Tools and Techniques for
Linux and Unix Administration

Essential

System

‘I.
?!Iljll'

Administration

O, REI LLY® Aleen Frisch

Unix/System Administration

O’REILLY*

Essential System Administration

Since its first printing in October 1991, Essential System Administration has been the
definitive practical guide for Unix and Linux system administrators. The book talks
about all the usual administrative tools that Unix and Linux provide—and also shows

how to use those tools in smarter and more efficient ways.

Author /leen Frisch expands coverage of networking, electronic mail, security, and kernel con-
figuration—topics of increasing importance to administrators. It also includes coverage of services
such as LDAP, PAM, DHCP, and DNS, and discussions of many important open source tools, includ-
ing SSH, Cfengine, Amanda, RRDTool, and Cricket. The latest versions of all major Unix platforms,
including Red Hat Linux 7.3 and SuSE Linux 8, Solaris 8 and 9, FreeBSD 4.6, AIX 5, HP-UX 11 and
11i, and Tru64 5.1, have been thoroughly reviewed and tested.

You will find this book indispensable whether you are responsible for a large, shared computer sys-
tem or a network of workstations, or you use a standalone Unix or Linux system and have found
that the fine line between a user and an administrator has vanished. And even if you aren’t directly
or solely responsible for system administration, you'll find that understanding important administra-
tive functions will greatly increase your ability to use Unix effectively.

“Aleen is a master at teaching system administration. The third edition of Essential System
Administration covers the bases of administering the many flavors of Unix and Linux. If
your site is one of the many non-vanilla shops, you really need this book.”

—Tina Darmohray, Information Warehouse, Inc.

“This book is ‘essential’in more ways than one. For system administrators looking to bring
Linux into a Unix environment (or to migrate from Unix to Linux), the details are all there.
It is equally a great book for those thinking about becoming system administrators. Bul
perbaps most impressively, it is an accessible book for people who use Unix or Linux and
want to learn bow to get the most out of their system. A true example of what great techni-
cal writing can be, and the standard that O’'Reilly sets as a publisher.”

—Michael Tiemann, Chief Information Officer, Red Hat, Inc.

“This update of a classic is a great introduction to the Unix altitude, the system administrator’s
attitude, and the practical details of managing Unix systems of a wide variety of types. It’s a
great introduction if you're new to Unix or to system administration, and a great reference
if you've been around a while and just want to look up a few details.”

—Elizabeth Zwicky, Consultant and former president of SAGE

www.oreilly.com

US $54.95 CAN $85.95
ISBN-10: 0-596-00343-9
ISBN-13: 978-0-596-00343-2

3 3:4:9:5
(I

Vo5 ioass ol I NI

Essential System
Administration

THIRD EDITION

Essential System
Administration

Aleen Frisch

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Essential System Administration, Third Edition
by Aleen Frisch

Copyright © 2002, 1995, 1991 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Michael Loukides
Production Editor: Leanne Clarke Soylemez
Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:
August 2002: Third Edition.
September 1995: Second Edition.
October 1991: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. Essential System Administration, Third Edition, the image of an
armadillo, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations
used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Frisch, AEleen
Essential System Administration/by AEleen Frisch.--3rd ed.
p. cm.
Includes index.
ISBN 0-596-00343-9
ISBN13 978-0-596-00343-2
1. UNIX (Computer file) 2. Operating systems (Computers) L. Title.

QA76.76.063 F75 2002
005.4'32--dc21 2002023321

M] [05/07]

For Frank Willison

“Part of the problem is passive-aggressive
behavior, my pet peeve and béte noire, and I don’t
like it either. Everyone should get off their high
horse, particularly if that horse is my béte noire.
We all have pressures on us, and nobody’s

pressure is more important than anyone else’s.”

sk

“Thanks also for not lending others your O’Reilly
books. Let others buy them. Buyers respect their
books. You seem to recognize that ‘lend’ and ‘lose’
are synonyms where books are concerned. If
had been prudent like you, I would still
have Volume 3 (Cats—Dorc) of the
Encyclopedia Britannica.”

Preface

1.

Table of Contents

Introduction to System Administration

Thinking About System Administration
Becoming Superuser

Communicating with Users

About Menus and GUIs

Where Does the Time Go?

TheUnixWay

Files
Processes
Devices

Essential Administrative Tools and Techniques

Getting the Most from Common Commands
Essential Administrative Techniques

Startup and Shutdown,

About the Unix Boot Process

Initialization Files and Boot Scripts

Shutting Down a Unix System

Troubleshooting: Handling Crashes and Boot Failures

TCP/IP Networking

Understanding TCP/IP Networking
Adding a New Network Host
Network Testing and Troubleshooting

12
14
31

33
53
61

74
90

127
151
169
173

180
202
219

vii

6. ManagingUsersandGroups 222

Unix Users and Groups 222
Managing User Accounts 237
Administrative Tools for Managing User Accounts 256
Administering User Passwords 277
User Authentication with PAM 302
LDAP: Using a Directory Service
for User Authentication 313
7. SeCUNtY ... 330
Prelude: What’s Wrong with This Picture? 331
Thinking About Security 332
User Authentication Revisited 339
Protecting Files and the Filesystem 348
Role-Based Access Control 366
Network Security 373
Hardening Unix Systems 387
Detecting Problems 391
8. Managing Network Services 414
Managing DNS Servers 414
Routing Daemons 452
Configuring a DHCP Server 457
Time Synchronization with NTP 469
Managing Network Daemons under AIX 475
Monitoring the Network 475
9. ElectronicMail 521
About Electronic Mail 521
Configuring User Mail Programs 532
Configuring Access Agents 537
Configuring the Transport Agent 542
Retrieving Mail Messages 596
Mail Filtering with procmail 599
A Few Final Tools 614
10. FilesystemsandDisks 616
Filesystem Types 617
Managing Filesystems 621

viii | Table of Contents

11.

12.

13.

14.

From Disks to Filesystems
Sharing Filesystems

BackupandRestore,
Planning for Disasters and Everyday Needs

Backup Media

Backing Up Files and Filesystems

Restoring Files from Backups

Making Table of Contents Files

Network Backup Systems

Backing Up and Restoring
the System Filesystems

Serial Linesand Devicesl
About Serial Lines

Specifying Terminal Characteristics

Adding a New Serial Device

Troubleshooting Terminal Problems

Controlling Access to Serial Lines

HP-UX and Tru64 Terminal Line Attributes

The HylaFAX Fax Service

USB Devices

Printers and the Spooling Subsystem
The BSD Spooling Facility

System V Printing

The AIX Spooling Facility

Troubleshooting Printers

Sharing Printers with Windows Systems

LPRng

CUPS

Font Management Under X

Automating Administrative Tasks
Creating Effective Shell Scripts

Perl: An Alternate Administrative Language

Expect: Automating Interactive Programs

When Only C Will Do

Automating Complex Configuration Tasks with Cfengine

634
694

707
717
726
736
742
744

759

766
769
776
794
796
797
799
807

818
829
848
858
860
864
874
878

886
899
911
919
921

Table of Contents

Afterword: The Profession of System Administration

15.

16.

17.

Stem: Simplified Creation of Client-Server Applications
Adding Local man Pages

Managing System Resources

Thinking About System Performance
Monitoring and Controlling Processes
Managing CPU Resources

Managing Memory

Disk I/O Performance Issues

Monitoring and Managing Disk Space Usage
Network Performance

Configuring and BuildingKernels

FreeBSD and Tru64
HP-UX

Linux

Solaris

AIX System Parameters

Accounting

Standard Accounting Files

BSD-Style Accounting: FreeBSD, Linux, and AIX
System V-Style Accounting: AIX, HP-UX, and Solaris
Printing Accounting

SAGE: The System Administrators Guild
Administrative Virtues

X

Table of Contents

Preface

This book is an agglomeration of lean-tos and annexes
and there is no knowing how big the next addition will
be, or where it will be put. At any point, I can call the
book finished or unfinished.

—Alexander Solzhenitsyn

A poem is never finished, only abandoned.
—Paul Valery

This book covers the fundamental and essential tasks of Unix system administra-
tion. Although it includes information designed for people new to system administra-
tion, its contents extend well beyond the basics. The primary goal of this book is to
make system administration on Unix systems straightforward; it does so by provid-
ing you with exactly the information you need. As I see it, this means finding a mid-
dle ground between a general overview that is too simple to be of much use to
anyone but a complete novice, and a slog through all the obscurities and eccentrici-
ties that only a fanatic could love (some books actually suffer from both these condi-
tions at the same time). In other words, I won’t leave you hanging when the first
complication arrives, and I also won’t make you wade through a lot of extraneous
information to find what actually matters.

This book approaches system administration from a task-oriented perspective, so it
is organized around various facets of the system administrator’s job, rather than
around the features of the Unix operating system, or the workings of the hardware
subsystems in a typical system, or some designated group of administrative com-
mands. These are the raw materials and tools of system administration, but an effec-
tive administrator has to know when and how to apply and deploy them. You need
to have the ability, for example, to move from a user’s complaint (“This job only
needs 10 minutes of CPU time, but it takes it three hours to get it!”) through a diag-
nosis of the problem (“The system is thrashing because there isn’t enough swap
space”), to the particular command that will solve it (swap or swapon). Accordingly,
this book covers all facets of Unix system administration: the general concepts,

Xi

underlying structure, and guiding assumptions that define the Unix environment, as
well as the commands, procedures, strategies, and policies essential to success as a
system administrator. It will talk about all the usual administrative tools that Unix
provides and also how to use them more smartly and efficiently.

Naturally, some of this information will constitute advice about system administra-
tion; I won’t be shy about letting you know what my opinion is. But I'm actually
much more interested in giving you the information you need to make informed
decisions for your own situation than in providing a single, univocal view of the
“right way” to administer a Unix system. It’s more important that you know what
the issues are concerning, say, system backups, than that you adopt anyone’s spe-
cific philosophy or scheme. When you are familiar with the problem and the poten-
tial approaches to it, you'll be in a position to decide for yourself what’s right for
your system.

Although this book will be useful to anyone who takes care of a Unix system, I have
also included some material designed especially for system administration profes-
sionals. Another way that this book covers essential system administration is that it
tries to convey the essence of what system administration is, as well as a way of
approaching it when it is your job or a significant part thereof. This encompasses
intangibles such as system administration as a profession, professionalism (not the
same thing), human and humane factors inherent in system administration, and its
relationship to the world at large. When such issues are directly relevant to the pri-
mary, technical content of the book, I mention them. In addition, I've included other
information of this sort in special sidebars (the first one comes later in this Preface).
They are designed to be informative and thought-provoking and are, on occasion,
deliberately provocative.

The Unix Universe

More and more, people find themselves taking care of multiple computers, often
from more than one manufacturer; it’s quite rare to find a system administrator who
is responsible for only one system (unless he has other, unrelated duties as well).
While Unix is widely lauded in marketing brochures as the “standard” operating sys-
tem “from microcomputers to supercomputers”—and I must confess to having writ-
ten a few of those brochures myself—this is not at all the same as there being a
“standard” Unix.At this point, Unix is hopelessly plural, and nowhere is this plural-
ity more evident than in system administration. Before going on to discuss how this
book addresses that fact, let’s take a brief look at how things got to be the way they
are now.

Figure P-1 attempts to capture the main flow of Unix development. It illustrates a sim-
plified Unix genealogy, with an emphasis on influences and family relationships
(albeit Faulknerian ones) rather than on strict chronology and historical accuracy. It

xi | Preface

traces the major lines of descent from an arbitrary point in time: Unix Version 6 in
1975 (note that the dates in the diagram refer to the earliest manifestation of each
version). Over time, two distinct flavors (strains) of Unix emerged from its beginnings
at AT&T Bell Laboratories—which I'll refer to as System V and BSD—but there was
also considerable cross-influence between them (in fact, a more detailed diagram
would indicate this even more clearly).

AT&T Bell Labs

— - (fjrect descent (c.1969-1970)

------ - strong influence

Version 6 I
(1975)

BSD
(1977) H

Version 7
(1979)

v

XENIX
(1979 onward)

ey »| Systemlil
(1982)

System V.2
(1984)

4.3BSD System V.3

(1985) i i (1986)
]]
L
i)
vy
0SF/1 System V.4
(c1992) (1988)

Figure P-1. Unix genealogy (simplified)

For a Unix family tree at the other extreme of detail, see http://perso.
wanadoo.fr/levenez/unix/. Also, the opening chapters of Life with UNIX,
by Don Libes and Sandy Ressler (PTR Prentice Hall), give a very enter-
taining overview of the history of Unix. For a more detailed written his-
tory, see A Quarter Century of UNIX by Peter Salus (Addison-Wesley).

Preface | xiii

The split we see today between System V and BSD occurred after Version 6.” devel-
opers at the University of California, Berkeley, extended Unix in many ways, adding
virtual memory support, the C shell, job control, and TCP/IP networking, to name
just a few. Some of these contributions were merged into the AT&T code lines at
various points.

System V Release 4 was often described as a merger of the System V and BSD lines,
but this is not quite accurate. It incorporated the most important features of BSD
(and SunOS) into System V. The union was a marriage and not a merger, however,
with some but not all characteristics from each parent dominant in the offspring (as
well as a few whose origins no one is quite sure of).

The diagram also includes OSF/1.

In 1988, Sun and AT&T agreed to jointly develop future versions of System V. In
response, IBM, DEC, Hewlett-Packard, and other computer and computer-related
companies and organizations formed the Open Software Foundation (OSF), design-
ing it with the explicit goal of producing an alternative, compatible, non-AT&T-
dependent, Unix-like operating system. OSF/1 is the result of this effort (although its
importance is more as a standards definition than as an actual operating system
implementation).

