompts to start your
MySQL server.

Some Basic Commands
After your MySQL server is running, you have many options for interacting with the
database. Plenty of software tools act as an intermediary so that you don’t have to deal
with MySQL commands (or at least deal with them less often). Tools such as
phpMyAdmin and MySQL Workbench can make it easy to quickly view, sort, and
insert data. However, it’s still important to know your way around the command line.

Except for variable names, MySQL is case insensitive; for example, SELECT is the same
as sElEcT. However, by convention, all MySQL keywords are in all caps when you are
writing a MySQL statement. Conversely, most developers prefer to name their tables
and databases in lowercase, although this standard is often ignored.

MySQL | 91

When you first log into MySQL, there are no databases to add data to, but you can
create one:

> CREATE DATABASE scraping;

Because every MySQL instance can have multiple databases, before you can start
interacting with a database, you need to specify to MySQL which database you want
to use:

> USE scraping;

From this point on (at least until you close the MySQL connection or switch to
another database), all commands entered will be run against the new scraping data‐
base.

That all seems pretty straightforward. It must be similarly easy to create a table in the
database, right? Let’s try to create a table to store a collection of scraped web pages:

> CREATE TABLE pages;

This results in an error:

ERROR 1113 (42000): A table must have at least 1 column

Unlike a database, which can exist without any tables, a table in MySQL cannot exist
without columns. To define columns in MySQL, you must enter them in a comma-
delimited list, within parentheses, after the CREATE TABLE <tablename> statement:

> CREATE TABLE pages (id BIGINT(7) NOT NULL AUTO_INCREMENT,
title VARCHAR(200), content VARCHAR(10000),
created TIMESTAMP DEFAULT CURRENT_TIMESTAMP, PRIMARY KEY(id));

Each column definition has three parts:

• The name (id, title, created, etc.)
• The variable type (BIGINT(7), VARCHAR, TIMESTAMP)
• Optionally, any additional attributes (NOT NULL AUTO_INCREMENT)

At the end of the list of columns, you must define a table’s key. MySQL uses keys to
organize the content in the table for fast lookups. Later in this chapter, I’ll describe
how to use these keys to your advantage for speedier databases, but for now, using a
table’s id column as the key is generally the best way to go.

After the query executes, you can see what the structure of the table looks like at any
time by using DESCRIBE:

92 | Chapter 6: Storing Data

> DESCRIBE pages;
+---------+----------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+----------------+------+-----+-------------------+----------------+
| id | bigint(7) | NO | PRI | NULL | auto_increment |
| title | varchar(200) | YES | | NULL | |
| content | varchar(10000) | YES | | NULL | |
| created | timestamp | NO | | CURRENT_TIMESTAMP | |
+---------+----------------+------+-----+-------------------+----------------+
4 rows in set (0.01 sec)

Of course, this is still an empty table. You can insert test data into the pages table by
using the following line:

> INSERT INTO pages (title, content) VALUES ("Test page title",
"This is some test page content. It can be up to 10,000 characters
long.");

Notice that although the table has four columns (id, title, content, created), you
need to define only two of them (title and content) in order to insert a row. That’s
because the id column is autoincremented (MySQL automatically adds a 1 each time
a new row is inserted) and generally can take care of itself. In addition, the timestamp
column is set to contain the current time as a default.

Of course, you can override these defaults:

> INSERT INTO pages (id, title, content, created) VALUES (3,
"Test page title",
"This is some test page content. It can be up to 10,000 characters
long.", "2014-09-21 10:25:32");

As long as the integer you provide for the id column doesn’t already exist in the data‐
base, this override will work perfectly fine. However, it is generally bad practice to do
this; it’s best to let MySQL handle the id and timestamp columns unless there is a
compelling reason to do it differently.

Now that you have some data in the table, you can use a wide variety of methods to
select this data. Here are a few examples of SELECT statements:

> SELECT * FROM pages WHERE id = 2;

This statement tells MySQL, “Select all from pages where id equals 2.” The asterisk (*)
acts as a wildcard, returning all the rows where the clause (where id equals 2) is
true. It returns the second row in the table, or an empty result if there is no row with
an id of 2. For example, the following case-insensitive query returns all the rows
where the title field contains “test” (the % symbol acts as a wildcard in MySQL
strings):

> SELECT * FROM pages WHERE title LIKE "%test%";

MySQL | 93

But what if you have a table with many columns, and you want only a particular piece
of data returned? Rather than selecting all, you can do something like this:

> SELECT id, title FROM pages WHERE content LIKE "%page content%";

This returns just the id and title where the content contains the phrase “page con‐
tent.”

DELETE statements have much the same syntax as SELECT statements:

> DELETE FROM pages WHERE id = 1;

For this reason, it is a good idea, especially when working on important databases
that can’t be easily restored, to write any DELETE statements as a SELECT statement first
(in this case, SELECT * FROM pages WHERE id = 1), test to make sure only the rows
you want to delete are returned, and then replace SELECT * with DELETE. Many pro‐
grammers have horror stories of miscoding the clause on a DELETE statement, or
worse, leaving it off entirely when they were in a hurry, and ruining customer data.
Don’t let it happen to you!

Similar precautions should be taken with UPDATE statements:

> UPDATE pages SET title="A new title",
content="Some new content" WHERE id=2;

For the purposes of this book, you will be working with only simple MySQL state‐
ments, doing basic selecting, inserting, and updating. If you’re interested in learning
more commands and techniques with this powerful database tool, I recommend Paul
DuBois’s MySQL Cookbook (O’Reilly).

Integrating with Python
Unfortunately, Python support for MySQL is not built in. However, many open
source libraries, both with Python 2.x and Python 3.x, allow you to interact with a
MySQL database. One of the most popular of these is PyMySQL.

As of this writing, the current version of PyMySQL is 0.6.7, which can be installed
using pip:

$ pip install PyMySQL

You can also download and install it from source, which can be handy if you want to
use a specific version of the library:

$ curl -L https://pypi.python.org/packages/source/P/PyMySQL/PyMySQL-0.6.7.tar.gz\
| tar xz
$ cd PyMySQL-PyMySQL-f953785/
$ python setup.py install

94 | Chapter 6: Storing Data

http://shop.oreilly.com/product/0636920032274.do
https://pypi.python.org/pypi/PyMySQL

After installation, you should have access to the PyMySQL package automatically.
While your local MySQL server is running, you should be able to execute the follow‐
ing script successfully (remember to add the root password for your database):

import pymysql
conn = pymysql.connect(host='127.0.0.1', unix_socket='/tmp/mysql.sock',
 user='root', passwd=None, db='mysql')
cur = conn.cursor()
cur.execute('USE scraping')
cur.execute('SELECT * FROM pages WHERE id=1')
print(cur.fetchone())
cur.close()
conn.close()

Two new types of objects are at work in this example: the connection object (conn)
and the cursor object (cur).

The connection/cursor model is commonly used in database programming, although
some users might find it tricky to differentiate between the two at first. The connec‐
tion is responsible for, well, connecting to the database, of course, but also sending
the database information, handling rollbacks (when a query or set of queries needs to
be aborted, and the database needs to be returned to its previous state), and creating
new cursor objects.

A connection can have many cursors. A cursor keeps track of certain state informa‐
tion, such as which database it is using. If you have multiple databases and need to
write information across all of them, you might have multiple cursors to handle this.
A cursor also contains the results of the latest query it has executed. By calling func‐
tions on the cursor, such as cur.fetchone(), you can access this information.

It is important that both the cursor and the connection are closed after you are fin‐
ished using them. Not doing this might result in connection leaks, a buildup of
unclosed connections that are no longer being used, but the software isn’t able to
close because it’s under the impression that you might still use them. This is the sort
of thing that brings databases down all the time (I have both written and fixed many
connection leak bugs), so remember to close your connections!

The most common thing you’ll probably want to do, starting out, is to be able to store
your scraping results in a database. Let’s take a look at how this could be done, using a
previous example: the Wikipedia scraper.

Dealing with Unicode text can be tough when web scraping. By default, MySQL does
not handle Unicode. Fortunately, you can turn on this feature (just keep in mind that
doing so will increase the size of your database). Because you’re bound to run into a
variety of colorful characters on Wikipedia, now is a good time to tell your database
to expect some Unicode:

MySQL | 95

ALTER DATABASE scraping CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci;
ALTER TABLE pages CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;
ALTER TABLE pages CHANGE title title VARCHAR(200) CHARACTER SET utf8mb4 COLLATE
utf8mb4_unicode_ci;
ALTER TABLE pages CHANGE content content VARCHAR(10000) CHARACTER SET utf8mb4 CO
LLATE utf8mb4_unicode_ci;

These four lines change the default character set for the database, for the table, and
for both of the two columns—from utf8mb4 (still technically Unicode, but with noto‐
riously terrible support for most Unicode characters) to utf8mb4_unicode_ci.

You’ll know that you’re successful if you try inserting a few umlauts or Mandarin
characters into the title or content field in the database and it succeeds with no
errors.

Now that the database is prepared to accept a wide variety of all that Wikipedia can
throw at it, you can run the following:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import datetime
import random
import pymysql
import re

conn = pymysql.connect(host='127.0.0.1', unix_socket='/tmp/mysql.sock',
 user='root', passwd=None, db='mysql', charset='utf8')
cur = conn.cursor()
cur.execute('USE scraping')

random.seed(datetime.datetime.now())

def store(title, content):
 cur.execute('INSERT INTO pages (title, content) VALUES '
 '("%s", "%s")', (title, content))
 cur.connection.commit()

def getLinks(articleUrl):
 html = urlopen('http://en.wikipedia.org'+articleUrl)
 bs = BeautifulSoup(html, 'html.parser')
 title = bs.find('h1').get_text()
 content = bs.find('div', {'id':'mw-content-text'}).find('p')
 .get_text()
 store(title, content)
 return bs.find('div', {'id':'bodyContent'}).find_all('a',
 href=re.compile('^(/wiki/)((?!:).)*$'))

links = getLinks('/wiki/Kevin_Bacon')
try:
 while len(links) > 0:
 newArticle = links[random.randint(0, len(links)-1)].attrs['href']
 print(newArticle)

96 | Chapter 6: Storing Data

 links = getLinks(newArticle)
finally:
 cur.close()
 conn.close()

There are a few things to note here: first, "charset='utf8'" is added to the database
connection string. This tells the connection that it should send all information to the
database as UTF-8 (and, of course, the database should already be configured to han‐
dle this).

Second, note the addition of a store function. This takes in two string variables,
title and content, and adds them to an INSERT statement that is executed by the
cursor and then committed by the cursor’s connection. This is an excellent example
of the separation of the cursor and the connection; while the cursor has stored infor‐
mation about the database and its own context, it needs to operate through the con‐
nection in order to send information back to the database and insert information.

Last, you’ll see that a finally statement is added to the program’s main loop, at the
bottom of the code. This ensures that, regardless of how the program is interrupted
or the exceptions that might be thrown during its execution (and because the web is
messy, you should always assume exceptions will be thrown), the cursor and the con‐
nection will both be closed immediately before the program ends. It is a good idea to
include a try...finally statement like this whenever you are scraping the web and
have an open database connection.

Although PyMySQL is not a huge package, there are a fair number of useful functions
that this book can’t accommodate. You can check out their documentation at the
PyMySQL site.

Database Techniques and Good Practice
Some people spend their entire careers studying, tuning, and inventing databases. I
am not one of those people, and this is not that kind of book. However, as with many
subjects in computer science, there are a few tricks you can learn quickly to at least
make your databases sufficient, and sufficiently speedy, for most applications.

First, with few exceptions, always add id columns to your tables. All tables in MySQL
must have at least one primary key (the key column that MySQL sorts on), so that
MySQL knows how to order it, and it can often be difficult to choose these keys intel‐
ligently.

The debate over whether to use an artificially created id column for this key or a
unique attribute such as username has raged among data scientists and software engi‐
neers for years, although I tend to lean on the side of creating id columns. This
is especially true when you’re dealing with web scraping and storing someone else’s

MySQL | 97

https://pymysql.readthedocs.io/en/latest/

data. You have no idea what’s actually unique or not unique, and I’ve been surprised
before.

Your id column should be autoincremented and used as the primary key for all of
your tables.

Second, use intelligent indexing. A dictionary (like the book, not the Python object) is
a list of words indexed alphabetically. This allows quick lookups whenever you need a
word, as long as you know how it’s spelled. You could also imagine a dictionary that is
organized alphabetically by the word’s definition. This wouldn’t be nearly as useful
unless you were playing some strange game of Jeopardy! in which a definition was
presented and you needed to come up with the word. But in the world of database
lookups, these sorts of situations happen. For example, you might have a field in your
database that you will often be querying against:

>SELECT * FROM dictionary WHERE definition="A small furry animal that says meow";
+------+-------+-------------------------------------+
| id | word | definition |
+------+-------+-------------------------------------+
| 200 | cat | A small furry animal that says meow |
+------+-------+-------------------------------------+
1 row in set (0.00 sec)

You might very well want to add an index to this table (in addition to the index pre‐
sumably already in place on the id) to the definition column in order to make look‐
ups on this column faster. Keep in mind, though, that adding indexing requires more
space for the new index, as well as additional processing time when inserting new
rows. Especially when you’re dealing with large amounts of data, you should carefully
consider the trade-offs of your indexes and how much you need to index. To make
this “definitions” index a little lighter, you can tell MySQL to index only the first few
characters in the column value. This command creates an index on the first 16 char‐
acters in the definition field:

CREATE INDEX definition ON dictionary (id, definition(16));

This index will make your lookups much faster when searching for words by their full
definition (especially if the first 16 characters in definition values tend to be very dif‐
ferent from each other), and also not add too much in the way of extra space and
upfront processing time.

On the subject of query time versus database size (one of the fundamental balancing
acts in database engineering), one of the common mistakes made, especially with web
scraping of large amounts of natural text data, is to store lots of repeating data. For
example, say you want to measure the frequency of certain phrases that crop up
across websites. These phrases might be found from a given list, or automatically gen‐
erated via a text-analysis algorithm. You might be tempted to store the data as some‐
thing like this:

98 | Chapter 6: Storing Data

+--------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
url	varchar(200)	YES		NULL	
phrase	varchar(200)	YES		NULL	
+--------+--------------+------+-----+---------+----------------+

This adds a row to the database each time you find a phrase on a site and records the
URL where it was found. However, by splitting the data into three separate tables, you
can shrink your dataset enormously:

>DESCRIBE phrases
+--------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| phrase | varchar(200) | YES | | NULL | |
+--------+--------------+------+-----+---------+----------------+

 >DESCRIBE urls
 +-------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| url | varchar(200) | YES | | NULL | |
+-------+--------------+------+-----+---------+----------------+

>DESCRIBE foundInstances
+-------------+---------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| urlId | int(11) | YES | | NULL | |
| phraseId | int(11) | YES | | NULL | |
| occurrences | int(11) | YES | | NULL | |
+-------------+---------+------+-----+---------+----------------+

Although the table definitions are larger, you can see that the majority of the columns
are just integer id fields. These take up far less space. In addition, the full text of each
URL and phrase is stored exactly once.

Unless you install a third-party package or keep meticulous logs, it can be impossible
to tell when a piece of data was added, updated, or removed from your database.
Depending on the available space for your data, the frequency of changes, and the
importance of determining when those changes happened, you might want to con‐
sider keeping several timestamps in place: created, updated, and deleted.

MySQL | 99

“Six Degrees” in MySQL
Chapter 3 introduced the Six Degrees of Wikipedia problem, in which the goal is to
find the connection between any two Wikipedia articles through a series of links (i.e.,
find a way to get from one Wikipedia article to the next just by clicking links from
one page to the next). To solve this problem, it is necessary to not only build bots that
can crawl the site (which you have already done), but store the information in an
architecturally sound way to make data analysis easy later.

Autoincremented id columns, timestamps, and multiple tables: they all come into
play here. To figure out how to best store this information, you need to think
abstractly. A link is simply something that connects Page A to Page B. It could just as
easily connect Page B to Page A, but this would be a separate link. You can uniquely
identify a link by saying, “There exists a link on page A, which connects to page B.
That is, INSERT INTO links (fromPageId, toPageId) VALUES (A, B); (where A and B
are the unique IDs for the two pages).”

A two-table system designed to store pages and links, along with creation dates and
unique IDs, can be constructed as follows:

CREATE TABLE `wikipedia`.`pages` (
 `id` INT NOT NULL AUTO_INCREMENT,
 `url` VARCHAR(255) NOT NULL,
 `created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`));

CREATE TABLE `wikipedia`.`links` (
 `id` INT NOT NULL AUTO_INCREMENT,
 `fromPageId` INT NULL,
 `toPageId` INT NULL,
 `created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`));

Notice that, unlike with previous crawlers that print the title of the page, you’re not
even storing the title of the page in the pages table. Why is that? Well, recording the
title of the page requires that you visit the page to retrieve it. If you want to build an
efficient web crawler to fill out these tables, you want to be able to store the page, as
well as links to it, even if you haven’t necessarily visited the page yet.

Although this doesn’t hold true for all sites, the nice thing about Wikipedia links and
page titles is that one can be turned into the other through simple manipulation. For
example, http://en.wikipedia.org/wiki/Monty_Python indicates that the title of the
page is “Monty Python.”

The following will store all pages on Wikipedia that have a “Bacon number” (the
number of links between it and the page for Kevin Bacon, inclusive) of 6 or less:

from urllib.request import urlopen
from bs4 import BeautifulSoup

100 | Chapter 6: Storing Data

import re
import pymysql
from random import shuffle

conn = pymysql.connect(host='127.0.0.1', unix_socket='/tmp/mysql.sock',
 user='root', passwd=None, db='mysql', charset='utf8')
cur = conn.cursor()
cur.execute('USE wikipedia')

def insertPageIfNotExists(url):
 cur.execute('SELECT * FROM pages WHERE url = %s', (url))
 if cur.rowcount == 0:
 cur.execute('INSERT INTO pages (url) VALUES (%s)', (url))
 conn.commit()
 return cur.lastrowid
 else:
 return cur.fetchone()[0]

def loadPages():
 cur.execute('SELECT * FROM pages')
 pages = [row[1] for row in cur.fetchall()]
 return pages

def insertLink(fromPageId, toPageId):
 cur.execute('SELECT * FROM links WHERE fromPageId = %s '
 'AND toPageId = %s', (int(fromPageId), int(toPageId)))
 if cur.rowcount == 0:
 cur.execute('INSERT INTO links (fromPageId, toPageId) VALUES (%s, %s)',
 (int(fromPageId), int(toPageId)))
 conn.commit()

def getLinks(pageUrl, recursionLevel, pages):
 if recursionLevel > 4:
 return

 pageId = insertPageIfNotExists(pageUrl)
 html = urlopen('http://en.wikipedia.org{}'.format(pageUrl))
 bs = BeautifulSoup(html, 'html.parser')
 links = bs.find_all('a', href=re.compile('^(/wiki/)((?!:).)*$'))
 links = [link.attrs['href'] for link in links]

 for link in links:
 insertLink(pageId, insertPageIfNotExists(link))
 if link not in pages:
 # We have encountered a new page, add it and search
 # it for links
 pages.append(link)
 getLinks(link, recursionLevel+1, pages)

getLinks('/wiki/Kevin_Bacon', 0, loadPages())

MySQL | 101

cur.close()
conn.close()

Three functions here use PyMySQL to interface with the database:

insertPageIfNotExists

As its name indicates, this function inserts a new page record if it does not exist
already. This, along with the running list of all collected pages stored in pages,
ensures that page records are not duplicated. It also serves to look up pageId
numbers in order to create new links.

insertLink

This creates a new link record in the database. It will not create a link if that link
already exists. Even if two or more identical links do exist on the page, for our
purposes, they are the same link, represent the same relationship, and should be
counted as only one record. This also helps maintain the integrity of the database
if the program is run multiple times, even over the same pages.

loadPages

This loads all current pages from the database into a list, so that it can be deter‐
mined whether a new page should be visited. Pages are also collected during run‐
time, so if this crawler is run only once, starting with an empty database, in
theory loadPage should not be needed. In practice, however, problems may arise.
The network might go down, or you might want to collect links over several peri‐
ods of time, and it’s important for the crawler to be able to reload itself and not
lose any ground.

You should be aware of one potentially problematic subtlety of using loadPages, and
the pages list it generates in order to determine whether or not to visit a page: as soon
as each page is loaded, all the links on that page are stored as pages, even though they
have not been visited yet—just their links have been seen. If the crawler is stopped
and restarted, all of these “seen but not visited” pages will never be visited, and links
coming from them will not be recorded. This might be fixed by adding a boolean
visited variable to each page record, and setting it to True only if that page has been
loaded and its own outgoing links recorded.

For our purposes, however, this solution is fine as is. If you can ensure fairly long
runtimes (or just a single runtime), and it isn’t a necessity to ensure a complete set of
links (just a large dataset to experiment with), the addition of the visited variable is
not necessary.

For the continuation of this problem and the final solution for getting from Kevin
Bacon to Eric Idle, see “Six Degrees of Wikipedia: Conclusion” on page 139 on solv‐
ing directed graph problems.

102 | Chapter 6: Storing Data

https://en.wikipedia.org/wiki/Kevin_Bacon
https://en.wikipedia.org/wiki/Kevin_Bacon
https://en.wikipedia.org/wiki/Eric_Idle

Email
Just as web pages are sent over HTTP, email is sent over SMTP (Simple Mail Transfer
Protocol). And, just as you use a web server client to handle sending out web pages
over HTTP, servers use various email clients, such as Sendmail, Postfix, or Mailman,
to send and receive email.

Although sending email with Python is relatively easy, it does require that you have
access to a server running SMTP. Setting up an SMTP client on your server or local
machine is tricky and outside the scope of this book, but many excellent resources
can help with this task, particularly if you are running Linux or macOS.

The following code examples assume that you are running an SMTP client locally.
(To modify this code for a remote SMTP client, change localhost to your remote
server’s address.)

Sending an email with Python requires just nine lines of code:

import smtplib
from email.mime.text import MIMEText

msg = MIMEText('The body of the email is here')

msg['Subject'] = 'An Email Alert'
msg['From'] = 'ryan@pythonscraping.com'
msg['To'] = 'webmaster@pythonscraping.com'

s = smtplib.SMTP('localhost')
s.send_message(msg)
s.quit()

Python contains two important packages for sending email: smtplib and email.

Python’s email module contains useful formatting functions for creating email pack‐
ets to send. The MIMEText object, used here, creates an empty email formatted for
transfer with the low-level MIME (Multipurpose Internet Mail Extensions) protocol,
across which the higher-level SMTP connections are made. The MIMEText object, msg,
contains to/from email addresses, as well as a body and a header, which Python uses
to create a properly formatted email.

The smtplib package contains information for handling the connection to the server.
Just like a connection to a MySQL server, this connection must be torn down every
time it is created, to avoid creating too many connections.

This basic email function can be extended and made more useful by enclosing it in a
function:

import smtplib
from email.mime.text import MIMEText
from bs4 import BeautifulSoup

Email | 103

from urllib.request import urlopen
import time

def sendMail(subject, body):
 msg = MIMEText(body)
 msg['Subject'] = subject
 msg['From'] ='christmas_alerts@pythonscraping.com'
 msg['To'] = 'ryan@pythonscraping.com'

 s = smtplib.SMTP('localhost')
 s.send_message(msg)
 s.quit()

bs = BeautifulSoup(urlopen('https://isitchristmas.com/'), 'html.parser')
while(bs.find('a', {'id':'answer'}).attrs['title'] == 'NO'):
 print('It is not Christmas yet.')
 time.sleep(3600)
 bs = BeautifulSoup(urlopen('https://isitchristmas.com/'), 'html.parser')

sendMail('It\'s Christmas!',
 'According to http://itischristmas.com, it is Christmas!')

This particular script checks the website https://isitchristmas.com (the main feature of
which is a giant YES or NO, depending on the day of the year) once an hour. If it sees
anything other than a NO, it will send you an email alerting you that it’s Christmas.

Although this particular program might not seem much more useful than a calendar
hanging on your wall, it can be slightly tweaked to do a variety of extremely useful
things. It can email you alerts in response to site outages, test failures, or even the
appearance of an out-of-stock product you’re waiting for on Amazon—none of which
your wall calendar can do.

104 | Chapter 6: Storing Data

https://isitchristmas.com

PART II

Advanced Scraping

You’ve laid some web scraping groundwork; now comes the fun part. Until this point,
your web scrapers have been relatively dumb. They’re unable to retrieve information
unless it’s immediately presented to them in a nice format by the server. They take all
information at face value and store it without any analysis. They get tripped up by
forms, website interaction, and even JavaScript. In short, they’re no good for retriev‐
ing information unless that information really wants to be retrieved.

This part of the book will help you analyze raw data to get the story beneath the data
—the story that websites often hide beneath layers of JavaScript, login forms, and
antiscraping measures. You’ll learn how to use web scrapers to test your sites, auto‐
mate processes, and access the internet on a large scale. By the end of this section, you
will have the tools to gather and manipulate nearly any type of data, in any form,
across any part of the internet.

CHAPTER 7

Reading Documents

It is tempting to think of the internet primarily as a collection of text-based websites
interspersed with newfangled web 2.0 multimedia content that can mostly be ignored
for the purposes of web scraping. However, this ignores what the internet most fun‐
damentally is: a content-agnostic vehicle for transmitting files.

Although the internet has been around in some form or another since the late 1960s,
HTML didn’t debut until 1992. Until then, the internet consisted mostly of email and
file transmission; the concept of web pages as we know them today didn’t exist. In
other words, the internet is not a collection of HTML files. It is a collection of many
types of documents, with HTML files often being used as a frame to showcase
them. Without being able to read a variety of document types, including text, PDF,
images, video, email, and more, we are missing out on a huge part of the available
data.

This chapter covers dealing with documents, whether you’re downloading them to a
local folder or reading them and extracting data. You’ll also take a look at dealing
with various types of text encoding, which can make it possible to even read foreign-
language HTML pages.

Document Encoding
A document’s encoding tells applications—whether they are your computer’s operat‐
ing system or your own Python code—how to read it. This encoding can usually be
deduced from its file extension, although this file extension is not mandated by its
encoding. I could, for example, save myImage.jpg as myImage.txt with no problems—
at least until my text editor tried to open it. Fortunately, this situation is rare, and a
document’s file extension is usually all you need to know in order to read it correctly.

107

On a fundamental level, all documents are encoded in 0s and 1s. On top of that,
encoding algorithms define things such as “how many bits per character” or “how
many bits represent the color for each pixel” (in the case of image files). On top of
that, you might have a layer of compression, or some space-reducing algorithm, as is
the case with PNG files.

Although dealing with non-HTML files might seem intimidating at first, rest assured
that with the right library, Python will be properly equipped to deal with any format
of information you want to throw at it. The only difference between a text file, a video
file, and an image file is how their 0s and 1s are interpreted. This chapter covers sev‐
eral commonly encountered types of files: text, CSV, PDFs, and Word documents.

Notice that these are all, fundamentally, files that store text. For information about
working with images, I recommend that you read through this chapter in order to get
used to working with and storing different types of files, and then head to Chapter 13
for more information on image processing!

Text
It is somewhat unusual to have files stored as plain text online, but it is popular
among bare-bones or old-school sites to have large repositories of text files. For
example, the Internet Engineering Task Force (IETF) stores all of its published docu‐
ments as HTML, PDF, and text files (see https://www.ietf.org/rfc/rfc1149.txt as an
example). Most browsers will display these text files just fine, and you should be able
to scrape them with no problem.

For most basic text documents, such as the practice file located at http://www.python‐
scraping.com/pages/warandpeace/chapter1.txt, you can use the following method:

from urllib.request import urlopen
textPage = urlopen('http://www.pythonscraping.com/'\
 'pages/warandpeace/chapter1.txt')
print(textPage.read())

Normally, when you retrieve a page using urlopen, you turn it into a BeautifulSoup
object in order to parse the HTML. In this case, you can read the page directly. Turn‐
ing it into a BeautifulSoup object, while perfectly possible, would be counterproduc‐
tive—there’s no HTML to parse, so the library would be useless. Once the text file is
read in as a string, you merely have to analyze it as you would any other string read
into Python. The disadvantage here, of course, is that you don’t have the ability to use
HTML tags as context clues, pointing you in the direction of the text you actually
need, versus the text you don’t want. This can present a challenge when you’re trying
to extract certain information from text files.

108 | Chapter 7: Reading Documents

https://www.ietf.org/rfc/rfc1149.txt
http://www.pythonscraping.com/pages/warandpeace/chapter1.txt
http://www.pythonscraping.com/pages/warandpeace/chapter1.txt

1 This “padding” bit will come back to haunt us with the ISO standards a little later.

Text Encoding and the Global Internet
Remember earlier when I said a file extension was all you needed to read a file cor‐
rectly? Well, strangely enough, that rule doesn’t apply to the most basic of all docu‐
ments: the .txt file.

Nine times out of 10, reading in text by using the previously described methods will
work just fine. However, dealing with text on the internet can be a tricky business.
Next, we’ll cover the basics of English and foreign-language encoding, from ASCII to
Unicode to ISO, and how to deal with them.

A history of text encoding
ASCII was first developed in the 1960s, when bits were expensive and there was no
reason to encode anything besides the Latin alphabet and a few punctuation charac‐
ters. For this reason, only 7 bits were used to encode a total of 128 capitals, lowercase
letters, and punctuation. Even with all that creativity, they were still left with 33 non-
printing characters, some of which were used, replaced, and/or became obsolete as
technologies changed over the years. Plenty of space for everyone, right?

As any programmer knows, 7 is a strange number. It’s not a nice power of 2, but it’s
temptingly close. Computer scientists in the 1960s fought over whether an extra bit
should be added for the convenience of having a nice round number versus the prac‐
ticality of files requiring less storage space. In the end, 7 bits won. However,
in modern computing, each 7-bit sequence is padded with an extra 0 at the begin‐
ning,1 leaving us with the worst of both worlds—14% larger files, and the lack of flexi‐
bility of only 128 characters.

In the early 1990s, people realized that more languages than just English existed, and
that it would be really nice if computers could display them. A nonprofit named The
Unicode Consortium attempted to bring about a universal text encoder by establish‐
ing encodings for every character that needs to be used in any text document, in any
language. The goal was to include everything from the Latin alphabet this book is
written in, to Cyrillic (кириллица), Chinese pictograms (象形), math and logic sym‐
bols (⨊, ≥), and even emoticons and miscellaneous symbols, such as the biohazard
sign (☣) and peace symbol (☮).

The resulting encoder, as you might already know, was dubbed UTF-8, which stands
for, confusingly, “Universal Character Set—Transformation Format 8 bit.” The 8 bit
here refers, not to the size of every character, but to the smallest size that a character
requires to be displayed.

Text | 109

The actual size of a UTF-8 character is flexible. They can range from 1 byte to 4 bytes,
depending on where they are placed in the list of possible characters (more-popular
characters are encoded with fewer bytes, more-obscure ones require more bytes).

How is this flexible encoding achieved? The use of 7 bits with an eventual useless
leading 0 looked like a design flaw in ASCII at first, but proved to be a huge advan‐
tage for UTF-8. Because ASCII was so popular, Unicode decided to take advantage of
this leading 0 bit by declaring all bytes starting with a 0 to indicate that only one byte
is used in the character, and making the two encoding schemes for ASCII and UTF-8
identical. Therefore, the following characters are valid in both UTF-8 and ASCII:

01000001 - A
01000010 - B
01000011 - C

And the following characters are valid only in UTF-8, and will be rendered as non‐
printable if the document is interpreted as an ASCII document:

11000011 10000000 - À
11000011 10011111 - ß
11000011 10100111 - ç

In addition to UTF-8, other UTF standards exist, such as UTF-16, UTF-24, and
UTF-32, although documents encoded in these formats are rarely encountered
except in unusual circumstances, which are outside the scope of this book.

While this original “design flaw” of ASCII had a major advantage for UTF-8, the dis‐
advantage has not entirely gone away. The first 8 bits of information in each character
can still encode only 128 characters, and not a full 256. In a UTF-8 character requir‐
ing multiple bytes, additional leading bits are spent, not on character encoding, but
on check bits used to prevent corruption. Of the 32 (8 x 4) bits in 4-byte characters,
only 21 bits are used for character encoding, for a total of 2,097,152 possible charac‐
ters, of which, 1,114,112 are currently allocated.

The problem with all universal language-encoding standards, of course, is that any
document written in a single foreign language may be much larger than it has to be.
Although your language might consist only of 100 or so characters, you will need 16
bits for each character rather than just 8 bits, as is the case for the English-specific
ASCII. This makes foreign-language text documents in UTF-8 about twice the size of
English-language text documents, at least for foreign languages that don’t use the
Latin character set.

ISO solves this problem by creating specific encodings for each language. Like Uni‐
code, it has the same encodings that ASCII does, but uses the padding 0 bit at the
beginning of every character to allow it to create 128 special characters for all lan‐
guages that require them. This works best for European languages that also rely heav‐
ily on the Latin alphabet (which remain in positions 0–127 in the encoding), but

110 | Chapter 7: Reading Documents

2 According to W3Techs, which uses web crawlers to gather these sorts of statistics.

require additional special characters. This allows ISO-8859-1 (designed for the Latin
alphabet) to have symbols such as fractions (e.g., ½) or the copyright sign (©).

Other ISO character sets, such as ISO-8859-9 (Turkish), ISO-8859-2 (German,
among other languages), and ISO-8859-15 (French, among other languages) can also
be found on the internet with some regularity.

Although the popularity of ISO-encoded documents has been declining in recent
years, about 9% of websites on the internet are still encoded with some flavor of ISO,2

making it essential to know about and check for encodings before scraping a site.

Encodings in action

In the previous section, you used the default settings for urlopen to read text docu‐
ments you might encounter on the internet. This works great for most English text.
However, the second you encounter Russian, Arabic, or even a word like “résumé,”
you might run into problems.

Take the following code, for example:

from urllib.request import urlopen
textPage = urlopen('http://www.pythonscraping.com/'\
 'pages/warandpeace/chapter1-ru.txt')
print(textPage.read())

This reads in the first chapter of the original War and Peace (written in Russian and
French) and prints it to the screen. This screen text reads, in part:

b"\xd0\xa7\xd0\x90\xd0\xa1\xd0\xa2\xd0\xac \xd0\x9f\xd0\x95\xd0\xa0\xd0\x92\xd0\
x90\xd0\xaf\n\nI\n\n\xe2\x80\x94 Eh bien, mon prince.

In addition, visiting this page in most browsers results in gibberish (see Figure 7-1).

Text | 111

http://w3techs.com/technologies/history_overview/character_encodin

Figure 7-1. French and Cyrillic text encoded in ISO-8859-1, the default text document
encoding in many browsers

Even for native Russian speakers, that might be a bit difficult to make sense of. The
problem is that Python is attempting to read the document as an ASCII document,
whereas the browser is attempting to read it as an ISO-8859-1 encoded document.
Neither one, of course, realizes it’s a UTF-8 document.

You can explicitly define the string to be UTF-8, which correctly formats the output
into Cyrillic characters:

from urllib.request import urlopen

textPage = urlopen('http://www.pythonscraping.com/'\
 'pages/warandpeace/chapter1-ru.txt')
print(str(textPage.read(), 'utf-8'))

Using this concept in BeautifulSoup and Python 3.x looks like this:

html = urlopen('http://en.wikipedia.org/wiki/Python_(programming_language)')
bs = BeautifulSoup(html, 'html.parser')
content = bs.find('div', {'id':'mw-content-text'}).get_text()
content = bytes(content, 'UTF-8')
content = content.decode('UTF-8')

Python 3.x encodes all characters into UTF-8 by default. You might be tempted to
leave this alone and use UTF-8 encoding for every web scraper you write. After all,
UTF-8 will also handle ASCII characters as well as foreign languages smoothly. How‐
ever, it’s important to remember the 9% of websites out there that use some version of
ISO encoding as well, so you can never avoid this problem entirely.

Unfortunately, in the case of text documents, it’s impossible to concretely determine
what encoding a document has. Some libraries can examine the document and make
a best guess (using a little logic to realize that “Ñ€Ð°ÑÑÐºÐ°Ð·Ñ” is probably not a
word), but many times it’s wrong.

112 | Chapter 7: Reading Documents

3 ECMA was one of the original contributors to the ISO standard, so it’s no surprise its website is encoded with
a flavor of ISO.

Fortunately, in the case of HTML pages, the encoding is usually contained in a tag
found in the <head> section of the site. Most sites, particularly English-language sites,
have this tag:

<meta charset="utf-8" />

Whereas the ECMA International’s website has this tag:3

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">

If you plan on doing a lot of web scraping, particularly of international sites, it might
be wise to look for this meta tag and use the encoding it recommends when reading
the contents of the page.

CSV
When web scraping, you are likely to encounter either a CSV file or a coworker who
likes data formatted in this way. Fortunately, Python has a fantastic library for both
reading and writing CSV files. Although this library is capable of handling many var‐
iations of CSV, this section focuses primarily on the standard format. If you have a
special case you need to handle, consult the documentation!

Reading CSV Files
Python’s csv library is geared primarily toward working with local files, on the
assumption that the CSV data you need is stored on your machine. Unfortunately,
this isn’t always the case, especially when you’re web scraping. There are several ways
to work around this:

• Download the file locally by hand and point Python at the local file location.
• Write a Python script to download the file, read it, and (optionally) delete it after

retrieval.
• Retrieve the file as a string from the web, and wrap the string in a StringIO

object so that it behaves like a file.

Although the first two options are workable, taking up hard drive space with files
when you could easily keep them in memory is bad practice. It’s much better to read
the file in as a string and wrap it in an object that allows Python to treat it as a file,
without ever saving the file. The following script retrieves a CSV file from the internet
(in this case, a list of Monty Python albums at http://pythonscraping.com/files/Monty‐
PythonAlbums.csv) and prints it, row by row, to the terminal:

CSV | 113

http://www.ecma-international.org/
https://docs.python.org/3.4/library/csv.html
http://pythonscraping.com/files/MontyPythonAlbums.csv
http://pythonscraping.com/files/MontyPythonAlbums.csv

from urllib.request import urlopen
from io import StringIO
import csv

data = urlopen('http://pythonscraping.com/files/MontyPythonAlbums.csv')
 .read().decode('ascii', 'ignore')
dataFile = StringIO(data)
csvReader = csv.reader(dataFile)

for row in csvReader:
 print(row)

The output looks like this:

['Name', 'Year']
["Monty Python's Flying Circus", '1970']
['Another Monty Python Record', '1971']
["Monty Python's Previous Record", '1972']
...

As you can see from the code sample, the reader object returned by csv.reader is
iterable and composed of Python list objects. Because of this, each row in the
csvReader object is accessible in the following way:

for row in csvReader:
 print('The album "'+row[0]+'" was released in '+str(row[1]))

Here is the output:

The album "Name" was released in Year
The album "Monty Python's Flying Circus" was released in 1970
The album "Another Monty Python Record" was released in 1971
The album "Monty Python's Previous Record" was released in 1972
...

Notice the first line: The album "Name" was released in Year. Although this
might be an easy-to-ignore result when writing example code, you don’t want this
getting into your data in the real world. A lesser programmer might simply skip the
first row in the csvReader object, or write in a special case to handle it. Fortunately,
an alternative to the csv.reader function takes care of all of this for you automati‐
cally. Enter DictReader:

from urllib.request import urlopen
from io import StringIO
import csv

data = urlopen('http://pythonscraping.com/files/MontyPythonAlbums.csv')
 .read().decode('ascii', 'ignore')
dataFile = StringIO(data)
dictReader = csv.DictReader(dataFile)

print(dictReader.fieldnames)

114 | Chapter 7: Reading Documents

for row in dictReader:
 print(row)

csv.DictReader returns the values of each row in the CSV file as dictionary objects
rather than list objects, with field names stored in the variable dictReader.field
names and as keys in each dictionary object:

['Name', 'Year']
{'Name': 'Monty Python's Flying Circus', 'Year': '1970'}
{'Name': 'Another Monty Python Record', 'Year': '1971'}
{'Name': 'Monty Python's Previous Record', 'Year': '1972'}

The downside, of course, is that it takes slightly longer to create, process, and print
these DictReader objects as opposed to csvReader, but the convenience and usability
is often worth the additional overhead. Also keep in mind that, when it comes to web
scraping, the overhead required for requesting and retrieving website data from an
external server will almost always be the unavoidable limiting factor in any program
you write, so worrying about which technique might shave microseconds off your
total runtime is often a moot point!

PDF
As a Linux user, I know the pain of being sent a .docx file that my non-Microsoft soft‐
ware mangles and struggling trying to find the codecs to interpret some new Apple
media format. In some ways, Adobe was revolutionary in creating its Portable Docu‐
ment Format in 1993. PDFs allowed users on different platforms to view image and
text documents in exactly the same way, regardless of the platform they were viewing
it on.

Although storing PDFs on the web is somewhat passé (why store content in a static,
slow-loading format when you could write it up as HTML?), PDFs remain ubiqui‐
tous, particularly when dealing with official forms and filings.

In 2009, a Briton named Nick Innes made the news when he requested public student
test result information from the Buckinghamshire City Council, which was available
under the United Kingdom’s version of the Freedom of Information Act. After some
repeated requests and denials, he finally received the information he was looking for
—in the form of 184 PDF documents.

Although Innes persisted and eventually received a more properly formatted data‐
base, had he been an expert web scraper, he likely could have saved himself a lot of
time in the courts and used the PDF documents directly, with one of Python’s many
PDF-parsing modules.

Unfortunately, many of the PDF-parsing libraries built for Python 2.x were not
upgraded with the launch of Python 3.x. However, because the PDF is a relatively

PDF | 115

simple and open source document format, many decent Python libraries, even in
Python 3.x, can read them.

