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Preface

Unlike the stereotypical wedding dress, it was—to use a technical term—elegant, like a com-
puter algorithm that achieves an impressive outcome with just a few lines of code.

—Graeme Simsion, The Rosie Effect

Welcome to Elegant SciPy. Were going to spend rather a lot of time focusing on the
“SciPy” bit of the title, so let’s take a moment to reflect on the “Elegant” bit. There are
plenty of manuals, tutorials, and documentation websites out there that describe the
SciPy library. Elegant SciPy goes further. More than just teaching you how to write
code that works, we will inspire you to write code that rocks!

In The Rosie Effect (hilarious book; go read its prequel The Rosie Project when you’re
done with Elegant SciPy), Graeme Simsion twists the conventions of the word “ele-
gant” around. Most would use it to describe the visual simplicity, style, and grace of,
say, the first iPhone. Instead Graeme Simsion’s hero, Don Tillman, uses a computer
algorithm to define elegance. We hope that you will understand exactly what he
means after reading this book; that you will read or write a piece of elegant code, and
feel calmed in the glow of its beauty and grace. (Note: The authors may be prone to
hyperbole.)

A good piece of code just feels right. When you look at it, its intent is clear, it is often
concise (but not so concise as to be obscure), and it is efficient at executing the task at
hand. For the authors, the joy of analyzing elegant code lies in the lessons hidden
within, and the way it inspires us to be creative in how we approach new coding prob-
lems.

Ironically, creativity can also tempt us to show off cleverness at the expense of the
reader, and write obtuse code that is hard to understand. PEP8 (the Python style
guide) and PEP20 (the Zen of Python) remind us that “code is read much more often
than it is written” and therefore “readability counts”

The conciseness of elegant code comes through abstraction and the judicious use of
functions, not just through packing in a bunch of nested function calls. It may take a
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minute or two to grok, but it should ultimately provide a crisp, “ah-ha!” moment of
understanding. Once you know the various components of the code, its correctness
should be obvious. This can be aided by clear variable and function names, and care-
fully crafted comments that explain the code, rather than merely describe it.

In the New York Times, software engineer J. Bradford Hipps recently argued that “to
write better code, [one should] read Virginia Woolf™:

As a practice, software development is far more creative than algorithmic.

The developer stands before her source code editor in the same way the author con-
fronts the blank page. [...] They may also share a healthy impatience for the ways
things “have always been done” and a generative desire to break conventions. When
the module is finished or the pages complete, their quality is judged against many of
the same standards: elegance, concision, cohesion; the discovery of symmetries where
none were seen to exist. Yes, even beauty.

This is the position we take in this book.
Now that we've dealt with the “elegant” part of the title, let’s come back to the “SciPy”

Depending on context, “SciPy” can mean a software library, an ecosystem, or a com-
munity. Part of what makes SciPy great is that it has excellent online documentation
and tutorials, rendering Just Another Reference book pointless; instead, Elegant SciPy
wants to present the best code built with SciPy.

The code we have chosen highlights clever, elegant uses of advanced features of
NumPy, SciPy, and related libraries. The beginning reader will learn to apply these
libraries to real-world problems using beautiful code. And we use real scientific data
to motivate our examples.

Like SciPy itself, we wanted Elegant SciPy to be driven by the community. We've taken
many of our examples from working code found in the wider scientific Python eco-
system, selecting them for their illustration of the principles of elegant code we out-
lined above.

Who Is This Book For?

Elegant SciPy is intended to inspire you to take your Python to the next level. You will
learn SciPy by example, from the very best code.

Before starting, you should at least have seen Python, and know about variables,
functions, loops, and maybe a bit of NumPy. You might have even honed your Python
skills with advanced material, such as Fluent Python. If this doesn’t describe you, you
should start with some beginner Python tutorials, such as Software Carpentry, before
continuing with this book.

But perhaps you don’t know whether the “SciPy stack” is a library or a menu item
from the International House of Pancakes, and you aren’t sure about best practices.
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Perhaps you are a scientist who has read some Python tutorials online, and have
downloaded some analysis scripts from another lab or a previous member of your
own lab, and have fiddled with them. And you might think that you are more or less
alone when you learn to code SciPy. You are not.

As we progress, we will teach you how to use the internet as your reference. And we
will point you to the mailing lists, repositories, and conferences where you will meet
like-minded scientists who are a little further in their journey than you.

This is a book that you will read once, but may return to for inspiration (and maybe
to admire some elegant code snippets!).

Why SciPy?

The NumPy and SciPy libraries make up the core of the Scientific Python ecosystem.
The SciPy software library implements a set of functions for processing scientific
data, such as statistics, signal processing, image processing, and function optimiza-
tion. SciPy is built on top of NumPy, the Python numerical array computation library.
Building on NumPy and SciPy, an entire ecosystem of apps and libraries has grown
dramatically over the past few years, spanning a broad spectrum of disciplines that
includes astronomy, biology, meteorology and climate science, and materials science,
among others.

This growth shows no sign of abating. In 2014, Thomas Robitaille and Chris Beau-
mont documented Python’s growing use in astronomy. Here’s what we found when
we updated their plot in the second half of 2016:
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It is clear that SciPy and related libraries will be driving much of scientific data analy-
sis for years to come.

As another example, the Software Carpentry organization, which teaches computa-
tional skills to scientists, most often using Python, currently cannot keep up with
demand.

What Is the SciPy Ecosystem?

SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source software for
mathematics, science, and engineering.

—http://www.scipy.org

The SciPy ecosystem is a loosely defined collection of Python packages. In Elegant
SciPy, we will meet many of its main players:

o NumPy is the foundation of scientific computing in Python. It provides efficient
numeric arrays and wide support for numerical computation, including linear
algebra, random numbers, and Fourier transforms. NumPy’s killer feature is its
“N-dimensional array, or ndarray. These data structures store numeric values
efficiently and define a grid in any number of dimensions (more about this later).

o SciPy, the library, is a collection of efficient numerical algorithms for domains
such as signal processing, integration, optimization, and statistics. These are
wrapped in user-friendly interfaces.
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« Matplotlib is a powerful package for plotting in two dimensions (and basic 3D).
It draws its name from its Matlab-inspired syntax.

o IPython is an interactive interface for Python that allows you to quickly interact
with your data and test ideas.

o The Jupyter notebook runs in your browser and allows the construction of rich
documents that combine code, text, mathematical expressions, and interactive
widgets.! In fact, to produce this book, the text is converted to Jupyter notebooks
and executed (that way, we know that all the examples execute correctly). Jupyter
started out as an IPython extension, but now supports multiple languages,
including Cython, Julia, R, Octave, Bash, Perl, and Ruby.

« pandas provides fast, columnar data structures in an easy-to-use package. It is
particularly suited to working with labeled datasets such as tables or relational
databases, and for managing time series data and sliding windows. pandas also
has some handy data analysis tools for data parsing and cleaning, aggregation,
and plotting.

o scikit-learn provides a unified interface to machine learning algorithms.

« scikit-image provides image analysis tools that integrate cleanly with the rest of
the SciPy ecosystem.

There are many other Python packages that form part of the SciPy ecosystem, and we
will see some of them too. Although this book will focus on NumPy and SciPy, the
many surrounding packages are what make Python a powerhouse for scientific com-
puting.

The Great Cataclysm: Python 2 Versus Python 3

In your Python travels, you may have already heard a few rumblings about which ver-
sion of Python is better. You may have wondered why it’s not just the latest version.
(Spoiler alert: it is.)

At the end of 2008, the Python core developers released Python 3, a major update to
the language with better Unicode (international) text handling, type consistency, and
streaming data handling, among other improvements. As Douglas Adams quipped?
about the creation of the Universe, “this has made a lot of people very angry and been
widely regarded as a bad move” That’s because Python 2.6 or 2.7 code cannot usually
be interpreted by Python 3 without at least some modification (though the changes
are typically not too invasive).

1 Fernando Perez, “Literate computing’ and computational reproducibility: IPython in the age of data-driven
journalism” (blog post), April 19, 2013.

2 Douglas Adams, The Hitchhiker’s Guide to the Galaxy (London: Pan Books, 1979).
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There is always a tension between the march of progress and backward compatibility.
In this case, the Python core team decided that a clean break was needed to eliminate
some inconsistencies, especially in the underlying C API, and moved the language
forward into the twenty-first century (Python 1.0 appeared in 1994, more than 20
years ago—a lifetime in the tech world).

Here’s one way in which Python has improved in turning 3:

print "Hello World!" # Python 2 print statement
print("Hello World!") # Python 3 print function

Why cause such a fuss just to add some parentheses! Well, true, but what if you want
to instead print to a different stream, such as standard error, the usual place for
debugging information?

print >>sys.stderr, "fatal error" # Python 2

print("fatal error", file=sys.stderr) # Python 3

That change certainly seems more worthwhile; what is going on in the Python 2 ver-
sion anyway? The authors don't rightly know.

Another change is the way Python 3 treats integer division, which is the way most

humans treat division. (Note >>> indicates we are typing at the Python interactive
shell.)

# Python 2
>>> 5 /2
2

# Python 3
>>> 5 /2
2.5

We were also pretty excited about the new @ matrix multiplication operator intro-
duced in Python 3.5 in 2015. Check out Chapters 5 and 6 for some examples of this
operator in use!

Possibly the biggest improvement in Python 3 is its support for Unicode, a way of
encoding text that allows one to use not just the English alphabet, but any alphabet in
the world. Python 2 allowed you to define a Unicode string, like so:

beta = u"p"
But in Python 3, everything is Unicode:

B=0.5
print(2 * B)
1.0
The Python core team decided, rightly, that it was worth supporting characters from

all languages as first-class citizens in Python code. This is especially true now, when
most new coders are from non-English-speaking countries. For the sake of interoper-
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ability, we still recommend using English characters in most code, but this capability
can come in handy, for example, in math-heavy Jupyter notebooks.

In the IPython terminal or in the Jupyter notebook, type a LaTeX
symbol name followed by the Tab key to have it expanded to Uni-
code. For example, \beta<TAB> becomes f.

The Python 3 update also breaks a lot of existing 2.x code, and in some cases executes
more slowly than before. Despite these frustrations, we encourage all users to
upgrade as soon as possible (Python 2.x is now in maintenance only mode until
2020), since most issues have been addressed as the 3.x series has matured. Indeed,
we use many new features from Python 3 in this book.

In this book, we use Python 3.6.

For more reading, see Ed Schofield’s resource, Python-Future, and Nick Coghlan’s
book-length guide to the transition.

SciPy Ecosystem and Community

SciPy is a major library with a lot of functionality. Together with NumPy;, it is one of
Python’s killer apps. It has launched a vast number of related libraries that build on
this functionality, many of which you’ll encounter throughout this book.

The creators of these libraries, and many of their users, gather at many events and
conferences around the world. These include the yearly SciPy conference in Austin
(USA), EuroSciPy, SciPy India, PyData, and others. We highly recommend attending
one of these, and meeting the authors of the best scientific software in the Python
world. If you can’t get there, or simply want a taste of these conferences, many pub-
lish their talks online.

Free and Open Source Software (FOSS)

The SciPy community embraces open source software development. The source code
for nearly all SciPy libraries is freely available to read, edit, and reuse by anyone.

If you want others to use your code, one of the best ways to achieve this is to make it
free and open. If you use closed source software, but it doesn't do exactly what you
want to achieve, youre out of luck. You can email the developer and ask them to add
a new feature (this often doesn't work!), or write new software yourself. If the code is
open source, you can easily add or modify its functionality using the skills you learn
from this book.
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Similarly, if you find a bug in a piece of software, having access to the source code can
make things a lot easier for both the user and the developer. Even if you don't quite
understand the code, you can usually get a lot further along in diagnosing the prob-
lem, and help the developer with fixing it. It is usually a learning experience for
everyone!

Open source, open science

In scientific programming, all of the above scenarios are extremely common and
important: scientific software often builds on previous work, or modifies it in inter-
esting ways. And, because of the pace of scientific publishing and progress, much
code is not thoroughly tested before release, resulting in minor or major bugs.

Another great reason for making code open source is to promote reproducible
research. Many of us have had the experience of reading a really cool paper, and then
downloading the code to try it out on our own data, only we find that the executable
isn’t compiled for our system. Or we can't work out how to run it. Or it has bugs,
missing features, or produces unexpected results. By making scientific software open
source, we not only increase the quality of that software, but we make it possible to
see exactly how the science was done. What assumptions were made, and even hard-
coded? Open source helps to solve many of these issues. It also enables other scien-
tists to build on the code of their peers, fostering new collaborations and speeding up
scientific progress.

Open source licenses

If you want others to use your code, then you must license it. If you don’t license your
code, it is closed by default. Even if you publish your code (e.g., by placing it in a pub-
lic GitHub repository), without a software license, no one is allowed to use, edit, or
redistribute your code.

When choosing among the many license options, you must first decide what you
want to allow people to do with your code. Do you want people to be able to sell your
code for profit? Or sell software that uses your code? Or do you want to restrict your
code to be used only in free software?

There are two broad categories of FOSS licenses:

e Permissive
o Copy-left

A permissive license means you are giving anyone the right to use, edit, and redistrib-
ute your code in any way that they like. This includes using your code as part of com-
mercial software. Some popular choices in this category include the MIT and BSD
licenses. The SciPy community has adopted the New BSD License (also called “Modi-
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fied BSD” or “3-clause BSD”). Using such a license means receiving many code con-
tributions from a wide array of people, including many in industry and startups.

Copy-left licenses also allow others to use, edit, and redistribute your code. These
licenses, however, also prescribe that derived code must be distributed under a copy-
left license. In this way, copy-left licenses restrict what users can do with the code.

The most popular copy-left license is the GNU Public License, or GPL. The main dis-
advantage to using a copy-left license is that you are often putting your code oft-
limits to any potential users or contributors from the private sector. And this could
include your future self! This can substantially reduce your user base and thus the
success of your software. In science, this could mean fewer citations.

For more help choosing a license, see the Choose a License website. For licensing in a
scientific context, we recommend “The Whys and Hows of Licensing Scientific
Code,” a blog post by Jake VanderPlas, Director of Research in the Physical Sciences
at the University of Washington, and all-around SciPy superstar. In fact, we quote
Jake here to drive home the key points of software licensing:

...if you only take three pieces of information away from the article, let them be these:

1. Always license your code. Unlicensed code is closed code, so any open license is
better than none (but see #2).

2. Always use a GPL-compatible license. GPL-compatible licenses ensure broad
compatibility for your code, and include GPL, new BSD, MIT, and others (but see
#3).

3. Always use a permissive, BSD-style license. A permissive license such as new BSD
or MIT is preferable to a copyleft license such as GPL or LGPL.

All the code in this book is available under the 3-Clause BSD license. Where we have
sourced code snippets from other people, the code was generally under a permissive
open license of some variety (although not necessarily BSD).

For your own code, we recommend that you follow the practices of your community.
In scientific Python, this means 3-Clause BSD, while the R language community, for
example, has adopted the GPL license.

GitHub: Taking Coding Social

We've talked a little about releasing your source code under an open source license.
This will hopefully result in huge numbers of people downloading your code, using it,
fixing bugs, and adding new features. Where will you put your code so people can
find it? How will those bug fixes and features get back into your code? How will you
keep track of all the issues and changes? You can imagine how this could get out of
control quite quickly.

Enter GitHub.
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GitHub is a website for hosting, sharing, and developing code. It is based on the Git
version control software. There are some great resources to learn to use GitHub, such
as Introducing GitHub by Peter Bell and Brent Beer. The vast majority of projects in
the SciPy ecosystem are hosted on GitHub, so it is certainly worth learning to use it!

GitHub has had a massive effect on open source contributions. It did this by allowing
users to publish code and collaborate for free. Anyone can come along and create a
copy (called a fork) of the code and edit it to their heart’s content. They can eventually
contribute those changes back into the original by creating a pull request. There are
some nice features like managing issues and change requests, as well as the ability to
determine who can directly edit your code. You can even keep track of edits, contrib-
utors, and other fun stats. There are a whole bunch of other great GitHub features,
but we will leave many of them for you to discover and some for you to read in later
chapters. In essence, GitHub has democratized software development (Figure P-1),
and has substantially reduced the barrier to entry.

140 T T T T T T T T T T T
—  numpy
120 — scipy 1
— matplotlib

100

80

60

40

Cumulative Author Count

20

Figure P-1. The impact of GitHub (used with permission of the author, Jake VanderPlas)

Make Your Mark on the SciPy Ecosystem

As you gain more experience with SciPy and start using it for your research, you may
find that a particular package is lacking a feature you need, or you think that you can
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do something more efficiently, or perhaps find a bug. When you reach this point, it’s
time to start contributing to the SciPy ecosystem.

We strongly encourage you to try doing this. The community lives because people are
willing to share their code and improve existing code. And, if we each contribute a
little bit, together we build a lot. But, beyond any altruistic reasons for contributing,
there are some very practical personal benefits. By engaging with the community you
will become a better coder. Any code you contribute will be reviewed by others and
you will receive feedback. As a side effect, you will learn how to use Git and GitHub,
which are very useful tools for maintaining and sharing your own code. You may
even find that interacting with the SciPy community provides you with a broader sci-
entific network and surprising career opportunities.

We want you to think about being more than just a SciPy user. You are joining a com-
munity, and your work will make it a better place for all scientific coders.

A Touch of Whimsy with Your Py

In case you were worried that the SciPy community might be an imposing place for
the newcomer, remember that it is made of people like you, scientists, usually with a
great sense of humor.

In the land of Python, it is inevitable to find some Monty Python references. The
package Airspeed Velocity measures your software’s speed (more on this later), and
references the line, “what is the airspeed velocity of an unladen swallow?” from
Monty Python and the Holy Grail.

Another amusingly titled package is “Sux,” which allows you to use Python 2 pack-
ages from Python 3. This is a play on “six,” which lets you use Python 3 syntax in
Python 2, with a New Zealand accent. Sux syntax makes it less frustrating to use
Python 2-only packages after you've moved to Python 3:

import sux

p = sux.to_use('my_py2_package')
In general, Python library names can be a riot, and we hope you’ll enjoy your time
coming up with some!

Getting Help

Our first step when we get stuck is to Google the task that we are trying to achieve, or
the error message that we got. This generally leads us to Stack Overflow, an excellent
question-and-answer site for programming. If you don’t find what you're looking for
immediately, try generalizing your search terms to find someone who is having a sim-
ilar problem.
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Sometimes, you might actually be the first person to have this specific question (this
is particularly likely when you are using a brand new package), but not all is lost! As
mentioned above, the SciPy community is a friendly bunch, and can be found scat-
tered around various parts of the interwebs. Your next point of call is to Google
"<library name> mailing list, and find an email list to ask for help. Library
authors and power users read these regularly, and are very welcoming to newcomers.
Note that it is common etiquette to subscribe to the list before posting. If you don't, it
usually means someone will have to manually check that your email isn’t spam before
allowing it to be posted to the list. It may seem annoying to join yet another mailing
list, but we highly recommend it: it is a great place to learn!

Installing Python

Throughout this book we're going to assume that you have Python 3.6 (or later) and
have all the required SciPy packages installed. We list all of the requirements and the
versions we used in the environment.yml file packaged with the data for this book.
The easiest way to get all of these components is to install conda, a tool for managing
Python environments. You can then pass that environment.yml file to conda to install
the right versions of everything in one go.

conda env create --name elegant-scipy -f path/to/environment.yml
source activate elegant-scipy

See the booK’s GitHub repository for more details.

Accessing the Book Materials

All of the code and data shown in this book are available on our GitHub repository.
In the README file in that repository, you will find instructions to build Jupyter
notebooks from the markdown source files, which you can then run interactively
using the data included in the repo.

Diving In

We've brought together some of the most elegant code offered up by the SciPy com-
munity. Along the way we are going to explore some real-world scientific problems
that SciPy solves. This book is also a glimpse into a welcoming, collaborative scientific
coding community that wants you to join in.

Welcome to Elegant SciPy.

Conventions Used in This Book

The following typographical conventions are used in this book:
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Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Use of Color

Some of the examples throughout indicate different colors, which is not visible in the
print version of this book. Readers of the print book are encouraged to view the
source notebooks at elegant-scipy.org.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/elegant-scipy/elegant-scipy.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
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need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Elegant SciPy by Juan Nunez-Iglesias,
Stéfan van der Walt, and Harriet Dashnow (O’Reilly). Copyright 2017 Juan Nunez-
Iglesias, Stéfan van der Walt, and Harriet Dashnow, 978-1-491-92287-3”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
‘ training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’'Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.
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How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER1

Elegant NumPy: The Foundation of
Scientific Python

[NumPy] is everywhere. It is all around us. Even now, in this very room. You can see it when
you look out your window or when you turn on your television. You can feel it when you go
to work...when you go to church...when you pay your taxes.

—Morpheus, The Matrix

This chapter touches on some statistical functions in SciPy, but more than that, it
focuses on exploring the NumPy array, a data structure that underlies almost all
numerical scientific computation in Python. We will see how NumPy array opera-
tions enable concise and efficient code for manipulating numerical data.

Our use case is using gene expression data from The Cancer Genome Atlas (TCGA)
project to predict mortality in skin cancer patients. We will be working toward this
goal throughout this chapter and Chapter 2, learning about some key SciPy concepts
along the way. Before we can predict mortality, we will need to normalize the expres-
sion data using a method called RPKM normalization. This allows the comparison of
measurements between different samples and genes. (We will unpack what “gene
expression” means in just a moment.)

Let’s start with a code snippet to tantalize you and introduce the ideas in this chapter.
As we will do in each chapter, we open with a code sample that we believe epitomizes
the elegance and power of a particular function from the SciPy ecosystem. In this
case, we want to highlight NumPy’s vectorization and broadcasting rules, which allow
us to manipulate and reason about data arrays very efficiently.

def rpkm(counts, lengths):
"""Calculate reads per kilobase transcript per million reads.

RPKM = (1079 * C) / (N * L)




Where:

C = Number of reads mapped to a gene

N = Total mapped reads in the experiment
L = Exon length in base pairs for a gene

Parameters
counts: array, shape (N_genes, N_samples)
RNAseq (or similar) count data where columns are individual samples
and rows are genes.
lengths: array, shape (N_genes,)
Gene lengths in base pairs in the same order
as the rows in counts.

Returns
normed : array, shape (N_genes, N_samples)
The RPKM normalized counts matrix.

o

N = np.sum(counts, axis=0) # sum each column to get total reads per sarmple
L = lengths
C = counts

normed = 19 * C / (N[np.newaxis, :] * L[:, np.newaxis])

return(normed)

This example illustrates some of the ways that NumPy arrays can make your code
more elegant:

o Arrays can be 1D, like lists, but they can also be 2D, like matrices, and higher-
dimensional still. This allows them to represent many different kinds of numeri-
cal data. In our case, we are manipulating a 2D matrix.

o Arrays can be operated on along axes. In the first line, we calculate the sum down
each column by specifying axis=0.

o Arrays allow the expression of many numerical operations at once. For example,
toward the end of the function we divide the 2D array of counts (C) by the 1D
array of column sums (N). This is broadcasting. More on how this works in just a
moment!

Before we delve into the power of NumPy, let’s spend some time looking at the bio-
logical data that we will be working with.

Introduction to the Data: What Is Gene Expression?

We will work our way through a gene expression analysis to demonstrate the power of
NumPy and SciPy to solve a real-world biological problem. We will use the pandas
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library, which builds on NumPy, to read and munge our data files, and then we will
manipulate our data efficiently in NumPy arrays.

The so-called central dogma of molecular biology states that all the information
needed to run a cell (or an organism, for that matter) is stored in a molecule called
deoxyribonucleic acid, or DNA. This molecule has a repetitive backbone on which lie
chemical groups called bases, in sequence (Figure 1-1). There are four kinds of bases,
abbreviated as A, C, G, and T, comprising an alphabet with which information is
stored.

Thymine
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deoxyribose ", N
backbone H "'"\h N
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G\P/O-
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= 2} A
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3 end Cytosine /™
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Figure 1-1. The chemical structure of DNA (image by Madeleine Price Ball, used under
the terms of the CCO public domain license)

To access this information, the DNA is transcribed into a sister molecule called mes-
senger ribonucleic acid, or mRNA. Finally, this mRNA is translated into proteins, the
workhorses of the cell (Figure 1-2). A section of DNA that encodes the information to
make a protein (via mRNA) is called a gene.
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The amount of mRNA produced from a given gene is called the expression of that
gene. Although we would ideally like to measure protein levels, this is a much harder
task than measuring mRNA. Fortunately, expression levels of an mRNA and levels of
its corresponding protein are usually correlated.! Therefore, we usually measure
mRNA levels and base our analyses on that. As you will see below, it often doesn’t
matter, because we are using mRNA levels for their power to predict biological out-
comes, rather than to make specific statements about proteins.

Central Dogma

—> —>
transcription translation

DNA RNA Protein

Figure 1-2. Central dogma of molecular biology

It's important to note that the DNA in every cell of your body is identical. Thus, the
differences between cells arise from differential expression of that DNA into RNA: in
different cells, different parts of the DNA are processed into downstream molecules
(Figure 1-3). Similarly, as we will see in this chapter and the next, differential expres-
sion can distinguish different kinds of cancer.

The state-of-the-art technology to measure mRNA is RNA sequencing (RNAseq).
RNA is extracted from a tissue sample (e.g., from a biopsy from a patient), reverse
transcribed back into DNA (which is more stable), and then read out using chemically
modified bases that glow when they are incorporated into the DNA sequence. Cur-
rently, high-throughput sequencing machines can only read short fragments (approx-
imately 100 bases is common). These short sequences are called “reads” We measure
millions of reads and then based on their sequence we count how many reads came
from each gene (Figure 1-4). We'll be starting our analysis directly from this count
data.

1 Tobias Maier, Marc Giiell, and Luis Serrano, “Correlation of mRNA and protein in complex biological sam-
ples”, FEBS Letters 583, no. 24 (2009).
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Figure 1-4. RNA sequencing (RNAseq)

Table 1-1 shows a minimal example of a gene expression count data.
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Table 1-1. Gene expression count data

Celltype A Cell type B

Gene0 100 200
Gene1 50 0
Gene2 350 100

The data is a table of counts, integers representing how many reads were observed for
each gene in each cell type. See how the counts for each gene differ between the cell
types? We can use this information to learn about the differences between these two
types of cells.

One way to represent this data in Python would be as a list of lists:

gene® = [100, 200]
genel = [50, 0]
gene2 = [350, 100]

expression_data = [gene@, genel, gene2]

Above, each gene’s expression across different cell types is stored in a list of Python
integers. Then, we store all of these lists in a list (a meta-list, if you will). We can
retrieve individual data points using two levels of list indexing:

expression_data[2][0]
350

Because of the way the Python interpreter works, this is a very inefficient way to store
these data points. First, Python lists are always lists of objects, so that the above list
gene2 is not a list of integers, but a list of pointers to integers, which is unnecessary
overhead. Additionally, this means that each of these lists and each of these integers
ends up in a completely different, random part of your computer’s RAM. However,
modern processors actually like to retrieve things from memory in chunks, so this
spreading of the data throughout the RAM is inefficient.

This is precisely the problem solved by the NumPy array.

NumPy N-Dimensional Arrays

One of the key NumPy data types is the N-dimensional array (ndarray, or just array).
Ndarrays underpin lots of awesome data manipulation techniques in SciPy. In partic-
ular, we're going to explore vectorization and broadcasting, techniques that allow us
to write powerful, elegant code to manipulate our data.

First, let’s get our heads around the ndarray. These arrays must be homogeneous: all
items in an array must be the same type. In our case we will need to store integers.
Ndarrays are called N-dimensional because they can have any number of dimensions.
A one-dimensional array is roughly equivalent to a Python list:
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import as

arrayld = np.array([1, 2, 3, 4])
print(arrayld)
print(type(arrayid))

[123 4]
<class 'numpy.ndarray's>

Arrays have particular attributes and methods you can access by placing a dot after
the array name. For example, you can get the array’s shape with the following:

print(arrayld.shape)

(4,)

Here, it’s just a tuple with a single number. You might wonder why you wouldn’t just
use len, as you would for a list. That will work, but it doesn’t extend to 2D arrays.

This is what we use to represent the data in Table 1-1:

array2d = np.array(expression_data)
print(array2d)

print(array2d.shape)
print(type(array2d))

[[100 200]
[ 56 0]
[350 100]]
(3, 2)
<class 'numpy.ndarray's>

Now you can see that the shape attribute generalizes len to account for the size of
multiple dimensions of an array of data.
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Figure 1-5. Visualizing NumPy’s ndarrays in one, two, and three dimensions

Arrays have other attributes, such as ndim, the number of dimensions:

print(array2d.ndim)
2

You'll become familiar with all of these as you start to use NumPy more for your own
data analysis.

NumPy arrays can represent data that has even more dimensions, such as magnetic
resonance imaging (MRI) data, which includes measurements within a 3D volume. If
we store MRI values over time, we might need a 4D NumPy array.

For now, we'll stick to 2D data. Later chapters will introduce higher-dimensional data
and will teach you to write code that works for data of any number of dimensions.

Why Use ndarrays Instead of Python Lists?

Arrays are fast because they enable vectorized operations, written in the low-level lan-
guage C, that act on the whole array. Say you have a list and you want to multiply
every element in the list by five. A standard Python approach would be to write a
loop that iterates over the elements of the list and multiply each one by five. However,
if your data is instead represented as an array, you can multiply every element in the
array by five in a single bound. Behind the scenes, the highly optimized NumPy
library is doing the iteration as fast as possible.
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import as

# Create an ndarray of integers in the range
# 0 up to (but not including) 1,000,000
array = np.arange(le6)

# Convert it to a list

list_array = array.tolist()
Let’s compare how long it takes to multiply all the values in the array by five, using
the IPython timeit magic function. First, when the data is in a list:

%timeit -n10 y = [val * 5 for val in list_array]

10 loops, average of 7: 102 ms +- 8.77 ms per loop (using standard deviation)
Now, using NumPy’s built-in vectorized operations:

%timeilt -n10 x = array * 5

10 loops, average of 7: 1.28 ms +- 206 ps per loop (using standard deviation)

Over 50 times faster, and more concise, too!

Arrays are also size efficient. In Python, each element in a list is an object and is given
a healthy memory allocation (or is that unhealthy?). In contrast, in arrays, each ele-
ment takes up just the necessary amount of memory. For example, an array of 64-bit
integers takes up exactly 64 bits per element, plus some very small overhead for array
metadata, such as the shape attribute we discussed above. This is generally much less
than would be given to objects in a Python list. (If youre interested in digging into
how Python memory allocation works, check out Jake VanderPlas’s blog post, “Why
Python Is Slow: Looking Under the Hood”.)

Plus, when computing with arrays, you can also use slices that subset the array
without copying the underlying data.

# Create an ndarray x
x = np.array([1, 2, 3], np.int32)
print(x)

[12 3]

# Create a "slice" of x
y = x[:2]
print(y)

[1 2]

# Set the first element of y to be 6
y[0] =6
print(y)

[6 2]
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Notice that although we edited y, x has also changed, because y was referencing the
same data!

# Now the first element in x has changed to 6!
print(x)

[6 2 3]

This means you have to be careful with array references. If you want to manipulate
the data without touching the original, it’s easy to make a copy:

y = np.copy(x[:2])

Vectorization

Earlier we talked about the speed of operations on arrays. One of the tricks NumPy
uses to speed things up is vectorization. Vectorization is where you apply a calculation
to each element in an array, without having to use a for loop. In addition to speeding
things up, this can result in more natural, readable code. Let’s look at some examples.

x = np.array([1, 2, 3, 4])
print(x * 2)

[2 4 6 8]

Here, we have x, an array of 4 values, and we have implicitly multiplied every element
in x by 2, a single value.

y = np.array([0, 1, 2, 1])
print(x + vy)

[1355]

Now, we have added together each element in x to its corresponding element in y, an
array of the same shape.

Both of these operations are simple and, we hope, intuitive examples of vectorization.
NumPy also makes them very fast, much faster than iterating over the arrays man-
ually. (Feel free to play with this yourself using the %timeit IPython magic we saw
earlier.)

Broadcasting

One of the most powerful and often misunderstood features of ndarrays is broadcast-
ing. Broadcasting is a way of performing implicit operations between two arrays. It
allows you to perform operations on arrays of compatible shapes, to create arrays big-
ger than either of the starting ones. For example, we can compute the outer product
of two vectors by reshaping them appropriately:

x = np.array([1, 2, 3, 4])
x = np.reshape(x, (len(x), 1))
print(x)
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[[1]
[2]
[3]
[4]]

y = np.array([0, 1, 2, 1])
y = np.reshape(y, (1, len(y)))
print(y)

([0 12 1]]

Two shapes are compatible when, for each dimension, either is equal to 1 (one) or
they match one another.”

Let’s check the shapes of these two arrays.

print(x.shape)

print(y.shape)

4, 1)

(1’ 4)
Both arrays have two dimensions and the inner dimensions of both arrays are 1, so
the dimensions are compatible!

outer = x *y

print(outer)

[[o121]

[0 2 4 2]

[0 36 3]

[0 4 8 4]]
The outer dimensions tell you the size of the resulting array. In our case we expect a
(4, 4) array:

print(outer.shape)
(4’ 4)
You can see for yourself that outer[1, j] = x[1] * y[j] forall (1, j).

This was accomplished by NumPy’s broadcasting rules, which implicitly expand
dimensions of size 1 in one array to match the corresponding dimension of the other
array. Don’t worry, we will talk about these rules in more detail later in this chapter.

As we will see in the rest of the chapter, as we explore real data, broadcasting is
extremely valuable for real-world calculations on arrays of data. It allows us to
express complex operations concisely and efficiently.

2 We always start by comparing the last dimensions, and work our way forward, ignoring excess dimensions in
the case of one array having more than the other (e.g., (3, 5, 1) and (5, 8) would match).
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Exploring a Gene Expression Dataset

The dataset that we'll be using is an RNAseq experiment of skin cancer samples from
The Cancer Genome Atlas (TCGA) project. We've already cleaned and sorted the
data for you, so you can just use data/counts.txt in the book repository.

In Chapter 2 we will be using this gene expression data to predict mortality in skin
cancer patients, reproducing a simplified version of Figures 5A and 5B of a paper
from the TCGA consortium. But first we need to get our heads around the biases in
our data, and think about how we could improve it.

Reading in the Data with pandas

We're first going to use pandas to read in the table of counts. pandas is a Python
library for data manipulation and analysis, with particular emphasis on tabular and
time series data. Here, we will use it to read in tabular data of mixed type. It uses the
DataFrame type, which is a flexible tabular format based on the data frame object in
R. For example, the data we will read has a column of gene names (strings) and multi-
ple columns of counts (integers), so reading it into a homogeneous array of numbers
would be the wrong approach. Although NumPy has some support for mixed data
types (called “structured arrays”), it is not primarily designed for this use case, which
makes subsequent operations harder than they need to be.

By reading in the data as a pandas data frame we can let pandas do all the parsing,
then extract the relevant information and store it in a more efficient data type. Here
we are just using pandas briefly to import data. In later chapters we will see a bit more
of pandas, but for details, read Python for Data Analysis (O'Reilly) by the creator of
pandas, Wes McKinney.

import as
import as

# Import TCGA melanoma data
filename = 'data/counts.txt'
with open(filename, 'rt') as f:
data_table = pd.read_csv(f, index_col=0) # Parse file with pandas

print(data_table.iloc[:5, :5])

00624286-41dd-476f-a63b-d2a5f484bb45 TCGA-FS-A1Z0 TCGA-D9-A3Z1 \

A1BG 1272.36 452.96 288.06
A1CF 0.00 0.00 0.00
A2BP1 0.00 0.00 0.00
A2LD1 164.38 552.43 201.83
A2ML1 27.00 0.00 0.00

02c76d24-f1d2-4029-95b4-8be3bda8fdbe TCGA-EB-A51B
A1BG 400.11 420.46
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A1CF 1.00 0.00

A2BP1 0.00 1.00
A2LD1 165.12 95.75
A2ML1 0.00 8.00

We can see that pandas has kindly pulled out the header row and used it to name the
columns. The first column gives the name of each gene, and the remaining columns
represent individual samples.

We will also need some corresponding metadata, including the sample information
and the gene lengths.

# Sample names
samples = list(data_table.columns)

We will need some information about the lengths of the genes for our normalization.
So that we can take advantage of some fancy pandas indexing, were going to set the
index of the pandas table to be the gene names in the first column.

# Import gene lengths
filename = 'data/genes.csv'
with open(filename, 'rt') as f:
# Parse file with pandas, index by GeneSymbol
gene_1info = pd.read_csv(f, index_col=0)
print(gene_1info.iloc[:5, :])

GeneID Genelength

GeneSymbol

CPA1 1357 1724
GUCY2D 3000 3623
UBC 7316 2687
Cl1lorf95 65998 5581
ANKMY?2 57037 2611

Let’s check how well our gene length data matches up with our count data.

print("Genes in data_table: ", data_table.shape[0])
print("Genes in gene_info: ", gene_1info.shape[0])

Genes in data_table: 20500
Genes in gene_info: 20503

There are more genes in our gene length data than were actually measured in the
experiment. Let’s filter so we only get the relevant genes, and we want to make sure
they are in the same order as in our count data. This is where pandas indexing comes
in handy! We can get the intersection of the gene names from our two sources of data
and use these to index both datasets, ensuring they have the same genes in the same
order.

# Subset gene info to match the count data
matched_index = pd.Index.intersection(data_table.index, gene_1info.1index)

Now let’s use the intersection of the gene names to index our count data.
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# 2D ndarray containing expression counts for each gene in each individual
counts = np.asarray(data_table.loc[matched_index], dtype=int)

gene_names = np.array(matched_index)

# Check how many genes and individuals were measured
print(f'{counts.shape[0]} genes measured in {counts.shape[1]} individuals.')

20500 genes measured in 375 individuals.
And our gene lengths:

# 1D ndarray containing the lengths of each gene
gene_lengths = np.asarray(gene_info.loc[matched_index]['GeneLength'],
dtype=int)

And let’s check the dimensions of our objects:

print(counts.shape)
print(gene_lengths.shape)

(20500, 375)
(20500,)

As expected, they now match up nicely!

Normalization

Real-world data contains all kinds of measurement artifacts. Before doing any kind of
analysis with it, it is important to take a look at it to determine whether some normal-
ization is warranted. For example, measurements with digital thermometers may sys-
tematically vary from those taken with mercury thermometers and read by a human.
Thus, comparing samples often requires some kind of data wrangling to bring every
measurement to a common scale.

In our case, we want to make sure that any differences we uncover correspond to real
biological differences, and not to technical artifact. We will consider two levels of
normalization often applied jointly to a gene expression dataset: normalization
between samples (columns) and normalization between genes (rows).

Between Samples

For example, the number of counts for each individual can vary substantially in
RNAseq experiments. Let’s take a look at the distribution of expression counts over all
the genes. First, we will sum the columns to get the total counts of expression of all
genes for each individual, so we can just look at the variation between individuals. To
visualize the distribution of total counts, we will use kernel density estimation (KDE),
a technique commonly used to smooth out histograms because it gives a clearer pic-
ture of the underlying distribution.
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Before we start, we have to do some plotting setup (which we will do in every chap-
ter). See “A Quick Note on Plotting” on page 15 for details about each line of the fol-
lowing code.

# Make all plots appear inline in the Jupyter notebook from now onwards
%matplotlib inline

# Use our own style file for the plots

import matplotlib.pyplot as plt

plt.style.use('style/elegant.mplstyle")

A Quick Note on Plotting

The preceding code does a few neat things to make our plots prettier.

First, ¥matplotlib inline is a Jupyter notebook magic command that simply makes
all plots appear in the notebook rather than pop up a new window. If you are running
a Jupyter notebook interactively, you can use %matplotlib notebook instead to get
an interactive figure, rather than a static image of each plot.

Second, we import matplotlib.pyplot and then direct it to use our own plotting
style plt.style.use('style/elegant.mplstyle'). You will see a block of code like
this before the first plot in every chapter.

You may have seen people importing existing styles like this: plt.style.use('gg
plot'). But we wanted some particular settings, and we wanted all the plots in this
book to follow the same style. So we rolled our own Matplotlib style. To see how we
did it, take a look at the stylesheet file in the Elegant SciPy repository: style/
elegant.mplstyle. For more information on styles, check out the Matplotlib documen-
tation on stylesheets.

Now back to plotting our counts distribution!

total_counts = np.sum(counts, axis=0) # sum columns together
# (axis=1 would sum rows)

from scipy import stats

# Use Gaussian smoothing to estimate the density
density = stats.kde.gaussian_kde(total_counts)

# Make values for which to estimate the density, for plotting
x = np.arange(min(total_counts), max(total_counts), 10000)

# Make the density plot

fig, ax = plt.subplots()

ax.plot(x, density(x))

ax.set_xlabel("Total counts per individual")
ax.set_ylabel("Density")
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plt.show()

print(f'Count statistics:\n min: {np.min(total_counts)}'
f'\n mean: {np.mean(total_counts)}'
f'\n max: {np.max(total_counts)}')

Count statistics:

min: 6231205

mean: 52995255.33866667

max: 103219262
We can see that there is an order-of-magnitude difference in the total number of
counts between the lowest and the highest individual (Figure 1-6). This means that a
different number of RNAseq reads were generated for each individual. We say that
these individuals have different library sizes.
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Figure 1-6. Density plot of gene expression counts per individual using KDE smoothing

Normalizing library size between samples

Let’s take a closer look at ranges of gene expression for each individual, so when we
apply our normalization we can see it in action. We'll subset a random sample of just
70 columns to keep the plotting from getting too messy.
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# Subset data for plotting

np.random.seed(seed=7) # Set seed so we will get consistent results

# Randomly select 70 samples

samples_index = np.random.choice(range(counts.shape[1]), size=70, replace=False)
counts_subset = counts[:, samples_index]

# Some custom x-axis labelling to make our plots easier to read
def reduce_xaxis_labels(ax, factor):
"""Show only every ith label to prevent crowding on x-axis
e.g. factor = 2 would plot every second x-axis label,
starting at the first.

