CCNA Foundations – Day 2

with

Kevin Wallace, CCIEx2 (R/S & Collaboration) #7945

Ethernet Frame Format

IEEE 802.10 Frame

Jumbo Frame

Layer 2 vs. Multilayer Switches

Cisco Catalyst 3650 Series Switch

Cisco Catalyst 2960-X Series Switches

MAC Address Structure

48–Bit MAC Address

MAC Address Table

Populating the MAC Address Table

Layer 2 Forwarding CAM

Security ACLs Quality of Service ACLs TCAM

CAM vs. TCAM

Where should the frame be forwarded? Should the frame be forwarded? With what QoS treatment should the frame be forwarded?

Forwarding Information Base (FIB)

Layer 3 Forwarding FIB

Layer 2 Forwarding CAM

Security ACLs Quality of Service ACLs TCAM

VLAN 10 Sales

VLAN 20 Engineering

VLANs

Router

Trunks

IEEE 802.1Q Trunk

- Adds four tag Bytes to each frame (except the Native VLAN)
- Native VLAN: The one VLAN on a Dot1Q trunk that is untagged.

Port Mirroring

Sniffer

Introduction to Spanning Tree Protocol (STP)

• The time is the mid 80s.

#GameChanger cisco.com/go/gamechanger

Introduction to STP

Radia Perlman

- Working at DEC
- Develops Spanning Tree Protocol (STP)

Institute of Electrical and Electronics Engineers

- 1990
- -IEEE 802.1D

Issues Without STP

Issues Without STP

No TTL

MAC Address Table Corruption

Switch A's MAC Address Table

Gig 1/0/2

Broadcast Storm

Root Bridge: An STP topology has a single *root bridge*. The bridge (or switch) with the lowest *bridge ID* (BID) is elected as the root bridge.

> **Bridge Priority** (0 - 61440)**Default: 32768**

Identifying STP Port States

Network Segment 2 (Ethernet (10 Mbps): Cost = 100)

MAC Address

Port State	Description		Port Speed	STP Port Co
Root Port	The port on a non-root bridge that is closest to the root br	idge, in terms of	10 Mbps	100
	The port on a network segment that is closest to the root bridge, in terms of cost		100 Mbps	19
Designated Port			1 Gbps	4
Non-Designated Port	Ports that block traffic, in order to preserve a loop-free La	yer 2 topology	10 Gbps	2
Disabled Port	A port that is administratively shut down			
MAC Ada F	Aress: 0018.b9ad.2d00 Priority: 32768 Switch A Fa 1/0/2	ر Gig 0/	/9 MAC Address: 0 Priority: Witch B 10	00d.28e4.7c80 32768

Identifying STP Port States

Network Segment 2 (Ethernet (10 Mbps): Cost = 100)

STP Practice Exercise

EtherChannel Basics

- Allows higher bandwidth between switches
- Provides load-balancing
- Creates redundant links

EtherChannel Load-Balancing

Load-Balancing Algorithms

- dst-ip
- dst-mac
- src-dst-ip
- src-dst-mac
- src-ip
- src-mac

Hex	Binary
1	0001
5	0101
D	1101

Link Aggregation Protocols

- PAgP: Port Aggregation Protocol
- LACP: Link Aggregation Control Protocol

Infrastructure Wireless LAN

Client 1

Wireless Access Point

Client 2

Ad Hoc Wireless LAN

Client 1

Client 2

Mesh Wireless LAN

Client 1

Client 2

Omnidirectional Antenna

Yagi **Short Range**

Wireless Frequencies

2.4 GHz - 2.5 GHz Range

5.725 - 5.875 GHz Range

Non-Overlapping 2.4 GHz Channels

Channel I Channel 6

Channel

Wireless Standards

Standard	Frequency Band	Maximum Bandwidth	Transmission Method	Maximum Range
802.11	2.4 GHz	1 or 2 Mbps	DSSS or FHSS	20 m indoors / 100 m outdoors
802.11a	5 GHz	54 Mbps	OFDM	35 m indoors / 120 m outdoors
802.11b	2.4 GHz	11 Mbps	DSSS	32 m indoors / 140 m outdoors
802.11g	2.4 GHz	54 Mbps	OFDM or DSSS	32 m indoors / 140 m outdoors
802.11n	2.4 GHz or 5 GHz (or both)	> 300 Mbps (with channel bonding)	OFDM	70 m indoors / 250 m outdoors
802.11ac	5 GHz	> 6 Gbps (with MU-MIMO and multiple antennas)	OFDM	Similar to 802.11n operating at 5 GHz