PDFMiner3K is one such relatively easy-to-use library. It is flexible, allowing for
command-line usage or integration into existing code. It can also handle a variety of
language encodings—again, something that often comes in handy on the web.

You can install as usual using pip, or download this Python module and install it by
unzipping the folder and running the following:

$ python setup.py install

The documentation is located at /pdfminer3k-1.3.0/docs/index.html within the extrac‐
ted folder, although the current documentation tends to be geared more toward the
command-line interface than integration with Python code.

Here is a basic implementation that allows you to read arbitrary PDFs to a string,
given a local file object:

from urllib.request import urlopen
from pdfminer.pdfinterp import PDFResourceManager, process_pdf
from pdfminer.converter import TextConverter
from pdfminer.layout import LAParams
from io import StringIO
from io import open

def readPDF(pdfFile):
 rsrcmgr = PDFResourceManager()
 retstr = StringIO()
 laparams = LAParams()
 device = TextConverter(rsrcmgr, retstr, laparams=laparams)

 process_pdf(rsrcmgr, device, pdfFile)
 device.close()

 content = retstr.getvalue()
 retstr.close()
 return content

pdfFile = urlopen('http://pythonscraping.com/'
 'pages/warandpeace/chapter1.pdf')
outputString = readPDF(pdfFile)
print(outputString)
pdfFile.close()

This gives the familiar plain-text output:

CHAPTER I

"Well, Prince, so Genoa and Lucca are now just family estates of
the Buonapartes. But I warn you, if you don't tell me that this
means war, if you still try to defend the infamies and horrors
perpetrated by that Antichrist- I really believe he is Antichrist- I will

116 | Chapter 7: Reading Documents

https://pypi.python.org/pypi/pdfminer3k

The nice thing about this PDF reader is that if you’re working with files locally, you
can substitute a regular Python file object for the one returned by urlopen and use
this line:

pdfFile = open('../pages/warandpeace/chapter1.pdf', 'rb')

The output might not be perfect, especially for PDFs with images, oddly formatted
text, or text arranged in tables or charts. However, for most text-only PDFs, the out‐
put should be no different than if the PDF were a text file.

Microsoft Word and .docx
At the risk of offending my friends at Microsoft: I do not like Microsoft Word. Not
because it’s necessarily a bad piece of software, but because of the way its users misuse
it. It has a particular talent for turning what should be simple text documents or PDFs
into large, slow, difficult-to-open beasts that often lose all formatting from machine
to machine, and are, for whatever reason, editable when the content is often meant to
be static.

Word files are designed for content creation, not content sharing. Nevertheless, they
are ubiquitous on certain sites, containing important documents, information, and
even charts and multimedia; in short, everything that can and should be created with
HTML.

Before about 2008, Microsoft Office products used the proprietary .doc file format.
This binary-file format was difficult to read and poorly supported by other word pro‐
cessors. In an effort to get with the times and adopt a standard that was used by many
other pieces of software, Microsoft decided to use the Open Office XML-based stan‐
dard, which made the files compatible with open source and other software.

Unfortunately, Python’s support for this file format, used by Google Docs, Open
Office, and Microsoft Office, still isn’t great. There is the python-docx library, but this
only gives users the ability to create documents and read only basic file data such as
the size and title of the file, not the actual contents. To read the contents of a Micro‐
soft Office file, you’ll need to roll your own solution.

The first step is to read the XML from the file:

from zipfile import ZipFile
from urllib.request import urlopen
from io import BytesIO

wordFile = urlopen('http://pythonscraping.com/pages/AWordDocument.docx').read()
wordFile = BytesIO(wordFile)
document = ZipFile(wordFile)
xml_content = document.read('word/document.xml')
print(xml_content.decode('utf-8'))

Microsoft Word and .docx | 117

http://python-docx.readthedocs.org/en/latest/

This reads a remote Word document as a binary file object (BytesIO is analogous to
StringIO, used earlier in this chapter), unzips it using Python’s core zipfile library
(all .docx files are zipped to save space), and then reads the unzipped file, which is
XML.

The Word document at http://pythonscraping.com/pages/AWordDocument.docx is
shown in Figure 7-2.

Figure 7-2. This is a Word document that’s full of content you might want very much,
but it’s difficult to access because I’m putting it on my website as a .docx file instead of
publishing it as HTML

The output of the Python script reading my simple Word document is the following:

<!--?xml version="1.0" encoding="UTF-8" standalone="yes"?-->
<w:document mc:ignorable="w14 w15 wp14" xmlns:m="http://schemas.openx
mlformats.org/officeDocument/2006/math" xmlns:mc="http://schemas.open
xmlformats.org/markup-compatibility/2006" xmlns:o="urn:schemas-micros
oft-com:office:office" xmlns:r="http://schemas.openxmlformats.org/off
iceDocument/2006/relationships" xmlns:v="urn:schemas-microsoft-com:vm
l" xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/m
ain" xmlns:w10="urn:schemas-microsoft-com:office:word" xmlns:w14="htt
p://schemas.microsoft.com/office/word/2010/wordml" xmlns:w15="http://
schemas.microsoft.com/office/word/2012/wordml" xmlns:wne="http://sche
mas.microsoft.com/office/word/2006/wordml" xmlns:wp="http://schemas.o
penxmlformats.org/drawingml/2006/wordprocessingDrawing" xmlns:wp14="h
ttp://schemas.microsoft.com/office/word/2010/wordprocessingDrawing" x
mlns:wpc="http://schemas.microsoft.com/office/word/2010/wordprocessin
gCanvas" xmlns:wpg="http://schemas.microsoft.com/office/word/2010/wor
dprocessingGroup" xmlns:wpi="http://schemas.microsoft.com/office/word
/2010/wordprocessingInk" xmlns:wps="http://schemas.microsoft.com/offi
ce/word/2010/wordprocessingShape"><w:body><w:p w:rsidp="00764658" w:r

118 | Chapter 7: Reading Documents

http://pythonscraping.com/pages/AWordDocument.docx

sidr="00764658" w:rsidrdefault="00764658"><w:ppr><w:pstyle w:val="Tit
le"></w:pstyle></w:ppr><w:r><w:t>A Word Document on a Website</w:t></
w:r><w:bookmarkstart w:id="0" w:name="_GoBack"></w:bookmarkstart><w:b
ookmarkend w:id="0"></w:bookmarkend></w:p><w:p w:rsidp="00764658" w:r
sidr="00764658" w:rsidrdefault="00764658"></w:p><w:p w:rsidp="0076465
8" w:rsidr="00764658" w:rsidrdefault="00764658" w:rsidrpr="00764658">
<w: r> <w:t>This is a Word document, full of content that you want ve
ry much. Unfortunately, it’s difficult to access because I’m putting
it on my website as a .</w:t></w:r><w:prooferr w:type="spellStart"></
w:prooferr><w:r><w:t>docx</w:t></w:r><w:prooferr w:type="spellEnd"></
w:prooferr> <w:r> <w:t xml:space="preserve"> file, rather than just p
ublishing it as HTML</w:t> </w:r> </w:p> <w:sectpr w:rsidr="00764658"
 w:rsidrpr="00764658"> <w:pgszw:h="15840" w:w="12240"></w:pgsz><w:pgm
ar w:bottom="1440" w:footer="720" w:gutter="0" w:header="720" w:left=
"1440" w:right="1440" w:top="1440"></w:pgmar> <w:cols w:space="720"><
/w:cols&g; <w:docgrid w:linepitch="360"></w:docgrid> </w:sectpr> </w:
body> </w:document>

There’s clearly a lot of metadata here, but the actual text content you want is buried.
Fortunately, all of the text in the document, including the title at the top, is contained
in w:t tags, which makes it easy to grab:

from zipfile import ZipFile
from urllib.request import urlopen
from io import BytesIO
from bs4 import BeautifulSoup

wordFile = urlopen('http://pythonscraping.com/pages/AWordDocument.docx').read()
wordFile = BytesIO(wordFile)
document = ZipFile(wordFile)
xml_content = document.read('word/document.xml')

wordObj = BeautifulSoup(xml_content.decode('utf-8'), 'xml')
textStrings = wordObj.find_all('w:t')

for textElem in textStrings:
 print(textElem.text)

Note that instead of the html.parser parser that you normally use with Beauti
fulSoup, you’re passing it the xml parser. This is because colons are nonstandard in
HTML tag names like w:t and html.parser does not recognize them.

The output isn’t perfect but it’s getting there, and printing each w:t tag on a new line
makes it easy to see how Word is splitting up the text:

A Word Document on a Website
This is a Word document, full of content that you want very much. Unfortunately,
it’s difficult to access because I’m putting it on my website as a .
docx
 file, rather than just publishing it as HTML

Microsoft Word and .docx | 119

Notice that the word “docx” is on its own line. In the original XML, it is surrounded
with the tag <w:proofErr w:type="spellStart"/>. This is Word’s way of highlight‐
ing “docx” with the red squiggly underline, indicating that it believes there’s a spelling
error in the name of its own file format.

The title of the document is preceded by the style descriptor tag <w:pstyle
w:val="Title">. Although this doesn’t make it extremely easy for us to identify titles
(or other styled text) as such, using BeautifulSoup’s navigation features can be useful:

textStrings = wordObj.find_all('w:t')

for textElem in textStrings:
 style = textElem.parent.parent.find('w:pStyle')
 if style is not None and style['w:val'] == 'Title':
 print('Title is: {}'.format(textElem.text))
 else:
 print(textElem.text)

This function can be easily expanded to print tags around a variety of text styles or
label them in some other way.

120 | Chapter 7: Reading Documents

CHAPTER 8

Cleaning Your Dirty Data

So far in this book, you’ve ignored the problem of badly formatted data by using gen‐
erally well-formatted data sources, dropping data entirely if it deviated from what you
were expecting. But often, in web scraping, you can’t be too picky about where you
get your data from, or what it looks like.

Because of errant punctuation, inconsistent capitalization, line breaks, and misspell‐
ings, dirty data can be a big problem on the web. This chapter covers a few tools and
techniques to help you prevent the problem at the source by changing the way you
write code, and clean the data after it’s in the database.

Cleaning in Code
Just as you write code to handle overt exceptions, you should practice defensive cod‐
ing to handle the unexpected.

In linguistics, an n-gram is a sequence of n words used in text or speech. When doing
natural language analysis, it can often be handy to break up a piece of text by looking
for commonly used n-grams, or recurring sets of words that are often used together.

This section focuses on obtaining properly formatted n-grams rather than using them
to do any analysis. Later, in Chapter 9, you can see 2-grams and 3-grams in action to
do text summarization and analysis.

The following returns a list of 2-grams found in the Wikipedia article on the Python
programming language:

from urllib.request import urlopen
from bs4 import BeautifulSoup

def getNgrams(content, n):
 content = content.split(' ')

121

 output = []
 for i in range(len(content)-n+1):
 output.append(content[i:i+n])
 return output

html = urlopen('http://en.wikipedia.org/wiki/Python_(programming_language)')
bs = BeautifulSoup(html, 'html.parser')
content = bs.find('div', {'id':'mw-content-text'}).get_text()
ngrams = getNgrams(content, 2)
print(ngrams)
print('2-grams count is: '+str(len(ngrams)))

The getNgrams function takes in an input string, splits it into a sequence of words
(assuming all words are separated by spaces), and adds the n-gram (in this case, a 2-
gram) that each word starts into an array.

This returns some genuinely interesting and useful 2-grams from the text:

['of', 'free'], ['free', 'and'], ['and', 'open-source'], ['open-source', 'softwa
re']

But it also returns a lot of junk:

['software\nOutline\nSPDX\n\n\n\n\n\n\n\n\nOperating', 'system\nfamilies\n\n\n\n
AROS\nBSD\nDarwin\neCos\nFreeDOS\nGNU\nHaiku\nInferno\nLinux\nMach\nMINIX\nOpenS
olaris\nPlan'], ['system\nfamilies\n\n\n\nAROS\nBSD\nDarwin\neCos\nFreeDOS\nGNU\
nHaiku\nInferno\nLinux\nMach\nMINIX\nOpenSolaris\nPlan', '9\nReactOS\nTUD:OS\n\n
\n\n\n\n\n\n\nDevelopment\n\n\n\nBasic'], ['9\nReactOS\nTUD:OS\n\n\n\n\n\n\n\n\n
Development\n\n\n\nBasic', 'For']

In addition, because a 2-gram is created for each and every word encountered (except
for the last one), there are 7,411 2-grams in the article at the time of this writing. Not
a very manageable dataset!

Using regular expressions to remove escape characters (such as \n) and filtering to
remove any Unicode characters, you can clean up the output somewhat:

import re

def getNgrams(content, n):
 content = re.sub('\n|[[\d+\]]', ' ', content)
 content = bytes(content, 'UTF-8')
 content = content.decode('ascii', 'ignore')
 content = content.split(' ')
 content = [word for word in content if word != '']
 output = []
 for i in range(len(content)-n+1):
 output.append(content[i:i+n])
 return output

This replaces all instances of the newline character with a space, removes citations
like [123], and filters out all empty strings, caused by multiple spaces in a row. Then,
escape characters are eliminated by encoding the content with UTF-8.

122 | Chapter 8: Cleaning Your Dirty Data

These steps greatly improve the output of the function, but some issues still remain:

['years', 'ago('], ['ago(', '-'], ['-', '-'], ['-', ')'], [')', 'Stable']

You can improve on this by removing all punctuation before and after each word
(stripping the punctuation). This preserves things like hyphens within words, but
eliminates strings that consist of only a single punctuation mark after empty strings
are eliminated.

Of course, punctuation itself has meaning, and simply removing it may result in los‐
ing some valuable information. For instance, a period followed by a space can be
assumed to mean the end of a complete sentence or statement. You may want to dis‐
allow n-grams that bridge over a stop like this and consider only ones created within
the sentence.

For instance, given the text

Python features a dynamic type system and automatic memory management.
It supports multiple programming paradigms...

the 2-gram ['memory', 'management'] would be valid, but the 2-gram ['manage
ment', 'It'] would not.

Now that you have a longer list of “cleaning tasks,” you’re introducing the concept of
“sentences,” and your program has become generally more complex, it’s best to move
these out into four different functions:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import string

def cleanSentence(sentence):
 sentence = sentence.split(' ')
 sentence = [word.strip(string.punctuation+string.whitespace)
 for word in sentence]
 sentence = [word for word in sentence if len(word) > 1
 or (word.lower() == 'a' or word.lower() == 'i')]
 return sentence

def cleanInput(content):
 content = re.sub('\n|[[\d+\]]', ' ', content)
 content = bytes(content, 'UTF-8')
 content = content.decode('ascii', 'ignore')
 sentences = content.split('. ')
 return [cleanSentence(sentence) for sentence in sentences]

def getNgramsFromSentence(content, n):
 output = []
 for i in range(len(content)-n+1):
 output.append(content[i:i+n])
 return output

Cleaning in Code | 123

def getNgrams(content, n):
 content = cleanInput(content)
 ngrams = []
 for sentence in content:
 ngrams.extend(getNgramsFromSentence(sentence, n))
 return(ngrams)

getNgrams remains as your basic entry point into the program. cleanInput removes
newlines and citations, as before, but also splits the text into “sentences” based on the
location of periods followed by a space. It also calls cleanSentence, which splits the
sentence into words, strips punctuation and whitespace, and removes single-
character words besides I and a.

The key lines that create the n-grams are moved into getNgramsFromSentence, which
is called on each sentence by getNgrams. This ensures that n-grams are not created
that span multiple sentences.

Note the use of string.punctuation and string.whitespace to get a list of all
punctuation characters in Python. You can view the output of string.punctuation
from a Python terminal:

>>> import string
>>> print(string.punctuation)
!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

print(string.whitespace) produces much less interesting output (after all, it’s just
whitespace), but contains whitespace characters including nonbreaking spaces, tabs,
and newlines.

By using item.strip(string.punctuation+string.whitespace) inside a loop iter‐
ating through all words in the content, any punctuation characters on either side of
the word will be stripped, although hyphenated words (where the punctuation char‐
acter is bounded by letters on either side) will remain untouched.

The output of this effort results in much cleaner 2-grams:

[['Python', 'Paradigm'], ['Paradigm', 'Object-oriented'], ['Object-oriented',
'imperative'], ['imperative', 'functional'], ['functional', 'procedural'],
['procedural', 'reflective'],...

Data Normalization
Everyone has encountered a poorly designed web form: “Enter your phone number.
Your phone number must be in the form ‘xxx-xxx-xxxx’.”

As a good programmer, you will likely think to yourself, “Why don’t they just strip
out the non-numeric characters I put in there and do it themselves?” Data normaliza‐
tion is the process of ensuring that strings that are linguistically or logically equivalent

124 | Chapter 8: Cleaning Your Dirty Data

to each other, such as the phone numbers (555) 123-4567 and 555.123.4567, are dis‐
played, or at least compared, as equivalent.

Using the n-gram code from the previous section, you can add data normalization
features.

One obvious problem with this code is that it contains many duplicate 2-grams.
Every 2-gram it encounters gets added to the list, with no record of its frequency. Not
only is it interesting to record the frequency of these 2-grams, rather than just their
existence, but it can be useful in charting the effects of changes to the cleaning and
data normalization algorithms. If data is normalized successfully, the total number of
unique n-grams will be reduced, while the total count of n-grams found (i.e., the
number of unique or nonunique items identified as n-grams) will not be reduced. In
other words, there will be fewer “buckets” for the same number of n-grams.

You can do this by modifying the code that collects the n-grams to add them to a
Counter object, rather than a list:

from collections import Counter

def getNgrams(content, n):
 content = cleanInput(content)
 ngrams = Counter()
 for sentence in content:
 newNgrams = [' '.join(ngram) for ngram in
 getNgramsFromSentence(sentence, 2)]
 ngrams.update(newNgrams)
 return(ngrams)

There are many other ways to do this, such as adding n-grams to a dictionary object
in which the value of the list points at a count for the number of times it was seen.
That has a disadvantage in that it requires a bit more management and makes sorting
tricky. However, using a Counter object also has a disadvantage: it cannot store lists
(lists are unhashable), so you need to convert them to strings first by using a
' '.join(ngram) inside a list comprehension for each n-gram.

Here are the results:

Counter({'Python Software': 37, 'Software Foundation': 37, 'of the': 34,
'of Python': 28, 'in Python': 24, 'in the': 23, 'van Rossum': 20, 'to the':
20, 'such as': 19, 'Retrieved February': 19, 'is a': 16, 'from the': 16,
'Python Enhancement': 15,...

As of this writing, there are 7,275 total 2-grams and 5,628 unique 2-grams, with the
most popular 2-gram being “Software Foundation,” followed by “Python Software.”
However, analysis of the results shows that “Python Software” appears in the form of
“Python software” an additional two times. Similarly, both “van Rossum” and “Van
Rossum” make an appearance in the list separately.

Cleaning in Code | 125

Adding the line

content = content.upper()

to the cleanInput function keeps the total number of 2-grams found steady at 7,275,
while decreasing the number of unique 2-grams to 5,479.

Beyond this, it’s usually good to stop and consider how much computing power you
want to expend normalizing data. There are a number of situations in which different
spellings of words are equivalent, but in order to resolve this equivalency, you need to
run a check on every single word to see whether it matches any of your preprogram‐
med equivalencies.

For example, “Python 1st” and “Python first” both appear in the list of 2-grams. How‐
ever, to make a blanket rule that says, “All first, second, third, etc., will be resolved to
1st, 2nd, 3rd, etc. (or vice versa)” would result in an additional 10 or so checks per
word.

Similarly, the inconsistent use of hyphens (“co-ordinated” versus “coordinated”), mis‐
spellings, and other natural language incongruities will affect the groupings of n-
grams, and might muddy the results of the output if the incongruities are common
enough.

One solution, in the case of hyphenated words, might be to remove hyphens entirely
and treat the word as a single string, which would require only a single operation.
However, this would also mean that hyphenated phrases (an all-too-common occur‐
rence) will be treated as a single word. Going the other route and treating hyphens as
spaces might be a better option. Just be prepared for the occasional “co ordinated”
and “ordinated attack” to slip in!

Cleaning After the Fact
There is only so much you can (or want to) do in code. In addition, you might be
dealing with a dataset that you didn’t create, or a dataset that would be a challenge to
even know how to clean without seeing it first.

A knee-jerk reaction that many programmers have in this sort of situation is “write a
script,” which can be an excellent solution. However, third-party tools, such as Open‐
Refine, also are capable of not only cleaning data quickly and easily, but allowing your
data to be easily seen and used by nonprogrammers.

OpenRefine
OpenRefine is an open source project started by a company called Metaweb in 2009.
Google acquired Metaweb in 2010, changing the name of the project from Freebase
Gridworks to Google Refine. In 2012, Google dropped support for Refine and

126 | Chapter 8: Cleaning Your Dirty Data

http://openrefine.org/

changed the name again, to OpenRefine, and anyone is welcome to contribute to the
development of the project.

Installation
OpenRefine is unusual in that although its interface is run in a browser, it is techni‐
cally a desktop application that must be downloaded and installed. You can download
the application for Linux, Windows, and macOS from its website.

If you’re a Mac user and run into any trouble opening the file, go to
System Preferences → Security & Privacy → General. Under “Allow
apps downloaded from,” select Anywhere. Unfortunately, during
the transition from a Google project to an open source project,
OpenRefine appears to have lost its legitimacy in the eyes of Apple.

To use OpenRefine, you need to save your data as a CSV file (refer to “Storing Data to
CSV” on page 86 if you need a refresher on how to do this). Alternatively, if you have
your data stored in a database, you might be able to export it to a CSV file.

Using OpenRefine
In the following examples, you’ll use data scraped from Wikipedia’s “Comparison of
Text Editors” table; see Figure 8-1. Although this table is relatively well formatted, it
contains many edits by people over a long time, so it has a few minor formatting
inconsistencies. In addition, because its data is meant to be read by humans rather
than machines, some of the formatting choices (e.g., using “Free” rather than “$0.00”)
are inappropriate for programming inputs.

Figure 8-1. Data from Wikipedia’s “Comparison of Text Editors,” as shown in the main
OpenRefine screen

Cleaning After the Fact | 127

http://openrefine.org/download.html
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors

The first thing to note about OpenRefine is that each column label has an arrow next
to it. This arrow provides a menu of tools that can be used with that column for filter‐
ing, sorting, transforming, or removing data.

Filtering. Data filtering can be performed using two methods: filters and facets. Fil‐
ters are good for using regular expressions to filter the data; for example, “Show me
only data that contains three or more comma-separated programming languages in
the Programming language column,” as seen in Figure 8-2.

Filters can be combined, edited, and added easily by manipulating the blocks in the
righthand column. They also can be combined with facets.

Figure 8-2. The regular expression “.+,.+,.+” selects for values that have at least three
comma-separated items

Facets are great for including or excluding data based on the entire contents of the
column. (e.g., “Show all rows that use the GPL or MIT license, and were first released
after 2005,” as seen in Figure 8-3). They have built-in filtering tools. For instance, fil‐
tering on a numeric value provides you with slide bars to select the value range that
you want to include.

128 | Chapter 8: Cleaning Your Dirty Data

Figure 8-3. This displays all text editors using the GPL or MIT license that had their first
public release after 2005

However you filter your data, it can be exported at any point to one of several types of
formats that OpenRefine supports. This includes CSV, HTML (an HTML table),
Excel, and several other formats.

Cleaning. Data filtering can be done successfully only if the data is relatively clean to
start with. For instance, in the facet example in the previous section, a text editor that
had a release date of 01-01-2006 would not have been selected in the “First public
release” facet, which was looking for a value of 2006 and ignoring values that didn’t
look like that.

Data transformation is performed in OpenRefine by using the OpenRefine Expres‐
sion Language, called GREL (the G is left over from OpenRefine’s previous name,
Google Refine). This language is used to create short lambda functions that transform
the values in the cells based on simple rules. For example:

if(value.length() != 4, "invalid", value)

When this function is applied to the “First stable release” column, it preserves the val‐
ues of the cells where the date is in a YYYY format, and marks all other columns as
invalid (Figure 8-4).

Cleaning After the Fact | 129

Figure 8-4. Inserting a GREL statement into a project (a preview display is shown below
the statement)

Arbitrary GREL statements can be applied by clicking the down arrow next to any
column’s label and choosing Edit cells → Transform.

However, marking all less-than-ideal values as invalid, while making them easy to
spot, doesn’t do you much good. It’d be better to try to salvage information from the
badly formatted values if possible. This can be done using GREL’s match function:

value.match(".*([0-9]{4}).*").get(0)

This attempts to match the string value against the regular expression given. If the
regular expression matches the string, an array is returned. Any substrings that match
the “capture group” in the regular expression (demarcated by the parentheses in the
expression, in this example, [0-9]{4}) are returned as array values.

This code, in effect, finds all instances of four decimals in a row and returns the first
one. This is usually sufficient to extract years from text or badly formatted dates. It
also has the benefit of returning null for nonexistent dates. (GREL does not throw a
null pointer exception when performing operations on a null variable.)

Many other data transformations are possible with cell editing and GREL. A complete
guide to the language can be found on OpenRefine’s GitHub page.

130 | Chapter 8: Cleaning Your Dirty Data

https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Users

1 Although many of the techniques described in this chapter can be applied to all or most languages, it’s okay
for now to focus on natural language processing in English only. Tools such as Python’s Natural Language
Toolkit, for example, focus on English. Fifty-six percent of the internet is still in English (with German follow‐
ing at a mere 6%, according to W3Techs). But who knows? English’s hold on the majority of the internet will
almost certainly change in the future, and further updates may be necessary in the next few years.

CHAPTER 9

Reading and Writing Natural Languages

So far, the data you have worked with generally has been in the form of numbers or
countable values. In most cases, you’ve simply stored the data without conducting
any analysis after the fact. This chapter attempts to tackle the tricky subject of the
English language.1

How does Google know what you’re looking for when you type “cute kitten” into its
Image Search? Because of the text that surrounds the cute kitten images. How does
YouTube know to bring up a certain Monty Python sketch when you type “dead par‐
rot” into its search bar? Because of the title and description text that accompanies
each uploaded video.

In fact, even typing in terms such as “deceased bird monty python” immediately
brings up the same “Dead Parrot” sketch, even though the page itself contains no
mention of the words “deceased” or “bird.” Google knows that a “hot dog” is a food
and that a “boiling puppy” is an entirely different thing. How? It’s all statistics!

Although you might not think that text analysis has anything to do with your project,
understanding the concepts behind it can be extremely useful for all sorts of machine
learning, as well as the more general ability to model real-world problems in proba‐
bilistic and algorithmic terms.

For instance, the Shazam music service can identify audio as containing a certain
song recording, even if that audio contains ambient noise or distortion. Google is

131

http://w3techs.com/technologies/overview/content_language/all

2 Oriol Vinyals et al, “A Picture Is Worth a Thousand (Coherent) Words: Building a Natural Description of
Images”, Google Research Blog, November 17, 2014.

working on automatically captioning images based on nothing but the image itself.2

By comparing known images of, say, hot dogs to other images of hot dogs, the search
engine can gradually learn what a hot dog looks like and observe these patterns in
additional images it is shown.

Summarizing Data
In Chapter 8, you looked at breaking up text content into n-grams, or sets of phrases
that are n words in length. At a basic level, this can be used to determine which sets of
words and phrases tend to be most commonly used in a section of text. In addition, it
can be used to create natural-sounding data summaries by going back to the original
text and extracting sentences around some of these most popular phrases.

One piece of sample text you’ll be using to do this is the inauguration speech of the
ninth president of the United States, William Henry Harrison. Harrison’s presidency
sets two records in the history of the office: one for the longest inauguration speech,
and another for the shortest time in office, 32 days.

You’ll use the full text of this speech as the source for many of the code samples in
this chapter.

Slightly modifying the n-gram used to find code in Chapter 8, you can produce code
that looks for sets of 2-grams and returns a Counter object with all 2-grams:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import string
from collections import Counter

def cleanSentence(sentence):
 sentence = sentence.split(' ')
 sentence = [word.strip(string.punctuation+string.whitespace)
 for word in sentence]
 sentence = [word for word in sentence if len(word) > 1
 or (word.lower() == 'a' or word.lower() == 'i')]
 return sentence

def cleanInput(content):
 content = content.upper()
 content = re.sub('\n', ' ', content)
 content = bytes(content, "UTF-8")
 content = content.decode("ascii", "ignore")
 sentences = content.split('. ')
 return [cleanSentence(sentence) for sentence in sentences]

132 | Chapter 9: Reading and Writing Natural Languages

http://bit.ly/1HEJ8kX
http://bit.ly/1HEJ8kX
http://pythonscraping.com/files/inaugurationSpeech.txt

def getNgramsFromSentence(content, n):
 output = []
 for i in range(len(content)-n+1):
 output.append(content[i:i+n])
 return output

def getNgrams(content, n):
 content = cleanInput(content)
 ngrams = Counter()
 ngrams_list = []
 for sentence in content:
 newNgrams = [' '.join(ngram) for ngram in
 getNgramsFromSentence(sentence, 2)]
 ngrams_list.extend(newNgrams)
 ngrams.update(newNgrams)
 return(ngrams)

content = str(
 urlopen('http://pythonscraping.com/files/inaugurationSpeech.txt')
 .read(), 'utf-8')
ngrams = getNgrams(content, 2)
print(ngrams)

The output produces, in part:

Counter({'OF THE': 213, 'IN THE': 65, 'TO THE': 61, 'BY THE': 41,
'THE CONSTITUTION': 34, 'OF OUR': 29, 'TO BE': 26, 'THE PEOPLE': 24,
'FROM THE': 24, 'THAT THE': 23,...

Of these 2-grams, “the constitution” seems like a reasonably popular subject in the
speech, but “of the,” “in the,” and “to the” don’t seem especially noteworthy. How can
you automatically get rid of unwanted words in an accurate way?

Fortunately, there are people out there who carefully study the differences between
“interesting” words and “uninteresting” words, and their work can help us do just
that. Mark Davies, a linguistics professor at Brigham Young University, maintains the
Corpus of Contemporary American English, a collection of over 450 million words
from the last decade or so of popular American publications.

The list of 5,000 most frequently found words is available for free, and fortunately,
this is far more than enough to act as a basic filter to weed out the most common 2-
grams. Just the first 100 words vastly improves the results, with the addition of an
isCommon function:

def isCommon(ngram):
 commonWords = ['THE', 'BE', 'AND', 'OF', 'A', 'IN', 'TO', 'HAVE', 'IT', 'I',
 'THAT', 'FOR', 'YOU', 'HE', 'WITH', 'ON', 'DO', 'SAY', 'THIS', 'THEY',
 'IS', 'AN', 'AT', 'BUT', 'WE', 'HIS', 'FROM', 'THAT', 'NOT', 'BY',
 'SHE', 'OR', 'AS', 'WHAT', 'GO', 'THEIR', 'CAN', 'WHO', 'GET', 'IF',
 'WOULD', 'HER', 'ALL', 'MY', 'MAKE', 'ABOUT', 'KNOW', 'WILL', 'AS',

Summarizing Data | 133

http://corpus.byu.edu/coca/

 'UP', 'ONE', 'TIME', 'HAS', 'BEEN', 'THERE', 'YEAR', 'SO', 'THINK',
 'WHEN', 'WHICH', 'THEM', 'SOME', 'ME', 'PEOPLE', 'TAKE', 'OUT', 'INTO',
 'JUST', 'SEE', 'HIM', 'YOUR', 'COME', 'COULD', 'NOW', 'THAN', 'LIKE',
 'OTHER', 'HOW', 'THEN', 'ITS', 'OUR', 'TWO', 'MORE', 'THESE', 'WANT',
 'WAY', 'LOOK', 'FIRST', 'ALSO', 'NEW', 'BECAUSE', 'DAY', 'MORE', 'USE',
 'NO', 'MAN', 'FIND', 'HERE', 'THING', 'GIVE', 'MANY', 'WELL']
 for word in ngram:
 if word in commonWords:
 return True
 return False

This produces the following 2-grams that were found more than twice in the text
body:

Counter({'UNITED STATES': 10, 'EXECUTIVE DEPARTMENT': 4,
'GENERAL GOVERNMENT': 4, 'CALLED UPON': 3, 'CHIEF MAGISTRATE': 3,
'LEGISLATIVE BODY': 3, 'SAME CAUSES': 3, 'GOVERNMENT SHOULD': 3,
'WHOLE COUNTRY': 3,...

Appropriately enough, the first two items in the list are “United States” and “executive
department,” which you would expect for a presidential inauguration speech.

It’s important to note that you are using a list of common words from relatively
modern times to filter the results, which might not be appropriate given that the text
was written in 1841. However, because you’re using only the first 100 or so words on
the list—which you can assume are more stable over time than, say, the last 100
words—and you appear to be getting satisfactory results, you can likely save yourself
the effort of tracking down or creating a list of the most common words from 1841
(although such an effort might be interesting).

Now that some key topics have been extracted from the text, how does this help you
write text summaries? One way is to search for the first sentence that contains each
“popular” n-gram, the theory being that the first instance will yield a satisfactory
overview of the body of the content. The first five most popular 2-grams yield these
bullet points:

• The Constitution of the United States is the instrument containing this grant of
power to the several departments composing the Government.

• Such a one was afforded by the executive department constituted by the Consti‐
tution.

• The General Government has seized upon none of the reserved rights of the
States.

• Called from a retirement which I had supposed was to continue for the residue of
my life to fill the chief executive office of this great and free nation, I appear
before you, fellow-citizens, to take the oaths which the constitution prescribes as
a necessary qualification for the performance of its duties; and in obedience to a
custom coeval with our government and what I believe to be your expectations I

134 | Chapter 9: Reading and Writing Natural Languages

proceed to present to you a summary of the principles which will govern me in
the discharge of the duties which I shall be called upon to perform.

• The presses in the necessary employment of the Government should never be
used to “clear the guilty or to varnish crime.”

Sure, it might not be published in CliffsNotes any time soon, but considering that the
original document was 217 sentences in length, and the fourth sentence (“Called from
a retirement...”) condenses the main subject down fairly well, it’s not too bad for a
first pass.

With longer blocks of text, or more varied text, it may be worth looking at 3-grams or
even 4-grams when retrieving the “most important” sentences of a passage. In this
case, only one 3-gram is used multiple times and that is “exclusive metallic currency”
—hardly a defining phrase for a presidential inauguration speech. With longer pas‐
sages, using 3-grams may be appropriate.

Another approach is to look for sentences that contain the most popular n-grams.
These will, of course, tend to be longer sentences, so if that becomes a problem, you
can look for sentences with the highest percentage of words that are popular n-grams,
or create a scoring metric of your own, combining several techniques.

Markov Models
You might have heard of Markov text generators. They’ve become popular for enter‐
tainment purposes, as in the “That can be my next tweet!” app, as well as their use for
generating real-sounding spam emails to fool detection systems.

All of these text generators are based on the Markov model, which is often used to
analyze large sets of random events, where one discrete event is followed by another
discrete event with a certain probability.

For example, you might build a Markov model of a weather system, as illustrated in
Figure 9-1.

Markov Models | 135

http://yes.thatcan.be/my/next/tweet/

Figure 9-1. Markov model describing a theoretical weather system

In this model, each sunny day has a 70% chance of the following day also being
sunny, with a 20% chance of the following day being cloudy with a mere 10% chance
of rain. If the day is rainy, there is a 50% chance of rain the following day, a 25%
chance of sun, and a 25% chance of clouds.

You might note several properties in this Markov model:

• All percentages leading away from any one node must add up to exactly 100%.
No matter how complicated the system, there must always be a 100% chance that
it can lead somewhere else in the next step.

• Although there are only three possibilities for the weather at any given time, you
can use this model to generate an infinite list of weather states.

• Only the state of the current node you are on influences where you will go to
next. If you’re on the Sunny node, it doesn’t matter if the preceding 100 days were
sunny or rainy—the chances of sun the next day are exactly the same: 70%.

• It might be more difficult to reach some nodes than others. The math behind this
is reasonably complicated, but it should be fairly easy to see that Rainy (with less
than “100%” worth of arrows pointing toward it) is a much less likely state to
reach in this system, at any given point in time, than Sunny or Cloudy.

Obviously, this is a simple system, and Markov models can grow arbitrarily large.
Google’s page-rank algorithm is based partly on a Markov model, with websites rep‐
resented as nodes and inbound/outbound links represented as connections between
nodes. The “likelihood” of landing on a particular node represents the relative popu‐
larity of the site. That is, if our weather system represented an extremely small inter‐
net, “rainy” would have a low page rank, while “cloudy” would have a high page rank.

136 | Chapter 9: Reading and Writing Natural Languages

With all of this in mind, let’s bring it back down to a more concrete example: analyz‐
ing and writing text.

Again using the inauguration speech of William Henry Harrison analyzed in the pre‐
vious example, you can write the following code that generates arbitrarily long Mar‐
kov chains (with the chain length set to 100) based on the structure of its text:

from urllib.request import urlopen
from random import randint

def wordListSum(wordList):
 sum = 0
 for word, value in wordList.items():
 sum += value
 return sum

def retrieveRandomWord(wordList):
 randIndex = randint(1, wordListSum(wordList))
 for word, value in wordList.items():
 randIndex -= value
 if randIndex <= 0:
 return word

def buildWordDict(text):
 # Remove newlines and quotes
 text = text.replace('\n', ' ');
 text = text.replace('"', '');

 # Make sure punctuation marks are treated as their own "words,"
 # so that they will be included in the Markov chain
 punctuation = [',','.',';',':']
 for symbol in punctuation:
 text = text.replace(symbol, ' {} '.format(symbol));

 words = text.split(' ')
 # Filter out empty words
 words = [word for word in words if word != '']

 wordDict = {}
 for i in range(1, len(words)):
 if words[i-1] not in wordDict:
 # Create a new dictionary for this word
 wordDict[words[i-1]] = {}
 if words[i] not in wordDict[words[i-1]]:
 wordDict[words[i-1]][words[i]] = 0
 wordDict[words[i-1]][words[i]] += 1
 return wordDict

text = str(urlopen('http://pythonscraping.com/files/inaugurationSpeech.txt')
 .read(), 'utf-8')
wordDict = buildWordDict(text)

Markov Models | 137

3 The exception is the last word in the text, because nothing follows the last word. In our example text, the last
word is a period (.), which is convenient because it has 215 other occurrences in the text and so does not
represent a dead-end. However, in real-world implementations of the Markov generator, the last word of the
text might be something you need to account for.

#Generate a Markov chain of length 100
length = 100
chain = ['I']
for i in range(0, length):
 newWord = retrieveRandomWord(wordDict[chain[-1]])
 chain.append(newWord)

print(' '.join(chain))

The output of this code changes every time it is run, but here’s an example of the
uncannily nonsensical text it will generate:

I sincerely believe in Chief Magistrate to make all necessary sacrifices and
oppression of the remedies which we may have occurred to me in the arrangement
and disbursement of the democratic claims them , consolatory to have been best
political power in fervently commending every other addition of legislation , by
the interests which violate that the Government would compare our aboriginal
neighbors the people to its accomplishment . The latter also susceptible of the
Constitution not much mischief , disputes have left to betray . The maxim which
may sometimes be an impartial and to prevent the adoption or

So what’s going on in the code?

The function buildWordDict takes in the string of text, which was retrieved from the
internet. It then does some cleaning and formatting, removing quotes and putting
spaces around other punctuation so it is effectively treated as a separate word. After
this, it builds a two-dimensional dictionary—a dictionary of dictionaries—that has
the following form:

{word_a : {word_b : 2, word_c : 1, word_d : 1},
 word_e : {word_b : 5, word_d : 2},...}

In this example dictionary, “word_a” was found four times, two instances of which
were followed by “word_b,” one instance followed by “word_c,” and one instance fol‐
lowed by “word_d.” “Word_e” was followed seven times, five times by “word_b” and
twice by “word_d.”

If we were to draw a node model of this result, the node representing word_a would
have a 50% arrow pointing toward “word_b” (which followed it two out of four
times), a 25% arrow pointing toward “word_c,” and a 25% arrow pointing toward
“word_d.”

After this dictionary is built up, it can be used as a lookup table to see where to go
next, no matter which word in the text you happen to be on.3 Using the sample dictio‐

138 | Chapter 9: Reading and Writing Natural Languages

nary of dictionaries, you might currently be on “word_e,” which means that you’ll
pass the dictionary {word_b : 5, word_d: 2} to the retrieveRandomWord function.
This function in turn retrieves a random word from the dictionary, weighted by the
number of times it occurs.

By starting with a random starting word (in this case, the ubiquitous “I”), you can
traverse through the Markov chain easily, generating as many words as you like.

These Markov chains tend to improve in their “realism” as more text is collected,
especially from sources with similar writing styles. Although this example used 2-
grams to create the chain (where the previous word predicts the next word) 3-grams
or higher-order n-grams can be used, where two or more words predict the next
word.

Although entertaining, and a great use for megabytes of text that you might have
accumulated during web scraping, applications like these can make it difficult to see
the practical side of Markov chains. As mentioned earlier in this section, Markov
chains model how websites link from one page to the next. Large collections of these
links as pointers can form weblike graphs that are useful to store, track, and analyze.
In this way, Markov chains form the foundation for both how to think about web
crawling, and how your web crawlers can think.

Six Degrees of Wikipedia: Conclusion
In Chapter 3, you created a scraper that collects links from one Wikipedia article to
the next, starting with the article on Kevin Bacon, and in Chapter 6, stored those links
in a database. Why am I bringing it up again? Because it turns out the problem of
choosing a path of links that starts on one page and ends up on the target page (i.e.,
finding a string of pages between https://en.wikipedia.org/wiki/Kevin_Bacon and
https://en.wikipedia.org/wiki/Eric_Idle) is the same as finding a Markov chain where
both the first word and last word are defined.