Parameters

ax : matplotlib plot axis to be adjusted
factor : int, factor to reduce the number of x-axis labels by

mwun

plt.setp(ax.xaxis.get_ticklabels(), visible=False)
for label in ax.xaxis.get_ticklabels()[factor-1::factor]:
label.set_visible(True)

# Bar plot of expression counts by individual
fig, ax = plt.subplots(figsize=(4.8, 2.4))

with plt.style.context('style/thinner.mplstyle'):
ax.boxplot(counts_subset)
ax.set_xlabel("Individuals")
ax.set_ylabel("Gene expression counts")
reduce_xaxis_labels(ax, 5)

There are obviously a lot of outliers at the high expression end of the scale and a lot of
variation between individuals, but these are hard to see because everything is clus-
tered around zero (Figure 1-7). So let’s do log(n + 1) of our data so it’s a bit easier to
look at (Figure 1-8). Both the log function and the n + 1 step can be done using
broadcasting to simplify our code and speed things up.
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Figure 1-7. Boxplot of gene expression counts per individual

# Bar plot of expression counts by individual
fig, ax = plt.subplots(figsize=(4.8, 2.4))

with plt.style.context('style/thinner.mplstyle'):
ax.boxplot(np.log(counts_subset + 1))
ax.set_xlabel("Individuals")
ax.set_ylabel("log gene expression counts")
reduce_xaxis_labels(ax, 5)
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Figure 1-8. Boxplot of gene expression counts per individual (log scale)

Now let’s see what happens when we normalize by library size (Figure 1-9).
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# Normalize by library size

# Divide the expression counts by the total counts for that individual
# Multiply by 1 million to get things back in a similar scale
counts_lib_norm = counts / total_counts * 1000000

# Notice how we just used broadcasting twice there!
counts_subset_1lib_norm = counts_lib_norm[:,samples_index]

# Bar plot of expression counts by individual
fig, ax = plt.subplots(figsize=(4.8, 2.4))

with plt.style.context('style/thinner.mplstyle'):
ax.boxplot(np.log(counts_subset_lib_norm + 1))
ax.set_xlabel("Individuals")
ax.set_ylabel("log gene expression counts")
reduce_xaxis_labels(ax, 5)
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Figure 1-9. Boxplot of library-normalized gene expression counts per individual (log
scale)

Much better! Also notice how we used broadcasting twice there. Once to divide all
the gene expression counts by the total for that column, and then again to multiply all
the values by 1 million.

Finally, let's compare our normalized data to the raw data.

import itertools as it
from collections import defaultdict

def class_boxplot(data, classes, colors=None, **kwargs):
"""Make a boxplot with boxes colored according to the class they belong to.

Parameters
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data : list of array-like of float
The input data. One boxplot will be generated for each element
in ‘data’.

classes : list of string, same length as ‘data’
The class each distribution in ‘data’ belongs to.

Other parameters
kwargs : dict

Keyword arguments to pass on to “plt.boxplot".
all_classes = sorted(set(classes))
colors = plt.rcParams['axes.prop_cycle'].by key()['color']
class2color = dict(zip(all_classes, it.cycle(colors)))

# map classes to data vectors
# other classes get an empty list at that position for offset
class2data = defaultdict(list)
for distrib, cls in zip(data, classes):
for c in all_classes:
class2data[c].append([])
class2data[cls][-1] = distrib

# then, do each boxplot in turn with the appropriate color
fig, ax = plt.subplots()
lines = []
for cls in all_classes:
# set color for all elements of the boxplot
for key in ['boxprops', 'whiskerprops', 'flierprops']:
kwargs.setdefault(key, {}).update(color=class2color[cls])
# draw the boxplot
box = ax.boxplot(class2data[cls], **kwargs)
lines.append(box[ 'whiskers'][0])
ax.legend(lines, all_classes)
return ax

Now we can plot a colored boxplot according to normalized versus unnormalized
samples. We show only three samples from each class for illustration:

log_counts_3 = list(np.log(counts.T[:3] + 1))

log_ncounts_3 = list(np.log(counts_lib_norm.T[:3] + 1))

ax = class_boxplot(log_counts_3 + log_ncounts_3,
['raw counts'] * 3 + ['normalized by library size'] * 3,
labels=[1, 2, 3, 1, 2, 3])

ax.set_xlabel('sample number')

ax.set_ylabel('log gene expression counts');

You can see that the normalized distributions are a little more similar when we take
library size (the sum of those distributions) into account (Figure 1-10). Now we are
comparing like with like between the samples! But what about differences between
the genes?
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Figure 1-10. Comparing raw and library-normalized gene expression counts in three

samples (log scale)

Between Genes

We can also get into some trouble when trying to compare different genes. The num-

ber of counts for a gene is related to the gene length. Suppose gene B is twice as long

as gene A. Both are expressed at similar levels in the sample (i.e., both produce a sim-

ilar number of mRNA molecules). Remember that in an RNAseq experiment, we
fragment the transcripts and sample reads from that pool of fragments. So if a gene is

twice as long, it’ll produce twice as many fragments, and we are twice as likely to sam-

ple it. Therefore, we would expect gene B to have about twice as many counts as gene
A (Figure 1-11). If we want to compare the expression levels of different genes, we

will have to do some more normalization.

Normalization
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Figure 1-11. Relationship between counts and gene length

Let’s see if the relationship between gene length and counts plays out in our dataset.
First, we define a utility function for plotting:

def binned_boxplot(x, y, *, # check out this Python 3 exclusive! (*see tip box)
xlabel="gene length (log scale)',
ylabel="average log counts'):

Plot the distribution of 'y’ dependent on ‘x' using many boxplots.

mwun

Note: all inputs are expected to be log-scaled.

Parameters
x: 1D array of float
Independent variable values.
y: 1D array of float
Dependent variable values.
# Define bins of ‘x' depending on density of observations
x_hist, x_bins = np.histogram(x, bins='auto')

# Use ‘np.digitize" to number the bins

# Discard the last bin edge because it breaks the right-open assumption
# of ‘digitize'. The max observation correctly goes into the last bin.
x_bin_idxs = np.digitize(x, x_bins[:-1])

# Use those indices to create a list of arrays, each containing the 'y
# values corresponding to ‘x's in that bin. This is the input format
# expected by ‘plt.boxplot’
binned_y = [y[x_bin_idxs == 1]
for 1 in range(np.max(x_bin_idxs))]
fig, ax = plt.subplots(figsize=(4.8,1))

# Make the x-axis labels using the bin centers
x_bin_centers = (x_bins[1:] + x_bins[:-1]) / 2
x_ticklabels = np.round(np.exp(x_bin_centers)).astype(int)

# make the boxplot
ax.boxplot(binned_y, labels=x_ticklabels)

# show only every 10th label to prevent crowding on x-axis
reduce_xaxis_labels(ax, 10)
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# Adjust the axis names
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel);

Python 3 Tip: Using * to Create Keyword-Only Arguments

Since version 3.0 Python allows “keyword-only” arguments. These are arguments that
you have to call using a keyword, rather than relying on position alone. For example,
you can call the binned_boxplot we just wrote like so:

>>> binned_boxplot(x, y, xlabel='my x label', ylabel='my y label')

but not like this, which would have been valid Python 2, but raises an error in Python
3:

>>> binned_boxplot(x, y, 'my x label', 'my y label')

TypeError Traceback (most recent call last)
<ipython-input-58-7a118d2d5750in <module>()

1 x_vals = [1, 2, 3, 4, 5]

2 y vals = [1, 2, 3, 4, 5]
----3 binned_boxplot(x, y, 'my x label', 'my y label')

TypeError: binned_boxplot() takes 2 positional arguments but 4 were given
The idea is to prevent you from accidentally doing something like this:
binned_boxplot(x, y, 'my y label')

which would give you your y label on the x-axis, a common error for signatures with
many optional parameters that don’t have obvious ordering.

We now compute the gene lengths and counts:

log_counts = np.log(counts_lib_norm + 1)
mean_log_counts = np.mean(log_counts, axis=1) # across samples
log_gene_lengths = np.log(gene_lengths)

with plt.style.context('style/thinner.mplstyle'):
binned_boxplot(x=1og_gene_lengths, y=mean_log_counts)
We can see in the following image that the longer a gene is, the higher its measured
counts! As previously explained, this is an artifact of the technique, not a biological
signal! How do we account for this?
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Normalizing Over Samples and Genes: RPKM

One of the simplest normalization methods for RNAseq data is RPKM: reads per kil-
obase transcript per million reads. RPKM puts together the ideas of normalizing by
sample and by gene. When we calculate RPKM, we are normalizing for both the
library size (the sum of each column) and the gene length.

To work through how RPKM is derived, let’s define the following values:

o C=Number of reads mapped to a gene
o L =Exon length in base-pairs for a gene
o N = Total mapped reads in the experiment

First, let’s calculate reads per kilobase.

Reads per base would be:

=lo

The formula asks for reads per kilobase instead of reads per base. One kilobase =
1,000 bases, so we'll need to divide length (L) by 1,000.

Reads per kilobase would be:

c 10°c

L/1000 ~— L

Next, we need to normalize by library size. If we just divide by the number of mapped
reads we get:

24 | Chapter 1: Elegant NumPy: The Foundation of Scientific Python



But biologists like thinking in millions of reads so that the numbers don’t get too big.
Counting per million reads we get:

10°c_ 10°C
vty N

In summary, to calculate reads per kilobase transcript per million reads:

9
10°C
Now let’s implement RPKM over the entire counts array.

# Make our variable names the same as the RPKM formula so we can compare easily
C = counts

N = counts.sum(axis=0) # sum each column to get total reads per sarmple

L = gene_lengths # lengths for each gene, matching rows in 'C°

First, we multiply by 1049. Because counts (C) is an ndarray, we can use broadcasting.
If we multiple an ndarray by a single value, that value is broadcast over the entire
array.

# Multiply all counts by 1679

C_tmp = 1079 * C
Next, we need to divide by the gene length. Broadcasting a single value over a 2D
array was pretty clear. We were just multiplying every element in the array by the
value. But what happens when we need to divide a 2D array by a 1D array?

Broadcasting rules

Broadcasting allows calculations between ndarrays that have different shapes. Numpy
uses broadcasting rules to make these manipulations a little easier. When two arrays
have the same number of dimensions, broadcasting can occur if the sizes of each
dimension match, or one of them is equal to 1. If arrays have different numbers of
dimensions, then (1,) is prepended to the shorter array until the numbers match, and
then the standard broadcasting rules apply.

For example, suppose we have two ndarrays, A and B, with shapes (5,2) and (2,). We
define the product A * B using broadcasting. B has fewer dimensions than A, so dur-
ing the calculation, a new dimension is prepended to B with value 1, so B’s new shape
is (1,2). Finally, where B’s shape doesn’t match A, it is multiplied by stacking enough
versions of B, giving the shape (5,2). This is done “virtually,” without using up any
additional memory. At this point, the product is just an element-wise multiplication,
giving an output array of the same shape as A.
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Now let’s say we have another array, C, of shape (2.5). To multiply (or add) C to B, we
might try to prepend (1,) to the shape of B, but in that case, we still end up with
incompatible shapes: (2,5) and (1,2). If we want the arrays to broadcast, we have to
append a dimension to B, manually. Then, we end up with (2,5) and (2,1), and broad-
casting can proceed.

In NumPy, we can explicitly add a new dimension to B using np.newaxis. Let’s see
this in our normalization by RPKM.

Let’s look at the dimensions of our arrays.

print('C_tmp.shape', C_tmp.shape)
print('L.shape', L.shape)

C_tmp.shape (20500, 375)
L.shape (20500,)

We can see that C_tmp has two dimensions, while L has one. So during broadcasting,
an additional dimension will be prepended to L. Then we will have:

C_tmp.shape (20500, 375)
L.shape (1, 20500)

The dimensions won't match! We want to broadcast L over the first dimension of
C_tmp, so we need to adjust the dimensions of L ourselves.

L = L[:, np.newaxis] # append a dimension to L, with value 1
print('C_tmp.shape', C_tmp.shape)
print('L.shape', L.shape)

C_tmp.shape (20500, 375)
L.shape (20500, 1)

Now that our dimensions match or are equal to one, we can broadcast.

# Divide each row by the gene length for that gene (L)
C_tmp = C_tmp / L

Finally, we need to normalize by the library size, the total number of counts for that
column. Remember that we have already calculated N with:
N = counts.sum(axis=0) # sum each column to get total reads per sample

# Check the shapes of C_tmp and N
print('C_tmp.shape', C_tmp.shape)
print('N.shape', N.shape)

C_tmp.shape (20500, 375)
N.shape (375,)

Once we trigger broadcasting, an additional dimension will be prepended to N:

N.shape (1, 375)

26 | Chapter 1: Elegant NumPy: The Foundation of Scientific Python



The dimensions will match so we don’t have to do anything. However, for readability,
it can be useful to add the extra dimension to N anyway.

# Divide each column by the total counts for that column (N)
N = N[np.newaxis, :]

print('C_tmp.shape', C_tmp.shape)

print('N.shape', N.shape)

C_tmp.shape (20500, 375)
N.shape (1, 375)

# Divide each column by the total counts for that column (N)
rpkm_counts = C_tmp / N

Let’s put this in a function so we can reuse it.

def rpkm(counts, lengths):
"""Calculate reads per kilobase transcript per million reads.

RPKM = (16729 * C) / (N * L)

where:

C = Number of reads mapped to a gene

N = Total mapped reads in the experiment
L = Exon length in base pairs for a gene

Parameters
counts: array, shape (N_genes, N_samples)
RNAseq (or similar) count data where columns are individual samples
and rows are genes.
lengths: array, shape (N_genes,)
Gene lengths in base pairs in the same order
as the rows in counts.

Returns
normed : array, shape (N_genes, N_samples)
The RPKM normalized counts matrix.

o

N = np.sum(counts, axis=0) # sum each column to get total reads per sample
L = lengths
C = counts

normed = 19 * C / (N[np.newaxis, :] * L[:, np.newaxis])
return(normed)

counts_rpkm = rpkm(counts, gene_lengths)

RPKM between gene normalization

Let’s see the RPKM normalization’s effect in action. First, as a reminder, here’s the dis-
tribution of mean log counts as a function of gene length (see Figure 1-12):
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log_counts = np.log(counts + 1)
mean_log_counts = np.mean(log_counts, axis=1)
log_gene_lengths = np.log(gene_lengths)

with plt.style.context('style/thinner.mplstyle'):
binned_boxplot(x=1log_gene_lengths, y=mean_log_counts)
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Figure 1-12. The relationship between gene length and average expression before RPKM
normalization (log scale)

Now, the same plot with the RPKM-normalized values:

log_counts = np.log(counts_rpkm + 1)
mean_log_counts = np.mean(log_counts, axis=1)
log_gene_lengths = np.log(gene_lengths)

with plt.style.context('style/thinner.mplstyle'):
binned_boxplot(x=1og_gene_lengths, y=mean_log_counts)

|,
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You can see that the mean expression counts have flattened quite a bit, especially for
genes larger than about 3,000 base pairs. (Smaller genes still appear to have low
expression—these may be too small for the statistical power of the RPKM method.)

RPKM normalization can be useful to compare the expression profile of different
genes. We've already seen that longer genes have higher counts, but this doesn’t mean
their expression level is actually higher. Let’s choose a short gene and a long gene and
compare their counts before and after RPKM normalization to see what we mean.
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gene_1idxs = np.array([80, 186])

genel, gene2 = gene_names[gene_1idxs]

len1l, len2 = gene_lengths[gene_idxs]

gene_labels = [f'{genel}, {leni}bp', f'{gene2}, {len2}bp']

log_counts = list(np.log(counts[gene_idxs] + 1))
log_ncounts = list(np.log(counts_rpkm[gene_idxs] + 1))

ax = class_boxplot(log_counts,
['raw counts'] * 3,
labels=gene_labels)
ax.set_xlabel('Genes")
ax.set_ylabel('log gene expression counts over all samples');

If we look at just the raw counts, it looks like the longer gene, TXNDCS5, is expressed
slightly more than the shorter one, RPL24 (Figure 1-13). But, after RPKM normaliza-
tion, a different picture emerges:

ax = class_boxplot(log_ncounts,
['RPKM normalized'] * 3,
labels=gene_labels)
ax.set_xlabel('Genes")
ax.set_ylabel('log RPKM gene expression counts over all samples');
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Figure 1-13. Comparing expression of two genes before RPKM normalization
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Now it looks like RPL24 is actually expressed at a much higher level than TXNDC5
(see Figure 1-14). This is because RPKM includes normalization for gene length, so
we can now directly compare between genes of different lengths.

—— RPKM normalized

log RPKM gene expression counts over all samples

RPL24, 562bp TXNDC5, 3589bp
Genes

Figure 1-14. Comparing expression of two genes after RPKM normalization

Taking Stock

So far we have done the following:

« Imported data using pandas
+ Become familiar with the key NumPy object class—the ndarray
« Used the power of broadcasting to make our calculations more elegant

In Chapter 2 we will continue working with the same dataset, implementing a more
sophisticated normalization technique, then use clustering to make some predictions
about mortality in skin cancer patients.
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CHAPTER 2

Quantile Normalization with
NumPy and SciPy

Distress not yourself if you cannot at first understand the deeper mysteries of Spaceland. By
degrees they will dawn upon you.

—Edwin A. Abbott, Flatland: A Romance of Many Dimensions

In this chapter, we will continue to analyze the gene expression data from Chapter 1,
but with a slightly different purpose: we want to use each patient’s gene expression
profile (the full vector of their gene expression measurements) to predict their
expected survival. In order to use full profiles, we need a stronger normalization than
what Chapter I's RPKM provides. We will instead perform quantile normalization, a
technique that ensures measurements fit a specific distribution. This method enforces
a strong assumption: if the data are not distributed according to a desired shape, we
just make it fit! This might feel a bit like cheating, but it turns out to be simple and
useful in many cases where the specific distribution doesn’t matter, but the relative
changes of values within a population are important. For example, Bolstad and col-
leagues showed that it performs admirably in recovering known expression levels in
microarray data.

Over the course of the chapter, we will reproduce a simplified version of Figures 5A
and 5B from “Genomic Classification of Cutaneous Melanoma,” a paper from The
Cancer Genome Atlas (TCGA) project.

Our implementation of quantile normalization uses NumPy and SciPy effectively to
produce a function that is fast, efficient, and elegant. Quantile normalization involves
three steps:

1. Sort the values along each column
2. Find the average of each resulting row
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3. Replace each column quantile with the quantile of the average column

import numpy as np
from scipy import stats

def quantile_norm(X):
"""Normalize the columns of X to each have the same distribution.

Given an expression matrix (microarray data, read counts, etc) of M genes
by N samples, quantile normalization ensures all samples have the same
spread of data (by construction).

The data across each row are averaged to obtain an average column. Each
column quantile is replaced with the corresponding quantile of the average
column.

Parameters

X : 2D array of float, shape (M, N)
The input data, with M rows (genes/features) and N columns (samples).

Returns

Xn : 2D array of float, shape (M, N)
The normalized data.

o

# compute the quantiles
quantiles = np.mean(np.sort(X, axis=0), axis=1)

# compute the column-wise ranks. Each observation is replaced with its
# rank in that column: the smallest observation is replaced by 1, the
# second-smallest by 2, ..., and the largest by M, the number of rows.
ranks = np.apply_along_axis(stats.rankdata, 0, X)

# convert ranks to integer indices from 0 to M-1
rank_indices = ranks.astype(int) - 1

# index the quantiles for each rank with the ranks matrix
Xn = quantiles[rank_indices]

return(Xn)

Due to the kind of variability of gene expression count data, it is common practice to
log-transform the data before quantile-normalizing. Thus, we write an additional
helper function to transform to log:

def quantile_norm_log(X):
logX = np.log(X + 1)
TlogXn = quantile_norm(logX)
return logXn

Together, these two functions illustrate many of the things that make NumPy power-
ful (you will remember the first three of these moves from Chapter 1):
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o Arrays can be one-dimensional, like lists, but they can also be two-dimensional,
like matrices, and higher-dimensional still. This allows them to represent many
different kinds of numerical data. In our case, we are representing a 2D matrix.

o Arrays allow the expression of many numerical operations at once. In the first
line of quantile_norm_log, we add one and take the logarithm for every value in
X in a single call. This is called vectorization.

o Arrays can be operated on along axes. In the first line of quantile_norm, we sort
the data along each column just by specifying an axis parameter to np.sort. We
then take the mean along each row by specifying a different axis.

o Arrays underpin the scientific Python ecosystem. The scipy.stats.rankdata
function operates not on Python lists, but on NumPy arrays. This is true of many
scientific libraries in Python.

o Even functions that don’t have an axis= keyword can be made to operate along
axes by NumPy’s apply_along_axis function.

o Arrays support many kinds of data manipulation through fancy indexing: Xn =
quantiles[ranks]. This is possibly the trickiest part of NumPy, but also among
the most useful. We will explore it further in the text that follows.

Getting the Data

As in Chapter 1, we will be working with the TCGA skin cancer RNAseq dataset. Our
goal is to predict mortality in skin cancer patients using their RNA expression data.
As mentioned earlier, by the end of this chapter we will have reproduced a simplified
version of Figures 5A and 5B of a paper from the TCGA consortium.

As in Chapter 1, first we will use pandas to make our job of reading in the data much
easier. First we will read in our counts data as a pandas table.

import as
import as

# Import TCGA melanoma data
filename = 'data/counts.txt'
data_table = pd.read_csv(filename, index_col=0) # Parse file with pandas

print(data_table.iloc[:5, :5])
00624286-41dd-476f-a63b-d2a5f484bb45 TCGA-FS-A1Z0 TCGA-D9-A3Z1 '\

A1BG 1272.36 452.96 288.06
A1CF 0.00 0.00 0.00
A2BP1 0.00 0.00 0.00
A2LD1 164.38 552.43 201.83
A2ML1 27.00 0.00 0.00

02c76d24-f1d2-4029-95b4-8be3bda8fdbe TCGA-EB-A51B
A1BG 400.11 420.46
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A1CF 1.00 0.00

A2BP1 0.00 1.00
A2LD1 165.12 95.75
A2ML1 0.00 8.00

Looking at the rows and columns of data_table, we can see that the columns are the
samples, and the rows are the genes. Now let’s put our counts in a NumPy array.

# 2D ndarray containing expression counts for each gene in each individual
counts = data_table.values

Gene Expression Distribution Differences Between
Individuals

Now, let’s get a feel for our counts data by plotting the distribution of counts for each
individual. We will use a Gaussian kernel to smooth out bumps in our data so we can
get a better idea of the overall shape.

First, as usual, we set our plotting style:

# Make plots appear inline, set custom plotting style
%matplotlib inline

import as
plt.style.use('style/elegant.mplstyle')

Next, we write a plotting function that makes use of SciPy’s gaussian_kde function to
plot smooth distributions:

from import stats

def plot_col _density(data):

"""For each column, produce a density plot over all rows."""
# Use Gaussian smoothing to estimate the density
density_per_col = [stats.gaussian_kde(col) for col in data.T]
x = np.linspace(np.min(data), np.max(data), 100)

fig, ax = plt.subplots()

for density in density_per_col:
ax.plot(x, density(x))

ax.set_xlabel('Data values (per column)')

ax.set_ylabel('Density')

Now, we can use that function to plot the distributions of the raw data, before we
have done any normalization:

# Before normalization
log_counts = np.log(counts + 1)
plot_col_density(log_counts)
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We can see that while the distributions of counts are broadly similar, some individu-
als have flatter distributions and a few are pushed right over to the left. In fact, realiz-
ing that this is a log scale, the location of the peak of the distributions actually varies
over an order of magnitude! When doing our analysis of the counts data later in this
chapter, we will be assuming that changes in gene expression are due to biological dif-
ferences between our samples. But a major distribution shift like this suggests that the
differences are technical. That is, the changes are likely due to differences in the way
we processed each sample, rather than due to biological variation. So we will try to
normalize out these global differences between individuals.

To do this normalization, we will perform quantile normalization, as described at the
start of the chapter. The idea is that all our samples should have a similar distribution,
so any differences in the shape should be due to some technical variation. More for-
mally, given an expression matrix (microarray data, read counts, etc.) of shape
(n_genes, n_samples), quantile normalization ensures that all samples (columns)
have the same spread of data by construction.

With NumPy and SciPy, this can be done easily and efficiently. To recap, here is our
quantile normalization implementation, which we introduced at the beginning of the
chapter.

Let’s assume we've read in the input matrix as X:
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import numpy as np
from scipy import stats

def quantile_norm(X):

"""Normalize the columns of X to each have the same distribution.

Given an expression matrix (microarray data, read counts, etc.) of M genes
by N samples, quantile normalization ensures all samples have the same
spread of data (by construction).

The data across each row are averaged to obtain an average column. Each
column quantile is replaced with the corresponding quantile of the average

column.

Parameters

X : 2D array of float, shape (M, N)

The input data, with M rows (genes/features) and N columns (samples).

Returns
Xn : 2D array of float, shape (M, N)
The normalized data.
# compute the quantiles
quantiles = np.mean(np.sort(X, axis=0), axis=1)

# compute the column-wise ranks. Each observation is replaced with its
# rank in that column: the smallest observation is replaced by 1, the
# second-smallest by 2, ..., and the largest by M, the number of rows.

ranks = np.apply_along_axis(stats.rankdata, 0, X)

# convert ranks to integer indices from 0 to M-1
rank_indices = ranks.astype(int) - 1

# index the quantiles for each rank with the ranks matrix
Xn = quantiles[rank_indices]

return(Xn)

def quantile_norm_log(X):
logX = np.log(X + 1)
logXn = quantile_norm(logX)
return logXn

Now, let’s see what our distributions look like after quantile normalization:

# After normalization
log_counts_normalized = quantile_norm_log(counts)

plot_col_density(log_counts_normalized)
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As you might expect, the distributions now look virtually identical! (The different left
tails of the distribution have to do with different numbers of ties for low count values
—0, 1, 2, ...—in the different columns of the data.)

Now that we have normalized our counts, we can start using our gene expression data
to predict patient prognosis.

Biclustering the Counts Data

Clustering the samples tells us which samples have similar gene expression profiles,
which may indicate similar characteristics of the samples on other scales. Now that
the data are normalized, we can cluster the genes (rows) and samples (columns) of
the expression matrix. Clustering the rows tells us which genes’ expression values are
linked, which is an indication that they work together in the process being studied.
Biclustering means that we are simultaneously clustering both the rows and columns
of our data. By clustering along the rows we find out with genes are working together,
and by clustering along the columns we find out which samples are similar.

Because clustering can be an expensive operation, we will limit our analysis to the
1,500 genes that are most variable, since these will account for most of the correlation
signal in either dimension.
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def most_variable_rows(data, *, n=1500):
"""Subset data to the n most variable rows

In this case, we want the n most variable genes.

Parameters

data : 2D array of float
The data to be subset
n : int, optional
Number of rows to return.

Returns

variable_data : 2D array of float
The 'n’ rows of ‘data’ that exhibit the most variance.

o

# compute variance along the columns axis

rowvar = np.var(data, axis=1)

# Get sorted indices (ascending order), take the last n
sort_indices = np.argsort(rowvar)[-n:]

# use as index for data

variable_data = data[sort_indices, :]

return variable_data

Next, we need a function to bicluster the data. Normally, you would use a sophistica-
ted clustering algorithm from the scikit-learn library for this. In our case, we want to
use hierarchical clustering for simplicity and ease of display. The SciPy library hap-
pens to have a perfectly good hierarchical clustering module, though it requires a bit
of wrangling to get your head around its interface.

As a reminder, hierarchical clustering is a method to group observations using
sequential merging of clusters: initially, every observation is its own cluster. Then, the
two nearest clusters are repeatedly merged, and then the next two, and so on, until
every observation is in a single cluster. This sequence of merges forms a merge tree.
By cutting the tree at a specific height, we can get a finer or coarser clustering of
observations.

The linkage function in scipy.cluster.hierarchy performs a hierarchical cluster-
ing of the rows of a matrix, using a particular metric (for example, Euclidean dis-
tance, Manhattan distance, or others) and a particular linkage method, the distance
between two clusters (for example, the average distance between all the observations
in a pair of clusters).

It returns the merge tree as a “linkage matrix,” which contains each merge operation
along with the distance computed for the merge and the number of observations in
the resulting cluster. From the linkage documentation:

A cluster with an index less than # corresponds to one of the » original observations.
The distance between clusters Z[1, 0] and Z[1, 1] is given by Z[1, 2]. The fourth
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value Z[1, 3] represents the number of original observations in the newly formed
cluster.

Whew! That’s a lot of information, but let’s dive right in and hopefully you'll get the
hang of it rather quickly. First, we define a function, bicluster, that clusters both the
rows and the columns of a matrix:

from scipy.cluster.hierarchy import linkage

def bicluster(data, linkage_method='average', distance_metric='correlation'):
"""Cluster the rows and the columns of a matrix.

Parameters

data : 2D ndarray
The input data to bicluster.
linkage_method : string, optional
Method to be passed to “linkage'.
distance_metric : string, optional
Distance metric to use for clustering. See the documentation
for “‘scipy.spatial.distance.pdist’ " for valid metrics.

Returns

y_rows : linkage matrix

The clustering of the rows of the input data.
y_cols : linkage matrix

The clustering of the cols of the input data.

mwnn

y_rows = linkage(data, method=1inkage_method, metric=distance_metric)
y_cols = linkage(data.T, method=1inkage_method, metric=distance_metric)
return y_rows, y_cols

Simple: we just call linkage for the input matrix and also for the transpose of that
matrix, in which columns become rows and rows become columns.

Visualizing Clusters

Next, we define a function to visualize the output of that clustering. We are going to
rearrange the rows and columns of the input data so that similar rows are together
and similar columns are together. And we are additionally going to show the merge
tree for both rows and columns, displaying which observations belong together for
each. The merge trees are presented as dendrograms, with the branch lengths indicat-
ing how similar the observations are to each other (shorter = more similar).

As a word of warning, there is a fair bit of hardcoding of parameters going on here.
This is difficult to avoid for plotting, where design is often a matter of eyeballing to
find the correct proportions.

Visualizing Clusters | 39



from scipy.cluster.hierarchy import dendrogram, leaves_list

def clear_spines(axes):
for loc in ['left', 'right', 'top', 'bottom']:
axes.spines[loc].set_visible(False)
axes.set_xticks([])
axes.set_yticks([])

def plot_bicluster(data, row_linkage, col_linkage,
row_nclusters=10, col_nclusters=3):
"""Perform a biclustering, plot a heatmap with dendrograms on each axis.

Parameters
data : array of float, shape (M, N)
The input data to bicluster.
row_linkage : array, shape (M-1, 4)
The linkage matrix for the rows of ‘data’.
col_linkage : array, shape (N-1, 4)
The linkage matrix for the columns of ‘data’.
n_clusters_r, n_clusters_c : int, optional
Number of clusters for rows and columns.

o

fig = plt.figure(figsize=(4.8, 4.8))

# Compute and plot row-wise dendrogram

# ‘add_axes' takes a "rectangle" input to add a subplot to a figure.

# The figure is considered to have side-length 1 on each side, and its

# bottom-left corner is at (0, 0).

# The measurements passed to ‘add_axes' are the left, bottom, width, and

# height of the subplot. Thus, to draw the left dendrogram (for the rows),

# we create a rectangle whose bottom-left corner is at (0.09, 0.1), and

# measuring 0.2 in width and 0.6 in height.

ax1l = fig.add_axes([0.09, 0.1, 0.2, 0.6])

# For a given number of clusters, we can obtain a cut of the linkage

# tree by looking at the corresponding distance annotation in the linkage

# matrix.

threshold_r = (row_linkage[-row_nclusters, 2] +
row_linkage[-row_nclusters+1, 2]) / 2

with plt.rc_context({'lines.linewidth': 0.75}):

dendrogram(row_linkage, orientation='left',

color_threshold=threshold_r, ax=ax1)

clear_spines(ax1)

# Compute and plot column-wise dendrogram

# See notes above for explanation of parameters to ‘add_axes'

ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2])

threshold_c = (col_linkage[-col_nclusters, 2] +
col_linkage[-col_nclusters+1, 2]) / 2

with plt.rc_context({'lines.linewidth': 0.75}):
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dendrogram(col_linkage, color_threshold=threshold_c, ax=ax2)
clear_spines(ax2)

# Plot data heatmap
ax = fig.add_axes([0.3, 0.1, 0.6, 0.6])

# Sort data by the dendrogram leaves
idx_rows = leaves_list(row_linkage)
data = data[idx_rows, :]

idx_cols = leaves_list(col_linkage)
data = data[:, idx_cols]

im = ax.imshow(data, aspect='auto', origin='lower', cmap='YlGnBu_r')
clear_spines(ax)

# Axis labels
ax.set_xlabel('Samples')
ax.set_ylabel('Genes', labelpad=125)

# Plot legend
axcolor = fig.add_axes([0.91, 0.1, 0.02, 0.6])
plt.colorbar(im, cax=axcolor)

# display the plot
plt.show()

Now we apply these functions to our normalized counts matrix to display row and
column clusterings (Figure 2-1).

counts_log = np.log(counts + 1)
counts_var = most_variable_rows(counts_log, n=1500)
yr, yc = bicluster(counts_var, linkage_method='ward',
distance_metric="'euclidean')
with plt.style.context('style/thinner.mplstyle'):
plot_bicluster(counts_var, yr, yc)
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Figure 2-1. This heatmap shows the level of gene expression across all samples and genes.
The color indicates the expression level. The rows and columns are grouped by our clus-
ters. We can see our gene clusters along the y-axis and sample clusters across the top of
the x-axis.

Predicting Survival

We can see that the sample data naturally falls into at least two clusters, maybe three.
Are these clusters meaningful? To answer this, we can access the patient data, avail-
able from the data repository for the paper. After some preprocessing, we get the
patients table, which contains survival information for each patient. We can then
match these to the counts clusters, and understand whether the patients’ gene expres-
sion can predict differences in their pathology.

patients = pd.read_csv('data/patients.csv', index_col=0)
patients.head()
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UV-signature original-clusters melanoma-survival-time melanoma-dead

TCGA-BF-A1PU UV signature  keratin NaN NaN
TCGA-BF-A1PV UV signature  keratin 13.0 0.0
TCGA-BF-A1PX UV signature  keratin NaN NaN
TCGA-BF-A1PZ  UVsignature  keratin NaN NaN
TCGA-BF-A1Q0 not UV immune 17.0 0.0

For each patient (the rows) we have:

UV signature
Ultraviolet light tends to cause specific DNA mutations. By looking for this
mutation signature researchers can infer whether UV light likely caused the
mutation(s) that led to cancer in these patients.

Original cluster
In the paper, the patients were clustered using gene expression data. These clus-
ters were classified according to the types of genes that typified that cluster. The
main clusters were “immune” (n = 168; 51%), “keratin” (n = 102; 31%), and
“MITF-low” (n = 59; 18%).

Melanoma survival time
Number of days that the patient survived.

Melanoma dead
One (1) if the patient died of melanoma, zero (0) if they are alive or died of some-
thing else.

Now we need to draw survival curves for each group of patients defined by the clus-
tering. This is a plot of the fraction of a population that remains alive over a period of
time. Note that some data is right-censored, which means that in some cases, we don't
actually know when the patient died, or the patient might have died of causes unrela-
ted to the melanoma. We count these patients as “alive” for the duration of the sur-
vival curve, but more sophisticated analyses might try to estimate their likely time of
death.

To obtain a survival curve from survival times, we create a step function that decrea-
ses by 1/n, where n is the number of patients in the group. We then match that func-
tion against the noncensored survival times.

def survival_distribution_function(lifetimes, right_censored=None):
"""Return the survival distribution function of a set of lifetimes.

Parameters

lifetimes : array of float or int
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The observed lifetimes of a population. These must be non-negative.
right_censored : array of bool, same shape as ‘lifetimes"

A value of ‘True' here indicates that this lifetime was not observed.

Values of ‘np.nan’ in ‘lifetimes’ are also considered to be

right-censored.

Returns

sorted_lifetimes : array of float
The

sdf : array of float
Values starting at 1 and progressively decreasing, one level
for each observation in “lifetimes".

Examples

In this example, of a population of four, two die at time 1, a
third dies at time 2, and a final individual dies at an unknown
time. (Hence, “‘np.nan’'.)

>>> lifetimes = np.array([2, 1, 1, np.nan])
>>> survival_distribution_function(lifetimes)
(array([ 0., 1., 1., 2.]), array([ 1. , 0.75, 0.5, 0.25]))
n_obs = len(lifetimes)
rc = np.isnan(lifetimes)
if right_censored is not None:

rc |= right_censored
observed = lifetimes[~rc]
xs = np.concatenate( ([0], np.sort(observed)) )
ys = np.linspace(1l, 0, n_obs + 1)
ys = ys[:len(xs)]
return xs, ys

Now that we can easily obtain survival curves from the survival data, we can plot
them. We write a function that groups the survival times by cluster identity and plots
each group as a different line:

def plot_cluster_survival_curves(clusters, sample_names, patients,

censor=True):
"""Plot the survival data from a set of sample clusters.

Parameters

clusters : array of int or categorical pd.Series
The cluster identity of each sample, encoded as a simple int
or as a pandas categorical variable.

sample_names : list of string
The name corresponding to each sample. Must be the same length
as ‘clusters”.

patients : pandas.DataFrame

4
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The DataFrame containing survival information for each patient.
The indices of this DataFrame must correspond to the
‘sample_names . Samples not represented in this list will be
ignored.
censor : bool, optional
If ‘True', use ‘patients['melanoma-dead']" to right-censor the
survival data.
fig, ax = plt.subplots()
if type(clusters) == np.ndarray:
cluster_ids = np.unique(clusters)
cluster_names = ['cluster {}'.format(i) for i1 in cluster_ids]
elif type(clusters) == pd.Series:
cluster_ids = clusters.cat.categories
cluster_names = list(cluster_ids)
n_clusters = len(cluster_1ids)
for ¢ in cluster_1ids:
clust_samples = np.flatnonzero(clusters == c)
# discard patients not present in survival data
clust_samples = [sample_names[i] for 1 in clust_samples
if sample_names[i] in patients.index]
patient_cluster = patients.loc[clust_samples]
survival_times = patient_cluster['melanoma-survival-time'].values
if censor:
censored = ~patient_cluster['melanoma-dead'].values.astype(bool)
else:
censored = None
stimes, sfracs = survival_distribution_function(survival_times,
censored)
ax.plot(stimes / 365, sfracs)

ax.set_xlabel('survival time (years)')
ax.set_ylabel('fraction alive')
ax.legend(cluster_names)

Now we can use the fcluster function to obtain cluster identities for the samples
(columns of the counts data), and plot each survival curve separately. The fcluster
function takes a linkage matrix, as returned by linkage, and a threshold, and returns
cluster identities. It’s difficult to know a priori what the threshold should be, but we
can obtain the appropriate threshold for a fixed number of clusters by checking the
distances in the linkage matrix.

from scipy.cluster.hierarchy import fcluster

n_clusters = 3

threshold_distance = (yc[-n_clusters, 2] + yc[-n_clusters+1, 2]) / 2
clusters = fcluster(yc, threshold_distance, 'distance')

plot_cluster_survival_curves(clusters, data_table.columns, patients)

The clustering of gene expression profiles appears to have identified a higher-risk
subtype of melanoma (cluster 2), as shown in Figure 2-2. The TCGA study backs this
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claim up with a more robust clustering and statistical testing. This is indeed only the
latest study to show such a result, with others identifying subtypes of leukemia (blood
cancer), gut cancer, and more. Although the above clustering technique is quite frag-
ile, there are other, more robust ways to explore this and similar datasets.'

1.00 —— cluster 1
—— cluster 2

0.95 —— cluster 3
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Figure 2-2. Survival curves for patients clustered using gene expression data

Further Work: Using the TCGA’s Patient Clusters

Do our clusters do a better job of predicting survival than the original clusters in the
paper? What about UV signature? Plot survival curves using the original clusters and
UV signature columns of the patient data. How do they compare to our clusters?

Further Work: Reproducing the TCGA’s clusters

We leave you the exercise of implementing the approach described in the paper:?

1 The Cancer Genome Atlas Network, Genomic Classification of Cutaneous Melanoma”, Cell 161, no. 7 (2015):
1681-1696.

2 Ibid.
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1. Take bootstrap samples (random choice with replacement) of the genes used to
cluster the samples.

2. For each sample, produce a hierarchical clustering.

3. In a (n_samples, n_samples)-shaped matrix, store the number of times a sam-
ple pair appears together in a bootstrapped clustering.