The proliferation of new computer companies throughout the 1980s brought dozens
of new Unix systems to market—Unix was usually chosen as much for its low cost
and lack of serious alternatives as for its technical characteristics—and also as many
variants. These vendors tended to start with some version of System V or BSD and
then make small to extensive modifications and customizations. Extant operating
systems mostly spring from System V Release 3 (usually Release 3.2), System V
Release 4, and occasionally 4.2 or 4.3 BSD (SunOS is the major exception, derived
from an earlier BSD version). As a further complication, many vendors freely inter-
mixed System V and BSD features within a single operating system.

Recent years have seen a number of efforts at standardizing Unix. Competition has
shifted from acrimonious lawsuits and countersuits to surface-level cooperation in
unifying the various versions. However, existing standards simply don’t address sys-
tem administration at anything beyond the most superficial level. Since vendors are
free to do as they please in the absence of a standard, there is no guarantee that

* The movement from Version 7 to System III in the System V line is a simplification of strict chronology and
descent. System III was derived from an intermediate release between Version 6 and Version 7 (CB Unix),
and not every Version 7 feature was included in System III. A word about nomenclature: The successive
releases of Unix from the research group at Bell Labs were originally known as “editions”—the Sixth Edition,
for example—although these versions are now generally referred to as “Versions.” After Version 6, there are
two distinct sets of releases from Bell Labs: Versions 7 and following (constituting the original research line),
and System III through System V (commercial implementations started from this line). Later versions of Sys-
tem V are called “Releases,” as in System V Release 3 and System V Release 4.

xiv | Preface

system administrative commands and procedures will even be similar under differ-
ent operating systems that uphold the same set of standards.

Unix Versions Discussed in This Book

How do you make sense out of the myriad of Unix variations? One approach is to
use computer systems only from a single vendor. However, since that often has other
disadvantages, most of us end up having to deal with more than one kind of Unix
system. Fortunately, taking care of n different kinds of systems doesn’t mean that
you have to learn as many different administrative command sets and approaches.
Ultimately, we get back to the fact that there are really just two distinct Unix variet-
ies; it’s just that the features of any specific Unix implementation can be an arbitrary
mixture of System V and BSD features (regardless of its history and origins). This
doesn’t always ensure that there are only two different commands to perform the
same administrative function—there are cases where practically every vendor uses a
different one—but it does mean that there are generally just two different approaches
to the area or issue. And once you understand the underlying structure, philosophy,
and assumptions, learning the specific commands for any given system is simple.

When you recognize and take advantage of this fact, juggling several Unix versions
becomes straightforward rather than impossibly difficult. In reality, lots of people do
it every day, and this book is designed to reflect that and to support them. It will also
make administering heterogeneous environments even easier by systematically pro-
viding information about different systems all in one place.

System V.3

| OSF/1 I | SystemV4 h

FreeBSD

1 - unixdefinition
O - UNIX implementation

Figure P-2. Unix versions discussed in this book

Preface | xv

The Unix versions covered by this book appear in Figure P-2, which illustrates the
influences on the various operating systems, rather than their actual origins. If the ver-
sion on your system isn’t one of them, don’t despair. Read on anyway, and you’ll find
that the general information given here applies to your system as well in most cases.

The specific operating system levels covered in this book are:

* AlX Version 5.1

* FreeBSD Version 4.6 (with a few glances at the upcoming Version 5)
* HP-UX Version 11 (including many Version 11i features)

* Linux: Red Hat Version 7.3 and SuSE Version 8

* Solaris Versions 8 and 9

* Tru64 Version 5.1

This list represents some changes from the second edition of this book. We've
dropped SCO Unix and IRIX and added FreeBSD. I decided to retain Tru64 despite
the recent merger of Compaq and Hewlett-Packard, because it’s likely that some
Tru64 features will eventually make their way into future HP-UX versions.

When there are significant differences between versions, I’ve made extensive use of
headers and other devices to indicate which version is being considered. You’ll find it
easy to keep track of where we are at any given point and even easier to find out the
specific information you need for whatever version you’re interested in. In addition,
the book will continue to be useful to you when you get your next, different Unix
system—and sooner or later, you will.

The book also covers a fair amount of free software that is not an official part of any
version of Unix. In general, the packages discussed can be built for any of the dis-
cussed operating systems.

Audience

This book will be of interest to:

* Full or part-time administrators of Unix computer systems. The book includes
help both for Unix users who are new to system administration and for experi-
enced system administrators who are new to Unix.

* Workstation and microcomputer users. For small, standalone systems, there is
often no distinction between the user and the system administrator. And even if
your workstation is part of a larger network with a designated administrator, in
practice, many system management tasks for your workstation will be left to
you.

* Users of Unix systems who are not full-time system managers but who perform
administrative tasks periodically.

xi | Preface

Why Vendors Like Standards

Standards are supposed to help computer users by minimizing the differences between
products from different vendors and ensuring that such products will successfully
work together. However, standards have become a weapon in the competitive arsenal
of computer-related companies, and vendor product literature and presentations are
often a cacophony of acronyms. Warfare imagery dominates discussions comparing
standards compliance rates for different products.

For vendors of computer-related products, upholding standards is in large part moti-
vated by the desire to create a competitive advantage. There is nothing wrong with
that, but it’s important not to mistake it for the altruism that it is often purported to
be. “Proprietary” is a dirty word these days, and “open systems” are all the rage, but
that doesn’t mean that what’s going on is anything other than business as usual.

Proprietary features are now called “extensions” and “enhancements,” and defining
new standards has become a site of competition. New standards are frequently created
by starting from one of the existing alternatives, vendors are always ready to argue for
the one they developed, and successful attempts are then touted as further evidence of
their product’s superiority (and occasionally they really are).

Given all of this, though, we have to at least suspect that it is not really in most vendors’
interest for the standards definition process to ever stop.

This book assumes that you are familiar with Unix user commands: that you know
how to change the current directory, get directory listings, search files for strings,
edit files, use I/0O redirection and pipes, set environment variables, and so on. It also
assumes a very basic knowledge of shell scripts: you should know what a shell script
is, how to execute one, and be able to recognize commonly used features like if state-
ments and comment characters. If you need help at this level, consult Learning the
UNIX Operating System, by Grace Todino-Gonguet, John Strang, and Jerry Peek,
and the relevant editions of UNIX in a Nutshell (both published by O’Reilly & Asso-
ciates).

If you have previous Unix experience but no administrative experience, several sec-
tions in Chapter 1 will show you how to make the transition from user to system
manager. If you have some system administration experience but are new to Unix,
Chapter 2 will explain the Unix approach to major system management tasks; it will
also be helpful to current Unix users who are unfamiliar with Unix file, process, or
device concepts.

This book is not designed for people who are already Unix wizards. Accordingly, it
stays away from topics like writing device drivers.

Preface | xvii

Organization

This book is the foundation volume for O’Reilly & Associates’ system administra-
tion series. As such, it provides you with the fundamental information needed by
everyone who takes care of Unix systems. At the same time, it consciously avoids try-
ing to be all things to all people; the other books in the series treat individual topics
in complete detail. Thus, you can expect this book to provide you with the essentials
for all major administrative tasks by discussing both the underlying high-level con-
cepts and the details of the procedures needed to carry them out. It will also tell you
where to get additional information as your needs become more highly specialized.

These are the major changes in content with respect to the second edition (in addi-
tion to updating all material to the most recent versions of the various operating sys-
tems):

* Greatly expanded networking coverage, especially of network server administra-
tion, including DHCP, DNS (BIND 8 and 9), NTP, network monitoring with
SNMP, and network performance tuning.

* Comprehensive coverage of email administration, including discussions of send-
mail, Postfix, procmail, and setting up POP3 and IMAP.

* Additional security topics and techniques, including the secure shell (ssh), one-
time passwords, role-based access control (RBAC), chroot jails and sandboxing,
and techniques for hardening Unix systems.

* Discussions of important new facilities that have emerged in the time since the
second edition. The most important of these are LDAP, PAM, and advanced file-
system features such as logical volume managers and fault tolerance features.

* Overviews and examples of some new scripting and automation tools, specifi-
cally Cfengine and Stem.

* Information about device types that have become available or common on Unix
systems relatively recently, including USB devices and DVD drives.

* Important open source packages are covered, including the following additions:
Samba (for file and printer sharing with Windows systems), the Amanda enter-
prise backup system, modern printing subsystems (LPRng and CUPS), font man-
agement, file and electronic mail encryption and digital signing (PGP and
GnuPG), the HylaFAX fax service, network monitoring tools (including RRD-
Tool, Cricket and NetSaint), and the GRUB boot loader.

Chapter Descriptions

The first three chapters of the book provide some essential background material
required by different types of readers. The remaining chapters generally focus on a
single administrative area of concern and discuss various aspects of everyday system
operation and configuration issues.

xvii | Preface

Chapter 1, Introduction to System Administration, describes some general principles
of system administration and the root account. By the end of this chapter, you’ll be
thinking like a system administrator.

Chapter 2, The Unix Way, considers the ways that Unix structure and philosophy
affect system administration. It opens with a description of the man online help facil-
ity and then goes on to discuss how Unix approaches various operating system func-
tions, including file ownership, privilege, and protection; process creation and
control; and device handling. This chapter closes with an overview of the Unix sys-
tem directory structure and important configuration files.

Chapter 3, Essential Administrative Tools and Techniques, discusses the administra-
tive uses of Unix commands and capabilities. It also provides approaches to several
common administrative tasks. It concludes with a discussion of the cron and syslog
facilities and package management systems.

Chapter 4, Startup and Shutdown, describes how to boot up and shut down Unix sys-
tems. It also considers Unix boot scripts in detail, including how to modify them for
the needs of your system. It closes with information about how to troubleshoot boot-
ing problems.

Chapter 5, TCP/IP Networking, provides an overview of TCP/IP networking on Unix
systems. It focuses on fundamental concepts and configuring TCP/IP client systems,
including interface configuration, name resolution, routing, and automatic IP
address assignment with DHCP. The chapter concludes with a discussion of net-
work troubleshooting.

Chapter 6, Managing Users and Groups, details how to add new users to a Unix sys-
tem. It also discusses Unix login initialization files and groups. It covers user authen-
tication in detail, including both traditional passwords and newer authentication
facilities like PAM. The chapter also contains information about using LDAP for user
account data.

Chapter 7, Security, provides an overview of Unix security issues and solutions to
common problems, including how to use Unix groups to allow users to share files
and other system resources while maintaining a secure environment. It also dis-
cusses optional security-related facilities such as dialup passwords and secondary
authentication programs. The chapter also covers the more advanced security config-
uration available by using access control lists (ACLs) and role-based access control
(RBAC). It also discusses the process of hardening Unix systems. In reality, though,
security is something that is integral to every aspect of system administration, and a
good administrator consciously considers the security implications of every action
and decision. Thus, expecting to be able to isolate and abstract security into a sepa-
rate chapter is unrealistic, and so you will find discussion of security-related issues
and topics in every chapter of the book.

Chapter 8, Managing Network Services, returns to the topic of networking. It dis-
cusses configuring and managing various networking daemons, including those for

Preface | xix

DNS, DHCP, routing, and NTP. It also contains a discussion of network monitoring
and management tools, including the SNMP protocol and tools, Netsaint, RRDTool,
and Cricket.

Chapter 9, Electronic Mail, covers all aspects of managing the email subsystem. It
covers user mail programs, configuring the POP3 and IMAP protocols, the sendmail
and Postfix mail transport agents, and the procmail and fetchmail facilities.

Chapter 10, Filesystems and Disks, discusses how discrete disk partitions become part
of a Unix filesystem. It begins by describing the disk mounting commands and filesys-
tem configuration files. It also considers Unix disk partitioning schemes and describes
how to add a new disk to a Unix system. In addition, advanced features such as logi-
cal volume managers and software striping and RAID are covered. It also discusses
sharing files with remote Unix and Windows systems using NFS and Samba.

Chapter 11, Backup and Restore, begins by considering several possible backup strat-
egies before going on to discuss the various backup and restore services that Unix
provides. It also covers the open source Amanda backup facility.

Chapter 12, Serial Lines and Devices, discusses Unix handling of serial lines, includ-
ing how to add and configure new serial devices. It covers both traditional serial lines
and USB devices. It also includes a discussion of the HylaFAX fax service.

Chapter 13, Printers and the Spooling Subsystem, covers printing on Unix systems,
including both day-to-day operations and configuration issues. Remote printing via a
local area network is also discussed. Printing using open source spooling systems is
also covered, via Samba, LPRng, and CUPS.

Chapter 14, Automating Administrative Tasks, considers Unix shell scripts, scripts,
and programs in other languages and environments such as Perl, C, Expect, and
Stem. It provides advice about script design and discusses techniques for testing and
debugging them. It also covers the Cfengine facility, which provides high level auto-
mation features to system administrators.

Chapter 15, Managing System Resources, provides an introduction to performance
issues on Unix systems. It discusses monitoring and managing use of major system
resources: CPU, memory, and disk. It covers controlling process execution, optimiz-
ing memory performance and managing system paging space, and tracking and
apportioning disk usage. It concludes with a discussion of network performance
monitoring and tuning.

Chapter 16, Configuring and Building Kernels, discusses when and how to create a
customized kernel, as well as related system configuration issues. It also discusses
how to view and modify tunable kernel parameters.

Chapter 17, Accounting, describes the various Unix accounting services, including
printer accounting.

The Appendix covers the most important Bourne shell and bash features.

xx | Preface

The Afterword contains some final thoughts on system administration and informa-
tion about the System Administrator’s Guild (SAGE).

Conventions Used in This Book

The following typographic and usage conventions are used in this book:

italic
Used for filenames, directory names, hostnames, and URLs. Also used liberally
for annotations in configuration file examples.

constant width
Used for names of commands, utilities, daemons, and other options. Also used
in code and configuration file examples.

constant width italic
Used to indicate variables in code.
constant width bold
Used to indicate user input on a command line.

constant width bold italic
Used to indicate variables in command-line user input.

Indicates a warning.

A W
MG
N

Indicates a note.