These sorts of problems are directed graph problems, where A → B does not necessar‐
ily mean that B → A. The word “football” might often be followed by the word
“player,” but you’ll find that the word “player” is much less often followed by the word
“football.” Although Kevin Bacon’s Wikipedia article links to the article on his home
city, Philadelphia, the article on Philadelphia does not reciprocate by linking back to
him.

In contrast, the original Six Degrees of Kevin Bacon game is an undirected graph
problem. If Kevin Bacon starred in Flatliners with Julia Roberts, then Julia Roberts
necessarily starred in Flatliners with Kevin Bacon, so the relationship goes both ways
(it has no “direction”). Undirected graph problems tend to be less common in com‐
puter science than directed graph problems, and both are computationally difficult to
solve.

Markov Models | 139

https://en.wikipedia.org/wiki/Kevin_Bacon
https://en.wikipedia.org/wiki/Eric_Idle

Although much work has been done on these sorts of problems and multitudes of
variations on them, one of the best and most common ways to find shortest paths in a
directed graph—and thus find paths between the Wikipedia article on Kevin Bacon
and all other Wikipedia articles—is through a breadth-first search.

A breadth-first search is performed by first searching all links that link directly to the
starting page. If those links do not contain the target page (the page you are searching
for), then a second level of links—pages that are linked by a page that is linked by the
starting page—is searched. This process continues until either the depth limit (6 in
this case) is reached or the target page is found.

A complete solution to the breadth-first search, using a table of links as described in
Chapter 6, is as follows:

import pymysql

conn = pymysql.connect(host='127.0.0.1', unix_socket='/tmp/mysql.sock',
 user='', passwd='', db='mysql', charset='utf8')
cur = conn.cursor()
cur.execute('USE wikipedia')

def getUrl(pageId):
 cur.execute('SELECT url FROM pages WHERE id = %s', (int(pageId)))
 return cur.fetchone()[0]

def getLinks(fromPageId):
 cur.execute('SELECT toPageId FROM links WHERE fromPageId = %s',
 (int(fromPageId)))
 if cur.rowcount == 0:
 return []
 return [x[0] for x in cur.fetchall()]

def searchBreadth(targetPageId, paths=[[1]]):
 newPaths = []
 for path in paths:
 links = getLinks(path[-1])
 for link in links:
 if link == targetPageId:
 return path + [link]
 else:
 newPaths.append(path+[link])
 return searchBreadth(targetPageId, newPaths)

nodes = getLinks(1)
targetPageId = 28624
pageIds = searchBreadth(targetPageId)
for pageId in pageIds:
 print(getUrl(pageId))

140 | Chapter 9: Reading and Writing Natural Languages

getUrl is a helper function that retrieves URLs from the database given a page ID.
Similarly, getLinks takes a fromPageId representing the integer ID for the current
page, and fetches a list of all integer IDs for pages it links to.

The main function, searchBreadth, works recursively to construct a list of all possi‐
ble paths from the search page and stops when it finds a path that has reached the
target page:

• It starts with a single path, [1], representing a path in which the user stays on the
target page with the ID 1 (Kevin Bacon) and follows no links.

• For each path in the list of paths (in the first pass, there is only one path, so this
step is brief), it gets all of the links that link out from the page represented by the
last page in the path.

• For each of these outbound links, it checks whether they match the targetPa
geId. If there’s a match, that path is returned.

• If there’s no match, a new path is added to a new list of (now longer) paths, con‐
sisting of the old path + the new outbound page link.

• If the targetPageId is not found at this level at all, a recursion occurs and
searchBreadth is called with the same targetPageId and a new, longer, list of
paths.

After the list of page IDs containing a path between the two pages is found, each ID is
resolved to its actual URL and printed.

The output for searching for a link between the page on Kevin Bacon (page ID 1 in
this database) and the page on Eric Idle (page ID 28624 in this database) is as follows:

/wiki/Kevin_Bacon
/wiki/Primetime_Emmy_Award_for_Outstanding_Lead_Actor_in_a_
Miniseries_or_a_Movie
/wiki/Gary_Gilmore
/wiki/Eric_Idle

This translates into the relationship of links: Kevin Bacon → Primetime Emmy Award
→ Gary Gilmore → Eric Idle.

In addition to solving Six Degree problems and modeling which words tend to follow
which other words in sentences, directed and undirected graphs can be used to model
a variety of situations encountered in web scraping. Which websites link to which
other websites? Which research papers cite which other research papers? Which
products tend to be shown with which other products on a retail site? What is the
strength of this link? Is the link reciprocal?

Recognizing these fundamental types of relationships can be extremely helpful for
making models, visualizations, and predictions based on scraped data.

Markov Models | 141

Natural Language Toolkit
So far, this chapter has focused primarily on the statistical analysis of words in bodies
of text. Which words are most popular? Which words are unusual? Which words are
likely to come after which other words? How are they grouped together? What you
are missing is understanding, to the extent that you can, what the words represent.

The Natural Language Toolkit (NLTK) is a suite of Python libraries designed to iden‐
tify and tag parts of speech found in natural English text. Its development began in
2000, and over the past 15 years, dozens of developers around the world have con‐
tributed to the project. Although the functionality it provides is tremendous (entire
books are devoted to NLTK), this section focuses on just a few of its uses.

Installation and Setup
The nltk module can be installed in the same way as other Python modules, either by
downloading the package through the NLTK website directly or by using any number
of third-party installers with the keyword “nltk.” For complete installation instruc‐
tions, see the NLTK website.

After installing the module, it’s a good idea to download its preset text repositories so
you can try the features more easily. Type this on the Python command line:

>>> import nltk
>>> nltk.download()

This opens the NLTK Downloader (Figure 9-2).

I recommend installing all of the available packages when first trying out the NLTK
corpus. You can easily uninstall packages at any time.

142 | Chapter 9: Reading and Writing Natural Languages

http://www.nltk.org/install.html

Figure 9-2. The NLTK Downloader lets you browse and download optional packages
and text libraries associated with the nltk module

Statistical Analysis with NLTK
NLTK is great for generating statistical information about word counts, word fre‐
quency, and word diversity in sections of text. If all you need is a relatively straight‐
forward calculation (e.g., the number of unique words used in a section of text),
importing nltk might be overkill—it’s a large module. However, if you need to do rel‐
atively extensive analysis of a text, you have functions at your fingertips that will give
you just about any metric you want.

Analysis with NLTK always starts with the Text object. Text objects can be created
from simple Python strings in the following way:

from nltk import word_tokenize
from nltk import Text

tokens = word_tokenize('Here is some not very interesting text')
text = Text(tokens)

The input for the word_tokenize function can be any Python text string. If you don’t
have any long strings handy but still want to play around with the features, NLTK has
quite a few books already built into the library, which can be accessed using the
import function:

from nltk.book import *

Natural Language Toolkit | 143

This loads the nine books:

*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908

You will be working with text6, “Monty Python and the Holy Grail” (the screenplay
for the 1975 movie), in all of the following examples.

Text objects can be manipulated much like normal Python arrays, as if they were an
array containing words of the text. Using this property, you can count the number of
unique words in a text and compare it against the total number of words (remember
that a Python set holds only unique values):

>>> len(text6)/len(set(text6))
7.833333333333333

The preceding shows that each word in the script was used about eight times on aver‐
age. You can also put the text into a frequency distribution object to determine some
of the most common words and the frequencies for various words:

>>> from nltk import FreqDist
>>> fdist = FreqDist(text6)
>>> fdist.most_common(10)
[(':', 1197), ('.', 816), ('!', 801), (',', 731), ("'", 421), ('[', 3
19), (']', 312), ('the', 299), ('I', 255), ('ARTHUR', 225)]
>>> fdist["Grail"]
34

Because this is a screenplay, some artifacts of how it is written can pop up. For
instance, “ARTHUR” in all caps crops up frequently because it appears before each of
King Arthur’s lines in the script. In addition, a colon (:) appears before every single
line, acting as a separator between the name of the character and the character’s line.
Using this fact, we can see that there are 1,197 lines in the movie!

What we have called 2-grams in previous chapters, NLTK refers to as bigrams (from
time to time, you might also hear 3-grams referred to as trigrams, but I prefer 2-gram
and 3-gram rather than bigram or trigram). You can create, search, and list 2-grams
extremely easily:

144 | Chapter 9: Reading and Writing Natural Languages

>>> from nltk import bigrams
>>> bigrams = bigrams(text6)
>>> bigramsDist = FreqDist(bigrams)
>>> bigramsDist[('Sir', 'Robin')]
18

To search for the 2-grams “Sir Robin,” you need to break it into the tuple (“Sir”,
“Robin”), to match the way the 2-grams are represented in the frequency distribution.
There is also a trigrams module that works in the exact same way. For the general
case, you can also import the ngrams module:

>>> from nltk import ngrams
>>> fourgrams = ngrams(text6, 4)
>>> fourgramsDist = FreqDist(fourgrams)
>>> fourgramsDist[('father', 'smelt', 'of', 'elderberries')]
1

Here, the ngrams function is called to break a text object into n-grams of any size,
governed by the second parameter. In this case, you’re breaking the text into 4-grams.
Then, you can demonstrate that the phrase “father smelt of elderberries” occurs in the
screenplay exactly once.

Frequency distributions, text objects, and n-grams also can be iterated through and
operated on in a loop. The following prints out all 4-grams that begin with the word
“coconut,” for instance:

from nltk.book import *
from nltk import ngrams
fourgrams = ngrams(text6, 4)
for fourgram in fourgrams:
 if fourgram[0] == 'coconut':
 print(fourgram)

The NLTK library has a vast array of tools and objects designed to organize, count,
sort, and measure large swaths of text. Although we’ve barely scratched the surface of
their uses, most of these tools are well designed and operate rather intuitively for
someone familiar with Python.

Lexicographical Analysis with NLTK
So far, you’ve compared and categorized all the words you’ve encountered based only
on the value they represent by themselves. There is no differentiation between homo‐
nyms or the context in which the words are used.

Although some people might be tempted to dismiss homonyms as rarely problematic,
you might be surprised at how frequently they crop up. Most native English speakers
probably don’t often register that a word is a homonym, much less consider that it
might be confused for another word in a different context.

Natural Language Toolkit | 145

“He was objective in achieving his objective of writing an objective philosophy, pri‐
marily using verbs in the objective case” is easy for humans to parse but might make a
web scraper think the same word is being used four times and cause it to simply dis‐
card all the information about the meaning behind each word.

In addition to sussing out parts of speech, being able to distinguish a word being used
in one way versus another might be useful. For example, you might want to look for
company names made up of common English words, or analyze someone’s opinions
about a company. “ACME Products is good” and “ACME Products is not bad” can
have the same basic meaning, even if one sentence uses “good” and the other uses
“bad.”

Penn Treebank’s Tags
NLTK uses by default a popular system of tagging parts of speech developed by the
University of Pennsylvania’s Penn Treebank Project. Although some of the tags make
sense (e.g., CC is a coordinating conjunction), others can be confusing (e.g., RP is a
particle). Use the following as a reference for the tags referred to in this section:

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential “there”
FW Foreign word
IN Preposition, subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative

146 | Chapter 9: Reading and Writing Natural Languages

https://catalog.ldc.upenn.edu/ldc99t42

RBS Adverb, superlative
RP Particle
SYM Symbol
TO “to”
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-third-person singular present
VBZ Verb, third person singular present
WDT wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

In addition to measuring language, NLTK can assist in finding meaning in the words
based on context and its own sizable dictionaries. At a basic level, NLTK can identify
parts of speech:

>>> from nltk.book import *
>>> from nltk import word_tokenize
>>> text = word_tokenize('Strange women lying in ponds distributing swords'\
'is no basis for a system of government.')
>>> from nltk import pos_tag
>>> pos_tag(text)
[('Strange', 'NNP'), ('women', 'NNS'), ('lying', 'VBG'), ('in', 'IN')
, ('ponds', 'NNS'), ('distributing', 'VBG'), ('swords', 'NNS'), ('is'
, 'VBZ'), ('no', 'DT'), ('basis', 'NN'), ('for', 'IN'), ('a', 'DT'),
('system', 'NN'), ('of', 'IN'), ('government', 'NN'), ('.', '.')]

Each word is separated into a tuple containing the word and a tag identifying the part
of speech (see the preceding sidebar for more information about these tags).
Although this might seem like a straightforward lookup, the complexity needed to
perform the task correctly becomes apparent with the following example:

>>> text = word_tokenize('The dust was thick so he had to dust')
>>> pos_tag(text)
[('The', 'DT'), ('dust', 'NN'), ('was', 'VBD'), ('thick', 'JJ'), ('so
', 'RB'), ('he', 'PRP'), ('had', 'VBD'), ('to', 'TO'), ('dust', 'VB')]

Notice that the word “dust” is used twice in the sentence: once as a noun, and again as
a verb. NLTK identifies both usages correctly, based on their context in the sentence.
NLTK identifies parts of speech by using a context-free grammar defined by the

Natural Language Toolkit | 147

English language. Context-free grammars are sets of rules that define which things are
allowed to follow which other things in ordered lists. In this case, they define which
parts of speech are allowed to follow which other parts of speech. Whenever an
ambiguous word such as “dust” is encountered, the rules of the context-free grammar
are consulted, and an appropriate part of speech that follows the rules is selected.

Machine Learning and Machine Training
You can have NLTK generate brand-new context-free grammars when training it, for
example, on a foreign language. If you tag large sections of text by hand in the lan‐
guage by using the appropriate Penn Treebank Tags, you can feed them back into
NLTK and train it to properly tag other text it might encounter. This type of training
is a necessary component of any machine-learning activity that you will revisit in
Chapter 14, when training scrapers to recognize CAPTCHA characters.

What’s the point of knowing whether a word is a verb or a noun in a given context? It
might be neat in a computer science research lab, but how does it help with web
scraping?

A common problem in web scraping deals with search. You might be scraping text off
a site and want to be able to search it for instances of the word “google,” but only
when it’s being used as a verb, not a proper noun. Or you might be looking only for
instances of the company Google and don’t want to rely on people’s correct use of
capitalization in order to find those instances. Here, the pos_tag function can be
extremely useful:

from nltk import word_tokenize, sent_tokenize, pos_tag
sentences = sent_tokenize('Google is one of the best companies in the world.'\
' I constantly google myself to see what I\'m up to.')
nouns = ['NN', 'NNS', 'NNP', 'NNPS']

for sentence in sentences:
 if 'google' in sentence.lower():
 taggedWords = pos_tag(word_tokenize(sentence))
 for word in taggedWords:
 if word[0].lower() == 'google' and word[1] in nouns:
 print(sentence)

This prints only sentences that contain the word “google” (or “Google”) as some sort
of a noun, not a verb. Of course, you could be more specific and demand that only
instances of Google tagged with “NNP” (a proper noun) are printed, but even NLTK
makes mistakes at times, and it can be good to leave yourself a little wiggle room,
depending on the application.

Much of the ambiguity of natural language can be resolved using NLTK’s pos_tag
function. By searching text not just for instances of your target word or phrase but

148 | Chapter 9: Reading and Writing Natural Languages

instances of your target word or phrase plus its tag, you can greatly increase the accu‐
racy and effectiveness of your scraper’s searches.

Additional Resources
Processing, analyzing, and understanding natural language by machine is one of the
most difficult tasks in computer science, and countless volumes and research papers
have been written on the subject. I hope that the coverage here will inspire you to
think beyond conventional web scraping, or at least give some initial direction about
where to begin when undertaking a project that requires natural language analysis.

Many excellent resources are available on introductory language processing and
Python’s Natural Language Toolkit. In particular, Steven Bird, Ewan Klein, and
Edward Loper’s book Natural Language Processing with Python (O’Reilly) presents
both a comprehensive and introductory approach to the topic.

In addition, James Pustejovsky and Amber Stubbs’ Natural Language Annotations for
Machine Learning (O’Reilly) provides a slightly more advanced theoretical guide.
You’ll need knowledge of Python to implement the lessons; the topics covered work
perfectly with Python’s Natural Language Toolkit.

Additional Resources | 149

http://oreil.ly/1HYt3vV
http://oreil.ly/S3BudT
http://oreil.ly/S3BudT

CHAPTER 10

Crawling Through Forms and Logins

One of the first questions that comes up when you start to move beyond the basics of
web scraping is: “How do I access information behind a login screen?” The web is
increasingly moving toward interaction, social media, and user-generated content.
Forms and logins are an integral part of these types of sites and almost impossible to
avoid. Fortunately, they are also relatively easy to deal with.

Until this point, most of our interactions with web servers in our example scrapers
have consisted of using HTTP GET to request information. This chapter focuses on
the POST method, which pushes information to a web server for storage and analysis.

Forms basically give users a way to submit a POST request that the web server can
understand and use. Just as link tags on a website help users format GET requests,
HTML forms help them format POST requests. Of course, with a little bit of coding, it
is possible to create these requests ourselves and submit them with a scraper.

Python Requests Library
Although it’s possible to navigate web forms by using only the Python core libraries,
sometimes a little syntactic sugar makes life a lot sweeter. When you start to do more
than a basic GET request with urllib, looking outside the Python core libraries can be
helpful.

The Requests library is excellent at handling complicated HTTP requests, cookies,
headers, and much more. Here’s what Requests creator Kenneth Reitz has to say
about Python’s core tools:

151

http://www.python-requests.org

Python’s standard urllib2 module provides most of the HTTP capabilities you
need, but the API is thoroughly broken. It was built for a different time—and a
different web. It requires an enormous amount of work (even method overrides)
to perform the simplest of tasks.

Things shouldn’t be this way. Not in Python.

As with any Python library, the Requests library can be installed with any third-party
Python library manager, such as pip, or by downloading and installing the source file.

Submitting a Basic Form
Most web forms consist of a few HTML fields, a submit button, and an action page,
where the actual form processing is done. The HTML fields usually consist of text but
might also contain a file upload or other nontext content.

Most popular websites block access to their login forms in their robots.txt file (Chap‐
ter 18 discusses the legality of scraping such forms), so to play it safe I’ve constructed
a series of different types of forms and logins at pythonscraping.com that you can run
your web scrapers against. http://pythonscraping.com/pages/files/form.html is the loca‐
tion of the most basic of these forms.

The entirety of the HTML code for the form is as follows:

<form method="post" action="processing.php">
First name: <input type="text" name="firstname">

Last name: <input type="text" name="lastname">

<input type="submit" value="Submit">
</form>

A couple of things to notice here: first, the names of the two input fields are first
name and lastname. This is important. The names of these fields determine the names
of the variable parameters that will be POSTed to the server when the form is submit‐
ted. If you want to mimic the action that the form will take when POSTing your own
data, you need to make sure that your variable names match up.

The second thing to note is that the action of the form is at processing.php (the abso‐
lute path is http://pythonscraping.com/pages/files/processing.php). Any POST requests
to the form should be made on this page, not on the page that the form itself resides.
Remember: the purpose of HTML forms is only to help website visitors format
proper requests to send to the page that does the real action. Unless you are doing
research to format the request itself, you don’t need to bother much with the page
that the form can be found on.

Submitting a form with the Requests library can be done in four lines, including the
import and the instruction to print the content (yes, it’s that easy):

152 | Chapter 10: Crawling Through Forms and Logins

https://github.com/kennethreitz/requests/tarball/master
http://pythonscraping.com/pages/files/form.html
http://pythonscraping.com/pages/files/processing.php

import requests

params = {'firstname': 'Ryan', 'lastname': 'Mitchell'}
r = requests.post("http://pythonscraping.com/pages/files/processing.php", data=params)
print(r.text)

After the form is submitted, the script should return with the page’s content:

Hello there, Ryan Mitchell!

This script can be applied to many simple forms encountered on the internet. The
form to sign up for the O’Reilly Media newsletter, for example, looks like this:

<form action="http://post.oreilly.com/client/o/oreilly/forms/
 quicksignup.cgi" id="example_form2" method="POST">
 <input name="client_token" type="hidden" value="oreilly" />
 <input name="subscribe" type="hidden" value="optin" />
 <input name="success_url" type="hidden" value="http://oreilly.com/store/
 newsletter-thankyou.html" />
 <input name="error_url" type="hidden" value="http://oreilly.com/store/
 newsletter-signup-error.html" />
 <input name="topic_or_dod" type="hidden" value="1" />
 <input name="source" type="hidden" value="orm-home-t1-dotd" />
 <fieldset>
 <input class="email_address long" maxlength="200" name=
 "email_addr" size="25" type="text" value=
 "Enter your email here" />
 <button alt="Join" class="skinny" name="submit" onclick=
 "return addClickTracking('orm','ebook','rightrail','dod'
);" value="submit">Join</button>
 </fieldset>
</form>

Although it can look daunting at first, remember that in most cases (we’ll cover the
exceptions later), you’re looking for only two things:

• The name of the field (or fields) you want to submit with the data (in this case,
the name is email_addr)

• The action attribute of the form itself; that is, the page that the form posts to (in
this case, http://post.oreilly.com/client/o/oreilly/forms/quicksignup.cgi)

Just add in the required information and run it:

import requests
params = {'email_addr': 'ryan.e.mitchell@gmail.com'}
r = requests.post('http://post.oreilly.com/client/o/oreilly/forms/quicksignup.cgi',
 data=params)
print(r.text)

In this case, the website returned is another form to fill out, before you can make it
onto O’Reilly’s mailing list, but the same concept could be applied to that form as

Submitting a Basic Form | 153

http://post.oreilly.com/client/o/oreilly/forms/quicksignup.cgi

well. However, I request that you use your powers for good, and not spam the pub‐
lisher with invalid signups, if you want to try this at home.

Radio Buttons, Checkboxes, and Other Inputs
Obviously, not all web forms are a collection of text fields followed by a submit but‐
ton. Standard HTML contains a wide variety of possible form input fields: radio but‐
tons, checkboxes, and select boxes, to name a few. HTML5 adds sliders (range input
fields), email, dates, and more. With custom JavaScript fields, the possibilities are
endless, with color pickers, calendars, and whatever else the developers come up with
next.

Regardless of the seeming complexity of any sort of form field, you need to worry
about only two things: the name of the element and its value. The element’s name can
be easily determined by looking at the source code and finding the name attribute.
The value can sometimes be trickier, as it might be populated by JavaScript immedi‐
ately before form submission. Color pickers, as an example of a fairly exotic form
field, will likely have a value of something like #F03030.

If you’re unsure of the format of an input field’s value, you can use various tools to
track the GET and POST requests your browser is sending to and from sites. The best
and perhaps most obvious way to track GET requests, as mentioned before, is to look
at the URL of a site. If the URL is something like

http://domainname.com?thing1=foo&thing2=bar

you know that this corresponds to a form of this type

<form method="GET" action="someProcessor.php">
<input type="someCrazyInputType" name="thing1" value="foo" />
<input type="anotherCrazyInputType" name="thing2" value="bar" />
<input type="submit" value="Submit" />
</form>

which corresponds to the Python parameter object

{'thing1':'foo', 'thing2':'bar'}

If you’re stuck with a complicated-looking POST form, and you want to see exactly
which parameters your browser is sending to the server, the easiest way is to use your
browser’s inspector or developer tool to view them (see Figure 10-1).

154 | Chapter 10: Crawling Through Forms and Logins

Figure 10-1. The Form Data section, highlighted in a box, shows the POST parameters
“thing1” and “thing2” with their values “foo” and “bar”

The Chrome developer tool can be accessed via the menu by selecting View → Devel‐
oper → Developer Tools. It provides a list of all queries that your browser produces
while interacting with the current website and can be a good way to view the compo‐
sition of these queries in detail.

Submitting Files and Images
Although file uploads are common on the internet, file uploads are not something
often used in web scraping. It is possible, however, that you might want to write a test
for your own site that involves a file upload. At any rate, it’s a useful thing to know
how to do.

There is a practice file upload form at http://pythonscraping/pages/files/form2.html.
The form on the page has the following markup:

<form action="processing2.php" method="post" enctype="multipart/form-data">
 Submit a jpg, png, or gif: <input type="file" name="uploadFile">

 <input type="submit" value="Upload File">
</form>

Except for the <input> tag having the type attribute file, it looks essentially the same
as the text-based forms used in the previous examples. Fortunately, the way the forms
are used by the Python Requests library is also similar:

Submitting Files and Images | 155

http://pythonscraping/pages/files/form2.html

import requests

files = {'uploadFile': open('files/python.png', 'rb')}
r = requests.post('http://pythonscraping.com/pages/files/processing2.php',
 files=files)
print(r.text)

Note that in lieu of a simple string, the value submitted to the form field (with the
name uploadFile) is now a Python File object, as returned by the open function. In
this example, you’re submitting an image file, stored on your local machine, at the
path ../files/Python-logo.png, relative to where the Python script is being run from.

Yes, it’s really that easy!

Handling Logins and Cookies
So far, we’ve mostly discussed forms that allow you to submit information to a site or
let you view needed information on the page immediately after the form. How is this
different from a login form, which lets you exist in a permanent “logged-in” state
throughout your visit to the site?

Most modern websites use cookies to keep track of who is logged in and who is not.
After a site authenticates your login credentials, it stores them in your browser’s
cookie, which usually contains a server-generated token, time-out, and tracking
information. The site then uses this cookie as a sort of proof of authentication, which
is shown to each page you visit during your time on the site. Before the widespread
use of cookies in the mid-90s, keeping users securely authenticated and tracking them
was a huge problem for websites.

Although cookies are a great solution for web developers, they can be problematic for
web scrapers. You can submit a login form all day long, but if you don’t keep track of
the cookie the form sends back to you afterward, the next page you visit will act as
though you’ve never logged in at all.

I’ve created a simple login form at http://pythonscraping.com/pages/cookies/login.html
(the username can be anything, but the password must be “password”). This form is
processed at http://pythonscraping.com/pages/cookies/welcome.php, which contains a
link to the main page, http://pythonscraping.com/pages/cookies/profile.php.

If you attempt to access the welcome page or the profile page without logging in first,
you’ll get an error message and instructions to log in first before continuing. On the
profile page, a check is done on your browser’s cookies to see whether its cookie was
set on the login page.

Keeping track of cookies is easy with the Requests library:

import requests

156 | Chapter 10: Crawling Through Forms and Logins

http://pythonscraping.com/pages/cookies/login.html
http://pythonscraping.com/pages/cookies/welcome.php
http://pythonscraping.com/pages/cookies/profile.php

params = {'username': 'Ryan', 'password': 'password'}
r = requests.post('http://pythonscraping.com/pages/cookies/welcome.php', params)
print('Cookie is set to:')
print(r.cookies.get_dict())
print('Going to profile page...')
r = requests.get('http://pythonscraping.com/pages/cookies/profile.php',
 cookies=r.cookies)
print(r.text)

Here you’re sending the login parameters to the welcome page, which acts as the pro‐
cessor for the login form. You retrieve the cookies from the results of the last request,
print the result for verification, and then send them to the profile page by setting the
cookies argument.

This works well for simple situations, but what if you’re dealing with a more compli‐
cated site that frequently modifies cookies without warning, or if you’d rather not
even think about the cookies to begin with? The Requests session function works
perfectly in this case:

import requests

session = requests.Session()

params = {'username': 'username', 'password': 'password'}
s = session.post('http://pythonscraping.com/pages/cookies/welcome.php', params)
print('Cookie is set to:')
print(s.cookies.get_dict())
print('Going to profile page...')
s = session.get('http://pythonscraping.com/pages/cookies/profile.php')
print(s.text)

In this case, the session object (retrieved by calling requests.Session()) keeps track
of session information, such as cookies, headers, and even information about proto‐
cols you might be running on top of HTTP, such as HTTPAdapters.

Requests is a fantastic library, second perhaps only to Selenium (covered in Chap‐
ter 11) in the completeness of what it handles without programmers having to think
about it or write the code themselves. Although it might be tempting to sit back and
let the library do all the work, it’s extremely important to always be aware of what the
cookies look like and what they are controlling when writing web scrapers. It could
save many hours of painful debugging or figuring out why a website is behaving
strangely!

HTTP Basic Access Authentication
Before the advent of cookies, one popular way to handle logins was with HTTP basic
access authentication. You still see it from time to time, especially on high-security or
corporate sites, and with some APIs. I’ve created a page at http://pythonscraping.com/
pages/auth/login.php that has this type of authentication (Figure 10-2).

Handling Logins and Cookies | 157

http://pythonscraping.com/pages/auth/login.php
http://pythonscraping.com/pages/auth/login.php

Figure 10-2. The user must provide a username and password to get to the page pro‐
tected by basic access authentication

As usual with these examples, you can log in with any username, but the password
must be “password.”

The Requests package contains an auth module specifically designed to handle HTTP
authentication:

import requests
from requests.auth import AuthBase
from requests.auth import HTTPBasicAuth

auth = HTTPBasicAuth('ryan', 'password')
r = requests.post(url='http://pythonscraping.com/pages/auth/login.php', auth=
 auth)
print(r.text)

Although this appears to be a normal POST request, an HTTPBasicAuth object is
passed as the auth argument in the request. The resulting text will be the page pro‐
tected by the username and password (or an Access Denied page, if the request
failed).

Other Form Problems
Web forms are a hot point of entry for malicious bots. You don’t want bots creating
user accounts, taking up valuable server processing time, or submitting spam com‐
ments on a blog. For this reason, security features often are incorporated into HTML
forms on modern websites that might not be immediately apparent.

For help with CAPTCHAs, check out Chapter 13, which covers
image processing and text recognition in Python.

158 | Chapter 10: Crawling Through Forms and Logins

If you encounter a mysterious error, or the server is rejecting your form submission
for an unknown reason, check out Chapter 14, which covers honeypots, hidden
fields, and other security measures that websites take to protect their forms.

Other Form Problems | 159

CHAPTER 11

Scraping JavaScript

Client-side scripting languages are languages that are run in the browser itself, rather
than on a web server. The success of a client-side language depends on your browser’s
ability to interpret and execute the language correctly. (This is why it’s so easy to dis‐
able JavaScript in your browser.)

Partly because of the difficulty of getting every browser manufacturer to agree on a
standard, there are far fewer client-side languages than there are server-side lan‐
guages. This is a good thing when it comes to web scraping: the fewer languages there
are to deal with, the better.

For the most part, you’ll frequently encounter only two languages online: Action‐
Script (which is used by Flash applications) and JavaScript. ActionScript is used far
less frequently today than it was 10 years ago, and is often used to stream multimedia
files, as a platform for online games, or to display intro pages for websites that haven’t
gotten the hint that no one wants to watch an intro page. At any rate, because there
isn’t much demand for scraping Flash pages, this chapter instead focuses on the
client-side language that’s ubiquitous in modern web pages: JavaScript.

JavaScript is, by far, the most common and most well-supported client-side scripting
language on the web today. It can be used to collect information for user tracking,
submit forms without reloading the page, embed multimedia, and even power entire
online games. Even deceptively simple-looking pages can often contain multiple
pieces of JavaScript. You can find it embedded between script tags in the page’s
source code:

<script>
 alert("This creates a pop-up using JavaScript");
</script>

161

A Brief Introduction to JavaScript
Having at least some idea of what is going on in the code you are scraping can be
immensely helpful. With that in mind, it’s a good idea to familiarize yourself with
JavaScript.

JavaScript is a weakly typed language, with a syntax that is often compared to C++
and Java. Although certain elements of the syntax, such as operators, loops, and
arrays, might be similar, the weak typing and scriptlike nature of the language can
make it a difficult beast to deal with for some programmers.

For example, the following recursively calculates values in the Fibonacci sequence,
and prints them to the browser’s developer console:

<script>
function fibonacci(a, b){
 var nextNum = a + b;
 console.log(nextNum+" is in the Fibonacci sequence");
 if(nextNum < 100){
 fibonacci(b, nextNum);
 }
}
fibonacci(1, 1);
</script>

Notice that all variables are identified by preceding them with var. This is similar to
the $ sign in PHP, or the type declaration (int, String, List, etc.) in Java or C++.
Python is unusual in that it doesn’t have this sort of explicit variable declaration.

JavaScript is also extremely good at passing around functions just like variables:

<script>
var fibonacci = function() {
 var a = 1;
 var b = 1;
 return function () {
 var temp = b;
 b = a + b;
 a = temp;
 return b;
 }
}
var fibInstance = fibonacci();
console.log(fibInstance()+" is in the Fibonacci sequence");
console.log(fibInstance()+" is in the Fibonacci sequence");
console.log(fibInstance()+" is in the Fibonacci sequence");
</script>

This might seem daunting at first, but it becomes simple if you think in terms of
lambda expressions (covered in Chapter 2). The variable fibonacci is defined as a
function. The value of its function returns a function that prints increasingly large

162 | Chapter 11: Scraping JavaScript

1 Dave Methvin’s blog post, "The State of jQuery 2014,” January 13, 2014, contains a more detailed breakdown
of the statistics.

values in the Fibonacci sequence. Each time it is called, it returns the Fibonacci-
calculating function, which executes again and increases the values in the function.

Although it might seem convoluted at first glance, some problems, such as calculating
Fibonacci values, tend to lend themselves to patterns like this. Passing around func‐
tions as variables is also extremely useful when it comes to handling user actions and
callbacks, and it is worth getting comfortable with this style of programming when it
comes to reading JavaScript.

Common JavaScript Libraries
Although the core JavaScript language is important to know, you can’t get far on the
modern web without using at least one of the language’s many third-party libra‐
ries. You might see one or more of these commonly used libraries when looking at
page source code.

Executing JavaScript by using Python can be extremely time-consuming and pro‐
cessor intensive, especially if you’re doing it on a large scale. Knowing your way
around JavaScript and being able to parse it directly (without needing to execute it to
acquire the information) can be extremely useful and save you a lot of headaches.

jQuery
jQuery is an extremely common library, used by 70% of the most popular internet
sites and about 30% of the rest of the internet.1 A site using jQuery is readily identifia‐
ble because it will contain an import to jQuery somewhere in its code:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></
 script>

If jQuery is found on a site, you must be careful when scraping it. jQuery is adept at
dynamically creating HTML content that appears only after the JavaScript is exe‐
cuted. If you scrape the page’s content by using traditional methods, you will retrieve
only the preloaded page that appears before the JavaScript has created the content
(this scraping problem is covered in more detail in “Ajax and Dynamic HTML” on
page 165).

In addition, these pages are more likely to contain animations, interactive content,
and embedded media that might make scraping challenging.

A Brief Introduction to JavaScript | 163

http://bit.ly/2pry8aU/

2 W3Techs, “Usage Statistics and Market Share of Google Analytics for Websites”.

Google Analytics
Google Analytics is used by about 50% of all websites,2 making it perhaps the most
common JavaScript library and the most popular user tracking tool on the internet.
Both http://pythonscraping.com and http://www.oreilly.com/ use Google Analytics.

Determining whether a page is using Google Analytics is easy. It will have JavaScript
at the bottom, similar to the following (taken from the O’Reilly Media site):

<!-- Google Analytics -->
<script type="text/javascript">

var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-4591498-1']);
_gaq.push(['_setDomainName', 'oreilly.com']);
_gaq.push(['_addIgnoredRef', 'oreilly.com']);
_gaq.push(['_setSiteSpeedSampleRate', 50]);
_gaq.push(['_trackPageview']);

(function() { var ga = document.createElement('script'); ga.type =
'text/javascript'; ga.async = true; ga.src = ('https:' ==
document.location.protocol ? 'https://ssl' : 'http://www') +
'.google-analytics.com/ga.js'; var s =
document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(ga, s); })();

</script>

This script handles Google Analytics–specific cookies used to track your visit from
page to page. This can sometimes be a problem for web scrapers that are designed to
execute JavaScript and handle cookies (such as those that use Selenium, discussed
later in this chapter).

If a site uses Google Analytics or a similar web analytics system, and you do not want
the site to know that it’s being crawled or scraped, make sure to discard any cookies
used for analytics or discard cookies altogether.

Google Maps
If you’ve spent any time on the internet, you’ve almost certainly seen Google Maps
embedded in a website. Its API makes it extremely easy to embed maps with custom
information on any site.

If you’re scraping any sort of location data, understanding how Google Maps works
makes it easy to obtain well-formatted latitude/longitude coordinates and even
addresses. One of the most common ways to denote a location in Google Maps is
through a marker (also known as a pin).

164 | Chapter 11: Scraping JavaScript

http://w3techs.com/technologies/details/ta-googleanalytics/all/all
http://pythonscraping.com
http://www.oreilly.com/

Markers can be inserted into any Google Map by using code such as the following:

var marker = new google.maps.Marker({
 position: new google.maps.LatLng(-25.363882,131.044922),
 map: map,
 title: 'Some marker text'
 });

Python makes it easy to extract all instances of coordinates that occur between
google.maps.LatLng(and) to obtain a list of latitude/longitude coordinates.

Using Google’s Reverse Geocoding API, you can resolve these coordinate pairs to
addresses that are well formatted for storage and analysis.

Ajax and Dynamic HTML
Until now, the only way we’ve had of communicating with a web server is to send it
some sort of HTTP request via the retrieval of a new page. If you’ve ever submitted a
form or retrieved information from a server without reloading the page, you’ve likely
used a website that uses Ajax.

Contrary to what some believe, Ajax is not a language but a group of technologies
used to accomplish a certain task (much like web scraping, come to think of it). Ajax
stands for Asynchronous JavaScript and XML, and is used to send information to and
receive it from a web server without making a separate page request.

You should never say, “This website will be written in Ajax.” It
would be correct to say, “This form will use Ajax to communicate
with the web server.”

Like Ajax, dynamic HTML (DHTML) is a collection of technologies used for a com‐
mon purpose. DHTML is HTML code, CSS language, or both that changes as client-
side scripts change HTML elements on the page. A button might appear only after
the user moves the cursor, a background color might change on a click, or an Ajax
request might trigger a new block of content to load.

Note that although the word “dynamic” is generally associated with words like “mov‐
ing,” or “changing,” the presence of interactive HTML components, moving images,
or embedded media does not necessarily make a page DHTML, even though it might
look dynamic. In addition, some of the most boring, static-looking pages on the
internet can have DHTML processes running behind the scenes that depend on the
use of JavaScript to manipulate the HTML and CSS.

If you scrape many websites, you will soon run into a situation in which the content
you are viewing in your browser does not match the content you see in the source

Ajax and Dynamic HTML | 165

https://developers.google.com/maps/documentation/javascript/examples/geocoding-reverse

code you’re retrieving from the site. You might view the output of your scraper and
scratch your head, trying to figure out where everything you’re seeing on the exact
same page in your browser has disappeared to.

The web page might also have a loading page that appears to redirect you to another
page of results, but you’ll notice that the page’s URL never changes when this redirect
happens.

Both of these are caused by a failure of your scraper to execute the JavaScript that is
making the magic happen on the page. Without the JavaScript, the HTML just sort of
sits there, and the site might look very different from what it looks like in your web
browser, which executes the JavaScript without problem.

There are several giveaways that a page might be using Ajax or DHTML to change/
load the content, but in situations like this, there are only two solutions: scrape the
content directly from the JavaScript; or use Python packages capable of executing the
JavaScript itself, and scrape the website as you view it in your browser.

Executing JavaScript in Python with Selenium
Selenium is a powerful web scraping tool developed originally for website testing.
These days, it’s also used when the accurate portrayal of websites—as they appear in a
browser—is required. Selenium works by automating browsers to load the website,
retrieve the required data, and even take screenshots or assert that certain actions
happen on the website.

Selenium does not contain its own web browser; it requires integration with third-
party browsers in order to run. If you were to run Selenium with Firefox, for exam‐
ple, you would see a Firefox instance open up on your screen, navigate to the website,
and perform the actions you had specified in the code. Although this might be neat to
watch, I prefer my scripts to run quietly in the background and often use Chrome’s
headless mode in order to do that.

A headless browser loads websites into memory and executes JavaScript on the page,
but does it without any graphic rendering of the website to the user. By combining
Selenium with headless Chrome, you can run an extremely powerful web scraper that
handles cookies, JavaScript, headers, and everything else you need with ease, as if you
were using a rendered browser.

You can download the Selenium library from its website or use a third-party installer
such as pip to install it from the command line.

The Chrome webdriver can be downloaded from the ChromeDriver website. The
ChromeDriver is not a Python-specific library but an independent application used
to drive Chrome, so it does require a download to use and cannot be installed with
pip.

166 | Chapter 11: Scraping JavaScript

http://www.seleniumhq.org/
https://pypi.python.org/pypi/selenium
http://chromedriver.chromium.org/downloads

Although plenty of pages use Ajax to load data (notably Google), I’ve created a sam‐
ple page at http://pythonscraping.com/pages/javascript/ajaxDemo.html to run your
scrapers against. This page contains some sample text, hardcoded into the page’s
HTML, that is replaced by Ajax-generated content after a two-second delay. If you
were to scrape this page’s data by using traditional methods, you’d get only the load‐
ing page, without getting the data that you want.

The Selenium library is an API called on the object WebDriver. Note that this is a
Python object representing or acting as an interface to the WebDriver application you
downloaded. While the same term is used for both things (the Python object and the
application itself) it’s important to distinguish them conceptually.

The WebDriver object is a bit like a browser in that it can load websites, but it can
also be used like a BeautifulSoup object to find page elements, interact with elements
on the page (send text, click, etc.), and do other actions to drive the web scrapers.

The following code retrieves text behind an Ajax “wall” on the test page:

from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import time

chrome_options = Options()
chrome_options.add_argument('--headless')
driver = webdriver.Chrome(
 executable_path='drivers/chromedriver', options=chrome_options)
driver.get('http://pythonscraping.com/pages/javascript/ajaxDemo.html')
time.sleep(3)
print(driver.find_element_by_id('content').text)
driver.close()

Selenium Selectors
In previous chapters, you’ve selected page elements by using BeautifulSoup selectors,
such as find and find_all. Selenium uses an entirely new set of selectors to find an
element in a WebDriver’s DOM, although they have fairly straightforward names.