4. Perform a hierarchical clustering on the resulting matrix.

This identifies groups of samples that frequently occur together in clusterings,
regardless of the genes chosen. Thus, these samples can be considered to robustly
cluster together.

Hint

Use np.random.choice with replacement=True to create bootstrap
samples of row indices.
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CHAPTER 3
Networks of Image Regions with ndimage

Tyger Tyger, burning bright,

In the forests of the night;

What immortal hand or eye,
Could frame thy fearful symmetry?

—William Blake, The Tyger

You probably know that digital images are made up of pixels. Generally, you should
not think of these as little squares, but as point samples of the light signal measured on
a regular grid.!

Further, when processing images, we often deal with objects much larger than indi-
vidual pixels. In a landscape, the sky, earth, trees, and rocks each span many pixels. A
common structure to represent these is the region adjacency graph, or RAG. Its nodes
hold properties of each region in the image, and its links hold the spatial relationships
between the regions. Two nodes are linked whenever their corresponding regions
touch each other in the input image.

Building such a structure could be a complicated affair, and even more difficult when
images are not 2D but 3D and even 4D, as is common in microscopy, materials sci-
ence, and climatology, among others. But here we will show you how to produce a
RAG in a few lines of code using NetworkX (a Python library to analyze graphs and
networks), and a filter from SciPy’s N-dimensional image processing submodule,
ndimage.

import as
import as
from import ndimage as ndi

1 Alvy Ray Smith, “A Pixel Is Not A Little Square”, (technical memo) July 17, 1995.
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def add_edge_filter(values, graph):
center = values[len(values) // 2]
for neighbor in values:

if neighbor != center and not graph.has_edge(center, neighbor):
graph.add_edge(center, neighbor)
return 0.0

def build_rag(labels, image):
g = nx.Graph()
footprint = ndi.generate_binary_structure(labels.ndim, connectivity=1)
_ = ndi.generic_filter(labels, add_edge_filter, footprint=footprint,
mode="'nearest', extra_arguments=(g,))
return g

The Origins of Elegant SciPy
(A note from Juan.)

This chapter gets a special mention because it inspired the whole book. Vighnesh Bir-
odkar wrote this code snippet as an undergraduate while participating in Google
Summer of Code (GSoC) 2014. When I saw this bit of code, it blew me away. For the
purposes of this book, it touches on many aspects of scientific Python. By the time
you're done with this chapter, you should be able to process arrays of any dimension,
rather than thinking of them only as 1D lists or 2D tables. More than that, you'll
understand the basics of image filtering and network processing.

There are a few things going on here: images being represented as NumPy arrays,
filtering of these images using scipy.ndimage, and building of the image regions into
a graph (network) using the NetworkX library. We'll go over these in turn.

Images Are Just NumPy Arrays

In the previous chapter, we saw that NumPy arrays can efficiently represent tabular
data, and are a convenient way to perform computations on it. It turns out that arrays
are equally adept at representing images.

Here’s how to create an image of white noise using just NumPy, and display it with
Matplotlib. First, we import the necessary packages, and use the matplotlib inline
IPython magic to make our images appear below the code:

# Make plots appear inline, set custom plotting style
%matplotlib inline

import as
plt.style.use('style/elegant.mplstyle")
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Then, we “make some noise” and display it as an image:

import numpy as np
random_1image = np.random.rand(500, 500)
plt.imshow(random_image);

This imshow function displays a NumPy array as an image:
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The converse is also true: an image can be considered as a NumPy array. For this

example we use the scikit-image library, a collection of image processing tools built
on top of NumPy and SciPy.

Here is a PNG image from the scikit-image repository. It is a black and white (some-
times called “grayscale”) picture of some ancient Roman coins from Pompeii,
obtained from the Brooklyn Museum:
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Here is the coin image loaded with scikit-image:

from skimage import io

url_coins = ('https://raw.githubusercontent.com/scikit-image/scikit-image/"'
'v0.10.1/skimage/data/coins.png')

coins = {o.imread(url_coins)

print("Type:", type(coins), "Shape:", coilns.shape, "Data type:", coins.dtype)

plt.imshow(coins);

Type: <class 'numpy.ndarray's> Shape: (303, 384) Data type: uint8
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A grayscale image can be represented as a 2D array, with each array element contain-
ing the grayscale intensity at that position. So, an image is just a NumPy array.
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Color images are 3D arrays, where the first two dimensions represent the spatial posi-
tions of the image, while the final dimension represents color channels, typically the
three primary additive colors of red, green, and blue. To show what we can do with
these dimensions, let’s play with this photo of astronaut Eileen Collins:
url_astronaut = ('https://raw.githubusercontent.com/scikit-image/scikit-image/"'
'master/skimage/data/astronaut.png')
astro = 1o.imread(url_astronaut)

print("Type:", type(astro), "Shape:", astro.shape, "Data type:", astro.dtype)
plt.imshow(astro);

Type: <class 'numpy.ndarray's Shape: (512, 512, 3) Data type: uint8
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This image is just NumPy arrays. Adding a green square to the image is easy once you
realize this, using simple NumPy slicing:
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astro_sq = np.copy(astro)
astro_sq[50:100, 50:100] = [0, 255, 0] # red, green, blue
plt.imshow(astro_sq);

O N
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You can also use a boolean mask, an array of True or False values. We saw these in
Chapter 2 as a way to select rows of a table. In this case, we can use an array of the
same shape as the image to select pixels:

astro_sq = np.copy(astro)

sq_mask = np.zeros(astro.shape[:2], bool)
sq_mask[50:100, 50:100] = True
astro_sq[sq_mask] = [0, 255, 0]
plt.imshow(astro_sq);

54 | Chapter3: Networks of Image Regions with ndimage



200

300

400

500 |} |
0 100 200 300 400 500

Exercise: Adding a Grid Overlay

We just saw how to select a square and paint it green. Can you extend that to other
shapes and colors? Create a function to draw a blue grid onto a color image, and
apply it to the preceding image of Eileen Collins. Your function should take two
parameters: the input image and the grid spacing. Use the following template to help
you get started:

def overlay_grid(image, spacing=128):
"""Return an image with a grid overlay, using the provided spacing.

Parameters
image : array, shape (M, N, 3)
The input image.
spacing : int
The spacing between the grid lines.
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Returns

image_gridded : array, shape (M, N, 3)
The original image with a blue grid superimposed.

o

image_gridded = image.copy()
pass # replace this line with your code...
return image_gridded

# plt.imshow(overlay grid(astro, 128)); # uncomment this line to test your function

Check out “Solution: Adding a Grid Overlay” on page 225.

Filters in Signal Processing

Filtering is one of the most fundamental and common operations in image process-
ing. You can filter an image to remove noise, to enhance features, or to detect edges
between objects in the image.

To understand filters, it’s easiest to start with a 1D signal instead of an image. For
example, you might measure the light arriving at your end of a fiber optic cable. If
you sample the signal every millisecond (ms) for 100ms, you end up with an array of
length 100. Suppose that after 30ms the light signal is turned on, and 30m:s later, it is
switched off. You end up with a signal like this:

sig = np.zeros(100, np.float) #

sig[30:60] = 1 # signal = 1 during the period 30-60ms because light is observed
fig, ax = plt.subplots()

ax.plot(sig);

ax.set_ylim(-0.1, 1.1);
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To find when the light is turned on, you can delay it by 1ms, then subtract the original
from the delayed signal. This way, when the signal is unchanged from one millisec-
ond to the next, the subtraction will give 0, but when the signal increases, you will get
a positive signal.

When the signal decreases, we will get a negative signal. If we are only interested in
pinpointing the time when the light was turned on, we can clip the difference signal,
so that any negative values are converted to 0:

sigdelta = sig[1:] # sigdelta[0] equals sig[1], and so on
sigdiff = sigdelta - sig[:-1]

sigon = np.clip(sigdiff, 0, np.inf)

fig, ax = plt.subplots()

ax.plot(sigon)

ax.set_ylim(-0.1, 1.1)

print('Signal on at:', 1 + np.flatnonzero(sigon)[0], 'ms"')

Signal on at: 30 ms
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(Here we have used NumPy’s flatnonzero function to get the first index where the
sigon array is not equal to 0.)

It turns out that this can be accomplished by a signal processing operation called con-
volution. At every point of the signal, we compute the dot product between the values
surrounding that point and a kernel or filter, which is a predetermined vector of val-
ues. Depending on the kernel, then, the convolution shows a different feature of the
signal.

Now, think of what happens when the kernel is (1, 0, —1), the difference filter, for a
signal s. At any position 1, the convolution result is 1*s[1+1] + 0*s[1] - 1*s[1-1],
that is, s[1+1] - s[i-1]. Thus, when the values adjacent to s[1] are identical, the
convolution gives 0, but when s[1+1] > s[1-1] (the signal is increasing), it gives a
positive value, and, conversely, when s[1+1] < s[i-1], it gives a negative value. You
can think of this as an estimate of the derivative of the input function.

In general, the formula for convolution is §/(t) = Zj.:t_T s(7) f(t - j), where s is the sig-
nal, s”is the filtered signal, fis the filter, and 7 is the length of the filter.
In SciPy, you can use the scipy.ndimage.convolve to work on this:

diff = np.array([1, 0, -1])
from import ndimage as ndi
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dsig = ndi.convolve(sig, diff)
plt.plot(dsig);
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Signals, like those preceding, are usually noisy though, not perfect:

np.random.seed(0)
sig = sig + np.random.normal(0, 0.3, size=sig.shape)
plt.plot(sig);

Filtersin Signal Processing | 59



1.5

1.0

0.5

0.0

-0.5

0 20 40 60 80 100

The plain difference filter can amplify that noise:

plt.plot(ndi.convolve(sig, diff));
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In such cases, you can add smoothing to the filter. The most common form of
smoothing is Gaussian smoothing, which takes the weighted average of neighboring
points in the signal using the Gaussian function. We can write a function to make a
Gaussian smoothing kernel as follows:

def gaussian_kernel(size, sigma):
"""Make a 1D Gaussian kernel of the specified size and standard deviation.

The size should be an odd number and at least ~6 times greater than sigma
to ensure sufficient coverage.

o

positions = np.arange(size) - size // 2

kernel_raw = np.exp(-positions**2 / (2 * sigma**2))
kernel_normalized = kernel_raw / np.sum(kernel_raw)
return kernel_normalized

A really nice feature of convolution is that it’s associative, meaning if you want to find
the derivative of the smoothed signal, you can equivalently convolve the signal with
the smoothed difference filter! This can save a lot of computation time, because you
can smooth just the filter, which is usually much smaller than the data.

smooth_diff = ndi.convolve(gaussian_kernel(25, 3), diff)
plt.plot(smooth_diff);
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This smoothed difference filter looks for an edge in the central position, but also for
that difference to continue. This continuation happens in the case of a true edge, but
not in “spurious” edges caused by noise. Check out the result (Figure 3-1):

sdsig = ndi.convolve(sig, smooth_diff)
plt.plot(sdsig);
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Figure 3-1. Smoothed difference filter applied to a noisy signal

Although it still looks wobbly, the signal-to-noise ratio (SNR) is much greater in this
version than when we're using the simple difference filter.

Filtering

This operation is called filtering because, in physical electrical cir-
cuits, many of these operations are implemented by hardware that
allows certain kinds of current through, while blocking others;
these hardware components are called filters. For example, a com-
mon filter that removes high-frequency voltage fluctuations from a
current is called a low-pass filter.

Filtering Images (2D Filters)

Now that you've seen filtering in 1D, we hope you’ll find it straightforward to extend
these concepts to 2D signals, such as images. Here’s a 2D difference filter for finding
the edges in the coins image:

coins = coins.astype(float) / 255 # prevents overflow errors
diff2d = np.array([[0, 1, 0], [1, 0, -1], [0, -1, ©]])
coins_edges = ndi.convolve(coins, diff2d)
i10.imshow(coins_edges);
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The principle is the same as the 1D filter: at every point in the image, place the filter,
compute the dot-product of the filter’s values with the image values, and place the
result at the same location in the output image. And, as with the 1D difference filter,
when the filter is placed on a location with little variation, the dot-product cancels
out to zero, whereas, placed on a location where the image brightness is changing, the
values multiplied by 1 will be different from those multiplied by -1, and the filtered
output will be a positive or negative value (depending on whether the image is
brighter toward the bottom right or top left at that point).

Just as with the 1D filter, you can get more sophisticated and smooth out noise right
within the filter. The Sobel filter is designed to do just that. It comes in horizontal and
vertical varieties to find edges with that orientation in the data. Let’s start with the
horizontal filter first. To find a horizontal edge in a picture, you might try the follow-
ing filter:

# column vector (vertical) to find horizontal edges

hdiff = np.array([[1], [0], [-111)

However, as we saw with 1D filters, this will result in a noisy estimate of the edges in
the image. But rather than using Gaussian smoothing, which can cause blurry edges,
the Sobel filter uses the property that edges in images tend to be continuous: a picture
of the ocean, for example, will contain a horizontal edge along an entire line, not just
at specific points of the image. So the Sobel filter smooths the vertical filter horizon-
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tally: it looks for a strong edge at the central position that is corroborated by the adja-
cent positions:

hsobel = np.array([[ 1, 2, 1],
[ o, o, o],
[-1, -2, -11D

The vertical Sobel filter is simply the transpose of the horizontal:

vsobel = hsobel.T
We can then find the horizontal and vertical edges in the coins image:

# Some custom x-axis labeling to make our plots easier to read
def reduce_xaxis_labels(ax, factor):
"""Show only every ith label to prevent crowding on x-axis,
e.g., factor = 2 would plot every second x-axis label,
starting at the first.

Parameters

ax : matplotlib plot axis to be adjusted

factor : int, factor to reduce the number of x-axis labels by

plt.setp(ax.xaxis.get_ticklabels(), visible=False)

for label in ax.xaxis.get_ticklabels()[::factor]:
label.set_visible(True)

coins_h = ndi.convolve(coins, hsobel)
coins_v = ndi.convolve(coins, vsobel)

fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].imshow(coins_h, cmap=plt.cm.RdBu)
axes[1].imshow(coins_v, cmap=plt.cm.RdBu)
for ax in axes:

reduce_xaxis_labels(ax, 2)
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And finally you can argue that, just like the Pythagorean theorem, the edge magni-
tude in any direction is equal to the square root of the sum of squares of the horizon-
tal and vertical components:

coins_sobel = np.sgrt(coins_h**2 + coins_v**2)
plt.imshow(coins_sobel, cmap='viridis');

0

50

100

150

200

250

300
0 50 100 150 200 250 300 350

Generic Filters: Arbitrary Functions of Neighborhood
Values

In addition to dot-products implemented by ndi.convolve, SciPy lets you define a
filter that is an arbitrary function of the points in a neighborhood, implemented in
ndi.generic_filter. This can let you express arbitrarily complex filters.

For example, suppose an image represents median house values in a county, with a
100mx100m resolution. The local council decides to tax house sales at $10,000 plus
5% of the 90th percentile of house prices in a 1km radius. (So, selling a house in an
expensive neighborhood costs more.) With generic_filter, we can produce the
map of the tax rate everywhere in the map:
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from skimage import morphology
def tax(prices):
return 10000 + 0.05 * np.percentile(prices, 90)
house_price_map = (0.5 + np.random.rand(100, 100)) * leé6
footprint = morphology.disk(radius=10)
tax_rate_map = ndi.generic_filter(house_price_map, tax, footprint=footprint)
plt.imshow(tax_rate_map)
plt.colorbar();
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Exercise: Conway’s Game of Life
Suggested by Nicolas Rougier

Conway’s Game of Life is a seemingly simple construct in which “cells” on a regular
square grid live or die according to the cells in their immediate surroundings. At
every timestep, we determine the state of position (i, j) according to its previous state
and that of its eight neighbors (above, below, left, right, and diagonals):

o A live cell with only one live neighbor or none dies
o A live cell with two or three live neighbors lives on for another generation
o A live cell with four or more live neighbors dies, as if from overpopulation
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o A dead cell with exactly three live neighbors becomes alive, as if by reproduction

Although the rules sound like a contrived math problem, they in fact give rise to
incredible patterns, starting with gliders (small patterns of live cells that slowly move
in each generation) and glider guns (stationary patterns that sprout off gliders), all
the way up to prime number generator machines (e.g., Nathaniel Johnston’s “Generat-
ing Sequences of Primes in Conway’s Game of Life”), and even simulating Game of

Life itself!
Can you implement the Game of Life using ndi.generic_filter?

Check out “Solution: Conway’s Game of Life” on page 226.

Exercise: Sobel Gradient Magnitude

We recently saw how we can combine the output of two different filters, the horizon-
tal Sobel filter and the vertical one. Can you write a function that does this in a single
pass using ndi.generic_filter?

Check out “Solution: Sobel Gradient Magnitude” on page 227.

Graphs and the NetworkX library

Graphs are a natural representation for an astonishing variety of data. Pages on the
web, for example, can comprise nodes, while links between those pages can be, well,
links. Or, in biology, so-called transcription networks have nodes represent genes and
edges connect genes that have a direct influence on each other’s expression.

Graphs and Networks

In this context, the term “graph” is synonymous with “network,”
not with “plot” Mathematicians and computer scientists invented
slightly different words to discuss these: graph = network, vertex =
node, edge = link = arc. As most people do, we will be using these
terms interchangeably.

You might be slightly more familiar with the network terminology:
a network consists of nodes and links between the nodes. Equiva-
lently, a graph consists of vertices and edges between the vertices. In
NetworkX, you have Graph objects consisting of nodes and edges
between the nodes, and this is probably the most common usage.

To introduce you to graphs, we will reproduce some results from the paper by Lav
Varshney et al., “Structural Properties of the Caenorhabditis elegans Neuronal Net-
work”.
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In our example, we will represent neurons in the nematode worm’s nervous system as
nodes, and place an edge between two nodes when a neuron makes a synapse with
another. (Synapses are the chemical connections through which neurons communi-
cate.) The worm is an awesome example of neural connectivity analysis because every
worm (of this species) has the same number of neurons (302), and the connections
between them are all known. This has resulted in the fantastic Openworm project,
which we encourage you to read more about.

You can download the neuronal dataset in Excel format from the WormAtlas data-
base. The pandas library allows one to read an Excel table over the web, so we will use
it here to read in the data, then feed that into NetworkX.

import as
connectome_url = 'http://www.wormatlas.org/images/NeuronConnect.xls'
conn = pd.read_excel(connectome_url)

conn now contains a pandas DataFrame, with rows of the form:
[Neuronl, Neuron2, connection type, strength]

We are only going to examine the connectome of chemical synapses, so we filter out
other synapse types as follows:
conn_edges = [(n1, n2, {'weight': s})

for nl, n2, t, s in conn.itertuples(index=False, name=None)

if t.startswith('S')]
(Look at the WormAtlas page for a description of the different connection types.) We
use weight in the preceding dictionary because it is a special keyword for edge prop-
erties in NetworkX. We then build the graph using NetworkX’s DiGraph class:

import as

wormbrain = nx.DiGraph()

wormbrain.add_edges_from(conn_edges)
We can now examine some of the properties of this network. One of the first things
researchers ask about directed networks is which nodes are the most critical to infor-
mation flow within it. Nodes with high betweenness centrality are those that belong to
the shortest path between many different pairs of nodes. Think of a rail network: cer-
tain stations will connect to many lines, so that you will be forced to change lines
there for many different trips. They are the ones with high betweenness centrality.

With NetworkX, we can find similarly important neurons with ease. In the NetworkX
API documentation under “centrality; the docstring for betweenness_centrality
specifies a function that takes a graph as input and returns a dictionary mapping
node IDs to betweenness centrality values (floating-point values).

centrality = nx.betweenness_centrality(wormbrain)
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Now we can find the neurons with highest centrality using the Python built-in func-
tion sorted:

central = sorted(centrality, key=centrality.get, reverse=True)

print(central[:5])

['AVAR', 'AVAL', 'PVCR', 'PVT', 'PVCL']
This returns the neurons AVAR, AVAL, PVCR, PVT, and PVCL, which have been
implicated in how the worm responds to prodding: the AVA neurons link the worm’s
front touch receptors (among others) to neurons responsible for backward motion,
while the PVC neurons link the rear touch receptors to forward motion.

Varshney et al. studied the properties of a strongly connected component of 237 neu-
rons, out of a total of 279. In graphs, a connected component is a set of nodes that are
reachable by some path through all the links. The connectome is a directed graph,
meaning the edges point from one node to the other, rather than merely connecting
them. In this case, a strongly connected component is one where all nodes are reacha-
ble from each other by traversing links in the correct direction. So A->B—C is not
strongly connected, because there is no way to get to A from B or C. However,
A—>B—>C—A is strongly connected.

In a neuronal circuit, you can think of the strongly connected component as the
“brain” of the circuit, where the processing happens, while nodes upstream of it are
inputs and nodes downstream are outputs.

Cycles in Neuronal Networks

The idea of cyclical neuronal circuits dates back to the 1950s. Here’s
a lovely paragraph about this idea from an article in Nautilus, “The
Man Who Tried to Redeem the World with Logic”, by Amanda
Gefter:

If one were to see a lightning bolt flash on the sky, the eyes would
send a signal to the brain, shuffling it through a chain of neurons.
Starting with any given neuron in the chain, you could retrace the
signal’s steps and figure out just how long ago the lightning struck.
Unless, that is, the chain is a loop. In that case, the information
encoding the lightning bolt just spins in circles, endlessly. It bears
no connection to the time at which the lightning actually occurred.
It becomes, as McCulloch put it, “an idea wrenched out of time.” In
other words, a memory.

NetworkX makes straightforward work out of getting the largest strongly connected
component from our wormbrain network:

sccs = nx.strongly_connected_component_subgraphs(wormbrain)
giantscc = max(sccs, key=len)
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print(f'The largest strongly connected component has

f'{glantscc.number_of_nodes()} nodes, out of '
f'{wormbrain.number_of_nodes()} total.')

The largest strongly connected component has 237 nodes, out of 279 total.

As noted in the paper, the size of this component is smaller than expected by chance,
demonstrating that the network is segregated into input, central, and output layers.

Now we reproduce Figure 6B from the paper, the survival function of the in-degree
distribution. First, compute the relevant quantities:

in_
in_

degrees = list(wormbrain.in_degree().values())
deg_distrib = np.bincount(in_degrees)

avg_1in_degree = np.mean(in_degrees)
cumfreq = np.cumsum(in_deg_distrib) / np.sum(in_deg_distrib)
survival = 1 - cumfreq

Then, plot using Matplotlib:

fig, ax = plt.subplots()

ax

ax

.loglog(np.arange(1, len(survival) + 1), survival)
ax.
ax.
ax.
ax.
.set_ylim(0.002, 1.0);

set_xlabel('in-degree distribution')

set_ylabel('fraction of neurons with higher in-degree distribution')
scatter(avg_1in_degree, 0.0022, marker='v")

text(avg_1in_degree - 0.5, 0.003, 'mean=%.2f' % avg_in_degree)
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There you have it: a reproduction of a scientific analysis using SciPy. We are missing
the line fit...but that’s what exercises are for.

Exercise: Curve Fitting with SciPy

This exercise is a bit of a preview for Chapter 7 (optimization): use scipy.opti
mize.curve_fit to fit the tail of the in-degree survival function to a power law, f(d) ~
d”,d > d,, for d. = 10, for d, = 10 (the red line in Figure 6B of the paper), and modify
the plot to include that line.

Check out “Solution: Curve Fitting with SciPy” on page 228.

You now should have a fundamental understanding of graphs as a scientific abstrac-
tion, and how to easily manipulate and analyze them using Python and NetworkX.
Now, we move on to a particular kind of graph used in image processing and com-
puter vision.
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Region Adjacency Graphs

A RAG is a representation of an image that is useful for segmentation: the division of
images into meaningful regions (or segments). If you've seen Terminator 2, you've
seen segmentation (Figure 3-2).

CRITERIA:
SRR

HGHT 234654 453
WGHT 654334 450

Figure 3-2. Terminator vision

Segmentation is one of those problems that humans do trivially, all the time, without
thinking, whereas computers have a hard time of it. To understand this difficulty,
look at the following image:

While you see a face, a computer only sees a bunch of numbers:

58688888888888899998898988888666532121
66888886888998999999899998888888865421
66665566566689999999999998888888888653
66668899998655688999899988888668665554
66888899998888888889988888665666666543
66888888886868868889998888666688888865
66666443334556688889988866666666668866
66884235221446588889988665644644444666
86864486233664666889886655464321242345
86666658333685588888866655659381366324
88866686688666866888886658588422485434
88888888888688688888866566686666565444
88888888868666888888866556688666686555
88888988888888888888886656888688886666
88889999989998888888886666888888868886
88889998888888888888886566888888888866
88888998888888688888666566868868888888
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68888999888888888868886656888888888866
68888999998888888688888655688888888866
68888999886686668886888656566888888886
88888888886668888888888656558888888886
68888886665668888889888555555688888886
86868868658668868688886555555588886866
66688866468866855566655445555656888866
66688654888886868666555554556666666865
88688658688888888886666655556686688665
68888886666888888988888866666656686665
66888888845686888999888886666556866655
66688888862456668866666654431268686655
68688898886689696666655655313668688655
68888898888668998998998885356888986655
68688889888866899999999866666668986655
68888888888866666888866666666688866655
56888888888686889986868655566688886555
36668888888868888868688666686688866655
26686888888888888888888666688688865654
28688888888888888888668666668686666555
28666688888888888868668668688886665548

Our visual system is so optimized to spot faces that you might see the face even in this
blob of numbers! But we hope our point is made. Also, you might want to look at
Faces in Things Twitter, which demonstrates the face-finding optimization of our vis-
ual systems far more humorously.

At any rate, the challenge is to make sense of those numbers, and where the bound-
aries lie that divide the different parts of the image. A popular approach is to find
small regions (called superpixels) that youre sure belong in the same segment, and
then merge those according to some more sophisticated rule.

As a simple example, suppose you want to segment out the tiger in the following
image, from the Berkeley Segmentation Dataset (BSDS).
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A clustering algorithm, simple linear iterative clustering (SLIC), can give us a decent
starting point. It is available in the scikit-image library.

url = ('http://www.eecs.berkeley.edu/Research/Projects/CS/vision/"'
'bsds/BSDS300/html/images/plain/normal/color/108073.jpg")
tiger = 1o.imread(url)
from skimage import segmentation
seg = segmentation.slic(tiger, n_segments=30, compactness=40.0,
enforce_connectivity=True, sigma=3)

Scikit-image also has a function to display segmentations, which we use to visualize
the result of SLIC:

from skimage import color
i10.imshow(color.label2rgb(seg, tiger));
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This shows that the body of the tiger has been split in three parts, with the rest of the
image in the remaining segments.

A region adjacency graph (RAG) is a graph in which every node represents one of the
above regions, and an edge connects two nodes when they touch. For a taste of what
it looks like before we build one, we'll use the show_rag function from scikit-image—
indeed, the library that contains this chapter’s code snippet!
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from skimage.future import graph

g = graph.rag_mean_color(tiger, seg)
graph.show_rag(seg, g, tiger);
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Here, you can see the nodes corresponding to each segment, and the edges between
adjacent segments. These are colored with the YIGnBu (yellow-green-blue) colormap
from Matplotlib, according to the difference in color between the two nodes.

The preceding figure also shows the magic of thinking of segmentations as graphs:
you can see that edges between nodes within the tiger and those outside of it are
brighter (higher-valued) than edges within the same object. Thus, if we can cut the
graph along those edges, we will get our segmentation. We have chosen an easy exam-
ple for color-based segmentation, but the same principles hold true for graphs with
more complicated pairwise relationships.

Elegant ndimage: How to Build Graphs from Image
Regions

All the pieces are in place: you know about NumPy arrays, image filtering, generic
filters, graphs, and RAGs. Let’s build one to pluck the tiger out of that picture!

The obvious approach is to use two nested for loops to iterate over every pixel of the
image, look at the neighboring pixels, and check for different labels:
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import as
def build_rag(labels, image):
g = nx.Graph()
nrows, ncols = labels.shape
for row in range(nrows):
for col in range(ncols):
current_label = labels[row, col]
if not current_label in g:
g.add_node(current_label)
g.node[current_label]['total color'] = np.zeros(3, dtype=np.float)
g.node[current_label]['pixel count'] = 0

if row < nrows - 1 and labels[row + 1, col] != current_label:
g.add_edge(current_label, labels[row + 1, col])
if col < ncols - 1 and labels[row, col + 1] != current_label:

g.add_edge(current_label, labels[row, col + 1])
g.node[current_label]['total color'] += image[row, col]
g.node[current_label]['pixel count'] += 1

return g

Whew! This works, but if you want to segment a 3D image, you’ll have to write a dif-
ferent version:

import as
def build_rag_3d(labels, image):
g = nx.Graph()
nplns, nrows, ncols = labels.shape
for pln in range(nplns):
for row in range(nrows):
for col in range(ncols):
current_label = labels[pln, row, col]
if not current_label in g:
g.add_node(current_label)
g.node[current_label]['total color'] = np.zeros(3, dtype=np.float)
g.node[current_label]['pixel count'] = 0
if pln < nplns - 1 and labels[pln + 1, row, col] != current_label:
g.add_edge(current_label, labels[pln + 1, row, col])

if row < nrows - 1 and labels[pln, row + 1, col] != current_label:
g.add_edge(current_label, labels[pln, row + 1, col])
if col < ncols - 1 and labels[pln, row, col + 1] != current_label:

g.add_edge(current_label, labels[pln, row, col + 1])
g.node[current_label]['total color'] += image[pln, row, col]
g.node[current_label]['pixel count'] += 1

return g
Both of these are pretty ugly and unwieldy, too. And difficult to extend: if we want to
count diagonally neighboring pixels as adjacent (i.e., [row, col] is “adjacent to” [row
+ 1, col + 1]), the code becomes even messier. And if we want to analyze 3D video,
we need yet another dimension and another level of nesting. It’s a mess!

Enter Vighnesh’s insight: SciPy’s generic_filter function already does this iteration
for us! We used it above to compute an arbitrarily complicated function on the neigh-
borhood of every element of a NumPy array. Only now we don’t want a filtered image
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out of the function: we want a graph. It turns out that generic_filter lets you pass
additional arguments to the filter function, and we can use that to build the graph:

import as
import as
from import ndimage as nd

def add_edge_filter(values, graph):
center = values[len(values) // 2]
for neighbor in values:
if neilghbor != center and not graph.has_edge(center, neighbor):
graph.add_edge(center, neighbor)
# float return value is unused but needed by ‘generic_filter"
return 0.0

def build_rag(labels, image):
g = nx.Graph()
footprint = ndi.generate_binary_structure(labels.ndim, connectivity=1)
_ = ndi.generic_filter(labels, add_edge_filter, footprint=footprint,
mode="'nearest', extra_arguments=(g,))
for n in g:
g.node[n]['total color'] = np.zeros(3, np.double)
g.node[n]['pixel count'] = 0
for index in np.ndindex(labels.shape):
n = labels[index]
g.node[n]['total color'] += image[index]
g.node[n]['pixel count'] += 1
return g

Here are a few reasons this is a brilliant piece of code:

o ndi.generic_filter iterates over array elements with their neighbors. (Use
numpy .ndindex to simply iterate over array indices.)

o We return “0.0” from the filter function because generic_filter requires the fil-
ter function to return a float. However, we ignore the filter output (which is zero
everywhere), and use it only for its “side effect” of adding edges to the graph.

o The loops are not nested several levels deep. This makes the code more compact,
easier to take in one go.

« The code works identically for 1D, 2D, 3D, or even 8D images!

o If we want to add support for diagonal connectivity, we just need to change the
connectivity parameter to ndi.generate_binary_structure.

Putting It All Together: Mean Color Segmentation

Now, we can use everything we've learned to segment the tiger in the image above:

g = build_rag(seg, tiger)
for n in g:
node = g.node[n]
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node[ 'mean'] = node[ 'total color'] / node['pixel count']
for u, v in g.edges_iter():
d = g.node[u]['mean'] - g.node[v][ 'mean']
g[u][v]['weight'] = np.linalg.norm(d)
Each edge holds the difference between the average color of each segment. We can
now threshold the graph:
def threshold_graph(g, t):
to_remove = [(u, v) for (u, v, d) in g.edges(data=True)
if d['weight'] > t]
g.remove_edges_from(to_remove)
threshold_graph(g, 80)

Finally, we use the NumPy index-with-an-array trick we learned in Chapter 2:

map_array = np.zeros(np.max(seg) + 1, int)
for 1, segment in enumerate(nx.connected_components(g)):
for initial in segment:
map_array[int(initial)] = 1
segmented = map_array[seg]
plt.imshow(color.label2rgb(segmented, tiger));

Oops! Looks like the cat lost its tail!
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Still, we think that’s a nice demonstration of the capabilities of RAGs, and the beauty
with which SciPy and NetworkX make it feasible. Many of these functions are avail-
able in the scikit-image library. If you are interested in image analysis, look it up!
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CHAPTER 4
Frequency and the Fast Fourier Transform

If you want to find the secrets of the universe, think in terms of energy, frequency and vibra-
tion.

—Nikola Tesla

This chapter was written in collaboration with SW's father, PW van der Walt.

This chapter will depart slightly from the format of the rest of the book. In particular,
you may find the code in the chapter quite modest. Instead, we want to illustrate an
elegant algorithm, the Fast Fourier Transform (FFT), that is endlessly useful, is imple-
mented in SciPy, and works, of course, on NumPy arrays.

Introducing Frequency

We'll start by setting up some plotting styles and importing the usual suspects:

# Make plots appear inline, set custom plotting style
%matplotlib inline

import as
plt.style.use('style/elegant.mplstyle")

import as

The discrete' Fourier transform (DFT) is a mathematical technique used to convert
temporal or spatial data into frequency domain data. Frequency is a familiar concept,
due to its colloquial occurrence in the English language: the lowest notes your head-
phones can rumble out are around 20 Hz, whereas middle C on a piano lies around
261.6 Hz; Hertz, or oscillations per second, in this case literally refers to the number

1 The DFT operates on sampled data, in contrast to the standard Fourier transform, which is defined for con-
tinuous functions.

81



of times per second at which the membrane inside the headphone moves to-and-fro.
That, in turn, creates compressed pulses of air which, upon arrival at your eardrum,
induces a vibration at the same frequency. So, if you take a simple periodic function,
sin(10 x 2mt), you can view it as a wave:

f = 10 # Frequency, in cycles per second, or Hertz
f_s = 100 # Sampling rate, or number of measurements per second

t = np.linspace(0, 2, 2 * f_s, endpoint=False)
x = np.sin(f * 2 * np.pl * t)

fig, ax = plt.subplots()
ax.plot(t, x)

ax.set_xlabel('Time [s]')
ax.set_ylabel('Signal amplitude');
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Or you can equivalently think of it as a repeating signal of frequency 10 Hz (it repeats
once every 1/10 seconds—a length of time we call its period). Although we naturally
associate frequency with time, it can equally well be applied to space. For example, a
photo of a textile patterns exhibits high spatial frequency, whereas the sky or other
smooth objects have low spatial frequency.

Let us now examine our sinusoid through application of the DFT:
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from scipy import fftpack

X = fftpack.fft(x)
freqs = fftpack.fftfreq(len(x)) * f_s

fig, ax = plt.subplots()

ax.stem(fregs, np.abs(X))

ax.set_xlabel('Frequency in Hertz [Hz]'")
ax.set_ylabel('Frequency Domain (Spectrum) Magnitude')
ax.set_xlim(-f_s / 2, f_s / 2)

ax.set_ylim(-5, 110)
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We see that the output of the FFT is a 1D array of the same shape as the input, con-
taining complex values. All values are zero, except for two entries. Traditionally, we
visualize the magnitude of the result as a stem plot, in which the height of each stem
corresponds to the underlying value.

(We explain why you see positive and negative frequencies later on in “Discrete Four-
ier Transforms” on page 95. You may also refer to that section for a more in-depth
overview of the underlying mathematics.)
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The Fourier transform takes us from the time to the frequency domain, and this turns
out to have a massive number of applications. The fast Fourier transform (FFT) is an
algorithm for computing the DFT; it achieves its high speed by storing and reusing
results of computations as it progresses.

In this chapter, we examine a few applications of the DFT to demonstrate that the
FFT can be applied to multidimensional data (not just 1D measurements) to achieve
a variety of goals.

lllustration: A Birdsong Spectrogram

Let’s start with one of the most common applications, converting a sound signal (con-
sisting of variations of air pressure over time) to a spectrogram. You might have seen
spectrograms on your music player’s equalizer view, or even on an old-school stereo
(Figure 4-1).

STEREO FREQUENCY EQUALIZER
TONE COMPUTER DISPLAY

Sl
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Hz B0 240 8860 3840 153680 3
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dB8
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POST SPECTRUM LEVEL CAL ACCENT

Figure 4-1. The Numark EQ2600 stereo equalizer (image used with permission from the
author, Sergey Gerasimuk)
Listen to this snippet of the nightingale birdsong (released under CC BY 4.0):

from IPython.display import Audio
Audio('data/nightingale.wav')
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If you are reading the paper version of this book, you’ll have to use your imagination!
It goes something like this: chee-chee-woorrrr-hee-hee cheet-wheet-hoorrr-chirrr-
whi-wheo-wheo-wheo-wheo-wheo-wheo.

Since we realize that not everyone is fluent in bird-speak, perhaps it’s best if we visu-
alize the measurements—better known as “the signal”—instead.

We load the audio file, which gives us the sampling rate (number of measurements
per second) as well as audio data as an (N, 2) array—two columns because this is a
stereo recording.

from scipy.io import wavfile

rate, audio = wavfile.read('data/nightingale.wav')
We convert to mono by averaging the left and right channels.
audio = np.mean(audio, axis=1)
Then, we calculate the length of the snippet and plot the audio (Figure 4-2).

N = audio.shape[0]
L =N/ rate

print(f'Audio length: {L:.2f} seconds')

f, ax = plt.subplots()
ax.plot(np.arange(N) / rate, audio)
ax.set_xlabel('Time [s]')
ax.set_ylabel('Amplitude [unknown]');

Audio length: 7.67 seconds
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Figure 4-2. Audio waveform plot of nightingale birdsong

Well, that’s not very satisfying, is it? If I sent this voltage to a speaker, I might hear a
bird chirping, but I can't very well imagine how it would sound in my head. Is there a
better way of seeing what is going on?

There is, and it is called the discrete Fourier transform, or DFT, where discrete refers
to the recording consisting of time-spaced sound measurements, in contrast to a con-
tinual recording as, for example, on magnetic tape (remember cassettes?). The DFT is
often computed using the FFT algorithm, a name informally used to refer to the DFT
itself. The DFT tells us which frequencies or “notes” to expect in our signal.

Of course, a bird sings many notes throughout the song, so wed also like to know
when each note occurs. The Fourier transform takes a signal in the time domain (i.e.,
a set of measurements over time) and turns it into a spectrum—a set of frequencies
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with corresponding (complex?) values. The spectrum does not contain any informa-
tion about time!?

So, to find both the frequencies and the time at which they were sung, we’ll need to be
somewhat clever. Our strategy is as follows: take the audio signal, split it into small,
overlapping slices, and apply the Fourier transform to each (a technique known as the
short time Fourier transform).

We'll split the signal into slices of 1,024 samples—that’s about 0.02 seconds of audio.
The reason we chose 1,024 and not 1,000 we’ll explain in a second when we examine
performance. The slices will overlap by 100 samples as shown here:

N

Start by chopping up the signal into slices of 1024 samples, each slice overlapping the
previous by 100 samples. The resulting slices object contains one slice per row.

from skimage import util
M = 1024

slices = util.view_as_windows(audio, window_shape=(M,), step=100)
print(f'Audio shape: {audio.shape}, Sliced audio shape: {slices.shape}')

Audio shape: (338081,), Sliced audio shape: (3371, 1024)

2 The Fourier transform essentially tells us how to combine a set of sinusoids of varying frequency to form the
input signal. The spectrum consists of complex numbers—one for each sinusoid. A complex number encodes
two things: a magnitude and an angle. The magnitude is the strength of the sinusoid in the signal, and the
angle is how much it is shifted in time. At this point, we only care about the magnitude, which we calculate
using np.abs.

3 For more on techniques for calculating both (approximate) frequencies and time of occurrence, read up on
wavelet analysis.
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Generate a windowing function (see “Windowing” on page 100 for a discussion of the
underlying assumptions and interpretations of each) and multiply it with the signal:

win = np.hanning(M + 1)[:-1]
slices = slices * win

It's more convenient to have one slice per column, so we take the transpose:

slices = slices.T
print('Shape of ‘slices':

, slices.shape)
Shape of “slices’: (1024, 3371)

For each slice, calculate the DFT, which returns both positive and negative frequen-
cies (more on that in “Frequencies and Their Ordering” on page 94), so we slice out
the positive M2 frequencies for now.

spectrum = np.fft.fft(slices, axis=0)[:M // 2 + 1:-1]

spectrum = np.abs(spectrum)
(As a quick aside, you’ll note that we use scipy.fftpack.fft and np.fft inter-
changeably. NumPy provides basic FFT functionality, which SciPy extends further,
but both include an fft function, based on the Fortran FFTPACK.)

The spectrum can contain both very large and very small values. Taking the log com-
presses the range significantly.