Indicates a tip.

he, she

This book is meant to be straightforward and to the point. There are times when
using a third-person pronoun is just the best way to say something: “This set-
ting will force the user to change his password the next time he logs in.” Person-
ally, I don’t like always using “he” in such situations, and T abhor “he or she”
and “s/he,” so I use “he” some of the time and “she” some of the time, alternat-
ing semi-randomly. However, when the text refers to one of the example users
who appear from time to time throughout the book, the appropriate pronoun is
always used.

Preface | xxi

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/esa3/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments

Many people have helped this book at various points in its successive incarnations.
In writing this third edition, I'm afraid I fell at times into the omnipresent trap of
writing a different book rather than revising the one at hand; although this made the
book take longer to finish, I hope that readers will benefit from my rethinking many
topics and issues.

[am certain that few writers have been as fortunate as I have in the truly first-rate set
of technical reviewers who read and critiqued the manuscript of the third edition.
They were, without doubt, the most meticulous group I have ever encountered:

* Jon Forrest

* Peter Jeremy

* Jay Kreibich

* David Malone

* Eric Melander

* Jay Migliaccio

* Jay Nelson

* Christian Pruett

* Eric Stahl

xxii | Preface

Luke Boyett, Peter Norton and Nate Williams also commented on significant
amounts of the present edition.

My thanks go also to the technical reviews of the first two editions. The second edi-
tion reviewers were Nora Chuang, Clem Cole, Walt Daniels, Drew Eckhardt, Zenon
Fortuna, Russell Heise, Tanya Herlick, Karen Kerschen, Tom Madell, Hanna Nel-
son, Barry Saad, Pamela Sogard, Jaime Vazquez, and Dave Williams; first edition
reviewers were Jim Binkley, Tan Bronson, Clem Cole, Dick Dunn, Laura Hook,
Mike Loukides, and Tim O’Reilly. This book still benefits from their comments.

Many other people helped this edition along by pointing out bugs and providing
important information at key points: Jeff Andersen, John Andrea, Jay Ashworth,
Christoph Badura, Jiten Bardwaj, Clive Blackledge, Mark Burgess, Trevor Chandler,
Douglas Clark, Joseph C. Davidson, Jim Davis, Steven Dick, Matt Eakle, Doug
Edwards, Ed Flinn, Patrice Fournier, Rich Fuchs, Brian Gallagher, Michael Gerth,
Adam Goodman, Charles Gordon, Uri Guttman, Enhua He, Matthias Heidbrink,
Matthew A. Hennessy, Derek Hilliker, John Hobson, Lee Howard, Colin Douglas
Howell, Hugh Kennedy, Jonathan C. Knowles, Ki Hwan Lee, Tom Madell, Sean
Maguire, Steven Matheson, Jim McKinstry, Barnabus Misanik, John Montgomery,
Robert L. Montgomery, Dervi Morgan, John Mulshine, John Mulshine, Darren
Nickerson, Jeff Okimoto, Guilio Orsero, Jerry Peek, Chad Pelander, David B. Perry,
Tim Rice, Mark Ritchie, Michael Saunby, Carl Schelin, Mark Summerfield, Tetsuji
Tanigawa, Chuck Toporek, Gary Trucks, Sean Wang, Brian Whitehead, Bill Wis-
niewski, Simon Wright, and Michael Zehe.

Any errors that remain are mine alone.

I am also grateful to companies who loaned me or provided access to hardware and/
or software:

* Gaussian, Inc. gave me access to several computer systems. Thanks to Mike
Frisch, Jim Cheeseman, Jim Hess, John Montgomery, Thom Vreven and Gary
Trucks.

* Christopher Mahmood and Jay Migliaccio of SuSE, Inc. gave me advance access
to SuSE 8.

* Lorien Golarski of Red Hat gave me access to their beta program.
* Chris Molnar provided me with an advance copy of KDE version 3.

* Angela Loh of Compaq arranged for an equipment loan of an Alpha Linux sys-
tem.

* Steve Behling, Tony Perraglia and Carlos Sosa of IBM expedited AIX releases for
me and also provided useful information.

* Adam Goodman and the staff of Linux Magazine provided feedback on early ver-
sions of some sections of this book. Thanks also for their long suffering patience
with my habitual lateness.

Preface | xxiii

I'd also like to thank my stellar assistant Cat Dubalil for all of her help on this third
edition. Felicia Bear also provided important editorial help. Thanks also to Laura
Lasala, my copy editor for the second edition.

At O’Reilly & Associates, my deepest gratitude goes to my amazing editor Mike
Loukides, whose support and guidance brought this edition to completion. Bob
Woodbury and Besty Waliszewski provided advice and help at key points. Darren
Kelly helped with some technical issues regarding the index. Finally, my enthusiastic
thanks go to the excellent production group at O’Reilly & Associates for putting the
finishing touches on all three editions of this book.

Finally, no one finishes a task of this size without a lot of support and encourage-
ment from their friends. I’d like to especially thank Mike and Mo for being there for
me throughout this project. Thanks also to the furry Frischs: Daphne, Susan, Lyta,
and Talia.

—/EF; Day 200 of 2002; North Haven, CT, USA

xxiv | Preface

CHAPTER 1

Introduction to System
Administration

The traditional way to begin a book like this is to provide a list of system administra-
tion tasks—I’ve done it several times myself at this point. Nevertheless, it’s important
to remember that you have to take such lists with a grain of salt. Inevitably, they leave
out many intangibles, the sorts of things that require lots of time, energy, or knowl-
edge, but never make it into job descriptions. Such lists also tend to suggest that sys-
tem management has some kind of coherence across the vastly different environments
in which people find themselves responsible for computers. There are similarities, of
course, but what is important on one system won’t necessarily be important on
another system at another site or on the same system at a different time. Similarly,
systems that are very different may have similar system management needs, while
nearly identical systems in different environments might have very different needs.

But now to the list. In lieu of an idealized list, I offer the following table showing how
[spent most of my time in my first job as full-time system administrator (I managed
several central systems driving numerous CAD/CAM workstations at a Fortune 500
company) and how these activities have morphed in the intervening two decades.

Table 1-1. Typical system administration tasks

Then: early 1980s Now: early 2000s

Adding new users. I still do it, but it's automated, and | only have to add a user
once for the entire network. Converting to LDAP did take a lot
of time, though.

Adding toner to electrostatic plotters. Printers need a lot less attention—just clearing the occa-

sional paper jam—but | still get my hands dirty changing
those inkjet tanks.

Doing backups to tape. Backups are still high priority, but the process is more cen-
tralized, and it uses (Ds and occasionally spare disks as well
as tape.

Restoring files from backups that users accidentally deleted This will never change.

or trashed.

Answering user questions (“How do | send mail?”), usually Users will always have questions. Mine also whine more:

not for the first or last time. “Why can’t | have an Internet connection on my desk?” or

“Why won't IRC work through the firewall?”

Table 1-1. Typical system administration tasks (continued)

Then: early 1980s

Monitoring system activity and trying to tune system param-
eters to give these overloaded systems the response time of
an idle system.

Moving jobs up in the print queue, after more or less user
whining, pleading, or begging, contrary to stated policy
(about moving jobs, not about whining).

Worrying about system security, and plugging the most nox-
ious security holes | inherited.

Installing programs and operating system updates.

Trying to free up disk space (and especially contiguous disk
space).

Rebooting the system after a crash (always at late and incon-
venient times).

Straightening out network glitches (“Why isn't hamlet talk-
ing to ophelia?”). Occasionally, this involved physically trac-
ing the Ethernet cable around the building, checking it at
each node.

Rearranging furniture to accommodate new equipment;
installing said equipment.

Figuring out why a program/command/account suddenly
and mysteriously stopped working yesterday, even though
the user swore he changed nothing.

Fixing—or rather, trying to fix—corrupted CAD/CAM binary
data files.

Going to meetings.

Adding new systems to the network.

Writing scripts to automate as many of the above activities as
possible.

Now: early 2000s

Installing and upgrading hardware to keep up with mono-
tonically increasing resource appetites.

This is one problem that is no longer an issue for me. Printers
are cheap, so they are no longer a scare resource that has to
be managed.

Security is always a worry, and keeping up with security
notices and patches takes a lot of time.

Same.

The emphasis is more on high performance disk 1/0 (disk
space is cheap): RAID and so on.

Systems crash a lot less than they used to (thankfully).

Last year, | replaced my last Thinnet network with twisted-
pair cabling. | hope never to see the former again. However, |
now occasionally have to replace cable segments that have
malfunctioned.

Machines still come and go on a regular basis and have to be
accommodated.

Users will still be users.

The current analog of this is dealing with email attachments
that users don't know how to access. Protecting users from
potentially harmful attachments is another concern.

No meetings, but lots of casual conversations.

This goes without saying: systems are virtually always added
to the network.

Automation is still the administrator’s salvation.

As this list indicates, system management is truly a hodgepodge of activities and
involves at least as many people skills as computer skills. While I'll offer some advice
about the latter in a moment, interacting with people is best learned by watching
others, emulating their successes, and avoiding their mistakes.

Currently, I look after a potpourri of workstations from many different vendors, as
well as a couple of larger systems (in terms of physical size but not necessarily CPU
power), with some PCs and Macs thrown in to keep things interesting. Despite these
significant hardware changes, it’s surprising how many of the activities from the
early 1980s I still have to do. Adding toner now means changing a toner cartridge in
a laser printer or the ink tanks in an inkjet printer; backups go to 4 mm tape and
CDs rather than 9-track tape; user problems and questions are in different areas but

2 | Chapter1: Introduction to System Administration

are still very much on the list. And while there are (thankfully) no more meetings,
there’s probably even more furniture-moving and cable-pulling.

Some of these topics—moving furniture and going to or avoiding meetings, most
obviously—are beyond the scope of this book. Space won’t allow other topics to be
treated exhaustively; in these cases, I'll point you in the direction of another book
that takes up where I leave off. This book will cover most of the ordinary tasks that
fall under the category of “system administration.” The discussion will be relevant
whether you’ve got a single PC (running Unix), a room full of mainframes, a build-
ing full of networked workstations, or a combination of several types of computers.
Not all topics will apply to everyone, but I've learned not to rule out any of them a
priori for a given class of user. For example, it’s often thought that only big systems
need process-accounting facilities, but it’s now very common for small businesses to
address their computing needs with a moderately-sized Unix system. Because they
need to be able to bill their customers individually, they have to keep track of the
CPU and other resources expended on behalf of each customer. The moral is this:
take what you need and leave the rest; you’re the best judge of what’s relevant and
what isn’t.

Thinking About System Administration

I’ve touched briefly on some of the nontechnical aspects of system administration.
These dynamics will probably not be an issue if it really is just you and your PC, but
if you interact with other people at all, you’ll encounter these issues. It’s a cliché that
system administration is a thankless job—one widely-reprinted cartoon has a user
saying “I’d thank you but system administration is a thankless job”—but things are
actually more complicated than that. As another cliché puts it, system administra-
tion is like keeping the trains on time; no one notices except when they’re late.

System management often seems to involve a tension between authority and respon-
sibility on the one hand and service and cooperation on the other. The extremes
seem easier to maintain than any middle ground; fascistic dictators who rule “their
system” with an iron hand, unhindered by the needs of users, find their opposite in
the harried system managers who jump from one user request to the next, in contin-
ual interrupt mode. The trick is to find a balance between being accessible to users
and their needs—and sometimes even to their mere wants—while still maintaining
your authority and sticking to the policies you’ve put in place for the overall system
welfare. For me, the goal of effective system administration is to provide an environ-
ment where users can get done what they need to, in as easy and efficient a manner
as possible, given the demands of security, other users’ needs, the inherent capabili-
ties of the system, and the realities and constraints of the human community in
which they all are located.

Thinking About System Administration | 3

To put it more concretely, the key to successful, productive system administration is
knowing when to solve a CPU-overuse problem with a command like:"

kill -9 “ps aux | awk '$1=="chavez" {print $2}"

(This command blows away all of user chavez’s processes.) It’s also knowing when
to use:

$ write chavez

You've got a lot of identical processes running on dalton.

Any problem I can help with?

"D
and when to walk over to her desk and talk with her face-to-face. The first approach
displays Unix finesse as well as administrative brute force, and both tactics are cer-
tainly appropriate—even vital—at times. At other times, a simpler, less aggressive
approach will work better to resolve your system’s performance problems in addi-
tion to the user’s confusion. It’s also important to remember that there are some
problems no Unix command can address.

To a great extent, successful system administration is a combination of careful plan-
ning and habit, however much it may seem like crisis intervention at times. The key
to handling a crisis well lies in having had the foresight and taken the time to antici-
pate and plan for the type of emergency that has just come up. As long as it only hap-
pens once in a great while, snatching victory from the jaws of defeat can be very
satisfying and even exhilarating.

On the other hand, many crises can be prevented altogether by a determined devo-
tion to carrying out all the careful procedures you've designed: changing the root
password regularly, faithfully making backups (no matter how tedious), closely mon-
itoring system logs, logging out and clearing the terminal screen as a ritual, testing
every change several times before letting it loose, sticking to policies you’ve set for
users’ benefit—whatever you need to do for your system. (Emerson said, “A foolish
consistency is the hobgoblin of little minds,” but not a wise one.)

My philosophy of system administration boils down to a few basic strategies that can
be applied to virtually any of its component tasks:

* Know how things work. In these days, when operating systems are marketed as
requiring little or no system administration, and the omnipresent simple-to-use
tools attempt to make system administration simple for an uninformed novice,
someone has to understand the nuances and details of how things really work. It
should be you.

* Plan it before you do it.

* Make it reversible (backups help a lot with this one).

* On HP-UX systems, the command is ps -ef. Solaris systems can run either form depending on which version
of ps comes first in the search path. AIX and Linux can emulate both versions, depending on whether a
hyphen is used with options (System V style) or not (BSD style).

4 | Chapter1: Introduction to System Administration

* Make changes incrementally.