In the example, you used the selector find_element_by_id, although the following
other selectors would have worked as well:

driver.find_element_by_css_selector('#content')
driver.find_element_by_tag_name('div')

Of course, if you want to select multiple elements on the page, most of these element
selectors can return a Python list of elements by using elements (i.e., make it plural):

driver.find_elements_by_css_selector('#content')
driver.find_elements_by_css_selector('div')

Ajax and Dynamic HTML | 167

http://pythonscraping.com/pages/javascript/ajaxDemo.html

If you still want to use BeautifulSoup to parse this content, you can, by using Web‐
Driver’s page_source function, which returns the page’s source, as viewed by the
DOM at that current time, as a string:

pageSource = driver.page_source
bs = BeautifulSoup(pageSource, 'html.parser')
print(bs.find(id='content').get_text())

This creates a new Selenium WebDriver, using the Chrome library, which tells the
WebDriver to load a page and then pauses execution for three seconds before looking
at the page to retrieve the (hopefully loaded) content.

When you instantiate a new Chrome WebDriver in Python you can pass it a variety
of options through the Options object. In this case, we’re using the --headless option
in order to make the WebDriver run in the background:

chrome_options = Options()
chrome_options.add_argument('--headless')

In addition, the executable_path must point at the location of the downloaded Chrome‐
Driver application:

driver = webdriver.Chrome(
 executable_path='drivers/chromedriver', options=chrome_options)

If everything is configured correctly, the script should take a few seconds to run and
then result in the following text:

Here is some important text you want to retrieve!
A button to click!

Note that although the page itself contains an HTML button, Selenium’s .text func‐
tion retrieves the text value of the button in the same way that it retrieves all other
content on the page.

If the time.sleep pause is changed to one second instead of three, the text returned
changes to the original:

This is some content that will appear on the page while it's loading.
 You don't care about scraping this.

Although this solution works, it is somewhat inefficient, and implementing it could
cause problems on a large scale. Page-load times are inconsistent, depending on the
server load at any particular millisecond, and natural variations occur in connection
speed. Although this page load should take just over two seconds, you’re giving it an
entire three seconds to make sure that it loads completely. A more efficient solution
would repeatedly check for the existence of a particular element on a fully loaded
page and return only when that element exists.

168 | Chapter 11: Scraping JavaScript

This code uses the presence of the button with the ID loadedButton to declare that
the page has been fully loaded:

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

chrome_options = Options()
chrome_options.add_argument('--headless')
driver = webdriver.Chrome(
 executable_path='drivers/chromedriver', options=chrome_options)

driver.get('http://pythonscraping.com/pages/javascript/ajaxDemo.html')
try:
 element = WebDriverWait(driver, 10).until(
 EC.presence_of_element_located((By.ID, 'loadedButton')))
finally:
 print(driver.find_element_by_id('content').text)
 driver.close()

This script has several new imports, most notably WebDriverWait and expected_con
ditions, both of which are combined here to form what Selenium calls an implicit
wait.

An implicit wait differs from an explicit wait in that it waits for a certain state in the
DOM to occur before continuing, while an explicit wait defines a hardcoded time as
in the previous example, which has a wait of three seconds. In an implicit wait, the
triggering DOM state is defined by expected_condition (note that the import is cast
to EC here, a common convention used for brevity). Expected conditions can be many
things in the Selenium library, including the following:

• An alert box pops up.
• An element (such as a text box) is put into a selected state.
• The page’s title changes, or text is now displayed on the page or in a specific ele‐

ment.
• An element is now visible to the DOM, or an element disappears from the DOM.

Most of these expected conditions require that you specify an element to watch for in
the first place. Elements are specified using locators. Note that locators are not the
same as selectors (see “Selenium Selectors” on page 167 for more on selectors). A
locator is an abstract query language, using the By object, which can be used in a vari‐
ety of ways, including to make selectors.

In the following code, a locator is used to find elements with the ID loadedButton:

EC.presence_of_element_located((By.ID, 'loadedButton'))

Ajax and Dynamic HTML | 169

Locators can also be used to create selectors, using the find_element WebDriver
function:

print(driver.find_element(By.ID, 'content').text)

That is, of course, functionally equivalent to the line in the example code:

print(driver.find_element_by_id('content').text)

If you do not need to use a locator, don’t; it will save you an import. However, this
handy tool is used for a variety of applications and has a great degree of flexibility.

The following locator selection strategies can used with the By object:

ID

Used in the example; finds elements by their HTML id attribute.

CLASS_NAME

Used to find elements by their HTML class attribute. Why is this function
CLASS_NAME and not simply CLASS? Using the form object.CLASS would create
problems for Selenium’s Java library, where .class is a reserved method. To keep
the Selenium syntax consistent between languages, CLASS_NAME was used instead.

CSS_SELECTOR

Finds elements by their class, id, or tag name, using the #idName, .className,
tagName convention.

LINK_TEXT

Finds HTML <a> tags by the text they contain. For example, a link labeled “Next”
can be selected using (By.LINK_TEXT, 'Next').

PARTIAL_LINK_TEXT

Similar to LINK_TEXT, but matches on a partial string.

NAME

Finds HTML tags by their name attribute. This is handy for HTML forms.

TAG_NAME

Finds HTML tags by their tag name.

XPATH

Uses an XPath expression (the syntax of which is described in the following side‐
bar) to select matching elements.

170 | Chapter 11: Scraping JavaScript

XPath Syntax
XPath (short for XML Path) is a query language used for navigating and selecting
portions of an XML document. Founded by the W3C in 1999, it is occasionally used
in languages such as Python, Java, and C# when dealing with XML documents.

Although BeautifulSoup does not support XPath, many of the other libraries in this
book, such as Scrapy and Selenium, do. It can often be used in the same way as CSS
selectors (such as mytag#idname), although it is designed to work with more general‐
ized XML documents rather than HTML documents in particular.

The XPath syntax has four major concepts:

• Root nodes versus nonroot nodes
— /div will select the div node only if it is at the root of the document.
— //div selects all divs anywhere in the document.

• Attribute selection
— //@href selects any nodes with the attribute href.
— //a[@href='http://google.com'] selects all links in the document that

point to Google.
• Selection of nodes by position

— //a[3] selects the third link in the document.
— //table[last()] selects the last table in the document.
— //a[position() < 3] selects the first two links in the document.

• Asterisks (*) match any set of characters or nodes, and can be used in a variety of
situations
— //table/tr/* selects all children of tr tags in all tables (this is good for

selecting cells using both th and td tags).
— //div[@*] selects all div tags that have any attributes.

XPath syntax also has many advanced features. Over the years, it has developed into a
relatively complicated query language, with boolean logic, functions (such as posi
tion()), and a variety of operators not discussed here.

If you have an HTML or XML selection problem that cannot be addressed by the
functions shown here, see Microsoft’s XPath Syntax page.

Additional Selenium Webdrivers
In the previous section, the Chrome WebDriver (ChromeDriver) was used with Sele‐
nium. In most cases, there is little reason to have a browser pop up on the screen and
start scraping the web, so running this in headless mode can be convenient. However,

Ajax and Dynamic HTML | 171

https://msdn.microsoft.com/en-us/enus/library/ms256471

running in non-headless mode, and/or using different browser drivers can be good
practice for a number of reasons:

• Troubleshooting. If your code is running in headless mode and fails, the failure
may be difficult to diagnose without seeing the page in front of you.

• You can also pause the code execution and interact with the webpage, or use the
inspector tools while your scraper is running in order to diagnose problems.

• Tests may depend on a specific browser in order to run. A failure in one browser,
but not in another may point at a browser-specific problem.

Many groups, both official and unofficial, are involved in the creation and mainte‐
nance of Selenium webdrivers for every major browser today. The Selenium group
curates a collection of these webdrivers for easy reference.

firefox_driver = webdriver.Firefox('<path to Firefox webdriver>')
safari_driver = webdriver.Safari('<path to Safari webdriver>')
ie_driver = webdriver.Ie('<path to Internet Explorer webdriver>')

Handling Redirects
Client-side redirects are page redirects that are executed in your browser by Java‐
Script, rather than a redirect performed on the server, before the page content is sent.
It can sometimes be tricky to tell the difference when visiting a page in your web
browser. The redirect might happen so fast that you don’t notice any delay in loading
time and assume that a client-side redirect is actually a server-side redirect.

However, when scraping the web, the difference is obvious. A server-side redirect,
depending on how it is handled, can be easily traversed by Python’s urllib library
without any help from Selenium (for more information on doing this, see Chapter 3).
Client-side redirects won’t be handled at all unless something is executing the Java‐
Script.

Selenium is capable of handling these JavaScript redirects in the same way that it han‐
dles other JavaScript execution; however, the primary issue with these redirects is
when to stop page execution—that is, how to tell when a page is done redirecting. A
demo page at http://pythonscraping.com/pages/javascript/redirectDemo1.html gives an
example of this type of redirect, with a two-second pause.

You can detect that redirect in a clever way by “watching” an element in the DOM
when the page initially loads, and then repeatedly calling that element until Selenium
throws a StaleElementReferenceException; the element is no longer attached to the
page’s DOM and the site has redirected:

from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.remote.webelement import WebElement

172 | Chapter 11: Scraping JavaScript

http://www.seleniumhq.org/download/
http://pythonscraping.com/pages/javascript/redirectDemo1.html

from selenium.common.exceptions import StaleElementReferenceException
import time

def waitForLoad(driver):
 elem = driver.find_element_by_tag_name('html')
 count = 0
 while True:
 count += 1
 if count > 20:
 print('Timing out after 10 seconds and returning')
 return
 time.sleep(.5)
 try:
 elem == driver.find_element_by_tag_name('html')
 except StaleElementReferenceException:
 return
chrome_options = Options()
chrome_options.add_argument('--headless')
driver = webdriver.Chrome(
 executable_path='drivers/chromedriver', options=chrome_options)
driver.get('http://pythonscraping.com/pages/javascript/redirectDemo1.html')
waitForLoad(driver)
print(driver.page_source)
driver.close()

This script checks the page every half second, with a time-out of 10 seconds, although
the times used for the checking time and time-out can be easily adjusted up or down
as needed.

Alternatively, you can write a similar loop checking the current URL of the page until
the URL changes, or it matches a specific URL that you’re looking for.

Waiting for elements to appear and disappear is a common task in Selenium, and you
can also use the same WebDriverWait function used in the previous button loading
example. Here you’re providing it a time-out of 15 seconds and an XPath selector that
looks for the page body content to accomplish the same task:

from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException

chrome_options = Options()
chrome_options.add_argument('--headless')
driver = webdriver.Chrome(
 executable_path='drivers/chromedriver', options=chrome_options)

driver.get('http://pythonscraping.com/pages/javascript/redirectDemo1.html')
try:
 bodyElement = WebDriverWait(driver, 15).until(EC.presence_of_element_located(
 (By.XPATH, '//body[contains(text(),

Handling Redirects | 173

3 W3Techs, “Usage of JavaScript for Websites”.

 'This is the page you are looking for!)]')))
 print(bodyElement.text)
except TimeoutException:
 print('Did not find the element')

A Final Note on JavaScript
Most sites today on the internet use JavaScript.3 Fortunately for us, this use of Java‐
Script will not affect how you scrape the page, in many cases. The JavaScript may be
limited to powering their tracking tools, controlling a small section of the site, or
manipulating a drop-down menu, for example. In cases where it does impact how
you scrape the site, the JavaScript can be easily executed with tools like Selenium, in
order to produce the simple HTML page you’ve been learning to scrape in the first
part of this book.

Remember: Just because a site uses JavaScript does not mean that all the traditional
web scraping tools go out the window. The purpose of JavaScript is ultimately to pro‐
duce HTML and CSS code that can be rendered by the browser, or to communicate
with the server dynamically, through HTTP requests and responses. Once Selenium
is used, the HTML and CSS on the page can be read and parsed as you would with
any other website code, and HTTP requests and responses can be sent and handled
by your code via the techniques in earlier chapters, even without using Selenium.

In addition, JavaScript can even be a benefit to web scrapers, because its use as a
“browser-side content management system” may expose useful APIs to the outside
world, letting you obtain the data more directly. For more information on this, see
Chapter 12.

If you are still having difficulty with a particularly hairy JavaScript situation, you can
find information on Selenium and interacting directly with dynamic websites, includ‐
ing drag-and-drop interfaces, in Chapter 14.

174 | Chapter 11: Scraping JavaScript

http://w3techs.com/technologies/details/cp-javascript/all/all

CHAPTER 12

Crawling Through APIs

JavaScript has traditionally been the bane of web crawlers everywhere. At one point in
the ancient history of the internet, you could be guaranteed that the request you
made to the web server would fetch the same data that the user saw in their web
browser when they made that same request.

As JavaScript and Ajax content generation and loading become more ubiquitous, this
situation is becoming less common. In Chapter 11, you looked at one way of solving
this: using Selenium to automate a browser and fetch the data. This is an easy thing to
do. It works almost all of the time.

The problem is that, when you have a “hammer” as powerful and effective as Sele‐
nium, every web scraping problem starts to look a lot like a nail.

In this chapter, you’ll look at cutting through the JavaScript entirely (no need to exe‐
cute it or even load it!) and getting straight to the source of the data: the APIs that
generate it.

A Brief Introduction to APIs
Although countless books, talks, and guides have been written about the intricacies of
REST, GraphQL, JSON, and XML APIs, at their core they are based on a simple con‐
cept. An API defines a standardized syntax that allows one piece of software to com‐
municate with another piece of software, even though they might be written in
different languages or otherwise structured differently.

This section focuses on web APIs (in particular, APIs that allow a web server to com‐
municate to a browser) and uses the term API to refer specifically to that type. But
you may want to keep in mind that, in other contexts, API is also a generic term that
can be used to, say, allow a Java program to communicate with a Python program

175

1 This API resolves IP addresses to geographic locations and is one you’ll be using later in the chapter as well.

running on the same machine. An API does not always have to be “across the inter‐
net” and does not necessarily involve any web technologies.

Web APIs are most often used by developers who are using a well-advertised and
documented public service. For example, ESPN provides APIs for athlete informa‐
tion, game scores, and more. Google has dozens of APIs in its Developers section for
language translations, analytics, and geolocation.

The documentation for these APIs typically describes routes or endpoints, as URLs
that you can request, with variable parameters, either in the path of the URL or as GET
parameters.

For example, the following provides pathparam as a parameter in the route path:

http://example.com/the-api-route/pathparam

And this provides pathparam as the value for the parameter param1:

http://example.com/the-api-route?param1=pathparam

Both methods of passing variable data to the API are frequently used, although, like
many topics in computer science, philosophic debate has raged on when and where
variables should be passed through the path or through the parameters.

The response from the API is usually returned in a JSON or XML format. JSON is far
more popular in modern times than XML, but you may still see some XML respon‐
ses. Many APIs allow you to change the response type, usually with the use of another
parameter to define which type of response you would like.

Here’s an example of a JSON-formatted API response:

{"user":{"id": 123, "name": "Ryan Mitchell", "city": "Boston"}}

Here’s an example of an XML-formatted API response:

<user><id>123</id><name>Ryan Mitchell</name><city>Boston</city></user>

ip-api.com provides an easy-to-use and simple API that translates IP addresses to
actual physical addresses. You can try a simple API request by entering the following
in your browser:1

http://ip-api.com/json/50.78.253.58

This should produce a response like the following:

{"ip":"50.78.253.58","country_code":"US","country_name":"United States",
 "region_code":"MA","region_name":"Massachusetts","city":"Boston",
 "zip_code":"02116","time_zone":"America/New_York","latitude":42.3496,
 "longitude":-71.0746,"metro_code":506}

176 | Chapter 12: Crawling Through APIs

http://www.espn.com/apis/devcenter/docs/
https://console.developers.google.com
http://ip-api.com

2 In reality, many APIs use POST requests in lieu of PUT requests when updating information. Whether a new
entity is created or an old one is merely updated is often left to how the API request itself is structured. How‐
ever, it’s still good to know the difference, and you will often encounter PUT requests in commonly used APIs.

Notice that the request contains the parameter json in the path. You can request an
XML or CSV response by changing this parameter accordingly:

http://ip-api.com/xml/50.78.253.58
http://ip-api.com/csv/50.78.253.58

HTTP Methods and APIs
In the previous section, you looked at APIs making a GET request to the server for
information. There are four main ways (or methods) to request information from a
web server via HTTP:

• GET

• POST

• PUT

• DELETE

Technically, more than these four exist (such as HEAD, OPTIONS, and CONNECT), but
they are rarely used in APIs, and it is unlikely that you will ever see them. The vast
majority of APIs limit themselves to these four methods, or even a subset of these
four methods. It is common to see APIs that use only GET, or use only GET and POST.

GET is what you use when you visit a website through the address bar in your
browser. GET is the method you are using when you make a call to http://ip-api.com/
json/50.78.253.58. You can think of GET as saying, “Hey, web server, please retrieve/get
me this information.”

A GET request, by definition, makes no changes to the information in the server’s
database. Nothing is stored; nothing is modified. Information is only read.

POST is what you use when you fill out a form or submit information, presumably to a
backend script on the server. Every time you log into a website, you are making
a POST request with your username and (hopefully) encrypted password. If you are
making a POST request with an API, you are saying, “Please store this information in
your database.”

PUT is less commonly used when interacting with websites, but is used from time to
time in APIs. A PUT request is used to update an object or information. An API might
require a POST request to create a new user, for example, but it might need
a PUT request if you want to update that user’s email address.2

A Brief Introduction to APIs | 177

http://ip-api.com/json/50.78.253.58
http://ip-api.com/json/50.78.253.58

DELETE is used, as you might imagine, to delete an object. For instance, if you send
a DELETE request to http://myapi.com/user/23, it will delete the user with the ID
23. DELETE methods are not often encountered in public APIs, which are primarily
created to disseminate information or allow users to create or post informa‐
tion, rather than allow users to remove that information from their databases.

Unlike GET requests, POST, PUT, and DELETE requests allow you to send information in
the body of a request, in addition to the URL or route from which you are requesting
data.

Just like the response that you receive from the web server, this data in the body is
typically formatted as JSON or, less commonly, as XML, and the format of this data is
defined by the syntax of the API. For example, if you are using an API that creates
comments on blog posts, you might make a PUT request to

http://example.com/comments?post=123

with the following request body:

{"title": "Great post about APIs!", "body": "Very informative. Really helped me
out with a tricky technical challenge I was facing. Thanks for taking the time
to write such a detailed blog post about PUT requests!", "author": {"name": "Ryan
Mitchell", "website": "http://pythonscraping.com", "company": "O'Reilly Media"}}

Note that the ID of the blog post (123) is passed as a parameter in the URL, where the
content for the new comment you are making is passed in the body of the request.
Parameters and data may be passed in both the parameter and the body. Which
parameters are required and where they are passed is determined, again, by the syn‐
tax of the API.

More About API Responses
As you saw in the ip-api.com example at the beginning of the chapter, an important
feature of APIs is that they have well-formatted responses. The most common types
of response formatting are eXtensible Markup Language (XML) and JavaScript Object
Notation (JSON).

In recent years, JSON has become vastly more popular than XML for a couple of
major reasons. First, JSON files are generally smaller than well-designed XML files.
Compare, for example, the following XML data, which clocks in at 98 characters:

<user><firstname>Ryan</firstname><lastname>Mitchell</lastname><username>Kludgist
</username></user>

And now look at the same data in JSON:

{"user":{"firstname":"Ryan","lastname":"Mitchell","username":"Kludgist"}}

This is only 73 characters, or a whopping 36% smaller than the equivalent XML.

178 | Chapter 12: Crawling Through APIs

Of course, one could argue that the XML could be formatted like this:

<user firstname="ryan" lastname="mitchell" username="Kludgist"></user>

But this is considered bad practice because it doesn’t support deep nesting of data.
Regardless, it still requires 71 characters, about the same length as the equivalent
JSON.

Another reason JSON is quickly becoming more popular than XML is due to a shift
in web technologies. In the past, it was more common for a server-side script such as
PHP or .NET to be on the receiving end of an API. Nowadays, it is likely that a frame‐
work, such as Angular or Backbone, will be sending and receiving API calls. Server-
side technologies are somewhat agnostic as to the form in which their data comes.
But JavaScript libraries like Backbone find JSON easier to handle.

Although APIs are typically thought of as having either an XML response or a JSON
response, anything is possible. The response type of the API is limited only by the
imagination of the programmer who created it. CSV is another typical response out‐
put (as seen in the ip-api.com example). Some APIs may even be designed to generate
files. A request may be made to a server to generate an image with some particular
text overlaid on it, or request a particular XLSX or PDF file.

Some APIs return no response at all. For example, if you are making a request to a
server to create a new blog post comment, it may return only an HTTP response code
200, meaning “I posted the comment; everything is great!” Others may return a mini‐
mal response like this:

{"success": true}

If an error occurs, you may get a response like this:

{"error": {"message": "Something super bad happened"}}

Or if the API is not particularly well configured, you may get a nonparsable stack
trace or some plain English text. When making a request to an API, it’s usually wise
to first check that the response you get is actually JSON (or XML, or CSV, or what‐
ever format you’re expecting back).

Parsing JSON
In this chapter, you’ve looked at various types of APIs and how they function, and
you’ve looked at sample JSON responses from these APIs. Now let’s look at how to
parse and use this information.

At the beginning of the chapter you saw the example of the ip-api.com API, which
resolves IP addresses to physical addresses:

http://ip-api.com/json/50.78.253.58

Parsing JSON | 179

You can take the output of this request and use Python’s JSON-parsing functions to
decode it:

import json
from urllib.request import urlopen

def getCountry(ipAddress):
 response = urlopen('http://ip-api.com/json/'+ipAddress).read()
 .decode('utf-8')
 responseJson = json.loads(response)
 return responseJson.get('country_code')

print(getCountry('50.78.253.58'))

This prints the country code for the IP address 50.78.253.58.

The JSON parsing library used is part of Python’s core library. Just type in import
json at the top, and you’re all set! Unlike many languages that might parse JSON into
a special JSON object or JSON node, Python uses a more flexible approach and turns
JSON objects into dictionaries, JSON arrays into lists, JSON strings into strings, and
so forth. In this way, it is extremely easy to access and manipulate values stored in
JSON.

The following gives a quick demonstration of how Python’s JSON library handles the
values that might be encountered in a JSON string:

import json

jsonString = '{"arrayOfNums":[{"number":0},{"number":1},{"number":2}],
 "arrayOfFruits":[{"fruit":"apple"},{"fruit":"banana"},
 {"fruit":"pear"}]}'
jsonObj = json.loads(jsonString)

print(jsonObj.get('arrayOfNums'))
print(jsonObj.get('arrayOfNums')[1])
print(jsonObj.get('arrayOfNums')[1].get('number') +
 jsonObj.get('arrayOfNums')[2].get('number'))
print(jsonObj.get('arrayOfFruits')[2].get('fruit'))

Here is the output:

[{'number': 0}, {'number': 1}, {'number': 2}]
{'number': 1}
3
pear

Line 1 is a list of dictionary objects, line 2 is a dictionary object, line 3 is an integer
(the sum of the integers accessed in the dictionaries), and line 4 is a string.

180 | Chapter 12: Crawling Through APIs

Undocumented APIs
So far in this chapter, we’ve discussed only APIs that are documented. Their develop‐
ers intend them to be used by the public, publish information about them, and
assume that the APIs will be used by other developers. But the vast majority of APIs
don’t have any published documentation at all.

But why would you create an API without any public documentation? As mentioned
in the beginning of this chapter, it all has to do with JavaScript.

Traditionally, the web servers for dynamic websites had several tasks whenever a user
requested a page:

• Handle GET requests from users requesting a page of a website
• Retrieve the data from the database that appears on that page
• Format the data into the HTML template for the page
• Send that formatted HTML to the user

As JavaScript frameworks became more ubiquitous, many of the HTML creation
tasks handled by the server moved into the browser. The server might send a hardco‐
ded HTML template to the user’s browser, but separate Ajax requests would be made
to load the content and place it in the correct slots in that HTML template. All this
would happen on the browser/client side.

This was initially a problem for web scrapers. They were used to making a request for
an HTML page and getting back exactly that—an HTML page with all of the content
already in place. Instead, they now got an HTML template without any content.

Selenium was used to solve this problem. Now the programmer’s web scraper could
become the browser, request the HTML template, execute any JavaScript, allow all the
data to load in its place, and only then scrape the page for data. Because the HTML
was all loaded, it was essentially reduced to a previously solved problem—the prob‐
lem of parsing and formatting existing HTML.

However, because the entire content management system (that used to reside only in
the web server) had essentially moved to the browser client, even the simplest web‐
sites could balloon into several megabytes of content and a dozen HTTP requests.

In addition, when Selenium is used, all of the “extras” that the user doesn’t necessarily
care about are loaded. Calls to tracking programs, loading sidebar ads, calls to track‐
ing programs for the sidebar ads. Images, CSS, third-party font data—all of it needs
to be loaded. This may seem great when you’re using a browser to browse the web,
but if you’re writing a web scraper that needs to move fast, collect specific data, and
place as little of a load on the web server as possible, you can be loading a hundred
times more data than you need.

Undocumented APIs | 181

But there’s a silver lining to all of this JavaScript, Ajax, and web modernization:
because servers are no longer formatting the data into HTML, they often act as thin
wrappers around the database itself. This thin wrapper simply extracts data from the
database, and returns it to the page via an API.

Of course, these APIs aren’t meant to be used by anyone or anything besides the web‐
page itself, and so developers leave them undocumented and assume (or hope) that
no one will notice them. But they do exist.

The New York Times website, for example, loads all of its search results via JSON. If
you visit the link

https://query.nytimes.com/search/sitesearch/#/python

this will reveal recent news articles for the search term “python.” If you scrape this
page using urllib or the Requests library, you won’t find any search results. These are
loaded separately via an API call:

https://query.nytimes.com/svc/add/v1/sitesearch.json
?q=python&spotlight=true&facet=true

If you were to load this page with Selenium, you would be making about 100 requests
and transferring 600–700 kB of data with each search. Using the API directly, you
make only one request and transfer approximately only the 60 kb of nicely formatted
data that you need.

Finding Undocumented APIs
You’ve used the Chrome inspector in previous chapters to examine the contents of an
HTML page, but now you’ll use it for a slightly different purpose: to examine the
requests and responses of the calls that are used to construct that page.

To do this, open the Chrome inspector window and click the Network tab, shown in
Figure 12-1.

182 | Chapter 12: Crawling Through APIs

http://nytimes.com

Figure 12-1. The Chrome network inspector tool provides a view into all calls your
browser is making and receiving

Note that you need to open this window before the page loads. It does not track net‐
work calls while it’s closed.

While the page is loading, you’ll see a line appear in real time whenever your browser
makes a call back to the web server for additional information to render the page.
This may include an API call.

Finding undocumented APIs can take a little detective work (to take the detective
work out of this, see “Finding and Documenting APIs Automatically” on page 184),
especially with larger sites with lots of network calls. Generally, though, you’ll know it
when you see it.

API calls tend to have several features that are useful for locating them in the list of
network calls:

• They often have JSON or XML in them. You can filter the list of requests by using
the search/filter field.

• With GET requests, the URL will contain the parameter values passed to them.
This will be useful if, for example, you’re looking for an API call that returns the
results of a search or is loading data for a specific page. Simply filter the results
with the search term you used, page ID, or other identifying information.

• They will usually be of the type XHR.

APIs may not always be obvious, especially in large sites with lots of features that may
make hundreds of calls while loading a single page. However, spotting the metaphori‐
cal needle in the haystack becomes much easier with a little practice.

Undocumented APIs | 183

Documenting Undocumented APIs
After you’ve found an API call being made, it’s often useful to document it to some
extent, especially if your scrapers will rely heavily on the call. You may want to load
several pages on the website, filtering for the target API call in the inspector console
network tab. By doing this, you can see how the call changes from page to page, and
identify the fields that it accepts and returns.

Every API call can be identified and documented by paying attention to the following
fields:

• HTTP method used
• Inputs

— Path parameters
— Headers (including cookies)
— Body content (for PUT and POST calls)

• Outputs
— Response headers (including cookies set)
— Response body type
— Response body fields

Finding and Documenting APIs Automatically
The work of locating and documenting APIs can seem somewhat tedious and algo‐
rithmic. This is mostly because it is. While some websites may attempt to obfuscate
how the browser is getting its data, which makes the task a little trickier, finding and
documenting APIs is mostly a programmatic task.

I’ve created a GitHub repository at https://github.com/REMitchell/apiscraper that
attempts to take some of the grunt work out of this task.

It uses Selenium, ChromeDriver, and a library called BrowserMob Proxy to load
pages, crawl pages within a domain, analyze the network traffic that occurs during
page load, and organize these requests into readable API calls.

Several moving parts are required to get this project running. The first, is the soft‐
ware itself.

Clone the apiscraper GitHub project. The cloned project should contain the following
files:

184 | Chapter 12: Crawling Through APIs

https://github.com/REMitchell/apiscraper
https://github.com/REMitchell/apiscraper

apicall.py
Contains attributes that define an API call (path, parameters, etc.) as well as logic
to decide whether two API calls are the same.

apiFinder.py
Main crawling class. Used by webservice.py and consoleservice.py to kick off the
process of finding APIs.

browser.py
Has only three methods—initialize, get, and close—but encompasses rela‐
tively complicated functionality to tie together the BrowserMob Proxy server and
Selenium. Scrolls through pages to ensure that the entire page is loaded, saves
HTTP Archive (HAR) files to the appropriate location for processing.

consoleservice.py
Handles commands from the console and kicks off the main APIFinder class.

harParser.py
Parses HAR files and extracts API calls.

html_template.html
Provides a template to display API calls in the browser.

README.md
Git readme page.

Download the BrowserMob Proxy binary files from https://bmp.lightbody.net/ and
place the extracted files in the apiscraper project directory.

As of this writing, the current version of BrowserMob Proxy is 2.1.4, so this script will
assume that the binary files are at browsermob-proxy-2.1.4/bin/browsermob-proxy rel‐
ative to the root project directory. If this is not the case, you can provide a different
directory at runtime, or (perhaps easier) modify the code in apiFinder.py.

Download ChromeDriver and place this in the apiscraper project directory.

You’ll need to have the following Python libraries installed:

• tldextract

• selenium

• browsermob-proxy

When this setup is done, you’re ready to start collecting API calls. Typing

$ python consoleservice.py -h

will present you with a list of options to get started:

Undocumented APIs | 185

https://bmp.lightbody.net/
https://sites.google.com/a/chromium.org/chromedriver/downloads

usage: consoleservice.py [-h] [-u [U]] [-d [D]] [-s [S]] [-c [C]] [-i [I]]
 [--p]

optional arguments:

 -h, --help show this help message and exit

 -u [U] Target URL. If not provided, target directory will be scanned
 for har files.

 -d [D] Target directory (default is "hars"). If URL is provided,
 directory will store har files. If URL is not provided,
 directory will be scanned.

 -s [S] Search term

 -c [C] File containing JSON formatted cookies to set in driver (with
 target URL only)

 -i [I] Count of pages to crawl (with target URL only)

 --p Flag, remove unnecessary parameters (may dramatically increase
 runtime)

You can search for API calls made on a single page for a single search term. For
example, you can search a page on http://target.com for an API returning product
data to populate the product page:

$ python consoleservice.py -u https://www.target.com/p/rogue-one-a-star-wars-\
story-blu-ray-dvd-digital-3-disc/-/A-52030319 -s "Rogue One: A Star Wars Story"

This returns information, including a URL, for an API that returns product data for
that page:

URL: https://redsky.target.com/v2/pdp/tcin/52030319
METHOD: GET
AVG RESPONSE SIZE: 34834
SEARCH TERM CONTEXT: c":"786936852318","product_description":{"title":
"Rogue One: A Star Wars Story (Blu-ray + DVD + Digital) 3 Disc",
"long_description":...

Using the -i flag, multiple pages can be crawled (this defaults to just one page), start‐
ing from the provided URL. This can be useful for searching all network traffic for
particular keywords, or, by omitting the -s search term flag, collecting all API traffic
that occurs when loading each page.

All collected data is stored as a HAR file, in the default directory /har in the project
root, although this directory can be changed with the -d flag.

If no URL is provided, you can also pass in a directory of precollected HAR files for
searching and analysis.

186 | Chapter 12: Crawling Through APIs

http://target.com

This project provides many other features, including the following:

• Unnecessary parameter removal (removing GET or POST parameters that do not
influence the return value of the API call)

• Multiple API output formats (command line, HTML, JSON)
• Distinguishing between path parameters that indicate a separate API route, and

path parameters that act merely as GET params for the same API route

Further development is also planned as I, and others, continue to use it for web scrap‐
ing and API collection.

Combining APIs with Other Data Sources
Although the raison d'être of many modern web applications is to take existing data
and format it in a more appealing way, I would argue that this isn’t an interesting
thing to do in most instances. If you’re using an API as your only data source, the best
you can do is merely copy someone else’s database that already exists, and which is,
essentially, already published. What can be far more interesting is to take two or more
data sources and combine them in a novel way, or use an API as a tool to look at scra‐
ped data from a new perspective.

Let’s look at one example of how data from APIs can be used in conjunction with web
scraping to see which parts of the world contribute the most to Wikipedia.

If you’ve spent much time on Wikipedia, you’ve likely come across an article’s revi‐
sion history page, which displays a list of recent edits. If users are logged into Wikipe‐
dia when they make the edit, their username is displayed. If they are not logged in,
their IP address is recorded, as shown in Figure 12-2.

Figure 12-2. The IP address of an anonymous editor on the revision history page for
Wikipedia’s Python entry

Combining APIs with Other Data Sources | 187

The IP address provided on the history page is 121.97.110.145. By using the ip-
api.com API, that IP address is from Quezon, Philippines as of this writing (IP
addresses can occasionally shift geographically).

This information isn’t all that interesting on its own, but what if you could gather
many points of geographic data about Wikipedia edits and where they occur? A few
years ago, I did just that and used Google’s GeoChart library to create an interesting
chart that shows where edits on the English-language Wikipedia, along with the
Wikipedias written in other languages, originate from (Figure 12-3).

Figure 12-3. Visualization of Wikipedia edits created using Google’s GeoChart library

Creating a basic script that crawls Wikipedia, looks for revision history pages, and
then looks for IP addresses on those revision history pages isn’t difficult. Using modi‐
fied code from Chapter 3, the following script does just that:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import json
import datetime
import random
import re

random.seed(datetime.datetime.now())
def getLinks(articleUrl):
 html = urlopen('http://en.wikipedia.org{}'.format(articleUrl))
 bs = BeautifulSoup(html, 'html.parser')
 return bs.find('div', {'id':'bodyContent'}).find_all('a',
 href=re.compile('^(/wiki/)((?!:).)*$'))

def getHistoryIPs(pageUrl):

188 | Chapter 12: Crawling Through APIs

https://developers.google.com/chart/interactive/docs/gallery/geochart
http://www.pythonscraping.com/pages/wikipedia.html
http://www.pythonscraping.com/pages/wikipedia.html

 #Format of revision history pages is:
 #http://en.wikipedia.org/w/index.php?title=Title_in_URL&action=history
 pageUrl = pageUrl.replace('/wiki/', '')
 historyUrl = 'http://en.wikipedia.org/w/index.php?title={}&action=history'
 .format(pageUrl)
 print('history url is: {}'.format(historyUrl))
 html = urlopen(historyUrl)
 bs = BeautifulSoup(html, 'html.parser')
 #finds only the links with class "mw-anonuserlink" which has IP addresses
 #instead of usernames
 ipAddresses = bs.find_all('a', {'class':'mw-anonuserlink'})
 addressList = set()
 for ipAddress in ipAddresses:
 addressList.add(ipAddress.get_text())
 return addressList

links = getLinks('/wiki/Python_(programming_language)')

while(len(links) > 0):
 for link in links:
 print('-'*20)
 historyIPs = getHistoryIPs(link.attrs['href'])
 for historyIP in historyIPs:
 print(historyIP)

 newLink = links[random.randint(0, len(links)-1)].attrs['href']
 links = getLinks(newLink)

This program uses two main functions: getLinks (which was also used in Chapter 3),
and the new getHistoryIPs, which searches for the contents of all links with the
class mw-anonuserlink (indicating an anonymous user with an IP address, rather
than a username) and returns it as a set.

This code also uses a somewhat arbitrary (yet effective for the purposes of this exam‐
ple) search pattern to look for articles from which to retrieve revision histories. It
starts by retrieving the histories of all Wikipedia articles linked to by the starting page
(in this case, the article on the Python programming language). Afterward, it ran‐
domly selects a new starting page, and retrieves all revision history pages of articles
linked to by that page. It will continue until it hits a page with no links.

Now that you have code that retrieves IP addresses as a string, you can combine this
with the getCountry function from the previous section in order to resolve these IP
addresses to countries. You’ll modify getCountry slightly, in order to account for
invalid or malformed IP addresses that will result in a 404 Not Found error:

def getCountry(ipAddress):
 try:
 response = urlopen(
 'http://ip-api.com/json/{}'.format(ipAddress)).read().decode('utf-8')

Combining APIs with Other Data Sources | 189

 except HTTPError:
 return None
 responseJson = json.loads(response)
 return responseJson.get('country_code')

links = getLinks('/wiki/Python_(programming_language)')

while(len(links) > 0):
 for link in links:
 print('-'*20)
 historyIPs = getHistoryIPs(link.attrs["href"])
 for historyIP in historyIPs:
 country = getCountry(historyIP)
 if country is not None:
 print('{} is from {}'.format(historyIP, country))

 newLink = links[random.randint(0, len(links)-1)].attrs['href']
 links = getLinks(newLink)

Here’s the sample output:

history url is: http://en.wikipedia.org/w/index.php?title=Programming_
paradigm&action=history
68.183.108.13 is from US
86.155.0.186 is from GB
188.55.200.254 is from SA
108.221.18.208 is from US
141.117.232.168 is from CA
76.105.209.39 is from US
182.184.123.106 is from PK
212.219.47.52 is from GB
72.27.184.57 is from JM
49.147.183.43 is from PH
209.197.41.132 is from US
174.66.150.151 is from US

More About APIs
This chapter has shown a few ways that modern APIs are commonly used to access
data on the web, and how those APIs can be used to build faster and more powerful
web scrapers. If you’re looking to build APIs instead of just using them, or if you want
to learn more about the theory of their construction and syntax, I recommend REST‐
ful Web APIs by Leonard Richardson, Mike Amundsen, and Sam Ruby (O’Reilly).
This book provides a strong overview of the theory and practice of using APIs on the
web. In addition, Mike Amundsen has a fascinating video series, Designing APIs for
the Web (O’Reilly), that teaches you how to create your own APIs—a useful thing to
know if you decide to make your scraped data available to the public in a convenient
format.

190 | Chapter 12: Crawling Through APIs

http://bit.ly/RESTful-Web-APIs
http://bit.ly/RESTful-Web-APIs
http://oreil.ly/1GOXNhE
http://oreil.ly/1GOXNhE

While some might bemoan the ubiquity of JavaScript and dynamic websites, making
traditional “grab and parse the HTML page” practices outdated, I, for one, welcome
our new robot overlords. As dynamic websites rely less on HTML pages for human
consumption and more on strictly formatted JSON files for HTML consumption, this
provides a boon for everyone trying to get clean, well-formatted data.

The web is no longer a collection of HTML pages with occasional multimedia and
CSS adornments. It’s a collection of hundreds of file types and data formats, whizzing
hundreds at a time to form the pages that you consume through your browser. The
real trick is often to look beyond the page in front of you and grab the data at its
source.

More About APIs | 191

CHAPTER 13

Image Processing and Text Recognition

From Google’s self-driving cars to vending machines that recognize counterfeit cur‐
rency, machine vision is a huge field with far-reaching goals and implications. This
chapter focuses on one small aspect of the field: text recognition—specifically, how to
recognize and use text-based images found online by using a variety of Python libra‐
ries.

Using an image in lieu of text is a common technique when you don’t want text to be
found and read by bots. This is often seen on contact forms when an email address is
partially or completely rendered as an image. Depending on how skillfully it is done,
it might not even be noticeable to human viewers, but bots have a difficult time read‐
ing these images, and the technique is enough to stop most spammers from acquiring
your email address.

CAPTCHAs, of course, take advantage of the fact that users can read security images
but most bots can’t. Some CAPTCHAs are more difficult than others, an issue we’ll
tackle later in this book.

But CAPTCHAs aren’t the only place on the web where scrapers need image-to-text
translation assistance. Even in this day and age, many documents are scanned from
hard copies and put on the web, making these documents inaccessible as far as much
of the internet is concerned, although they are “hiding in plain sight.” Without image-
to-text capabilities, the only way to make these documents accessible is for a human
to type them up by hand—and nobody has time for that.

Translating images into text is called optical character recognition, or OCR. A few
major libraries can perform OCR, and many other libraries support them or are built
on top of them. This system of libraries can get fairly complicated at times, so I rec‐
ommend you read the next section before attempting any of the exercises in this
chapter.

193

Overview of Libraries
Python is a fantastic language for image processing and reading, image-based
machine-learning, and even image creation. Although many libraries can be used for
image processing, we will focus on two: Pillow and Tesseract.

These two libraries make for a powerful complementary duo when it comes to pro‐
cessing and doing OCR on images from around the web. Pillow performs the first
pass, cleaning and filtering images, and Tesseract attempts to match the shapes found
in those images to its library of known text.

This chapter covers their installation and basic usage, along with several examples of
this library duo working together. We’ll also cover some advanced Tesseract training,
so that you can train Tesseract to OCR additional fonts and languages (or even
CAPTCHAs) that you might encounter on the web.

Pillow
Although Pillow might not be the most fully featured image-processing library, it has
all the features you are likely to need and then some—unless you plan to rewrite Pho‐
toshop in Python, in which case you’re reading the wrong book! Pillow also has the
advantage of being one of the better-documented third-party libraries and is
extremely easy to use out of the box.