media: autoselect (<unknown type>) status: inactive *p2p0: flags=8802<BROADCAST,SIMPLEX,MULTICAST>* mtu 2304 ether 0a:63:df:c2:eb:e1 media: autoselect status: inactive awdl0: flags=8902<BROADCAST, PROMISC, SIMPLEX, MULTICAST> mtu 148 ether fe:e6:bf:b8:93:ab nd6 options=201<PERFORMNUD,DAD> media: autoselect status: inactive flags=8963<UP, BROADCAST, SMART, options=60<TS04,TS06> ether 0a:00:00:a5:87:a0 media: autoselect <full-duplex> status: inactive *s=8963<UP, BROADCAST, SMART, RUNNING, I* tions=60<TS04,TS06> er 0a:00:00:a5:87:a1 : autoselect <full-duplex> ' inactive *863<UP, BROADCAST, SMART, RUNNING, SIMPLEX,* MULTICAST> mtu 1500

DUNCOUN TVCCUM TCAL TCAL

IPv4 Address Formatting

27837th Street

278 37th Street

2783 7th Street

inet6 fe80::caf:c9 inet 192,168,1.40 n nd6 options=201 <per media: autoselect (1 status: active en1: flags=8823<up,broadcast,s ether 88:63:df:c2:eb:e. nd6 options=201<pepeopm< th=""><th>ea:f1fe:5890%en0 prefixlen 64 secured scopeid 0x5 Setmask 0xffffff00 broadcast 192.168.1.255 FORMWUD,DAD> 000baseT <full-duplex,flow-control,en ef="" inie<br="" ogg="">WART,SIMPLEX,MULTICAST> mtu 1500</full-duplex,flow-control,en></th><th>4 Addre</th><th>ess Forr</th><th>natting</th><th></th></pepeopm<></up,broadcast,s </per 	ea:f1fe:5890%en0 prefixlen 64 secured scopeid 0x5 Setmask 0xffffff00 broadcast 192.168.1.255 FORMWUD,DAD> 000baseT <full-duplex,flow-control,en ef="" inie<br="" ogg="">WART,SIMPLEX,MULTICAST> mtu 1500</full-duplex,flow-control,en>	4 Addre	ess Forr	natting	
media: autoselect (<unkn status: inactive p2p0: flags=8802<broadcast,simple, ether 0a:63:df:c2:eb:e1 media: autoselect</broadcast,simple, </unkn 	own type>) X,MULTICAST> mtu 2304		AUX GE D/0/1 GE D/0/1		IE MANUAL BEFORE REMOVING
status: inactive awdl0: flags=8902 <broadcast,promisc ether fe:e6:bf:b8:93:ab nd6 options=201<performnud,d< th=""><th>Dotted Decimal Notation</th><th>10</th><th>1</th><th>2</th><th>3</th></performnud,d<></broadcast,promisc 	Dotted Decimal Notation	10	1	2	3
<i>media: autoselect status: inactive 2: flags=8963<up,broadcast,smart,run< i=""></up,broadcast,smart,run<></i>	IP Address (in binary)	00001010	00000001	00000010	00000011
options=60 <tso4,tso6> ether 0a:00:00:a5:87:a0 media: autoselect <full_dunley></full_dunley></tso4,tso6>	Subnet Mask	11111111	00000000	00000000	00000000
status: inactive		Network Bits		Host Bits	
:=8963<0P, BRUADCAST, SMART, RUNNING, F ions=60 <ts04, ts06=""> : @2:@@:@@:25:07:21</ts04,>	$\frac{1}{2} 2 \cdot \frac{1}{2} \wedge \frac{1}{2}$		Vo Suboot	Information	

- l diddiddiddiddiolial autoselect <full-duplex • 10.1.2.3 /8: IP Address With Prefix Notation inactive
- *R63<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST>* mtu 1500 DVCCIM TVCCIM TCOA TCOC

• IU.I.Z.J. IP Address With NO Subhet Information 10.1.2.3 255.0.0.0: IP Address With Dotted Decimal Notation

IPv4 Address Classes

Address Class	Value in First Octet	Classful Mask (Dotted Decimal)	Classful Mask (Prefix Notation
A	1 - 126	255.0.0.0	/8
В	128 - 191	255.255.0.0	/16
С	192 - 223	255.255.255.0	/24
D	224 - 239	N/A	ask imal)Classful Mask (Prefix Notation0.0/80.0/1655.0/24N/AN/A
Ε	240 - 255	N/A	N/A