* Test, test, test, before you unleash it on the world.

I learned about the importance of reversibility from a friend who worked in a
museum putting together ancient pottery fragments. The museum followed this
practice so that if better reconstructive techniques were developed in the future, they
could undo the current work and use the better method. As far as possible, I've tried
to do the same with computers, adding changes gradually and preserving a path by
which to back out of them.

A simple example of this sort of attitude in action concerns editing system configura-
tion files. Unix systems rely on many configuration files, and every major subsystem
has its own files (all of which we’ll get to). Many of these will need to be modified
from time to time.

I never modify the original copy of the configuration file, either as delivered with the
system or as [found it when I took over the system. Rather, I always make a copy of
these files the first time I change them, appending the suffix .dist to the filename; for
example:

cd /etc

cp inittab inittab.dist
chmod a-w inittab.dist

[write-protect the .dist file so I'll always have it to refer to. On systems that support
it, use the cp command’s -p option to replicate the file’s current modification time in
the copy.

I also make a copy of the current configuration file before changing it in any way so
undesirable changes can be easily undone. T add a suffix like .old or .sav to the file-
name for these copies. At the same time, I formulate a plan (at least in my head)
about how I would recover from the worst consequence I can envision of an unsuc-
cessful change (e.g., I'll boot to single-user mode and copy the old version back).

Once I've made the necessary changes (or the first major change, when several are
needed), I test the new version of the file, in a safe (nonproduction) environment if
possible. Of course, testing doesn’t always find every bug or prevent every problem,
but it eliminates the most obvious ones. Making only one major change at a time
also makes testing easier.

Some administrators use the a revision control system to track the
changes to important system configuration files (e.g., CVS or RCS).
Such packages are designed to track and manage changes to applica-
tion source code by multiple programmers, but they can also be used
to record changes to configuration files. Using a revision control sys-
tem allows you to record the author and reason for any particular
change, as well as reconstruct any previous version of a file at any
time.

Thinking About System Administration | 5

The remaining sections of this chapter discuss some important administrative tools.
The first describes how to become the superuser (the Unix privileged account).
Because I believe a good system manager needs to have both technical expertise and
an awareness of and sensitivity to the user community of which he’s a part, this first
chapter includes a section on Unix communication commands. The goal of these dis-
cussions—as well as of this book as a whole—is to highlight how a system manager
thinks about system tasks and problems, rather than merely to provide literal, cook-
book solutions for common scenarios.

Important administrative tools of other kinds are covered in later chapters of this

book.

Becoming Superuser

On a Unix system, the superuser refers to a privileged account with unrestricted
access to all files and commands. The username of this account is root. Many admin-
istrative tasks and their associated commands require superuser status.

There are two ways to become the superuser. The first is to log in as root directly.
The second way is to execute the command su while logged in to another user
account. The su command may be used to change one’s current account to that of a
different user after entering the proper password. It takes the username correspond-
ing to the desired account as its argument; root is the default when no argument is
provided.

After you enter the su command (without arguments), the system prompts you for
the root password. If you type the password correctly, you’ll get the normal root
account prompt (by default, a number sign: #), indicating that you have successfully
become superuser and that the rules normally restricting file access and command
execution do not apply. For example:

$ su

Password: Not echoed

#
If you type the password incorrectly, you get an error message and return to the nor-
mal command prompt.

You may exit from the superuser account with exit or Ctrl-D. You may suspend the
shell and place it in the background with the suspend command; you can return to it
later using fg.

When you run su, the new shell inherits the environment from your current shell
environment rather than creating the environment that root would get after logging
in. However, you can simulate an actual root login session with the following com-
mand form:

$ su -

6 | Chapter1: Introduction to System Administration

Unlike some other operating systems, the Unix superuser has all privi-
leges all the time: access to all files, commands, etc. Therefore, it is
entirely too easy for a superuser to crash the system, destroy impor-
tant files, and create havoc inadvertently. For this reason, people who
know the superuser password (including the system administrator)
should not do their routine work as superuser. Only use superuser
status when it is needed.

The root account should always have a password, and this password should be
changed periodically. Only experienced Unix users with special requirements should
know the superuser password, and the number of people who know it should be
kept to an absolute minimum.

To set or change the superuser password, become superuser and execute one of the
following commands:

passwd Works most of the time.

passwd root Solaris and FreeBSD systems when su’d to root.
Generally, you’ll be asked to type the old superuser password and then the new pass-
word twice. The root password should also be changed whenever someone who
knows it stops using the system for any reason (e.g., transfer, new job, etc.), or if
there is any suspicion that an unauthorized user has learned it. Passwords are dis-
cussed in detail in Chapter 6.

I try to avoid logging in directly as root. Instead, I su to root only as necessary, exit-
ing from or suspending the superuser shell when possible. Alternatively, in a win-
dowing environment, you can create a separate window in which you su to root,
again executing commands there only as necessary.

For security reasons, it’s a bad idea to leave any logged-in session unattended; natu-
rally, that goes double for a root session. Whenever I leave a workstation where [am
logged in as root, I log out or lock the screen to prevent anyone from sneaking onto
the system. The xlock command will lock an X session; the password of the user who
ran xlock must be entered to unlock the session (on some systems, the root pass-
word can also unlock sessions locked by other users).” While screen locking pro-
grams may have security pitfalls of their own, they do prevent opportunistic breaches
of system security that would otherwise be caused by a momentary lapse into lazi-
ness.

A w
o If you are logged in as root on a serial console, you should also use a
.‘s‘ locking utility provided by the operating system. In some cases, if you
T Gk are using multiple virtual consoles, you will need to lock each one
individually.

* For some unknown reason, FreeBSD does not provide xlock. However, the xlockmore (see http://www.tux.
org/~bagleyd/xlockmore.html) utility provides the same functionality (it’s actually a follow-on to xlock).

Becoming Superuser | 7

Controlling Access to the Superuser Account

On many systems, any user who knows the root password may become superuser at
any time by running su. This is true for HP-UX, Linux, and Solaris systems in gen-
eral.” Solaris allows you to configure some aspects of how the command works via
settings in the /etc/default/su configuration file.

Traditionally, BSD systems limited access to su to members of group 0O (usually
named wheel); under FreeBSD, if the wheel group has a null user list in the group file
(Jetc/group), any user may su to root; otherwise, only members of the wheel group
can use it. The default configuration is a wheel group consisting of just root.

AIX allows the system administrator to specify who can use su on an account-by-
account basis (no restrictions are imposed by default). The following commands dis-
play the current groups that are allowed to su to root and then limit that same access
to the system and admins groups:

lsuser -a sugroups root

root sugroups=ALL

chuser sugroups="system,admins" root
Most Unix versions also allow you to restrict direct root logins to certain terminals.
This topic is discussed in Chapter 12.

An Armadillo?

The armadillo typifies one attribute that a successful system administrator needs: a
thick skin. Armadillos thrive under difficult environmental conditions through
strength and perseverance, which is also what system administrators have to do a lot
of the time (see the colophon at the back of the book for more information about the
armadillo). System managers will find other qualities valuable as well, including the
quickness and cleverness of the mongoose (Unix is the snake), the sense of adventure
and playfulness of puppies and kittens, and at times, the chameleon’s ability to blend
in with the surroundings, becoming invisible even though you’re right in front of every-
one’s eyes.

Finally, however, as more than one reader has noted, the armadillo also provides a cau-
tionary warning to system administrators not to become so single-mindedly or nar-
rowly focused on what they are doing that they miss the big picture. Armadillos who
fail to heed this advice end up as roadkill.

* When the PAM authentication facility is in use, it controls access to su (see “User Authentication with PAM”
in Chapter 6).

8 | Chapter1: Introduction to System Administration

Running a Single Command as root

su also has a mode whereby a single command can be run as root. This mode is not a
very convenient way to interactively execute superuser commands, and I tend to see
it as a pretty unimportant feature of su. Using su -c can be very useful in scripts,
however, keeping in mind that the target user need not be root.

Nevertheless, I have found that it does have one important use for a system adminis-
trator: it allows you to fix something quickly when you are at a user’s workstation
(or otherwise not at your own system) without having to worry about remembering
to exit from an su session.” There are users who will absolutely take advantage of
such lapses, so I've learned to be cautious.

You can run a single command as root by using a command of this form:
$ su root -c "command"

where command is replaced by the command you want to run. The command should
be enclosed in quotation marks if it contains any spaces or special shell characters.
When you execute a command of this form, su prompts for the root password. If you
enter the correct password, the specified command runs as root, and subsequent
commands are run normally from the original shell. If the command produces an
error or is terminated (e.g. with CTRL-C), control again returns to the unprivileged
user shell.

The following example illustrates this use of su to unmount and eject the CD-ROM
mounted in the /cdrom directory:

$ su root -c "eject /cdrom”
Password: root password entered

Commands and output would be slightly different on other systems.

You can start a background command as root by including a final ampersand within
the specified command (inside the quotation marks), but you’ll want to consider the
security implications of a user bringing it to the foreground before you do this at a
user’s workstation.

sudo: Selective Access to Superuser Commands

Standard Unix takes an all-or-nothing approach to granting root access, but often
what you actually want is something in between. The freely available sudo facility
allows specified users to run specific commands as root without having to know the
root password (available at http://www.courtesan.com/sudo/).t

* Another approach is always to open a new window when you need to do something at a user’s workstation.
It’s easy to get into the habit of always closing it down as you leave.

1 Administrative roles are another, more sophisticated way of partitioning root access. They are discussed in
detail in “Role-Based Access Control” in Chapter 7.

Becoming Superuser | 9

For example, a non-root user could use this sudo command to shut down the system:

$ sudo /sbin/shutdown ...

Password:
sudo requires only the user’s own password to run the command, not the root pass-
word. Once a user has successfully given a password to sudo, she may use it to run
additional commands for a limited period of time without having to enter a pass-
word again; this period defaults to five minutes. A user can extend the time period by
an equal amount by running sudo -v before it expires. She can also terminate the
grace period by running sudo -K.

sudo uses a configuration file, usually /etc/sudoers, to determine which users may use
the sudo command and the other commands available to each of them after they’ve
started a sudo session. The configuration file must be set up by the system adminis-
trator. Here is the beginning of a sample version:

Host alias specifications: names for host lists

Host Alias PHYSICS = hamlet, ophelia, laertes
Host_Alias CHEM = duncan, puck, brutus

User alias specifications: named groups of users
User_ Alias BACKUPOPS = chavez, vargas, smith

Command alias specifications: names for command groups

Cmnd_Alias MOUNT = /sbin/mount, /sbin/umount

Cmnd_Alias SHUTDOWN = /sbin/shutdown

Cmnd_Alias BACKUP = /usr/bin/tar, /usr/bin/mt

Cmnd_Alias CDROM = /sbin/mount /cdrom, /bin/eject
These three configuration file sections define sudo aliases—uppercase symbolic
names—for groups of computers, users and commands, respectively. This example
file defines two sets of hosts (PHYSICS and CHEM), one set of users (BACKUPOPS),
and four command aliases. For example, the MOUNT command alias is defined as
the mount and umount commands. Following good security practice, all commands
include the full pathname for the executable.

The final command alias illustrates the use of arguments within a command list. This
alias consists of a command to mount a CD at /cdrom and to eject the media from
the drive. Note, however, that it does not grant general use of the mount command.

The final section of the file (see below) specifies which users may use the sudo com-
mand, as well as what commands they can run with it and which computers they
may run them on. Each line in this section consists of a username or alias, followed
by one or more items of the form:

host = command(s) [: host = command(s) ...]

where host is a hostname or a host alias, and command(s) are one or more com-
mands or command aliases, with multiple commands or hosts separated by com-
mas. Multiple access specifications may be included for a single user, separated by
colons. The alias ALL stands for all hosts or commands, depending on its context.

10 | Chapter1: Introduction to System Administration

Here is the remainder of our example configuration file:

User specifications: who can do what where

root ALL = ALL

%chem CHEM = SHUTDOWN, MOUNT

chavez PHYSICS = MOUNT : achilles = /sbin/swapon
harvey ALL = NOPASSWD: SHUTDOWN

BACKUPOPS ALL, !CHEM = BACKUP, /usr/local/bin

The first entry after the comment grants root access to all commands on all hosts.
The second entry applies to members of the chem group (indicated by the initial per-
cent sign), who may run system shutdown and mounting commands on any com-
puter in the CHEM list.

The third entry specifies that user chavez may run the mounting commands on the
hosts in the PHYSICS list and may also run the swapon command on host achilles.
The next entry allows user harvey to run the shutdown command on any system, and
sudo will not require him to enter his password (via the NOPASSWD: preceding the
command list).

The final entry applies to the users specified for the BACKOPS alias. On any system
except those in the CHEM list (the preceding exclamation point indicates exclu-
sion), they may run the command listed in the BACKUP alias as well as any com-
mand in the /usr/local/bin directory.

Users can use the sudo -1 command form to list the commands available to them via
this facility.

Commands should be selected for use with sudo with some care. In par-
ticular, shell scripts should not be used, nor should any utility which
provides shell escapes—the ability to execute a shell command from
within a running interactive program (editors, games, and even output
display utilities like more and less are common examples). Here is the
reason: when a user runs a command with sudo, that command runs as
root, so if the command lets the user execute other commands via a
shell escape, any command he runs from within the utility will also be
run as root, and the whole purpose of sudo—to grant selective access to
superuser command—will be subverted. Following similar reasoning,
because most text editors provide shell escapes, any command that
allows the user to invoke an editor should also be avoided. Some
administrative utilities (e.g., AIX’s SMIT) also provide shell escapes.

The sudo package provides the visudo command for editing /etc/sudoers. It locks the
file, preventing two users from modifying the file simultaneously, and it performs
syntax checking when editing is complete (if there are errors, the editor is restarted,
but no explicit error messages are given).