Here we do a log plot of the ratio of the signal divided by the maximum signal
(shown in Figure 4-3). The specific unit used for the ratio is the decibel, 20log,,
(amplitude ratio).

f, ax = plt.subplots(figsize=(4.8, 2.4))

S = np.abs(spectrum)
S = 20 * np.log10(S / np.max(S))

ax.imshow(S, origin='lower', cmap='viridis',
extent=(0, L, 0, rate / 2 / 1000))

ax.axis('tight')

ax.set_ylabel('Frequency [kHz]")

ax.set_xlabel('Time [s]');
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Figure 4-3. Birdsong spectrogram

Much better! We can now see that the frequencies vary over time, and the spectro-
gram corresponds to the way the audio sounds. See if you can match our earlier
description: chee-chee-woorrrr-hee-hee cheet-wheet-hoorrr-chirrr-whi-wheo-wheo-
wheo-wheo-wheo-wheo. (I didn’t transcribe the 3 to 5 second mark—that’s another
bird.)

SciPy already includes an implementation of this procedure as scipy.signal.spec
trogram (Figure 4-4), which can be invoked as follows:

from scipy import signal

freqs, times, Sx = signal.spectrogram(audio, fs=rate, window='hanning',
nperseg=1024, noverlap=M - 100,
detrend=False, scaling='spectrum')

f, ax = plt.subplots(figsize=(4.8, 2.4))

ax.pcolormesh(times, freqs / 1000, 10 * np.logl@(Sx), cmap='viridis')
ax.set_ylabel('Frequency [kHz]")

ax.set_xlabel('Time [s]');
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Figure 4-4. SciPy built-in rendition of birdsong spectrogram

The only differences between the manual spectrogram that we created versus the Sci-
Py’s built-in function are that SciPy returns the spectrum magnitude squared (which
turns measured voltage into measured energy), and multiplies it by some normaliza-
tion factors.*

History

Tracing the exact origins of the Fourier transform is tricky. Some related procedures
go as far back as Babylonian times, but it was the hot topics of calculating asteroid
orbits and solving the heat (flow) equation that led to several breakthroughs in the
early 1800s. Whom exactly among Clairaut, Lagrange, Euler, Gauss, and D’Alembert
we should thank is not exactly clear, but Gauss was the first to describe the fast Four-
ier transform (an algorithm for computing the DFT, popularized by Cooley and
Tukey in 1965). Joseph Fourier, after whom the transform is named, first claimed that
arbitrary periodic® functions can be expressed as a sum of trigonometric functions.

4 SciPy goes to some effort to preserve the energy in the spectrum. Therefore, when taking only half the com-
ponents (for N even), it multiplies the remaining components, apart from the first and last components, by
two (those two components are “shared” by the two halves of the spectrum). It also normalizes the window by
dividing it by its sum.

5 The period can, in fact, also be infinite! The general continuous Fourier transform provides for this possibil-
ity. DFTs are generally defined over a finite interval, and this is implicitly the period of the time domain func-
tion that is transformed. In other words, if you do the inverse DFT, you always get a periodic signal out.
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Implementation

The DFT functionality in SciPy lives in the scipy.fftpack module. Among other
things, it provides the following DFT-related functionality:

fft, fft2, fftn
Compute the DFT using the FFT algorithm in 1, 2, or n dimensions.

ifft, ifft2, ifftn
Compute the inverse of the DFT.

dct, idct, dst, idst
Compute the cosine and sine transforms, and their inverses.

fftshift, ifftshift
Shift the zero-frequency component to the center of the spectrum and back,
respectively (more about that soon).

fftfreq
Return the DFT sample frequencies.

rfft
Compute the DFT of a real sequence, exploiting the symmetry of the resulting

spectrum for increased performance. Also used by fft internally when applica-
ble.

This list is complemented by the following functions in NumPy:

np.hanning, np.hamming, np.bartlett, np.blackman, np.kaiser
Tapered windowing functions.

The DFT is also used to perform fast convolutions of large inputs by
scipy.signal.fftconvolve.

SciPy wraps the Fortran FFTPACK library—it is not the fastest out there, but unlike
packages such as FFTW, it has a permissive free software license.
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Choosing the Length of the DFT

A naive calculation of the DFT takes ¢(N?) operations.®* How come? Well, you have N
(complex) sinusoids of different frequencies (2nf x 0, 2nf x 1; 27f x 3, ..., 27f x (N -
1)), and you want to see how strongly your signal corresponds to each. Starting with
the first, you take the dot-product with the signal (which, in itself, entails N multipli-
cation operations). Repeating this operation N times, once for each sinusoid, then
gives N? operations.

Now, contrast that with the FFT, which is (N log N) in the ideal case due to the
clever reuse of calculations—a great improvement! However, the classical Cooley-
Tukey algorithm implemented in FFTPACK (and used by SciPy) recursively breaks
up the transform into smaller (prime-sized) pieces and only shows this improvement
for “smooth” input lengths (an input length is considered smooth when its largest
prime factor is small, as shown in Figure 4-5). For large prime-sized pieces, the Blue-
stein or Rader algorithms can be used in conjunction with the Cooley-Tukey algo-
rithm, but this optimization is not implemented in FFTPACK.”

Let us illustrate:

import

from import fftpack
from import factorint
K = 1000

lengths = range(250, 260)

# Calculate the smoothness for all input lengths
smoothness = [max(factorint(i).keys()) for i1 in lengths]

exec_times = []
for 1 in lengths:
z = np.random.random(i)

6 In computer science, the computational cost of an algorithm is often expressed in “Big O” notation. The nota-
tion gives us an indication of how an algorithm’s execution time scales with an increasing number of ele-
ments. If an algorithm is €(N), its execution time increases linearly with the number of input elements (e.g.,
searching for a given value in an unsorted list is ¢(N). Bubble sort is an example of an O(N?) algorithm; the

exact number of operations performed may, hypothetically, be N + %N 2, meaning that the computational cost

grows quadratically with the number of input elements.

~

While ideally we don’t want to reimplement existing algorithms, sometimes it becomes necessary in order to
obtain the best execution speeds possible, and tools like Cython, which compiles Python to C, and Numba,
which does just-in-time compilation of Python code, make life a lot easier (and faster!). If you are able to use
GPL-licensed software, you may consider using PyFFTW for faster FFTs.
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# For each input length 1, execute the FFT K times
# and store the execution time

times = []

for k in range(K):
tic = time.monotonic()
fftpack.fft(z)
toc = time.monotonic()
times.append(toc - tic)

# For each input length, remember the *minimum* execution time
exec_times.append(min(times))

f, (ax0, ax1l) = plt.subplots(2, 1, sharex=True)
ax0.stem(lengths, np.array(exec_times) * 10**6)
ax0.set_ylabel('Execution time (ps)')

ax1l.stem(lengths, smoothness)
ax1l.set_ylabel('Smoothness of input length\n(lower is better)')
ax1l.set_xlabel('Length of input');
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Figure 4-5. FFT execution time versus smoothness for different input lengths

The intuition is that, for smooth numbers, the FFT can be broken up into many small
pieces. After performing the FFT on the first piece, we can reuse those results in sub-
sequent computations. This explains why we chose a length of 1,024 for our audio sli-
ces earlier—it has a smoothness of only 2, resulting in the optimal “radix-2 Cooley-
Tukey” algorithm, which computes the FFT using only (N/2)log,N = 5,120 complex
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multiplications, instead of N* = 1,048,576. Choosing N = 2™ always ensures a maxi-
mally smooth N (and, thus, the fastest FFT).

More DFT Concepts

Next, we present a couple of common concepts worth knowing before operating
heavy Fourier transform machinery, whereafter we tackle another real-world prob-
lem: analyzing target detection in radar data.

Frequencies and Their Ordering

For historical reasons, most implementations return an array where frequencies vary
from low to high to low (see “Discrete Fourier Transforms” on page 95 for further
explanation of frequencies). For example, when we do the real Fourier transform of a
signal of all ones, an input that has no variation and therefore only has the slowest,
constant Fourier component (also known as the “DC,” or Direct Current, component
—just electronics jargon for “mean of the signal”), appearing as the first entry:

from import fftpack
N = 10
fftpack.fft(np.ones(N)) # The first component is np.mean(x) * N

array([ 10.+0.j, 0.+0.j, ©0.+0.j, 0.+0.j, 0.+0.j, 0.40.7,
0.-0.j, 0.-0.j, 0.-0.j, 0.-0.3j])

When we try the FFT on a rapidly changing signal, we see a high-frequency compo-
nent appear:

z = np.ones(10)

z[::2] = -1

print(f'Applying FFT to {z}")
fftpack.fft(z)
Applying FFT to [-1. 1. -1. 1. -1. 1. -1. 1. -1. 1.]

array([ 0.+0.j, 0.+0.j, ©0.+0.j, 0.+0.j, 0.+0.j, -10.40.j,
0.-0.j, 0.-0.j, 0.-0.j, 0.-0.j])

Note that the FFT returns a complex spectrum that, in the case of real inputs, is con-
jugate symmetrical (i.e., symmetric in the real part and antisymmetric in the imagi-
nary part):

x = np.array([1, 5, 12, 7, 3, 0, 4, 3, 2, 8])
X = fftpack.fft(x)

np.set_printoptions(precision=2)

print("Real part: ", X.real)
print("Imaginary part:", X.imag)
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np.set_printoptions()

Real part: [ 45. 7.09 -12.24 -4.09 -7.76 -1. -7.76 -4.09 -12.24
7.09]

Imaginary part: [ 0. -10.96 -1.62 12.03 6.88 0. -6.88 -12.03 1.62
10.96]

(And, again, recall that the first component is np.mean(x) * N.)

The fftfreq function tells us which frequencies we are looking at specifically:

fftpack.fftfreq(10)
array([ 0. , 0.1, 0.2, 0.3, 0.4, -0.5, -0.4, -0.3, -0.2, -0.1])

The result tells us that our maximum component occurred at a frequency of 0.5 cycles
per sample. This agrees with the input, where a minus-one-plus-one cycle repeated
every second sample.

Sometimes, it is convenient to view the spectrum organized slightly differently, from
high-negative to low-to-high-positive (for now, we won't dive too deeply into the
concept of negative frequency, other than to say a real-world sine wave is produced
by a combination of positive and negative frequencies). We reshuffle the spectrum
using the fftshift function.

Discrete Fourier Transforms

The DFT converts a sequence of N equally spaced real or complex samples x,x,; .. ,
of a function x(#) of time (or another variable, depending on the application) into a
sequence of N complex numbers X, by the following summation:

N-1 —j2mkn/N
X =3, 0%’ ,k=0,1,... >N -1

With the numbers X, known, the inverse DFT exactly recovers the sample values x,
through the following summation:

_ 1 ¢N-1 j2mkn/N
X, = 5 Zk=0 Xx€

Keeping in mind that e = cosf + j sin 0, the last equation shows that the DFT has
decomposed the sequence x, into a complex discrete Fourier series with coefficients
X, Comparing the DFT with a continuous complex Fourier series:

- Jjnwt
x(t) =%, __c.e 0
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The DFT is a finite series with N terms defined at the equally spaced discrete instan-
ces of the angle (wt,) = 271% in the interval [0, 2m)—that is, including 0 and excluding

2. This automatically normalizes the DFT so that time does not appear explicitly in
the forward or inverse transform.

If the original function x(z) is limited in frequency to less than half of the sampling
frequency (the so-called Nyquist frequency), interpolation between sample values pro-
duced by the inverse DFT will usually give a faithful reconstruction of x(t). If x(t) is
not limited as such, the inverse DFT can, in general, not be used to reconstruct x(t) by
interpolation. Note that this limit does not imply that there are no methods that can
do such a reconstruction—see, for example, compressed sensing, or finite rate of
innovation sampling.

The function e2™*IN = (gi27N)k = 1k takes on discrete values between 0 and 271% on

kn

the unit circle in the complex plane. The function 2N = wk* encircles the origin

n% times, thus generating harmonics of the fundamental sinusoid for which n = 1.

The way in which we defined the DFT leads to a few subtleties when n > g, for even

N.# The function e/>™IN is plotted for increasing values of k in Figure 4-6, for the
cases n = 1ton =N - 1 for N =16. When k increases from k to k + 1, the angle

increases by 2% When 7 = 1, the step is %ﬂ When n = N - 1, the angle increases by

Zn% =27 — %ﬂ Since 27 is precisely once around the circle, the step equates to —%ﬂ

—that is, in the direction of a negative frequency. The components up to N/2 repre-
sent positive frequency components, those above N/2 up to N - 1 represent negative
frequencies. The angle increment for the component N/2 for N even advances pre-
cisely halfway around the circle for each increment in k and can therefore be inter-
preted as either a positive or a negative frequency. This component of the DFT
represents the Nyquist frequency (i.e., half of the sampling frequency), and is useful
to orientate oneself when looking at DFT graphics.

The FFT in turn is simply a special and highly efficient algorithm for calculating the
DFT. Whereas a straightforward calculation of the DFT takes of the order of N? calcu-
lations to compute, the FFT algorithm requires of the order N log N calculations. The
FFT was key to the widespread use of DFT in real-time applications and was included
in a list of the top 10 algorithms of the twentieth century by the IEEE journal Comput-
ing in Science ¢ Engineering in 2000.

8

We leave it as an exercise for the reader to picture the situation for N odd. In this chapter, all examples use
even-order DFTs.
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Figure 4-6. Unit circle samples

Lets examine the frequency components in a noisy image (Figure 4-7). Note that,
while a static image has no time-varying component, its values do vary across space.
The DFT applies equally to either case.

First, load and display the image:
from import 1o
image = 1o.imread('images/moonlanding.png"')

M, N = image.shape

f, ax = plt.subplots(figsize=(4.8, 4.8))
ax.imshow(image)

print((M, N), image.dtype)
(474, 630) uint8
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Figure 4-7. A noisy image of the moon landing

Do not adjust your monitor! The image you are seeing is real, although clearly distor-
ted by either the measurement or transmission equipment.

To examine the spectrum of the image, we use fftn (instead of fft) to compute the
DFT, since it has more than one dimension. The 2D FFT is equivalent to taking the
1D FFT across rows and then across columns, or vice versa.

F = fftpack.fftn(image)

F_magnitude = np.abs(F)
F_magnitude = fftpack.fftshift(F_magnitude)

Again, we take the log of the spectrum to compress the range of values, before dis-
playing:

f, ax = plt.subplots(figsize=(4.8, 4.8))

ax.imshow(np.log(1l + F_magnitude), cmap='viridis',

extent=(-N // 2, N // 2, -M [[ 2, M [] 2))
ax.set_title('Spectrum magnitude');
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Note the high values around the origin (middle) of the spectrum—these coefficients
describe the low frequencies or smooth parts of the image, a vague canvas of the
photo. Higher-frequency components, spread throughout the spectrum, fill in the
edges and detail. Peaks around higher frequencies correspond to the periodic noise.

From the photo, we can see that the noise (measurement artifacts) is highly periodic,
so we hope to remove it by zeroing out the corresponding parts of the spectrum
(Figure 4-8).
The image with those peaks suppressed indeed looks quite different!

# Set block around center of spectrum to zero

K = 40

F_magnitude[M // 2 - K: M // 2 +K, N// 2 -K:N// 2+K] =20

# Find all peaks higher than the 98th percentile
peaks = F_magnitude < np.percentile(F_magnitude, 98)

# Shift the peaks back to align with the original spectrum
peaks = fftpack.ifftshift(peaks)

# Make a copy of the original (complex) spectrum
F_dim = F.copy()
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# Set those peak coefficients to zero
F_dim = F_dim * peaks.astype(int)

# Do the inverse Fourier transform to get back to an image.

# Since we started with a real image, we only look at the real part of
# the output.

image_filtered = np.real(fftpack.ifft2(F_dim))

f, (ax0, ax1l) = plt.subplots(2, 1, figsize=(4.8, 7))
ax0.1imshow(np.log10(1 + np.abs(F_dim)), cmap='viridis')
ax0.set_title('Spectrum after suppression')

ax1.imshow(image_filtered)
axl.set_title('Reconstructed image');
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Figure 4-8. Filtered moon landing image and its spectrum

Windowing

If we examine the Fourier transform of a rectangular pulse, we see significant side
lobes in the spectrum:
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X = np.zeros(500)
x[100:150] = 1

X = fftpack.fft(x)
f, (ax0, ax1) = plt.subplots(2, 1, sharex=True)

ax0.plot(x)
ax0.set_ylim(-0.1, 1.1)

axl.plot(fftpack.fftshift(np.abs(X)))
ax1l.set_ylim(-5, 55);
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In theory, you would need a combination of infinitely many sinusoids (frequencies)
to represent any abrupt transition; the coefficients would typically have the same side
lobe structure as seen here for the pulse.

Importantly, the DFT assumes that the input signal is periodic. If the signal is not, the
assumption is simply that, right at the end of the signal, it jumps back to its beginning
value. Consider the function, x(t), shown here:
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We measure the signal for only a short time, labeled T, The Fourier transform
assumes that x(8) = x(0), and that the signal is continued as the dashed, rather than
the solid, line. This introduces a big jump at the edge, with the expected oscillation in
the spectrum:

t = np.linspace(0, 1, 500)
x = np.sin(49 * np.pi * t)

X = fftpack.fft(x)
f, (ax0, ax1) = plt.subplots(2, 1)

ax0.plot(x)
ax0.set_ylim(-1.1, 1.1)

axl.plot(fftpack.fftfreq(len(t)), np.abs(X))
ax1.set_ylim(0, 190);
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Instead of the expected two lines, the peaks are spread out in the spectrum.

We can counter this effect by a process called windowing. The original function is
multiplied with a window function such as the Kaiser window K(N, f3). Here we visu-
alize it for f ranging from 0 to 100:

f, ax = plt.subplots()

N = 10
beta_max = 5
colormap = plt.cm.plasma

norm = plt.Normalize(vmin=0, vmax=beta_max)

lines = [
ax.plot(np.kaiser (100, beta), color=colormap(norm(beta)))
for beta in np.linspace(®, beta_max, N)
1

sm = plt.cm.ScalarMappable(cmap=colormap, norm=norm)

sm._A =[]

plt.colorbar(sm).set_label(r'Kaiser $\beta$');
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By changing the parameter 3, we can change the shape of the window from rectangu-
lar (8 = 0, no windowing) to a window that produces signals that smoothly increase
from zero and decrease to zero at the endpoints of the sampled interval, producing
very low side lobes (f typically between 5 and 10).°

Applying the Kaiser window here, we see that the side lobes have been drastically
reduced, at the cost of a slight widening in the main lobe.

The effect of windowing our previous example is noticeable:

win = np.kaiser(len(t), 5)
X_win = fftpack.fft(x * win)

plt.plot(fftpack.fftfreq(len(t)), np.abs(X_win))
plt.ylim(0, 190);

9 The classical windowing functions include Hann, Hamming, and Blackman. They differ in their side lobe lev-
els and in the broadening of the main lobe (in the Fourier domain). A modern and flexible window function
that is close to optimal for most applications is the Kaiser window—a good approximation to the optimal pro-
late spheroid window, which concentrates the most energy into the main lobe. We can tune the Kaiser win-
dow to suit the particular application, as illustrated in the main text, by adjusting the parameter f.
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Real-World Application: Analyzing Radar Data

Linearly modulated FMCW (Frequency-Modulated Continuous-Wave) radars make
extensive use of the FFT algorithm for signal processing and provide examples of var-
ious applications of the FFT. We will use actual data from an FMCW radar to demon-
strate one such application: target detection.

Roughly, an FMCW radar works like this (see “A Simple FMCW Radar System” on
page 106 and Figure 4-9 for more detail):

1. A signal with changing frequency is generated. This signal is transmitted by an
antenna, after which it travels outward, away from the radar. When it hits an
object, part of the signal is reflected back to the radar, where it is received, multi-
plied by a copy of the transmitted signal, and sampled, turning it into numbers
that are packed into an array. Our challenge is to interpret those numbers to form
meaningful results.

2. The preceding multiplication step is important. From school, recall the trigono-
metric identity:

sin(xt) sin(yt) = % [sin ((x - y)t+ %) —sin ((x + )t + %)]
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3.

Thus, if we multiply the received signal by the transmitted signal, we expect two
frequency components to appear in the spectrum: one that is the difference in
frequencies between the received and transmitted signal, and one that is the sum
of their frequencies.

. We are particularly interested in the first, since that gives us some indication of

how long it took the signal to reflect back to the radar (in other words, how far
away the object is from us!). We discard the other by applying a low-pass filter to

the signal (i.e., a filter that discards any high frequencies).

A Simple FMCW Radar System

Transmit
Antenna
Waveform | Transmit A
Generator "|  Amplifier > Coupler
Transmit Receive
Computer Signal Antenna

Replica

Analog to Receive Low-pass
Digital Converter Amplifier Filter

Mixer

Figure 4-9. The block diagram of a simple FMCW radar system

A block diagram of a simple FMCW radar that uses separate transmit and receive
antennas is shown above. The radar consists of a waveform generator that generates a
sinusoidal signal of which the frequency varies linearly around the required transmit
frequency. The generated signal is amplified to the required power level by the trans-
mit amplifier and routed to the transmit antenna via a coupler circuit where a copy of
the transmit signal is tapped off. The transmit antenna radiates the transmit signal as
an electromagnetic wave in a narrow beam toward the target to be detected. When
the wave encounters an object that reflects electromagnetic waves, a fraction of the
energy irradiating the target is reflected back to the receiver as a second electromag-
netic wave that propagates in the direction of the radar system. When this wave
encounters the receive antenna, the antenna collects the energy in the wave energy
impinging on it and converts it to a fluctuating voltage that is fed to the mixer. The
mixer multiplies the received signal with a replica of the transmit signal and produces
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a sinusoidal signal with a frequency equal to the difference in frequency between the
transmitted and received signals. The low-pass filter ensures that the received signal is
band limited (i.e., does not contain frequencies that we don’t care about) and the
receive amplifier strengthens the signal to a suitable amplitude for the analog-to-
digital converter (ADC) that feeds data to the computer.

To summarize, we should note that:

o The data that reaches the computer consists of N samples sampled (from the
multiplied, filtered signal) at a sample frequency of f,.

o The amplitude of the returned signal varies depending on the strength of the
reflection (i.e., is a property of the target object and the distance between the tar-
get and the radar).

o The frequency measured is an indication of the distance of the target object from
the radar.

To start our analysis of radar data, we’ll generate some synthetic signals, after which
we'll turn our focus to the output of an actual radar.

Recall that the radar is increasing its frequency as it transmits at a rate of S Hz/s. After
a certain amount of time, ¢, has passed, the frequency will now be S higher
(Figure 4-10). In that same time span, the radar signal has traveled d = t/v meters,
where v is the speed of the transmitted wave through air (roughly the same as the
speed of light, 3 x 10® m/s).
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Figure 4-10. The frequency relationships in an FMCW radar with linear frequency mod-

ulation

Combining the above observations, we can calculate the amount of time it would take
the signal to travel to, bounce off, and return from a target that is distance R away:

tr=2R/v

pi = np.pi
# Radar parameters
fs = 78125
ts =1/ fs

Teff = 2048.0 * ts

Beff = 100e6

S = Beff / Teff

# Specification of targets.

# Sampling frequency in Hz, i.e., we sample 78125

# times per second

# Sampling time, i.e., one sample is taken each

# ts seconds

# Total sampling time for 2048 samples

# (AKA effective sweep duration) in seconds.

# Range of transmit signal frequency during the time the
# radar samples, known as the "effective bandwidth"

# (given in Hz)

# Frequency sweep rate in Hz/s

We made these targets up, imagining they
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# are objects seen by the radar with the specified range and size.

R = np.array([100, 137, 154, 159, 180]) # Ranges (in meter)
= np.array([0.33, 0.2, 0.9, 0.02, 0.1]) # Target size
P = np.array([0, pit / 2, pt / 3, pi / 5, pi / 6]) # Randomly chosen phase offsets

=
|

t

np.arange(2048) * ts # Sample times
fd =2 %S *R / 3E8 # Frequency differences for these targets

# Generate five targets
signals = np.cos(2 * pi * fd * t[:, np.newaxis] + P)

# Save the signal associated with the first target as an example for
# later inspection
v_single = signals[:, 0]

# Weigh the signals, according to target size and sum, to generate
# the combined signal seen by the radar.

v_sim = np.sum(M * signals, axis=1)

## The above code is equivalent to:

#

# vO = np.cos(2 * pi * fd[O] * t)

# vl = npp.cos(2 * pt * fd[1] * t + pi / 2)
# v2 = np.cos(2 * pi * fd[2] * t + pi / 3)
# v3 = np.cos(2 * pt * fd[3] * t + pi / 5)
# v4d = np.cos(2 * pi * fd[4] * t + pil / 6)
#

## Blend them together
# v_single = vO
# v_sim = (0.33 * v0) + (0.2 * vi) + (0.9 * v2) + (0.02 * v3) + (0.1 * v4)

Here, we generated a synthetic signal, v,;,,., received when looking at a single target
(see Figure 4-11). By counting the number of cycles seen in a given time period, we

can compute the frequency of the signal and thus the distance to the target.

A real radar will rarely receive only a single echo, though. The simulated signal v,
shows what a radar signal will look like with five targets at different ranges (including
two close to one another at 154 and 159 meters), and v, ,(t) shows the output signal
obtained with an actual radar. When we add multiple echoes together, the result
makes little intuitive sense (Figure 4-11); until, that is, we look at it more carefully
through the lens of the DFT.
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Figure 4-11. Receiver output signals: (a) single simulated target, (b) five simulated tar-
gets, and (c) actual radar data

The real-world radar data is read from a NumPy-format .npz file (a lightweight,
cross-platform, and cross-version compatible storage format). These files can be
saved with the np.savez or np.savez_compressed functions. Note that SciPy’s io
submodule can also easily read other formats, such as MATLAB and NetCDF files.

data = np.load('data/radar_scan_0.npz")

# Load variable 'scan' from 'radar_scan_0.npz'
scan = data['scan']

# The dataset contains multiple measurements, each taken with the

# radar pointing in a different direction. Here we take one such as

# measurement, at a specified azimuth (left-right position) and elevation
# (up-down position). The measurement has shape (2048,).

v_actual = scan['samples'][5, 14, :]

# The signal amplitude ranges from -2.5V to +2.5V. The 14-bit

# analogue-to-digital converter in the radar gives out integers

# between -8192 to 8192. We convert back to voltage by multiplying by
# $(2.5 / 8192)8.
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v_actual = v_actual * (2.5 / 8192)
Since .npz files can store multiple variables, we have to select the one we want:
data[ 'scan']. That returns a structured NumPy array with the following fields:
time
Unsigned 64-bit (8 byte) integer (np.uint64)
size
Unsigned 32-bit (4 byte) integer (np.uint32)

position

az
32-bit float (np.float32)

el
32-bit float (np.float32)

region_type
Unsigned 8-bit (1 byte) integer (np.uint8)

region_ID
Unsigned 16-bit (2 byte) integer (np.uint16)
gain
Unsigned 8-bit (1 byte) integer (np.uin8)
samples
2,048 unsigned 16-bit (2 byte) integers (np.uint16)

While it is true that NumPy arrays are homogeneous (i.e., all the elements inside are
the same), it does not mean that those elements cannot be compound elements, as is
the case here.

An individual field is accessed using dictionary syntax:
azimuths = scan['position']['az'] # Get all azimuth measurements

To summarize what we've seen so far: the shown measurements (v, and v,.,,) are
the sum of sinusoidal signals reflected by each of several objects. We need to deter-
mine each of the constituent components of these composite radar signals. The FFT
is the tool that will do this for us.

Signal Properties in the Frequency Domain

First, we take the FFTs of our three signals (synthetic single target, synthetic multi-
target, and real) and then display the positive frequency components (i.e., compo-
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nents 0 to N/2; see Figure 4-12). These are called the range traces in radar
terminology.

fig, axes = plt.subplots(3, 1, sharex=True, figsize=(4.8, 2.4))

# Take FFTs of our signals. Note the convention to name FFTs with a
# capital letter.

V_single = np.fft.fft(v_single)
V_sim = np.fft.fft(v_sim)
V_actual = np.fft.fft(v_actual)

N = len(V_single)

with plt.style.context('style/thinner.mplstyle'):
axes[0].plot(np.abs(V_single[:N // 2]))
axes[0].set_ylabel("$|V_\mathrm{single}|$")
axes[0].set_x1lim(0, N // 2)
axes[0].set_ylim(0, 1100)

axes[1].plot(np.abs(V_sim[:N // 21))
axes[1].set_ylabel("$|V_\mathrm{sim} |$")
axes[1].set_ylim(0, 1000)

axes[2].plot(np.abs(V_actual[:N // 21))
axes[2].set_ylim(0, 750)
axes[2].set_ylabel("$|V_\mathrm{actual}|$")
axes[2].set_xlabel("FFT component $n$")

for ax in axes:
ax.grid()
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Figure 4-12. Range traces for: (a) single simulated target, (b) multiple simulated targets,
and (c) real-world targets

Suddenly, the information makes sense!

The plot for | V| clearly shows a target at component 67, and for |V, | shows the tar-
gets that produced the signal that was uninterpretable in the time domain. The real
radar signal, | V.|, shows a large number of targets between component 400 and
500 with a large peak in component 443. This happens to be an echo return from a

radar illuminating the high wall of an open-cast mine.

To get useful information from the plot, we must determine the range! Again, we use
the formula:

nv

" gy

In radar terminology, each DFT component is known as a range bin.

This equation also defines the range resolution of the radar: targets will only be dis-
tinguishable if they are separated by more than two range bins, for example:

1

AR >
Berr

This is a fundamental property of all types of radar.

This result is quite satisfying—but the dynamic range is so large that we could very
easily miss some peaks. Let’s take the log as before with the spectrogram:
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c = 3e8 # Approximately the speed of light and of
# electromagnetic waves in air

fig, (ax0, ax1l, ax2) = plt.subplots(3, 1)

def dB(y):
"Calculate the log ratio of y / max(y) in decibel."

y = np.abs(y)
y /= y.max()

return 20 * np.log10(y)

def log_plot_normalized(x, y, ylabel, ax):
ax.plot(x, dB(y))
ax.set_ylabel(ylabel)
ax.grid()

rng = np.arange(N // 2) * ¢ / 2 | Beff

with plt.style.context('style/thinner.mplstyle'):
log_plot_normalized(rng, V_single[:N // 2], "$|v_0|S$ [dB]", ax@)
log_plot_normalized(rng, V_sim[:N // 2], "$|V_5|$ [dB]", ax1)
log_plot_normalized(rng, V_actual[:N // 2], "$|V_{\mathrm{actual}}|$ [dB]"
, ax2)

ax0.set_x1im(0, 300) # Change x limits for these plots so that
axl.set_x1lim(0, 300) # we are better able to see the shape of the peaks.
ax2.set_x1im(0, len(V_actual) // 2)

ax2.set_xlabel('range')
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The observable dynamic range is much improved in these plots. For instance, in the
real radar signal the noise floor of the radar has become visible (i.e., the level where
electronic noise in the system starts to limit the radar’s ability to detect a target).

Windowing, Applied

We're getting there, but in the spectrum of the simulated signal, we still cannot distin-
guish the peaks at 154 and 159 meters. Who knows what we're missing in the real-
world signal! To sharpen the peaks, we'll return to our toolbox and make use of
windowing.

Here are the signals used thus far in this example, windowed with a Kaiser window
with B = 6.1:

f, axes = plt.subplots(3, 1, sharex=True, figsize=(4.8, 2.8))

tms =t * 1000 # Sample times in milli-second

w = np.kaiser(N, 6.1) # Kaiser window with beta = 6.1

for n, (signal, label) in enumerate([(v_single, r'Sv_0 [V]S$'),
(v_sim, r'sv_5 [V]$"),

(v_actual, r'Sv_{\mathrm{actual}} [V]$')]):
with plt.style.context('style/thinner.mplstyle'):
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vs[V] vo[V]

Vactual[ V]

axes[n].plot(t_ms, w * signal)
axes[n].set_ylabel(label)
axes[n].grid()

axes[2].set_x1lim(0, t_ms[-1])
axes[2].set_xlabel('Time [ms]');

1

0 5 10 15 20
Time [ms]

And the corresponding FFTs, or “range traces,” in radar terms:

V_single_win = np.fft.fft(w * v_single)
V_sim_win = np.fft.fft(w * v_sim)
V_actual_win = np.fft.fft(w * v_actual)

fig, (ax0, ax1,ax2) = plt.subplots(3, 1)

with plt.style.context('style/thinner.mplstyle'):
log_plot_normalized(rng, V_single_win[:N // 2],
r"$|v_{o,\mathrm{win}}|$ [dB]", ax0@)
log_plot_normalized(rng, V_sim_win[:N // 2],
r"S$|Vv_{5,\mathrm{win}}|$ [dB]", ax1)
log_plot_normalized(rng, V_actual_win[:N // 2],
r"$|V_\mathrm{actual,win}|$ [dB]", ax2)

ax0.set_x1im(0, 300) # Change x limits for these plots so that

axl.set_x1lim(0, 300) # we are better able to see the shape of the peaks.

axl.annotate("New, previously unseen!", (160, -35), xytext=(10, 15),
textcoords="offset points", color='red', size='x-small',
arrowprops=dict(width=0.5, headwidth=3, headlength=4,

fc="k', shrink=0.1));
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Compare these with the earlier range traces. There is a dramatic lowering in side-lobe
level, but at a price: the peaks have changed in shape, widening and becoming less
peaky, thus lowering the radar resolution—that is, the ability of the radar to distin-
guish between two closely spaced targets. The choice of window is a compromise
between side-lobe level and resolution. Even so, referring to the trace for Vi, win-

dowing has dramatically increased our ability to distinguish the small target from its
large neighbor.

In the real radar data range trace, windowing has also reduced the side lobes. This is
most visible in the depth of the notch between the two groups of targets.

Radar Images
Knowing how to analyze a single trace, we can expand to looking at radar images.

The data is produced by a radar with a parabolic reflector antenna. It produces a
highly directive round pencil beam with a two-degree spreading angle between half-
power points. When directed with normal incidence at a plane, the radar will illumi-
nate a spot of about 2m in diameter at a distance of 60m. Outside this spot, the power
drops off quite rapidly, but strong echoes from outside the spot will nevertheless still
be visible.

By varying the pencil beam’s azimuth (left-right position) and elevation (up-down
position), we can sweep it across the target area of interest. When reflections are
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picked up, we can calculate the distance to the reflector (the object hit by the radar
signal). Together with the current pencil beam azimuth and elevation, this defines the
reflector’s position in 3D.

A rock slope consists of thousands of reflectors. A range bin can be thought of as a
large sphere with the radar at its center that intersects the slope along a ragged line.
The scatterers on this line will produce reflections in this range bin. The wavelength
of the radar (distance the transmitted wave travels in one oscillation second) is about
30mm. The reflections from scatterers separated by odd multiples of a quarter wave-
length in range, about 7.5mm, will tend to interfere destructively, while those from
scatterers separated by multiples of a half wavelength will tend to interfere construc-
tively at the radar. The reflections combine to produce apparent spots of strong
reflections. This specific radar moves its antenna in order to scan small regions con-
sisting of 20 degrees azimuth and 30 degrees elevation bins scanned in steps of 0.5
degrees.

We will now draw some contour plots of the resulting radar data. Refer to Figure 4-13
to see how the different slices are taken. A first slice at fixed range shows the strength
of echoes against elevation and azimuth. Another two slices at fixed elevation and azi-
muth, respectively, show the slope (see Figures 4-13 and 4-14). The stepped construc-
tion of the high wall in an opencast mine is visible in the azimuth plane.

Elevation

Figure 4-13. Diagram showing azimuth, elevation, and range slices through data volume
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data
scan

np.load('data/radar_scan_1.npz')
data['scan']

# The signal amplitude ranges from -2.5V to +2.5V. The 14-bit

# analogue-to-digital converter in the radar gives out integers

# between -8192 to 8192. We convert back to voltage by multiplying by
# $(2.5 / 8192)5.

v = scan['samples'] * 2.5 / 8192
win = np.hanning(N + 1)[:-1]

# Take FFT for each measurement
V = np.fft.fft(v * win, axis=2)[::-1, :, N // 2]

contours = np.arange(-40, 1, 2)

# ignore MPL layout warnings
import warnings
warnings.filterwarnings('ignore', '.*Axes.*compatible.*tight_layout.*')

f, axes = plt.subplots(2, 2, figsize=(4.8, 4.8), tight_layout=True)
labels = ('Range', 'Azimuth', 'Elevation')

def plot_slice(ax, radar_slice, title, xlabel, ylabel):
ax.contourf(dB(radar_slice), contours, cmap='magma_r')
ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_facecolor(plt.cm.magma_r(-40))

with plt.style.context('style/thinner.mplstyle'):
plot_slice(axes[0, 0], V[:, :, 250], 'Range=250', 'Azimuth', 'Elevation')
plot_slice(axes[0, 1], V[:, 3, :], 'Azimuth=3', 'Range', 'Elevation')
plot_slice(axes[1, 0], V[6, :, :].T, 'Elevation=6', 'Azimuth', 'Range')
axes[1, 1].axis('off")
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Figure 4-14. Contour plots of range traces along various axes (see Figure 4-13)

3D visualization

We can also visualize the volume in three dimensions (Figure 4-15).

We first compute the argmax (the index of the maximum value) in the range direc-
tion. This should give an indication of the range at which the radar beam hit the rock
slope. Each argmax index is converted to a 3D (elevation-azimuth-range) coordinate:

r = np.argmax(V, axis=2)
el, az = np.meshgrid(*[np.arange(s) for s in r.shape], indexing='1j"')

axis_labels = ['Elevation', 'Azimuth', 'Range']
coords = np.column_stack((el.flat, az.flat, r.flat))

120 | Chapter4: Frequency and the Fast Fourier Transform



Taking these coordinates, we project them onto the azimuth-elevation plane (by
dropping the range coordinate) and perform a Delaunay tesselation. The tesselation
returns a set of indices into our coordinates that define triangles (or simplices). While
the triangles are strictly speaking defined on the projected coordinates, we use our
original coordinates for the reconstruction, thereby adding back the range compo-
nent:

from scipy import spatial

d = spatial.Delaunay(coords[:, :2])
simplexes = coords[d.vertices]

For display purposes, we swap the range axis to be the first:

coords = np.roll(coords, shift=-1, axis=1)
axis_labels = np.roll(axis_labels, shift=-1)

Now, Matplotlib’s trisurf can be used to visualize the result:

# This import initializes Matplotlib's 3D machinery
from mpl_toolkits.mplot3d import Axes3D

# Set up the 3D axis
f, ax = plt.subplots(1l, 1, figsize=(4.8, 4.8),
subplot_kw=dict(projection="'3d"))

with plt.style.context('style/thinner.mplstyle'):
ax.plot_trisurf(*coords.T, triangles=d.vertices, cmap='magma_r')

ax.set_xlabel(axis_labels[0])
ax.set_ylabel(axis_labels[1])
ax.set_zlabel(axis_labels[2], labelpad=-3)
ax.set_xticks([0, 5, 10, 15])

# Adjust the camera position to match our diagram above
ax.view_init(azim=-50);
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Figure 4-15. 3D visualization of estimated rock slope position

Further Applications of the FFT

The preceding examples show just one of the uses of the FFT in radar. There are
many others, such as movement (Doppler) measurement and target recognition. The
FFT is pervasive, and is seen everywhere from MRI to statistics. With the basic tech-
niques that this chapter outlines in hand, you should be well equipped to use it!

Further Reading

On the Fourier transform:

o Athanasios Papoulis, The Fourier Integral and Its Applications (New York:
McGraw-Hill, 1960).
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o Ronald A. Bracewell, The Fourier Transform and Its Applications (New York:
McGraw-Hill, 1986).

On radar signal processing:

o Mark A. Richards, James A. Scheer, and William A. Holm, eds., Principles of
Modern Radar: Basic Principles (Raleigh, NC: SciTech, 2010).

o Mark A. Richards, Fundamentals of Radar Signal Processing (New York: McGraw-
Hill, 2014).

Exercise: Image Convolution

The FFT is often used to speed up image convolution (convolution is the application
of a sliding filter). Convolve an image with np.ones((5, 5)), using a) NumPy’s
np.convolve and b) np. fft.fft2. Confirm that the results are identical.

Hints:

o The convolution of x and y is equivalent to 1fft2(X * Y), where X and Y are the
FFTs of x and y, respectively.

o In order to multiply X and Y, they have to be the same size. Use np.pad to extend
x and y with zeros (toward the right and bottom) before taking their FFT.

+ You may see some edge effects. You can remove these by increasing the padding
size, so that both x and y have dimensions shape(x) + shape(y) - 1.

Check out “Solution: Image Convolution” on page 230.
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CHAPTER 5

Contingency Tables Using
Sparse Coordinate Matrices

I like sparseness. There’s something about that minimalist feel that can make something have
an immediate impact and make it unique. I'll probably always work with that formula. I just
don’t know how.

—Britt Daniel, lead singer of Spoon

Many real-world matrices are sparse, which means that most of their values are zero.

Using NumPy arrays to manipulate sparse matrices wastes a lot of time and energy
multiplying many, many values by 0. Instead, we can use SciPy’s sparse module to
solve these efficiently, examining only nonzero values. In addition to helping solve
these “canonical” sparse matrix problems, sparse can be used for problems that are
not obviously related to sparse matrices.

One such problem is the comparison of image segmentations. (Review Chapter 3 for
a definition of segmentation.)