Public vs. Private IPv4 Addresses

Address Class	Address Range	Default Subnet Mask
A	10.0.0.0 - 10.255.255.255	255.0.0.0
B	172.16.0.0 - 172.31.255.255	255.255.0.0
B	169.254.0.0 - 169.254.255.255	255.255.0.0
С	192.168.0.0 - 192.168.255.255	255.255.255.0

Unicast

Broadcast

Converting Binary Numbers to Decimal

Dotted Decimal Notation	10		2	3
IP Address (in binary)	00001010	00000001	00000010	00000011
	Octet 1	Octet 2	Octet 3	Octet 4

10.1.2.3

Converting Binary Numbers to Decimal

128	64	32	16	8	4	2	1
1	0	0	1	0	1	1	0

128 + 16 + 4 + 2 = 150

- Is 167 equal to or greater than 128?
- Yes
- Place a 1 in the 128 column • Subtract 128 from 167 = 39

- Is 39 equal to or greater than 64?
- No
- Place a 0 in the 64 column

- Is 39 equal to or greater than 32?
- Yes
- Place a 1 in the 32 column • Subtract 32 from 39 = 7

- Is 7 equal to or greater than 16?
- No
- Place a 0 in the 16 column

- Is 7 equal to or greater than 8?
- No
- Place a 0 in the 8 column

- Is 7 equal to or greater than 4?
- Yes
- Place a 1 in the 4 column • Subtract 4 from 7 = 3

- Is 3 equal to or greater than 2?
- Yes
- Place a 1 in the 2 column • Subtract 2 from 3 = 1

- Is 1 equal to or greater than 1?
- Yes
- Place a 1 in the 1 column
- Subtract 1 from 1 = 0

Given the a binary number of 01101011, calculate the corresponding decimal number.

128	64	32	16	8	4	2	

Practice Exercise #1

Given the a binary number of 01101011, calculate the corresponding decimal number.

64 + 32 + 8 + 2 + 1 = 107

Practice Exercise #1

Given the a decimal number of 49, calculate the corresponding binary number.

128	64	32	16	8	4	2

Given the a decimal number of 49, calculate the corresponding binary number.

128	64	32	16	8	4	2
0	0	1	1	0	0	0

- Is 49 greater than or equal to 128? => No => Put a 0 in the 128 column.
- Is 49 greater than or equal to 64? => No => Put a 0 in the 64 column.
- Is 49 greater than or equal to 32? => Yes => Put a 1 in the 32 column, and subtract 32 from 49 => 49 - 32 = 17
- Is 17 greater than or equal to 16? => Yes => Put a 1 in the 16 column, and subtract 16 from 17 => 17 - 16 = 1
- Is 1 greater than or equal to 8? => No => Put a 0 in the 8 column.
- Is 1 greater than or equal to 4? => No => Put a 0 in the 4 column.
- Is 1 greater than or equal to 2? => No => Put a 0 in the 2 column.
- Is 1 greater than or equal to 1? => Yes => Put a 1 in the 1 column.

Practice Exercise #2

<i>inet6 fe80::caf:c9</i> <i>inet 192,168,1,40 n</i> <i>nd6 options=201<per< i=""> <i>media: autoselect (10</i> <i>status: active</i> <i>en1: flags=8823<up,broadcast,s< i=""> <i>ether 88:63:df:c2:eb:ei</i></up,broadcast,s<></i></per<></i>	<i>ea:f1fe:5890%en0 prefixlen 64 secured scopeid 0x5 etmask 0xffffff00 broadcast 192.168.1.255 FORMWUD,DAD> 000baseT <full-duplex,flow-control,energy-efficien MART,SIMPLEX,MULTICAST> mtu 1500 1</full-duplex,flow-control,energy-efficien </i>	t-et Netwo	rk Addro	ess	
<i>nd6 options=201<perform media: autoselect (<unkn status: inactive p2p0: flags=8802<broadcast,simple) ether 0a:63:df:c2:eb:e1 media: autoselect</broadcast,simple) </unkn </perform </i>	NUD,DAD> own type>) X,MULTICAST> mtu 2304		AUX GE 0/0/1 GE 0/0/1 CONSOLE EN CONSOLE EN CONSOLE EN CONSOLE EN CONSOLE		
status: inactive awdl0: flags=8902 <broadcast,promisc ether fe:e6:bf:b8:93:ab nd6 ontions=201<pfrformnud d<="" th=""><th>IP Address (Decimal)</th><th>10</th><th>1</th><th>2</th><th>3</th></pfrformnud></broadcast,promisc 	IP Address (Decimal)	10	1	2	3
media: autoselect status: inactive	IP Address (Binary)	00001010	00000001	00000010	00000011
en2: flags=8963 <up,bruadcast,smart,runn options=60<tso4,tso6> ether 0a:00:00:a5:87:a0</tso4,tso6></up,bruadcast,smart,runn 	Subnet Mask (Binary)	11111111	00000000	00000000	00000000
<i>media: autoselect <full-duplex></full-duplex></i> <i>status: inactive</i>	Subnet Mask (Decimal)	255	0	0	0
tions=60 <ts04.ts06></ts04.ts06>	Network Address (Binary)	00001010	00000000	00000000	00000000
or 0a:00:00:a5:87:a1	Network Address (Decimal)	10	0	0	0
inactive					