There are other ways you might want to customize sudo. For example, I want to use a
somewhat longer interval for password-free use. Changes of this sort must be made
by rebuilding sudo from source code. This requires rerunning the configure script

Becoming Superuser | 11

with options. Here is the command I used, which specifies a log file for all sudo oper-
ations, sets the password-free period to ten minutes, and tells visudo to use the text
editor specified in the EDITOR environment variable:

cd sudo-source-directory

./configure --with-logpath=/var/log/sudo.log \
--with-timeout=10 --with-env-editor

Once the command completes, use the make command to rebuild sudo.”

sudo’s logging facility is important and useful in that it enables you to keep track of
privileged commands that are run. For this reason, using sudo can sometimes be pref-
erable to using su even when limiting root-level command access is not an issue.

The one disadvantage of sudo is that it provides no integrated remote-
access password protection. Thus, when you run sudo from an inse-
cure remote session, passwords are transmitted over the network for
any eavesdropper to see. Of course, using SSH can overcome this
limitation.

Communicating with Users

The commands discussed in this section are simple and familiar to most Unix users.
For this reason, they’re often overlooked in system administration discussions. How-
ever, I believe you’ll find them to be an indispensable part of your repertoire. One
other important communications mechanism is electronic mail (see Chapter 9).

Sending a Message

A system administrator frequently needs to send a message to a user’s screen (or win-
dow). write is one way to do so:

$ write username [tty]

where username indicates the user to whom you wish to send the message. If you
want to write to a user who is logged in more than once, the tty argument may be
used to select the appropriate terminal or window. You can find out where a user is
logged in using the who command.

Once the write command is executed, communication is established between your
terminal and the user’s terminal: lines that you type on your terminal will be trans-
mitted to him. End your message with a CTRL-D. Thus, to send a message to user
harvey for which no reply is needed, execute a command like this:

* A couple more configuration notes: sudo can also be integrated into the PAM authentication system (see
“User Authentication with PAM” in Chapter 6). Use the - -use-pam option to configure. On the other hand,
if your system does not use a shadow password file, you must use the - -disable-shadow option.

12 | Chapter1: Introduction to System Administration

$ write harvey

The file you needed has been restored.

Additional lines of message text

D
In some implementations (e.g., AIX, HP-UX and Tru64), write may also be used
over a network by appending a hostname to the username. For example, the com-
mand below initiates a message to user chavez on the host named hamlet:

$ write chavez@hamlet

When available, the rwho command may be used to list all users on the local subnet
(it requires a remote who daemon be running on the remote system).

The talk command is a more sophisticated version of write. It formats the messages
between two users in two separate spaces on the screen. The recipient is notified that
someone is calling her, and she must issue her own talk command to begin commu-
nication. Figure 1-1 illustrates the use of talk.

How screens appear after both users have

executed talk commands:
" ") | | 4 , ") |
[Connection Established] [Connection Established]
Not bad. Link 501 compiles! Hi. How’s it going?
Sure. Ali Baba's?_ Great. Lunch?
Hi. How's it going? Not bad. Link 501 compiles!
Great.Lunch? Sure. Ali Baba's?__
| N V| | N V|
First Users screen Second User’ screen

Figure 1-1. Two-way communication with talk

Users may disable messages from both write and talk by using the command mesg n
(they can include it in their .login or .profile initialization file). Sending messages as
the superuser overrides this command. Be aware, however, that sometimes users
have good reasons for turning off messages.

In general, the effectiveness of system messages is inversely propor-
tional to their frequency.

Sending a Message to All Users

If you need to send a message to every user on the system, you can use the wall com-
mand. wall stands for “write all” and allows the administrator to send a message to
all users simultaneously.

Communicating with Users | 13

To send a message to all users, execute the command:

$ wall
Followed by the message you want to send, terminated with CTRL-D on a separate line
D

Unix then displays a phrase like:
Broadcast Message from root on console ...

to every user, followed by the text of your message. Similarly, the rwall command
sends a message to every user on the local subnet.

Anyone can use this facility; it does not require superuser status. However, as with
write and talk, only messages from the superuser override users’ mesg n commands.
A good example of such a message would be to give advance warning of an immi-
nent but unscheduled system shutdown.

The Message of the Day

Login time is a good time to communicate certain types of information to users. It’s
one of the few times that you can be reasonably sure of having a user’s attention
(sending a message to the screen won’t do much good if the user isn’t at the worksta-
tion). The file /etc/motd is the system’s message of the day. Whenever anyone logs in,
the system displays the contents of this file. You can use it to display system-wide
information such as maintenance schedules, news about new software, an announce-
ment about someone’s birthday, or anything else considered important and appro-
priate on your system. This file should be short enough so that it will fit entirely on a
typical screen or window. If it isn’t, users won’t be able to read the entire message as
they log in.

On many systems, a user can disable the message of the day by creating a file named
.hushlogin in her home directory.

Specifying the Pre-Login Message

On Solaris, HP-UX, Linux and Tru64 systems, the contents of the file /etc/issue is dis-
played immediately before the login prompt on unused terminals. You can custom-
ize this message by editing this file.

On other systems, login prompts are specified as part of the terminal-related configu-
ration files; these are discussed in Chapter 12.

About Menus and GUIs

For several years now, vendors and independent programmers have been developing
elaborate system administration applications. The first of these were menu-driven,
containing many levels of nested menus organized by subsystem or administrative

14 | Chapter1: Introduction to System Administration

task. Now, the trend is toward independent GUI-based tools, each designed to man-
age some particular system area and perform the associated tasks.

Whatever their design, all of them are designed to allow even relative novices to per-
form routine administrative tasks. The scope and aesthetic complexity of these tools
vary considerably, ranging from shell scripts employing simple selections lists and
prompts to form-based utilities running under X. A few even offer a mouse-based
interface with which you perform operations by dragging icons around (e.g., drop-
ping a user icon on top of a group icon adds that user to that group, dragging a disk
icon into the trash unmounts a filesystem, and the like).

In this section, we’ll take a look at such tools, beginning with general concepts and
then going on to a few practical notes about the tools available on the systems we are
considering (usually things I wish I had known about earlier). The tools are very easy
to use, so I won’t be including detailed instructions for using them (consult the
appropriate documentation for that).

Ups and Downs

Graphical and menu-based system administration tools have some definite good
points:

* They can provide a quick start to system administration, allowing you to get
things done while you learn about the operating system and how things work.
The best tools include aids to help you learn the underlying standard administra-
tive commands.

Similarly, these tools can be helpful in figuring out how to perform some task for
the first time; when you don’t know how to begin, it can be hard to find a solu-
tion with just the manual pages.

* They can help you get the syntax right for complex commands with lots of
options.
* They make certain kinds of operations more convenient by combining several

steps into a single menu screen (e.g., adding a user or installing an operating sys-
tem upgrade).

On the other hand, they have their down side as well:

* Typing the equivalent command is usually significantly faster than running it
from an administrative tool.

* Not all commands are always available through the menu system, and some-
times only part of the functionality is implemented for commands that are
included. Often only the most frequently used commands and/or options are
available. Thus, you’ll still need to execute some versions of commands by hand.

* Using an administrative tool can slow down the learning process and sometimes
stop it altogether. I've met inexperienced administrators who had become

About MenusandGUIs | 15

convinced that certain operations just weren’t possible simply because the menu
system didn’t happen to include them.

* The GUI provides unique functionality accessible only through its interface, so

creating scripts to automate frequent tasks becomes much more difficult or
impossible, especially when you want to do things in a way that the original
author did not think of.

In my view, an ideal administrative tool has all of these characteristics:

* The tool must run normal operating system commands, not opaque, undocu-

mented programs stored in some obscure, out-of-the-way directory. The tool
thus makes system administration easier, leaving the thinking to the human
using it.

You should be able to display the commands being run, ideally before they are
executed.

The tool should log of all its activities (at least optionally).

As much as possible, the tool should validate the values the user enters. In fact,
novice administrators frequently assume that the tools do make sure their selec-
tions are reasonable, falsely thinking that they are protected from anything
harmful.

All of the options for commands included in the tool should be available for use,
except when doing so would violate the next item.

The tool should not include every administrative command. More specifically, it
should deliberately omit commands that could cause catastrophic consequences
if they are used incorrectly. Which items to omit depends on the sort of adminis-
trators the tool is designed for; the scope of the tool should be directly propor-
tional to the amount of knowledge its user is assumed to have. In the extreme
case, dragging a disk icon into a trash can icon should never do anything other
than dismount it, and there should not be any way to, say, reformat an existing
filesystem. Given that such a tool is consciously designed for minimally-compe-
tent administrators, including such capabilities is just asking for trouble.

In addition, these features make using an administrative tool much more efficient,
but they are not absolutely essential:

* A way of specifying the desired starting location within a deep menu tree when

you invoke the tool.

A one-keystroke exit command that works at every point within menu system.
Context-sensitive help.

The ability to limit access to subsections of the tool by user.

Customization features.

If one uses these criteria, AIX’s SMIT comes closest to an ideal administrative tool, a
finding that many have found ironic.

16

Chapter 1: Introduction to System Administration

As usual, using menu interfaces in moderation is probably the best approach. These
applications are great when they save you time and effort, but relying on them to
lead you through every situation will inevitably lead to frustration and disappoint-
ment somewhere down the line.

The Unix versions we are considering offer various system administration facilities.
They are summarized and compared in Table 1-2. The table columns hold the Unix
version, tool command or name, tool type, whether or not the command to be run
can be previewed before execution, whether or not the facility can log its actions and
whether or not the tool can be used to administer remote systems.

Table 1-2. Some system administration facilities

Unix Version Command/tool Type Command preview? (reateslogs?@ Remote admin?
AIX smit menu yes yes no
WSM GUI no no yes
FreeBSD sysinstall menu no no no
HP-UX sam both no yes yes
Linux linuxconf both no no no
Red Hat Linux redhat-config-* GUI no no no
SuSE Linux yast menu no no no
yast2 GuI no no no
Solaris admintool menu no no no
(DE admin tools GUI no no no
AdminSuite/SMC menu no yes yes
Tru64 sysman menu no no no
sysman -station menu no no yes

a Some tools do some rather half-hearted logging to the syslog facility, but it's not very useful.

There are also some other tools on some of these systems that will be mentioned in
this book when appropriate, but they are ignored here.

AIX: SMIT and WSM

AIX offers two main system administration facilities: the System Management Inter-
face Tool (SMIT) and the Workspace System Manager (WSM) facility. Both of them
run in both graphical and text mode.

SMIT consists of a many-leveled series of nested menus. Its main menu is illustrated
in Figure 1-2.

One of SMIT’s most helpful features is command preview: if you click on the Com-
mand button or press F6, SMIT displays the command to be executed by the current
dialog. This feature is illustrated in the window on the right in Figure 1-2.

You can also go directly to any screen by including the corresponding fast path key-
word on the smit command line. Many SMIT fast paths are the same as the command

About Menusand GUIs | 17

Why Menus and Icons Aren’t Enough

Every site needs at least one experienced system administrator who can perform those
tasks that are beyond the abilities of the administrative tool. Not only does every cur-
rent tool leave significant amounts of uncovered territory, but they also all suffer from
limitations inherent in programs designed for routine operations under normal system
conditions. When the system is in trouble, and these assumptions no longer hold, the
tools don’t work.

For example, I've been in a situation where the administrative tool couldn’t configure
a replacement because the old disk hadn’t been unconfigured properly before being
removed. One part of the tool thought the old disk was still on the system and
wouldn’t replace it, while another part wouldn’t delete the old configuration data
because it couldn’t access the corresponding physical disk.

I was able to solve this problem because I understood enough about the device data-
base on that system to fix things manually. Not only will such things happen to every
system from time to time, they will happen to everyone, sooner or later. It’s a lot easier
to coax a system back to life from single user mode after a power failure when you
understand, for example, what the Check Filesystem Integrity menu item actually
does. In the end, you need to know how things really work.

% - System Management interface Tool - 0O X
Exit Show Help |
Return To: .
¥ show_command_popup x

Change ¢ Show Characteristics of a User

Corunand :

=

=) {

if [§4 -ge 2]
then

System Management for i in "§@"
do

_| software Installation and M

span="§span \'§i\""

- done
_| Software License Management . eval chuser $spam
_| Devices J}‘.l
_| System Storage Management (I | x groups='security’ roles=' ol i d: * chavez

=

_| Security & Users

=]]

__| tommmications Applications

__| Print Spooling Cancel Help

_| Problew Determination

| Performance & Resource Scheduling

_| System Environments ¥

[:am:ell

Figure 1-2. The AIX SMIT facility

executed from a particular screen. Many other fast paths fall into a predictable pat-
tern, beginning with one of the prefixes mk (make or start), ch (change or reconfigure),
1s (list), or rm (remove or stop), to which an object code is appended: mkuser, chuser,

18 | Chapter1: Introduction to System Administration

1suser, rmuser for working with user accounts; mkprt, chprt, lsprt, rmprt for working
with printers, and so on. Thus, it’s often easy to guess the fast path you want.

You can display the fast path for any SMIT screen by pressing F8 in the ASCII ver-
sion of the tool:
Current fast path:
"mkuser”

If the screen doesn’t have a fast path, the second line will be blank. Other useful fast
paths that are harder to guess include the following;:

chgsys

View/change AIX parameters.
configtcp

Reconfigure TCP/IP.
crfs

Create a new filesystem.
lvm

Main Logical Volume Manager menu.
_nfs

Main NFS menu.

spooler
Manipulate print jobs.

Here are a few additional SMIT notes:

* The smitty command may be used to start the ASCII version of SMIT from
within an X session (where the graphical version is invoked by default).

* Although T like them, many people are annoyed by the SMIT log files. You can
use a command like this one to eliminate the SMIT log files:
$ smit -s /dev/null -1 /dev/null ...
You can define an alias in your shell initialization file to get rid of these files per-
manently (C shell users would omit the equals sign):
alias smit="/usr/sbin/smitty -s /dev/null -1 /dev/null"

* smit -x provides a command preview mode. The commands that would be run
are written to the log file but not executed.