The code sample motivating this chapter uses sparse matrices twice. First, we use
code nominated by Andreas Mueller to compute a contingency matrix that counts the
correspondence of labels between two segmentations. Then, with suggestions from
Jaime Ferndndez del Rio and Warren Weckesser, we use that contingency matrix to
compute the variation of information, which measures the differences between seg-
mentations.

def variation_of_information(x, y):
# compute contingency matrix, aka joint probability matrix
n = x.size
Pxy = sparse.coo_matrix((np.full(n, 1/n), (x.ravel(), y.ravel())),
dtype=float).tocsr()
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# compute marginal probabilities, converting to 1D array
px = np.ravel(Pxy.sum(axis=1))
py = np.ravel(Pxy.sum(axis=0))

# use sparse matrix linear algebra to compute VI
# first, compute the inverse diagonal matrices
Px_inv = sparse.diags(invert_nonzero(px))

Py_inv = sparse.diags(invert_nonzero(py))

# then, compute the entropies
hygx = px @ xlogix(Px_inv @ Pxy).sum(axis=1)
hxgy = xlogix(Pxy @ Py_inv).sum(axis=0) @ py

# return the sum of these
return float(hygx + hxgy)

Python 3.5 Pro Tip!

The @ symbols in the above paragraph represent the matrix multiplication operator,
and were introduced in Python 3.5 in 2015. This is one of the most compelling argu-
ments to use Python 3 for scientific programmers: it enables the programming of lin-
ear algebra algorithms using code that remains very close to the original mathematics.
Compare the above:

hygx = px @ xloglx(Px_inv @ Pxy).sum(axis=1)
with the equivalent Python 2 code:
hygx = px.dot(xlogix(Px_inv.dot(Pxy)).sum(axis=1))
By using the @ operator to stay closer to mathematical notation, we can avoid imple-

mentation errors and produce code that is much easier to read.

Actually, SciPy’s authors knew this long before the @ operator was introduced, and
actually altered the meaning of the * operator when the inputs are SciPy matrices.
Available in Python 2.7, it lets us produce nice, readable code like the above:

hygx = -px * xlog(Px_inv * Pxy).sum(axis=1)

But there is a huge catch: this code will behave differently when px or Px_inv are
SciPy matrices than when they are not! If Px_inv and Pxy are NumPy arrays, * pro-
duces the element-wise multiplication, while if they are SciPy matrices, it produces
the matrix product! As you can imagine, this is the source of a great many errors, and
much of the SciPy community has abandoned this use in favor of the uglier but
unambiguous .dot method.

Python 3.5’s @ operator gives us the best of both worlds!
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Contingency Tables

But let’s start simple and work our way up to segmentations.

Suppose you just started working as a data scientist at email startup Spam-o-matic.
You are tasked with building a detector for spam email. You encode the detector out-
come as a numeric value, 0 for not spam and 1 for spam.

If you have a set of 10 emails to classify, you end up with a vector of predictions:

import as

pred = np.array([0, 1, 0, 0, 1, 1, 1, 0, 1, 1])
You can check how well you've done by comparing it to a vector of ground truth, clas-
sifications obtained by inspecting each message by hand.

gt = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

Now, classification is hard for computers, so the values in pred and gt don’t match up
exactly. At positions where pred is 0 and gt is 0, the prediction has correctly identi-
fied a message as nonspam. This is called a true negative. Conversely, at positions
where both values are 1, the predictor has correctly identified a spam message and
found a true positive.

Then, there are two kinds of errors. If we let a spam message (where gt is 1) through
to the user’s inbox (pred is 0), we've made a false negative error. If we predict a legiti-
mate message (gt is 0) to be spam (pred is 1), we've made a false positive prediction.
(An email from the director of my scientific institute once landed in my spam folder.
The reason? His announcement of a postdoc talk competition started with “You
could win $500!”)

If we want to measure how well we are doing, we have to count the above kinds of
errors using a contingency matrix. (This is also sometimes called a confusion matrix.
The name is apt.) For this, we place the prediction labels along the rows and the
ground truth labels along the columns. Then we count the number of times they cor-
respond. So, for example, since there are 4 true positives (where pred and gt are both
1), the matrix will have a value of 3 at position (1, 1).

Generally:
Cij = Zl(py = Dl(gy = j)

Here’s an intuitive but inefficient way of building the preceding equation:

def confusion_matrix(pred, gt):
cont = np.zeros((2, 2))
for 1 in [0, 1]:
for j in [0, 1]:
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cont[i, j] = np.sum((pred == 1) & (gt == j))
return cont

We can check that this gives us the right counts:

confusion_matrix(pred, gt)

array([[ 3., 1.1,
[ 2., 4.1D

Exercise: Computational Complexity of Confusion Matrices
Why did we call this code inefficient?

See “Solution: Computational Complexity of Confusion Matrices” on page 231.

Exercise: Alternative Algorithm to Compute the Confusion Matrix

Write an alternative way of computing the confusion matrix that only makes a single
pass through pred and gt.

def confusion_matrixi(pred, gt):
cont = np.zeros((2, 2))
# your code goes here
return cont

Check out “Solution: Alternative Confusion Matrix Computing” on page 231.

We can make this example a bit more general. Instead of classifying spam and non-
spam, we can classify spam, newsletters, sales and promotions, mailing lists, and per-
sonal email. Thats 5 categories, which we'll label 0 to 4. The confusion matrix will
now be 5-by-5, with matches counted on the diagonal, and errors counted on the off-
diagonal entries.

The definition of the confusion_matrix function just shown doesn’t extend well to
this larger matrix, because now we must have 25 passes though the result and ground
truth arrays. This problem only grows as we add more email categories, such as social
media notifications.

Exercise: Multiclass Confusion Matrix

Write a function to compute the confusion matrix in one pass, as before, but instead
of assuming two categories, infer the number of categories from the input.

def general_confusion_matrix(pred, gt):
n_classes = None # replace ‘None' with something useful
# your code goes here
return cont

Your one-pass solution will scale well with the number of classes, but, because the for-
loop runs in the Python interpreter, it will be slow when you have a large number of
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documents. Also, because some classes are easier to mistake for one another, the
matrix will be sparse, with many 0 entries. Indeed, as the number of classes increases,
dedicating lots of memory space to the 0 entries of the contingency matrix is increas-
ingly wasteful. Instead, we can use the sparse module of SciPy, which contains
objects to efficiently represent sparse matrices.

scipy.sparse Data Formats

We covered the internal data format of NumPy arrays in Chapter 1. We hope you
agree that it’s a fairly intuitive, and, in some sense, inevitable format to hold n-
dimensional array data. For sparse matrices, there are actually a wide array of possible
formats, and the “right” format depends on the problem you want to solve. We'll
cover the two most commonly used formats, but for a complete list, see the compari-
son table later in the chapter, as well as the online documentation for scipy.sparse.

(00 Format

Perhaps the most intuitive is the coordinate, or COO, format. This uses three 1D
arrays as follows to represent a 2D matrix A. Each of these arrays has length equal to
the number of nonzero values in A, and together they list (i, j, value) coordinates of
every entry that is not equal to 0.

o The row and col arrays, which together specify the location of each nonzero
entry (row and column indices, respectively).
 The data array, which specifies the value at each of those locations.

Every part of the matrix that is not represented by the (row, col) pairs is considered
to be 0. Much more efficient! So, to represent the matrix:

s = np.array([[ 4, 0, 3],
[ 0, 32, 0]], dtype=float)

We can do the following:

from import sparse

data = np.array([4, 3, 32], dtype=float)
row = np.array([0, 0, 1])
col = np.array([0, 2, 1])

s_coo = sparse.coo_matrix((data, (row, col)))

The .toarray() method of every sparse format in scipy.sparse returns a NumPy
array representation of the sparse data. We can use this to check that we created
s_coo correctly:

s_coo.toarray()
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array([[ 4., ©o., 3.1,
[ 0., 32., ©0.1D
Identically, we can use the . A property, which is just like an attribute, but actually exe-
cutes a function. .A is a particularly dangerous property, because it can hide a poten-
tially very large operation: the dense version of a sparse matrix can be orders of
magnitude bigger than the sparse matrix itself, bringing a computer to its knees, in
just three keystrokes!

S_C00.A
array([[ 4., ©o., 3.1,
[ 0., 32., 0.]1D
In this chapter, and elsewhere, we recommend using the toarray() method wherever
it does not impair readability, as it more clearly signals a potentially expensive opera-
tion. However, we will use .A where it makes the code more readable by virtue of its
brevity (e.g., when trying to implement a sequence of mathematical equations).

Exercise: CO0 Representation

Write out the COO representation of the following matrix:

» 01,
» 51,
» 01,
, 01,
> 71D

Unfortunately, although the COO format is intuitive, it’s not very optimized to use
the minimum amount of memory, or to traverse the array as quickly as possible dur-
ing computations. (Remember from Chapter 1, data locality is very important to effi-
cient computation!) However, you can look at your COO representation above to

help you identify redundant information. Notice all those repeated 1s?

s2 = np.array([[0, O,
[1-‘ 2!
[0, 1,
[9-‘ OJ
[0, 0, O,

. e e

[N O RO g

0
4
0
0
6

Compressed Sparse Row Format

If we use COO to enumerate the nonzero entries row-by-row, rather than in arbitrary
order (which the format allows), we end up with many consecutive, repeated values
in the row array. We can compress these by indicating the indices in col where the
next row starts, rather than repeatedly writing the row index. This is the basis for the
compressed sparse row, or CSR format.

Let’s work through the example above. In CSR format, the col and data arrays are
unchanged (but col is renamed to indices). However, the row array, instead of indi-
cating the rows, indicates where in col each row begins, and is renamed to indptr,
for “index pointer”

So, let’s look at row and col in COO format, ignoring data:
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row = [0, 1, 1, 1, 1, 2, 3, 4, 4]

col = [2, 0, 1, 3, 4, 1, 0, 3, 4]
Each new row begins at the index where row changes. The Oth row starts at index 0,
and the 1st row starts at index 1, but the 2nd row starts where “2” first appears in row,
at index 5. Then, the indices increase by 1 for rows 3 and 4, to 6 and 7. The final
index, indicating the end of the matrix, is the total number of nonzero values (9). So:

indptr = [0, 1, 5, 6, 7, 9]

Let’s use these hand-computed arrays to build a CSR matrix in SciPy. We can check
our work by comparing the . A output from our COO and CSR representations to the
NumPy array s2 that we defined earlier.

data = np.array([6, 1, 2, 4, 5, 1, 9, 6, 7])

coo
csr

sparse.coo_matrix((data, (row, col)))
sparse.csr_matrix((data, col, indptr))

print('The COO and CSR arrays are equal: ',
np.all(coo.A == csr.A))

print('The CSR and NumPy arrays are equal: ',
np.all(s2 == csr.A))

The CO0 and CSR arrays are equal: True
The CSR and NumPy arrays are equal: True

The ability to store large, sparse matrices, and perform computations on them, is
incredibly powerful and can be applied in many domains.

For example, one can think of the entire web as a large, sparse, N x N matrix. Each
entry X;; indicates whether web page i links to page j. By normalizing this matrix and
solving for its dominant eigenvector, one obtains the so-called PageRank—one of the
numbers Google uses to order your search results. (You can read more about this in
the next chapter.)

As another example, we can represent the human brain as a large m x m graph, where
there are m nodes (positions) in which you measure activity using an MRI scanner.
After a while of measuring, correlations can be calculated and entered into a matrix
Cj;. Thresholding this matrix produces a sparse matrix of ones and zeros. The eigen-
vector corresponding to the second-smallest eigenvalue of this matrix partitions the
m brain areas into subgroups, which, it turns out, are often related to functional
regions of the brain!"

1 M. E.J. Newman, “Modularity and Community Structure in Networks”, PNAS 103, no. 23 (2006):8577-8582.
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Applications of Sparse Matrices: Image Transformations

Libraries like scikit-image and SciPy already contain algorithms for transforming
(rotating and warping) images effectively, but what if you were head of the NumPy
Agency for Space Affairs and had to rotate millions of images streaming in from the
newly launched Jupyter Orbiter?

In such cases, you want to squeeze every ounce of performance from your computer.
It turns out that we can do a lot better than even the optimized C code in SciPy’s
ndimage if we are repeatedly applying the same transformation.

We'll use the following test image of a cameraman from scikit-image as example data:

# Make plots appear inline, set custom plotting style
%matplotlib inline

import as
plt.style.use('style/elegant.mplstyle')

from import data
image = data.camera()
plt.imshow(image);
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As a test operation, we'll be rotating the image by 30 degrees. We begin by defining
the transformation matrix, H, which, when multiplied with a coordinate from the
input image, [r, ¢, 1], will give us the corresponding coordinate in the output, [r} ¢,
1]. (Note: we are using homogeneous coordinates, which have a 1 appended to them
and which give us greater flexibility when we’re defining linear transforms.)

angle = 30

c = np.cos(np.deg2rad(angle))

s = np.sin(np.deg2rad(angle))

H

np.array([[c, -s, 0],
[s, ¢, o],
[0, o, 111

You can verify that this works by multiplying H with the point (1, 0). A 30-degree

counterclockwise rotation around the origin (0, 0) should take us to point (@, %):
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point = np.array([1, 0, 1])
print(np.sqrt(3) / 2)
print(H @ point)

0.866025403784
[ 0.8660254 0.5 1. ]

Similarly, applying the 30-degree rotation three times should get us to the column
axis, at point (0, 1). We can see that this works, minus some floating-point approxi-
mation error:

print(H @ H @ H @ point)

[ 2.77555756e-16  1.00000000e+00  1.00000000e+00]
Now, we will build a function that defines a “sparse operator” The goal of the sparse
operator is to take all pixels of the output image, figure out where they came from in
the input image, and do the appropriate (bilinear) interpolation (see Figure 5-1) to

calculate their values. It does this using just matrix multiplication on the image val-
ues, and thus is extremely fast.

yoloa@2 GRe $97

| LS -

yiloos ;Q_l_l _______ ;Bz_ _____________ ;_Qei
X1 X X2

Figure 5-1. Diagram explaining bilinear interpolation—the value at point P is estimated
as a weighted sum of the values at Q;;, Q,, Q,p, Qs

Let’s look at the function that builds our sparse operator:

from import product

def homography(tf, image_shape):
"""Represent homographic transformation & interpolation as linear operator.

Parameters
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tf : (3, 3) ndarray
Transformation matrix.
image_shape : (M, N)
Shape of input gray image.

Returns
A: (M*N, M*N) sparse matrix
Linear-operator representing transformation + bilinear interpolation.

o

# Invert matrix. This tells us, for each output pixel, where to
# find its corresponding input pixel.
H = np.linalg.inv(tf)

m, n = image_shape

# We are going to construct a CO0 matrix, often called IJK matrix,
# for which we'll need row coordinates (I), column coordinates (J),
# and values (K).

row, col, values = [], [], []

# For each pixel in the output image...
for sparse_op_row, (out_row, out_col) in \
enumerate(product(range(m), range(n))):

# Compute where it came from in the input image
in_row, in_col, in_abs = H @ [out_row, out_col, 1]
in_row /= in_abs

in_col /= in_abs

# 1f the coordinates are outside of the original image, ignore this
# coordinate; we will have @ at this position
if (not 0 <= in_row < m - 1 or
not 0 <= in_col < n - 1):
continue

# We want to find the four surrounding pixels, so that we

# can interpolate their values to find an accurate

# estimation of the output pixel value.

# We start with the top, left corner, noting that the remaining
# points are 1 away in each direction.

top = int(np.floor(in_row))

left = int(np.floor(in_col))

Calculate the position of the output pixel, mapped into

the input image, within the four selected pixels.
https://commons.wikimedia.org/wiki/File:BilinearInterpolation.svg
= in_row - top

= in_col - left

[SENa R Y

# The current row of the sparse operator matrix is given by the
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# raveled output pixel coordinates, contained in sparse_op_row.

# We will take the weighted average of the four surrounding input

# pixels, corresponding to four columns. So we need to repeat the row
# index four times.

row.extend([sparse_op_row] * 4)

# The actual weights are calculated according to the bilinear
# interpolation algorithm, as shown at
# https://en.wikipedia.org/wiki/Bilinear_interpolation
sparse_op_col = np.ravel_multi_index(

([top, top, top + 1, top + 1 ],

[left, left + 1, left, left + 1]), dims=(m, n))
col.extend(sparse_op_col)
values.extend([(1-t) * (1-u), (1-t) * u, t * (1-u), t * ul])

operator = sparse.coo_matrix((values, (row, col)),
shape=(m*n, m*n)).tocsr()
return operator

Recall that we apply the sparse operator as follows:

def apply_transform(image, tf):
return (tf @ image.flat).reshape(image.shape)

Let’s try it out!

tf = homography(H, image.shape)
out = apply_transform(image, tf)
plt.imshow(out);
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There’s that rotation!

Exercise: Image Rotation

The rotation happens around the origin, coordinates (0, 0). But can you rotate the
image around its center?

Hint: The transformation matrix for a translation (i.e., sliding the image up/down or
left/right), is given by:
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when you want to move the image ¢, pixels down and ¢, pixels right.

As previously mentioned, this sparse linear operator approach to image transforma-
tion is fast. Let's measure how it performs in comparison to ndimage. To make the
comparison fair, we need to tell ndimage that we want linear interpolation with
order=1, and that we want to ignore pixels outside of the original shape, with
reshape=False.

%timeilt apply_transform(image, tf)
100 loops, average of 7: 3.35 ms +- 270 ps per loop (using standard deviation)

from import ndimage as ndi
%timeilt ndi.rotate(image, 30, reshape=False, order=1)

100 loops, average of 7: 19.7 ms +- 988 ps per loop (using standard deviation)

On our machines, we see a speed-up of approximately 10 times. While this example
does only a rotation, there is no reason why we cannot do more complicated warping
operations, such as correcting for a distorted lens during imaging, or making people
pull funny faces. Once the transform has been computed, applying it repeatedly is
fast, thanks to sparse matrix algebra.

So now that we've seen a “standard” use of SciPy’s sparse matrices, let’s have a look at
the out-of-the-box use that inspired this chapter.

Back to Contingency Tables

You might recall that we are trying to quickly build a sparse, joint probability matrix
using SciPy’s sparse formats. We know that the COO format stores sparse data as
three arrays, containing the row and column coordinates of nonzero entries, as well
as their values. But we can use a little known feature of COO to obtain our matrix
extremely quickly.

Have a look at this data:

row = [0, 0, 2]
col = [1, 1, 2]
dat = [5, 7, 1]
S = sparse.coo_matrix((dat, (row, col)))

Notice that the entry at (row, column) position (0, 1) appears twice: first as 5 and then
at 7. What should the matrix value at (0, 1) be? Cases could be made for both the ear-
liest entry encountered, or the latest, but what was in fact chosen is the sum:

print(S.toarray())

[[ 612 0]
[0 0 0]
[6 0 1]]

Back to Contingency Tables | 139



So, COO format will sum together repeated entries. Which is exactly what we need to
do to make a contingency matrix! Indeed, our task is pretty much done: we can set
pred as the rows, gt as the columns, and simply 1 as the values. The ones will get
summed together and count the number of times that label i in pred occurs together
with label j in gt at position i, j in the matrix! Let’s try it out:

from import sparse

def confusion_matrix(pred, gt):
cont = sparse.coo_matrix((np.ones(pred.size), (pred, gt)))
return cont

To look at a small one, we simply use the . toarray method, as above:

cont = confusion_matrix(pred, gt)
print(cont)

(0, 0)
(1J 0)
(0, 0)
(OJ 0)
(1, 0)
(1J 1)
(1, 1)
(0, 1)
(1, 1)
(1J 1)

print(cont.toarray())
[[ 3. 1.]
[ 2. 4.1]

PR R R R R R R R R
[clcl ol ocNocNoNoNoNoNO

It works!

Exercise: Reducing the Memory Footprint

Remember from Chapter 1 that NumPy has built-in tools for repeating arrays using
broadcasting. How can you reduce the memory footprint required for the contin-
gency matrix computation?

Hint: Look at the documentation for the function np.broadcast_to.

Contingency Tables in Segmentation

You can think of the segmentation of an image in the same way as the classification
problem above: the segment label at each pixel is a prediction about which class the
pixel belongs to. And NumPy arrays allow us to do this transparently, because
their .ravel() method returns a 1D view of the underlying data.

As an example, here’s a segmentation of a tiny 3 x 3 image:
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seg = np.array([[1, 1, 2],
[1, 2, 21,
[3, 3, 311, dtype=int)
Here’s the ground truth, what some person said was the correct way to segment this
image:
gt = np.array([[1, 1, 1],
[1 s 1 E 1] E
[2, 2, 2]], dtype=int)
We can think of these two as classifications, just like before. Every pixel is a different
prediction.

print(seg.ravel())
print(gt.ravel())

[11212233 3]
[111111222]

Then, like above, the contingency matrix is given by:

cont = sparse.coo_matrix((np.ones(seg.size),
(seg.ravel(), gt.ravel())))

print(cont)
(1, 1) 1.0
(1, 1) 1.0
2, 1) 1.0
(1, 1) 1.0
(2, 1) 1.0
(2, 1) 1.0
(3,2) 1.0
(3, 2) 1.0
(3,2) 1.0

Some indices appear more than once, but we can use the summing feature of the
COO format to confirm that this represents the matrix we want:

print(cont.toarray())

[ 0.

[cloN oo}
w o oo

-]
-]
-]
-]

[ R R N |

3.
3.
0. ]

How do we convert this table into a measure of how well seg represents gt? Segmen-
tation is a hard problem, so it’s important to measure how well a segmentation algo-
rithm is doing, by comparing its output to a “ground truth’ segmentation that is
manually produced by a human.

But even this comparison is not an easy task. How do we define how “close” an auto-
mated segmentation is to a ground truth? We'll illustrate one method, the variation of
information, or VI (Meila, 2005). This is defined as the answer to the following ques-
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tion: on average, for a random pixel, if we are given its segment ID in one segmenta-
tion, how much more information do we need to determine its ID in the other
segmentation?

Intuitively, if the two segmentations are exactly alike, then knowing the segment ID in
one tells you the segment ID in the other, with no additional information. But as the
segmentations become more different, knowing an ID in one doesn’t tell you the ID
in the other without more information.

Information Theory in Brief

In order to answer this question, we'll need a quick primer on information theory. We
need to be brief but if you want more information (heh), you should look at Christo-
pher Olahss stellar blog post, Visual Information Theory.

The basic unit of information is the bit, commonly shown as a 0 or 1, representing an
equal probability choice between two options. This is straightforward: if I want to tell
you whether a coin toss landed as heads or tails, I need one bit, which can take many
forms: a long or short pulse over a telegraph wire (as in Morse code), a light flashing
one of two colors, or a single number taking values 0 or 1. Importantly, I always need
one bit, because the outcome of a coin toss is random.

It turns out that we can extend this concept to fractional bits for events that are less
random. Suppose, for example, that you need to transmit whether it rained today in
Los Angeles. At first glance, it seems that this requires 1 bit as well: 0 for it didn’t rain,
1 for it rained. However, rain in LA is a rare event, so over time we can actually get
away with transmitting much less information: transmit a 0 occasionally just to make
sure that our communication is still working, but otherwise simply assume that the
signal is 0, and send 1 only on those rare occasions that it rains.

Thus, when two events are not equally likely, we need less than 1 bit to represent
them. Generally, we measure this for any random variable X (which could have more
than two possible values) by using the entropy function H:

HX) = 3 p,log, (pi)

=~ 2 p,logy (p,)

where the xs are possible values of X, and p, is the probability of X taking value x.

So, the entropy of a coin toss T that can take values heads () and tails (f) is:

H(T) = pylog,(1/p,) + plog,(1/p,)
=1/2log,(2) + 1/2log,(2)
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=1/2-1+1/2-1
=1

H(T) = p,log,(1/p,) + p,log,(1/p,)

= 1/2log,(2) + 1/21og,(2)

=1/2-1+1/2-1
=1

The long-term probability of rain on any given day in LA is about 1 in 6, so the
entropy of rain in LA, R, taking values rain (r) or shine (s) is:

H(R) = p,log,(1/p,) + p log,(1/p)
= 1/6log,(6) + 5/610g,(6/5)
=~ 0.65 bits

A special kind of entropy is the conditional entropy. This is the entropy of a variable
assuming that you also know something else about that variable. For example, what is
the entropy of rain given that you know the month? This is written as:

H(R|M) = 312 p(m)H(RIM = m)

and:

1 1
s e R e
rim s\m

P () B (P
pm 2 pm 2 psm

_ _Pm log (Prm) _ Ps_mlog (P_m)
P 2\ Pm) Pm A\ P

You now have all the information theory you need to understand the variation of
information. In the preceding example, events are days, and they have two properties:

e rain/shine
e month

By observing many days, we can build a contingency matrix, just like the ones in the
classification examples, measuring the month of a day and whether it rained. We're
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not going to travel to LA to do this (fun as it would be), and instead we use the histor-
ical table that follows, roughly eyeballed from WeatherSpark:

Month P(rain) P(shine)

1 025 075
2 027 073
3 024  0.76
4 0.18 0.2
5 0.14 086
6 0.11 0.89
7 0.07 093
8 0.08  0.92
9 0.10  0.90
10 015 085
n 0.18 0.2
12 023 077

The conditional entropy of rain given month is then:

1
12
oL
-3
~ 0.626 bits

H(R|M) = —— (0.2510g,(0.25) + 0.7510g,(0.75)) — % (0.2710g,(0.27) + 0.7310g,(0.73))

(0.2310g,(0.23) + 0.7710g,(0.77))

So, by using the month, we've reduced the randomness of the signal, but not by
much!

We can also compute the conditional entropy of month given rain, which measures
how much information we need to determine the month if we know it rained. Intui-
tively, we know that this is better than going in blind, since it’s more likely to rain in
the winter months.

Exercise: Computing Conditional Entropy

Compute the conditional entropy of month given rain. What is the entropy of the
month variable? (Ignore the different number of days in a month.) Which one is
greater?
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The probabilities in the table are the conditional probabilities of
rain given month.)

prains = np.array([25, 27, 24, 18, 14, 11, 7, 8, 10, 15, 18, 23]) / 100
pshine = 1 - prains

p_rain_g month = np.column_stack([prains, pshine])

# replace 'None' below with expression for nonconditional contingency
# table. Hint: the values in the table must sum to 1.

p_rain_month = None

# Add your code below to compute H(M[R) and H(M)

Together, these two values define the variation of information (VI):

VI(A, B) = H(A|B) + H(BJA)

Information Theory in Segmentation: Variation of
Information

Back in the image segmentation context, “days” become “pixels,” and “rain” and
“month” become “label in automated segmentation (S)” and “label ground truth (T)”
Then, the conditional entropy of the automatic segmentation given the ground truth
measures how much additional information we need to determine a pixel’s identity in
S if we are told its identity in T. For example, if every T segment g is split into two
equally sized segments a, and a, in S, then H(S|T) = 1, because after knowing a pixel
is in g, you still need 1 additional bit to know whether it belongs to a, or a,. However,
H(T|S) = 0, because regardless of whether a pixel is in g, or a,, it is guaranteed to be in
& so you need no more information than the segment in S.

So, together, in this case:
VI(S, T) = H(S|T) + H(T|S) = 1 + 0 = 1 bit

Here’s a simple example:

S

np.array([[0, 1],
[2, 311, int)

T = np.array([[0, 1],
[0, 111, int)

Here we have two segmentations of a four-pixel image: S and T. S puts every pixel in
its own segment, while T puts the left two pixels in segment 0 and the right two pixels
in segment 1. Now, we make a contingency table of the pixel labels, just as we did
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with the spam-prediction labels. The only difference is that the label arrays are 2D,
instead of the 1D arrays of predictions. In fact, this doesn’t matter: remember that
NumPy arrays are actually linear (1D) chunks of data with some shape and other
metadata attached. As we mentioned before, we can ignore the shape by using the
arrays .ravel() method:

S.ravel()

array([o, 1, 2, 3])
Now we can just make the contingency table in the same way as when we were pre-
dicting spam:

cont = sparse.coo_matrix((np.broadcast_to(1., S.size),
(S.ravel(), T.ravel())))

cont = cont.toarray()

cont

.

. e

.

[1
[o.,
[1
[o

< o)

-]
-]
-1,
1D

In order to make this a table of probabilities, instead of counts, we simply divide by
the total number of pixels:

.

cont /= np.sum(cont)

Finally, we can use this table to compute the probabilities of labels in either S or T
using the axis-wise sums:

np.sum(cont, axis=1)
np.sum(cont, axis=0)

p_S
p_T
There is a small kink in writing Python code to compute entropy: although 0 log(0) is
defined to be equal to 0, in Python, it is undefined, and results in a nan (not a num-
ber) value:

print('The log of 0 is: ', np.log2(0))
print('0 times the log of 0 is: ', 0 * np.log2(0))

The log of 0 is: -inf
0 times the log of 0@ is: nan

Therefore, we have to use NumPy indexing to mask out the 0 values. Additionally,

we'll need a slightly different strategy depending on whether the input is a NumPy
array or a SciPy sparse matrix. We'll write the following convenience function:

def xlogix(arr_or_mat):
"""Compute the element-wise entropy function of an array or matrix.

Parameters

arr_or_mat : numpy array or scipy sparse matrix
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The input array of probabilities. Only sparse matrix formats with a
‘data’ attribute are supported.

Returns

out : array or sparse matrix, same type as input
The resulting array. Zero entries in the input remain as zero,
all other entries are multiplied by the log (base 2) of their
inverse.

out = arr_or_mat.copy()

if isinstance(out, sparse.spmatrix):
arr = out.data

else:
arr = out

nz = np.nonzero(arr)

arr[nz] *= -np.log2(arr[nz])

return out

Let’s make sure it works:

a = np.array([0.25, 0.25, 0, 0.25, 0.25])
xlogix(a)

array([ 0.5, 0.5, 0., 0.5, 0.5])

mat = sparse.csr_matrix([[0.125, 0.125, 0.25, 07,
[0.125, 0.125, 0, 0.2511)
xlogix(mat).A

array([[ 0.375, 0.375, 0.5 , 0. 1,
[ 0.375, 0.375, 0. , 0.5 11

So, the conditional entropy of S given T:

H_ST = np.sum(np.sum(xloglx(cont / p_T), axis=0) * p_T)
H_ST
1.0

And the converse:

H_TS = np.sum(np.sum(xloglx(cont / p_S[:, np.newaxis]), axis=1) * p_S)
H_TS

0.0

Converting NumPy Array Code to Use Sparse Matrices

We used NumPy arrays and broadcasting in the above examples, which, as we've seen
many times, is a powerful way to analyze data in Python. However, for segmentations
of complex images, possibly containing thousands of segments, it rapidly becomes
inefficient. We can instead use sparse throughout the calculation, and recast some of
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the NumPy magic as linear algebra operations. This was suggested to us by Warren
Weckesser on StackOverflow.

The linear algebra version efficiently computes a contingency matrix for very large
amounts of data, up to billions of points, and is elegantly concise.

import numpy as np
from scipy import sparse

def invert_nonzero(arr):
arr_inv = arr.copy()
nz = np.nonzero(arr)
arr_inv[nz] = 1 / arr[nz]
return arr_inv

def variation_of_information(x, y):
# compute contingency matrix, aka joint probability matrix
n = x.size
Pxy = sparse.coo_matrix((np.full(n, 1/n), (x.ravel(), y.ravel())),
dtype=float).tocsr()

# compute marginal probabilities, converting to 1D array
px = np.ravel(Pxy.sum(axis=1))
py = np.ravel(Pxy.sum(axis=0))

# use sparse matrix linear algebra to compute VI
# first, compute the inverse diagonal matrices
Px_inv = sparse.diags(invert_nonzero(px))

Py_inv = sparse.diags(invert_nonzero(py))

# then, compute the entropies
hygx = px @ xloglx(Px_inv @ Pxy).sum(axis=1)
hxgy = xloglx(Pxy @ Py_inv).sum(axis=0) @ py

# return the sum of these
return float(hygx + hxgy)
We can check that this gives the right value (1) for the VI of our toy S and T:
variation_of_information(S, T)
1.0

You can see how we use three types of sparse matrices (COO, CSR, and diagonal) to
efficiently solve the entropy calculation in the case of sparse contingency matrices,
where NumPy would be inefficient. (Indeed, this whole approach was inspired by a
Python MemoryError!)
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Using Variation of Information

To finish, let's demonstrate the use of VI to estimate the best possible automated seg-
mentation of an image. You may remember our friendly stalking tiger from Chapter 3
(see Figure 5-2). (If you don’t, you might want to work on your threat-assessment
skills!) Using our skills from Chapter 3, were going to generate a number of possible
ways of segmenting the tiger image, and then figure out the best one.

from skimage import io

url = ('http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds'
' /BSDS300/html/images/plain/normal/color/108073.3jpg"')

tiger = io.imread(url)

plt.imshow(tiger);
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Figure 5-2. BSDS tiger image, number 108073

In order to check our image segmentation, we’re going to need some ground truth. It
turns out that humans are awesome at detecting tigers (natural selection for the win!),
so all we need to do is ask a human to find the tiger. Luckily, researchers at Berkeley
have already asked dozens of humans to look at this image and manually segment it.?

2 Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik, “Contour Detection and Hierarchical
Image Segmentation,” IEEE TPAMI 33, no. 5 (2011): 898-916.
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Lets grab one of the segmentation images from the Berkeley Segmentation Dataset
and Benchmark (see Figure 5-3). It's worth noting that there is quite substantial varia-
tion between the segmentations performed by humans. If you look through the vari-
ous tiger segmentations, you will see that some humans are more pedantic than
others about tracing around the reeds, while others consider the reflections to be
objects worth segmenting out from the rest of the water. We have chosen a segmenta-
tion that we like (one with pedantic reed tracing, because we are perfectionistic
scientist-types). But to be clear, we really have no single ground truth!

from import ndimage as ndi
from import color

human_seg_url = ('http://www.eecs.berkeley.edu/Research/Projects/CS/"'
'vision/bsds/BSDS300/html/images/human/normal/"'
'outline/color/1122/108073.jpg")

boundaries = {io.imread(human_seg_url)

plt.imshow(boundaries);

0

50
100
150
200
250

300

0 100 200 300 400

Figure 5-3. Human segmentations of the tiger image

Overlaying the tiger image with the human segmentation, we can see that (unsurpris-
ingly) this person does a pretty good job of finding the tiger (see Figure 5-4). They
have also segmented out the river bank and a tuft of reeds. Nice job, human #1122!

human_seg = ndi.label(boundaries > 100)[0]
plt.imshow(color.label2rgb(human_seg, tiger));
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Figure 5-4. Human segmentation of the tiger image, overlaid

Now, let’s grab our image segmentation code from Chapter 3, and see how well a
Python does at recognizing a tiger (Figure 5-5)!

# Draw a region adjacency graph (RAG) - all code from Ch3
import networkx as nx

import numpy as np

from skimage.future import graph

def

def

add_edge_filter(values, graph):
current = values[0]
neighbors = values[1:]
for neighbor in neighbors:
graph.add_edge(current, neighbor)
return 0. # generic_filter requires a return value, which we ignore!

build_rag(labels, image):
g = nx.Graph()
footprint = ndi.generate_binary_structure(labels.ndim, connectivity=1)
for j in range(labels.ndim):
fp = np.swapaxes(footprint, j, 0)
fplO, ...] = 0 # zero out top of footprint on each axis
_ = ndi.generic_filter(labels, add_edge_filter, footprint=footprint,
mode="'nearest', extra_arguments=(g,))
for n in g:
g.node[n]['total color'] = np.zeros(3, np.double)
g.node[n]['pixel count'] = 0

Using Variation of Information | 151



for index in np.ndindex(labels.shape):
n = labels[index]
g.node[n]['total color'] += image[index]
g.node[n]['pixel count'] += 1

return g

def threshold_graph(g, t):
to_remove = ((u, v) for (u, v, d) in g.edges(data=True)
if d['weight'] > t)
g.remove_edges_from(to_remove)

# Baseline segmentation

from skimage import segmentation

seg = segmentation.slic(tiger, n_segments=30, compactness=40.0,
enforce_connectivity=True, sigma=3)

plt.imshow(color.label2rgb(seg, tiger));
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Figure 5-5. Baseline SLIC segmentation of the tiger image

In Chapter 3, we set the graph threshold at 80 and sort of hand-waved over the whole
thing. Now we're going to take a closer look at how this threshold impacts our seg-
mentation accuracy. Let’s pop the segmentation code into a function so we can play
with it.
def rag_segmentation(base_seg, image, threshold=80):
g = build_rag(base_seg, image)
for n in g:
node = g.node[n]
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node[ 'mean'] = node[ 'total color'] / node['pixel count']
for u, v in g.edges_iter():

d = g.node[u][ 'mean'] - g.node[v][ 'mean']

g[ul[v]['weight'] = np.linalg.norm(d)

threshold_graph(g, threshold)

map_array = np.zeros(np.max(seg) + 1, int)
for 1, segment in enumerate(nx.connected_components(g)):
for initial in segment:
map_array[int(initial)] = 1
segmented = map_array[seg]
return(segmented)

Let’s try a few thresholds and see what happens (see Figures 5-6 and 5-7):

auto_seg_10 = rag_segmentation(seg, tiger, threshold=10)
plt.imshow(color.label2rgb(auto_seg_10, tiger));
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Figure 5-6. Tiger RAG-based segmentation at threshold 10

auto_seg 40 = rag_segmentation(seg, tiger, threshold=40)
plt.imshow(color.label2rgb(auto_seg_40, tiger));
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Figure 5-7. Tiger RAG-based segmentation at threshold 40

Actually, in Chapter 3 we did the segmentation a bunch of times with different
thresholds and then (because we're human, so we can) picked one that produced a
good segmentation. This is a completely unsatisfying way to program image segmen-
tation. Clearly, we need a way to automate this.

We can see that the higher threshold seems to produce a better segmentation. But we
have a ground truth, so we can actually put a number to this! Using all our sparse
matrix skills, we can calculate the VI for each segmentation.

variation_of_information(auto_seg_10, human_seg)
3.44884607874861
variation_of_information(auto_seg_40, human_seg)
1.0381218706889725

The high threshold has a smaller variation of information, so it’s a better segmenta-
tion! Now we can calculate the VI for a range of possible thresholds and see which
one gives us the closest segmentation to the human ground truth (Figure 5-8).

# Try many thresholds

def vi_at_threshold(seg, tiger, human_seg, threshold):
auto_seg = rag_segmentation(seg, tiger, threshold)
return variation_of_information(auto_seg, human_seg)
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thresholds = range(0, 110, 10)
vi_per_threshold = [vi_at_threshold(seg, tiger, human_seg, threshold)
for threshold in thresholds]

plt.plot(thresholds, vi_per_threshold);
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Figure 5-8. Segmentation VI as a function of threshold

Unsurprisingly, it turns out that eyeballing it and picking threshold=80 did give us
one of the best segmentations (Figure 5-9). But now we have a way to automate this
process for any image!

auto_seg = rag_segmentation(seg, tiger, threshold=80)
plt.imshow(color.label2rgb(auto_seg, tiger));
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Figure 5-9. Optimal tiger segmentation based on the VI curve

Further Work: Segmentation in Practice

Try finding the best threshold for a selection of other images from the Berkeley Seg-
mentation Dataset and Benchmark.? Using the mean or median of those thresholds,
go and segment a new image. Did you get a reasonable segmentation?

Sparse matrices are an efficient way of representing data with many gaps—a situation
that occurs surprisingly often. After reading this chapter, you’ll probably start notic-
ing opportunities to use them all the time...and you’ll know how.

One particular situation where sparse matrices come extremely handy is in sparse lin-
ear algebra. Read on to the next chapter to find out more!

3 Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendr Malik, “Contour Detection and Hierarchical
Image Segmentation,” IEEE TPAMI, 33, no. 5, (2011): 898-916.
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CHAPTER 6
Linear Algebra in SciPy

No one can be told what the matrix is. You have to see it for yourself.
—Morpheus, The Matrix

Just like Chapter 4, which dealt with the FFT, this chapter will feature an elegant
method. We want to highlight the packages available in SciPy to do linear algebra,
which forms the basis of much scientific computing.

Linear Algebra Basics

A chapter in a programming book is not really the right place to learn about linear
algebra itself, so we assume familiarity with linear algebra concepts. At minimum,
you should know that linear algebra involves vectors (ordered collections of num-
bers) and transforming them by multiplying them with matrices (collections of vec-
tors). If all of this sounds like gibberish to you, you should probably pick up an
introductory linear algebra textbook before reading this. We highly recommend Gil
Strang’s Linear Algebra and Its Applications (Pearson, 1994). An introduction is all
you need, though—we hope to convey the power of linear algebra while keeping the
operations relatively simple!

As an aside, we will break Python notation convention in order to match linear alge-
bra conventions. In Python, variable names should usually begin with a lowercase let-
ter. However, in linear algebra, matrices are denoted by a capital letter, while vectors
and scalar values are lowercase. Since we're going to be dealing with quite a few
matrices and vectors, following the linear algebra convention helps to keep them
straight. Therefore, variables that represent matrices will start with a capital letter,
while vectors and numbers will start with lowercase:

import as
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m, n = (5, 6) # scalars

M = np.ones((m, n)) # a matrix
v = np.random.random((n,)) # a vector
w=M@v # another vector

In mathematical notation, the vectors would typically be written in boldface, as in v
and w, while the scalars would not, as in m and ». In Python code, we can’t make that
distinction, so we will rely instead on context to keep scalars and vectors straight.