Forked off the Python Imaging Library (PIL) for Python 2.x, Pillow adds support for
Python 3.x. Like its predecessor, Pillow allows you to easily import and manipulate
images with a variety of filters, masks, and even pixel-specific transformations:

from PIL import Image, ImageFilter

kitten = Image.open('kitten.jpg')
blurryKitten = kitten.filter(ImageFilter.GaussianBlur)
blurryKitten.save('kitten_blurred.jpg')
blurryKitten.show()

In the preceding example, the image kitten.jpg will open in your default image viewer
with a blur added to it and will also be saved in its blurrier state as kitten_blurred.jpg
in the same directory.

You will use Pillow to perform preprocessing on images to make them more machine
readable, but as mentioned before, you can do many other things with the library
aside from these simple filter applications. For more information, check out the Pil‐
low documentation.

194 | Chapter 13: Image Processing and Text Recognition

http://pillow.readthedocs.org/
http://pillow.readthedocs.org/

Tesseract
Tesseract is an OCR library. Sponsored by Google (a company obviously well-known
for its OCR and machine-learning technologies), Tesseract is widely regarded to be
the best, most accurate, open source OCR system available.

In addition to being accurate, it is also extremely flexible. It can be trained to recog‐
nize any number of fonts (as long as those fonts are relatively consistent within them‐
selves, as you will see soon). It also can be expanded to recognize any Unicode
character.

This chapter uses both the command-line program Tesseract along with its third-
party Python wrapper pytesseract. Both will be explicitly named as one of these two,
so know that when you see “Tesseract,” I’m referring to the command-line software,
and when you see “pytesseract,” I’m specifically referring to its third-party Python
wrapper.

Installing Tesseract
For Windows users, there is a convenient executable installer. As of this writing, the
current version is 3.02, although newer versions should be fine as well.

Linux users can install Tesseract with apt-get:

$ sudo apt-get tesseract-ocr

Installing Tesseract on a Mac is slightly more complicated, although it can be done
easily with many third-party installers such as Homebrew, which was used in Chap‐
ter 6 to install MySQL. For example, you can install Homebrew and use it to install
Tesseract in two lines:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/ \
 install/master/install)"
$ brew install tesseract

Tesseract also can be installed from the source, on the project’s download page.

To use some features of Tesseract, such as training the software to recognize new
characters later in this section, you also need to set a new environment variable,
$TESSDATA_PREFIX, to let it know where data files are stored.

You can do this in most Linux systems and on macOS as follows:

$ export TESSDATA_PREFIX=/usr/local/share/

Note that /usr/local/share/ is the default data location for Tesseract, although you
should check to make sure that this is the case for your own installation.

Similarly, on Windows, you can use the following to use the environment variable:

setx TESSDATA_PREFIX C:\Program Files\Tesseract OCR\

Overview of Libraries | 195

https://code.google.com/p/tesseract-ocr/downloads/list
http://brew.sh/
https://code.google.com/p/tesseract-ocr/downloads/list

pytesseract
After Tesseract is installed, you’re ready to install the Python wrapper library, pytes‐
seract, which uses your existing Tesseract installation to read image files and output
strings and objects that can be used in Python scripts.

Code Samples Require pytesseract 0.1.9

Be aware that some significant changes occurred (with contribu‐
tions from the author) between versions 0.1.8 and 0.1.9 of pytesser‐
act. This section covers features found only in version 0.1.9 of the
library. Please be sure you are installing the correct version when
running code samples in this chapter.

As usual, you can install pytesseract via pip, or by downloading from the pytesseract
project page and running:

$ python setup.py install

Pytesseract can be used in conjunction with PIL to read text from images:
from PIL import Image
import pytesseract

print(pytesseract.image_to_string(Image.open('files/test.png')))

If your Tesseract library is installed in your Python path, you can point pytesseract to
the location by including this line:

pytesseract.pytesseract.tesseract_cmd = '/path/to/tesseract'

Pytesseract has several useful features in addition to returning the OCR results of an
image as in the code sample above. It can estimate box files (pixel locations for the
boundaries of each character):

print(pytesseract.image_to_boxes(Image.open('files/test.png')))

It can also return a complete output of all data, such as confidence scores, page and
line numbers, box data, as well as other information:

print(pytesseract.image_to_data(Image.open('files/test.png')))

The default output for these last two files is as space- or tab-delimited string files, but
you can also get output as dictionaries or (if decoding in UTF-8 isn’t sufficient) byte
strings:

from PIL import Image
import pytesseract
from pytesseract import Output

print(pytesseract.image_to_data(Image.open('files/test.png'),
 output_type=Output.DICT))

196 | Chapter 13: Image Processing and Text Recognition

https://pypi.python.org/pypi/pytesseract
https://pypi.python.org/pypi/pytesseract

print(pytesseract.image_to_string(Image.open('files/test.png'),
 output_type=Output.BYTES))

This chapter uses a combination of the pytesseract library, as well as command-line
Tesseract, and triggering Tesseract from Python via the subprocess library. Although
the pytesseract library is useful and convenient, there are some Tesseract functions it
cannot do, so it’s good to be familiar with all methods.

NumPy
Although NumPy is not required for straightforward OCR, you will need it if you
want to train Tesseract to recognize additional character sets or fonts introduced later
in this chapter. You will also be using it for simple math tasks (such as weighted aver‐
ages) in some of the code samples later.

NumPy is a powerful library used for linear algebra and other large-scale math appli‐
cations. NumPy works well with Tesseract because of its ability to mathematically
represent and manipulate images as large arrays of pixels.

NumPy can be installed using any third-party Python installer such as pip, or by
downloading the package and installing with $ python setup.py install.

Even if you don’t plan on running any of the code samples that use it, I highly recom‐
mend installing it or adding it to your Python arsenal. It serves to round out Python’s
built-in math library and has many useful features, particularly for operations with
lists of numbers.

By convention, NumPy is imported as np and can be used as follows:

import numpy as np

numbers = [100, 102, 98, 97, 103]
print(np.std(numbers))
print(np.mean(numbers))

This example prints the standard deviation and mean of the set of numbers provided
to it.

Processing Well-Formatted Text
With any luck, most of the text that you’ll need to process will be relatively clean and
well formatted. Well-formatted text generally meets several requirements, although
the line between what is “messy” and what is “well formatted” can be subjective.

In general, well-formatted text:

• is written in one standard font (excluding handwriting fonts, cursive fonts, or
excessively decorative fonts);

Processing Well-Formatted Text | 197

https://pypi.python.org/pypi/numpy

• if copied or photographed, has extremely crisp lines, with no copying artifacts or
dark spots;

• is well aligned, without slanted letters; and
• does not run off the image, nor is there cut-off text or margins on the edges of

the image

Some of these things can be fixed in preprocessing. For instance, images can be con‐
verted to grayscale, brightness and contrast can be adjusted, and the image can be
cropped and rotated as needed. However, some fundamental limitations might
require more-extensive training. See “Reading CAPTCHAs and Training Tesseract”
on page 206.

Figure 13-1 is an ideal example of well-formatted text.

Figure 13-1. Sample text saved as a .tiff file, to be read by Tesseract

You can run Tesseract from the command line to read this file and write the results to
a text file:

$ tesseract text.tif textoutput | cat textoutput.txt

The output is a line of information about the Tesseract library to indicate that it is
running, followed by the contents of the newly created textoutput.txt:

Tesseract Open Source OCR Engine v3.02.02 with Leptonica
This is some text, written in Arial, that will be read by
Tesseract. Here are some symbols: !@#$%"&‘()

You can see that the results are mostly accurate, although the symbols ^ and * were
interpreted as a double quote and single quote, respectively. On the whole, though,
this lets you read the text fairly comfortably.

After blurring the image text, creating some JPG compression artifacts, and adding a
slight background gradient, the results get much worse (see Figure 13-2).

Figure 13-2. Unfortunately, many of the documents you will encounter on the internet
will look more like this than the previous example

198 | Chapter 13: Image Processing and Text Recognition

Tesseract is not able to deal with this image nearly as well mainly because of the back‐
ground gradient and produces the following output:

This is some text, written In Arlal, that"
Tesseract. Here are some symbols: _

Notice that the text is cut off as soon as the background gradient makes the text more
difficult to distinguish, and that the last character from each line is wrong, as Tesser‐
act tries futilely to make sense of it. In addition, the JPG artifacts and blurring make it
difficult for Tesseract to distinguish between a lowercase i and an uppercase I and the
number 1.

This is where using a Python script to clean your images first comes in handy. Using
the Pillow library, you can create a threshold filter to get rid of the gray in the back‐
ground, bring out the text, and make the image clearer for Tesseract to read.

In addition, instead of using Tesseract from the command line, you can use the pytes‐
seract library to run the Tesseract commands and read the resulting file for:

from PIL import Image
import pytesseract

def cleanFile(filePath, newFilePath):
 image = Image.open(filePath)

 #Set a threshold value for the image, and save
 image = image.point(lambda x: 0 if x < 143 else 255)
 image.save(newFilePath)
 return image

image = cleanFile('files/textBad.png', 'files/textCleaned.png')

#call tesseract to do OCR on the newly created image
print(pytesseract.image_to_string(image))

The resulting image, automatically created as textCleaned.png, is shown in
Figure 13-3.

Figure 13-3. This image was created by passing the previous “messy” version of the image
through a threshold filter

Apart from some barely legible or missing punctuation, the text is readable, at least to
us. Tesseract gives it its best shot:

Processing Well-Formatted Text | 199

This us some text‘ written In Anal, that will be read by
Tesseract Here are some symbols: !@#$%"&'()

The periods and commas, being extremely small, are the first victims of this image
wrangling and nearly disappear, both from our view and Tesseract’s. There’s also the
unfortunate misinterpretation of “Arial” as “Anal,” the result of Tesseract interpreting
the r and the i as the single character n.

Still, it’s an improvement over the previous version, in which nearly half of the text
was cut off.

Tesseract’s greatest weakness seems to be backgrounds with varying brightness. Tes‐
seract’s algorithms attempt to adjust the contrast of the image automatically before
reading the text, but you can probably get better results doing this yourself with a tool
like the Pillow library.

Images you should definitely fix before submitting to Tesseract are those that are til‐
ted, have large areas of nontext, or have other problems.

Adjusting Images Automatically
In the previous example, the value 143 was chosen experimentally as the “ideal”
threshold to adjust all image pixels to black or white, in order for Tesseract to read
the image. But what if you have many images, all with slightly different grayscale
problems and aren’t reasonably able to go and adjust all of them by hand?

One way to find the best solution (or at least, a pretty good one) is to run Tesseract
against a range of images adjusted to different values and algorithmically choose the
one with the best result, as measured by some combination of the number of charac‐
ters and/or strings Tesseract is able to read, and the “confidence” that it reads those
characters with.

Which algorithm you use, exactly, may vary slightly from application to application,
but this is one example of iterating through image-processing thresholds in order to
find the “best” setting:

import pytesseract
from pytesseract import Output
from PIL import Image
import numpy as np

def cleanFile(filePath, threshold):
 image = Image.open(filePath)
 #Set a threshold value for the image, and save
 image = image.point(lambda x: 0 if x < threshold else 255)
 return image

def getConfidence(image):
 data = pytesseract.image_to_data(image, output_type=Output.DICT)

200 | Chapter 13: Image Processing and Text Recognition

 text = data['text']
 confidences = []
 numChars = []

 for i in range(len(text)):
 if data['conf'][i] > -1:
 confidences.append(data['conf'][i])
 numChars.append(len(text[i]))

 return np.average(confidences, weights=numChars), sum(numChars)

filePath = 'files/textBad.png'

start = 80
step = 5
end = 200

for threshold in range(start, end, step):
 image = cleanFile(filePath, threshold)
 scores = getConfidence(image)
 print("threshold: " + str(threshold) + ", confidence: "
 + str(scores[0]) + " numChars " + str(scores[1]))

This script has two functions:

cleanFile

Takes in an original “bad” file and a threshold variable to run the PIL threshold
tool with. It processes the file and returns the PIL image object.

getConfidence

Takes in the cleaned PIL image object and runs it through Tesseract. It calculates
the average confidence of each recognized string (weighted by the number of
characters in that string), as well as the number of recognized characters.

By varying the threshold value and getting the confidence and number of recognized
characters at each value, you get the output:

threshold: 80, confidence: 61.8333333333 numChars 18
threshold: 85, confidence: 64.9130434783 numChars 23
threshold: 90, confidence: 62.2564102564 numChars 39
threshold: 95, confidence: 64.5135135135 numChars 37
threshold: 100, confidence: 60.7878787879 numChars 66
threshold: 105, confidence: 61.9078947368 numChars 76
threshold: 110, confidence: 64.6329113924 numChars 79
threshold: 115, confidence: 69.7397260274 numChars 73
threshold: 120, confidence: 72.9078947368 numChars 76
threshold: 125, confidence: 73.582278481 numChars 79
threshold: 130, confidence: 75.6708860759 numChars 79
threshold: 135, confidence: 76.8292682927 numChars 82
threshold: 140, confidence: 72.1686746988 numChars 83
threshold: 145, confidence: 75.5662650602 numChars 83
threshold: 150, confidence: 77.5443037975 numChars 79

Processing Well-Formatted Text | 201

threshold: 155, confidence: 79.1066666667 numChars 75
threshold: 160, confidence: 78.4666666667 numChars 75
threshold: 165, confidence: 80.1428571429 numChars 70
threshold: 170, confidence: 78.4285714286 numChars 70
threshold: 175, confidence: 76.3731343284 numChars 67
threshold: 180, confidence: 76.7575757576 numChars 66
threshold: 185, confidence: 79.4920634921 numChars 63
threshold: 190, confidence: 76.0793650794 numChars 63
threshold: 195, confidence: 70.6153846154 numChars 65

There is a clear trend among both the average confidence in the result, as well as the
number of characters recognized. Both tend to peak around a threshold of 145, which
is close to the manually found “ideal” result of 143.

Thresholds of both 140 and 145 give the maximum number of recognized characters
(83), but a threshold of 145 gives the highest confidence for those found characters,
so you may want to go with that result and return the text that was recognized at that
threshold as the “best guess” for what text the image contains.

Of course, simply finding the “most” characters does not necessarily mean that all of
those characters are real. At some thresholds, Tesseract could split single characters
into multiple ones, or interpret random noise in the image as a text character that
doesn’t actually exist. In this case, you may want to rely more heavily on the average
confidence of each score.

For example, if you find results that read (in part) as follows:

threshold: 145, confidence: 75.5662650602 numChars 83
threshold: 150, confidence: 97.1234567890 numChars 82

it would probably be a no-brainer to go with the result that gives you over a 20%
increase in confidence, with only a one-character loss, and assume that the result with
a threshold of 145 was simply incorrect, or perhaps split a character or found some‐
thing that wasn’t there.

This is the part where some upfront experimentation to perfect your threshold selec‐
tion algorithm may come in handy. For instance, you may want to select the score for
which the product of the confidence and the number of characters is maximized (in
this case, 145 still wins with a product of 6272, and in our imaginary example, the
threshold 150 would win with a product of 7964) or some other metric.

Note that this type of selection algorithm also works with arbitrary PIL tool values
besides just threshold. Also, you can use it to select two or more values by varying
the values of each and selecting the best resulting score in a similar way.

Obviously, this type of selection algorithm is computationally intensive. You’re run‐
ning both PIL and Tesseract many times on every single image, whereas if you know
the “ideal” threshold values ahead of time, you have to run them only once.

202 | Chapter 13: Image Processing and Text Recognition

1 When it comes to processing text it hasn’t been trained on, Tesseract fares much better with large-format edi‐
tions of books, especially if the images are small. The next section covers how to train Tesseract on different
fonts, which can help it read much smaller font sizes, including previews for non-large-print book editions!

Keep in mind that, as you start to work with the images that you’re processing, you
may start to notice patterns in the “ideal” values that are found. Instead of trying
every threshold from 80 to 200, you may realistically need to try only thresholds from
130 to 180.

You may even take another approach and choose thresholds that are, say, 20 apart on
the first pass, and then use a greedy algorithm to hone in on the best result by
decreasing your step size for thresholds between the “best” solutions found in the
previous iteration. This may also work best when you’re dealing with multiple vari‐
ables.

Scraping Text from Images on Websites
Using Tesseract to read text from an image on your hard drive might not seem all that
exciting, but it can be a powerful tool when used with a web scraper. Images can inad‐
vertently obfuscate text on websites (as with the JPG copy of a menu on a local res‐
taurant site), but they can also purposefully hide the text, as I’ll show in the next
example.

Although Amazon’s robots.txt file allows scraping of the site’s product pages, book
previews typically don’t get picked up by passing bots. That’s because the book pre‐
views are loaded via user-triggered Ajax scripts, and the images are carefully hidden
under layers of divs. To the average site visitor, they probably look more like Flash
presentations than image files. Of course, even if you could get to the images, there’s
the not-so-small matter of reading them as text.

The following script accomplishes just this feat: it navigates to the large-print edition1

of Tolstoy’s The Death of Ivan Ilyich, opens the reader, collects image URLs, and then
systematically downloads, reads, and prints the text from each one.

Note that this code depends on a live Amazon listing as well as several architectural
features of the Amazon website to run correctly. If this listing goes down or is
replaced, please fill free to substitute the URL of another book with a Preview feature
(I find that large-print, sans-serif fonts work well).

Because this is relatively complex code that draws on multiple concepts from previ‐
ous chapters, I’ve added comments throughout to make it a little easier to understand
what’s going on:

import time
from urllib.request import urlretrieve
from PIL import Image

Processing Well-Formatted Text | 203

import tesseract
from selenium import webdriver

def getImageText(imageUrl):
 urlretrieve(image, 'page.jpg')
 p = subprocess.Popen(['tesseract', 'page.jpg', 'page'],
 stdout=subprocess.PIPE,stderr=subprocess.PIPE)
 p.wait()
 f = open('page.txt', 'r')
 print(f.read())

#Create new Selenium driver
driver = webdriver.Chrome(executable_path='<Path to chromedriver>')

driver.get('https://www.amazon.com/Death-Ivan-Ilyich'\
 '-Nikolayevich-Tolstoy/dp/1427027277')
time.sleep(2)

#Click on the book preview button
driver.find_element_by_id('imgBlkFront').click()
imageList = []

#Wait for the page to load
time.sleep(5)

while 'pointer' in driver.find_element_by_id(
 'sitbReaderRightPageTurner').get_attribute('style'):
 # While the right arrow is available for clicking, turn through pages
 driver.find_element_by_id('sitbReaderRightPageTurner').click()
 time.sleep(2)
 # Get any new pages that have loaded (multiple pages can load at once,
 # but duplicates will not be added to a set)
 pages = driver.find_elements_by_xpath('//div[@class=\'pageImage\']/div/img')
 if not len(pages):
 print('No pages found')
 for page in pages:
 image = page.get_attribute('src')
 print('Found image: {}'.format(image))
 if image not in imageList:
 imageList.append(image)
 getImageText(image)

driver.quit()

Although this script can, in theory, be run with any type of Selenium webdriver, I’ve
found that it currently works most reliably with Chrome.

As you have experienced with the Tesseract reader before, this prints many long pas‐
sages of the book mostly legibly, as seen in the preview of the first chapter:

Chapter I

204 | Chapter 13: Image Processing and Text Recognition

During an Interval In the Melvmskl trial In the large
building of the Law Courts the members and public
prosecutor met in [van Egorowch Shebek‘s private
room, where the conversation turned on the celebrated
Krasovski case. Fedor Vasillevich warmly maintained
that it was not subject to their jurisdiction, Ivan
Egorovich maintained the contrary, while Peter
ivanowch, not havmg entered into the discussmn at
the start, took no part in it but looked through the
Gazette which had Just been handed in.

“Gentlemen,” he said, “Ivan Ilych has died!"

However, many of the words have obvious errors, such as “Melvmsl” instead of the
name “Melvinski” and “discussmn” instead of “discussion.” Many errors of this type
can be fixed by making guesses based on a dictionary word list (perhaps with addi‐
tions based on relevant proper nouns like “Melvinski”).

Occasionally an error may span an entire word, such as on page 3 of the text:

it is he who is dead and not 1.

In this case the word “I” is replaced by the character “1.” A Markov chain analysis
might be useful here, in addition to a word dictionary. If any part of the text contains
an extremely uncommon phrase (“and not 1”), it might be assumed that the text was
actually the more common phrase (“and not I”).

Of course, it helps that these character substitutions follow predictable patterns: “vi”
becomes “w,” and “I” becomes “1.” If these substitutions occur frequently in your text,
you might create a list of them that can be used to “try” new words and phrases,
selecting the solution that makes the most sense. An approach might be to substitute
frequently confused characters, and use a solution that matches a word in a dictio‐
nary, or is a recognized (or most common) n-gram.

If you do take this approach, be sure to read Chapter 9 for more information about
working with text and natural language processing.

Although the text in this example is a common sans-serif font and Tesseract should
be able to recognize it with relative ease, sometimes a little retraining helps improve
the accuracy as well. The next section discusses another approach to solving the
problem of mangled text with a little upfront time investment.

By providing Tesseract with a large collection of text images with known values, Tes‐
seract can be “taught” to recognize the same font in the future with far greater preci‐
sion and accuracy, even despite occasional background and positioning problems in
the text.

Processing Well-Formatted Text | 205

2 See https://gizmodo.com/google-has-finally-killed-the-captcha-1793190374.

Reading CAPTCHAs and Training Tesseract
Although the word CAPTCHA is familiar to most, far fewer people know what it
stands for: Completely Automated Public Turing Test to Tell Computers and Humans
Apart. Its unwieldy acronym hints at its rather unwieldy role in obstructing otherwise
perfectly usable web interfaces, as both humans and nonhuman robots often struggle
to solve CAPTCHA tests.

The Turing test was first described by Alan Turing in his 1950 paper, “Computing
Machinery and Intelligence.” In the paper, he described a setup in which a human
being could communicate with both humans and artificial intelligence programs
through a computer terminal. If the human was unable to distinguish the humans
from the AI programs during a casual conversation, the AI programs would be con‐
sidered to have passed the Turing test, and the artificial intelligence, Turing reasoned,
would be genuinely “thinking” for all intents and purposes.

It’s ironic that in the last 60 years we’ve gone from using these tests to test machines
to using them to test ourselves, with mixed results. Google recently killed off their
notoriously difficult reCAPTCHA due in large part to its tendency to block legiti‐
mate website users.2

Most other CAPTCHAs are somewhat easier. Drupal, a popular PHP-based content
management system, for example, has a popular CAPTCHA module that can gener‐
ate CAPTCHA images of varying difficulty. The default image looks like Figure 13-4.

Figure 13-4. An example of the default text CAPTCHA for Drupal’s CAPTCHA project

206 | Chapter 13: Image Processing and Text Recognition

https://gizmodo.com/google-has-finally-killed-the-captcha-1793190374
https://www.drupal.org/project/captcha

What makes this CAPTCHA so easy for both humans and machines to read, com‐
pared to other CAPTCHAs?

• Characters do not overlap each other, nor do they cross into each other’s space
horizontally. That is, it is possible to draw a neat rectangle around each character
without overlapping any other character.

• There are no background images, lines, or other distracting garbage that could
confuse an OCR program.

• It is not obvious from this image, but there are few variations on the font that the
CAPTCHA uses. It alternates between a clean sans-serif font (as seen in the char‐
acters “4” and “M”) and a handwriting-style font (as seen in the characters “m,”
“C,” and “3”).

• There is high contrast between the white background and the dark-colored char‐
acters.

This CAPTCHA does throw a few curves, though, that make it challenging for OCR
programs to read:

• Both letters and numbers are used, increasing the number of potential characters.
• The randomized tilt of the letters might confuse OCR software, but remains easy

for humans to read.
• The relatively strange handwriting font presents particular challenges, with extra

lines in the “C” and “3” and an unusually small lowercase “m” requiring extra
training for computers to get the hang of.

When you run Tesseract over this image using the command

$ tesseract captchaExample.png output

you get this output.txt file:

4N\,,,C<3

It got the 4, C, and 3 right, but it’s clearly not going to be able to fill out a CAPTCHA-
protected field any time soon.

Training Tesseract
In order to train Tesseract to recognize writing, whether it’s an obscure and difficult-
to-read font or a CAPTCHA, you need to give it multiple examples of each character.

This is the part where you might want to queue up a good podcast or movie because
it’s going to be a couple of hours of fairly boring work. The first step is to download
multiple examples of your CAPTCHA into a single directory. The number of exam‐
ples you compile will depend on the complexity of the CAPTCHA; I used 100 sample

Reading CAPTCHAs and Training Tesseract | 207

files (a total of 500 characters, or about 8 examples per symbol, on average) for my
CAPTCHA training, and that seemed to work fairly well.

I recommend naming the image after the CAPTCHA solution it
represents (e.g., 4MmC3.jpg). I’ve found that this helps to do quick
error-checking across large numbers of files at once; you can view
all files as thumbnails and compare the image against its image
name easily. This helps greatly in error checking in subsequent
steps, as well.

The second step is to tell Tesseract exactly what each character is and where it is in
the image. This involves creating box files, one for every CAPTCHA image. A box file
looks like this:

4 15 26 33 55 0
M 38 13 67 45 0
m 79 15 101 26 0
C 111 33 136 60 0
3 147 17 176 45 0

The first symbol is the character represented, the next four numbers represent coor‐
dinates for a rectangular box outlining the image, and the last number is a “page
number” used for training with multipage documents (0 for us).

Obviously, these box files are not fun to create by hand, but a variety of tools can help
you out. I like the online tool Tesseract OCR Chopper because it requires no installa‐
tion or additional libraries, runs on any machine that has a browser, and is relatively
easy to use. Upload the image, click the Add button at the bottom if you need addi‐
tional boxes, adjust the size of the boxes if necessary, and copy and paste your
new .box file text into a new file.

Box files must be saved in plain text, with the .box file extension. As with the image
files, it’s handy to name the box files by the CAPTCHA solutions they represent (e.g.,
4MmC3.box). Again, this makes it easy to double-check the contents of the .box file
text against the name of the file, and then again against the image file it is paired with
if you sort all the files in your data directory by their filenames.

Again, you’ll need to create about 100 of these files to ensure that you have enough
data. Also, Tesseract does occasionally discard files as being unreadable, so you might
want some buffer room on top of that. If you find that your OCR results aren’t quite
as good as you’d like, or Tesseract is stumbling over certain characters, it’s a good
debugging step to create additional training data and try again.

After creating a data folder full of .box files and image files, copy this data into a
backup folder before doing any further manipulation on it. Although running train‐
ing scripts over the data is unlikely to delete anything, it’s better safe than sorry when

208 | Chapter 13: Image Processing and Text Recognition

https://pp19dd.com/tesseract-ocr-chopper/

hours’ worth of work put into .box file creation is involved. Additionally, it’s good to
be able to scrap a messy directory full of compiled data and try again.

There are half a dozen steps to performing all the data analysis and creating the train‐
ing files required for Tesseract. There are tools that do this for you given correspond‐
ing source image and .box files, but none at the moment for Tesseract 3.02,
unfortunately.

I’ve written a solution in Python that operates over a file containing both image and
box files and creates all necessary training files automatically.

The initial settings and steps that this program takes can be seen in the __init__ and
runAll methods of the class:

 def __init__(self):
 languageName = 'eng'
 fontName = 'captchaFont'
 directory = '<path to images>'

 def runAll(self):
 self.createFontFile()
 self.cleanImages()
 self.renameFiles()
 self.extractUnicode()
 self.runShapeClustering()
 self.runMfTraining()
 self.runCnTraining()
 self.createTessData()

The only three variables you’ll need to set here are fairly straightforward:

languageName

The three-letter language code that Tesseract uses to understand which language
it’s looking at. In most cases, you’ll probably want to use eng for English.

fontName

The name for your chosen font. This can be anything, but must be a single word
without spaces.

directory

The directory containing all your image and box files. I recommend you make
this an absolute path, but if you use a relative path, it will need to be relative to
where you are running the Python code from. If it is absolute, you can run the
code from anywhere on your machine.

Let’s take a look at the individual functions used.

createFontFile creates a required file, font_properties, that lets Tesseract know about
the new font you are creating:

Reading CAPTCHAs and Training Tesseract | 209

https://github.com/REMitchell/tesseract-trainer

captchaFont 0 0 0 0 0

This file consists of the name of the font, followed by 1s and 0s indicating whether
italic, bold, or other versions of the font should be considered. (Training fonts with
these properties is an interesting exercise, but unfortunately outside the scope of this
book.)

cleanImages creates higher-contrast versions of all image files found, converts them
to grayscale, and performs other operations that make the image files easier to read
by OCR programs. If you are dealing with CAPTCHA images with visual garbage
that might be easy to filter out in postprocessing, here would be the place to add that
additional processing.

renameFiles renames all your .box files and their corresponding image files with the
names required by Tesseract (the file numbers here are sequential digits to keep mul‐
tiple files separate):

• <languageName>.<fontName>.exp<fileNumber>.box
• <languageName>.<fontName>.exp<fileNumber>.tiff

extractUnicode looks at all of the created .box files and determines the total set of
characters available to be trained. The resulting Unicode file will tell you how many
different characters you’ve found, and could be a good way to quickly see if you’re
missing anything.

The next three functions, runShapeClustering, runMfTraining, and runCtTrain
ing, create the files shapetable, pfftable, and normproto, respectively. These all
provide information about the geometry and shape of each character, as well as pro‐
vide statistical information that Tesseract uses to calculate the probability that a given
character is one type or another.

Finally, Tesseract renames each of the compiled data folders to be prepended by the
required language name (e.g., shapetable is renamed to eng.shapetable) and compiles
all of those files into the final training data file eng.traineddata.

The only step you have to perform manually is move the created eng.traineddata file
to your tessdata root folder by using the following commands on Linux and Mac:

$cp /path/to/data/eng.traineddata $TESSDATA_PREFIX/tessdata

Following these steps, you should have no problem solving CAPTCHAs of the type
that Tesseract has now been trained for. Now when you ask Tesseract to read the
example image, you get the correct response:

$ tesseract captchaExample.png output|cat output.txt
4MmC3

210 | Chapter 13: Image Processing and Text Recognition

Success! A significant improvement over the previous interpretation of the image as
4N\,,,C<3.

This is just a quick overview of the full power of Tesseract’s font training and recogni‐
tion capabilities. If you are interested in extensively training Tesseract, perhaps start‐
ing your own library of CAPTCHA training files, or sharing new font recognition
capabilities with the world, I recommend checking out the documentation.

Retrieving CAPTCHAs and Submitting Solutions
Many popular content management systems are frequently spammed with registra‐
tions by bots that are preprogrammed with the well-known location of these user reg‐
istration pages. On http://pythonscraping.com, for instance, even a CAPTCHA
(admittedly, weak) does little to put a damper on the influx of registrations.

So how do these bots do it? We’ve successfully solved CAPTCHAs in images sitting
around on our hard drive, but how do we make a fully functioning bot? This section
ties together many techniques covered in previous chapters. If you haven’t already,
you should at least skim Chapter 10.

Most image-based CAPTCHAs have several properties:

• They are dynamically generated images, created by a server-side program. They
might have image sources that do not look like traditional images, such as , but can be downloaded and manipu‐
lated like any other image.

• The solution to the image is stored in a server-side database.
• Many CAPTCHAs time out if you take too long to solve them. This usually isn’t a

problem for bots, but queuing CAPTCHA solutions for later use, or other practi‐
ces that may delay the time between when the CAPTCHA was requested and
when the solution is submitted, may not be successful.

The general approach to this is to download the CAPTCHA image file to your hard
drive, clean it, use Tesseract to parse the image, and return the solution under the
appropriate form parameter.

I’ve created a page at http://pythonscraping.com/humans-only with a CAPTCHA-
protected comment form for the purpose of writing a bot to defeat. This bot uses the
command line Tesseract library, rather than the pytesseract wrapper (although it
could easily use either) and looks like the following:

from urllib.request import urlretrieve
from urllib.request import urlopen
from bs4 import BeautifulSoup
import subprocess
import requests

Retrieving CAPTCHAs and Submitting Solutions | 211

https://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3
http://pythonscraping.com
http://pythonscraping.com/humans-only

from PIL import Image
from PIL import ImageOps

def cleanImage(imagePath):
 image = Image.open(imagePath)
 image = image.point(lambda x: 0 if x<143 else 255)
 borderImage = ImageOps.expand(image,border=20,fill='white')
 borderImage.save(imagePath)

html = urlopen('http://www.pythonscraping.com/humans-only')
bs = BeautifulSoup(html, 'html.parser')
#Gather prepopulated form values
imageLocation = bs.find('img', {'title': 'Image CAPTCHA'})['src']
formBuildId = bs.find('input', {'name':'form_build_id'})['value']
captchaSid = bs.find('input', {'name':'captcha_sid'})['value']
captchaToken = bs.find('input', {'name':'captcha_token'})['value']

captchaUrl = 'http://pythonscraping.com'+imageLocation
urlretrieve(captchaUrl, 'captcha.jpg')
cleanImage('captcha.jpg')
p = subprocess.Popen(['tesseract', 'captcha.jpg', 'captcha'], stdout=
 subprocess.PIPE,stderr=subprocess.PIPE)
p.wait()
f = open('captcha.txt', 'r')

#Clean any whitespace characters
captchaResponse = f.read().replace(' ', '').replace('\n', '')
print('Captcha solution attempt: '+captchaResponse)

if len(captchaResponse) == 5:
 params = {'captcha_token':captchaToken, 'captcha_sid':captchaSid,
 'form_id':'comment_node_page_form', 'form_build_id': formBuildId,
 'captcha_response':captchaResponse, 'name':'Ryan Mitchell',
 'subject': 'I come to seek the Grail',
 'comment_body[und][0][value]':
 '...and I am definitely not a bot'}
 r = requests.post('http://www.pythonscraping.com/comment/reply/10',
 data=params)
 responseObj = BeautifulSoup(r.text, 'html.parser')
 if responseObj.find('div', {'class':'messages'}) is not None:
 print(responseObj.find('div', {'class':'messages'}).get_text())
else:
 print('There was a problem reading the CAPTCHA correctly!')

Note that this script fails under two conditions: if Tesseract did not extract exactly
five characters from the image (because you know that all valid solutions to this
CAPTCHA must have five characters), or if it submits the form but the CAPTCHA
was solved incorrectly. The first case happens approximately 50% of the time, at
which point it does not bother submitting the form and fails with an error mes‐
sage. The second case happens approximately 20% of the time, for a total accuracy

212 | Chapter 13: Image Processing and Text Recognition

rate of about 30% (or about 80% accuracy for each character encountered, over five
characters).

Although this may seem low, keep in mind that usually no limit is placed on the num‐
ber of times users are allowed to make CAPTCHA attempts, and that most of these
incorrect attempts can be aborted without needing to actually send the form. When a
form is sent, the CAPTCHA is accurate most of the time. If that doesn’t convince you,
also keep in mind that simple guessing would give you an accuracy rate of .0000001%.
Running a program three or four times rather than guessing 900 million times is
quite the time-saver!

Retrieving CAPTCHAs and Submitting Solutions | 213

CHAPTER 14

Avoiding Scraping Traps

Few things are more frustrating than scraping a site, viewing the output, and not see‐
ing the data that’s so clearly visible in your browser. Or submitting a form that should
be perfectly fine but gets denied by the web server. Or getting your IP address
blocked by a site for unknown reasons.

These are some of the most difficult bugs to solve, not only because they can be so
unexpected (a script that works just fine on one site might not work at all on another,
seemingly identical, site), but because they purposefully don’t have any telltale error
messages or stack traces to use. You’ve been identified as a bot, rejected, and you don’t
know why.

In this book, I’ve written about a lot of ways to do tricky things on websites (submit‐
ting forms, extracting and cleaning difficult data, executing JavaScript, etc.). This
chapter is a bit of a catchall in that the techniques stem from a wide variety of subjects
(HTTP headers, CSS, and HTML forms, to name a few). However, they all have
something in common: they are meant to overcome an obstacle put in place for the
sole purpose of preventing automated web scraping of a site.

Regardless of how immediately useful this information is to you at the moment, I
highly recommend you at least skim this chapter. You never know when it might help
you solve a difficult bug or prevent a problem altogether.

A Note on Ethics
In the first few chapters of this book, I discussed the legal gray area that web scraping
inhabits, as well as some of the ethical guidelines to scrape by. To be honest, this
chapter is, ethically, perhaps the most difficult one for me to write. My websites have
been plagued by bots, spammers, web scrapers, and all manner of unwanted virtual
guests, as perhaps yours have been. So why teach people how to build better bots?

215

I believe this chapter is important to include for a few reasons:

• There are perfectly ethical and legally sound reasons to scrape some websites that
do not want to be scraped. In a previous job I had as a web scraper, I performed
automated collection of information from websites that were publishing clients’
names, addresses, telephone numbers, and other personal information to the
internet without their consent. I used the scraped information to make formal
requests to the websites to remove this information. In order to avoid competi‐
tion, these sites guarded this information from scrapers vigilantly. However, my
work to ensure the anonymity of my company’s clients (some of whom had stalk‐
ers, were the victims of domestic violence, or had other very good reasons to
want to keep a low profile) made a compelling case for web scraping, and I was
grateful that I had the skills necessary to do the job.

• Although it is almost impossible to build a “scraper proof ” site (or at least one
that can still be easily accessed by legitimate users), I hope that the information in
this chapter will help those wanting to defend their websites against malicious
attacks. Throughout, I will point out some of the weaknesses in each web scrap‐
ing technique, which you can use to defend your own site. Keep in mind that
most bots on the web today are merely doing a broad scan for information and
vulnerabilities, and employing even a couple of simple techniques described in
this chapter will likely thwart 99% of them. However, they are getting more
sophisticated every month, and it’s best to be prepared.

• Like most programmers, I don’t believe that withholding any sort of educational
information is a net positive thing to do.

While you’re reading this chapter, keep in mind that many of these scripts and
described techniques should not be run against every site you can find. Not only is it
not a nice thing to do, but you could wind up receiving a cease-and-desist letter or
worse (for more information about what to do if you receive such a letter, see Chap‐
ter 18). But I’m not going to pound you over the head with this every time we discuss
a new technique. So, for the rest of this chapter, as the philosopher Gump once said:
“That’s all I have to say about that.”

Looking Like a Human
The fundamental challenge for sites that do not want to be scraped is figuring out
how to tell bots from humans. Although many of the techniques sites use (such as
CAPTCHAs) can be difficult to fool, you can do a few fairly easy things to make your
bot look more human.

216 | Chapter 14: Avoiding Scraping Traps

Adjust Your Headers
Throughout the book, you’ve used the Python Requests library to create, send, and
receive HTTP requests, such as handling forms on a website in Chapter 10. The
Requests library is also excellent for setting headers. HTTP headers are lists of
attributes, or preferences, sent by you every time you make a request to a web server.
HTTP defines dozens of obscure header types, most of which are not commonly
used. The following seven fields, however, are consistently used by most major
browsers when initiating any connection (shown with example data from my own
browser):

Host https://www.google.com/
Connection keep-alive
Accept text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/

39.0.2171.95 Safari/537.36
Referrer https://www.google.com/
Accept-Encoding gzip, deflate, sdch
Accept-Language en-US,en;q=0.8

And here are the headers that a typical Python scraper using the default urllib
library might send:

Accept-Encoding identity
User-Agent Python-urllib/3.4

If you’re a website administrator trying to block scrapers, which one are you more
likely to let through?

Fortunately, headers can be completely customized using the Requests library. The
website https://www.whatismybrowser.com is great for testing browser properties
viewable by servers. You’ll scrape this website to verify your cookie settings with the
following script:

import requests
from bs4 import BeautifulSoup

session = requests.Session()
headers = {'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5)'
 'AppleWebKit 537.36 (KHTML, like Gecko) Chrome',
 'Accept':'text/html,application/xhtml+xml,application/xml;'
 'q=0.9,image/webp,*/*;q=0.8'}
url = 'https://www.whatismybrowser.com/'\
 'developers/what-http-headers-is-my-browser-sending'
req = session.get(url, headers=headers)

Looking Like a Human | 217

https://www.whatismybrowser.com

bs = BeautifulSoup(req.text, 'html.parser')
print(bs.find('table', {'class':'table-striped'}).get_text)

The output should show that the headers are now the same ones set in the headers
dictionary object in the code.

Although it is possible for websites to check for “humanness” based on any of the
properties in HTTP headers, I’ve found that typically the only setting that really mat‐
ters is the User-Agent. It’s a good idea to keep this one set to something more incon‐
spicuous than Python-urllib/3.4, regardless of what project you are working on. In
addition, if you ever encounter an extremely suspicious website, populating one of
the commonly used but rarely checked headers such as Accept-Language might be
the key to convincing it you’re a human.

Headers Change the Way You See the World
Let’s say you want to write a machine-learning language translator for a research
project, but lack large amounts of translated text to test with. Many large sites present
different translations of the same content, based on the indicated language preferen‐
ces in your headers. Simply changing Accept-Language:en-US to Accept-

Language:fr in your headers might get you a “Bonjour” from websites with the scale
and budget to handle translation (large international companies are usually a good
bet).

Headers also can prompt websites to change the format of the content they are pre‐
senting. For instance, mobile devices browsing the web often see a pared-down ver‐
sion of sites, lacking banner ads, Flash, and other distractions. If you try changing
your User-Agent to something like the following, you might find that sites get a little
easier to scrape!

User-Agent:Mozilla/5.0 (iPhone; CPU iPhone OS 7_1_2 like Mac OS X)
AppleWebKit/537.51.2 (KHTML, like Gecko) Version/7.0 Mobile/11D257
Safari/9537.53

Handling Cookies with JavaScript
Handling cookies correctly can alleviate many scraping problems, although cookies
can also be a double-edged sword. Websites that track your progression through a site
using cookies might attempt to cut off scrapers that display abnormal behavior, such
as completing forms too quickly, or visiting too many pages. Although these behav‐
iors can be disguised by closing and reopening connections to the site, or even chang‐
ing your IP address (see Chapter 17 for more information on how to do that), if your
cookie gives your identity away, your efforts of disguise might be futile.