* Newer versions of smit have the following annoying feature: when a command
has successfully completed, and you click Done to close the output window, you
are taken back to the command setup window. At this point, to exit, you must
click Cancel, not OK. Doing the latter will cause the command to run again,
which is not what you want and is occasionally quite troublesome!

The WSM facility contains a variety of GUI-based tools for managing various aspects
of the system. Its functionality is a superset of SMIT’s, and it has the advantage of
being able to administer remote systems (it requires that remote systems be running

About Menusand GUIs | 19

a web server). You can access WSM via the Common Desktop Environment’s Appli-
cations area: click on the file cabinet icon (the one with the calculator peeking out of
it); the system administration tools are then accessible under the System_Admin
icon. You can also run a command-line version of WSM via the wsm command.

The WSM tools are run on a remote system via a Java-enabled web browser. You can
connect to the tools by pointing the browser at http://hostname/wsm.html, where
hostname corresponds to the desired remote system. Of course, you can also run the
text version by entering the wsm command into a remote terminal session.

HP-UX: SAM

HP-UX provides the System Administration Manager, also known as SAM. SAM is
easy to use and can perform a variety of system management tasks. SAM operates in
both menu-based and GUI mode, although the latter requires support for Motif.

The items on SAM’s menus invoke a combination of regular HP-UX commands and
special scripts and programs, so it’s not always obvious what they do. One way to
find out more is to use SAM’s built-in logging feature. SAM allows you to specify the
level of detail in log file displays, and you can optionally keep the log open as you are
working in order to monitor what is actually happening. The SAM main window and
log display are illustrated in Figure 1-3.

If you really want to know what SAM is doing, you’ll need to consult its configura-
tion files, stored in the subdirectories of /usr/sam/lib. Most subdirectories have two-
character names, closely related to a top-level icon or menu item. For example, the
ug subdirectory contains files for the Users and Groups module, and the pm subdi-
rectory contains those for Process Management. If you examine the .tm file there,
you can figure out what some of the menu items do. This example illustrates the
kinds of items to look for in these files:
tegrep '~task [a-z]|" *execute' pm.tm
task pm_get ps {
execute "/usr/sam/lbin/pm_parse_ps"
task pm_add_cron {
execute "/usr/sam/lbin/cron_change ADD /var/sam/pm_ tmpfile"
task pm_add_cron_check {
execute "/usr/sam/lbin/cron _change CHECK /var/sam/pm_tmpfile"
task pm_mod_nice {
execute "unset UNIX95;/usr/sbin/renice -n %$INT_ID% %$STRING ID%"
task pm_rm_cron {
execute "/usr/sam/lbin/cron_change REMOVE /var/sam/pm_tmpfile"
The items come in pairs, relating a menu item or icon and an actual HP-UX com-
mand. For example, the fourth pair in the previous output allows you to figure out
what the Modify Nice Priority menu item does (runs the renice command). The sec-
ond pair indicates that the item related to adding cron entries executes the listed shell
script; you can examine that file directly to get further details.

20 | Chapter1: Introduction to System Administration

8 -4 System Administration Manager

B1 -l SAM Log Viewe
i {]

Figure 1-3. The HP-UX SAM facility

There is another configuration file for each main menu item in the /usr/sam/lib/C
subdirectory, named pm.ui in this case. Examining the lines containing “action” and
“do” provides similar information. Note that “do” entries that end with parentheses
(e.g., do pm_forcekill_xmit()) indicate a call to a routine in one of SAM’s component
shared libraries, which will mean the end of the trail for your detective work.

SAM allows you to selectively grant access to its functional areas on a per-user basis.
Invoke it via sam -1 to set up user privileges and restrictions. In this mode, you select
the user or group for which you want to define allowed access, and then you navi-
gate through the various icons and menus, enabling or disabling items as appropri-
ate. When you are finished, you can save these settings and also save groups of
settings as named permission templates that can subsequently be applied to other
users and groups.

In this mode, the SAM display changes, and the icons are colored indicating the
allowed access: red for prohibited, green for allowed, and yellow when some fea-
tures are allowed and others are prohibited.

You can use SAM for remote administration by selecting the Run SAM on Remote
System icon from the main window. The first time you connect to a specific remote
system, SAM automatically sets up the environment.

About Menusand GUIs | 21

Solaris: admintool and Sun Management Console

From a certain point of view, current versions of Solaris actually offer three distinct
tool options:

* admintool, the menu-based system administration package available under

Solaris for many years. You must be a member of the sysadmin group to run this
program.

A set of GUI-based tools found under the System_Admin icon of the Applica-
tions Manager window under the Common Desktop Environment (CDE), which
is illustrated on the left in Figure 1-4. Select the Applications — Application
Manager menu path from the CDE’s menu to open this window. Most of these
tools are very simple, one-task utilities related to media management, although
there is also an icon there for admintool.

The Solaris AdminSuite, whose components are controlled by the Sun Manage-
ment Console (SMC). The facility’s main window is illustrated on the right in
Figure 1-4.

In some cases, this package is included with the Solaris operating system. It is
also available for (free) download (from http://www.sun.com/bigadmin/content/
adminpack/). In fact, it is well worth the overnight download required if you
have only a slow modem (two nights if you want the documentation as well).

This tool can be used to perform administrative tasks on remote systems. You
specify the system on which you want to operate when you log in to the facility.

Figure 1-4. Solaris system administration tools

Linux: Linuxconf

Many Linux systems, including some Red Hat versions, offer the Linuxconf graphi-
cal administrative tool written by Jacques Gélinas. This tool can also be used with
other Linux distributions (see http://www.solucorp.qc.callinuxconf/). It is illustrated
in Figure 1-5.

22

| Chapter1: Introduction to System Administration

g lnugcont __[EN=PN

| Fils Preferences Help |
Coriy | Gontral | Status | Host name and [P devices Resolver conﬂguralionl
T Metwarking “ou can specify which name server will be used
Client tasks to resolv host ip number. Using the DNS is
|—!J Host name and IP network devices to handle this on a TCP/IP network. The others
22 Name cification (DRES) are the local fetcrhosts file
=, Routing and gateways (see “information about other hosts® menu

45 Host name search path or the NIS system
. Metwark Information System (NIS)
27 IPX interface setup

DME usage I~ DS Ig required for normal aperation
Server tasks
Misc default domain |ahan|a com
'+ Users accounts
*w File systems I of name server 1 |1D.U.9.84
B Miscellaneous services
& Peripherals IP of name server Z (opt) |

H boot mode

IP of name server 3 (opt) |

search damain 1 (oph) ||

accept | Cancal Help

Figure 1-5. The Linuxconf facility

The tool’s menu system is located in the area on the left, and forms related to the
current selection are displayed on the right. Several of the program’s subsections can
be accessed directly via separate commands (which are in fact just links to the main
linuxconf executable): fsconf, mailconf, modemconf, netconf, userconf, and uucpconf,
which administer filesystems, electronic mail, modems, networking parameters,
users and groups and UUCP, respectively.

Early versions of Linuxconf were dreadful: bug-rich and unbelievably slow. How-
ever, more recent versions have improved quite a bit, and the current version is
pretty good. Linuxconf leans toward supporting all available options at the expense
of novice’s ease-of-use at times (a choice with which I won’t quarrel). As a result, it is
a tool that can make many kinds of configuration tasks easier for an experienced
administrator; less expert users may find the number of settings in some dialogs to
be somewhat daunting. You can also specify access to Linuxconf and its various sub-
sections on a per-user basis (this is configured via the user account settings).

Red Hat Linux: redhat-config-*

Red Hat Linux provides several GUI-based administration tools, including these:
redhat-config-bindconf
Configure the DNS server (redhat-config-bind under Version 7.2).

redhat-config-network
Configure the networking on the local host (new with Red Hat Version 7.3).

redhat-config-printer-gui
Configure and manage print queues and the print server.

redhat-config-services
Select servers to be started at boot time.

About Menusand GUIs | 23

redhat-config-date and redhat-config-time
Set the date and/or time.

redhat-config-users
Configure user accounts and groups.

There are often links to some of these utilities with different (shorter) names. They
can also be accessed via icons from the System Settings icon under Start Here.
Figure 1-6 illustrates the dialogs for creating a new user account (left) and specifying
the local system’s DNS server (right).

X*= Hird Hal User Marsarger DCEE T—

== o Davicen | Hartware [Husts. 00|

= = " =
NNLllr uwlgu m@o Duirlr @ Brtoesn Harinana [ruiaa
can [

e | | R e s Prinary DheS: [110354]

Lier hone | e 10+ Primary Crcags | ol home Jj e e et Chivet secondary Dns: [

T oot oo Fosseers e Temary ones: [

b= i el e it Saecn Pam

daermon 2 TN dwmon

R = Ltk | Domain Hamn Jew |
L] 4 " L] Desets
e ; ot bl ¥ Create home directory oo |
Ji— oot aaon Aw |
B 5 e bt T

e 1 ™ o [7 Crests & pewads gris foo e sse __IU'
ey 9 newy ey T % o

i i e — [Seweity inee 1D marsaly Seach Dgmain il

tpenter 11 reat opentor Ly [8|

ot 12 et Juires =
e | o Home H ¢

p— iy Son | Xow | grp | ey || x oo |

Figure 1-6. Red Hat Linux system configuration tools

SuSE Linux: YaST2

The “YaST” in YaST2 stands for “yet another setup tool.” It is a follow-on to the
original YaST, and like the previous program (which is also available), it is a some-
what prettied up menu-based administration facility. The program’s main window is
illustrated in Figure 1-7.

The yast2 command is used to start the tool. Generally, the tool is easy to use and
does its job pretty well. It does have one disadvantage, however. Whenever you add
a new package or make other kinds of changes to the system configuration, the
SuSEconfig script runs (actually, a series of scripts in /sbin/conf.d). Before SuSE Ver-
sion 8, this process was fiendishly slow.

SuSEconfig’s actions are controlled by the settings in the /etc/rc.config configuration
file, as well as those in /etc/rc.config.d (SuSE Version 7) or /etc/sysconfig (SuSE Ver-
sion 8). Its slowness stems from the fact that every action is performed every time
anything changes on the system; in other words, it has no intelligence whatsoever
that would allow it to operate only on items and areas that were modified.

Even worse, on SuSE 7 systems, SuSEconfig’s actions are occasionally just plain
wrong. A particularly egregious example occurs with the Postfix electronic mail
package. By default, the primary Postfix configuration file, main.cf, is overwritten

24 | Chapter1: Introduction to System Administration

128 T2 Control G

W% . Control Center

o
.' Software
N DSL conflguration 15D configuration

@ Hardware
Q % mail e Modem configuration
g" Network/Basic

2_‘: Network/Advanced Q‘, Network card Start/stop services
E configuration {inetd)

=)

Figure 1-7. The SuSE Linux YaST2 facility

every time the Postfix SuSEconfig subscript is executed.” The latter happens every
time SuSEconfig runs, which is practically every time you change anything on the sys-
tem with YaST or YaST?2 (regardless of its lack of relevance to Postfix). The net result
is that any local customizations to main.cf get lost. Clearly, adding a new game pack-
age, for example, shouldn’t clobber a key electronic-mail configuration file.

Fortunately, these problems have been cleared up in SuSE Version 8. I do also use
YaST2 on SuSE 7 systems, but I've examined all of the component subscripts thor-
oughly and made changes to configuration files to disable actions I didn’t want. You
should do the same.

FreeBSD: sysinstall

FreeBSD offers only the sysinstall utility in terms of administrative tools, the same
program that manages operating system installations and upgrades (its main menu is
illustrated in Figure 1-8). Accordingly, the tasks that it can handle are limited to the
ones that come up in the context of operating system installations: managing disks
and partitions, basic networking configuration, and so on.

* You can prevent this by setting POSTFIX_CREATECEF to no in /etc/rc.config.d/postfix.rc.config.

About Menusand GUIs | 25

Jetand/sysinstall HMain Menu
Welcome to the FreeBSD installation and configuration tool. Please
select one of the options below by using the arrow keys or tuping the
first character of the option name you’re interested in. Inwoke an
option by pressing [ENTER] o [TRE-EMTER] to exit the installation.

Auick start - How to use this menu susten
Begin a standard installation (recommendec)
Begin @ guick installation (for the impatient)
Bepin a custom installation (for experts)
all configuration of Fre
Installation instructions, REAOME, etc.

Select keyboard tupe

Yiew/Set various installation options

Enter repair mode with COROMAfloppy or start shell
Upgrade an existing systen

Load default install configuration

Glossary of functions

w1t Trnstall

[Zelect] b
[Press F1 for Installation Guide]

Figure 1-8. The FreeBSD sysinstall facility

Both the Configure and Index menu items are of interest for general system adminis-
tration tasks. The latter is especially useful in that it lists individually all the available
operations the tool can perform.

Tru64: SysMan

The Tru64 operating system offers the SysMan facility. This tool is essentially menu
driven despite the fact that it can run in various graphical environments, including via
a Java 1.1-enabled browser. SysMan can run in two different modes, as shown in
Figure 1-9: as a system administration utility for the local system or as a monitoring
and management station for the network. These two modes of operations are selected

with the sysman command’s -menu and -station options, respectively; -menu is the
default.

This utility does not have any command preview or logging features, but it does have
a variety of “accelerators”: keywords that can be used to initiate a session at a partic-
ular menu point. For example, sysman shutdown takes you directly to the system shut-
down dialog. Use the command sysman -1list to obtain a complete list of all defined
accelerators.

One final note: the insightd daemon must be running in order to be able to access
the SysMan online help.

Other Freely Available Administration Tools

The freely available operating systems often provide some additional administrative
tools as part of the various window manager packages that they include. For exam-
ple, both the Gnome and KDE desktop environments include several administrative

26 | Chapter1: Introduction to System Administration

SysMan Menu on mahler

Figure 1-9. The SysMan facility

applets and utilities. Those available under KDE on a SuSE Linux system are illus-
trated in Figure 1-10.