863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 DVCCUM TVCCUM TCOA TCOGS

inet 192.168.1.40 netmask 0xffffff00 broadcast 192.168.1.255 nd6 options=201 <performud,dad> media: autoselect (1000baseT <full-duplex,flow-co status: active en1: flags=8823<up,broadcast,smart,simplex,multicast> mtu ether 88:63;df;c2:eb:e1</up,broadcast,smart,simplex,multicast></full-duplex,flow-co </performud,dad>					S
nd6 options=201 <performnud,dad> media: autoselect (<unknown type="">) status: inactive p2p0: flags=8802<broadcast,simplex,multicast> mtu 2304 ether 0a:63:df:c2:eb:e1 media: autoselect</broadcast,simplex,multicast></unknown></performnud,dad>			AUX GE 0/0/1 GE 0/0/1		
status: inactive awdl0: flags=8902 <broadcast,promisc ether fe:e6:bf:b8:93:ab nd6 ontions=201<pfrformnud.d.< th=""><th>IP Address (Decimal)</th><th>10</th><th>1</th><th>2</th><th>3</th></pfrformnud.d.<></broadcast,promisc 	IP Address (Decimal)	10	1	2	3
media: autoselect status: inactive n2: flags=8963 <up,broadcast,smart,runn options=60<tso4,tso6> ether 0a:00:00:a5:87:a0 media: autoselect <full-duplex> status: inactive s=8963<up,broadcast,smart,running,< th=""><th>IP Address (Binary)</th><th>00001010</th><th>00000001</th><th>00000010</th><th>00000011</th></up,broadcast,smart,running,<></full-duplex></tso4,tso6></up,broadcast,smart,runn 	IP Address (Binary)	00001010	00000001	00000010	00000011
	Subnet Mask (Binary)	11111111	00000000	00000000	00000000
	Subnet Mask (Decimal)	255	0	0	0
	Directed Broadcast Address (Binary)	00001010	11111111	11111111	11111111
r 0a:00:00:a5:87:a1 autoselect <full-duplex></full-duplex>	Directed Broadcast Address (Decimal)	10	255	255	255

863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 DVCCIM TVCCIM TCOA TCOC

• IP Address: 10.1.2.3

- Subnet Mask: 255.0.0.0
- Network Address: 10.0.0.0 /8
- Directed Broadcast: 10.255.255.255

The Need for Subnetting

Address Class	A
A	
B	
С	

Network: 192.0.2.0 /24

Assignable IP Addresses

16,777,214 (i.e. 2²⁴ - 2) 65,534 (i.e. 2¹⁶ - 2) 254 (i.e. 2⁸ - 2)

Wasted IP Addresses: 192.168.1.3 - 192.168.1.254

The Need for Subnetting

Network Address	Octet 1	Octet 2	Octet 3	Octet 4
192.168.1.0 /24	11000000	10101000	000 <mark>00001</mark>	00000000
192.168.14.0 /24	11000000	10101000	<mark>000</mark> 01110	0000000
192.168.25.0 /24	11000000	10101000	<mark>000</mark> 11001	0000000
192.168.30.0 /24	11000000	10101000	<mark>000</mark> 11110	0000000
	All Networks	Have Their First	19	

Subnet Mask (Binary)	11111111	11111111	11100000	00000000
Subnet Mask (Decimal)	255	255	224	0
Network Address (Binary)	11000000	10101000	0000000	0000000
Network Address (Decimal)	192	168	0	0
Directed Broadcast Address (Binary)	11000000	10101000	00011111	11111111
Directed Broadcast Address (Decimal)	192	168	31	255