218 | Chapter 14: Avoiding Scraping Traps

Cookies can also be necessary to scrape a site. As shown in Chapter 10, staying logged
in on a site requires that you be able to hold and present a cookie from page to page.
Some websites don’t even require that you actually log in and get a new version of a
cookie every time—merely holding an old copy of a “logged-in” cookie and visiting
the site is enough.

If you are scraping a single targeted website or a small number of targeted sites, I rec‐
ommend examining the cookies generated by those sites and considering which ones
you might want your scraper to handle. Various browser plug-ins can show you how
cookies are being set as you visit and move around a site. EditThisCookie, a Chrome
extension, is one of my favorites.

Check out the code samples in “Handling Logins and Cookies” on page 156 in Chap‐
ter 10 for more information about handling cookies by using the Requests library. Of
course, because it is unable to execute JavaScript, the Requests library will be unable
to handle many of the cookies produced by modern tracking software, such as Goo‐
gle Analytics, which are set only after the execution of client-side scripts (or some‐
times based on page events, such as button clicks, that happen while browsing the
page). To handle these, you need to use the Selenium and Chrome WebDriver pack‐
ages (we covered their installation and basic usage in Chapter 11).

You can view cookies by visiting any site (http://pythonscraping.com, in this example)
and calling get_cookies() on the webdriver:

from selenium import webdriver
from selenium.webdriver.chrome.options import Options
chrome_options = Options()
chrome_options.add_argument('--headless')
driver = webdriver.Chrome(
 executable_path='drivers/chromedriver',
 options=chrome_options)
driver.get('http://pythonscraping.com')
driver.implicitly_wait(1)
print(driver.get_cookies())

This provides the fairly typical array of Google Analytics cookies:

[{'value': '1', 'httponly': False, 'name': '_gat', 'path': '/', 'expi
ry': 1422806785, 'expires': 'Sun, 01 Feb 2015 16:06:25 GMT', 'secure'
: False, 'domain': '.pythonscraping.com'}, {'value': 'GA1.2.161952506
2.1422806186', 'httponly': False, 'name': '_ga', 'path': '/', 'expiry
': 1485878185, 'expires': 'Tue, 31 Jan 2017 15:56:25 GMT', 'secure':
False, 'domain': '.pythonscraping.com'}, {'value': '1', 'httponly': F
alse, 'name': 'has_js', 'path': '/', 'expiry': 1485878185, 'expires':
 'Tue, 31 Jan 2017 15:56:25 GMT', 'secure': False, 'domain': 'pythons
craping.com'}]

To manipulate cookies, you can call the delete_cookie(), add_cookie(), and
delete_all_cookies() functions. In addition, you can save and store cookies for use

Looking Like a Human | 219

http://www.editthiscookie.com/
http://pythonscraping.com

in other web scrapers. Here’s an example to give you an idea of how these functions
work together:

from selenium import webdriver
from selenium.webdriver.chrome.options import Options

chrome_options = Options()
chrome_options.add_argument('--headless')

driver = webdriver.Chrome(
 executable_path='drivers/chromedriver',
 options=chrome_options)
driver.get('http://pythonscraping.com')
driver.implicitly_wait(1)

savedCookies = driver.get_cookies()
print(savedCookies)

driver2 = webdriver.Chrome(
 executable_path='drivers/chromedriver',
 options=chrome_options)

driver2.get('http://pythonscraping.com')
driver2.delete_all_cookies()
for cookie in savedCookies:
 driver2.add_cookie(cookie)

driver2.get('http://pythonscraping.com')
driver.implicitly_wait(1)
print(driver2.get_cookies())

In this example, the first webdriver retrieves a website, prints the cookies, and then
stores them in the variable savedCookies. The second webdriver loads the same web‐
site, deletes its own cookies, and adds the cookies from the first webdriver.

Note that the second webdriver must load the website first before the cookies are
added. This is so Selenium knows which domain the cookies belong to, even if the act
of loading the website does nothing useful for the scraper.

After this is done, the second webdriver should have the same cookies as the first.
According to Google Analytics, this second webdriver is now identical to the first
one, and they will be tracked in the same way. If the first webdriver was logged into a
site, the second webdriver will be as well.

Timing Is Everything
Some well-protected websites might prevent you from submitting forms or interact‐
ing with the site if you do it too quickly. Even if these security features aren’t in place,
downloading lots of information from a website significantly faster than a normal
human might is a good way to get yourself noticed, and blocked.

220 | Chapter 14: Avoiding Scraping Traps

Therefore, although multithreaded programming might be a great way to load pages
faster—allowing you to process data in one thread while repeatedly loading pages in
another—it’s a terrible policy for writing good scrapers. You should always try to keep
individual page loads and data requests to a minimum. If possible, try to space them
out by a few seconds, even if you have to add in an extra:

import time

time.sleep(3)

Whether or not you need this extra few seconds between page loads is often found
experimentally. Many times I’ve struggled to scrape data from a website, having to
prove myself as “not a robot” every few minutes (solving the CAPTCHA by hand,
pasting my newly obtained cookies back over to the scraper so the website viewed the
scraper itself as having “proven its humanness”), but adding a time.sleep solved my
problems and allowed me to scrape indefinitely.

Sometimes you have to slow down to go fast!

Common Form Security Features
Many litmus tests have been used over the years, and continue to be used, with vary‐
ing degrees of success, to separate web scrapers from browser-using humans.
Although it’s not a big deal if a bot downloads some articles and blog posts that were
available to the public anyway, it is a big problem if a bot creates thousands of user
accounts and starts spamming all of your site’s members. Web forms, especially forms
that deal with account creation and logins, pose a significant threat to security and
computational overhead if they’re vulnerable to indiscriminate use by bots, so it’s in
the best interest of many site owners (or at least they think it is) to try to limit access
to the site.

These antibot security measures centered on forms and logins can pose a significant
challenge to web scrapers.

Keep in mind that this is only a partial overview of some of the security measures you
might encounter when creating automated bots for these forms. Review Chapter 13,
on dealing with CAPTCHAs and image processing, as well as Chapter 17, on dealing
with headers and IP addresses, for more information on dealing with well-protected
forms.

Hidden Input Field Values
“Hidden” fields in HTML forms allow the value contained in the field to be viewable
by the browser but invisible to the user (unless they look at the site’s source code).
With the increase in use of cookies to store variables and pass them around on web‐

Common Form Security Features | 221

sites, hidden fields fell out of a favor for a while before another excellent purpose was
discovered for them: preventing scrapers from submitting forms.

Figure 14-1 shows an example of these hidden fields at work on a Facebook login
page. Although the form has only three visible fields (Username, Password, and a
Submit button), it conveys a great deal of information to the server behind the scenes.

Figure 14-1. The Facebook login form has quite a few hidden fields

Hidden fields are used to prevent web scraping in two main ways: a field can be
populated with a randomly generated variable on the form page that the server is
expecting to be posted to the form-processing page. If this value is not present in the
form, the server can reasonably assume that the submission did not originate organi‐
cally from the form page, but was posted by a bot directly to the processing page. The
best way to get around this measure is to scrape the form page first, collect the ran‐
domly generated variable, and then post to the processing page from there.

The second method is a “honeypot” of sorts. If a form contains a hidden field with an
innocuous name, such as Username or Email Address, a poorly written bot might fill
out the field and attempt to submit it, regardless of whether it is hidden to the user.
Any hidden fields with actual values (or values that are different from their defaults
on the form submission page) should be disregarded, and the user may even be
blocked from the site.

In short: It is sometimes necessary to check the page that the form is on to see
whether you missed anything that the server might be expecting. If you see several
hidden fields, often with large, randomly generated string variables, the web server
likely will be checking for their existence on form submission. In addition, there
might be other checks to ensure that the form variables have been used only once, are
recently generated (this eliminates the possibility of simply storing them in a script
and using them over and over again over time), or both.

222 | Chapter 14: Avoiding Scraping Traps

Avoiding Honeypots
Although CSS for the most part makes life extremely easy when it comes to differen‐
tiating useful information from nonuseful information (e.g., by reading the id and
class tags), it can occasionally be problematic for web scrapers. If a field on a web
form is hidden from a user via CSS, it is reasonable to assume that the average user
visiting the site will not be able to fill it out because it doesn’t show up in the browser.
If the form is populated, there is likely a bot at work and the post will be discarded.

This applies not only to forms but to links, images, files, and any other item on the
site that can be read by a bot but is hidden from the average user visiting the site
through a browser. A page visit to a “hidden” link on a site can easily trigger a server-
side script that will block the user’s IP address, log that user out of the site, or take
some other action to prevent further access. In fact, many business models have been
based on exactly this concept.

Take, for example, the page located at http://pythonscraping.com/pages/itsatrap.html.
This page contains two links, one hidden by CSS and another visible. In addition, it
contains a form with two hidden fields:

<html>
<head>
 <title>A bot-proof form</title>
</head>
<style>
 body {
 overflow-x:hidden;
 }
 .customHidden {
 position:absolute;
 right:50000px;
 }
</style>
<body>
 <h2>A bot-proof form</h2>
 <a href=
 "http://pythonscraping.com/dontgohere" style="display:none;">Go here!
 Click me!
 <form>
 <input type="hidden" name="phone" value="valueShouldNotBeModified"/><p/>
 <input type="text" name="email" class="customHidden"
 value="intentionallyBlank"/><p/>
 <input type="text" name="firstName"/><p/>
 <input type="text" name="lastName"/><p/>
 <input type="submit" value="Submit"/><p/>
 </form>
</body>
</html>

Common Form Security Features | 223

http://pythonscraping.com/pages/itsatrap.html

These three elements are hidden from the user in three ways:

• The first link is hidden with a simple CSS display:none attribute.
• The phone field is a hidden input field.
• The email field is hidden by moving it 50,000 pixels to the right (presumably off

the screen of everyone’s monitors) and hiding the telltale scroll bar.

Fortunately, because Selenium renders the pages it visits, it is able to distinguish
between elements that are visually present on the page and those that aren’t. Whether
the element is present on the page can be determined by the is_displayed() func‐
tion.

For example, the following code retrieves the previously described page and looks for
hidden links and form input fields:

from selenium import webdriver
from selenium.webdriver.remote.webelement import WebElement
from selenium.webdriver.chrome.options import Options

driver = webdriver.Chrome(
 executable_path='drivers/chromedriver',
 options=chrome_options)
driver.get('http://pythonscraping.com/pages/itsatrap.html')
links = driver.find_elements_by_tag_name('a')
for link in links:
 if not link.is_displayed():
 print('The link {} is a trap'.format(link.get_attribute('href')))

fields = driver.find_elements_by_tag_name('input')
for field in fields:
 if not field.is_displayed():
 print('Do not change value of {}'.format(field.get_attribute('name')))

Selenium catches each hidden field, producing the following output:

The link http://pythonscraping.com/dontgohere is a trap
Do not change value of phone
Do not change value of email

Although you probably don’t want to visit any hidden links you find, you will want to
make sure that you submit any prepopulated hidden form values (or have Selenium
submit them for you) with the rest of the form. To sum up, it is dangerous to simply
ignore hidden fields, although you must be careful when interacting with them.

224 | Chapter 14: Avoiding Scraping Traps

The Human Checklist
There’s a lot of information in this chapter, and indeed in this book, about how to
build a scraper that looks less like a scraper and more like a human. If you keep get‐
ting blocked by websites and you don’t know why, here’s a checklist you can use to
remedy the problem:

• First, if the page you are receiving from the web server is blank, missing informa‐
tion, or is otherwise not what you expect (or have seen in your own browser), it
is likely caused by JavaScript being executed on the site to create the page. Review
Chapter 11.

• If you are submitting a form or making a POST request to a website, check the
page to make sure that everything the website is expecting you to submit is being
submitted and in the correct format. Use a tool such as Chrome’s Inspector panel
to view an actual POST request sent to the site to make sure you have everything,
and that an “organic” request looks the same as the ones your bot is sending.

• If you are trying to log into a site and can’t make the login “stick,” or the website
is experiencing other strange “state” behavior, check your cookies. Make sure that
cookies are being persisted correctly between each page load and that your cook‐
ies are sent to the site for every request.

• If you are getting HTTP errors from the client, especially 403 Forbidden errors, it
might indicate that the website has identified your IP address as a bot and is
unwilling to accept any more requests. You will need to either wait until your IP
address is removed from the list, or obtain a new IP address (either move to a
Starbucks or see Chapter 17). To make sure you don’t get blocked again, try the
following:
— Make sure that your scrapers aren’t moving through the site too quickly. Fast

scraping is a bad practice that places a heavy burden on the web administra‐
tor’s servers, can land you in legal trouble, and is the number-one cause of
scrapers getting blacklisted. Add delays to your scrapers and let them run
overnight. Remember: Being in a rush to write programs or gather data is a
sign of bad project management; plan ahead to avoid messes like this in the
first place.

— The obvious one: change your headers! Some sites will block anything that
advertises itself as a scraper. Copy your own browser’s headers if you’re unsure
about what some reasonable header values are.

— Make sure you’re not clicking on or accessing anything that a human normally
would not be able to (refer to “Avoiding Honeypots” on page 223 for more
information).

The Human Checklist | 225

— If you find yourself jumping through a lot of difficult hoops to gain access,
consider contacting the website administrator to let them know what you’re
doing. Try emailing webmaster@<domain name> or admin@<domain name>
for permission to use your scrapers. Admins are people too, and you might be
surprised at how amenable they can be to sharing their data.

226 | Chapter 14: Avoiding Scraping Traps

CHAPTER 15

Testing Your Website with Scrapers

When working with web projects that have a large development stack, it’s often only
the “back” of the stack that ever gets tested regularly. Most programming languages
today (including Python) have some type of test framework, but website frontends
are often left out of these automated tests, although they might be the only customer-
facing part of the project.

Part of the problem is that websites are often a mishmash of many markup languages
and programming languages. You can write unit tests for sections of your JavaScript,
but it’s useless if the HTML it’s interacting with has changed in such a way that the
JavaScript doesn’t have the intended action on the page, even if it’s working correctly.

The problem of frontend website testing has often been left as an afterthought, or
delegated to lower-level programmers armed with, at most, a checklist and a bug
tracker. However, with just a little more upfront effort, you can replace this checklist
with a series of unit tests, and replace human eyes with a web scraper.

Imagine: test-driven development for web development. Daily tests to make sure all
parts of the web interface are functioning as expected. A suite of tests run every time
someone adds a new website feature, or changes the position of an element. This
chapter covers the basics of testing and how to test all sorts of websites, from simple
to complicated, with Python-based web scrapers.

An Introduction to Testing
If you’ve never written tests for your code before, there’s no better time to start than
now. Having a suite of tests that can be run to ensure that your code performs as
expected (at least, as far as you’ve written tests for) saves you time and worry and
makes releasing new updates easy.

227

What Are Unit Tests?
The words test and unit test are often used interchangeably. Often, when program‐
mers refer to “writing tests,” what they really mean is “writing unit tests.” On the
other hand, when some programmers refer to writing unit tests, they’re really writing
some other kind of test.

Although definitions and practices tend to vary from company to company, a unit
test generally has the following characteristics:

• Each unit test tests one aspect of the functionality of a component. For example,
it might ensure that the appropriate error message is thrown if a negative number
of dollars is withdrawn from a bank account.
Often, unit tests are grouped together in the same class, based on the component
they are testing. You might have the test for a negative dollar value being with‐
drawn from a bank account, followed by a unit test for the behavior of an over‐
drawn bank account.

• Each unit test can be run completely independently, and any setup or teardown
required for the unit test must be handled by the unit test itself. Similarly, unit
tests must not interfere with the success or failure of other tests, and they must be
able to run successfully in any order.

• Each unit test usually contains at least one assertion. For example, a unit test
might assert that the answer to 2 + 2 is 4. Occasionally, a unit test might contain
only a failure state. For example, it might fail if an exception is thrown, but pass
by default if everything goes smoothly.

• Unit tests are separated from the bulk of the code. Although they necessarily
need to import and use the code they are testing, they are generally kept in sepa‐
rate classes and directories.

Although many other types of tests can be written—integration tests and validation
tests, for example—this chapter primarily focuses on unit testing. Not only have unit
tests become extremely popular, with recent pushes toward test-driven development,
but their length and flexibility make them easy to work with as examples, and Python
has some built-in unit testing capabilities, as you’ll see in the next section.

Python unittest
Python’s unit-testing module, unittest, comes packaged with all standard Python
installations. Just import and extend unittest.TestCase, and it will do the following:

• Provide setUp and tearDown functions that run before and after each unit test
• Provide several types of “assert” statements to allow tests to pass or fail

228 | Chapter 15: Testing Your Website with Scrapers

• Run all functions that begin with test_ as unit tests, and ignore functions that
are not prepended as tests

The following provides a simple unit test for ensuring that 2 + 2 = 4, according to
Python:

import unittest

class TestAddition(unittest.TestCase):
 def setUp(self):
 print('Setting up the test')

 def tearDown(self):
 print('Tearing down the test')

 def test_twoPlusTwo(self):
 total = 2+2
 self.assertEqual(4, total);

if __name__ == '__main__':
 unittest.main()

Although setUp and tearDown don’t provide any useful functionality here, they are
included for the purposes of illustration. Note that these functions are run before and
after each individual test, not before and after all the tests in the class.

The output of the test function, when run from the command line, should look like
this:

Setting up the test
Tearing down the test
.
--
Ran 1 test in 0.000s

OK

This indicates that the test ran successfully, and 2 + 2 does indeed equal 4.

Running unittest in Jupyter Notebooks
The unit test scripts in this chapter are all kicked off with:

if __name__ == '__main__':
 unittest.main()

The line if __name__ == '__main__' is true only if the line is executed directly in
Python, and not via an import statement. This allows you to run your unit test, using
the unittest.TestCase class that it extends, directly from the command line.

Python unittest | 229

In a Jupyter notebook, things are a little bit different. The argv parameters created by
Jupyter can cause errors in the unit test, and, because the unittest framework exits
Python by default after the test is run (which causes problems in the notebook ker‐
nel), we also need to prevent that from happening.

In the Jupyter notebooks, you will use the following to launch unit tests:

if __name__ == '__main__':
 unittest.main(argv=[''], exit=False)
 %reset

The second line sets all of the argv variables (command-line arguments) to a single
empty string, which is ignored by unnittest.main. It also prevents unittest from
exiting after the test is run.

The %reset line is useful because it resets the memory and destroys all user-created
variables in the Jupyter notebook. Without it, each unit test you write in the notebook
will contain all of the methods from all other previously run tests that also inherited
unittest.TestCase, including setUp and tearDown methods. This also means that
each unit test would run all of the methods from the unit tests before it!

Using %reset does create one extra manual step for the user when running the tests.
When running the test, the notebook will prompt the user and ask if they’re sure they
want to reset the memory. Simply type y and hit Enter to do this.

Testing Wikipedia
Testing the frontend of your website (excluding JavaScript, which we’ll cover next) is
as simple as combining the Python unittest library with a web scraper:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import unittest

class TestWikipedia(unittest.TestCase):
 bs = None
 def setUpClass():
 url = 'http://en.wikipedia.org/wiki/Monty_Python'
 TestWikipedia.bs = BeautifulSoup(urlopen(url), 'html.parser')

 def test_titleText(self):
 pageTitle = TestWikipedia.bs.find('h1').get_text()
 self.assertEqual('Monty Python', pageTitle);

 def test_contentExists(self):
 content = TestWikipedia.bs.find('div',{'id':'mw-content-text'})
 self.assertIsNotNone(content)

230 | Chapter 15: Testing Your Website with Scrapers

if __name__ == '__main__':
 unittest.main()

There are two tests this time: the first tests whether the title of the page is the
expected “Monty Python,” and the second makes sure that the page has a content div.

Note that the content of the page is loaded only once, and that the global object bs is
shared between tests. This is accomplished by using the unittest-specified function
setUpClass, which is run only once at the start of the class (unlike setUp, which is
run before every individual test). Using setUpClass instead of setUp saves unneces‐
sary page loads; you can grab the content once and run multiple tests on it.

One major architectural difference between setUpClass and setUp, besides just when
and how often they’re run, is that setUpClass is a static method that “belongs” to the
class itself and has global class variables, whereas setUp is an instance function that
belongs to a particular instance of the class. This is why setUp can set attributes on
self—the particular instance of that class—while setUpClass can access only static
class attributes on the class TestWikipedia.

Although testing a single page at a time might not seem all that powerful or interest‐
ing, as you may recall from Chapter 3, it is relatively easy to build web crawlers that
can iteratively move through all pages of a website. What happens when you combine
a web crawler with a unit test that makes an assertion about each page?

There are many ways to run a test repeatedly, but you must be careful to load each
page only once for each set of tests you want to run on the page, and you must also
avoid holding large amounts of information in memory at once. The following setup
does just that:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import unittest
import re
import random
from urllib.parse import unquote

class TestWikipedia(unittest.TestCase):

 def test_PageProperties(self):
 self.url = 'http://en.wikipedia.org/wiki/Monty_Python'
 #Test the first 10 pages we encounter
 for i in range(1, 10):
 self.bs = BeautifulSoup(urlopen(self.url), 'html.parser')
 titles = self.titleMatchesURL()
 self.assertEquals(titles[0], titles[1])
 self.assertTrue(self.contentExists())
 self.url = self.getNextLink()
 print('Done!')

Python unittest | 231

 def titleMatchesURL(self):
 pageTitle = self.bs.find('h1').get_text()
 urlTitle = self.url[(self.url.index('/wiki/')+6):]
 urlTitle = urlTitle.replace('_', ' ')
 urlTitle = unquote(urlTitle)
 return [pageTitle.lower(), urlTitle.lower()]

 def contentExists(self):
 content = self.bs.find('div',{'id':'mw-content-text'})
 if content is not None:
 return True
 return False

 def getNextLink(self):
 #Returns random link on page, using technique from Chapter 3
 links = self.bs.find('div', {'id':'bodyContent'}).find_all(
 'a', href=re.compile('^(/wiki/)((?!:).)*$'))
 randomLink = random.SystemRandom().choice(links)
 return 'https://wikipedia.org{}'.format(randomLink.attrs['href'])

if __name__ == '__main__':
 unittest.main()

There are a few things to notice. First, there is only one actual test in this class. The
other functions are technically only helper functions, even though they’re doing the
bulk of the computational work to determine whether a test passes. Because the test
function performs the assertion statements, the results of the test are passed back to
the test function where the assertions happen.

Also, while contentExists returns a boolean, titleMatchesURL returns the values
themselves back for evaluation. To see why you would want to pass values back rather
than just a boolean, compare the results of a boolean assertion:

==
FAIL: test_PageProperties (__main__.TestWikipedia)
--
Traceback (most recent call last):
 File "15-3.py", line 22, in test_PageProperties
 self.assertTrue(self.titleMatchesURL())
AssertionError: False is not true

with the results of an assertEquals statement:

==
FAIL: test_PageProperties (__main__.TestWikipedia)
--
Traceback (most recent call last):
 File "15-3.py", line 23, in test_PageProperties
 self.assertEquals(titles[0], titles[1])
AssertionError: 'lockheed u-2' != 'u-2 spy plane'

232 | Chapter 15: Testing Your Website with Scrapers

Which one is easier to debug? (In this case, the error is occurring because of a redi‐
rect, when the article http://wikipedia.org/wiki/u-2%20spy%20plane redirects to an
article titled “Lockheed U-2.”)

Testing with Selenium
As with Ajax scraping in Chapter 11, JavaScript presents particular challenges when
doing website testing. Fortunately, Selenium has an excellent framework in place for
handling particularly complicated websites; in fact, the library was originally
designed for website testing!

Although obviously written in the same language, the syntax of Python unit tests and
Selenium unit tests have surprisingly little in common. Selenium does not require
that its unit tests be contained as functions within classes; its assert statements do
not require parentheses; and tests pass silently, producing some kind of message only
on a failure:

driver = webdriver.Chrome()
driver.get('http://en.wikipedia.org/wiki/Monty_Python')
assert 'Monty Python' in driver.title
driver.close()

When run, this test should produce no output.

In this way, Selenium tests can be written more casually than Python unit tests, and
assert statements can even be integrated into regular code, where it is desirable for
code execution to terminate if some condition is not met.

Interacting with the Site
Recently, I wanted to contact a local small business through its website’s contact form
but found that the HTML form was broken; nothing happened when I clicked the
submit button. After a little investigation, I saw they were using a simple mailto form
that was designed to send them an email with the form’s contents. Fortunately, I was
able to use this information to send them an email, explain the problem with their
form, and hire them, despite the technical issue.

If I were to write a traditional scraper that used or tested this form, my scraper would
likely just copy the layout of the form and send an email directly—bypassing the form
altogether. How could I test the functionality of the form and ensure that it was work‐
ing perfectly through a browser?

Although previous chapters have discussed navigating links, submitting forms, and
other types of interaction-like activity, at its core everything we’ve done is designed to
bypass the browser interface, not use it. Selenium, on the other hand, can literally
enter text, click buttons, and do everything through the browser (in this case, the

Testing with Selenium | 233

headless Chrome browser), and detect things like broken forms, badly coded Java‐
Script, HTML typos, and other issues that might stymie actual customers.

Key to this sort of testing is the concept of Selenium elements. This object was briefly
encountered in Chapter 11, and is returned by calls like this:

usernameField = driver.find_element_by_name('username')

Just as there are numerous actions you can take on various elements of a website in
your browser, there are many actions Selenium can perform on any given element.
Among these are the following:

myElement.click()
myElement.click_and_hold()
myElement.release()
myElement.double_click()
myElement.send_keys_to_element('content to enter')

In addition to performing a one-time action on an element, strings of actions can be
combined into action chains, which can be stored and executed once or multiple
times in a program. Action chains are useful in that they can be a convenient way to
string long sets of multiple actions, but they are functionally identical to calling the
action explicitly on the element, as in the preceding examples.

To see this difference, take a look at the form page at http://pythonscraping.com/
pages/files/form.html (which was previously used as an example in Chapter 10). We
can fill out the form and submit it in the following way:

from selenium import webdriver
from selenium.webdriver.remote.webelement import WebElement
from selenium.webdriver.common.keys import Keys
from selenium.webdriver import ActionChains
from selenium.webdriver.chrome.options import Options

chrome_options = Options()
chrome_options.add_argument('--headless')

driver = webdriver.Chrome(
 executable_path='drivers/chromedriver', options=chrome_options)
driver.get('http://pythonscraping.com/pages/files/form.html')

firstnameField = driver.find_element_by_name('firstname')
lastnameField = driver.find_element_by_name('lastname')
submitButton = driver.find_element_by_id('submit')

METHOD 1
#firstnameField.send_keys('Ryan')
lastnameField.send_keys('Mitchell')
submitButton.click()
################

METHOD 2

234 | Chapter 15: Testing Your Website with Scrapers

http://pythonscraping.com/pages/files/form.html
http://pythonscraping.com/pages/files/form.html

actions = ActionChains(driver).click(firstnameField)
 .send_keys('Ryan')
 .click(lastnameField)
 .send_keys('Mitchell')
 .send_keys(Keys.RETURN)
actions.perform()
################

print(driver.find_element_by_tag_name('body').text)

driver.close()

Method 1 calls send_keys on the two fields and then clicks the submit button.
Method 2 uses a single action chain to click and enter text in each field, which hap‐
pens in a sequence after the perform method is called. This script operates in the
same way, whether the first method or the second method is used, and prints this
line:

Hello there, Ryan Mitchell!

There is another variation in the two methods, in addition to the objects they use to
handle the commands: notice that the first method clicks the Submit button, while
the second uses the Return keystroke to submit the form while the text box is submit‐
ted. Because there are many ways to think about the sequence of events that complete
the same action, there are many ways to complete the same action using Selenium.

Drag and drop
Clicking buttons and entering text is one thing, but where Selenium really shines is in
its ability to deal with relatively novel forms of web interaction. Selenium allows for
the manipulation of drag-and-drop interfaces with ease. Using its drag-and-drop
function requires you to specify a source element (the element to be dragged) and
either an offset to drag it across, or a target element to drag it to.

The demo page located at http://pythonscraping.com/pages/javascript/draggable‐
Demo.html presents an example of this type of interface:

from selenium import webdriver
from selenium.webdriver.remote.webelement import WebElement
from selenium.webdriver import ActionChains
from selenium.webdriver.chrome.options import Options
import unittest

class TestAddition(unittest.TestCase):
 driver = None

 def setUp(self):
 chrome_options = Options()
 chrome_options.add_argument('--headless')
 self.driver = webdriver.Chrome(

Testing with Selenium | 235

http://pythonscraping.com/pages/javascript/draggableDemo.html
http://pythonscraping.com/pages/javascript/draggableDemo.html

 executable_path='drivers/chromedriver', options=chrome_options)
 url = 'http://pythonscraping.com/pages/javascript/draggableDemo.html'
 self.driver.get(url)

 def tearDown(self):
 driver.close()

 def test_drag(self):
 element = self.driver.find_element_by_id('draggable')
 target = self.driver.find_element_by_id('div2')
 actions = ActionChains(self.driver)
 actions.drag_and_drop(element, target).perform()
 self.assertEqual('You are definitely not a bot!',
 self.driver.find_element_by_id('message').text)

Two messages are printed out from the message div on the demo page. The first says

Prove you are not a bot, by dragging the square from the blue area to the red
area!

Then, quickly, after the task is completed, the content is printed out again, which now
reads

You are definitely not a bot!

As the demo page suggests, dragging elements to prove you’re not a bot is a common
theme in many CAPTCHAs. Although bots have been able to drag objects around for
a long time (it’s just a matter of clicking, holding, and moving), somehow the idea of
using “drag this” as a verification of humanity just won’t die.

In addition, these draggable CAPTCHA libraries rarely use any difficult-for-bots
tasks, like “drag the picture of the kitten onto the picture of the cow” (which requires
you to identify the pictures as “a kitten” and “a cow,” while parsing instructions);
instead, they often involve number ordering or some other fairly trivial task like the
one in the preceding example.

Of course, their strength lies in the fact that there are so many variations, and they are
so infrequently used; no one will likely bother making a bot that can defeat all of
them. At any rate, this example should be enough to illustrate why you should never
use this technique for large-scale websites.

Taking screenshots
In addition to the usual testing capabilities, Selenium has an interesting trick up its
sleeve that might make your testing (or impressing your boss) a little easier: screen‐
shots. Yes, photographic evidence can be created from unit tests run without the need
for actually pressing the PrtScn key:

236 | Chapter 15: Testing Your Website with Scrapers

driver = webdriver.Chrome()
driver.get('http://www.pythonscraping.com/')
driver.get_screenshot_as_file('tmp/pythonscraping.png')

This script navigates to http://pythonscraping.com and then stores a screenshot of the
home page in the local tmp folder (the folder must already exist for this to store cor‐
rectly). Screenshots can be saved as a variety of image formats.

unittest or Selenium?
The syntactical rigor and verboseness of Python unittest might be desirable for
most large test suites, while the flexibility and power of a Selenium test might be your
only option for testing some website features. So which to use?

Here’s the secret: you don’t have to choose. Selenium can easily be used to obtain
information about a website, and unittest can evaluate whether that information
meets the criteria for passing the test. There is no reason you can’t import Selenium
tools into Python unittest, combining the best of both worlds.

For example, the following script creates a unit test for a website’s draggable interface,
asserting that it correctly says, “You are not a bot!” after one element has been drag‐
ged to another:

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.chrome.options import Options
import unittest

class TestDragAndDrop(unittest.TestCase):
 driver = None
 def setUp(self):
 chrome_options = Options()
 chrome_options.add_argument('--headless')
 self.driver = webdriver.Chrome(
 executable_path='drivers/chromedriver', options=chrome_options)
 url = 'http://pythonscraping.com/pages/javascript/draggableDemo.html'
 self.driver.get(url)

 def tearDown(self):
 self.driver.close()

 def test_drag(self):
 element = self.driver.find_element_by_id('draggable')
 target = self.driver.find_element_by_id('div2')
 actions = ActionChains(self.driver)
 actions.drag_and_drop(element, target).perform()
 self.assertEqual('You are definitely not a bot!',
 self.driver.find_element_by_id('message').text)

unittest or Selenium? | 237

http://pythonscraping.com

Virtually anything on a website can be tested with the combination of Python’s
unittest and Selenium. In fact, combined with some of the image-processing libra‐
ries from Chapter 13, you can even take a screenshot of the website and test on a
pixel-by-pixel basis what it should contain!

238 | Chapter 15: Testing Your Website with Scrapers

CHAPTER 16

Web Crawling in Parallel

Web crawling is fast. At least, it’s usually much faster than hiring a dozen interns to
copy data from the internet by hand! Of course, the progression of technology and
the hedonic treadmill demand that at a certain point even this will not be “fast
enough.” That’s the point at which people generally start to look toward distributed
computing.

Unlike most other technology fields, web crawling cannot often be improved simply
by “throwing more cycles at the problem.” Running one process is fast; running two
processes is not necessarily twice as fast. Running three processes might get you ban‐
ned from the remote server you’re hammering on with all your requests!

However, in some situations parallel web crawling, or running parallel threads/
processes, can still be of benefit:

• Collecting data from multiple sources (multiple remote servers) instead of just a
single source

• Performing long/complex operations on the collected data (such as doing image
analysis or OCR) that could be done in parallel with fetching the data

• Collecting data from a large web service where you are paying for each query, or
where creating multiple connections to the service is within the bounds of your
usage agreement

Processes versus Threads
Python supports both multiprocessing and multithreading. Both multiprocessing and
multithreading achieve the same ultimate goal: performing two programming tasks at
the same time instead of running the program in a more traditional linear way.

239

In computer science, each process running on an operating system can have multiple
threads. Each process has its own allocated memory, which means that multiple
threads can access that same memory, while multiple processes cannot and must
communicate information explicitly.

Using multithreaded programming to execute tasks in separate threads with shared
memory is often considered easier than multiprocess programming. But this conve‐
nience comes at a cost.

Python’s global interpreter lock (or GIL) acts to prevent threads from executing the
same line of code at once. The GIL ensures that the common memory shared by all
processes does not become corrupted (for instance, bytes in memory being half writ‐
ten with one value and half written with another value). This locking makes it possi‐
ble to write a multithreaded program and know what you’re getting, within the same
line, but it also has the potential to create bottlenecks.

Multithreaded Crawling
Python 3.x uses the _thread module; the thread module is deprecated.

The following example illustrates using multiple threads to perform a task:

import _thread
import time

def print_time(threadName, delay, iterations):
 start = int(time.time())
 for i in range(0,iterations):
 time.sleep(delay)
 seconds_elapsed = str(int(time.time()) - start)
 print ("{} {}".format(seconds_elapsed, threadName))

try:
 _thread.start_new_thread(print_time, ('Fizz', 3, 33))
 _thread.start_new_thread(print_time, ('Buzz', 5, 20))
 _thread.start_new_thread(print_time, ('Counter', 1, 100))
except:
 print ('Error: unable to start thread')

while 1:
 pass

This is a reference to the classic FizzBuzz programming test, with a somewhat more
verbose output:

1 Counter
2 Counter
3 Fizz
3 Counter
4 Counter

240 | Chapter 16: Web Crawling in Parallel

http://wiki.c2.com/?FizzBuzzTest

5 Buzz
5 Counter
6 Fizz
6 Counter

The script starts three threads, one that prints “Fizz” every three seconds, another
that prints “Buzz” every five seconds, and a third that prints “Counter" every second.

After the threads are launched, the main execution thread hits a while 1 loop that
keeps the program (and its child threads) executing until the user hits Ctrl-C to stop
execution.

Rather than printing fizzes and buzzes, you can perform a useful task in the threads,
such as crawling a website:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import random

import _thread
import time

def get_links(thread_name, bs):
 print('Getting links in {}'.format(thread_name))
 return bs.find('div', {'id':'bodyContent'}).find_all('a',
 href=re.compile('^(/wiki/)((?!:).)*$'))

Define a function for the thread
def scrape_article(thread_name, path):
 html = urlopen('http://en.wikipedia.org{}'.format(path))
 time.sleep(5)
 bs = BeautifulSoup(html, 'html.parser')
 title = bs.find('h1').get_text()
 print('Scraping {} in thread {}'.format(title, thread_name))
 links = get_links(thread_name, bs)
 if len(links) > 0:
 newArticle = links[random.randint(0, len(links)-1)].attrs['href']
 print(newArticle)
 scrape_article(thread_name, newArticle)

Create two threads as follows
try:
 _thread.start_new_thread(scrape_article, ('Thread 1', '/wiki/Kevin_Bacon',))
 _thread.start_new_thread(scrape_article, ('Thread 2', '/wiki/Monty_Python',))
except:
 print ('Error: unable to start threads')

while 1:
 pass

Multithreaded Crawling | 241

Note the inclusion of this line:

time.sleep(5)

Because you are crawling Wikipedia almost twice as fast as you would with just a sin‐
gle thread, the inclusion of this line prevents the script from putting too much of a
load on Wikipedia’s servers. In practice, when running against a server where the
number of requests is not an issue, this line should be removed.

What if you want to rewrite this slightly to keep track of the articles the threads have
collectively seen so far, so that no article is visited twice? You can use a list in a multi‐
threaded environment in the same way that you use it in a single-threaded environ‐
ment:

visited = []
def get_links(thread_name, bs):
 print('Getting links in {}'.format(thread_name))
 links = bs.find('div', {'id':'bodyContent'}).find_all('a',
 href=re.compile('^(/wiki/)((?!:).)*$'))
 return [link for link in links if link not in visited]

def scrape_article(thread_name, path):
 visited.append(path)

Note that you are appending the path to the list of visited paths as the first action that
scrape_article takes. This reduces, but does not entirely eliminate, the chances that
it will be scraped twice.

If you are unlucky, both threads might still stumble across the same path at the same
instant, both will see that it is not in the visited list, and both will subsequently add it
to the list and scrape at the same time. However, in practice this is unlikely to happen
because of the speed of execution and the number of pages that Wikipedia contains.

This is an example of a race condition. Race conditions can be tricky to debug, even
for experienced programmers, so it is important to evaluate your code for these
potential situations, estimate their likelihood, and anticipate the seriousness of their
impact.

In the case of this particular race condition, where the scraper goes over the same
page twice, it may not be worth writing around.

Race Conditions and Queues
Although you can communicate between threads with lists, lists are not specifically
designed for communication between threads, and their misuse can easily cause slow
program execution or even errors resulting from race conditions.

Lists are great for appending to or reading from, but not so great for removing items
at arbitrary points, especially from the beginning of the list. Using a line like

242 | Chapter 16: Web Crawling in Parallel

myList.pop(0)

actually requires Python to rewrite the entire list, slowing program execution.

More dangerous, lists also make it convenient to accidentally write in a line that isn’t
thread-safe. For instance

myList[len(myList)-1]

may not actually get you the last item in the list in a multithreaded environment, or it
may even throw an exception if the value for len(myList)-1 is calculated immedi‐
ately before another operation modifies the list.

One might argue that the preceding statement can be more “Pythonically” written as
myList[-1], and of course, no one has ever accidentally written non-Pythonic code
in a moment of weakness (especially not Java developers thinking back to their days
of patterns like myList[myList.length-1])! But even if your code is beyond
reproach, consider these other forms of non-thread-safe lines involving lists:

my_list[i] = my_list[i] + 1
my_list.append(my_list[-1])

Both of these may result in a race condition that can cause unexpected results. So let’s
abandon lists and pass messages to threads using nonlist variables!

Read the message in from the global list
my_message = global_message
Write a message back
global_message = 'I've retrieved the message'
do something with my_message

That seems nice until you realize that you might have inadvertently overwritten
another message coming in from another thread, in the instant between the first and
second lines, with the text “I’ve got your message.” So now you just need to construct
an elaborate series of personal message objects for each thread with some logic to fig‐
ure out who gets what...or you could use the Queue module built for this exact pur‐
pose.

Queues are list-like objects that operate on either a First In First Out (FIFO)
approach or a Last In First Out (LIFO) approach. A queue receives messages from
any thread via queue.put('My message') and can transmit the message to any
thread that calls queue.get().

Queues are not designed to store static data, but to transmit it in a thread-safe way.
After it’s retrieved from the queue, it should exist only in the thread that retrieved it.
For this reason, they are commonly used to delegate tasks or send temporary notifica‐
tions.

This can be useful in web crawling. For instance, let’s say that you want to persist the
data collected by your scraper into a database, and you want each thread to be able to

Multithreaded Crawling | 243

persist its data quickly. A single shared connection for all threads might cause issues
(a single connection cannot handle requests in parallel), but it makes no sense to give
every single scraping thread its own database connection. As your scraper grows in
size (you may be collecting data from a hundred different websites in a hundred dif‐
ferent threads eventually), this might translate into a lot of mostly idle database con‐
nections doing only an occasional write after a page loads.

Instead, you can have a smaller number of database threads, each with its own con‐
nection, sitting around taking items from a queue and storing them. This provides a
much more manageable set of database connections.