We will consider some of the best of these tools from time to time in this book.

The Ximian Setup Tools

The Ximian project brings together the latest release of the Gnome desktop, the Red
Carpet web-based system software update facility, and several other items into what
is designed to be a commercial-quality desktop environment. As of this writing, it is
available for several Linux distributions and for Solaris systems. Additional ports,
including to BSD, are planned for the future.

The Ximian Setup Tools are a series of applets designed to facilitate system adminis-
tration, ultimately in a multiplatform environment. Current modules allow you to

About Menusand GUIs | 27

|A svstem

Screen Savers »
Appfinder

Cleanup [cans

FTPD Editar

File Manager (Super User Maode)
Fant Installer

KDE System Contral

KOE System Guard

Kangueror

Legacy theme importer

hdenu Editar

SysY Init Editor

Task Scheduler

Terminal

Terminal (Super User Mode)
User Manager

4

LB © <D E RIE

Figure 1-10. KDE administrative tools on a SuSE Linux system

administer boot setup (i.e., kernel selection), disks, swap space, users, basic net-
working, shared filesystems, printing, and the system time. The applet for the latter
is illustrated in Figure 1-11.

"@Programs System Hel 33401 AM
@rrog y .|

Datemmel
Select the servers you wish to

Please select the current date and time. ¥ou can @ : LAl
also specify atime zone and a time server.

time.nrc.ca (Canada)

Time —————————
ntpl cme ec.ge.ca (Eastern Canadal
eom | ([52fae 2 o1 2 £ Aot J
. B

L Time zone
AmeticaMew_Yark

15

2z i
55 Set time zone. |

Time server

[Keep clock synchronized with selacted servers Select servers. I
2| Maore Options == of Apply | X Close |

Figure 1-11. The Ximian Setup Tools

This applet, even in this early incarnation, goes well beyond a simple dialog allowing
you to set the current date and time; it also allows you to specify time servers for
Internet-based time synchronization. The other tools are of similar quality, and the
package seems very promising for those who want GUI-based system administration
tools.

28 | Chapter1: Introduction to System Administration

VNC

'l close this section by briefly looking at one additional administrative tool that can
be of great use for remote administration, especially in a heterogeneous environ-
ment. It is called VNC, which stands for “virtual network computing.” The package
is available for a wide variety of Unix systems” at http://www.uk.research.att.com/vnc/.
It is shown in Figure 1-12.

B Netwerking
B} Usors accounts
B} Fill sy sbems
Atcats loeH drive
tﬁ:‘ﬂ‘l rifs volume

l Sﬂdlm =

Figure 1-12. Using VNC for remote system administration

The illustration depicts the entire desktop on a SuSE Linux system. You can see sev-
eral of its icons along the left edge, as well as the tool bar at the bottom of the screen
(where you can determine that it is running the KDE window manager).

The four open windows are three individual VNC sessions to different remote com-
puters, each running a different operating system and a local YaST session. Begin-
ning at the upper left and moving clockwise, the remote sessions are a Red Hat Linux
system (Linuxconf is open), a Solaris system (we can see admintool), and an HP-UX
system (running SAM).

VNC has a couple of advantages over remote application sessions displayed via the X
Windows system:

* Official binary versions of the various tools are available for a few systems on the main web page. In addition,
consult the contrib area for ports to additional systems. It is also usually easy to build the tools from source
code.

About Menusand GUIs | 29

* With VNC you see the entire desktop, not just one application window. Thus,
you can access applications via the remote system’s own icons and menus
(which may be much less convenient to initiate via commands).

* You eliminate missing font issues and many other display and resource prob-
lems, because you are using the X server on the remote system to generate the
display images rather than the one on the local system.

In order to use VNC, you must download the software and build or install the five
executables that comprise it (conventionally, they are placed in /usr/local/bin). Then
you must start a server process on systems that you want to administer remotely,
using the vncserver command:

garden-$ vncserver
You will require a password to access your desktops.

Password: Not echoed.
Verify:

New 'X' desktop is garden:1

Creating default startup script /home/chavez/.vnc/xstartup

Starting applications specified in /home/chavez/.vnc/xstartup

Log file is /home/chavez/.vnc/garden:1.log
This example starts a server on host garden. The first time you run the vncserver
command, you will be asked for a password. This password, which is independent of
your normal Unix password, will be required in order to connect to the server.

Once the server is running, you connect to it by running the vncviewer command. In
this example, we connect to the vncserver on garden:

desert-$ vncviewer garden:1

The parameter given is the same as was indicated when the server was started. VNC
allows multiple servers to be running simultaneously.

In order to shut down a VNC server, execute a command like this one on the remote
system (i.e., the system where the server was started):

garden-$ vncserver -kill :1

Only the VNC server password is required for connection. Usernames
are not checked, so an ordinary user can connect to a server started by
root if she knows the proper password. Therefore, it is important to
select strong passwords for the server password (see “Administering
User Passwords” in Chapter 6) and to use a different password from
the normal one if such cross-user connections are needed.

Additionally, VNC passwords are sent in plain text over the network.
Thus, using VNC is problematic on an insecure network. In such cir-
cumstances, VNC traffic can be encrypted by tunneling it through a
secure protocol, such as SSH.

30 | Chapter1: Introduction to System Administration

Where Does the Time Go?

We'll close this chapter with a brief look at a nice utility that can be useful for keep-
ing track of how you spend your time, information that system administrators will
find comes in handy all too often. It is called plod and was written by Hal Pomeranz
(see http://bullwinkle.deer-run.com/~hal/plod/). While there are similar utilities with a
GUI interface (e.g., gtt and karm, from the Gnome and KDE window manager pack-
ages, respectively), I prefer this simpler one that doesn’t require a graphical environ-
ment.

plod works by maintaining a log file containing time stamped entries that you pro-
vide; the files’ default location is ~/.logdir/yyyymm, where yyyy and mm indicate the
current year and month, respectively. plod log files can optionally be encrypted.

The command has lots of options, but its simplest form is the following:
$ plod [text]

If some text is included on the command, it is written to the log file (tagged with the
current date and time). Otherwise, you enter the command’s interactive mode, in
which you can type in the desired text. Input ends with a line containing a lone
period.

Once you’ve accumulated some log entries, you can use the command’s -C, -P, and -
E options to display them, either as continuous output, piped through a paging com-
mand like more (although less is the default), or via an editor (vi is the default). You
can specify a different paging program or editor with the PAGER and EDITOR envi-
ronment variables (respectively).

You can also use the -G option to search plod log files; it differs from grep in that
matching entries are displayed in their entirety. By default, searches are not case sen-
sitive, but you can use -g to make them so.

Here is an example command that searches the current log file:

$ plod -g hp-ux

05/11/2001, 22:56 --
Starting to configure the new HP-UX box.

05/11/2001, 23:44 --

Finished configuring the new HP-UX box.
Given these features, plod can be used to record and categorize the various tasks that
you perform. We will look at a script which can read and summarize plod data in
Chapter 14.

Where Does the Time Go? | 31

CHAPTER 2
The Unix Way

It’s easy to identify the most important issues and concerns system managers face,
regardless of the type of computers they have. Almost every system manager has to
deal with user accounts, system startup and shutdown, peripheral devices, system
performance, security—the list could go on and on. While the commands and proce-
dures you use in each of these areas vary widely across different computer systems,
the general approach to such issues can be remarkably similar. For example, the pro-
cess of adding users to a system has the same basic shape everywhere: add the user to
the user account database, allocate some disk space for him, assign a password to the
account, enable him to use major system facilities and applications, and so on. Only
the commands to perform these tasks are different on different systems.

In other cases, however, even the approach to an administrative task or issue will
change from one computer system to the next. For example, “mounting disks”
doesn’t mean the same thing on a Unix system that it does on a VMS or MVS system
(where they’re not always even called disks). No matter what operating system
you’re using—Unix, Windows 2000, MVS—you need to know something about
what’s happening inside, at least more than an ordinary user does.

Like it or not, a system administrator is generally called on to be the resident guru. If
you’re responsible for a multiuser system, you’ll need to be able to answer user ques-
tions, come up with solutions to problems that are more than just band-aids, and
more. Even if you're responsible only for your own workstation, you’ll find yourself
dealing with aspects of the computer’s operation that most ordinary users can sim-
ply ignore. In either case, you need to know a fair amount about how Unix really
works, both to manage your system and to navigate the eccentric and sometimes
confusing byways of the often jargon-ridden technical documentation.

This chapter will explore the Unix approach to some basic computer entities: files,
processes, and devices. In each case, I will discuss how the Unix approach affects
system administration procedures and objectives. The chapter concludes with an
overview of the standard Unix directory structure.

32

If you have managed non-Unix computer systems, this chapter will serve as a bridge
between the administrative concepts you know and the specifics of Unix. If you have
some familiarity with user-level Unix commands, this chapter will show you their
place in the underlying operating system structure, enabling you to place them in an
administrative context. If you’re already familiar with things like file modes, inodes,
special files, and fork-and-exec, you can probably skip this chapter.

Files

Files are central to Unix in ways that are not true for some other operating systems.
Commands are executable files, usually stored in standard locations in the directory
tree. System privileges and permissions are controlled in large part via access to files.
Device 1/O and file I/O are distinguished only at the lowest level. Even most inter-
process communication occurs via file-like entities. Accordingly, the Unix view of
files and its standard directory structure are among the first things a new administra-
tor needs to know about.

Like all modern operating systems, Unix has a hierarchical (tree-structured) directory
organization, know collectively as the filesystem.” The base of this tree is a directory
called the root directory. The root directory has the special name / (the forward slash
character). On Unix systems, all user-available disk space is transparently combined
into a single directory tree under /, and the physical disk a file resides on is not part of
a Unix file specification. We’ll discuss this topic in more detail later in this chapter.

Access to files is organized around file ownership and protection. Security on a Unix
system depends to a large extent on the interplay between the ownership and protec-
tion settings on its files and the system’s user account and group' structure (as well
as factors like physical access to the machine). The following sections discuss the
basic principles of Unix file ownership and protection.

File Ownership

Unix file ownership is a bit more complex than it is under some other operating sys-
tems. You are undoubtedly familiar with the basic concept of a file having an owner:
typically, the user who created it and has control over it. On Unix systems, files have
two owners: a user owner and a group owner. What is unusual about Unix file own-
ership is that these two owners are decoupled. A file’s group ownership is indepen-
dent of the user who owns it. In other words, although a file’s group owner is often,

* Or file system—the two forms refer to the same thing. To make things even more ambiguous, these terms
are also used to refer to the collection of files on an individual formatted disk partition.

T On Unix systems, individual user accounts are organized into groups. Groups are simply collections of users,
defined by the entries in /etc/passwd and /etc/group. The mechanics of defining groups and designating users
as members of them are described in Chapter 6. Using groups effectively to enhance system security is dis-
cussed in Chapter 7.

Files | 33

perhaps even usually, the same as the group its user owner belongs to, this is not
required. In fact, the user owner of a file does need not even need to be a member of
the group that owns it. There is no necessary connection between them at all. In
such a case, when file access is specified for a file’s group owner, it applies to mem-
bers of that group and not to other members of its user owner’s group, who are
treated simply as part of “other”: the rest of the world.

The motivation behind this group ownership of files is to allow file protections and
permissions to be organized according to your needs. The key point here is flexibil-
ity. Because Unix lets users be in more than one group, you are free to create groups
as you need them. Files can be made accessible to almost completely arbitrary collec-
tions of the system’s users. Group file ownership means that giving someone access
to an entire set of files and commands is as simple as adding her to the group that
owns them; similarly, taking access away from someone else involves removing her
from the relevant group.

To consider a more concrete example, suppose user chavez, who is in the chem
group, needs access to some files usually used by the physics group. There are sev-
eral ways you can give her access:

* Make copies of the files for her. If they change, however, her copies will need to
be updated. And if she needs to make changes too, it will be hard to avoid end-
ing up with two versions that need to be merged together. (Because of inconve-
niences like these, this choice is seldom taken.)

* Make the files world-readable. The disadvantage of this approach is that it opens
up the possibility that someone you don’t want to look at the files will see them.

* Make chavez a member of the physics group. This is the best alternative and also
the simplest. It involves changing only the group configuration file. The file per-
missions don’t need to be modified at all, since they already allow access for
physics group members.

Displaying file ownership

To display a file’s user and group ownership, use the long form of the 1s command
by including the -1 option (-1g under Solaris):

$1s -1

-IWXI-Xr-x 1 root system 120 Mar 12 09:32 bronze
-r--r--r-- 1 chavez chem 84 Feb 28 21:43 gold
-IW-Iw-r-- 1 chavez physics 12842 Oct 24 12:04 platinum
-TW------- 1 harvey physics 512 Jan 2 16:10 silver

Columns three and four display the user and group owners for the listed files. For
example, we can see that the file bronze is owned by user root and group system. The
next two files are both owned by user chavez, but they have different group owners;
gold is owned by group chem, while platinum is owned by group physics. The last file,
silver, is owned by user harvey and group physics.

34 | Chapter2: TheUnix Way

Who owns new files?

When a new file is created, its user owner is the user who creates it. On most Unix
systems, the group owner is the current” group of the user who creates the file. How-
ever, on BSD-style systems, the group owner is the same as the group owner of the
directory in which the file is created. Of the versions we are considering, FreeBSD
and Tru64 Unix operate in the second manner by default.

Most current Unix versions, including all of those we are considering, allow a sys-
tem to selectively use BSD-style group inheritance from the directory group owner-
ship by setting the set group ID (setgid) attribute on the directory, which we discuss
in more detail later in this chapter.