Bits In Common

Dotted Decimal Notation	Prefix Notation
255.0.0.0	/8 (Classful Subnet Mask for Class A Networks)
255.128.0.0	/9
255.192.0.0	/10
255.224.0.0	/11
255.240.0.0	/12
255.248.0.0	/13
255.252.0.0	/14
255.254.0.0	/15
255.255.0.0	/16 (Classful Subnet Mask for Class B Networks)
255.255.128.0	/17
255.255.192.0	/18
255.255.224.0	/19
255.255.240.0	/20
255.255.248.0	/21
255.255.252.0	/22
255.255.254.0	/23
255.255.255.0	/24 (Classful Subnet Mask for Class C Networks)
255.255.255.128	/25
255.255.255.192	/26
255.255.224	/27
255.255.240	/28
255.255.248	/29
255.255.252	/30

Subnet Octet Value

0	0
128	1
192	2
224	3
240	4
248	5
252	6
254	7
255	8

Number of Left-Justified 1s

Calculating Available Subnets

Number of Created Subnets = 2^{s} (where s is the number of borrowed bits)

Example

• A subnet mask of 255.255.255.224 is applied to a Class C network of 192.168.1.0 /24.

How many subnets are created?

Network Class?

- C
- Natural Mask?
- /24
- Subnet Mask?
- 225.255.255.224
- /27
- Borrowed Bits?
- 3
- Number of Subnets?
- $2^3 =$

Calculating Available Subnets

Subnet	Mask	Host Range
192.168.1.0	255.255.255.224	192.168.1.1 - 192.168.1.30
192.168.1.32	255.255.255.224	192.168.1.33 - 192.168.1.62
192.168.1.64	255.255.255.224	192.168.1.65 - 192.168.1.94
192.168.1.96	255.255.255.224	192.168.1.97 - 192.168.1.126
192.168.1.128	255.255.255.224	192.168.1.129 - 192.168.1.158
192.168.1.160	255.255.255.224	192.168.1.161 - 192.168.1.190
192.168.1.192	255.255.255.224	192.168.1.193 - 192.168.1.222
192.168.1.224	255.255.255.224	192.168.1.225 - 192.168.1.254

Calculating Available Hosts

Number of Assignable IP Addresses in a Subnet = 2^h - 2 (where h is the number of host bits)

Why Subtract 2?

• You cannot assign the network address, where all host bits are set to 0

• You cannot assign the directed broadcast address, where all the host bits are set to 1

Example

• A subnet mask of 255.255.255.224 is applied to a Class C network of 192.168.1.0 /24 How many hosts can be assigned in each subnet?

Subnet	Mask	Host Range
192.168.1.0	255.255.255.224	192.168.1.1 - 192.168.1.30
192.168.1.32	255.255.255.224	192.168.1.33 - 192.168.1.62
192.168.1.64	255.255.255.224	192.168.1.65 - 192.168.1.94
192.168.1.96	255.255.255.224	192.168.1.97 - 192.168.1.126
192.168.1.128	255.255.255.224	192.168.1.129 - 192.168.1.158
192.168.1.160	255.255.255.224	192.168.1.161 - 192.168.1.190
192.168.1.192	255.255.255.224	192.168.1.193 - 192.168.1.222
192.168.1.224	255.255.255.224	192.168.1.225 - 192.168.1.254

Calculating Available Hosts

Practice Exercise #3

Your company has been assigned the 172.20.0.0/16 network for use at one of its sites. You need to use a subnet mask that will accommodate 47 subnets while simultaneously accommodating the maximum number of hosts per subnet. What subnet mask will you use?

Borrowed Bits	Number of Subnets Created (2 ^s , where s is the number of borrowed bits)
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096

Practice Exercise #3

To determine how many borrowed bits are required to accommodate 47 subnets, you can write out a table that shows the powers of 2.

Borrowed Bits	Number of Subnets Created (2 ^s , where s is the number of borrowed bits)
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096

- You want to support 47 subnets.
- Five borrowed bits are not enough.
- Six borrowed bits are more than enough.
- Since five borrowed bits are not enough, you round up and use six borrowed bits.
- The first octet in the network address 172.20.0.0 has a value of 172, meaning that you are dealing with a Class B address. Since a Class B address has sixteen bits in its classful mask, you can add the six borrowed bits to the 16-bit classful mask, resulting in a 22-bit subnet mask.
- You can conclude that to meet the scenario's requirements, you should use a subnet mask of /22, which could also be written as 255.255.252.0.