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import random
import _thread
from queue import Queue
import time
import pymysql

def storage(queue):
 conn = pymysql.connect(host='127.0.0.1', unix_socket='/tmp/mysql.sock',
 user='root', passwd='', db='mysql', charset='utf8')
 cur = conn.cursor()
 cur.execute('USE wiki_threads')
 while 1:
 if not queue.empty():
 article = queue.get()
 cur.execute('SELECT * FROM pages WHERE path = %s',
 (article["path"]))
 if cur.rowcount == 0:
 print("Storing article {}".format(article["title"]))
 cur.execute('INSERT INTO pages (title, path) VALUES (%s, %s)', \
 (article["title"], article["path"]))
 conn.commit()
 else:
 print("Article already exists: {}".format(article['title']))

visited = []
def getLinks(thread_name, bs):
 print('Getting links in {}'.format(thread_name))
 links = bs.find('div', {'id':'bodyContent'}).find_all('a',
 href=re.compile('^(/wiki/)((?!:).)*$'))
 return [link for link in links if link not in visited]

def scrape_article(thread_name, path, queue):
 visited.append(path)
 html = urlopen('http://en.wikipedia.org{}'.format(path))
 time.sleep(5)
 bs = BeautifulSoup(html, 'html.parser')
 title = bs.find('h1').get_text()

244 | Chapter 16: Web Crawling in Parallel

 print('Added {} for storage in thread {}'.format(title, thread_name))
 queue.put({"title":title, "path":path})
 links = getLinks(thread_name, bs)
 if len(links) > 0:
 newArticle = links[random.randint(0, len(links)-1)].attrs['href']
 scrape_article(thread_name, newArticle, queue)

queue = Queue()
try:
 _thread.start_new_thread(scrape_article, ('Thread 1',
 '/wiki/Kevin_Bacon', queue,))
 _thread.start_new_thread(scrape_article, ('Thread 2',
 '/wiki/Monty_Python', queue,))
 _thread.start_new_thread(storage, (queue,))
except:
 print ('Error: unable to start threads')

while 1:
 pass

This script creates three threads: two to scrape pages from Wikipedia in a random
walk, and a third to store the collected data in a MySQL database. For more informa‐
tion about MySQL and data storage, see Chapter 6.

The threading Module
The Python _thread module is a fairly low-level module that allows you to micro‐
manage your threads but doesn’t provide a lot of higher-level functions that make life
easier. The threading module is a higher-level interface that allows you to use
threads cleanly while still exposing all of the features of the underlying _thread.

For example, you can use static functions like enumerate to get a list of all active
threads initialized through the threading module without needing to keep track of
them yourself. The activeCount function, similarly, provides the total number of
threads. Many functions from _thread are given more convenient or memorable
names, like currentThread instead of get_ident to get the name of the current
thread.

This is a simple threading example:

import threading
import time

def print_time(threadName, delay, iterations):
 start = int(time.time())
 for i in range(0,iterations):
 time.sleep(delay)
 seconds_elapsed = str(int(time.time()) - start)
 print ('{} {}'.format(seconds_elapsed, threadName))

Multithreaded Crawling | 245

threading.Thread(target=print_time, args=('Fizz', 3, 33)).start()
threading.Thread(target=print_time, args=('Buzz', 5, 20)).start()
threading.Thread(target=print_time, args=('Counter', 1, 100)).start()

It produces the same “FizzBuzz” output as the previous simple _thread example.

One of the nice things about the threading module is the ease of creating local thread
data that is unavailable to the other threads. This might be a nice feature if you have
several threads, each scraping a different website, and each keeping track of its own
local list of visited pages.

This local data can be created at any point within the thread function by calling
threading.local():

import threading

def crawler(url):
 data = threading.local()
 data.visited = []
 # Crawl site

threading.Thread(target=crawler, args=('http://brookings.edu')).start()

This solves the problem of race conditions happening between shared objects in
threads. Whenever an object does not need to be shared it should not be, and should
be kept in local thread memory. To safely share objects between threads the Queue
from the previous section can still be used.

The threading module acts as a thread babysitter as sorts, and can be highly custom‐
ized to define what that babysitting entails. The isAlive function by default looks to
see if the thread is still active. It will be true until a thread completes crawling (or
crashes).

Often, crawlers are designed to run for a very long time. The isAlive method can
ensure that, if a thread crashes, it restarts:

threading.Thread(target=crawler)
t.start()

while True:
 time.sleep(1)
 if not t.isAlive():
 t = threading.Thread(target=crawler)
 t.start()

Other monitoring methods can be added by extending the threading.Thread object:

import threading
import time

class Crawler(threading.Thread):

246 | Chapter 16: Web Crawling in Parallel

 def __init__(self):
 threading.Thread.__init__(self)
 self.done = False

 def isDone(self):
 return self.done

 def run(self):
 time.sleep(5)
 self.done = True
 raise Exception('Something bad happened!')

t = Crawler()
t.start()

while True:
 time.sleep(1)
 if t.isDone():
 print('Done')
 break
 if not t.isAlive():
 t = Crawler()
 t.start()

This new Crawler class contains an isDone method that can be used to check if the
crawler is done crawling. This may be useful if there are some additional logging
methods that need to be finished so the thread cannot close, but the bulk of the crawl‐
ing work is done. In general, isDone can be replaced with some sort of status or pro‐
gress measure—how many pages logged, or the current page, for example.

Any exceptions raised by Crawler.run will cause the class to be restarted until isDone
is True and the program exits.

Extending threading.Thread in your crawler classes can improve their robustness
and flexibility, as well as your ability to monitor any property of many crawlers at
once.

Multiprocess Crawling
The Python Processing module creates new process objects that can be started and
joined from the main process. The following code uses the FizzBuzz example from
the section on threading processes to demonstrate.

from multiprocessing import Process
import time

def print_time(threadName, delay, iterations):
 start = int(time.time())
 for i in range(0,iterations):
 time.sleep(delay)

Multiprocess Crawling | 247

 seconds_elapsed = str(int(time.time()) - start)
 print (threadName if threadName else seconds_elapsed)

processes = []
processes.append(Process(target=print_time, args=('Counter', 1, 100)))
processes.append(Process(target=print_time, args=('Fizz', 3, 33)))
processes.append(Process(target=print_time, args=('Buzz', 5, 20)))

for p in processes:
 p.start()
for p in processes:
 p.join()

Remember that each process is treated as an individual independent program by the
OS. If you view your processes through your OS’s activity monitor or task manager,
you should see this reflected, as shown in Figure 16-1.

Figure 16-1. Five Python processes running while running FizzBuzz

The fourth process with PID 76154 is a running Jupyter notebook instance, which
should appear if you are running this from the iPython notebook. The fifth process,
83560, is the main thread of execution, which starts up when the program is first exe‐
cuted. The PIDs are allocated by the OS sequentially. Unless you happen to have
another program that quickly allocates a PID while the FizzBuzz script is running,
you should see three more sequential PIDs—in this case 83561, 83562, and 83563.

These PIDs can also be found in code by using the os module:

import os
...
prints the child PID
os.getpid()
prints the parent PID
os.getppid()

Each process in your program should print a different PID for the line os.getpid(),
but will print the same parent PID on os.getppid().

Technically, there are a couple lines of code that are not needed for this particular
program. If the ending join statement is not included

248 | Chapter 16: Web Crawling in Parallel

for p in processes:
 p.join()

the parent process will still end and terminate the child processes with it automati‐
cally. However, this joining is needed if you wish to execute any code after these child
processes complete.

For example:

for p in processes:
 p.start()
print('Program complete')

If the join statement is not included, the output will be as follows:

Program complete
1
2

If the join statement is included, the program waits for each of the processes to finish
before continuing:

for p in processes:
 p.start()

for p in processes:
 p.join()
print('Program complete')

...
Fizz
99
Buzz
100
Program complete

If you want to stop program execution prematurely, you can of course use Ctrl-C to
terminate the parent process. The termination of the parent process will also termi‐
nate any child processes that have been spawned, so using Ctrl-C is safe to do without
worrying about accidentally leaving processes running in the background.

Multiprocess Crawling
The multithreaded Wikipedia crawling example can be modified to use separate pro‐
cesses rather than separate threads:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import random

from multiprocessing import Process
import os

Multiprocess Crawling | 249

import time

visited = []
def get_links(bs):
 print('Getting links in {}'.format(os.getpid()))
 links = bs.find('div', {'id':'bodyContent'}).find_all('a',
 href=re.compile('^(/wiki/)((?!:).)*$'))
 return [link for link in links if link not in visited]

def scrape_article(path):
 visited.append(path)
 html = urlopen('http://en.wikipedia.org{}'.format(path))
 time.sleep(5)
 bs = BeautifulSoup(html, 'html.parser')
 title = bs.find('h1').get_text()
 print('Scraping {} in process {}'.format(title, os.getpid()))
 links = get_links(bs)
 if len(links) > 0:
 newArticle = links[random.randint(0, len(links)-1)].attrs['href']
 print(newArticle)
 scrape_article(newArticle)

processes = []
processes.append(Process(target=scrape_article, args=('/wiki/Kevin_Bacon',)))
processes.append(Process(target=scrape_article, args=('/wiki/Monty_Python',)))

for p in processes:
 p.start()

Again, you are artificially slowing the process of the scraper by including a
time.sleep(5) so that this can be used for example purposes without placing an
unreasonably high load on Wikipedia’s servers.

Here, you are replacing the user-defined thread_name, passed around as an argu‐
ment, with os.getpid(), which does not need to be passed as an argument and can
be accessed at any point.

This produces output like the following:

Scraping Kevin Bacon in process 84275
Getting links in 84275
/wiki/Philadelphia
Scraping Monty Python in process 84276
Getting links in 84276
/wiki/BBC
Scraping BBC in process 84276
Getting links in 84276
/wiki/Television_Centre,_Newcastle_upon_Tyne
Scraping Philadelphia in process 84275

Crawling in separate processes is, in theory, slightly faster than crawling in separate
threads for two major reasons:

250 | Chapter 16: Web Crawling in Parallel

• Processes are not subject to locking by the GIL and can execute the same lines of
code and modify the same (really, separate instantiations of the same) object at
the same time.

• Processes can run on multiple CPU cores, which may provide speed advantages if
each of your processes or threads is processor intensive.

However, these advantages come with one major disadvantage. In the preceding pro‐
gram, all found URLs are stored in a global visited list. When you were using multi‐
ple threads, this list was shared among all threads; and one thread, in the absence of a
rare race condition, could not visit a page that had already been visited by another
thread. However, each process now gets its own independent version of the visited list
and is free to visit pages that have already been visited by other processes.

Communicating Between Processes
Processes operate in their own independent memory, which can cause problems if
you want them to share information.

Modifying the previous example to print the current output of the visited list, you can
see this principle in action:

def scrape_article(path):
 visited.append(path)
 print("Process {} list is now: {}".format(os.getpid(), visited))

This results in output like the following:

Process 84552 list is now: ['/wiki/Kevin_Bacon']
Process 84553 list is now: ['/wiki/Monty_Python']
Scraping Kevin Bacon in process 84552
Getting links in 84552
/wiki/Desert_Storm
Process 84552 list is now: ['/wiki/Kevin_Bacon', '/wiki/Desert_Storm']
Scraping Monty Python in process 84553
Getting links in 84553
/wiki/David_Jason
Process 84553 list is now: ['/wiki/Monty_Python', '/wiki/David_Jason']

But there is a way to share information between processes on the same machine
through two types of Python objects: queues and pipes.

A queue is similar to the threading queue seen previously. Information can be put
into it by one process and removed by another process. After this information has
been removed, it’s gone from the queue. Because queues are designed as a method of
“temporary data transmission,” they’re not well suited to hold a static reference such
as a “list of webpages that have already been visited.”

Multiprocess Crawling | 251

But what if this static list of web pages was replaced with some sort of a scraping dele‐
gator? The scrapers could pop off a task from one queue in the form of a path to
scrape (for example, /wiki/Monty_Python) and in return, add a list of “found URLs”
back onto a separate queue that would be processed by the scraping delegator so that
only new URLs were added to the first task queue:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import random
from multiprocessing import Process, Queue
import os
import time

def task_delegator(taskQueue, urlsQueue):
 #Initialize with a task for each process
 visited = ['/wiki/Kevin_Bacon', '/wiki/Monty_Python']
 taskQueue.put('/wiki/Kevin_Bacon')
 taskQueue.put('/wiki/Monty_Python')

 while 1:
 # Check to see if there are new links in the urlsQueue
 # for processing
 if not urlsQueue.empty():
 links = [link for link in urlsQueue.get() if link not in visited]
 for link in links:
 #Add new link to the taskQueue
 taskQueue.put(link)

def get_links(bs):
 links = bs.find('div', {'id':'bodyContent'}).find_all('a',
 href=re.compile('^(/wiki/)((?!:).)*$'))
 return [link.attrs['href'] for link in links]

def scrape_article(taskQueue, urlsQueue):
 while 1:
 while taskQueue.empty():
 #Sleep 100 ms while waiting for the task queue
 #This should be rare
 time.sleep(.1)
 path = taskQueue.get()
 html = urlopen('http://en.wikipedia.org{}'.format(path))
 time.sleep(5)
 bs = BeautifulSoup(html, 'html.parser')
 title = bs.find('h1').get_text()
 print('Scraping {} in process {}'.format(title, os.getpid()))
 links = get_links(bs)
 #Send these to the delegator for processing
 urlsQueue.put(links)

252 | Chapter 16: Web Crawling in Parallel

processes = []
taskQueue = Queue()
urlsQueue = Queue()
processes.append(Process(target=task_delegator, args=(taskQueue, urlsQueue,)))
processes.append(Process(target=scrape_article, args=(taskQueue, urlsQueue,)))
processes.append(Process(target=scrape_article, args=(taskQueue, urlsQueue,)))

for p in processes:
 p.start()

Some structural differences exist between this scraper and the ones originally created.
Rather than each process or thread following its own random walk from the starting
point they were assigned, they work together to do a complete coverage crawl of the
website. Each process can pull any “task” from the queue, not just links that they have
found themselves.

Multiprocess Crawling—Another Approach
All of the approaches discussed for multithreaded and multiprocess crawling assume
that you require some sort of “parental guidance” over the child threads and pro‐
cesses. You can start them all at once, you can end them all at once, and you can send
messages or share memory between them.

But what if your scraper is designed in such a way that no guidance or communica‐
tion is required? There may be very little reason to start going crazy with import
_thread just yet.

For example, let’s say you want to crawl two similar websites in parallel. You have a
crawler written that can crawl either of these websites, determined by a small configu‐
ration change or perhaps a command-line argument. There’s absolutely no reason
you can’t simply do the following:

$ python my_crawler.py website1

$ python my_crawler.py website2

And voilà, you’ve just kicked off a multiprocess web crawler, while saving your CPU
the overhead of keeping around a parent process to boot!

Of course, this approach has downsides. If you want to run two web crawlers on the
same website in this way, you need some way of ensuring that they won’t accidentally
start scraping the same pages. The solution might be to create a URL rule (“crawler 1
scrapes the blog pages, crawler 2 scrapes the product pages”) or divide the site in
some way.

Alternatively, you may be able to handle this coordination through some sort of inter‐
mediate database. Before going to a new link, the crawler may make a request to the
database to ask, “Has this page been crawled?” The crawler is using the database as an

Multiprocess Crawling—Another Approach | 253

interprocess communication system. Of course, without careful consideration, this
method may lead to race conditions or lag if the database connection is slow (likely
only a problem if connecting to a remote database).

You may also find that this method isn’t quite as scalable. Using the Process module
allows you to dynamically increase or decrease the number of processes crawling the
site, or even storing data. Kicking them off by hand requires either a person physi‐
cally running the script or a separate managing script (whether a bash script, a cron
job, or something else) doing this.

However, this is a method I have used with great success in the past. For small, one-
off projects, it is a great way to get a lot of information quickly, especially across mul‐
tiple websites.

254 | Chapter 16: Web Crawling in Parallel

CHAPTER 17

Scraping Remotely

In the last chapter, you looked at running web scrapers across multiple threads and
processes, where communication between them was somewhat limited or had to be
carefully planned. This chapter brings this concept to its logical conclusion—running
crawlers not just in separate processes, but on entirely separate machines.

That this is the last technical chapter is the book is somewhat appropriate. Until now
you have been running all the Python applications from the command line, within
the confines of your home computer. Sure, you might have installed MySQL in an
attempt to replicate the environment of a real-life server. But it’s just not the same. As
the saying goes: “If you love something, set it free.”

This chapter covers several methods for running scripts from different machines, or
even just different IP addresses on your own machine. Although you might be
tempted to put this step off as something you don’t need right now, you might be sur‐
prised at how easy it is to get started with the tools you already have (such as a per‐
sonal website on a paid hosting account), and how much easier your life becomes
when you stop trying to run Python scrapers from your laptop.

Why Use Remote Servers?
Although using a remote server might seem like an obvious step when launching a
web app intended for use by a wide audience, more often than not the tools we build
for our own purposes are left running locally. People who decide to push onto a
remote platform usually base their decision on two primary motivations: the need for
greater power and flexibility, and the need to use an alternative IP address.

255

1 Technically, IP addresses can be spoofed in outgoing packets, which is a technique used in distributed denial-
of-service attacks, where the attackers don’t care about receiving return packets (which, if sent, will be sent to
the wrong address). But web scraping is by definition an activity in which a response from the web server is
required, so we think of IP addresses as one thing that can’t be faked.

Avoiding IP Address Blocking
When building web scrapers, the rule of thumb is: almost everything can be faked.
You can send emails from addresses you don’t own, automate mouse-movement data
from a command line, or even horrify web administrators by sending their website
traffic from Internet Explorer 5.0.

The one thing that cannot be faked is your IP address. Anyone can send you a letter
with the return address: “The President, 1600 Pennsylvania Avenue Northwest,
Washington, DC 20500.” However, if the letter is postmarked from Albuquerque,
NM, you can be fairly certain you’re not corresponding with the President of the Uni‐
ted States.1

Most efforts to stop scrapers from accessing websites focus on detecting the differ‐
ence between humans and bots. Going so far as to block IP addresses is a little like a
farmer giving up spraying pesticides in favor of just torching the field. It’s a last-ditch
but effective method of discarding packets sent from troublesome IP addresses. How‐
ever, there are problems with this solution:

• IP address access lists are painful to maintain. Although large websites most
often have their own programs automating some of the routine management of
these lists (bots blocking bots!), someone has to occasionally check them, or at
least monitor their growth for problems.

• Each address adds a tiny amount of processing time to receive packets, as the
server must check received packets against the list to decide whether to approve
them. Many addresses multiplied by many packets can add up quickly. To save on
processing time and complexity, admins often group these IP addresses into
blocks and make rules such as “all 256 addresses in this range are blocked” if
there are a few tightly clustered offenders. Which leads us to the third point.

• IP address blocking can lead to blocking the “good guys” as well. For example,
while I was an undergrad at Olin College of Engineering, one student wrote some
software that attempted to rig votes for popular content on http://digg.com (this
was before Reddit was in vogue). A single blocked IP address led to an entire dor‐
mitory being unable to access the site. The student simply moved his software to
another server; in the meantime, Digg lost page visits from many regular users in
its prime target demographic.

256 | Chapter 17: Scraping Remotely

http://digg.com/

Despite its drawbacks, IP address blocking remains an extremely common method
for server administrators to stop suspected web scrapers from accessing servers. If an
IP address is blocked, the only real solution is to scrape from a different IP address.
This can be accomplished by moving the scraper to a new server or routing your traf‐
fic through a different server using a service such as Tor.

Portability and Extensibility
Some tasks are too large for a home computer and internet connection. Although you
don’t want to put a large load on any single website, you might be collecting data
across a wide range of sites, and require a lot more bandwidth and storage than your
current setup can provide.

Moreover, by offloading computationally intensive processing, you can free up your
home machine’s cycles for more important tasks (World of Warcraft, anyone?). You
don’t have to worry about maintaining power and an internet connection (launch
your app at a Starbucks, pack up your laptop, and leave, knowing that everything’s
still running safely), and you can access your collected data anywhere there’s an inter‐
net connection.

If you have an application that requires so much computing power that a single Ama‐
zon extra-large computing instance won’t satisfy you, you can also look into dis‐
tributed computing. This allows multiple machines to work in parallel to accomplish
your goals. As a simple example, you might have one machine crawl one set of sites
and another crawl a second set of sites, and have both of them store collected data in
the same database.

Of course, as noted in previous chapters, many can replicate what Google search
does, but few can replicate the scale at which Google search does it. Distributed com‐
puting is a large field of computer science that is outside the scope of this book. How‐
ever, learning how to launch your application onto a remote server is a necessary first
step, and you might be surprised at what computers are capable of these days.

Tor
The Onion Router network, better known by the acronym Tor, is a network of volun‐
teer servers set up to route and reroute traffic through many layers (hence the onion
reference) of different servers in order to obscure its origin. Data is encrypted before
it enters the network so that if any particular server is eavesdropped on, the nature of
the communication cannot be revealed. In addition, although the inbound and out‐
bound communications of any particular server can be compromised, one would
need to know the details of inbound and outbound communication for all the servers
along the path of communication in order to decipher the true start and endpoints of
a communication—a near-impossible feat.

Tor | 257

Tor is commonly used by human rights workers and political whistleblowers to com‐
municate with journalists, and receives much of its funding from the US government.
Of course, it is also commonly used for illegal activities as well, and so remains a con‐
stant target for government surveillance (although to date, the surveillance has had
only mixed success).

Limitations of Tor Anonymity

Although the reason you are using Tor in this book is to change
your IP address, not achieve complete anonymity per se, it is worth
taking a moment to address some of the strengths and limitations
of Tor’s ability to anonymize traffic.
Although you can assume when using Tor that the IP address you
are coming from, according to a web server, is not an IP address
that can be traced back to you, any information you share with that
web server might expose you. For instance, if you log into your
own Gmail account and then make incriminating Google searches,
those searches can now be tied back to your identity.
Beyond the obvious, however, even the act of logging into Tor
might be hazardous to your anonymity. In December 2013, a Har‐
vard undergraduate student, in an attempt to get out of final
exams, emailed a bomb threat to the school through the Tor net‐
work, using an anonymous email account. When the Harvard IT
team looked at their logs, they found traffic going out to the Tor
network from only a single machine, registered to a known stu‐
dent, during the time that the bomb threat was sent. Although they
could not identify the eventual destination of this traffic (only that
it was sent across Tor), the fact that the times matched up and only
a single machine was logged in at the time was damning enough to
prosecute the student.
Logging into Tor is not an automatic invisibility cloak, nor does it
give you free reign to do as you please on the internet. Although it
is a useful tool, be sure to use it with caution, intelligence, and, of
course, morality.

Having Tor installed and running is a requirement for using Python with Tor, as you
will see in the next section. Fortunately, the Tor service is extremely easy to install and
start running with. Just go to the Tor downloads page and download, install, open,
and connect. Keep in mind that your internet speed might appear to be slower while
using Tor. Be patient—it might be going around the world several times!

258 | Chapter 17: Scraping Remotely

https://www.torproject.org/download/download

PySocks
PySocks is a remarkably simple Python module that is capable of routing traffic
through proxy servers and that works fantastically in conjunction with Tor. You can
download it from its website or use any number of third-party module managers to
install it.

Although not much in the way of documentation exists for this module, using it is
extremely straightforward. The Tor service must be running on port 9150 (the default
port) while running this code:

import socks
import socket
from urllib.request import urlopen

socks.set_default_proxy(socks.SOCKS5, "localhost", 9150)
socket.socket = socks.socksocket
print(urlopen('http://icanhazip.com').read())

The website http://icanhazip.com displays only the IP address for the client connect‐
ing to the server and can be useful for testing purposes. When this script is run, it
should display an IP address that is not your own.

If you want to use Selenium and ChromeDriver with Tor, you don’t need PySocks at
all—just make sure that Tor is currently running and add the optional proxy-server
chrome option, specifying that Selenium should connect on the socks5 protocol on
port 9150:

from selenium import webdriver
from selenium.webdriver.chrome.options import Options

chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--proxy-server=socks5://127.0.0.1:9150")
driver = webdriver.Chrome(executable_path='drivers/chromedriver',
 options=chrome_options)

driver.get('http://icanhazip.com')
print(driver.page_source)
driver.close()

Again, this should print out an IP address that is not your own but the one that your
running Tor client is currently using.

Remote Hosting
Although complete anonymity is lost after you pull out your credit card, hosting your
web scrapers remotely may dramatically improve their speed. This is both because
you’re able to purchase time on much larger machines than you likely own, but also

Remote Hosting | 259

https://pypi.python.org/pypi/PySocks/1.5.0
http://icanhazip.com

because the connection no longer has to bounce through layers of a Tor network in
order to reach its destination.

Running from a Website-Hosting Account
If you have a personal or business website, you might already likely have the means to
run your web scrapers from an external server. Even with relatively locked-down web
servers, where you have no access to the command line, it is possible to trigger scripts
to start and stop through a web interface.

If your website is hosted on a Linux server, the server likely already runs Python. If
you’re hosting on a Windows server, you might be out of luck; you’ll need to check
specifically to see if Python is installed, or if the server administrator is willing to
install it.

Most small web-hosting providers come with software called cPanel, used to provide
basic administration services and information about your website and related serv‐
ices. If you have access to cPanel, you can make sure that Python is set up to run on
your server by going to Apache Handlers and adding a new handler (if it is not
already present):

Handler: cgi-script
Extension(s): .py

This tells your server that all Python scripts should be executed as a CGI-script. CGI,
which stands for Common Gateway Interface, is any program that can be run on a
server and dynamically generate content that is displayed on a website. By explicitly
defining Python scripts as CGI scripts, you’re giving the server permission to execute
them, rather than just display them in a browser or send the user a download.

Write your Python script, upload it to the server, and set the file permissions to 755 to
allow it to be executed. To execute the script, navigate to the place you uploaded it to
through your browser (or even better, write a scraper to do it for you). If you’re wor‐
ried about the general public accessing and executing the script, you have two
options:

• Store the script at an obscure or hidden URL and make sure to never link to the
script from any other accessible URL to avoid search engines indexing it.

• Protect the script with a password, or require that a password or secret token be
sent to it before it can execute.

Of course, running a Python script from a service that is specifically designed to dis‐
play websites is a bit of a hack. For instance, you’ll probably notice that your web
scraper-cum-website is a little slow to load. In fact, the page doesn’t actually load
(complete with the output of all print statements you might have written in) until the
entire scrape is complete. This might take minutes, hours, or never complete at all,

260 | Chapter 17: Scraping Remotely

depending on how it is written. Although it certainly gets the job done, you might
want more real-time output. For that, you’ll need a server that’s designed for more
than just the web.

Running from the Cloud
Back in the olden days of computing, programmers paid for or reserved time on
computers in order to execute their code. With the advent of personal computers, this
became unnecessary—you simply write and execute code on your own computer.
Now, the ambitions of the applications have outpaced the development of the micro‐
processor to such a degree that programmers are once again moving to pay-per-hour
computing instances.

This time around, however, users aren’t paying for time on a single, physical machine
but on its equivalent computing power, often spread among many machines. The
nebulous structure of this system allows computing power to be priced according to
times of peak demand. For instance, Amazon allows for bidding on “spot instances”
when low costs are more important than immediacy.

Compute instances are also more specialized, and can be selected based on the needs
of your application, with options like “high memory,” “fast computing,” and “large
storage.” Although web scrapers don’t usually use much in the way of memory, you
may want to consider large storage or fast computing in lieu of a more general-
purpose instance for your scraping application. If you’re doing large amounts of natu‐
ral language processing, OCR work, or path finding (such as with the Six Degrees of
Wikipedia problem), a fast computing instance might work well. If you’re scraping
large amounts of data, storing files, or doing large-scale analytics, you might want to
go for an instance with storage optimization.

Although the sky is the limit as far as spending goes, at the time of this writing,
instances start at just 1.3 cents an hour (for an Amazon EC2 micro instance), and
Google’s cheapest instance is 4.5 cents an hour, with a minimum of just 10 minutes.
Thanks to the economies of scale, buying a small compute instance with a large com‐
pany is about the same as buying your own physical, dedicated machine—except that
now, you don’t need to hire an IT guy to keep it running.

Of course, step-by-step instructions for setting up and running cloud computing
instances are somewhat outside the scope of this book, but you will likely find that
step-by-step instructions are not needed. With both Amazon and Google (not to
mention the countless smaller companies in the industry) vying for cloud computing
dollars, they’ve made setting up new instances as easy as following a simple prompt,
thinking of an app name, and providing a credit card number. As of this writing, both
Amazon and Google also offer hundreds of dollars’ worth of free computing hours to
further tempt new clients.

Remote Hosting | 261

Once you have an instance set up, you should be the proud new owner of an IP
address, username, and public/private keys that can be used to connect to your
instance through SSH. From there, everything should be the same as working with a
server that you physically own—except, of course, you no longer have to worry about
hardware maintenance or running your own plethora of advanced monitoring tools.

For quick and dirty jobs, especially if you don’t have a lot of experience dealing with
SSH and key pairs, I’ve found that Google’s Cloud Platform instances can be easier to
get up and running right away. They have a simple launcher and even have a button
available after launch to view an SSH terminal right in the browser, as shown in
Figure 17-1.

Figure 17-1. Browser-based terminal from a running Google Cloud Platform VM
instance

Additional Resources
Many years ago, running “in the cloud” was mostly the domain of those who felt like
slogging through the documentation and already had some server administration
experience. However, today, the tools have improved dramatically, due to increased
popularity and competition among cloud computing providers.

Still, for building large-scale or more-complex scrapers and crawlers, you might want
a little more guidance on creating a platform for collecting and storing data.

Google Compute Engine by Marc Cohen, Kathryn Hurley, and Paul Newson (O’Reilly)
is a straightforward resource on using Google Cloud Computing with both Python
and JavaScript. Not only does it cover Google’s user interface, but also the command-
line and scripting tools that you can use to give your application greater flexibility.

If you prefer to work with Amazon, Mitch Garnaat’s Python and AWS Cookbook
(O’Reilly) is a brief but extremely useful guide that will get you started with Amazon
Web Services and show you how to get a scalable application up and running.

262 | Chapter 17: Scraping Remotely

http://oreil.ly/1FVOw6y
http://oreil.ly/VSctQP

CHAPTER 18

The Legalities and Ethics of Web Scraping

In 2010, software engineer Pete Warden built a web crawler to gather data from Face‐
book. He collected data from approximately 200 million Facebook users—names,
location information, friends, and interests. Of course, Facebook noticed and sent
him cease-and-desist letters, which he obeyed. When asked why he complied with the
cease and desist, he said: “Big data? Cheap. Lawyers? Not so cheap.”

In this chapter, you’ll look at US laws (and some international ones) that are relevant
to web scraping, and learn how to analyze the legality and ethics of a given web scrap‐
ing situation.

Before you read this section, consider the obvious: I am a software engineer, not a
lawyer. Do not interpret anything you read here or in any other chapter of the book as
professional legal advice or act on it accordingly. Although I believe I’m able to dis‐
cuss the legalities and ethics of web scraping knowledgeably, you should consult a
lawyer (not a software engineer) before undertaking any legally ambiguous web
scraping projects.

The goal of this chapter is to provide you with a framework for being able to under‐
stand and discuss various aspects of web scraping legalities, such as intellectual prop‐
erty, unauthorized computer access, and server usage, but should not be a substitute
for actual legal advice.

Trademarks, Copyrights, Patents, Oh My!
Time for some Intellectual Property 101! There are three basic types of IP: trade‐
marks (indicated by a ™ or ® symbol), copyrights (the ubiquitous ©), and patents
(sometimes indicated by text noting that the invention is patent protected or a patent
number, but often by nothing at all).

263

Patents are used to declare ownership over inventions only. You cannot patent
images, text, or any information itself. Although some patents, such as software pat‐
ents, are less tangible than what we think of as “inventions,” keep in mind that it is the
thing (or technique) that is patented—not the information contained in the patent.
Unless you are either building things from scraped blueprints, or someone patents a
method of web scraping, you are unlikely to inadvertently infringe on a patent by
scraping the web.

Trademarks also are unlikely to be an issue, but still something that must be consid‐
ered. According to the US Patent and Trademark Office:

A trademark is a word, phrase, symbol, and/or design that identifies and distinguishes
the source of the goods of one party from those of others. A service mark is a word,
phrase, symbol, and/or design that identifies and distinguishes the source of a service
rather than goods. The term “trademark” is often used to refer to both trademarks and
service marks.

In addition to the traditional words/symbols branding that we think of when we
think of trademarks, other descriptive attributes can be trademarked. This includes,
for example, the shape of a container (think Coca-Cola bottles) or even a color (most
notably, the pink color of Owens Corning’s Pink Panther fiberglass insulation).

Unlike with patents, the ownership of a trademark depends heavily on the context in
which it is used. For example, if I wish to publish a blog post with an accompanying
picture of the Coca-Cola logo, I could do that (as long as I wasn’t implying that my
blog post was sponsored by, or published by, Coca-Cola). If I wanted to manufacture
a new soft drink with the same Coca-Cola logo displayed on the packaging, that
would clearly be a trademark infringement. Similarly, although I could package my
new soft drink in Pink Panther pink, I could not use that same color to create a home
insulation product.

Copyright Law
Both trademarks and patents have something in common in that they have to be for‐
mally registered in order to be recognized. Contrary to popular belief, this is not true
with copyrighted material. What makes images, text, music, etc., copyrighted? It’s not
the All Rights Reserved warning at the bottom of the page, nor anything special about
“published” versus “unpublished” material. Every piece of material you create is auto‐
matically subject to copyright law as soon as you bring it into existence.

The Berne Convention for the Protection of Literary and Artistic Works, named after
Berne, Switzerland, where it was first adopted in 1886, is the international standard
for copyright. This convention says, in essence, that all member countries must recog‐
nize the copyright protection of the works of citizens of other member countries as if
they were citizens of their own country. In practice, this means that, as a US citizen,

264 | Chapter 18: The Legalities and Ethics of Web Scraping

you can be held accountable in the United States for violating the copyright of mate‐
rial written by someone in, say, France (and vice versa).

Obviously, copyright is a concern for web scrapers. If I scrape content from someone’s
blog and publish it on my own blog, I could very well be opening myself up to a law‐
suit. Fortunately, I have several layers of protection that might make my blog-
scraping project defensible, depending on how it functions.

First, copyright protection extends to creative works only. It does not cover statistics
or facts. Fortunately, much of what web scrapers are after are statistics and facts.
Although a web scraper that gathers poetry from around the web and displays that
poetry on your own website might be violating copyright law, a web scraper that gath‐
ers information on the frequency of poetry postings over time is not. The poetry, in
its raw form, is a creative work. The average word count of poems published on a
website by month is factual data and not a creative work.

Content that is posted verbatim (as opposed to aggregated/calculated content from
raw scraped data) might not be violating copyright law if that data is prices, names of
company executives, or some other factual piece of information.

Even copyrighted content can be used directly, within reason, under the Digital Mil‐
lennium Copyright Act. The DMCA outlines some rules for the automated handling
of copyrighted material. The DMCA is long, with many specific rules governing
everything from ebooks to telephones. However, two main points may be of particu‐
lar relevance to web scraping:

• Under the “safe harbor” protection, if you scrape material from a source that you
are led to believe contains only copyright-free material, but a user has submitted
copyright material to, you are protected as long as you removed the copyrighted
material when notified.

• You cannot circumvent security measures (such as password protection) in order
to gather content.

In addition, the DMCA also acknowledges that fair use under the US Code applies,
and that take-down notices may not be issued according to the safe harbor protection
if the use of the copyrighted material falls under fair use.

In short, you should never directly publish copyrighted material without permission
from the original author or copyright holder. If you are storing copyrighted material
that you have free access to in your own nonpublic database for the purposes of anal‐
ysis, that is fine. If you are publishing that database to your website for viewing or
download, that is not fine. If you are analyzing that database and publishing statistics
about word counts, a list of authors by prolificacy, or some other meta-analysis of the
data, that is fine. If you are accompanying that meta-analysis with a few select quotes,

Trademarks, Copyrights, Patents, Oh My! | 265

1 Bryan Walsh, “The Surprisingly Large Energy Footprint of the Digital Economy [UPDATE]”, TIME.com,
August 14, 2013.

or brief samples of data to make your point, that is likely also fine, but you might
want to examine the fair-use clause in the US Code to make sure.

Trespass to Chattels
Trespass to chattels is fundamentally different from what we think of as “trespassing
laws” in that it applies not to real estate or land but to movable property (such as a
server). It applies when your access to property is interfered with in some way that
does not allow you to access or use it.

In this era of cloud computing, it’s tempting not to think of web servers as real, tangi‐
ble resources. However, not only do servers consist of expensive components, but
they need to be stored, monitored, cooled, and supplied with vast amounts of elec‐
tricity. By some estimates, 10% of global electricity usage is consumed by computers.1

(If a survey of your own electronics doesn’t convince you, consider Google’s vast
server farms, all of which need to be connected to large power stations.)

Although servers are expensive resources, they’re interesting from a legal perspective
in that webmasters generally want people to consume their resources (i.e., access their
websites); they just don’t want them to consume their resources too much. Checking
out a website via your browser is fine; launching a full-scale DDOS against it obvi‐
ously is not.

Three criteria need to be met for a web scraper to violate trespass to chattels:

Lack of consent
Because web servers are open to everyone, they are generally “giving consent” to
web scrapers as well. However, many websites’ Terms of Service agreements
specifically prohibit the use of scrapers. In addition, any cease-and-desist notices
delivered to you obviously revoke this consent.

Actual harm
Servers are costly. In addition to server costs, if your scrapers take a website
down, or limit its ability to serve other users, this can add to the “harm” you
cause.

Intentionality
If you’re writing the code, you know what it does!

You must meet all three of these criteria for trespass to chattels to apply. However, if
you are violating a Terms of Service agreement, but not causing actual harm, don’t
think that you’re immune from legal action. You might very well be violating copy‐

266 | Chapter 18: The Legalities and Ethics of Web Scraping

http://ti.me/2IFOF3F

right law, the DMCA, the Computer Fraud and Abuse Act (more on that later), or
one of the other myriad of laws that apply to web scrapers.

Throttling Your Bots
Back in the olden days, web servers were far more powerful than personal computers.
In fact, part of the definition of server was big computer. Now, the tables have turned
somewhat. My personal computer, for instance, has a 3.5 GHz processor and 8 GB of
RAM. An Amazon medium instance, in contrast (as of the writing of this book), has 4
GB of RAM and about 3 GHz of processing capacity.

With a decent internet connection and a dedicated machine, even a single personal
computer can place a heavy load on many websites, even crippling them or taking
them down completely. Unless there’s a medical emergency and the only cure is
aggregating all the data from Joe Schmo’s website in two seconds flat, there’s really no
reason to hammer a site.

A watched bot never completes. Sometimes it’s better to leave crawlers running over‐
night than in the middle of the afternoon or evening for a few reasons:

• If you have about eight hours, even at the glacial pace of two seconds per page,
you can crawl over 14,000 pages. When time is less of an issue, you’re not
tempted to push the speed of your crawlers.

• Assuming the target audience of the website is in your general location (adjust
accordingly for remote target audiences), the website’s traffic load is probably far
lower during the night, meaning that your crawling will not be compounding
peak traffic hour congestion.

• You save time by sleeping, instead of constantly checking your logs for new infor‐
mation. Think of how excited you’ll be to wake up in the morning to brand-new
data!

Consider the following scenarios:

• You have a web crawler that traverses Joe Schmo’s website, aggregating some or
all of its data.

• You have a web crawler that traverses hundreds of small websites, aggregating
some or all of their data.

• You have a web crawler that traverses a very large site, such as Wikipedia.

In the first scenario, it’s best to leave the bot running slowly, and during the night.

In the second scenario, it’s best to crawl each website in a round-robin fashion, rather
than crawling them slowly, one at a time. Depending on how many websites you’re
crawling, this means that you can collect data as fast as your internet connection and
machine can manage, yet the load is reasonable for each individual remote server.

Trespass to Chattels | 267

You can accomplish this programmatically, either using multiple threads (where each
individual thread crawls a single site and pauses its own execution), or using Python
lists to keep track of sites.

In the third scenario, the load your internet connection and home machine can place
on a site like Wikipedia is unlikely to be noticed or cared much about. However, if
you’re using a distributed network of machines, this is obviously a different matter.
Use caution, and ask a company representative whenever possible.

The Computer Fraud and Abuse Act
In the early 1980s, computers started moving out of academia and into the business
world. For the first time, viruses and worms were seen as more than an inconven‐
ience (or even a fun hobby) and as a serious criminal matter that could cause mone‐
tary damages. In response, the Computer Fraud and Abuse Act was created in 1986.

Although you might think that the act applies to only a stereotypical version of a
malicious hacker unleashing viruses, the act has strong implications for web scrapers
as well. Imagine a scraper that scans the web looking for login forms with easy-to-
guess passwords, or collects government secrets accidentally left in a hidden but pub‐
lic location. All of these activities are illegal (and rightly so) under the CFAA.

The act defines seven main criminal offenses, which can be summarized as follows:

• The knowing unauthorized access of computers owned by the US government
and obtaining information from those computers.

• The knowing unauthorized access of a computer, obtaining financial informa‐
tion.

• The knowing unauthorized access of a computer owned by the US government,
affecting the use of that computer by the government.

• Knowingly accessing any protected computer with the attempt to defraud.
• Knowingly accessing a computer without authorization and causing damage to

that computer.
• Shares or traffics passwords or authorization information for computers used by

the US government or computers that affect interstate or foreign commerce.
• Attempts to extort money or “anything of value” by causing damage, or threaten‐

ing to cause damage, to any protected computer.

In short: stay away from protected computers, do not access computers (including
web servers) that you are not given access to, and especially, stay away from govern‐
ment or financial computers.

268 | Chapter 18: The Legalities and Ethics of Web Scraping

robots.txt and Terms of Service
A website’s terms of service and robots.txt files are in interesting territory, legally
speaking. If a website is publicly accessible, the webmaster’s right to declare what soft‐
ware can and cannot access it is debatable. Saying “it is fine if you use your browser to
view this site, but not if you use a program you wrote to view it” is tricky.

Most sites have a link to their Terms of Service in the footer on every page. The TOS
contains more than just the rules for web crawlers and automated access; it often has
information about what kind of information the website collects, what it does with it,
and usually a legal disclaimer that the services provided by the website come without
any express or implied warranty.