Laplacian Matrix of a Graph

We discussed graphs in Chapter 3, where we represented image regions as nodes,
connected by edges between them. But we used a rather simple method of analysis:
we thresholded the graph, removing all edges above some value. Thresholding works
in simple cases, but can easily fail, because all you need is one value to fall on the
wrong side of the threshold for the approach to fail.

As an example, suppose you are at war, and your enemy is camped just across the
river from your forces. You want to cut them off, so you decide to blow up all the
bridges between you. Intelligence suggests that you need t kg of TNT to blow each
bridge crossing the river, but the bridges in your own territory can withstand ¢ + 1 kg.
You might, having read Chapter 3, order your commandos to detonate t kg of TNT
on every bridge in the region. But, if intelligence was wrong about just one bridge
crossing the river, and it remains standing, the enemy’s army can come marching
through! Disaster!

So, in this chapter, we will explore some alternative approaches to graph analysis,
based on linear algebra. It turns out that we can think of a graph, G, as an adjacency
matrix, in which we number the nodes of the graph from 0 to n - 1, and place a 1 in
row i, column j of the matrix whenever there is an edge from node i to node j. In
other words, if we call the adjacency matrix A, then A, ; = 1 if and only if the edge (i,
j) is in G. We can then use linear algebra techniques to study this matrix, often with
striking results.

The degree of a node is defined as the number of edges touching it. For example, if a
node is connected to five other nodes in a graph, its degree is 5. (Later, we will differ-
entiate between out-degree and in-degree, when edges have a “from” and “to”) In
matrix terms, the degree corresponds to the sum of the values in a row or column.

The Laplacian matrix of a graph (just “the Laplacian” for short) is defined as the
degree matrix, D, which contains the degree of each node along the diagonal and zero
everywhere else, minus the adjacency matrix A:

L=D-A
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We definitely can't fit all of the linear algebra theory needed to understand the prop-
erties of this matrix, but suffice it to say: it has some great properties. We will exploit a
couple in the following paragraphs.

First, we will look at the eigenvectors of L. An eigenvector v of a matrix M is a vector
that satisfies the property Mv = Av for some number A, known as the eigenvalue. In
other words, v is a special vector in relation to M because Mv simply changes the size
of the vector, without changing its direction. As we will soon see, eigenvectors have
many useful properties—sometimes seeming even magical!

As an example, a 3x3 rotation matrix R, when multiplied to any 3D vector p, rotates it
30 degrees around the z-axis. R will rotate all vectors except for those that lie on the z-
axis. For those, we'll see no effect, or Rp = p (i.e., Rp = Ap) with eigenvalue A = 1.

Exercise: Rotation Matrix

Consider this rotation matrix:

cos@ —sinf 0
R=|sinf cosf 0
0 0 1

When R is multiplied with a 3D column-vector p = [x y z]7, the resulting vector Rp is
rotated by 0 degrees around the z-axis.

1. For 8 = 45°, verify (by testing on a few arbitrary vectors) that R rotates these vec-
tors around the z-axis. Remember that matrix multiplication in Python is deno-
ted by @.

2. What does the matrix S = RR do? Verify this in Python.

3. Verify that multiplying by R leaves the vector [0 0 1]" unchanged. In other words,
Rp = 1p, which means p is an eigenvector of R with eigenvalue 1.

4. Use np.linalg.eig to find the eigenvalues and eigenvectors of R, and verify that
[0, 0, 1]"is indeed among them, and that it corresponds to the eigenvalue 1.

Back to the Laplacian. A common problem in network analysis is visualization. How
do you draw nodes and edges in such a way that you don't get a complete mess such
as the one in Figure 6-1?
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Figure 6-1. Visualization of Wikipedia structure (created by Chris Davis and released
under CC-BY-SA-3.0)

One way is to put nodes that share many edges close together. It turns out that we can
do this by using the second-smallest eigenvalue of the Laplacian matrix, and its corre-
sponding eigenvector, which is so important it has its own name: the Fiedler vector.

Lets use a minimal network to illustrate this. We start by creating the adjacency
matrix:

import numpy as np

A = np.array([[0, 1, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 0],
[1, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 1],
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[0’ 0’ OJ 1’ 0, 1])
[0, 0, 0, 1, 1, 0]], dtype=float)

We can use NetworkX to draw this network. First, we initialize Matplotlib as usual:

# Make plots appear inline, set custom plotting style
%matplotlib inline

import as
plt.style.use('style/elegant.mplstyle')

Now, we can plot it:

import as
g = nx.from_numpy_matrix(A)
layout = nx.spring_layout(g, pos=nx.circular_layout(g))
nx.draw(g, pos=layout,
with_labels=True, node_color='white")

1

| —

5

You can see that the nodes fall naturally into two groups, 0, 1, 2 and 3, 4, 5. Can the
Fiedler vector tell us this? First, we must compute the degree matrix and the Lapla-
cian. We first get the degrees by summing along either axis of A. (Either axis works
because A is symmetric.)

d = np.sum(A, axis=0)
print(d)
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[ 2. 2. 3. 3. 2. 2.]

We then put those degrees into a diagonal matrix of the same shape as A, the degree
matrix. We can use the np.diag function to do this:

D = np.diag(d)

print(D)

[[2. 0. 0. 0. 0. 0.]
[0. 2. 0. 0. 0. 0.]
[0. 0. 3. 0. 0. 0.]
[0. 0. 0. 3. 0. 0.]
[0. 0. 0. 0. 2. 0.]
[0. 0. 0. 0. 0. 2.1]

Finally, we get the Laplacian from the definition:

L=D-A

print(L)

[[2.-1. -1. 0. 0. 0.]
[-1. 2. -1. 0. 0. 0.]
[-1. -1. 3. -1. 0. 0.]
[0. 0. -1. 3. -1. -1.]
[0. 0. 0.-1. 2. -1.]
[0. 0. 0. -1. -1. 2.]]

Because L is symmetric, we can use the np.linalg.eigh function to compute the
eigenvalues and eigenvectors:

val, Vec = np.linalg.eigh(L)

You can verify that the values returned satisfy the definition of eigenvalues and eigen-
vectors. For example, one of the eigenvalues is 3:

np.any(np.isclose(val, 3))
True

And we can check that multiplying the matrix L by the corresponding eigenvector
does indeed multiply the vector by 3:

idx_lambda3 = np.argmin(np.abs(val - 3))
v3 = Vec[:, idx_lambda3]

print(v3)

print(L @ v3)

[ o. 0.37796447 -0.37796447 -0.37796447 0.68898224 -0.31101776]
[ o. 1.13389342 -1.13389342 -1.13389342 2.06694671 -0.93305329]

As previously mentioned, the Fiedler vector is the vector corresponding to the
second-smallest eigenvalue of L. Sorting the eigenvalues tells us which one is the
second-smallest:

plt.plot(np.sort(val), linestyle='-', marker='0');

162 | Chapter 6: Linear Algebra in SciPy



4
3 ®
2
1
0
0 1 2 3 4 5

This is the first nonzero eigenvalue, close to 0.4. The Fiedler vector is the correspond-
ing eigenvector (see Figure 6-2):

f = Vec[:, np.argsort(val)[1]]
plt.plot(f, linestyle='-', marker='0");

Laplacian Matrix of a Graph | 163



0.4

0.2

0.0

-0.2

-0.4

0 1 2 3 4 5
Figure 6-2. Fiedler vector of L

It’s pretty remarkable: by looking at the sign of the elements of the Fiedler vector, we
can separate the nodes into the two groups we identified in the drawing (see
Figure 6-3)!

colors = ['orange' if eigv > 0 else 'gray' for eigv in f]
nx.draw(g, pos=layout, with_labels=True, node_color=colors)
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Figure 6-3. Nodes colored by their sign in the Fiedler vector of L

Laplacians with Brain Data

Let’s demonstrate this process in a real-world example by laying out the brain cells in
a worm, as shown in Figure 2 from the Varshney et al. paper that we introduced in
Chapter 3. (Information on how to do this is in the supplementary material for the
paper.) To obtain their layout of the worm brain neurons, they used a related matrix,
called the degree-normalized Laplacian.

Because the order of the neurons is important in this analysis, we will use a prepro-
cessed dataset, rather than clutter this chapter with data cleaning. We got the original
data from Lav Varshney’s website, and the processed data is in our data/ directory.

First, let’s load the data. There are four components:

o The network of chemical synapses, through which a pre-synaptic neuron sends a
chemical signal to a post-synaptic neuron

o The gap junction network, which contains direct electrical contacts between neu-
rons

o The neuron IDs (names)
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o The three neuron types:

— Sensory neurons, those that detect signals coming from the outside world,
encoded as 0

— Motor neurons, those that activate muscles, enabling the worm to move, enco-
ded as 2

— Interneurons, the neurons in between, which enable complex signal processing
between sensory neurons and motor neurons, encoded as 1

import as

Chem = np.load('data/chem-network.npy")

Gap = np.load('data/gap-network.npy")

neuron_1ids = np.load('data/neurons.npy')

neuron_types = np.load('data/neuron-types.npy"')
We then simplify the network, adding the two kinds of connections together, and
removing the directionality of the network by taking the average of in-connections
and out-connections of neurons. This seems a bit like cheating but, since we are only
looking for the layout of the neurons on a graph, we only care about whether neurons
are connected, not in which direction. We are going to call the resulting matrix the
connectivity matrix, C, which is just a different kind of adjacency matrix.

A = Chem + Gap

C=(A+AT) /2
To get the Laplacian matrix L, we need the degree matrix D, which contains the
degree of node i at position [i, i], and zeros everywhere else.

degrees = np.sum(C, axis=0)
D = np.diag(degrees)

Now, we can get the Laplacian just like before:
L=D-C

The vertical coordinates in Figure 2 from the paper are given by arranging nodes
such that, on average, neurons are as close as possible to “just above” their down-
stream neighbors. Varshney et al. call this measure “processing depth,” and its
obtained by solving a linear equation involving the Laplacian. We use
scipy.linalg.pinv, the pseudoinverse, to solve it:

from import linalg

b = np.sum(C * np.sign(A - A.T), axis=1)

z = linalg.pinv(L) @ b
(Note the use of the @ symbol, which was introduced in Python 3.5 to denote matrix
multiplication. As we noted in the preface and in Chapter 5, in previous versions of
Python, you need to use the function np.dot.)
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In order to obtain the degree-normalized Laplacian, Q, we need the inverse square
root of the D matrix:

Dinv2 = np.diag(l / np.sqgrt(degrees))

Q = Dinv2 @ L @ Dinv2
Finally, we are able to extract the x coordinates of the neurons to ensure that highly

connected neurons remain close: the eigenvector of Q corresponding to its second-
smallest eigenvalue, normalized by the degrees:

val, Vec = linalg.eig(Q)
Note from the documentation of numpy.linalg.eig:
The eigenvalues are not necessarily ordered.

Although the documentation in SciPy’s eig lacks this warning, it remains true in this
case. We must therefore sort the eigenvalues and the corresponding eigenvector col-
umns ourselves:

smallest_first = np.argsort(val)
val = val[smallest_first]
Vec = Vec[:, smallest_first]

Now we can find the eigenvector we need to compute the affinity coordinates:
x = Dinv2 @ Vec[:, 1]

(The reasons for using this vector are too long to explain here, but appear in the
paper’s supplementary material, linked above. The short version is that choosing this
vector minimizes the total length of the links between neurons.)

There is one small kink that we must address before proceeding: eigenvectors are
only defined up to a multiplicative constant. This follows simply from the definition
of an eigenvector: suppose v is an eigenvector of the matrix M, with corresponding
eigenvalue A. Then av is also an eigenvector of M for any scalar number «, because
My = Av implies M(av) = A(av). So, it is arbitrary whether a software package returns
v or —v when asked for the eigenvectors of M. In order to make sure we reproduce the
layout from the Varshney et al. paper, we must make sure that the vector is pointing
in the same direction as theirs, rather than the opposite direction. We do this by
choosing an arbitrary neuron from their Figure 2, and checking the sign of x at that
position. We then reverse it if it doesn’t match its sign in Figure 2 of the paper.

vc2_index = np.argwhere(neuron_ids == 'V(C02')

if x[vc2_1index] < 0:

X = -X

Now it’s just a matter of drawing the nodes and the edges. We color them according
to the type stored in neuron_types using the appealing and functional “colorblind”
colorbrewer palette:
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from matplotlib.colors import ListedColormap
from matplotlib.collections import LineCollection

def plot_connectome(x_coords, y_coords, conn_matrix, *,
labels=(), types=None, type_names=('",),
xlabel=""', ylabel=""'):
"""plot neurons as points connected by lines.

Neurons can have different types (up to 6 distinct colors).

Parameters
x_coords, y _coords : array of float, shape (N,)
The x-coordinates and y-coordinates of the neurons.
conn_matrix : array or sparse matrix of float, shape (N, N)
The connectivity matrix, with nonzero entry (i, j) if and only
if node 1 and node j are connected.
labels : array-like of string, shape (N,), optional
The names of the nodes.
types : array of int, shape (N,), optional
The type (e.g. sensory neuron, interneuron) of each node.
type_names : array-like of string, optional
The name of each value of ‘types'. For example, if a 0 in
‘types' means "sensory neuron", then ‘type_names[0]' should
be "sensory neuron”.
xlabel, ylabel : str, optional
Labels for the axes.
if types is None:
types = np.zeros(x_coords.shape, dtype=int)
ntypes = len(np.unique(types))
colors = plt.rcParams['axes.prop_cycle'][:ntypes].by_key()['color']
cmap = ListedColormap(colors)

fig, ax = plt.subplots()

# plot neuron locations:
for neuron_type in range(ntypes):
plotting = (types == neuron_type)
pts = ax.scatter(x_coords[plotting], y_coords[plotting],
c=cmap(neuron_type), s=4, zorder=1)
pts.set_label(type_names[neuron_type])

# add text labels:
for x, y, label in zip(x_coords, y_coords, labels):
ax.text(x, vy, ' " + label,
verticalalignment="'center', fontsize=3, zorder=2)

# plot edges
pre, post = np.nonzero(conn_matrix)
links = np.array([[x_coords[pre], x_coords[post]],
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[y_coords[pre], y_coords[post]]]).T

ax.add_collection(LineCollection(links, color='lightgray',

w=0.3, alpha=0.5, zorder=0))

ax.legend(scatterpoints=3, fontsize=6)

ax.set_xlabel(xlabel, fontsize=8)
ax.set_ylabel(ylabel, fontsize=8)

plt.show()

Now, let’s use that function to plot the neurons:

Processing depth

plot_connectome(x, z, C, labels=neuron_ids, types=neuron_types,
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Affinity eigenvector 1

There you are: a worm brain! As discussed in the original paper, you can see the top-
down processing from sensory neurons to motor neurons through a network of
interneurons. You can also see two distinct groups of motor neurons: these corre-
spond to the neck (left) and body (right) body segments of the worm.
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Exercise: Showing the Affinity View

How do you modify the above code to show the affinity view in Figure 2B from the
paper?

Exercise Challenge: Linear Algebra with Sparse Matrices

The preceding code uses NumPy arrays to hold the matrix and perform the necessary
computations. Because we are using a small graph of fewer than 300 nodes, this is fea-
sible. However, for larger graphs, it would fail.

For example, one might want to analyze the relationships between libraries listed on
the Python Package Index, or PyPI, which contains over 100,00 packages. Holding
the Laplacian matrix for this graph would take up 8(100 x 10%)* = 8 x 10'° bytes, or 80
GB, of RAM. If you add to that the adjacency, symmetric adjacency, pseudoinverse,
and, say, two temporary matrices used during calculations, you climb up to 480 GB,
beyond the reach of most desktop computers.

“Ha!” some of you might be thinking. “Ha! My desktop has 512 GB of RAM! It would
make short work of this so-called ‘large’ graph!”

Perhaps. But you might also want to analyze the Association for Computing Machi-
nery (ACM) citation graph, a network of over two million scholarly works and refer-
ences. That Laplacian would take up 32 terabytes of RAM.

However, we know that the dependency and reference graphs are sparse: packages
usually depend on just a few other packages, not on the whole of PyPI. And papers
and books usually only reference a few others, too. So we can hold the above matrices
using the sparse data structures from scipy.sparse (see Chapter 5), and use the lin-
ear algebra functions in scipy.sparse.linalg to compute the values we need.

Try to explore the documentation in scipy.sparse.linalg to come up with a sparse
version of the above computation.

The pseudoinverse of a sparse matrix is, in general, not sparse, so
you can’t use it here. Similarly, you can't get all the eigenvectors of a
sparse matrix, because they would together make up a dense
matrix.

You'll find parts of the solution below (and of course in the Appendix), but we highly
recommend that you try it out on your own.
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Solvers

SciPy has several sparse iterative solvers available, and it is not always obvious which
to use. Unfortunately, that question also has no easy answer: different algorithms have
different strengths in terms of speed of convergence, stability, accuracy, and memory
use (among others). It is also not possible to predict, by looking at the input data,
which algorithm will perform best.

Here is a rough guideline for choosing an iterative solver:
o If A, the input matrix, is symmetric and positive definite, use the conjugate gradi-

ent solver cg. If A is symmetric, but near-singular or indefinite, try the minimum
residual iteration method minres.

o For nonsymmetric systems, try the biconjugate gradient stabilized method, bicg
stab. The conjugate gradient squared method, cgs, is a bit faster, but has more
erratic convergence.

« If you need to solve many similar systems, use the LGMRES algorithm lgmres.

« If A is not square, use the least squares algorithm lsmr.
For further reading, see:

« Noél M. Nachtigal, Satish C. Reddy, and Lloyd N. Trefethen, “How Fast Are Non-
symmetric Matrix Iterations?” SIAM Journal on Matrix Analysis and Applica-
tions13, no. 3 (1992): 778-95. 778-795.

« Jack Dongarra, “Survey of Recent Krylov Methods”,” November 20, 1995.

PageRank: Linear Algebra for Reputation and Importance

Another application of linear algebra and eigenvectors is Google’s PageRank algo-
rithm, which is punnily named both for web pages and for one of its cofounders,
Larry Page.

To rank web pages by importance, you might count how many other web pages link
to it. After all, if everyone is linking to a particular page, it must be good, right? But
this metric is easily gamed: to make your own web page rise in the rankings, just cre-
ate as many other web pages as you can and have them all link to your original page.

The key insight that drove Google’s early success was that important web pages are
not linked to by just many web pages, but by important web pages. And how do we
know that those other pages are important? Because they themselves are linked to by
important pages. And so on.
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This recursive definition implies that page importance can be measured by an eigen-
vector of the so-called transition matrix, which contains the links between web pages.
Suppose you have your vector of importance r, and your matrix of links M. You don’t
know r yet, but you do know that the importance of a page is proportional to the sum
of importances of the pages that link to it: = aMr, or Mr = Ar, for A = 1/a. That’s just
the definition of an eigenvalue!

By ensuring some special properties are satisfied by the transition matrix, we can fur-
ther determine that the required eigenvalue is 1, and that it is the largest eigenvalue of
M.

The transition matrix imagines a web surfer, often named Webster, randomly clicking
a link from each web page he visits, and then asks, what’s the probability that he ends
up at any given page? This probability is called the PageRank.

Since Google’s rise, researchers have been applying PageRank to all sorts of networks.
We'll use an example by Stefano Allesina and Mercedes Pascual, which they published
in PLoS Computational Biology. They thought to apply the method in ecological food
webs, networks that link species to those that they eat.

Naively, if you wanted to see how critical a species was for an ecosystem, you would
look at how many species eat it. If it's many, and that species disappeared, then all its
“dependent” species might disappear with it. In network parlance, you could say that
its in-degree determines its ecological importance.

Could PageRank be a better measure of importance for an ecosystem?

Professor Allesina kindly provided us with a few food webs to play around with.
We've saved one of these, from the St. Marks National Wildlife Refuge in Florida, in
the Graph Markup Language format. The web was described in 1999 by Robert R.
Christian and Joseph J. Luczovich. In the dataset, a node i has an edge to node j if
species i eats species j.

We'll start by loading in the data, which NetworkX knows how to read trivially:

import as

stmarks = nx.read_gml('data/stmarks.gml")

Next, we get the sparse matrix corresponding to the graph. Because a matrix only
holds numerical information, we need to maintain a separate list of package names
corresponding to the matrix rows/columns:

species = np.array(stmarks.nodes()) # array for multiindexing
Adj = nx.to_scipy_sparse_matrix(stmarks, dtype=np.float64)

From the adjacency matrix, we can derive a transition probability matrix, where every
edge is replaced by a probability of 1 over the number of outgoing edges from that
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species. In the food web, it might make more sense to call this a lunch probability
matrix.

The total number of species in our matrix is going to be used a lot, so let’s call it n:

n = len(species)
Next, we need the degrees, and, in particular, the diagonal matrix containing the
inverse of the out-degrees of each node on the diagonal:

np.seterr(divide='ignore') # ignore division-by-zero errors
from import sparse

degrees = np.ravel(Adj.sum(axis=1))
Deginv = sparse.diags(l / degrees).tocsr()

Trans = (Deginv @ Adj).T

Normally, the PageRank score would simply be the first eigenvector of the transition
matrix. If we call the transition matrix M and the vector of PageRank values r, we
have:

r=Mr

But the np.seterr call is a clue that it’s not quite so simple. The PageRank approach
only works when the transition matrix is a column-stochastic matrix, in which every
column sums to 1. Additionally, every page must be reachable from every other page,
even if the path to reach it is very long.

In our food web, this causes problems, because the bottom of the food chain, what the
authors call detritus (basically sea sludge), doesn’t actually eat anything (the Circle of
Life notwithstanding), so you can’t reach other species from it.

Young Simba: But, Dad, don’t we eat the antelope?

Mufasa: Yes, Simba, but let me explain. When we die, our bodies become the grass, and
the antelope eat the grass. And so we are all connected in the great Circle of Life.

—The Lion King

To deal with this, the PageRank algorithm uses a so-called “damping factor;,” usually
taken to be 0.85. This means that 85% of the time, the algorithm follows a link at ran-
dom, but for the other 15%, it randomly jumps to any arbitrary page. It’s as if every
page had a low probability link to every other page. Or, in our case, it’s as if shrimp,
on rare occasions, ate sharks. It might seem nonsensical, but bear with us! It is, in
fact, the mathematical representation of the Circle of Life. We'll set it to 0.85, but
actually it doesn’t really matter for this analysis: the results are similar for a large
range of possible damping factors.

If we call the damping factor d, then the modified PageRank equation is:
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r=er+%1

and:

(I - dM)r = =91

n

We can solve this equation using scipy.sparse.linalgs direct solver, spsolve.
Depending on the structure and size of a linear algebra problem, though, it might be
more efficient to use an iterative solver. See the scipy.sparse.linalg documenta-
tion for more information on this.

from scipy.sparse.linalg import spsolve

damping = 0.85
beta = 1 - damping

I = sparse.eye(n, format='csc') # Same sparse format as Trans

pagerank = spsolve(I - damping * Trans,
np.full(n, beta / n))

We now have the “foodrank” of the St. Marks food web!
So how does a species’ foodrank compare to the number of other species eating it?

def pagerank_plot(in_degrees, pageranks, names, *,
annotations=[], **figkwargs):
Plot node pagerank against in-degree, with hand-picked node names.

mwnn mwnn

fig, ax = plt.subplots(**figkwargs)
ax.scatter(in_degrees, pageranks, c=[0.835, 0.369, 0], lw=0)
for name, indeg, pr in zip(names, in_degrees, pageranks):
if name in annotations:
text = ax.text(indeg + 0.1, pr, name)

ax.set_ylim(0, np.max(pageranks) * 1.1)
ax.set_xlim(-1, np.max(in_degrees) * 1.1)
ax.set_ylabel('PageRank")
ax.set_xlabel('In-degree')

We now draw the plot. Having explored the dataset before writing this, we have pre-
labeled some interesting nodes in the plot:

interesting = ['detritus', 'phytoplankton', 'benthic algae', 'micro-epiphytes’,
'microfauna', 'zooplankton', 'predatory shrimps', 'meiofauna',
'gulls']

in_degrees = np.ravel(Adj.sum(axis=0))

pagerank_plot(in_degrees, pagerank, species, annotations=interesting)
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Sea sludge (detritus) is the most important element both by number of species feed-
ing on it (15) and by PageRank (>0.003). But the second most important element is
not benthic algae, which feeds 13 other species, but rather phytoplankton, which
feeds just 7! Thats because other important species feed on it. On the bottom left,
we've got sea gulls, who, we can now confirm, do bugger-all for the ecosystem. Those
vicious predatory shrimps (were not making this up) support the same number of
species as phytoplankton, but they are less essential species, so they end up with a
lower foodrank.

Although we won't do it here, Allesina and Pascual go on to model the ecological
impact of species extinction, and indeed find that PageRank predicts ecological
importance better than in-degree.

Before we wrap up though, we'll note that PageRank can be computed several differ-
ent ways. One way, complementary to what we did above, is called the power method,
and its quite, well, powerful! It stems from the Perron-Frobenius theorem, which
states, among other things, that a stochastic matrix has 1 as an eigenvalue, and that
this is its largest eigenvalue. (The corresponding eigenvector is the PageRank vector.)
What this means is that, whenever we multiply any vector by M, its component point-
ing toward this major eigenvector stays the same, while all other components shrink by
a multiplicative factor. The consequence is that if we multiply some random starting
vector by M repeatedly, we should eventually get the PageRank vector!
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SciPy makes this very efficient with its sparse matrix module:

def power(Trans, damping=0.85, max_iter=10%*5):
n = Trans.shape[0]
r@ = np.full(n, 1/n)
r=r0
for _iter_num in range(max_iter):
rnext = damping * Trans @ r + (1 - damping) / n
if np.allclose(rnext, r):
break
r = rnext
return r

Exercise: Dealing with Dangling Nodes

In the preceding iteration, note that Trans is not column-stochastic, so the r vector
gets shrunk at each iteration. In order to make the matrix stochastic, we have to
replace every zero-column by a column of all 1/n. This is too expensive, but comput-
ing the iteration is cheaper. How can you modify the code above to ensure that r
remains a probability vector throughout?

Exercise: Equivalence of Different Eigenvector Methods

Verify that these three methods all give the same ranking for the nodes. numpy.corr
coef might be a useful function for this.

Concluding Remarks

The field of linear algebra is far too broad to adequately cover in a chapter, but this
chapter gave you a glimpse into its power, and of the way Python, NumPy, and SciPy
make its elegant algorithms accessible.
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CHAPTER 7
Function Optimization in SciPy

“What'’s new?” is an interesting and broadening eternal question, but one which, if pursued
exclusively, results only in an endless parade of trivia and fashion, the silt of tomorrow. I
would like, instead, to be concerned with the question “What is best?”, a question which cuts
deeply rather than broadly, a question whose answers tend to move the silt downstream.

—Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

When hanging a picture on the wall, it is sometimes difficult to get it straight. You
make an adjustment, step back, evaluate the picture’s horizontality, and repeat. This is
a process of optimization: were changing the orientation of the portrait until it satis-
fies our demand—that it makes a zero angle with the horizon.

In mathematics, our demand is called a “cost function,” and the orientation of the
portrait the “parameter” In a typical optimization problem, we vary the parameters
until the cost function is minimized.

Consider, for example, the shifted parabola, f(x) = (x - 3)2. Wed like to find the value
of x that minimizes this cost function. We know that this function, with parameter x,

has a minimum at 3, because we can calculate the derivative, set it to zero, and see
that 2(x - 3) =0 (i.e., x = 3).

But, if this function were much more complicated (e.g., if the expression had many
terms, multiple points of zero derivative, contained nonlinearities, or was dependent
on more variables), using manual calculation would become arduous.

You can think of the cost function as representing a landscape, where we are trying to
find the lowest point. That analogy immediately highlights one of the hard parts of
this problem: if you are standing in any valley, with mountains surrounding you, how
do you know whether you are in the lowest valley, or whether this valley just seems
low because it is surrounded by particularly tall mountains? In optimization parlance:
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how do you know whether you are trapped in a local minimum? Most optimization
algorithms make some attempt to address the issue.!

Figure 7-1 shows all of the methods that are available in SciPy,
some of which we will use, while others we'll leave you to discover.

There are many different optimization algorithms to choose from (see Figure 7-1).
You get to choose whether your cost function takes a scalar or a vector as input (i.e.,
do you have one or multiple parameters to optimize?). There are those that require
the cost function gradient to be given and those that automatically estimate it. Some
only search for parameters in a given area (constrained optimization), and others
examine the entire parameter space.

1 Optimization algorithms handle this issue in various ways, but two common approaches are line searches and
trust regions. With a line search, you try to find the cost function minimum along a specific dimension, and
then successively attempt the same along the other dimensions. With trust regions, we move our guess for the
minimum in the direction we expect it to be; if we see that we are indeed approaching the minimum as
expected, we repeat the procedure with increased confidence. If not, we lower our confidence and search a
wider area.
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Figure 7-1. Comparison of optimization pathways taken by different optimization algo-
rithms on the Rosenbrock function (top). Powell's method performs a line search along
the first dimension before doing gradient descent. The conjugate gradient (CG) method,
on the other hand, performs gradient descent from the starting point

Optimization in SciPy: scipy.optimize

In the rest of this chapter, we are going to use SciPy’s optimize module to align two
images. Applications of image alignment, or registration, include panorama stitching,
combining different brain scans, super-resolution imaging, and, in astronomy, object
denoising (noise reduction) through the combination of multiple exposures.

As usual, we set up our plotting environment:

# Make plots appear inline, set custom plotting style
%matplotlib inline

import as
plt.style.use('style/elegant.mplstyle")
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Let’s start with the simplest version of the problem: we have two images, one shifted
relative to the other. We wish to recover the shift that will best align our images.

Our optimization function will “jiggle” one of the images, and see whether jiggling it
in one direction or another reduces their dissimilarity. By doing this repeatedly, we
can try to find the correct alignment.

An Example: Computing Optimal Image Shift

You'll remember our astronaut—Eileen Collins—from Chapter 3. We will be shifting
this image by 50 pixels to the right, then comparing it to the original until we find the
shift that best matches. Obviously this is a silly thing to do, as we know the original
position, but this way we know the truth, and we can check how our algorithm is
doing. Here’s the original and shifted image:

from skimage import data, color
from scipy import ndimage as ndi

astronaut = color.rgb2gray(data.astronaut())
shifted = ndi.shift(astronaut, (0, 50))

fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].imshow(astronaut)
axes[0].set_title('Original')
axes[1].imshow(shifted)
axes[1].set_title('Shifted');

Shifted

0 200 | 400 0 200 400

For the optimization algorithm to do its work, we need some way of defining “dis-
similarity”—that is, the cost function. The easiest way to do this is to simply calculate
the average of the squared differences, often called the mean squared error, or MSE.
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import numpy as np

def mse(arri, arr2):
"""Compute the mean squared error between two arrays.
return np.mean((arrl - arr2)**2)

nwn

This will return 0 when the images are perfectly aligned, and a higher value other-
wise. With this cost function, we can check whether two images are aligned:

ncol = astronaut.shape[1]

# Cover a distance of 90% of the length in columns,
# with one value per percentage point

shifts = np.linspace(-0.9 * ncol, 0.9 * ncol, 181)
mse_costs = []

for shift in shifts:
shifted_back = ndi.shift(shifted, (0, shift))
mse_costs.append(mse(astronaut, shifted_back))

fig, ax = plt.subplots()
ax.plot(shifts, mse_costs)
ax.set_xlabel('Shift")
ax.set_ylabel('MSE');

0.25
0.20
0
= 0.15
0.10
0.05
-400 —200 0 200 400
Shift
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With the cost function defined, we can ask scipy.optimize.minimize to search for
optimal parameters:

from scipy import optimize

def astronaut_shift_error(shift, image):
corrected = ndi.shift(image, (0, shift))
return mse(astronaut, corrected)

res = optimize.minimize(astronaut_shift_error, 0, args=(shifted,),
method="'Powell")

print(f'The optimal shift for correction is: {res.x}')
The optimal shift for correction is: -49.99997565757551

It worked! We shifted it by +50 pixels, and, thanks to our MSE measure, SciPy’s
optimize.minimize function has given us the correct amount of shift (-50) to get it
back to its original state.

It turns out, however, that this was a particularly easy optimization problem, which
brings us to the principal difficulty of this kind of alignment: sometimes, the MSE has
to get worse before it gets better.

Let’s look again at shifting images, starting with the unmodified image:

ncol = astronaut.shape[1]

# Cover a distance of 90% of the length in columns,
# with one value per percentage point

shifts = np.linspace(-0.9 * ncol, 0.9 * ncol, 181)
mse_costs = []

for shift in shifts:
shiftedl = ndi.shift(astronaut, (0, shift))
mse_costs.append(mse(astronaut, shifted1))

fig, ax = plt.subplots()
ax.plot(shifts, mse_costs)
ax.set_xlabel('Shift')
ax.set_ylabel('MSE');
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Starting at zero shift, have a look at the MSE value as the shift becomes increasingly
negative: it increases consistently until around -300 pixels of shift, where it starts to
decrease again! Only slightly, but it decreases nonetheless. The MSE bottoms out at
around —-400 before it increases again. This is called a local minimum. Because opti-
mization methods only have access to “nearby” values of the cost function, if the
function improves by moving in the “wrong” direction, the minimize process will
move that way regardless. So, if we start by an image shifted by -340 pixels:

shifted2 = ndi.shift(astronaut, (0, -340))

minimize will shift it by a further 40 pixels or so, instead of recovering the original
image:
res = optimize.minimize(astronaut_shift_error, 0, args=(shifted2,),
method="'Powell")
print(f'The optimal shift for correction is {res.x}")

The optimal shift for correction is -38.51778619397471

The common solution to this problem is to smooth or downscale the images, which
has the dual result of smoothing the objective function. Have a look at the same plot,
after having smoothed the images with a Gaussian filter:
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from skimage import filters
astronaut_smooth = filters.gaussian(astronaut, sigma=20)

mse_costs_smooth = []

shifts = np.linspace(-0.9 * ncol, 0.9 * ncol, 181)

for shift in shifts:
shifted3 = ndi.shift(astronaut_smooth, (0, shift))
mse_costs_smooth.append(mse(astronaut_smooth, shifted3))

fig, ax = plt.subplots()

ax.plot(shifts, mse_costs, label='original')
ax.plot(shifts, mse_costs_smooth, label='smoothed')
ax.legend(loc="'lower right')

ax.set_xlabel('Shift")

ax.set_ylabel('MSE');

0.25
0.20
U 0.15
=
0.10
0.05
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0.00 —— smoothed
-400 —-200 0 200 400
Shift

As you can see, with some rather extreme smoothing, the “funnel” of the error func-
tion becomes wider and less bumpy. Rather than smoothing the function itself, we
can get a similar effect by blurring the images before comparing them. Therefore,
modern alignment software uses what's called a Gaussian pyramid, which is a set of
progressively lower-resolution versions of the same image. We align the lower-
resolution (blurrier) images first, to get an approximate alignment, and then progres-
sively refine the alignment with sharper images.
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def downsample2x(image):
offsets = [((s + 1) % 2) / 2 for s in image.shape]
slices = [slice(offset, end, 2)
for offset, end in zip(offsets, image.shape)]
coords = np.mgrid[slices]
return ndi.map_coordinates(image, coords, order=1)

def gaussian_pyramid(image, levels=6):
"""Make a Gaussian image pyramid.

Parameters
image : array of float
The input image.
max_layer : int, optional
The number of levels in the pyramid.

Returns

pyramid : iterator of array of float
An iterator of Gaussian pyramid levels, starting with the top
(lowest resolution) level.

mwun

pyramid = [image]

for level in range(levels - 1):
blurred = ndi.gaussian_filter(image, sigma=2/3)
image = downsample2x(image)
pyramid.append(image)

return reversed(pyramid)
Let’s see how the 1D alignment looks along that pyramid:

shifts = np.linspace(-0.9 * ncol, 0.9 * ncol, 181)
nlevels = 8
costs = np.empty((nlevels, len(shifts)), dtype=float)
astronaut_pyramid = list(gaussian_pyramid(astronaut, levels=nlevels))
for col, shift in enumerate(shifts):

shifted = ndi.shift(astronaut, (0, shift))

shifted_pyramid = gaussian_pyramid(shifted, levels=nlevels)

for row, image in enumerate(shifted_pyramid):

costs[row, col] = mse(astronaut_pyramid[row], image)

fig, ax = plt.subplots()
for level, cost in enumerate(costs):

ax.plot(shifts, cost, label='Level %d' % (nlevels - level))
ax.legend(loc="'1lower right', frameon=True, framealpha=0.9)
ax.set_xlabel('Shift")
ax.set_ylabel('MSE');
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As you can see, at the highest level of the pyramid, that bump at a shift of about -325
disappears. We can therefore get an approximate alignment at that level, then pop
down to the lower levels to refine that alignment (see Figure 7-2).

0.25

0.20 ~
"'é 0.15 ‘ — | evel 8
— lLevel 7
0.10 —— Level 6
— Level 5
Level 4
0.05 Level 3
‘ —— Level 2
OOO | — Level ].

—-400 —-200 0 200 400

Shift

Figure 7-2. Mean squared error of shift at various levels of a Gaussian pyramid

Image Registration with Optimize

Let’s automate that, and try with a “real” alignment, with three parameters: rotation,
translation in the row dimension, and translation in the column dimension. This is
called a “rigid registration” because there are no deformations of any kind (scaling,
skew, or other stretching). The object is considered solid and is moved around
(including rotation) until a match is found.

To simplify the code, we'll use the scikit-image transform module to compute the
shift and rotation of the image. SciPy’s optimize requires a vector of parameters as
input. We first make a function that will take such a vector and produce a rigid trans-
formation with the right parameters:

from skimage import transform

def make_rigid_transform(param):
r, tc, tr = param
return transform.SimilarityTransform(rotation=r,
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translation=(tc, tr))
rotated = transform.rotate(astronaut, 45)

fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].imshow(astronaut)
axes[0].set_title('Original')
axes[1].imshow(rotated)
axes[1].set_title('Rotated');

Next, we need a cost function. This is just MSE, but SciPy requires a specific format:
the first argument needs to be the parameter vector, which it is optimizing. Subse-
quent arguments can be passed through the args keyword as a tuple, but must
remain fixed: only the parameter vector can be optimized. In our case, this is just the
rotation angle and the two translation parameters:

def cost_mse(param, reference_image, target_image):
transformation = make_rigid_transform(param)
transformed = transform.warp(target_image, transformation, order=3)
return mse(reference_image, transformed)

Original Rotated

100 |

200

300

0 200 400 0 200 400

Finally, we write our alignment function, which optimizes our cost function at each
level of the Gaussian pyramid, using the result of the previous level as a starting point
for the next one:

def align(reference, target, cost=cost_mse):
nlevels = 7
pyramid_ref = gaussian_pyramid(reference, levels=nlevels)
pyramid_tgt = gaussian_pyramid(target, levels=nlevels)

levels = range(nlevels, 0, -1)
image_pairs = zip(pyramid_ref, pyramid_tgt)
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p = np.zeros(3)

for n, (ref, tgt) in zip(levels, image_pairs):
p[1:] *= 2

res = optimize.minimize(cost, p, args=(ref, tgt), method='Powell')
p = res.x

# print current level, overwriting each time (like a progress bar)
print(f'Level: {n}, Angle: {np.rad2deg(res.x[0]) :.3}, '
f'Offset: ({res.x[1] * 2**n :.3}, {res.x[2] * 2**n :.3}), '
f'Cost: {res.fun :.3}', end="'\r")

print('') # newline when alignment complete
return make_rigid_transform(p)

Let’s try it with our astronaut image. We rotate it by 60 degrees and add some noise to
it. Can SciPy recover the correct transform? (See Figure 7-3.)

from skimage import util

theta = 60

rotated = transform.rotate(astronaut, theta)

rotated = util.random_noise(rotated, mode='gaussian',
seed=0, mean=0, var=le-3)

tf = align(astronaut, rotated)
corrected = transform.warp(rotated, tf, order=3)

f, (ax0, ax1l, ax2) = plt.subplots(l, 3)
ax0.1imshow(astronaut)
ax0.set_title('Original')
ax1.imshow(rotated)
axl.set_title('Rotated')
ax2.imshow(corrected)
ax2.set_title('Registered')
for ax in (ax0, ax1, ax2):
ax.axis('off")

Level: 1, Angle: -60.0, Offset: (-1.87e+02, 6.98e+02), Cost: 0.0369
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Original

Figure 7-3. Optimization used to recover image alignment

We're feeling pretty good now. But our choice of parameters actually masked the dif-
ficulty of optimization. Let’s see what happens with a rotation of 50 degrees, which is
closer to the original image:

theta = 50
rotated = transform.rotate(astronaut, theta)
rotated = util.random_noise(rotated, mode='gaussian',

tf =

seed=0, mean=0, var=le-3)

align(astronaut, rotated)

corrected = transform.warp(rotated, tf, order=3)

f, (ax0, ax1l, ax2) = plt.subplots(il, 3)

axo.
axo.
ax1.
ax1.
ax2.
ax2.

for

imshow(astronaut)
set_title('Original')
imshow(rotated)
set_title('Rotated")
imshow(corrected)
set_title('Registered')
ax in (ax0, ax1l, ax2):
ax.axis('off")

Level: 1, Angle: 0.414, Offset: (2.85, 38.4), Cost: 0.141

Even though we started closer to the original image, we failed to recover the correct
rotation (Figure 7-4). This is because optimization techniques can get stuck in local
minima, little bumps on the road to success, as we saw above with the shift-only
alignment. They can therefore be quite sensitive to the starting parameters.
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Figure 7-4. Failed optimization

Avoiding Local Minima with Basin Hopping

A 1997 algorithm devised by David Wales and Jonathan Doyle,? called basin hopping,
attempts to avoid local minima by trying an optimization from some initial parame-
ters, then moving away from the found local minimum in a random direction, and
optimizing again. By choosing an appropriate step size for these random moves, the
algorithm can avoid falling into the same local minimum twice, and thus explore a
much larger area of the parameter space than simple gradient-based optimization
methods.