Your company has been assigned the 172.20.0.0/16 network for use at one of its sites. You need to calculate a subnet mask that will accommodate 100 hosts per subnet while maximizing the number of available subnets What subnet mask will you use?

Host Bits	Number of Supported Hosts (2 ^h - 2, where <i>h</i> is the number of host bits)
2	2
3	6
4	14
5	30
6	62
7	126
8	254
9	510
10	1022
11	2046
12	4094

To determine how many host bits are required to accommodate 100 hosts, you can write out a table that shows the number of hosts supported by a specific number of hosts bits.

Host Bits	Number of Supported Hosts (2 ^h - 2, where <i>h</i> is the number of host bits)
2	2
3	6
4	14
5	30
6	62
7	126
8	254
9	510
10	1022
11	2046
12	4094

- You want to support 100 hosts.
- Six host bits are not enough.
- Seven host bits are more than enough.
- Since six host bits are not enough, you round up and use seven host bits.
- Since an IPv4 address has 32 bits, and you need seven host bits, you can calculate the number of subnet bits by subtracting the seven host bits from 32 (that is, the total number of bits in an IPv4 address). This results in a 25-bit subnet mask (that is, 32 total bits - 7 host bits = 25 subnet mask bits).
- Therefore, you can conclude that to meet the scenario's requirements, you should use a subnet mask of /25, which could also be written as 255.255.255.128.

Benefits of IPv6

- Increased address space: 5 X 10²⁸ addresses for each person on the planet
- Simplified header
 - IPv4 Header: 12 Fields
 - IPv6 Header: 8 Fields
- No broadcasts
- Security and mobility features built-in
- No fragmentation: MTU discovery is performed for each session
- Can coexist with IPv4 during a migration
- Dual stack
- IPv6 over IPv4

IPv6 Address Structure

- IPv6 address structure
- 32 hexadecimal digits X 4 bits per digit = 128 bits
- Example: 200A:0123:4040:0000:0000:0000:000A:000B

XXX.XXXXXXXXX er in the range 0 – F) digit = 128 bits 000:0000:000A:000B

IPv6 Address Abbreviation Rules

 Leading zeros in a field can be omitted. colon. (NOTE: This can only be done once for a single IPv6 address.)

Example

- Full Address: 2345:0123:4040:0000:0000:0000:000A:000B
- Abbreviated Address: 2345:123:4040::A:B

Contiguous fields containing all zeros can be represented with a double

Class Exercise: Abbreviate the IPv6 Address

2000:0000:0000:1234:0000:0000:000B

Unicast

Destination IPv6 Address FF04::10 Video Server

Multicast

Dual Stack

IPv4 and IPv6 (Dual Stack)

Client

IPv4

Tunneling IPv6 Through an IPv4 Network

Only needed during a network's migration to IPv6

IPv4 and IPv6 Support

IPv4 Support

IPv4 and IPv6 Support

Selecting a Routing Protocol

- Vendor Interoperability
- Familiarity
- Convergence
- Summarization

Summarization

10.0.0.0 /24 10.0.1.0 /24 10.0.2.0 /24 10.0.3.0 /24

3 rd Octet Value	128	64	32	16	8	4	2	1
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	1	1

6 Bits in Common in the 3rd Octet

3rd Octet

IGPs vs. EGPs

Company A

AS: 65000

IGPs:

- RIP
- OSPF
- EIGRP

ISP 1 AS: 65100

ISP 2

AS: 65200

EGP: • BGP

Protocol Classification

Routing Protocol	Distance-Vector	Link-State	Path-Vector
RIP			
OSPF			
EIGRP			
BGP			

RIP Characteristics

- Hop Count
- Full & Triggered Updates
- Split Horizon
- Poison Reverse

RIPv1

RIPv2

- Broadcasts
- No VLSM Support

• IPv4

- Multicasts (224.0.0.9)
- VLSM Support
- IPv4

RIPng

Multicasts (FF02::9)
IPv6

https://kwtrain.com/ccnabundle

16 Hours of Recorded Live Training
4 Hours of Recorded "Office Hours"
Double CCIE Instructor
Downloadable Videos
Packet Tracer Labs
Practice Exam Questions
Course Slides

BONUSES:

EIGRP Crash Course (\$49)
OSPF Crash Course (\$49)
STP Crash Course (\$49)
CCNA IP Subnetting Simplified (\$49)
CCNA Foundations (\$197)
That's \$393 of BONUS Training

Total Value: \$640