If you are interested in search engine optimization (SEO) or search engine technol‐
ogy, you’ve probably heard of the robots.txt file. If you go to just about any large web‐
site and look for its robots.txt file, you will find it in the root web folder: http://
website.com/robots.txt.

The syntax for robots.txt files was developed in 1994 during the initial boom of web
search engine technology. It was about this time that search engines scouring the
entire internet, such as AltaVista and DogPile, started competing in earnest with sim‐
ple lists of sites organized by subject, such as the one curated by Yahoo! This growth
of search across the internet meant an explosion in not only the number of web
crawlers, but in the availability of information collected by those web crawlers to the
average citizen.

While we might take this sort of availability for granted today, some webmasters were
shocked when information they published deep in the file structure of their website
became available on the front page of search results in major search engines. In
response, the syntax for robots.txt files, called the Robots Exclusion Standard, was
developed.

Unlike the TOS, which often talks about web crawlers in broad terms and in very
human language, robots.txt can be parsed and used by automated programs extremely
easily. Although it might seem like the perfect system to solve the problem of unwan‐
ted bots once and for all, keep in mind the following:

• There is no official governing body for the syntax of robots.txt. It is a commonly
used and generally well-followed convention, but there is nothing to stop anyone
from creating their own version of a robots.txt file (apart from the fact that no bot
will recognize or obey it until it gets popular). That being said, it is a widely
accepted convention, mostly because it is relatively straightforward, and there is
no incentive for companies to invent their own standard or try to improve on it.

• There is no way to enforce a robots.txt file. It is merely a sign that says “Please
don’t go to these parts of the site.” Many web scraping libraries are available that

robots.txt and Terms of Service | 269

obey robots.txt (although this is often merely a default setting that can be overrid‐
den). Beyond that, there are often more barriers to following a robots.txt file
(after all, you need to scrape, parse, and apply the contents of the page to your
code logic) than there are to just going ahead and scraping whatever page you
want to.

The Robot Exclusion Standard syntax is fairly straightforward. As in Python (and
many other languages), comments begin with a # symbol, end with a newline, and
can be used anywhere in the file.

The first line of the file, apart from any comments, is started with User-agent:,
which specifies the user that the following rules apply to. This is followed by a set of
rules, either Allow: or Disallow:, depending on whether the bot is allowed on that
section of the site. An asterisk (*) indicates a wildcard and can be used to describe
either a User-agent or a URL.

If a rule follows a rule that it seems to contradict, the last rule takes precedence. For
example:

#Welcome to my robots.txt file!
User-agent: *
Disallow: *

User-agent: Googlebot
Allow: *
Disallow: /private

In this case, all bots are disallowed from anywhere on the site, except for the Google‐
bot, which is allowed anywhere except for the /private directory.

Twitter’s robots.txt file has explicit instructions for the bots of Google, Yahoo!, Yandex
(a popular Russian search engine), Microsoft, and other bots or search engines not
covered by any of the preceding categories. The Google section (which looks identical
to the permissions allowed to all other categories of bots) looks like this:

#Google Search Engine Robot
User-agent: Googlebot
Allow: /?_escaped_fragment_

Allow: /?lang=
Allow: /hashtag/*?src=
Allow: /search?q=%23
Disallow: /search/realtime
Disallow: /search/users
Disallow: /search/*/grid

Disallow: /*?
Disallow: /*/followers
Disallow: /*/following

270 | Chapter 18: The Legalities and Ethics of Web Scraping

Notice that Twitter restricts access to the portions of its site that it has an API in place
for. Because Twitter has a well-regulated API (and one that it can make money off of
by licensing), it is in the company’s best interest to disallow any “home-brewed APIs”
that gather information by independently crawling its site.

Although a file telling your crawler where it can’t go might seem restrictive at first, it
can be a blessing in disguise for web crawler development. If you find a robots.txt file
that disallows crawling in a particular section of the site, the webmaster is saying,
essentially, that they are fine with crawlers in all other sections of the site (after all, if
they weren’t fine with it, they would have restricted access when they were writing
robots.txt in the first place).

For example, the section of Wikipedia’s robots.txt file that applies to general web scra‐
pers (as opposed to search engines) is wonderfully permissive. It even goes as far as
containing human-readable text to welcome bots (that’s us!) and blocks access to only
a few pages, such as the login page, search page, and “random article” page:

#
Friendly, low-speed bots are welcome viewing article pages, but not
dynamically generated pages please.
#
Inktomi's "Slurp" can read a minimum delay between hits; if your bot supports
such a thing using the 'Crawl-delay' or another instruction, please let us
know.
#
There is a special exception for API mobileview to allow dynamic mobile web &
app views to load section content.
These views aren't HTTP-cached but use parser cache aggressively and don't
expose special: pages etc.
#
User-agent: *
Allow: /w/api.php?action=mobileview&
Disallow: /w/
Disallow: /trap/
Disallow: /wiki/Especial:Search
Disallow: /wiki/Especial%3ASearch
Disallow: /wiki/Special:Collection
Disallow: /wiki/Spezial:Sammlung
Disallow: /wiki/Special:Random
Disallow: /wiki/Special%3ARandom
Disallow: /wiki/Special:Search
Disallow: /wiki/Special%3ASearch
Disallow: /wiki/Spesial:Search
Disallow: /wiki/Spesial%3ASearch
Disallow: /wiki/Spezial:Search
Disallow: /wiki/Spezial%3ASearch
Disallow: /wiki/Specjalna:Search
Disallow: /wiki/Specjalna%3ASearch
Disallow: /wiki/Speciaal:Search
Disallow: /wiki/Speciaal%3ASearch

robots.txt and Terms of Service | 271

Disallow: /wiki/Speciaal:Random
Disallow: /wiki/Speciaal%3ARandom
Disallow: /wiki/Speciel:Search
Disallow: /wiki/Speciel%3ASearch
Disallow: /wiki/Speciale:Search
Disallow: /wiki/Speciale%3ASearch
Disallow: /wiki/Istimewa:Search
Disallow: /wiki/Istimewa%3ASearch
Disallow: /wiki/Toiminnot:Search
Disallow: /wiki/Toiminnot%3ASearch

Whether you choose to write web crawlers that obey robots.txt is up to you, but I
highly recommend it, particularly if you have crawlers that indiscriminately crawl the
web.

Three Web Scrapers
Because web scraping is such a limitless field, there are a staggering number of ways
to land yourself in legal hot water. This section presents three cases that touched on
some form of law that generally applies to web scrapers, and how it was used in that
case.

eBay versus Bidder’s Edge and Trespass to Chattels
In 1997, the Beanie Baby market was booming, the tech sector was bubbling, and
online auction houses were the hot new thing on the internet. A company called
Bidder’s Edge formed and created a new kind of meta-auction site. Rather than force
you to go from auction site to auction site, comparing prices, it would aggregate data
from all current auctions for a specific product (say, a hot new Furby doll or a copy of
Spice World) and point you to the site that had the lowest price.

Bidder’s Edge accomplished this with an army of web scrapers, constantly making
requests to the web servers of the various auction sites in order to get price and prod‐
uct information. Of all the auction sites, eBay was the largest, and Bidder’s Edge hit
eBay’s servers about 100,000 times a day. Even by today’s standards, this is a lot of
traffic. According to eBay, this was 1.53% of its total internet traffic at the time, and it
certainly wasn’t happy about it.

eBay sent Bidder’s Edge a cease-and-desist letter, coupled with an offer to license its
data. However, negotiations for this licensing failed, and Bidder’s Edge continued to
crawl eBay’s site.

eBay tried blocking IP addresses used by Bidder’s Edge, blocking 169 IP addresses—
although Bidder’s Edge was able to get around this by using proxy servers (servers
that forward requests on behalf of another machine, but using the proxy server’s own
IP address). As I’m sure you can imagine, this was a frustrating and unsustainable
solution for both parties—Bidder’s Edge was constantly trying to find new proxy

272 | Chapter 18: The Legalities and Ethics of Web Scraping

servers and buy new IP addresses while old ones were blocked, and eBay was forced
to maintain large firewall lists (and adding computationally expensive IP address-
comparing overhead to each packet check).

Finally, in December of 1999, eBay sued Bidder’s Edge under trespass to chattels.

Because eBay’s servers were real, tangible resources that it owned, and it didn’t appre‐
ciate Bidder’s Edge’s abnormal use of them, trespass to chattels seemed like the ideal
law to use. In fact, in modern times, trespass to chattels goes hand in hand with web-
scraping lawsuits, and is most often thought of as an IT law.

The courts ruled that in order for eBay to win its case using trespass to chattels, eBay
had to show two things:

• Bidder’s Edge did not have permission to use eBay’s resources.
• eBay suffered financial loss as a result of Bidder’s Edge’s actions.

Given the record of eBay’s cease-and-desist letters, coupled with IT records showing
server usage and actual costs associated with the servers, this was relatively easy for
eBay to do. Of course, no large court battles end easily: countersuits were filed, many
lawyers were paid, and the matter was eventually settled out of court for an undis‐
closed sum in March 2001.

So does this mean that any unauthorized use of another person’s server is automati‐
cally a violation of trespass to chattels? Not necessarily. Bidder’s Edge was an extreme
case; it was using so many of eBay’s resources that the company had to buy additional
servers, pay more for electricity, and perhaps hire additional personnel (although
1.53% might not seem like a lot, in large companies, it can add up to a significant
amount).

In 2003, the California Supreme Court ruled on another case, Intel Corp versus
Hamidi, in which a former Intel employee (Hamidi) sent emails Intel didn’t like,
across Intel’s servers, to Intel employees. The court said:

Intel’s claim fails not because e-mail transmitted through the internet enjoys unique
immunity, but because the trespass to chattels tort—unlike the causes of action just
mentioned—may not, in California, be proved without evidence of an injury to the
plaintiff ’s personal property or legal interest therein.

Essentially, Intel had failed to prove that the costs of transmitting the six emails sent
by Hamidi to all employees (each one, interestingly enough, with an option to be
removed from Hamidi’s mailing list—at least he was polite!) contributed to any finan‐
cial injury for them. It did not deprive Intel of any property or use of their property.

Three Web Scrapers | 273

United States v. Auernheimer and The Computer Fraud and Abuse Act
If information is readily accessible on the internet to a human using a web browser,
it’s unlikely that accessing the same exact information in an automated fashion would
land you in hot water with the Feds. However, as easy as it can be for a sufficiently
curious person to find a small security leak, that small security leak can quickly
become a much larger and much more dangerous one when automated scrapers enter
the picture.

In 2010, Andrew Auernheimer and Daniel Spitler noticed a nice feature of iPads:
when you visited AT&T’s website on them, AT&T would redirect you to a URL con‐
taining your iPad’s unique ID number:

https://dcp2.att.com/OEPClient/openPage?ICCID=<idNumber>&IMEI=

This page would contain a login form, with the email address of the user whose ID
number was in the URL. This allowed users to gain access to their accounts simply by
entering their password.

Although there were a large number of potential iPad ID numbers, it was possible,
given enough web scrapers, to iterate through the possible numbers, gathering email
addresses along the way. By providing users with this convenient login feature, AT&T,
in essence, made its customer email addresses public to the web.

Auernheimer and Spitler created a scraper that collected 114,000 of these email
addresses, among them the private email addresses of celebrities, CEOs, and govern‐
ment officials. Auernheimer (but not Spitler) then sent the list, and information
about how it was obtained, to Gawker Media, which published the story (but not the
list) under the headline: “Apple’s Worst Security Breach: 114,000 iPad Owners
Exposed.”

In June 2011, Auernheimer’s home was raided by the FBI in connection with the
email address collection, although they ended up arresting him on drug charges. In
November 2012, he was found guilty of identity fraud and conspiracy to access a
computer without authorization, and later sentenced to 41 months in federal prison
and ordered to pay $73,000 in restitution.

His case caught the attention of civil rights lawyer Orin Kerr, who joined his legal
team and appealed the case to the Third Circuit Court of Appeals. On April 11, 2014
(these legal processes can take quite a while), the Third Circuit agreed with the
appeal, saying:

Auernheimer’s conviction on Count 1 must be overturned because visiting a publicly
available website is not unauthorized access under the Computer Fraud and Abuse Act,
18 U.S.C. § 1030(a)(2)(C). AT&T chose not to employ passwords or any other protec‐
tive measures to control access to the e-mail addresses of its customers. It is irrelevant
that AT&T subjectively wished that outsiders would not stumble across the data or that
Auernheimer hyperbolically characterized the access as a “theft.” The company config‐

274 | Chapter 18: The Legalities and Ethics of Web Scraping

ured its servers to make the information available to everyone and thereby authorized
the general public to view the information. Accessing the e-mail addresses through
AT&T’s public website was authorized under the CFAA and therefore was not a crime.

Thus, sanity prevailed in the legal system, Auernheimer was released from prison that
same day, and everyone lived happily ever after.

Although it was ultimately decided that Auernheimer did not violate the Computer
Fraud and Abuse Act, he had his house raided by the FBI, spent many thousands of
dollars in legal fees, and spent three years in and out of courtrooms and prisons. As
web scrapers, what lessons can we take away from this to avoid similar situations?

Scraping any sort of sensitive information, whether it’s personal data (in this case,
email addresses), trade secrets, or government secrets, is probably not something you
want to do without having a lawyer on speed dial. Even if it’s publicly available, think:
“Would the average computer user be able to easily access this information if they
wanted to see it?” or “Is this something the company wants users to see?”

I have on many occasions called companies to report security vulnerabilities in their
websites and web applications. This line works wonders: “Hi, I’m a security professio‐
nal who discovered a potential security vulnerability on your website. Could you
direct me to someone so that I can report it and get the issue resolved?” In addition to
the immediate satisfaction of recognition for your (white hat) hacking genius, you
might be able to get free subscriptions, cash rewards, and other goodies out of it!

In addition, Auernheimer’s release of the information to Gawker Media (before noti‐
fying AT&T) and his showboating around the exploit of the vulnerability also made
him an especially attractive target for AT&T’s lawyers.

If you find security vulnerabilities in a site, the best thing to do is to alert the owners
of the site, not the media. You might be tempted to write up a blog post and
announce it to the world, especially if a fix to the problem is not put in place immedi‐
ately. However, you need to remember that it is the company’s responsibility, not
yours. The best thing you can do is take your web scrapers (and, if applicable, your
business) away from the site!

Field v. Google: Copyright and robots.txt
Blake Field, an attorney, filed a lawsuit against Google on the basis that its site-
caching feature violated copyright law by displaying a copy of his book after he had
removed it from his website. Copyright law allows the creator of an original creative
work to have control over the distribution of that work. Field’s argument was that
Google’s caching (after he had removed it from his website) removed his ability to
control its distribution.

Three Web Scrapers | 275

The Google Web Cache

When Google web scrapers (also known as Google bots) crawl web‐
sites, they make a copy of the site and host it on the internet. Any‐
one can access this cache, using the URL format:

http://webcache.googleusercontent.com/search?q=cache:http
://pythonscraping.com/

If a website you are searching for, or scraping, is unavailable, you
might want to check there to see if a usable copy exists!

Knowing about Google’s caching feature and not taking action did not help Field’s
case. After all, he could have prevented Google’s bots from caching his website simply
by adding the robots.txt file, with simple directives about which pages should and
should not be scraped.

More important, the court found that the DMCA Safe Harbor provision allowed
Google to legally cache and display sites such as Field’s: “[a] service provider shall not
be liable for monetary relief... for infringement of copyright by reason of the inter‐
mediate and temporary storage of material on a system or network controlled or
operated by or for the service provider.”

Moving Forward
The web is constantly changing. The technologies that bring us images, video, text,
and other data files are constantly being updated and reinvented. To keep pace, the
collection of technologies used to scrape data from the internet must also change.

Who knows? Future versions of this text may omit JavaScript entirely as an obsolete
and rarely used technology and instead focus on HTML8 hologram parsing. How‐
ever, what won’t change is the mindset and general approach needed to successfully
scrape any website (or whatever we use for “websites” in the future).

When encountering any web scraping project, you should always ask yourself:

• What is the question I want answered, or the problem I want solved?
• What data will help me achieve this, and where is it?
• How is the website displaying this data? Can I identify exactly which part of the

website’s code contains this information?
• How can I isolate the data and retrieve it?
• What processing or analysis needs to be done to make it more useful?
• How can I make this process better, faster, and more robust?

276 | Chapter 18: The Legalities and Ethics of Web Scraping

In addition, you need to understand not just how to use the tools presented in this
book in isolation, but how they can work together to solve a larger problem. Some‐
times the data is easily available and well formatted, allowing a simple scraper to do
the trick. Other times you have to put some thought into it.

In Chapter 11, for example, you combined the Selenium library to identify Ajax-
loaded images on Amazon and Tesseract to use OCR to read them. In the Six Degrees
of Wikipedia problem, you used regular expressions to write a crawler that stored link
information in a database, and then used a graph-solving algorithm in order to
answer the question, “What is the shortest path of links between Kevin Bacon and
Eric Idle?”

There is rarely an unsolvable problem when it comes to automated data collection on
the internet. Just remember: the internet is one giant API with a somewhat poor user
interface.

Moving Forward | 277

Index

A
acknowledgments, xv
action chains, 234
ActionScript, 161
addresses, 164, 176
Ajax (Asynchronous JavaScript and XML)

dealing with, 166
purpose of, 165

allow-redirects flag, 42
Anaconda package manager, 68
anonymizing traffic, 257
APIs (application programming interfaces)

benefits and drawbacks of, x, 182
combining with other data sources, 187-190
HTTP methods and, 177
overview of, 175
parsing JSON, 179
resources for learning more, 190
undocumented APIs, 181-187
well-formatted responses from, 178

ASCII, 109
AttributeError, 11
attributes argument, 18
attributes, accessing, 30
attributions, xiii
authentication

HTTP basic access authentication, 157
using cookies, 156, 218

B
background gradient, 198
bandwidth considerations, 33-34
BeautifulSoup library

BeautifulSoup objects in, 8, 20

Comment objects in, 20
find function, 18-20, 55
find_all function, 17-20, 55
.get_text(), 17, 87
installing, 6
lambda expressions and, 31
NavigableString objects in, 20
navigating trees with, 21-25
parser specification, 9
role in web scraping, 6
running, 8
select function, 55
Tag objects in, 16, 20
using regular expressions with, 29

Bidder's Edge, 272
bots

anti-bot security features, 221-224
being identified as, 215
defending against, 216
defined, x
drag-and-drop interfaces and, 236
registration bots, 211
web forms and, 158

box files, 208
breadth-first searches, 140
BrowserMob Proxy library, 184
bs.find_all(), 17
bs.tagName, 17
BS4 (BeautifulSoup 4 library), 6

(see also BeautifulSoup library)
buildWordDict, 138

C
CAPTCHAs

279

common properties of, 211
drag-and-drop interfaces and, 236
meaning of, 206
purpose of, 193
retrieving CAPTCHAs and submitting solu‐

tions, 211
training Tesseract to read, 207-211
types of, 206

CGI (Common Gateway Interface), 260
checkboxes, 154
child elements, navigating, 22
Chrome

ChromeDriver, 166, 184
Developer Tools, 155
EditThisCookie extension for, 219
headless browser mode, 166, 233
Inspector tool, 182, 225

class attribute, 19
cleanInput, 124, 126
cleanSentence, 124
client-side redirects, 42
client-side scripting languages, 161
cloud computing instances, 261
Cloud Platform, 262
code samples, obtaining and using, ix, xiii, 45,

71, 196
colons, pages containing, 39
Comment objects, 20
comments and questions, xiv
compute instances, 261
Computer Fraud and Abuse Act (CFAA), 268,

274
connection leaks, 95
connection/cursor model, 95
contact information, xiv
Content class, 54-56, 58
content, collecting first paragraphs, 40
cookies, 156, 218
copyrights, 263-266, 275
Corpus of Contemporary American English,

133
cPanel, 260
CrawlSpider class, 70
cross-domain data analysis, 43
CSS (Cascading Style Sheets), 16
CSV (comma-separated values) files, 86-88,

113-115, 179
Ctrl-C command, 72

D
dark web/darknet, 38
data cleaning

cleaning in code, 121-124
cleaning post-collection, 126-130
data normalization, 124-126

data filtering, 128
data gathering (see also web crawlers; web

crawling models)
across entire sites, 40-42
avoiding scraping traps, 215-226, 256
benefits of entire site crawling for, 38
cautions against unsavory content, 43
cleaning dirty data, 121-130
cross-domain data analysis, 43
from non-English languages, 111
nouns vs. verbs and, 148
planning questions, 43, 50, 65, 276
reading documents, 107-120

data mining, ix
data models, 53

(see also web crawling models)
data storage

CSV format, 86-88
database techniques and good practices,

97-99
email, 103-104
media files, 83-86
MySQL, 88-102
selecting type of, 83

data transformation, 129
DCMA (Digital Millennium Copyright Act),

265
deactivate command, 8
debugging

adjusting logging level, 80
human checklist, 225

deep web, 37
DELETE requests, 177
descendant elements, navigating, 22
developer tools, 154
dictionaries, 98, 138
directed graph problems, 139
dirty data (see data cleaning)
distributed computing, 257
documents

CSV files, 113-115
document encoding, 107
Microsoft Word and .docx, 117-120

280 | Index

PDF files, 115-117
scanned from hard copies, 193
text files, 108-113

.docx files, 117-120
drag-and-drop interfaces, 235-237
Drupal, 206
duplicates, avoiding, 39
dynamic HTML (DHTML), 165-166

E
eBay, 272
ECMA International's website, 113
EditThisCookie, 219
email

identifying addresses using regular expres‐
sions, 28

sending in Python, 103-104
encoding

document encoding, 107
text encoding, 109-113

endpoints, 176
errata, xv
escape characters, 122
ethical issues (see legal and ethical issues)
exception handling, 10-13, 37, 42, 45
exhaustive site crawls

approaches to, 38
avoiding duplicates, 39
data collection, 40-42
overview of, 37-40

eXtensible Markup Language (XML), 178
external links, 43-47

F
file uploads, 155
filtering data, 128
find(), 18-20, 55
find_all (), 17-20, 55
find_element function, 170
find_element_by_id, 167
First In First Out (FIFO), 243
FizzBuzz programming test, 240
Flash applications, 161
forms and logins

common form security features, 221-224
crawling with GET requests, 151
handling logins and cookies, 156, 218
HTTP basic access authentication, 157
malicious bots warning, 158

Python Requests library, 151
radio button and checkboxes, 154
submitting basic forms, 152
submitting files and images, 155

front-end website testing
automating, 227
unit tests, 228
unittest module, 228-233, 237
using Selenium, 233-238

G
GeoChart library, 188
GET requests

APIs and, 177
crawling through forms and logins with, 151
defined, 3

getLinks, 35
getNgrams, 122
get_cookies(), 219
get_text(), 17, 87
GitHub, 71
global interpreter lock (GIL), 240
global libraries, 7
global set of pages, 39
Google

APIs offered by, 176
Cloud Platform, 262
GeoChart library, 188
Google Analytics, 164, 219
Google Maps, 164
Google Refine, 126
origins of, 42
page-rank algorithm, 136
reCAPTCHA, 206
Reverse Geocoding API, 165
Tesseract library, 195
web cache, 275

GREL, 129

H
h1 tags

inconsistent use of, 49
retrieving, 8

HAR (HTTP Archive) files, 186
headers, 217
headless browsers, 166
hidden input field values, 221
hidden web, 37
Homebrew, 90, 195

Index | 281

honeypots, 222-224
hotlinking, 84
HTML (HyperText Markup Language)

avoiding advanced parsing, 15
fetching single HTML tables, 88
html.parser, 9
html.read(), 8
html5lib, 10

HTTP basic access authentication, 157
HTTP headers, 217
HTTP methods, 177
HTTP response codes

403 Forbidden error, 225
code 200, 179
handling error codes, 10-13

humanness, checking for, 218, 221-226, 256
(see also CAPTCHAs)

hyphenated words, 126

I
id attribute, 19
id columns, 97
image processing and text recognition

adjusting images automatically, 200-203
cleaning images, 199
image-to-text translation, 193
libraries for, 194-197
processing well-formatted text, 197-205
scraping text from images on websites,

203-205
submitting images, 155

implicit waits, 169
indexing, 98
inspection tool, 154, 182
intellectual property, 263

(see also legal and ethical issues)
intelligent indexing, 98
Internet Engineering Task Force (IETF), 108
IP addresses

avoiding address blocks, 256-259
determining physical location of, 176, 187

ip-api.com, 176, 179
ISO-encoded documents, 111
items

creating, 74
item pipeline, 77-80
outputting, 76

J
JavaScript

Ajax and dynamic HTML, 165-172
applications for, 161
common libraries, 163-165
effect on web scraping, 174
executing in Python with Selenium, 166-172
handling cookies with, 218
introduction to, 162
redirects handling, 172

JavaScript Object Notation (JSON)
API responses using, 178
parsing, 179

jQuery library, 163
Jupyter notebooks, 71, 229

K
keyword argument, 19

L
lambda expressions, 31
language encoding, 110
Last In First Out (LIFO), 243
latitude/longitude coordinates, 164
legal and ethical issues

advice disclaimer regarding, 263
case studies in, 272-276
Computer Fraud and Abuse Act, 268, 274
hotlinking, 84
legitimate reasons for scraping, 215
robots.txt files, 269
scraper blocking, 77, 215
server loads, 33-34, 267
trademarks, copyrights, and patents,

263-266, 275
trespass to chattels, 266, 272
web crawler planning, 43, 276

lexicographical analysis, 145
limit argument, 19
LinkExtractor class, 72
links

collecting across entire sites, 40
crawling sites through, 61-63
discovering in an automated way, 58
following outbound, 43
result links, 58

location pins, 164, 176
logging, adjusting level of, 80

282 | Index

login forms, 152, 156
(see also forms and logins)

lxml parser, 9

M
machine-learning, 148
malware, avoiding, 86, 158, 216
Markov models, 135-141
media files

downloading, 84
malware cautions, 86
storage choices, 83

Mersenne Twister algorithm, 36
Metaweb, 126
Microsoft Word documents, 117-120
multithreaded programming, 240

(see also parallel web crawling)
MySQL

basic commands, 91-94
benefits of, 88
connection/cursor model, 95
creating databases, 92
database techniques and good practices,

97-99
defining columns, 92
DELETE statements, 94
inserting data into, 93
installing, 89-91
Python integration, 94-97
selecting data, 93
Six Degrees of Wikipedia problem, 100-102
specifying databases, 92

N
n-grams, 121, 132
name.get_text(), 17
natural language analysis

applications for, 131
Markov models, 135-141
n-grams, 121
Natural Language Toolkit, 142-149
resources for learning, 149
summarizing data, 132-135

Natural Language Toolkit (NLTK)
history of, 142
installing, 142
lexicographical analysis using, 145
machine learning vs. machine training, 148
speech identification using, 147

statistical analysis using, 143
tagging system used by, 146

NavigableString objects, 20
network connections

exception handling, 10-13, 37, 42, 45
infrastructure overview, 3
role of web browsers in, 4
urlopen command, 4

newline character, 122
next_siblings(), 23
None objects, 11
normalization, 124-126
NumPy (Numeric Python) library, 197

O
OpenRefine

data transformation, 129
documentation, 130
filtering data with, 128
history of, 126
installing, 127
using, 127

OpenRefine Expression Language, 129
optical character recognition (OCR), 193, 195
outbound links, 43

P
page-rank algorithm, 136
page_source function, 168
parallel web crawling

benefits of, 239
multiprocess crawling, 247-254
multithreaded crawling, 240-247
processes vs. threads, 239

parent elements, navigating, 24
parse. start_requests, 69
parsing (see also BeautifulSoup library)

accessing attributes, 30
avoiding advanced HTML parsing, 15
common website patterns, 55
find function, 18-20, 55
find_all function, 17-20, 55
JSON, 179
lambda expressions and, 31
objects in BeautifulSoup library, 20
PDF-parsing libraries, 115
selecting parsers, 9
tree navigation, 21-25
using HTML elements, 16

Index | 283

using HTML tags and attributes, 18-20
using regular expressions, 25-30

patents, 263-266
PDF (Portable Document Format), 115-117,

179
PDFMiner3K, 116
Penn Treebank Project, 146
Perl, 29
physical addresses, 176
Pillow library, 194, 199
pins, 164
pip (package manager), 6
POST requests, 152, 177
pos_tag function, 148
preprocessing, 198
previous_siblings(), 24
Print This Page links, 16
processes, vs. threads, 239

(see also parallel web crawling)
Processing module, 247
protected keywords, 19
proxy servers, 259
pseudorandom numbers, 36
punctuation characters, listing all, 124
PUT requests, 177
PySocks module, 259
pytesseract library, 195-197, 199
Python

calling Python 3.x explicitly, 5, 6
common RegEx symbols, 27
global interpreter lock (GIL), 240
image processing libraries, 194-197
JSON-parsing functions, 180
multiprocessing and multithreading in, 239
MySQL integration, 94-97
PDF-parsing libraries, 115
pip (package manager), 6
Processing module, 247
protected keywords in, 19
PySocks module, 259
python-docx library, 117
random-number generator, 36
recursion limit, 40, 45
Requests library, 151, 217
resources for learning, xii
_thread module, 240
treading module, 245-247
unit-testing module, 228-233, 237
urllib library, 5, 42

urlopen command, 4
virtual environment for, 7

Python Imaging Library (PIL), 194

Q
questions and comments, xiv
queues, 243-245, 251

R
race conditions, 242-246
radio buttons, 154
random-number generator, 36
reCAPTCHA, 206
recursion limit, 40, 45
recursive argument, 18
redirects, handling, 42, 172
Regex Pal, 27
registration bots, 211
Regular Expressions (RegEx)

BeautifulSoup library and, 29
commonly used symbols, 27
identifying email addresses with, 28
language compatibility with, 29
overview of, 25
removing escape characters with, 122
writing from scratch, 29

regular strings, 26
relational data, 89
remote hosting

from the cloud, 261
from website-hosting accounts, 260
speed improvements due to, 259

remote servers
avoiding IP address blocking, 256-259
benefits of, 255
portability and extensibility offered by, 257
proxy servers, 259

Request objects, 69
Requests library, 42, 151, 217
reserved words, 19
resource files, 5
result links, 58
Reverse Geocoding API, 165
Robots Exclusion Standard, 269
robots.txt files, 269
Rule objects, 72
rules, applying to spiders, 70-74

284 | Index

S
safe harbor protection, 265
scrapping traps, avoiding

common form security features, 221-224
ethical considerations, 215
human checklist, 225
IP address blocking, 256
looking like a human, 216-221

Scrapy library
asynchronous requests, 77-80
benefits of, 67
code organization in, 71
CrawlSpider class, 70
documentation, 73, 81
installing, 67
LinkExtractor class, 72
logging with, 80
organizing collected items, 74-77
Python support for, 67
spider initialization, 68
spidering with rules, 70-74
support for XPath syntax, 171
terminating spiders, 72
writing simple scrapers, 69

screen scraping, ix
search, crawling websites through, 58-61
security features

hidden input field values, 221
honeypots, 223

select boxes, 154
select function, 55
Selenium

action chains in, 234
alternatives to, 175
benefits of, 166, 181, 224
drag-and-drop interfaces and, 235
drawbacks of, 181
implicit waits, 169
installing, 166
screenshots using, 236
selection strategies, 170
selectors, 167
support for XPath syntax, 171
.text function, 168
WebDriver object, 167
webdrivers for, 171
website testing using, 233-238

server loads, 33-34, 267
server-side languages, 161

server-side redirects, 42
session function, 157
sibling elements, navigating, 23
single domains, traversing, 33-37
site maps, generating, 38
Six Degrees of Wikipedia problem, 33, 100-102,

139-141
SMTP (Simple Mail Transfer Protocol), 103
speed, improving, 78, 220, 259
spiders

applying rules to, 70
initializing, 68
naming, 69
terminating, 72

spot instances, 261
start_requests, 69
string.punctuation, 124
string.whitespace, 124
summaries, creating, 132-135
surface web, 37

T
Tag objects, 16, 20
Terms of Service agreements, 266, 269
Tesseract library

automatic image adjustment, 200
benefits of, 195-197
cleaning images with Pillow library, 199
documentation, 211
installing, 195
NumPy library and, 197
purpose of, 194
pytesseract wrapper for, 196
sample run, 198
scraping images from websites with, 203
training to read CAPTCHAs, 207-211

Tesseract OCR Chopper, 208
test-driven development, 227
tests

unit tests, 228
unittest module, 228-233, 237
using Selenium, 233-238

text argument , 19
text files, 108-113
.text function, 168
text-based images, 193 (see also image process‐

ing and text recognition)
_thread module, 240
threading module, 245-247

Index | 285

threads, vs. processes, 239
(see also parallel web crawling)

time.sleep, 220, 242
titles, collecting, 40
Tor (The Onion Router network), 257
trademarks, 263-266
tree navigation

dealing with children and descendants, 22
dealing with parents, 24
dealing with siblings, 23
finding tags based on location with, 21
making specific selections, 24

trespass to chattels, 266, 272
Turing test, 206
typographical conventions, xii

U
undirected graph problems, 139
undocumented APIs

finding, 182
finding and documenting automatically,

184-187
identifying and documenting, 184
reasons for, 181

Unicode Consortium, 109
Unicode text, 95, 122
unit tests, 228
universal language-encoding, 110
URLError, 11
urllib library

documentation, 5
redirects handling, 42

urllib.request.urlretrieve, 84
urlopen command, 4, 5
User-Agent header, 218
UTF-8, 97, 109

V
virtual environments, 7

W
web browsers

inspection tool, 154, 182
resource file handling, 5
role in networking, 4

web crawlers
automated website testing using, 227-238
bandwidth considerations, 33

cautions against unsavory content, 43
crawling across the internet, 42-45
crawling entire sites with, 37-40
crawling single domains with, 33-37
data gathering using, 40-42, 107-120
defined, x, 33
for non-English languages, 111
frameworks for developing, 67
improving speed of, 78, 220, 259
nouns vs. verbs and, 148
parallel web crawling, 239-254
planning questions, 43, 65, 276
scraper blocking, 77, 215
scraping remotely with, 255-262
tips to appear human-like, 216-221, 225
writing more stable and reliable, 16, 58

web crawling models
crawling multiple page types, 63-65
crawling sites through links, 61-63
crawling sites through search, 58-61
dealing with different website layouts, 53-57
planning and defining objects, 50-53
planning questions, 65
unique challenges handled by, 49

web development, 227
web forms, 152, 221

(see also forms and logins)
web harvesting, ix
web scraping (see also legal and ethical issues)

avoiding scraping traps, 215-226, 256
basic steps, 3
benefits of, x
confusion over, ix
defined, ix
future of, 276
overview of, x
payout vs. investment, 1
using remote servers and hosts, 255-262

web-hosting providers, 260
WebDriver object, 167
Website class, 56, 59
website layouts, 53-57
well-formatted text, processing, 197-205
Wikimedia Foundation, 34
Word files, 117-120
word_tokenize, 143

X
XPath (XML Path) language, 171

286 | Index

About the Author
Ryan Mitchell is a senior software engineer at HedgeServ in Boston, where she devel‐
ops the company’s APIs and data analytics tools. She is a graduate of Olin College of
Engineering and with a master’s in software engineering and certificate in data sci‐
ence from Harvard University Extension School. Prior to joining HedgeServ she
worked at Abine developing web scrapers and automation tools in Python. She regu‐
larly consults on web scraping projects in the retail, finance, and pharmaceutical
industries and has worked as a curriculum consultant and adjunct faculty member at
Northeastern University and Olin College of Engineering.

Colophon
The animal on the cover of Web Scraping with Python is a ground pangolin (Smutsia
temminckii). The pangolin is a solitary, nocturnal mammal and closely related to
armadillos, sloths, and anteaters. They can be found in southern and eastern Africa.
There are three other species of pangolins in Africa and all are considered to be criti‐
cally endangered.

Full-grown ground pangolins can average 12–39 inches in length and weigh from a
mere 3.5–73 pounds. They resemble armadillos, covered in protective scales that are
either dark, light brown, or olive in color. Immature pangolin scales are more pink.
When pangolins are threatened, their scales on the tails can act more like an offensive
weapon, as they are able to cut and wound attackers. Pangolins also have a defense
strategy similar to skunks, in which they secrete a foul-smelling acid from glands
located close to the anus. This serves as a warning to potential attackers, but also
helps the pangolin mark territory. The underside of the pangolin is not covered in
scales, but instead with little bits of fur.

Like those of their anteater relatives, pangolin diets consist of ants and termites. Their
incredibly long tongues allow them to scavenge logs and anthills for their meals. The
tongue is longer than their body and retracts into their chest cavity while at rest.

Though they are solitary animals, once matured, the ground pangolin lives in large
burrows that run deep underground. In many cases, the burrows once belonged to
aardvarks and warthogs, and the pangolin has simply taken over the abandoned resi‐
dence. With the three, long, curved claws found on their forefeet, however, pangolins
don’t have a problem digging their own burrows if necessary.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	What Is Web Scraping?
	Why Web Scraping?
	About This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Part I. Building Scrapers
	Chapter 1. Your First Web Scraper
	Connecting
	An Introduction to BeautifulSoup
	Installing BeautifulSoup
	Running BeautifulSoup
	Connecting Reliably and Handling Exceptions

	Chapter 2. Advanced HTML Parsing
	You Don’t Always Need a Hammer
	Another Serving of BeautifulSoup
	find() and find_all() with BeautifulSoup
	Other BeautifulSoup Objects
	Navigating Trees

	Regular Expressions
	Regular Expressions and BeautifulSoup
	Accessing Attributes
	Lambda Expressions

	Chapter 3. Writing Web Crawlers
	Traversing a Single Domain
	Crawling an Entire Site
	Collecting Data Across an Entire Site

	Crawling Across the Internet

	Chapter 4. Web Crawling Models
	Planning and Defining Objects
	Dealing with Different Website Layouts
	Structuring Crawlers
	Crawling Sites Through Search
	Crawling Sites Through Links
	Crawling Multiple Page Types

	Thinking About Web Crawler Models

	Chapter 5. Scrapy
	Installing Scrapy
	Initializing a New Spider

	Writing a Simple Scraper
	Spidering with Rules
	Creating Items
	Outputting Items
	The Item Pipeline
	Logging with Scrapy
	More Resources

	Chapter 6. Storing Data
	Media Files
	Storing Data to CSV
	MySQL
	Installing MySQL
	Some Basic Commands
	Integrating with Python
	Database Techniques and Good Practice
	“Six Degrees” in MySQL

	Email

	Part II. Advanced Scraping
	Chapter 7. Reading Documents
	Document Encoding
	Text
	Text Encoding and the Global Internet

	CSV
	Reading CSV Files

	PDF
	Microsoft Word and .docx

	Chapter 8. Cleaning Your Dirty Data
	Cleaning in Code
	Data Normalization

	Cleaning After the Fact
	OpenRefine

	Chapter 9. Reading and Writing Natural Languages
	Summarizing Data
	Markov Models
	Six Degrees of Wikipedia: Conclusion

	Natural Language Toolkit
	Installation and Setup
	Statistical Analysis with NLTK
	Lexicographical Analysis with NLTK

	Additional Resources

	Chapter 10. Crawling Through Forms and Logins
	Python Requests Library
	Submitting a Basic Form
	Radio Buttons, Checkboxes, and Other Inputs
	Submitting Files and Images
	Handling Logins and Cookies
	HTTP Basic Access Authentication

	Other Form Problems

	Chapter 11. Scraping JavaScript
	A Brief Introduction to JavaScript
	Common JavaScript Libraries

	Ajax and Dynamic HTML
	Executing JavaScript in Python with Selenium
	Additional Selenium Webdrivers

	Handling Redirects
	A Final Note on JavaScript

	Chapter 12. Crawling Through APIs
	A Brief Introduction to APIs
	HTTP Methods and APIs
	More About API Responses

	Parsing JSON
	Undocumented APIs
	Finding Undocumented APIs
	Documenting Undocumented APIs
	Finding and Documenting APIs Automatically

	Combining APIs with Other Data Sources
	More About APIs

	Chapter 13. Image Processing and Text Recognition
	Overview of Libraries
	Pillow
	Tesseract
	NumPy

	Processing Well-Formatted Text
	Adjusting Images Automatically
	Scraping Text from Images on Websites

	Reading CAPTCHAs and Training Tesseract
	Training Tesseract

	Retrieving CAPTCHAs and Submitting Solutions

	Chapter 14. Avoiding Scraping Traps
	A Note on Ethics
	Looking Like a Human
	Adjust Your Headers
	Handling Cookies with JavaScript
	Timing Is Everything

	Common Form Security Features
	Hidden Input Field Values
	Avoiding Honeypots

	The Human Checklist

	Chapter 15. Testing Your Website with Scrapers
	An Introduction to Testing
	What Are Unit Tests?

	Python unittest
	Testing Wikipedia

	Testing with Selenium
	Interacting with the Site

	unittest or Selenium?

	Chapter 16. Web Crawling in Parallel
	Processes versus Threads
	Multithreaded Crawling
	Race Conditions and Queues
	The threading Module

	Multiprocess Crawling
	Multiprocess Crawling
	Communicating Between Processes

	Multiprocess Crawling—Another Approach

	Chapter 17. Scraping Remotely
	Why Use Remote Servers?
	Avoiding IP Address Blocking
	Portability and Extensibility

	Tor
	PySocks

	Remote Hosting
	Running from a Website-Hosting Account
	Running from the Cloud

	Additional Resources

	Chapter 18. The Legalities and Ethics of Web Scraping
	Trademarks, Copyrights, Patents, Oh My!
	Copyright Law

	Trespass to Chattels
	The Computer Fraud and Abuse Act
	robots.txt and Terms of Service
	Three Web Scrapers
	eBay versus Bidder’s Edge and Trespass to Chattels
	United States v. Auernheimer and The Computer Fraud and Abuse Act
	Field v. Google: Copyright and robots.txt

	Moving Forward

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