We leave it as an exercise for readers to incorporate SciPy’s implementation of basin
hopping into our alignment function. You’ll need it for later parts of the chapter, so
feel free to peek at the solution at the end of the book if you're stuck.

Exercise: Modify the align Function

Try modifying the align function to use scipy.optimize.basinhopping, which has
explicit strategies to avoid local minima.

Limit using basin hopping to just the top levels of the pyramid, as it
is a slower optimization approach, and could take rather long to
run at full image resolution.

2 David J. Wales and Jonathan PK. Doyle, “Global Optimization by Basin-Hopping and the Lowest Energy
Structures of Lennard-Jones Clusters Containing up to 110 Atoms”, Journal of Physical Chemistry 101, no. 28
(1997): 5111-16.
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“What Is Best?”: Choosing the Right Objective Function

At this point, we have a working registration approach, which is most excellent. But it
turns out that we've only solved the easiest of registration problems: aligning images
of the same modality. This means that we expect bright pixels in the reference image
to match up to bright pixels in the test image.

We now move on to aligning different color channels of the same image, where we
can no longer rely on the channels having the same modality. This task has historical
significance: between 1909 and 1915, photographer Sergei Mikhailovich Prokudin-
Gorskii produced color photographs of the Russian empire before color photography
had been invented. He did this by taking three different monochrome pictures of a
scene, each with a different color filter placed in front of the lens.

Aligning bright pixels together, as the MSE implicitly does, won’t work in this case.
Take, for example, these three pictures of a stained glass window in the Church of
Saint John the Theologian, taken from the Library of Congress Prokudin-Gorskii
Collection (see Figure 7-5):

from import 1o

stained_glass = 1o.imread('data/00998v.jpg') / 255 # use float image in [0, 1]
fig, ax = plt.subplots(figsize=(4.8, 7))

ax.imshow(stained_glass)

ax.axis('off');
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Figure 7-5. A Prokudin-Gorskii plate: three photos of the same stained glass window,
taken with three different filters
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Take a look at St. John’s robes: they look pitch black in one image, gray in another,
and bright white in the third! This would result in a terrible MSE score, even with
perfect alignment.

Lets see what we can do with this. We start by splitting the plate into its component
channels:

nrows = stained_glass.shape[0]
step = nrows // 3
channels = (stained_glass[:step],
stained_glass[step:2*step],
stained_glass[2*step:3*step])
channel_names = ['blue', 'green', 'red']
fig, axes = plt.subplots(1, 3)
for ax, image, name in zip(axes, channels, channel_names):
ax.imshow(image)
ax.axis('off")
ax.set_title(name)

blue

First, we overlay all three images to verify that the alignment indeed needs to be fine-
tuned between the three channels:

blue, green, red = channels

original = np.dstack((red, green, blue))

fig, ax = plt.subplots(figsize=(4.8, 4.8), tight_layout=True)
ax.imshow(original)

ax.axis('off");
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You can see by the color “halos” around objects in the image that the colors are close
to alignment, but not quite. Let’s try to align them in the same way that we aligned the
astronaut image above, using the MSE. We use one color channel, green, as the refer-
ence image, and align the blue and red channels to that.

print('*** Aligning blue to green ***')
tf = align(green, blue)
cblue = transform.warp(blue, tf, order=3)

print('** Aligning red to green ***')
tf = align(green, red)
cred = transform.warp(red, tf, order=3)

corrected = np.dstack((cred, green, cblue))
f, (ax0, ax1) = plt.subplots(1, 2)
ax0.imshow(original)
ax0.set_title('Original')
ax1.imshow(corrected)
axl.set_title('Corrected')
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for ax in (ax0, ax1):
ax.axis('off")

*** Aligning blue to green ***

Level: 1, Angle: -0.0474, Offset: (-0.867, 15.4), Cost: 0.0499
** Aligning red to green ***

Level: 1, Angle: 0.0339, Offset: (-0.269, -8.88), Cost: 0.0311

The alignment is a little bit better than with the raw images (Figure 7-6), because the
red and the green channels are correctly aligned, probably thanks to the giant yellow
patch of sky. However, the blue channel is still off, because the bright spots of blue
don’t coincide with the green channel. That means that the MSE will be lower when
the channels are mis-aligned so that blue patches overlap with some bright green
spots.

Original Corrected

Figure 7-6. MSE-based alignment reduces but does not eliminate the color halos

We turn instead to a measure called normalized mutual information (NMI), which
measures correlations between the different brightness bands of the different images.
When the images are perfectly aligned, any object of uniform color will create a large
correlation between the shades of the different component channels, and a corre-
spondingly large NMI value. In a sense, NMI measures how easy it would be to pre-
dict a pixel value of one image given the value of the corresponding pixel in the other.
It was defined in the paper “An Overlap Invariant Entropy Measure of 3D Medical
Image Alignment”™:?

H(X)+H(Y)

I(Xa Y) = W’

3 C. Studholme, D. L. G. Hill, and D. ]. Hawkes, “An Overlap Invariant Entropy Measure of 3D Medical Image
Alignment,” Pattern Recognition 32, no. 1 (1999): 71-86.
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where H(X) is the entropy of X, and H(X,Y) is the joint entropy of X and Y. The
numerator describes the entropy of the two images, seen separately, and the denomi-
nator the total entropy if they are observed together. Values can vary between 1 (max-
imally aligned) and 2 (minimally aligned).* See Chapter 5.

In Python code, this becomes:

from scipy.stats import entropy

def normalized_mutual_information(A, B):
"""Compute the normalized mutual information.

The normalized mutual information is given by:

H(A) + H(B)

where H(X) is the entropy *'- sum(x log x) for x in X' .

Parameters
A, B : ndarray
Images to be registered.

Returns

nmi : float
The normalized mutual information between the two arrays, computed at a
granularity of 100 bins per axis (10,000 bins total).

hist, bin_edges = np.histogramdd([np.ravel(A), np.ravel(B)], bins=100)

hist /= np.sum(hist)

H_A = entropy(np.sum(hist, axis=0))
H_B = entropy(np.sum(hist, axis=1))
H_AB = entropy(np.ravel(hist))

return (H_A + H_B) / H_AB
Now we define a cost function to optimize, as we defined cost_mse above:

def cost_nmi(param, reference_image, target_image):
transformation = make_rigid_transform(param)
transformed = transform.warp(target_image, transformation, order=3)
return -normalized_mutual_information(reference_image, transformed)

4 A quick hand-wavy explanation is that entropy is calculated from the histogram of the quantity under consid-
eration. If X = Y, then the joint histogram (X,Y) is diagonal, and that diagonal is the same as that of either X
or Y. Thus, HX) = H(Y) = H(X,Y) and I(X,Y) = 2.
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Finally, we use this with our basinhopping-optimizing aligner (Figure 7-7):

print('*** Aligning blue to green ***')
tf = align(green, blue, cost=cost_nmi)
cblue = transform.warp(blue, tf, order=3)

print('** Aligning red to green ***')
tf = align(green, red, cost=cost_nmi)
cred = transform.warp(red, tf, order=3)

corrected = np.dstack((cred, green, cblue))

fig, ax = plt.subplots(figsize=(4.8, 4.8), tight_layout=True)
ax.imshow(corrected)

ax.axis('off"')

*** Aligning blue to green ***

Level: 1, Angle: 0.444, Offset: (6.07, 0.354), Cost: -1.08

** Aligning red to green ***

Level: 1, Angle: 0.000657, Offset: (-0.635, -7.67), Cost: -1.11

(-0.5, 393.5, 340.5, -0.5)

Figure 7-7. Prokudin-Gorskii channels aligned with normalized mutual information
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What a glorious image! Realize that this artifact was created before color photography
existed! Notice God’s pearly white robes, John’s white beard, and the white pages of
the book held by Prochorus, his scribe—all of which were missing from the MSE-
based alignment, but look wonderfully clear using NMI. Notice also the realistic gold
of the candlesticks in the foreground.

We've illustrated the two key concepts in function optimization in this chapter:
understanding local minima and how to avoid them, and choosing the right function
to optimize to achieve a particular objective. Solving these allows you to apply opti-
mization to a wide array of scientific problems!

198 | Chapter7: Function Optimization in SciPy



CHAPTER 8
Big Data in Little Laptop with Toolz

GRACIE: A knife? The guy’s twelve feet tall!
JACK: Seven. Hey, don’t worry, I think I can handle him.

—]Jack Burton, Big Trouble in Little China

Streaming is not a SciPy feature per se, but rather an approach that allows us to effi-
ciently process large datasets, like those often seen in science. The Python language
contains some useful primitives for streaming data processing, and these can be com-
bined with Matt Rocklin’s Toolz library to generate elegant, concise code that is
extremely memory-efficient. In this chapter, we will show you how to apply these
streaming concepts to enable you to handle much larger datasets than can fit in your
computer’s RAM.

You have probably already done some streaming, perhaps without thinking about it
in these terms. The simplest form is probably iterating through lines in a files, pro-
cessing each line without ever reading the entire file into memory. For example, a
loop like this to calculate the mean of each row and sum them:

import as
with open('data/expr.tsv') as f:
sum_of_means = 0
for line in f:
sum_of_means += np.mean(np.fromstring(line, dtype=int, sep='\t'))
print(sum_of_means)

1463.0
This strategy works really well for cases where your problem can be neatly solved

with by-row processing. But things can quickly get out of hand when your code
becomes more sophisticated.

In streaming programs, a function processes some of the input data, returns the pro-
cessed chunk, then, while downstream functions are dealing with that chunk, the
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function receives a bit more, and so on. All these things are going on at the same
time! How can one keep them straight?

We too found this difficult, until we discovered the Toolz library. Its constructs make
streaming programs so elegant to write that it was impossible to contemplate writing
this book without including a chapter about it.

Let us clarify what we mean by “streaming” and why you might want to do it. Sup-
pose you have some data in a text file, and you want to compute the column-wise
average of log(x + 1) of the values. The common way to do this would be to use
NumPy to load the values, compute the log function for all values in the full matrix,
and then take the mean over the first axis:

import as

expr = np.loadtxt('data/expr.tsv')
logexpr = np.log(expr + 1)
np.mean(logexpr, axis=0)

array([ 3.11797294, 2.48682887, 2.19580049, 2.36001866, 2.70124539,
2.64721531, 2.43704834, 3.28539133, 2.05363724, 2.37151577,
3.85450782, 3.9488385 , 2.46680157, 2.36334423, 3.18381635,
2.64438124, 2.62966516, 2.84790568, 2.61691451, 4.12513405])

This works, and it follows a reassuringly familiar input-output model of computa-
tion. But it’s a pretty inefficient way to go about it! We load the full matrix into mem-
ory (1), then make a copy with 1 added to each value (2), then make another copy to
compute the log (3), before finally passing it on to np.mean. That’s three instances of
the data array, to perform an operation that doesn’t require keeping even one instance
in memory. For any kind of “big data” operation, this approach won’t work.

Python’s creators knew this, and created the yield keyword, which enables a function
to process just one “sip” of the data, pass the result on to the next process, and let the
chain of processing complete for that one piece of data before moving on to the next
one. “Yield” is a rather nice name for it: the function yields control to the next func-
tion, waiting to resume processing the data until all the downstream steps have pro-
cessed that data point.

Streaming with yield

The flow of control described above can be rather hard to follow. An awesome feature
of Python is that it abstracts this complexity away, allowing you to focus on the analy-
sis functionality. Here’s one way to think about it: for every processing function that
would normally take a list (a collection of data) and transform that list, you can
rewrite that function as taking a stream and yielding the result of every element of that
stream.
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Here’s an example where we take the log of each element in a list, using either a stan-
dard data-copying method or a streaming method:

def log_all_standard(input):
output = []
for elem in input:
output.append(np.log(elem))
return output

def log_all_streaming(input_stream):
for elem in input_stream:
yield np.log(elem)

Let’s check that we get the same result with both methods:

# We set the random seed so we will get consistent results
np.random.seed(seed=7)

# Set print options to show only 3 significant digits
np.set_printoptions(precision=3, suppress=True)

arr = np.random.rand(1000) + 0.5
result_batch = sum(log_all_standard(arr))
print('Batch result: ', result_batch)
result_stream = sum(log_all_streaming(arr))
print('Stream result: ', result_stream)

Batch result: -48.2409194561

Stream result: -48.2409194561
The advantage of the streaming approach is that elements of a stream aren’t processed
until they’re needed, whether it’s for computing a running sum, or for writing out to
disk, or something else. This can conserve a lot of memory when you have many
input items, or when each item is very big. (Or both!) This quote from one of Matt’s
blog posts very succinctly summarizes the utility of streaming data analysis:

In my brief experience people rarely take this [streaming] route. They use single-
threaded in-memory Python until it breaks, and then seek out Big Data Infrastructure
like Hadoop/Spark at relatively high productivity overhead.

Indeed, this describes our computational careers perfectly. But the intermediate
approach can get you a lot farther than you think. In some cases, it can get you there
even faster than the supercomputing approach, by eliminating the overhead of multi-
core communication and random access to databases. (For example, see the blog post
“Bigger data; same laptop” by Frank McSherry, where he processes a 128 billion edge
graph on his laptop faster than using a graph database on a supercomputer.)

To clarify the flow of control when using streaming-style functions, it’s useful to make
verbose versions of the functions, which print out a message with each operation.

import as

def tsv_line_to_array(line):
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lst = [float(elem) for elem in line.rstrip().split('\t')]
return np.array(lst)

def readtsv(filename):
print('starting readtsv')
with open(filename) as fin:
for 1, line in enumerate(fin):
print(f'reading line {i}')
yield tsv_line_to_array(line)
print('finished readtsv')

def addi(arrays_iter):
print('starting adding 1')
for 1, arr in enumerate(arrays_iter):
print(f'adding 1 to line {i}')
yield arr + 1
print('finished adding 1')

def log(arrays_iter):
print('starting log')
for i1, arr in enumerate(arrays_iter):
print(f'taking log of array {i}')
yield np.log(arr)
print('finished log')

def running_mean(arrays_iter):

print('starting running mean')
for 1, arr in enumerate(arrays_iter):

if 1 ==

mean = arr

mean += (arr - mean) / (i1 + 1)

print(f'adding line {i} to the running mean')
print('returning mean')
return mean

Let’s see it in action for a small sample file:

fin = 'data/expr.tsv'

print('Creating lines iterator')
lines = readtsv(fin)

print('Creating loglines iterator')
loglines = log(addi(lines))
print('Computing mean')

mean = running_mean(loglines)
print(f'the mean log-row is: {mean}')

Creating lines iterator
Creating loglines iterator
Computing mean

starting running mean
starting log

starting adding 1

starting readtsv
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reading line 0

adding 1 to line 0

taking log of array 0

adding line 0 to the running mean

reading line 1

adding 1 to line 1

taking log of array 1

adding line 1 to the running mean

reading line 2

adding 1 to line 2

taking log of array 2

adding line 2 to the running mean

reading line 3

adding 1 to line 3

taking log of array 3

adding line 3 to the running mean

reading line 4

adding 1 to line 4

taking log of array 4

adding line 4 to the running mean

finished readtsv

finished adding 1

finished log

returning mean

the mean log-row is: [ 3.118 2.487 2.196 2.36 2.701 2.647 2.437 3.285

2.054 2.372

3.855 3.949 2.467 2.363 3.184 2.644 2.63 2.848 2.617 4.125]

Note:

o None of the computation is run when creating the lines and loglines iterators.
This is because iterators are lazy, meaning they are not evaluated (or consumed)
until a result is needed.

o When the computation is finally triggered, by the call to running_mean, it jumps
back and forth between all the functions, as various computations are performed
on each line, before moving on to the next line.

Introducing the Toolz Streaming Library

In this chapter’s code example, contributed by Matt Rocklin, we create a Markov
model from an entire fly genome in under five minutes on a laptop, using just a few
lines of code. (We have slightly edited it for easier downstream processing.) Matt’s
example uses a human genome, but apparently our laptops weren't quite so fast, so
we're going to use a fly genome instead (it’s about 1/20 the size). Over the course of
the chapter we'll actually augment it a little bit to start from compressed data (who
wants to keep an uncompressed dataset on their hard drive?). This modification is
almost trivial, which speaks to the elegance of his example.
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import toolz as tz

from toolz import curried as c
from glob import glob

import itertools as it

LDICT
PDICT

dict(zip('ACGTacgt', range(8)))
{(a, b): (LDICT[a], LDICT[b])
for a, b in it.product(LDICT, LDICT)}

def is_sequence(line):
return not line.startswith('>')

def is_nucleotide(letter):
return letter in LDICT # ignore 'N'

def increment_model(model, index):
model[index] += 1

def genome(file_pattern):

"""Stream a genome, letter by letter, from a list of FASTA filenames.

return tz.pipe(file_pattern, glob, sorted, # Filenames
c.map(open), # lines
# concatenate lines from all files:
tz.concat,
# drop header from each sequence
c.filter(is_sequence),
# concatenate characters from all lines
tz.concat,
# discard newlines and 'N'
c.filter(is_nucleotide))

mwnn

def markov(seq):

"""Get a 1st-order Markov model from a sequence of nucleotides.

model = np.zeros((8, 8))

tz.last(tz.pipe(seq,
c.sliding_window(2), # each successive tuple
c.map(PDICT.__getitem__), # location in matrix of tuple
c.map(increment_model(model)))) # increment matrix

# convert counts to transition probability matrix

model /= np.sum(model, axis=1)[:, np.newaxis]

return model

nwun

We can then do the following to obtain a Markov model of repetitive sequences in the
fruit fly genome:

%%timeit -r 1 -n 1

dm = 'data/dm6.fa’

model = tz.pipe(dm, genome, c.take(10**7), markov)

# we use ‘take' to just run on the first 10 million bases, to speed things up.
# the take step can just be removed if you have ~5-10 mins to wait.
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1 loop, average of 1: 24.3 s +- 0 ns per loop (using standard deviation)

There’s a lot going on in that example, so we are going to unpack it little by little. We'll
actually run the example at the end of the chapter.

The first thing to note is how many functions come from the Toolz library. For exam-
ple, from Toolz we've used pipe, sliding_window, frequencies, and a curried ver-
sion of map (more on this later). That's because Toolz is written specifically to take
advantage of Python’s iterators and easily manipulate streams.

Let’s start with pipe. This function is simply syntactic sugar to make nested function
calls easier to read. This is important because that pattern becomes increasingly com-
mon when you're dealing with iterators.

As a simple example, let’s rewrite our running mean using pipe:

import as
filename = 'data/expr.tsv'
mean = tz.pipe(filename, readtsv, addi, log, running_mean)

# This is equivalent to nesting the functions like this:
# running_mean(log(addi(readtsv(filename))))

starting running mean

starting log

starting adding 1

starting readtsv

reading line 0

adding 1 to line 0

taking log of array 0

adding line 0 to the running mean
reading line 1

adding 1 to line 1

taking log of array 1

adding line 1 to the running mean
reading line 2

adding 1 to line 2

taking log of array 2

adding line 2 to the running mean
reading line 3

adding 1 to line 3

taking log of array 3

adding line 3 to the running mean
reading line 4

adding 1 to line 4

taking log of array 4

adding line 4 to the running mean
finished readtsv

finished adding 1

finished log

returning mean
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What was originally multiple lines, or an unwieldy mess of parentheses, is now a
clean description of the sequential transformations of the input data. Much easier to
understand!

This strategy also has an advantage over the original NumPy implementation: if we
scale our data to millions or billions of rows, our computer might struggle to hold all
the data in memory. In contrast, here we are only loading lines from disk one at a
time, and maintaining only a single line’s worth of data.

k-mer Counting and Error Correction

You might want to review Chapters 1 and 2 for information about DNA and genom-
ics. Briefly, your genetic information, the blueprint for making you, is encoded as a
sequence of chemical bases in your genome. These are really, really tiny, so you can’t
just look in a microscope and read them. You also can’t read a long string of them:
errors accumulate and the readout becomes unusable. (New technology is changing
this, but here we will focus on short-read sequencing data, the most common today.)
Luckily, every one of your cells has an identical copy of your genome, so what we can
do is shred those copies into tiny segments (about 100 bases long), and then assemble
those like an enormous puzzle of 30 million pieces.

Before performing assembly, it is vital to perform read correction. During DNA
sequencing some bases are incorrectly read out, and must be fixed, or they will mess
up the assembly. (Imagine having puzzle pieces with the wrong shape.)

One correction strategy is to find similar reads in your dataset and fix the error by
grabbing the correct information from those reads. Or alternatively, you may choose
to completely discard those reads containing errors.

However, this is a very inefficient way to do it, because finding similar reads means
you would compare each read to every other read. This takes N? operations, or 9 x
10" for a 30 million read dataset! (And these are not cheap operations.)

There is another way. Pavel Pevzner and others realized that reads could be broken
down into smaller, overlapping k-mers, substrings of length k, which can then be
stored in a hash table (a dictionary in Python). This has tons of advantages, but the
main one is that instead of computing on the total number of reads, which can be
arbitrarily large, we can compute on the total number of k-mers, which can only be as
large as the genome itself—usually one to two orders of magnitude smaller than the
reads.

If we choose a value for k that is large enough to ensure any k-mer appears only once
in the genome, the number of times a k-mer appears is exactly the number of reads
that originate from that part of the genome. This is called the coverage of that region.
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If a read has an error in it, there is a high probability that the k-mers overlapping the
error will be unique or close to unique in the genome. Think of the equivalent in
English: if you were to take reads from Shakespeare, and one read was “to be or nob
to be,” the 6-mer “nob to” will appear rarely or not at all, whereas “not to” will be very
frequent.

This is the basis for k-mer error correction: split the reads into k-mers, count the
occurrence of each k-mer, and use some logic to replace rare k-mers in reads with
similar common ones. (Or, alternatively, discard reads with erroneous k-mers. This is
possible because reads are so abundant that we can afford to toss out erroneous data.)

This is also an example in which streaming is essential. As mentioned before, the
number of reads can be enormous, so we don’t want to store them in memory.

DNA sequence data is commonly represented in FASTA format. This is a plain-text
format, consisting of one or many DNA sequences per file, each with a name and the
actual sequence.

A sample FASTA file:

> sequence_namel
TCAATCTCTTTTATATTAGATCTCGTTAAAGTAAAATTTTGGTTTGTGTTAAAGTACAAG
GGGTACCTATGACCACGGAACCAACAAAGTGCCTAAATAGGACATCAAGTAACTAGCGGT
ACGT

> sequence_name2
ATGTCCCAGGCGTTCCTTTTGCATTTGCTTCGCATTAACAGAATATCCAGCGTACTTAGG
ATTGTCGACCTGTCTTGTCGTACGTGGCCGCAACACCAGGTATAGTGCCAATACAAGTCA
GACTAAAACTGGTTC

Now we have the required information to convert a stream of lines from a FASTA file
to a count of k-mers:

o Filter lines so that only sequence lines are used
o For each sequence line, produce a stream of k-mers
o Add each k-mer to a dictionary counter

Here’s how you would do this in pure Python, using nothing but built-ins:

def is_sequence(line):
line = line.rstrip() # remove '|n' at end of line
return len(line) > 0 and not line.startswith('s"')

def reads_to_kmers(reads_1iter, k=7):
for read in reads_iter:
for start in range(0, len(read) - k):
yield read[start : start + k] # note yield, so this is a generator

def kmer_counter(kmer_1iter):
counts = {}
for kmer in kmer_iter:
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if kmer not in counts:
counts[kmer] = 0
counts[kmer] += 1

return counts

with open('data/sample.fasta') as fin:
reads = filter(is_sequence, fin)
kmers = reads_to_kmers(reads)
counts = kmer_counter(kmers)

This totally works and is streaming, so reads are loaded from disk one at a time and
piped through the k-mer converter and to the k-mer counter. We can then plot a his-
togram of the counts, and confirm that there are indeed two well-separated popula-
tions of correct and erroneous k-mers:

# Make plots appear inline, set custom plotting style
%matplotlib inline

import matplotlib.pyplot as plt
plt.style.use('style/elegant.mplstyle')

def integer_histogram(counts, normed=True, xlim=[], ylim=[],

*args, **kwargs):

hist = np.bincount(counts)

if

normed:
hist = hist / np.sum(hist)

fig, ax = plt.subplots()

ax.
ax.
ax.
.set_xlim(*x1im)
ax.

ax

counts_

plot(np.arange(hist.size), hist, *args, **kwargs)
set_xlabel('counts")

set_ylabel('frequency')

set_ylim(*ylim)

arr = np.fromiter(counts.values(), dtype=int, count=len(counts))

integer_histogram(counts_arr, xlim=(-1, 250))
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Notice the nice distribution of k-mer frequencies, along with a big bump of k-mers
(at the left of the plot) that appear only once. Such low-frequency k-mers are likely to
be errors.

But, with the preceding code, we are actually doing a bit too much work. A lot of the
functionality we wrote in for loops and yields is actually stream manipulation: trans-
forming a stream of data into a different kind of data, and accumulating it at the end.
Toolz has a lot of stream-manipulation primitives that make it easy to write the above
in just one function call; and, once you know the names of the transforming func-
tions, it also becomes easier to visualize what is happening to your data stream at each
point.

For example, the sliding window function is exactly what we need to make k-mers:
print(tz.sliding_window.__doc__)

A sequence of overlapping subsequences

>>> list(sliding_window(2, [1, 2, 3, 4]))
[(1, 2), (2, 3), (3, B)]

This function creates a sliding window suitable for transformations like
sliding means / smoothing

>>> mean = lambda seq: float(sum(seq)) / len(seq)
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>>> list(map(mean, sliding_window(2, [1, 2, 3, 4])))

[1.5, 2.5, 3.5]
Additionally, the frequencies function counts the appearance of individual items in a
data stream. Together with pipe, we can now count k-mers in a single function call:

from import curried as c

k =7

counts = tz.pipe('data/sample.fasta', open,
c.filter(is_sequence),
c.map(str.rstrip),
c.map(c.sliding_window(k)),
tz.concat, c.map(''.join),
tz.frequencies)

But just a minute: what are all those c. function calls from toolz.curried?

Currying: The Spice of Streaming

Earlier, we briefly used a curried version of the map function, which applies a given
function to each element in a sequence. Now that we've mixed a few more curried
calls in there, it’s time to share with you what it means! Currying is not named after
the spice blend (though it does spice up your code). It is named for Haskell Curry, the
mathematician who invented the concept. Haskell Curry is also the namesake of the
Haskell programming language—in which all functions are curried!

“Currying” means partially evaluating a function and returning another, “smaller”
function. Normally in Python if you don’t give a function all of its required argu-
ments, it will throw a fit. In contrast, a curried function can just take some of those
arguments. If the curried function doesn’t get enough arguments, it returns a new
function that takes the leftover arguments. Once that second function is called with
the remaining arguments, it can perform the original task. Another term for currying
is partial evaluation. In functional programming, currying is a way to produce a func-
tion that can wait for the rest of the arguments to show up later.

So, while the function call map(np.log, numbers_list) applies the np.log function
to all of the numbers in numbers_list (returning a sequence of the logged numbers),
the call toolz.curried.map(np.log) returns a function that takes in a sequence of
numbers and returns a sequence of logged numbers.

It turns out that having a function that already knows about some of the arguments is
perfect for streaming! We've seen a hint of how powerful currying and pipes can be
together in the above code snippet.

But currying can be a bit of a mind-bend when you first start, so we'll try it with some
simple examples to demonstrate how it works. Lets start by writing a simple, non-
curried function:
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def add(a, b):
return a + b

add(2, 5)

7

Now we write a similar function which we curry manually:

def add_curried(a, b=None):

if b is None:
# second argument not given, so make a function and return it
def add_partial(b):

return add(a, b)

return add_partial

else:
# Both values were given, so we can just return a value
return add(a, b)

Now let’s try out a curried function to make sure it does what we expect:
add_curried(2, 5)
7

Okay, it acts like a normal function when given both variables. Now let’s leave out the
second variable:

add_curried(2)
<function __main__.add_curried.<locals>.add_partial>
As we expected, it returned a function. Now let’s use that function:

add2 = add_curried(2)
add2(5)

7
Now, that worked, but add_curried was a hard function to read. Future us will prob-

ably have trouble remembering how we wrote that code. Luckily, Toolz has the, well,
tools to help us out.

import toolz as tz

# Use curry as a decorator
def add(x, y):
return x + y

add_partial = add(2)
add_partial(5)

7
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To summarize what we did, add is now a curried function, so it can take one of the
arguments and returns another function, add_partial, which “remembers” that
argument.

In fact, all of the Toolz functions are also available as curried functions in the
toolz.curried namespace. Toolz also includes curried versions of some handy
higher-order Python functions like map, filter, and reduce. We will import the cur
ried namespace as ¢ so our code doesn't get too cluttered. So, for example, the cur-
ried version of map will be c.map. Note that the curried functions (e.g., c.map) are
different from the @curry decorators, which are used to create curried functions.

from import curried as c
c.map

<class 'map'>
As a reminder, map is a built-in function. From the docs:

map(function, iterable, ...) Return an iterator that applies function to every item
of iterable, yielding the results.

A curried version of map is particularly handy when working in a Toolz pipe. You can
just pass a function to c.map and then stream in the iterator later using tz.pipe. Take
another look at our function for reading in the genome to see how this works in prac-
tice.

def genome(file_pattern):

"""Stream a genome, letter by letter, from a list of FASTA filenames."""

return tz.pipe(file_pattern, glob, sorted, # Filenames
c.map(open), # lines
# concatenate lines from all files:
tz.concat,
# drop header from each sequence
c.filter(is_sequence),
# concatenate characters from all lines
tz.concat,
# discard newlines and 'N'
c.filter(is_nucleotide))

Back to Counting k-mers

Okay, so now we've got our heads around currying, let’s get back to our k-mer count-
ing code. Here’s that code again that used those curried functions:

from import curried as c

k =7

counts = tz.pipe('data/sample.fasta', open,
c.filter(is_sequence),
c.map(str.rstrip),
c.map(c.sliding_window(k)),
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tz.concat, c.map(''.join),
tz.frequencies)

We can now observe the frequency of different k-mers:

counts = np.fromiter(counts.values(), dtype=int, count=len(counts))
integer_histogram(counts, xlim=(-1, 250), lw=2)
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Tips for Working with Streams

« Convert “list of list” to “long list” with tz.concat.

« Don't get caught out:

— Tterators get consumed. So if you make a generator object and do some pro-
cessing on it, and then a later step fails, you need to re-create the generator.
The original is already gone.

— Tterators are lazy. You need to force evaluation sometimes.

« When you have lots of functions in a pipe, its sometimes hard to figure out
where things went wrong. Take a small stream and add functions to your pipe
one by one from the first/leftmost until you find the broken one. You can also
insert map(do(print)) (map and do are from toolz.curried) at any point in a
stream to print each element while it streams through.
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Exercise: PCA of Streaming Data

The scikit-learn library has an IncrementalPCA class, which allows you to run princi-
pal components analysis on a dataset without loading the full dataset into memory.
But you need to chunk your data yourself, which makes the code a bit awkward to
use. Make a function that can take a stream of data samples and perform PCA. Then,
use the function to compute the PCA of the iris machine learning dataset, which is
in data/iris.csv. (You can also access it from the datasets module of scikit-learn,
using datasets.load_iris().) Optionally, you can color the points with the species
number, found in data/iris-target.csv.

The IncrementalPCA class is in sklearn.decomposition, and
requires a batch size greater than 1 to train the model. Look at the
toolz.curried.partition function for how to create a stream of
batches from a stream of data points.

Markov Model from a Full Genome

Back to our original code example. What is a Markov model, and why is it useful?

In general, a Markov model assumes that the probability of the system moving to a
given state is only dependent on the state that it was in just previously. For example, if
it is sunny right now, there is a high probability that it will be sunny tomorrow. The
fact that it was raining yesterday is irrelevant. In this theory, all the information
required to predict the future is encoded in the current state of things. The past is
irrelevant. This assumption is useful for simplifying otherwise intractable problems,
and often gives good results. Markov models are behind much of the signal process-
ing in mobile phone and satellite communications, for example.

In the context of genomics, as we will see, different functional regions of a genome
have different transition probabilities between similar states. Observing these in a new
genome, we can predict something about the function of those regions. Going back to
the weather analogy, the probability of going from a sunny day to a rainy day is very
different depending on whether you are in Los Angeles or London. Therefore, if I
give you a string of (sunny, sunny, sunny, rainy, sunny, ...) days, you can predict
whether it came from Los Angeles or London, assuming you have a previously
trained model.

In this chapter, we'll cover just the model building, for now.

You can download the Drosophila melanogaster (fruit fly) genome file, dmé.fa.gz. You
will need to unzip it using gzip -d dmé.fa.gz.

In the genome data, the genetic sequence, which consists of the letters A, C, G, and T,
is encoded as belonging to repetitive elements, a specific class of DNA, by whether it is
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in lowercase (repetitive) or uppercase (nonrepetitive). We can use this information
when we build the Markov model.

We want to encode the Markov model as a NumPy array, so we will make dictionaries
to index from letters to indices in [0, 7] (LDICT for “letters dictionary”), and from
pairs of letters to 2D indices in ([0, 7], [0, 7]) (PDICT or “pairs dictionary”):

import itertools as it

LDICT = dict(zip('ACGTacgt', range(8)))
PDICT = {(a, b): (LDICT[a], LDICT[b])
for a, b in it.product(LDICT, LDICT)}

We also want to filter out nonsequence data: the sequence names, which are in lines
starting with >, and unknown sequence, which is labeled as N, so we will make func-
tions to filter on:

def is_sequence(line):
return not line.startswith('s")

def is_nucleotide(letter):
return letter in LDICT # ignore 'N'

Finally, whenever we get a new nucleotide pair, say, (A, T), we want to increment our
Markov model (our NumPy matrix) at the corresponding position. We make a cur-
ried function to do so:

import toolz as tz

def increment_model(model, index):
model[index] += 1

We can now combine these elements to stream a genome into our NumPy matrix.
Note that, if seq below is a stream, we never need to store the whole genome, or even
a big chunk of the genome, in memory!

from toolz import curried as c

def markov(seq):

"""Get a 1st-order Markov model from a sequence of nucleotides.

model = np.zeros((8, 8))

tz.last(tz.pipe(seq,
c.sliding_window(2), # each successive tuple
c.map(PDICT.__getitem__), # location in matrix of tuple
c.map(increment_model(model)))) # increment matrix

# convert counts to transition probability matrix

model /= np.sum(model, axis=1)[:, np.newaxis]

return model

nwun

Now we simply need to produce that genome stream, and make our Markov model:
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from glob import glob

def genome(file_pattern):

"""Stream a genome, letter by letter, from a list of FASTA filenames."""

return tz.pipe(file_pattern, glob, sorted, # Filenames
c.map(open), # lines
# concatenate lines from all files:
tz.concat,
# drop header from each sequence
c.filter(is_sequence),
# concatenate characters from all lines
tz.concat,
# discard newlines and 'N'
c.filter(is_nucleotide))

Let’s try it out on the Drosophila (fruit fly) genome:

# Download dmé.fa.gz from ftp://hgdownload.cse.ucsc.edu/goldenPath/dm6/bigZips/
# Unzip before using: gzip -d dmé.fa.gz

dm = 'data/dm6.fa’

model = tz.pipe(dm, genome, c.take(10**7), markov)

# we use ‘take' to just run on the first 10 million bases, to speed things up.
# the take step can just be removed if you have ~5-10 mins to wait.

Let’s look at the resulting matrix:

print(’ Y, '.join('ACGTacgt'), '\n')
print(model)
A C G T a [« g t

[[ 0.348 0.182 0.194 0.275 0. 0. 0. 0. ]
[ 0.322 0.224 0.198 0.254 0. 0. 0. 0. ]
[ 0.262 0.272 0.226 0.239 0. 0. 0. 0. ]
[ 0.209 0.199 0.245 0.347 o0. 0. 0. 0. ]
[ 0.003 0.003 0.003 0.003 0.349 0.178 0.166 0.296]
[ 0.002 0.002 0.003 0.003 0.376 0.195 0.152 0.267]
[ 0.002 0.003 0.003 0.002 0.281 0.231 0.194 0.282]
[ 0.002 0.002 0.003 0.003 0.242 0.169 0.227 0.351]]

It’s probably clearer to look at the result as an image (Figure 8-1):

def plot_model(model, labels, figure=None):

fig = figure or plt.figure()

ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])

im = ax.imshow(model, cmap='magma');

axcolor = fig.add_axes([0.91, 0.1, 0.02, 0.8])

plt.colorbar(im, cax=axcolor)

for axis in [ax.xaxls, ax.yaxis]:
axis.set_ticks(range(8))
axis.set_ticks_position('none')
axis.set_ticklabels(labels)

return ax

plot_model(model, labels='ACGTacgt');
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Figure 8-1. Transition probability matrix for genetic sequence in the Drosophila mela-
nogaster genome

Notice how the C-A and G-C transitions are different between the repeat and non-
repeat parts of the genome. This information can be used to classify a previously
unseen DNA sequence.

Exercise: Online Unzip

Add a step to the start of the pipe to unzip the data so you don’t have to keep a
decompressed version on your hard drive. The Drosophila genome, for example,
takes less than a third of the space on disk when compressed with gzip. And yes,
unzipping can be streamed, too!

The gzip package, part of Python’s standard library, allows you to
open .gz files as if they were normal files.
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We hope to have shown you at least a hint that streaming in Python can be easy when
you use a few abstractions, like the ones Toolz provides.

Streaming can make you more productive, because big data takes linearly longer than
small data. In batch analysis, big data can take forever to run, because the operating
system has to keep transferring data from RAM to the hard disk and back. Or, Python
might refuse altogether and simply show a MemoryError! This means that, for many
analyses, you don't need a bigger machine to analyze bigger datasets. And, if your
tests pass on small data, they’ll pass on big data, too!

Our take-home message from this chapter is this: when writing an algorithm or anal-
ysis, think about whether you can do it streaming. If you can, just do it from the
beginning. Your future self will thank you. Doing it later is harder, and results in
things like Figure 8-2.
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Figure 8-2. TODO:s in history (comic by Manu Cornet, used with permission)
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Epilogue

Quality means doing it right when no one is looking.
—Henry Ford

Our main goal with this book was to promote elegant uses of the NumPy and SciPy
libraries. While teaching you how to do effective scientific analysis with SciPy, we
hope to have inspired in you the feeling that quality code is something worth striving
for.

Where to Next?

Now that you know enough SciPy to analyze whatever data gets thrown your way,
how do you move forward? We said when we started that we couldn’t hope to cover
all there is to know about the library and all its offshoots. Before we part ways, we
want to point you to the many resources available to help you.

Mailing Lists

We mentioned in the preface that SciPy is a community. A great way to continue
learning is to subscribe to the main mailing lists for NumPy, SciPy, pandas, Matplot-
lib, scikit-image, and other libraries you might be interested in, and read them regu-
larly.

And when you do get stuck in your own work, don’t be afraid to seek help there! We
are a friendly bunch! The main requirement when seeking help is to show that you've
tried a bit of problem solving yourself, and to provide others with a minimal script
and enough sample data to demonstrate your problem and how you’ve tried to fix it.

+ No: “I need to generate a big array of random Gaussians. Can someone help?”

« No: “T have this huge library at https://github.com/ron_obvious. If you look in the
statistics library, there’s a part that really needs random Gaussians. Can someone
take a look??2?”
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« Yes: “I've been trying to generate a big list of random Gaussians like so: gauss =
[np.random.randn()] * 10**5. But when I compute np.mean(gauss), its
hardly ever as close to 0 as I expect. What am I doing wrong? The full script is
attached below”

GitHub

We also talked in the preface about GitHub. All of the code that we discussed lives on
GitHub:

o NumPy
o SciPy

and others. When something isn’t working as you expect, it could be a bug. If, after
some investigation, you are convinced that you have indeed uncovered a bug, you
should go to the “issues” tab of the relevant GitHub repository and create a new issue.
This will ensure that the bug is on the radar of the developers of that library, and that
it will (hopefully) be fixed in the next version. By the way, this advice also applies to
“bugs” in the documentation: if something in a library’s documentation isn’t clear to
you, file an issue!

Even better than filing an issue is submitting a pull request. A pull request improving a
library’s documentation is a great way to dip your toes in open source! We won't
cover the process here, but there are many books and resources out there to help you:

o Anthony Scopatz and Katy Huff’s Effective Computation in Physics (O'Reilly,
2015) covers Git and GitHub, among many other topics in scientific computa-
tion.

o Introducing GitHub (O’Reilly, 2015), by Peter Bell and Brent Beer, covers GitHub
in more detail.

o Software Carpentry has Git lessons, and offers free workshops around the world
throughout the year.

« Based partly on those lessons, one of your authors has created a complete tutorial
on Git and GitHub pull requests, “Open Source Science with Git and GitHub”.

« Finally, many open source projects on GitHub have a “CONTRIBUTING” file,
which contains a set of guidelines for contributing code to the project.

So, you are not starved for help on this topic!

We encourage you to contribute to the SciPy ecosystem as often as you can, not only
because you will help make these libraries better for all, but also because it is one of
the best ways to develop your coding abilities. With every pull request you submit,
you will get feedback about your code, helping you to improve. You'll also become
more familiar with the GitHub contributing process and etiquette, which are highly
valuable skills in today’s job market.
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Conferences

In the same vein, we highly recommend attending a coding conference in this field.
The SciPy conference, held every year in Austin, is fantastic, and probably your best
bet if you enjoyed this book. There’s also a European version, EuroSciPy, which
changes host city every two years. Finally, the more general PyCon conference hap-
pens in the United States but also has offshoots around the world, such as PyCon-AU
in Australia, which has a “Science and Data” miniconference the day before the main
conference.

Whichever conference you choose, stay for the sprints at the end of the conference. A
coding sprint is an intense session of team coding, and it is a fantastic opportunity to
learn the process of contributing to open source, regardless of your skill level. It is
how one of your authors (Juan) started in his open source journey.

Beyond SciPy

The SciPy library is written not just in Python, but also in highly optimized C and
Fortran code that interfaces with Python. Together with NumPy and related libraries,
it tries to cover most use cases that come up in scientific data analysis, and provides
very fast functions for these. Sometimes, however, a scientific problem doesn’t match
at all with what’s already in SciPy, and a pure Python solution is too slow to be useful.
What to do then?

High Performance Python (O’Reilly, 2014), by Micha Gorelick and Ian Ozsvald, covers
what you need to know in these situations: how to find where you really need perfor-
mance, and the options available to get that performance. We highly recommend it.

Here, we want to briefly mention two of those options that are particularly relevant in
the SciPy world.

First, Cython is a variant of Python that can be compiled to C, but then be imported
into Python. Providing some type annotations to Python variables means the com-
piled C code can end up being a hundred or even a thousand times faster than com-
parable Python code. Cython is now an industry standard and is used in NumPy,
SciPy, and many related libraries (such as scikit-image) to provide fast algorithms in
array-based code. Kurt Smith has written the simply titled Cython (O'Reilly, 2015) to
teach you the fundamentals of this language.

An often easier-to-use alternative to Cython is Numba, a just-in-time (JIT) compiler
for array-based Python. JITs wait for a function to be executed once, at which point
they can infer the types of all the function arguments and output, and compile the
code into a highly efficient form for those specific types. In Numba code, you don’t
need to annotate types: Numba will infer them when a function is first called. Instead,
you simply need to make sure that you only use basic types (integers, floats, etc.) and
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arrays rather than more complicated Python objects. In these cases, Numba can com-
pile the Python code down to very efficient code and speed up computations by
orders of magnitude.

Numba is still very young, but it is already very useful. Importantly, it shows what is
possible by Python JITs, which are set to become more commonplace: Python 3.6
added features to make it easier to use new JITs (the Pyjion JIT is based on these).
You can see some examples of Numba use, including how to combine it with SciPy, in
Juan’s blog. And Numba, naturally, has its own very active and friendly mailing list.

Contributing to This Book

The source of this book is itself hosted on GitHub (also at the Elegant SciPy website).
Just as if you were contributing to any other open source project, you can raise issues
or submit pull requests if you find bugs or typos—and we would very much appreci-
ate it if you did.

We used some of the best code we could find to illustrate the various parts of the
SciPy and NumPy libraries. If you have a better example, please raise an issue in the
repo. We would love to include it in future editions.

We are also on Twitter, at @elegantscipy. Drop us a line if you want to chat about the
book! The individual authors are @jnuneziglesias, @stefanvdwalt, and @hdashnow.

We particularly want to hear about it if you use any of the ideas or code in this book
to advance your scientific research. That’s the point of SciPy!

Until Next Time...

In the meantime, we hope you enjoyed this book and found it useful. If so, tell all
your friends, and come say hi on the mailing lists, at a conference, on GitHub, and on
Twitter. Thanks for reading, and here’s to even more Elegant SciPy!
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APPENDIX
Exercise Solutions

Solution: Adding a Grid Overlay

This is the solution for “Exercise: Adding a Grid Overlay” on page 55.

We can use NumPy slicing to select the rows of the grid, set them to blue, and then
select the columns and set them to blue as well (Figure A-1):

def overlay_grid(image, spacing=128):
"""Return an image with a grid overlay, using the provided spacing.

Parameters
image : array, shape (M, N, 3)
The input image.
spacing : int
The spacing between the grid lines.

Returns
image_gridded : array, shape (M, N, 3)

The original image with a blue grid superimposed.
image_gridded = image.copy()
image_gridded[spacing:-1:spacing, :] [0, 0, 255]
image_gridded[:, spacing:-1l:spacing] = [0, 0, 255]
return image_gridded

plt.imshow(overlay_grid(astro, 128));
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Figure A-1. Astronaut image overlaid with a grid

Note that we used -1 to mean the last value of the axis, as is standard in Python
indexing. You can omit this value, but the meaning is slightly different. Without it
(i.e., spacing::spacing), you go all the way to the end of the array, including the
final row/column. When you use it as the stop index, you prevent the final row from
being selected. In the case of a grid overlay, this is probably the desired behavior.

Solution: Conway’s Game of Life

This is the solution for “Exercise: Conway’s Game of Life” on page 67.

Nicolas Rougier (@NPRougier) provides a NumPy-only solution in Exercise 79 on
his 100 NumPy Exercises page:
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def next_generation(Z):
N = (2[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
Z[1:-1,0:-2] + Z[1:-1,2:] +
Z2[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:1)

# Apply rules

birth = (N==3) & (Z[1:-1,1:-1]==0)

survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
Z[...] =0

Z[1:-1,1:-1][birth | survive] =1

return Z

Then we can start a board with:

random_board = np.random.randint(0, 2, size=(50, 50))
n_generations = 100
for generation in range(n_generations):

random_board = next_generation(random_board)

Using a generic filter makes it even easier:

def nextgen_filter(values):
center = values[len(values) // 2]
neighbors_count = np.sum(values) - center
if neighbors_count == 3 or (center and neighbors_count == 2):
return 1.
else:
return 0.

def next_generation(board):
return ndi.generic_filter(board, nextgen_filter,
size=3, mode='constant')
The nice thing is that some formulations of the Game of Life use what’s known as a
toroidal board, which means that the left and right ends “wrap around” and connect
to each other, as well as the top and bottom ends. With generic_filter, it’s trivial to
modify our solution to incorporate this:

def next_generation_toroidal(board):
return ndi.generic_filter(board, nextgen_filter,
size=3, mode='wrap')

We can now simulate this toroidal board for a few generations:

random_board = np.random.randint(0, 2, size=(50, 50))
n_generations = 100
for generation in range(n_generations):

random_board = next_generation_toroidal(random_board)

Solution: Sobel Gradient Magnitude

This is the solution for “Exercise: Sobel Gradient Magnitude” on page 68.
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def sobel_magnitude_filter(values):
h_edge = values @ hsobel_r
v_edge = values @ vsobel_r
return np.hypot(h_edge, v_edge)

Now we can try it out on the coins image:

sobel_mag = ndi.generic_filter(coins, sobel_magnitude_filter, size=3)
plt.imshow(sobel_mag, cmap='viridis');
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Solution: Curve Fitting with SciPy

This is the solution for “Exercise: Curve Fitting with SciPy” on page 72.

Let’s look at the start of the docstring for curve_fit:
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Use nonlinear least squares to fit a function, f, to data.
Assumes ' ‘ydata = f(xdata, *params) + eps’’

Parameters

f : callable
The model function, f(x, ...). It must take the independent
variable as the first argument and the parameters to fit as
separate remaining arguments.

xdata : An M-length sequence or an (k,M)-shaped array
for functions with k predictors.
The independent variable where the data is measured.

ydata : M-length sequence
The dependent data --- nominally f(xdata, ...)

It looks like we just need to provide a function that takes in a data point and some
parameters, and returns the predicted value. In our case, we want the cumulative
remaining frequency, f(d), to be proportional to d7. That means we need f(d) = ad"

gamma.

def fraction_higher(degree, alpha, gamma):
return alpha * degree ** (-gamma)

Then, we need our X and Y data to fit, for d > 10:

x = 1 + np.arange(len(survival))
valid = x > 10

x = x[valid]

y = survival[valid]

We can now use curve_fit to obtain fit parameters:

from import curve_fit

alpha_fit, gamma_fit = curve_fit(fraction_higher, x, y)[0]
Let’s plot the results to see how we did:

y_fit = fraction_higher(x, alpha_fit, gamma_fit)

fig, ax = plt.subplots()

ax.loglog(np.arange(1, len(survival) + 1), survival)
ax.set_xlabel('in-degree distribution')

ax.set_ylabel('fraction of neurons with higher in-degree distribution')
ax.scatter(avg_in_degree, 0.0022, marker='v')

ax.text(avg_in_degree - 0.5, 0.003, 'mean=%.2f' % avg_in_degree)
ax.set_ylim(0.002, 1.0)

ax.loglog(x, y_fit, c='red');
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Voila! A full Figure 6B, fit and all!

Solution: Image Convolution

This is the solution to “Exercise: Image Convolution” on page 123.

from scipy import signal

X
y

np.random.random( (50, 50))
np.ones((5, 5))

L = x.shape[0] + y.shape[0] - 1
Px = L - x.shape[0]
Py = L - y.shape[0]
xx = np.pad(x, ((0, Px), (6, Px)), mode='constant')
yy = np.pad(y, ((0, Py), (0, Py)), mode='constant')

zz = np.fft.ifft2(np.fft.fft2(xx) * np.fft.fft2(yy)).real
print('Resulting shape:', zz.shape, ' <-- Why?')

z = signal.convolve2d(x, y)
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print('Results are equal?', np.allclose(zz, z))

Resulting shape: (54, 54) <-- Why?
Results are equal? True

Solution: Computational Complexity of Confusion
Matrices

This is the solution for “Exercise: Computational Complexity of Confusion Matrices”
on page 128.

From Chapter 1, you recall that arr == k creates an array of Boolean (True or False)
values of the same size as arr. This, as you might expect, requires a full pass over arr.
Therefore, in the above solution, we make a full pass over each of pred and gt for
every combination of values in pred and gt. In principle, we can compute cont using
just a single pass over both arrays, so these multiple passes are inefficient.

Solution: Alternative Confusion Matrix Computing

This is the solution to “Exercise: Alternative Algorithm to Compute the Confusion
Matrix” on page 128.

We offer two solutions here, although many are possible.

Our first solution uses Python’s built-in zip function to pair together labels from
pred and gt.

def confusion_matrixi(pred, gt):
cont = np.zeros((2, 2))
for 1, j in zip(pred, gt):
cont[i, j] += 1
return cont

Our second solution is to iterate over all possible indices of pred and gt and manually
grab the corresponding value from each array:

def confusion_matrixi(pred, gt):
cont = np.zeros((2, 2))
for i1dx in range(len(pred)):
i = pred[idx]
j = gt[idx]
cont[i, j] += 1
return cont

The first option might be considered the more “Pythonic” of the two, but the second
one is easier to speed up by translating and compiling in languages or tools such as C,
Cython, and Numba (a topic for another book).
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Solution: Computing the Confusion Matrix

This is the solution to “Exercise: Multiclass Confusion Matrix” on page 128.

We merely need to make an initial pass through both input arrays to determine the
maximum label. We then add 1 to it to account for the zero label and Python’s 0-
based indexing. We then create the matrix and fill it in the same way as above:

def general_confusion_matrix(pred, gt):
n_classes = max(np.max(pred), np.max(gt)) + 1
cont = np.zeros((n_classes, n_classes))
for 1, j in zip(pred, gt):
cont[i, j] += 1
return cont

Solution: COO Representation

This is the solution to “Exercise: COO Representation” on page 130.

We first list the nonzero elements of the array, left to right and top to bottom, as if
reading a book:

s2_data = np.array([6, 1, 2, 4, 5, 1, 9, 6, 7])

We then list the row indices of those values in the same order:
s2_row = np.array([0, 1, 1, 1, 1, 2, 3, 4, 4])

And finally the column indices:
s2_col = np.array([2, 0, 1, 3, 4, 1, 0, 3, 4])

We can easily check that these produce the right matrix, by checking equality in both
directions:

s2_coo0® = sparse.coo_matrix(s2)
print(s2_coo0.data)
print(s2_coo0.row)
print(s2_coo0.col)

and:

s2_cool = sparse.coo_matrix((s2_data, (s2_row, s2_col)))
print(s2_cool.toarray())

[[060600]
[12
[0

[

04

00
9000
0006

1
0
0
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Solution: Image Rotation

This is the solution to “Exercise: Image Rotation” on page 138.

We can compose transformations by multiplying them. We know how to rotate an
image about the origin, as well as how to slide it around. So what we will do is slide

the image so that the center is at the origin, rotate it, and then slide it back.

def transform_rotate_about_center(shape, degrees):
c = np.cos(np.deg2rad(angle))
s = np.sin(np.deg2rad(angle))

H_rot = np.array([[c, -s, 0],
[s, ¢, o],
[0, o, 111
# compute image center coordinates
center = np.array(image.shape) / 2
# matrix to center image on origin
H_tr®@ = np.array([[1, 0, -center[0]],
[0, 1, -center[1]],
[0, o, 11D
# matrix to move center back
H_trl = np.array([[1, 0, center[0]],
[0, 1, center[1]],
[0, o, 11D
# complete transformation matrix
H_rot_cent = H_trl1 @ H_rot @ H_tr0

sparse_op = homography(H_rot_cent, image.shape)

return sparse_op
We can test that this works:

tf = transform_rotate_about_center(image.shape, 30)
plt.imshow(apply_transform(image, tf));

Return the homography matrix for a rotation about an image center.

mwnn
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Solution: Reducing the Memory Footprint

This is the solution to “Exercise: Reducing the Memory Footprint” on page 140.

The np.ones array that we create is read-only: it will only be used as the values to
sum by coo_matrix. We can use broadcast_to to create a similar array with only one
element, “virtually” repeated n times:

def confusion_matrix(pred, gt):
n = pred.size
ones = np.broadcast_to(1., n) # virtual array of 1s of size n
cont = sparse.coo_matrix((ones, (pred, gt)))
return cont

Let’s make sure it still works as expected:
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cont = confusion_matrix(pred, gt)
print(cont.toarray())

r3. 1.]
[ 2. 4.1

Boom. Instead of making an array as big as the original data, we just make one of size
1. As we handle bigger and bigger datasets, such optimizations become increasingly
important.

Solution: Computing Conditional Entropy

To obtain the joint probability table, we simply divide the table by its total—in this
case, 12:

This is the solution to “Exercise: Computing Conditional Entropy” on page 144.

print('table total:', np.sum(p_rain_g_month))
p_rain_month = p_rain_g_month / np.sum(p_rain_g_month)

table total: 12.0

Now we can compute the conditional entropy of the month given rain. (This is like
asking: if we know it’s raining, how much more information do we need to know to
figure out what month it is, on average?)

p_rain = np.sum(p_rain_month, axis=0)

p_month_g_rain = p_rain_month / p_rain

Hmr = np.sum(p_rain * p_month_g_rain * np.log2(1 / p_month_g_rain))
print(Hmr)

3.5613602411
Let’s compare that to the entropy of the months:

p_month = np.sum(p_rain_month, axis=1) # 1/12, but this method is more general
Hm = np.sum(p_month * np.log2(1 / p_month))
print(Hm)

3.58496250072

So we can see that knowing whether it rained today got us two hundredths of a bit
closer to guessing what month it is! Don’t bet the farm on that guess.

Solution: Rotation Matrix

This is the solution to “Exercise: Rotation Matrix” on page 159.
Part 1:

import as

theta = np.deg2rad(45)
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R = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[ 0, 0, 11D

print("R times the x-axis:", R @ [1, 0, 0])
print("R times the y-axis:", R @ [0, 1, 0])
print("R times a 45 degree vector:", R @ [1, 1, 0])

R times the x-axis: [ 0.70710678 0.70710678 0. 1
R times the y-axis: [-0.70710678 0.70710678 0. 1
R times a 45 degree vector: [ 1.11022302e-16 1.41421356e+00 0.00000000e+00]

Part 2:

Since multiplying a vector by R rotates it 45 degrees, multiplying the result by R again
should result in the original vector being rotated 90 degrees. Matrix multiplication is
associative, which means that R(Rv) = (RR)v, so S = RR should rotate vectors by 90
degrees around the z-axis.

S=R@R
se[1,0,0]

array([ 2.22044605e-16, 1.00000000e+00, 0.00000000e+00])
Part 3:

print("R @ z-axis:", R @ [0, 0, 1])

R @z-axis: [ 0. 0. 1.]
R rotates both the x- and y-axes, but not the z-axis.

Part 4:

Looking at the documentation of eig, we see that it returns two values: a 1D array of
eigenvalues, and a 2D array where each column contains the eigenvector correspond-
ing to each eigenvalue.

np.linalg.eig(R)

(array([ 0.70710678+0.70710678, 0.70710678-0.70710678, 1.00000000+0.] N,
array([[ 0.70710678+0.] , 0.70710678-0. ] , 0.00000000+0. j 1,

[ 0.00000000-0.70710678, 0.00000000+0.70710678j, 0.00000000+0. ] 1,

[ 0.00000000-0. , 0.00000000+0. ] , 1.00000000+0. j 1)

In addition to some complex-valued eigenvalues and vectors, we see the value 1 asso-
ciated with the vector [0, 0, 1].

Solution: Showing the Affinity View

This is the solution for “Exercise: Showing the Affinity View” on page 170.
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In the affinity view, instead of using the processing depth on the y-axis, we use the
normalized third eigenvector of Q, just like we did with x. (And we invert it if neces-
sary, just like we did with x!)

= Dinv2 @ Vec[:, 2]
asjl_index = np.argwhere(neuron_ids == 'ASJL')
if y[asjl_index] < 0:
y=-y

plot_connectome(x, y, C, labels=neuron_1ids, types=neuron_types,
type_names=['sensory neurons', 'interneurons',
'motor neurons'],
xlabel="Affinity eigenvector 1',
ylabel="Affinity eigenvector 2')

@ sl ®®e¢ sensory neurons
ee®e interneurons
0.04 @ nsk @V ®®e motor neurons
mesm @ ASRR
\WCR,
003 :A AEAXX::S;IAS‘WA:‘AR @ ASKR
~ %\/AL .ASGR. @ PVQR
@ AWAR *ML ‘MER
16 0 02 @ AINR
46 . ® AL @ HSNL
(O] o AR PHAL
> onzL  gREABR AR
5 0 0 1 & A% awer L] Agﬁs;:g\u ' i HSNg ave
(@)) 3 ADFR® RIR @ RIFL
= @ ADFI 2 @ ADAL WVNL
® R ApAR
v 5'%% "‘"'Sw" S
> 0.00 o g
C RIAL VEL
= .Mﬁr( @ rica
L]
< —-0.01 e al
.%QDL
' !EVE\I
—0.02 ®@ivio.
ol HIRURADL
£y RADR
~0.03[ %=
—0.02 —-0.01 0.00 0.01 0.02

Affinity eigenvector 1

Challenge Accepted: Linear Algebra with Sparse Matrices

This is the solution for “Exercise Challenge: Linear Algebra with Sparse Matrices” on
page 170.

For the purposes of this challenge, we are going to use the small connectome, because
it’s easier to visualize what is going on. In later parts of the challenge well use these
techniques to analyze larger networks.
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First, we start with the adjacency matrix, A, in a sparse matrix format, in this case
CSR, which is the most common format for linear algebra. We'll append s to the
names of all the matrices to indicate that they are sparse.

from import sparse
import

As = sparse.csr_matrix(A)
We can create our connectivity matrix in the same way:
Cs = (As + As.T) / 2

In order to get the degrees matrix, we can use the “diags” sparse format, which stores
diagonal and off-diagonal matrices.

degrees = np.ravel(Cs.sum(axis=0))
Ds = sparse.diags(degrees)

Getting the Laplacian is straightforward:
Ls = Ds - Cs

Now we want to get the processing depth. Remember that getting the pseudoinverse
of the Laplacian matrix is out of the question, because it will be a dense matrix (the
inverse of a sparse matrix is not generally sparse itself). However, we were actually
using the pseudo-inverse to compute a vector z that would satisfy Lz = b, where
b =C @sign(A - A”) 1. (You can see this in the supplementary material for Varshney
et al.) With dense matrices, we can simply use z = L*b. With sparse ones, though, we
can use one of the solvers (see “Solvers” on page 171) in sparse.linalg.isolve to get
the z vector after providing L and b—no inversion required!

b = Cs.multiply((As - As.T).sign()).sum(axis=1)

z, error = sparse.linalg.isolve.cg(Ls, b, maxiter=10000)
Finally, we must find the eigenvectors of Q, the degree-normalized Laplacian, corre-
sponding to its second and third smallest eigenvalues.

You might recall from Chapter 5 that the numerical data in sparse matrices is in
the .data attribute. We use that to invert the degrees matrix:

Dsinv2 = Ds.copy()

Dsinv2.data = 1 / np.sqrt(Ds.data)
Finally, we use SciPy’s sparse linear algebra functions to find the desired eigenvectors.
The Q matrix is symmetric, so we can use the eigsh function, specialized for sym-
metric matrices, to compute them. We use the which keyword argument to specify
that we want the eigenvectors corresponding to the smallest eigenvalues, and k to
specify that we need the three smallest:

Qs = Dsinv2 @ Ls @ Dsinv2
vals, Vecs = sparse.linalg.eigsh(Qs, k=3, which='SM")
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sorted_indices = np.argsort(vals)
Vecs = Vecs[:, sorted_indices]

Finally, we normalize the eigenvectors to get the x and y coordinates (and flip these if

necessary):

_dsinv, x, y = (Dsinv2 @ Vecs).T
if x[vc2_1index] < 0:

X = -X
if y[asjl_index] < 0:
y=-y

(Note that the eigenvector corresponding to the smallest eigenvalue is always a vector
of all ones, which we're not interested in.) We can now reproduce the following plots!

Processing depth

plot_connectome(x, z, C, labels=neuron_ids, types=neuron_types,

type_names=[ 'sensory neurons', 'interneurons',
'motor neurons'],
xlabel="'Affinity eigenvector 1', ylabel='Processing depth')

plot_connectome(x, y, C, labels=neuron_1ids, types=neuron_types,
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type_names=['sensory neurons', 'interneurons',
'motor neurons'],

xlabel="Affinity eigenvector 1',

ylabel="Affinity eigenvector 2')
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Solution: Dealing with Dangling Nodes

This is the solution for “Exercise: Dealing with Dangling Nodes” on page 176.

In order to have a stochastic matrix, all columns of the transition matrix must sum to
1. This is not satisfied when a species isn't eaten by any others: that column will con-
sist of all zeros. Replacing all those columns by 1/n1, however, would be expensive.

The key is to realize that every row will contribute the same amount to the multiplica-
tion of the transition matrix by the current probability vector. That is to say, adding
these columns will add a single value to the result of the iteration multiplication.
What value? 1/n times the elements of r that correspond to a dangling node. This can
be expressed as a dot-product of a vector containing 1/x for positions corresponding
to dangling nodes, and zero elsewhere, with the vector r for the current iteration.

def power2(Trans, damping=0.85, max_iter=10**5):
n = Trans.shape[0]
dangling = (1/n) * np.ravel(Trans.sum(axis=0) == 0)
ro = np.full(n, 1/n)
r=ro0
for _ in range(max_1iter):
rnext = (damping * (Trans @ r + dangling @ r) +
(1 - damping) / n)
if np.allclose(rnext, r):
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return rnext
else:
r = rnext
return r

Try this out manually for a few iterations. Notice that if you start with a stochastic
vector (a vector whose elements all sum to 1), the next vector will still be a stochastic
vector. Thus, the output PageRank from this function will be a true probability vector,
and the values will represent the probability that we end up at a particular species
when following links in the food chain.

Solution: Verify Methods

This is the solution for “Exercise: Equivalence of Different Eigenvector Methods” on
page 176.

np.corrcoef gives the Pearson correlation coefficient between all pairs of a list of
vectors. This coefficient will be equal to 1 if and only if two vectors are scalar multi-
ples of each other. Therefore, a correlation coefficient of 1 is sufficient to show that
the above methods produce the same ranking.

pagerank_power = power(Trans)
pagerank_power2 = power2(Trans)
np.corrcoef([pagerank, pagerank_power, pagerank_power2])

array([[ 1., 1., 1.],
[ 1., 1., 1.1,
[1., 1., 1.1D

Solution: Modify the align Function

This is the solution for “Exercise: Modify the align Function” on page 190.

We use basin hopping at the higher levels of the pyramid, but use Powell’s method for
the lower levels, because basin hopping is too computationally expensive to run at full
resolution:

def align(reference, target, cost=cost_mse, nlevels=7, method='Powell'):
pyramid_ref = gaussian_pyramid(reference, levels=nlevels)
pyramid_tgt = gaussian_pyramid(target, levels=nlevels)

levels = range(nlevels, 0, -1)
image_pairs = zip(pyramid_ref, pyramid_tgt)

p = np.zeros(3)

for n, (ref, tgt) in zip(levels, image_pairs):
p[i1:] *= 2
if method.upper() == 'BH':
res = optimize.basinhopping(cost, p,
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minimizer_kwargs={"args': (ref, tgt)})
if n <= 4: # avoid basin hopping in lower levels
method = 'Powell'
else:
res = optimize.minimize(cost, p, args=(ref, tgt), method='Powell')
p = res.x
# print current level, overwriting each time (like a progress bar)
print(f'Level: {n}, Angle: {np.rad2deg(res.x[0]) :.3}, '
f'Offset: ({res.x[1] * 2**n :.3}, {res.x[2] * 2**n :.3}), '
f'Cost: {res.fun :.3}', end="\r")

print('') # newline when alignment complete
return make_rigid_transform(p)

Now let’s try that alignment:

from skimage import util

theta = 50

rotated = transform.rotate(astronaut, theta)

rotated = util.random_noise(rotated, mode='gaussian',
seed=0, mean=0, var=le-3)

tf = align(astronaut, rotated, nlevels=8, method='BH")
corrected = transform.warp(rotated, tf, order=3)

f, (ax0, ax1l, ax2) = plt.subplots(i, 3)
ax0.1imshow(astronaut)
ax0.set_title('Original')
ax1.imshow(rotated)
axl.set_title('Rotated')
ax2.imshow(corrected)
ax2.set_title('Registered')
for ax in (ax0, ax1, ax2):
ax.axis('off")

Level: 1, Angle: -50.0, Offset: (-2.09e+02, 5.74e+02), Cost: 0.0385

Original Rotated Registered
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Success! Basin hopping was able to recover the correct alignment, even in the prob-
lematic case in which the minimize function got stuck.

Solution: scikit-learn Library

This is the solution to “Exercise: PCA of Streaming Data” on page 214.

First, we write the function to train the model. The function should take in a stream
of samples and output a PCA model, which can transform new samples by projecting
them from the original n-dimensional space to the principal component space.

import toolz as tz

from toolz import curried as c
from sklearn import decomposition
from sklearn import datasets
import numpy as np

def streaming_pca(samples, n_components=2, batch_size=100):
ipca = decomposition.IncrementalPCA(n_components=n_components,
batch_size=batch_size)

tz.pipe(samples, # iterator of 1D arrays
c.partition(batch_size), # iterator of tuples
c.map(np.array), # iterator of 2D arrays
c.map(ipca.partial_fit), # partial_fit on each
tz.last) # Suck the stream of data through the pipeline

return ipca

Now, we can use this function to train (or fit) a PCA model:

reshape = tz.curry(np.reshape)

def array_from_txt(1line, sep=',', dtype=np.float):
return np.array(line.rstrip().split(sep), dtype=dtype)

with open('data/iris.csv') as fin:
pca_obj = tz.pipe(fin, c.map(array_from_txt), streaming_pca)

Finally, we can stream our original samples through the transform function of our
model. We stack them together to obtain a n_samples by n_components matrix of
data:
with open('data/iris.csv') as fin:
components = tz.pipe(fin,
c.map(array_from_txt),
c.map(reshape(newshape=(1, -1))),

c.map(pca_obj.transform),
np.vstack)

print(components.shape)

(150, 2)
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We can now plot the components:

iris_types = np.loadtxt('data/iris-target.csv')

plt.scatter(*components.T, c=iris_types, cmap='viridis');
You can verify that this gives (approximately) the same result as a standard PCA
(compare Figures A-2 and A-3):

iris = np.loadtxt('data/iris.csv', delimiter=',")
components2 = decomposition.PCA(n_components=2).fit_transform(iris)
plt.scatter(*components2.T, c=iris_types, cmap='viridis');
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Figure A-2. Principal components of iris dataset computed with streaming PCA
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Figure A-3. Principal components of iris dataset computed with normal PCA

The difference, of course, is that streaming PCA can scale to extremely large datasets.

Solution: Add a Step to the Start of the Pipe

This is the solution to “Exercise: Online Unzip” on page 217.

We can replace open in the original genome code with a curried version of gzip.open.
The default mode of gzip’s open function is rb (read bytes), instead of rt for Python’s

built-in open (read text), so we have to provide it.
import gzip

gzopen = tz.curry(gzip.open)

def genome_gz(file_pattern):

"""Stream a genome, letter by letter, from a list of FASTA filenames.

return tz.pipe(file_pattern, glob, sorted, # Filenames
c.map(gzopen(mode="rt')), # lines
# concatenate lines from all files:
tz.concat,
# drop header from each sequence
c.filter(is_sequence),

mwnn
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# concatenate characters from all lines
tz.concat,

# discard newlines and 'N'
c.filter(is_nucleotide))

You can try this out with the compressed drosophila genome file:

dm = 'data/dm6.fa.gz'
model = tz.pipe(dm, genome_gz, c.take(10**7), markov)
plot_model(model, labels='ACGTacgt"')
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If you want to have a single genome function, you could write a custom open function
that decides from the filename, or from trying and failing, whether a file is a gzip file.

Similarly, if you have a .tar.gz full of FASTA files, you can use Python’s tarfile mod-
ule instead of glob to read each file individually. The only caveat is that you will have
to use the bytes.decode function to decode each line, as tarfile returns them as
bytes, not as text.
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Symbols

%matplotlib inline, 15

3-Clause BSD licenses, xv

@ (matrix multiplication operator), 126

A

acknowledgments, xxi
adjacency matrices, 158
arguments, keyword-only, 23
attributions, xx

B

basin-hopping, 190

Berkeley Segmentation Dataset and Bench-
mark, 150

biclustering, 37

big data, 218
(see also streaming data analysis)

Big O notation, 92

Bluestein algorithm, 92

broadcasting, 10, 25, 140

C
Cancer Genome Atlas (TCGA), 1, 12
central dogma of molecular biology, 3
code examples, obtaining and using, xv, xviii,
Xix, 222
colorbrewer palette, 167
comments and questions, xxi, 224
conda, xviii
conditional entropy, 143
confusion matrices, 127
(see also contingency tables)

Index

connected components, 70
constrained optimization, 178
contact information, xxi, 224
contingency tables
COO (coordinate) format and, 139
historical table example, 143
measuring performance with, 127
segmentation and, 127-129, 140-142
sparse matrices examples, 125
convolution, 58, 123
Cooley-Tukey algorithm, 92
copy-left licenses, xiv
cost function, 177
(see also function optimization)
currying, 210-212
Cython, 223

D

data locality, 130

degree matrix (D), 158

digital images, 49
(see also image regions)

discrete Fourier transform (DFT)
additional applications for, 122
analysis of radar data using, 105-121
choosing length of, 92-94
data conversion with, 81-84
frequencies and their ordering, 94-100
history of, 90
implementation, 91
resources, 122
spectrogram illustration, 84-90
transforms using, 95
windowing, 100-104
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DNA (deoxyribonucleic acid), 3

E

eigenvectors, 159, 167
elegant code, characteristics of, vii
exercises

F

Adding a Grid Overlay, 55, 225

Alternative Algorithm to Compute the Con-
fusion Matrix, 128, 231

Computational Complexity of Confusion
Matrices, 128, 231

Computing Conditional Entropy, 144, 235

Conway's Game of Life, 67, 226

COO Representation, 130, 232

Curve Fitting with SciPy, 72, 228

Dealing with Dangling Nodes, 176, 240

Equivalence of Different Eigenvector Meth-
ods, 176, 241

Image Convolution, 123, 230

Image Rotation, 138, 233

Linear Algebra with Sparse Matrices, 170,
237

Modify the align Function, 190, 241

Multiclass Confusion Matrix, 128, 232

Online Unzip, 217, 245

PCA of Streaming Data, 214, 243

predicting survival, 46

Reducing the Memory Footprint, 140, 234

Rotation Matrix, 159, 235

Segmentation in Practice, 156

Showing the Affinity View, 170, 236

Sobel Gradient Magnitude, 68, 227

solutions to, 225-246

fancy indexing, 33
Fast Fourier Transform (FFT)

additional applications for, 122
analysis of radar data using, 105-121
benefits of, 84

choosing length of, 92-94

DFT computation using, 86-90
frequencies and their ordering, 94-100
history of, 90

implementation, 91

resources, 122

windowing, 100-104

FASTA format, 207
fcluster function, 45

FFTPACK library, 91
Fiedler vectors, 160
filters

2D (image) filters, 63-66
generic filters, 66-68
generic_filter function, 77
in signal processing, 56-63
Sobel filters, 64, 68

Free and Open Source Software (FOSS), xiii
frequencies function, 210
frequency

concept of, 81-84

FMCW radar analysis, 105-121
frequency domain data, 81
Nyquist frequency, 96
ordering of frequencies, 94-100
spatial frequency, 82
windowing, 100-104

function optimization

G

algorithm selection, 178

avoiding local minima with basin hopping,
190

choosing objective functions, 191-198

computing optimal image shift, 179-186

cost functions and, 177

defined, 177

image registration, 186-189

Gaussian kernel, 34, 61
gene expression analysis

biclustering counts data, 37-39

distribution differences between individu-
als, 34-37

example of, 2

k-mer counting and error correction,
206-210

Markov model from full genomes, 214-217

normalization, 14-30

predicting survival, 42-47

quantile normalization, 31-47

reading data in with pandas, 12, 33

visualizing clusters, 39-41

generic_filter function, 66, 77
getting help, xvii

(see also resources)

GitHub, xv, 222
GNU Public License, xv
graphs

248

| Index



building from image regions, 76-78
connected components in, 70
degree-normalized Laplacian, 165-170
Laplacian matrix of a graph, 158-164
vs. networks, 68
using NetworkX, 69-72

ground truth, 127

H

hierarchical clustering, 38
homogeneous coordinates, 134

I
image regions
2D (image) filters, 63-66
building graphs from, 76-78
filters in signal processing, 56-63
generic filters, 66-68
graphic representations, 68-72
image transformations using sparse matri-
ces, 133-139
images as NumPy arrays, 50-55
mean color segmentation, 78
imshow function, 51
IncrementalPCA class, 214
information theory
introduction to, 142-145
in segmentation, 145-147
visual information theory, 142
IPython, xi
iterative solvers, 171

J

JITs (just-in-time compilers), 223
Jupyter

%matplotlib inline, 15

magic commands in, 15

role in Scientific Python ecosystem, xi

K

k-mer counting
using curried functions, 212-214
and error correction, 206-210
Kaiser window, 103, 115-117
kernel density estimation (KDE), 14
keyword-only arguments, 23

L

Laplacian matrix of a graph
degree-normalized Laplacian, 165-170
graph analysis using, 158-164

licenses, xiv

line search algorithms, 177

linear algebra
basics of, 157
degree-normalized Laplacian, 165-170
implementation of PageRank, 171-176
Laplacian matrix of a graph, 158-164

local minima
algorithms addressing, 177
avoiding with basin hopping, 190
challenges of, 189
example of, 183

M
magic commands (Jupyter), 15
Markov models, 214-217
Matplotlib
%matplotlib inline, 15
displaying images with, 50
matplotlib.pyplot, 15
role in Scientific Python ecosystem, xi
stylesheet creation, 15
styling, 15
trisurf function, 121
matrix multiplication operator (@), 126
merge trees, 38
molecular biology, central dogma of, 3
MSE (mean squared error), 180

N

N-dimensional arrays (ndarrays)
broadcasting, 10, 25, 140
characteristics of, 6, 32
converting to use sparse matrices, 147
image representation via, 50-55
vs. Python lists, 8
.ravel() method, 140
vectorization, 33

ndimage, 49, 58, 76-78

NetworkX library, 68-72

noise floor, 115

normalization
between genes, 21-23
between samples, 14-20
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need for, 14
over samples and genes (RPKM), 24-30
quantile normalization, 31-47
normalized mutual information (NMI), 195
Numba, 223
NumPy
converting to use sparse matrices, 147
creating images with, 50
data normalization, 14-30
DFT-related functionality, 91
N-dimensional arrays, 6-11
quantile normalization with, 31-47
.ravel() method, 140
role in Scientific Python ecosystem, x, 1
vectorization and broadcasting rules, 1,
6-11, 25, 33, 140
Nyquist frequency, 96

0

open source software development, xiii
optimization, 177

(see also function optimization)
optimize module, 179-198

P
PageRank, 171-176
pandas
reading data in with, 12, 33
role in Scientific Python ecosystem, xi
permissive licenses, xiv
Perron-Frobenius theorem, 175
pixels, 49
(see also image regions)
plots, styling, 15
power method, 175
predictions, 127
Python 3
gene expression analysis using, 6
installing 3.6, xviii
keyword-only arguments, 23
matrix multiplication operator (@), 126
vs. ndarrays, 8
versus Python 2, xi
yield keyword, 200-203

Q

quantile normalization
benefits of, 31

biclustering counts data, 37-39
distribution differences between individu-
als, 34-37
log-transforming data, 32
reading data in with pandas, 33
steps of, 31
visualizing clusters, 39-41
questions and comments, xxi, 224

R

radar data, analyzing, 105-121

Rader algorithm, 92

RAGs (region adjacency graphs) (see also
image regions)
degree-normalized Laplacian, 165-170
Laplacian matrix of a graph, 158-164
nodes and links in, 49
producing, 49
segmentation and, 73-76

range bins, 113

range traces, 112

resources
conferences, xiii, 223
GitHub, xv, 222
mailing lists, xviii, 221

right-censored data, 43

RPKM (reads per kilobase transcript per mil-
lion), 1, 24-30

S

Scientific Python ecosystem
community support, Xiii, xvii
(see also resources)
components of, ix-xi
contributing to, xvi
Free and Open Source Software (FOSS), xiii
Monty Python references in, xvii
role of NumPy in, 1
scikit-image
role in Scientific Python ecosystem, xi
SLIC algorithm, 75
scikit-learn
IncrementalPCA class, 214
role in Scientific Python ecosystem, xi
SciPy library
alternatives to, 223
benefits of, x
documentation and tutorials , viii
function optimization in, 177-198
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hierarchical clustering module, 38
linear algebra in, 157-176
meaning of elegant code, vii
prerequisites to learning, viii
quantile normalization with, 31-47
resources
conferences, xiii, 223
GitHub, xv, 222
mailing lists, xviii, 221
role in Scientific Python ecosystem, ix
scipy.fftpack module, 91
scipy.signal.fftconvolve, 91
sparse iterative solvers in, 171
sparse module, 125, 129-133, 176
signal processing
2D (image) filters, 63-66
convolution, 58
filters in, 56-63
Gaussian smoothing, 61
generic filters, 66-68
noisy signals, 59
signal-to-noise ratio (SNR), 63
simple linear iterative clustering (SLIC), 75
sliding window function, 209
Sobel filters, 64, 68
software licenses, xiv
solutions to exercises, 225-246
sparse iterative solvers, 171
sparse matrices
benefits of sparse module for, 125
comparison of formats, 132
compressed sparse row (CSR) format,
130-133
converting NumPy array code to, 147
COO (coordinate) format, 129, 139
image transformations using, 133-139
sparse optimization, comparison of methods,
178
spatial data, converting, 81
spatial frequency, 82
spectrograms, 84-90
stem plots, 83
stream manipulation, 209

streaming data analysis
applications for, 200
benefits of Toolz library for, 200, 203-206
concept underlying, 199
currying data in, 210-212
k-mer counting and error correction,
206-210
k-mer counting of curried functions,
212-214
productivity gained by, 218
stream manipulation, 209
tips for working with, 213
yield keyword, 200-203
survival curves, 43

I

temporal data, converting, 81
3-Clause BSD licenses, xv

Toolz library, 203-206, 209, 212
transcription networks, 68
transition matrices, 172
transition probabilities, 214

true negatives/true positives, 127
trust regions, 177

typographical conventions, xviii

v

variation of information
computing, 125, 141
using, 149-156

vectorization, 10, 33

version control software, xv

visual information theory, 142
(see also information theory)

]

windowing, 100-104, 115-117

Y

yield keyword, 200-203
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song of the male pytilia and because they are louder and larger, the green-winged fos-
ter parents will give them more attention. This brood parasitic nature makes them
difficult to breed in captivity, however, males of this species are often sold as pets in
the U.S. and other countries. The long-tailed paradise whydah is evaluated as Least
Concern.



Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.
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