Changing file ownership

If you need to change the ownership of a file, use the chown and chgrp commands.
The chown command changes the user owner of one or more files:

chown new-owner files

where new-owner is the username (or user ID) of the new owner for the specified
files. For example, to change the owner of the file brass to user harvey, execute this
chown command:

chown harvey brass
On most systems, only the superuser can run the chown command.

If you need to change the ownership of an entire directory tree, you can use the -R
option (R for recursive). For example, the following command will change the user
owner to harvey for the directory /home/iago/new/tgh and all files and subdirectories
contained underneath it:

chown -R harvey /home/iago/new/tgh

You can also change both the user and group owner in a single operation, using this
format:

chown new-owner:new-group files

For example, to change the user owner to chavez and the group owner to chem for
chavez’s home directory and all the files underneath it, use this command:

chown -R chavez:chem /home/chavez
If you just want to change a file’s group ownership, use the chgrp command:
$ chgrp new-group files

where new-group is the group name (or group ID) of the desired group owner for the
specified files. chgrp also supports the -R option. Non-root users of chgrp must be

* See “Unix Users and Groups” in Chapter 6 for information about how the user’s primary group is deter-
mined.

Files | 35

both the owner of the file and a member of the new group to change a file’s group
ownership (but need not be a member of its current group).

File Protection

Once ownership is set up properly, the next natural issue to consider is how to pro-
tect files from unwanted access (or the reverse: how to allow access to those people
who need it). The protection on a file is referred to as its file mode on Unix systems.
File modes are set with the chmod command; we’ll look at chmod after discussing the
file protection concepts it relies on.

Types of file and directory access

Unix supports three types of file access: read, write, and execute, designated by the
letters r, w, and x, respectively. Table 2-1 shows the meanings of those access types.

Table 2-1. File access types

Access Meaning for a file Meaning for a directory

r View file contents. Search directory contents (e.g., use 1s).

w Alter file contents. Alter directory contents (e.g., delete or rename files).
Run executable file. Make it your current directory (cd to it).

The file access types are fairly straightforward. If you have read access to a file, you
can see what’s in it. If you have write access, you can change what’s in it. If you have
execute access and the file is a binary executable program, you can run it. To run a
script, you need both read and execute access, since the shell has to read the com-
mands to interpret them. When you run a compiled program, the operating system
loads it into memory for you and begins execution, so you don’t need read access
yourself.

The corresponding meanings for directories may seem strange at first, but they do
make sense. If you have execute access to a directory, you can cd to it (or include it in
a path that you want to cd to). You can also access files in the directory by name.
However, to list all the files in the directory (i.e., to run the 1s command without any
arguments), you also need read access to the directory. This is consistent because a
directory is just a file whose contents are the names of the files it contains, along with
information pointing to their disk locations. Thus, to cd to a directory, you need only
execute access since you don’t need to be able to read the directory file itself. In con-
trast, if you want to run any command lists or use files in the directory via an explicit
or implicit wildcard—e.g., 1s without arguments or cat *.dat—you do need read
access to the directory file itself to expand the wildcards.

Table 2-2 illustrates the workings of these various access types by listing some sam-
ple commands and the minimum access you would need to successfully execute
them.

36 | Chapter2: The Unix Way

Table 2-2. File protection examples

Minimum access needed

Command On file itself On directory file is in
cd /home/chavez N/A X
1s /home/chavez/*.c (none) r
r X
1s -1 /home/chavez/*.c (none) 74
r X
cat myfile r X
cat >>myfile w X
runme (executable) X X
cleanup.sh (script) 1 X
rm myfile (none) wx

Some items in this list are worth a second look. For example, when you don’t have
access to any of the component files, you still need only read access to a directory in
order to do a simple 1s; if you include -1 (or any other option that lists file sizes), you
also need execute access to the directory. This is because the file sizes must be deter-
mined from the disk information, an action which implicitly changes the directory in
question. In general, any operation that involves more than simply reading the list of
filenames from the directory file is going to require execute access if you don’t have
access to the relevant files themselves.

Note especially that write access on a file is not required to delete it; write access to
the directory where the file resides is sufficient (although in this case, you’ll be asked
whether to override the protection on the file):

$ rm copper

rm: override protection 440 for copper? y
If you answer yes, the file will be deleted (the default response is no). Why does this
work? Because deleting a file actually means removing its entry from the directory file
(among other things), which is a form of altering the directory file, for which you
need only write access to the directory. The moral is that write access to directories is
very powerful and should be granted with care.

Given these considerations, we can summarize the different options for protecting
directories as shown in Table 2-3.

Table 2-3. Directory protection summary

Access granted Resulting availability

Does not allow any activity of any kind within the directory or any of its subdirectories.
(no access)

r-- Allows users to list the names of the files in the directory, but does not reveal any of their
(read access only) attributes (i.e., size, ownership, mode, and so on).

Files | 37

Table 2-3. Directory protection summary (continued)

Access granted Resulting availability

-X Lets users work with programs in the directory specified by full pathname, but hides all

(execute access only) other files.

r-x Lets users work with programs in the directory and list the contents of the directory, but

(read and execute access) does not allow them to create or delete files in the directory.

-wx Used for a drop-box directory. Users can change to the directory and leave files there, but

(write and execute access) can't discover the names of files placed there by others. The sticky bit is also usually set on
such directories (see below).

wx Lets users work with programs in the directory, look at the contents of the directory, and

(full access) create or delete files in the directory.

Access classes

Unix defines three basic classes of file access for which protection may be specified
separately:

User access (u)
Access granted to the owner of the file.

Group access (g)
Access granted to members of the same group as the group owner of the file (but
does not apply to the owner himself, even if he is a member of this group).

Other access (o)
Access granted to all other normal users.

Unix file protection specifies the access types available to members of each of the
three access classes for the file or directory.

The long version of the 1s command also displays file permissions in addition to user
and group ownership:

$1s -1

-TWXI-Xr-x 1 root system 120 Mar 12 09:32 bronze

-r--1--r-- 1 chavez chem 84 Feb 28 21:43 gold

-Tw-ITw-Y-- 1 chavez physics 12842 Oct 24 12:04 platinum
The set of letters and hyphens at the beginning of each line represents the file’s
mode. The 10 characters are interpreted as indicated in Table 2-4.

Table 2-4. Interpreting mode strings

User access Group access Other access
type read write exec read write exec | read write exec
File 1 2 3 4 5 6 7 8 9 10
bronze - r w X r - X r - X
gold - r - - r - - r - -
platinum - r w - r w - r - -
/etc/passwd - r w - r - - r - -

38 | Chapter2: The Unix Way

Table 2-4. Interpreting mode strings (continued)

User access Group access Other access
type read write exec = read write exec | read write exec
File 1 2 3 4 5 6 7 8 9 10
/etc/shadow - r - - - - - - - -
/etc/inittab - r w - r w - r - -
/bin/sh - r - X r - X r - X
/tmp d r w X r w X r w t

The first character indicates the file type: a hyphen indicates a plain file, and a d indi-
cates a directory (other possibilities are discussed later in this chapter). The remain-
ing nine characters are arranged in three groups of three. Moving from left to right,
the groups represent user, group, and other access. Within each group, the first char-
acter denotes read access, the second character write access, and the third character
execute access. If a certain type of access is allowed, its code letter appears in the
proper position within the triad; if it is not granted, a hyphen appears instead.

For example, in the previous listing, read access and no other is granted for all users
on the file gold. On the file bronze, the owner—in this case, root—is allowed read,
write, and execute access, while all other users are allowed only read and execute
access. Finally, for the file platinum, the owner (chavez) and all members of the
group physics are allowed read and write access, while everyone else is granted only
read access.

The remaining entries in Table 2-4 (below the line) are additional examples illustrat-
ing the usual protections for various common system files.

Setting file protection
The chmod command is used to specify the access mode for files:
$ chmod access-string files

chmod’s second argument is an access string, which states the permissions you want to
set (or remove) for the listed files. It has three parts: the code for one or more access
classes, the operator, and the code for one or more access types.

Figure 2-1 illustrates the structure of an access string. To create an access string, you
choose one or more codes from the access class column, one operator from the mid-
dle column, and one or more access types from the third column. Then you concate-
nate them into a single string (no spaces). For example, the access string u+w says to
add write access for the user owner of the file. Thus, to add write access for yourself
for a file you own (lead, for example), use:

$ chmod u+w lead
To add write access for everybody, use the all access class:

$ chmod a+w lead

Files | 39

To remove write access, use a minus sign instead of a plus sign:
$ chmod a-w lead

This command sets the permissions on the file lead to allow only read access for all
users:

$ chmod a=r lead

If execute or write access had previously been set for any access class, executing this
command removes it.

[accessaass | [OPERATOR 1 [accesstveE
One or more of: One or more of:
u + (Add designated access) r
g +| . (Remove designated access) + w
[= (Set exact access specified) X
a (forall3)

Figure 2-1. Constructing an access string for chmod

You can specify more than one access type and more than one access class. For exam-
ple, the access string g-rw says to remove read and write access from the group access.
The access string go=r says to set the group and other access to read-only (no execute
access, no write access), changing the current setting as needed. And the access string
go+rx says to add both read and execute access for both group and other users.

You can also include more than one set of operation—access type pairs for any given
access class specification. For example, the access string u+x-w adds execute access
and removes write access for the user owner. You can combine multiple access
strings by separating them with commas (no spaces between them). Thus, the fol-
lowing command adds write access for the file owner and removes write access and
adds read access for the group and other classes for the files bronze and brass:

$ chmod u+w,og+r-w bronze brass

The chmod command supports a recursive option (-R), to change the mode of a direc-
tory and all files under it. For example, if user chavez wants to protect all the files
under her home directory from everyone else, she can use the command:

$ chmod -R go-rwx /home/chavez

Beyond the basics

So far, this discussion has undoubtedly made chmod seem more rigid than it actually
is. In reality, it is a very flexible command. For example, both the access class and the
access type may be omitted under some circumstances.

40 | Chapter2: The Unix Way

When the access class is omitted, it defaults to a. For example, the following com-
mand grants read access to all users for the current directory and every file under it:

$ chmod -R +r .

On some systems, this form operates slightly differently than a chmod a+r command.
When the a access class is omitted, the specified permissions are compared against
the default permissions currently in effect (i.e., as specified by the umask). When
there is disagreement between them, the current default permissions take prece-
dence. We’ll look at this in more detail when we consider the umask a bit later.

The access string may be omitted altogether when using the = operator; this form has
the effect of removing all access. For example, this command prevents any access to
the file lead by anyone other than its owner:

$ chmod go= lead

Similarly, the form chmod = may be used to remove all access from a file (subject to
constraints on some systems, to be discussed shortly).

The X access type grants execute access to the specified access classes only when exe-
cute access is already set for some access class. A typical use for this access type is to
grant group or other read and execute access to all the directories and executable
files within a subtree while granting only read access to all other types of files (the
first group will all presumably have user execute access set). For example:

$ 1s -1F

“IW------- 1 chavez chem609 Nov 29 14:31 data file.txt
drwx------ 2 chavez chem512 Nov 29 18:23 more stuff/
“TWX------ 1 chavez chem161 Nov 29 18:23 run_me*

$ chmod go+rX *

$ 1s -1F

-IW-r--r-- 1 chavez chem609 Nov 29 14:31 data file.txt

drwxr-xr-x 2 chavez chem512 Nov 29 18:23 more stuff/
-Twxr-xr-x 1 chavez chem161 Nov 29 18:23 run_me*

By specifying X, we avoid making data_file.txt executable, which would be a mistake.

chmod also supports the u, g, and o access types, which may be used as a shorthand
form for the corresponding class’s current settings (determined separately for each
specified file). For example, this command makes the other access the same as the
current group access for each file in the current directory:

$ chmod o=g *

If you like thinking in octal, or if you’ve been around Unix a long time, you may find
numeric modes more convenient than incantations like go+rX. Numeric modes are
described in the next section.

Filss | 4

Specifying numeric file modes

The method just described for specifying file modes uses symbolic modes, since code
letters are used to refer to each access class and type. The mode may also be set as an
absolute mode by converting the symbolic representation used by 1s to a numeric
form. Each access triad (for a different user class) is converted to a single digit by set-
ting each individual character in the triad to 1 or 0, depending on whether that type
of access is permitted or not, and then taking the resulting three-digit binary number
and converting it to an integer (which will be between 0 and 7). Here is a sample
conversion:

user group other
Mode r w X r - X r - -
Convert to binary 1 1 1 1 0 1 1 0 0
Convert to octal digit 7 5 4
Corresponding absolute mode 754

To set the protection on a file to match those above, you specify the numeric file
mode 754 to chmod as the access string:

$ chmod 754 pewter

Specifying the default file mode

You can use the umask command to specify the default mode for newly created files.
Its argument is a three-digit numeric mode that represents the access to be
inhibited—masked out—when a file is created. Thus, the value is the octal comple-
ment of the desired numeric file mode.

If masks confuse, you can compute the umask value by subtracting the numeric
access mode you want to assign from 777. For example, to obtain the mode 754 by
default, compute 777 — 754 = 023; this is the value you give to umask:

$ umask 023
Note that leading zeros are included to make the mask three digits long.

Once this command is executed, all future files created are given this protection
automatically. You usually put a umask command in the system-wide login initializa-
tion file and in the individual login initialization files you give to users when you cre-
ate their accounts (see Chapter 6).

As we mentioned earlier, the chmod command’s actions are affected by the default
permissions when no explicit access class is specified, as in this example:

% chmod +rx *

In such cases, the current umask is taken into account before the file access mode is
changed. More specifically, an individual access permission is not changed unless the
umask allows it to be set.

42 | Chapter2: The Unix Way

It takes a concrete example to fully appreciate this aspect of chmod:

$ umask Displays the current value.

23

$ 1s -1 gold silver

---------- 1 chavez chem 609 Oct 24 14:31 gold

-TwxTwxrwX 1 chavez chem 12874 Oct 22 23:14 silver
$ chmod +rwx gold

$ chmod -rwx silver

$ 1s -1 gold silver

-IWXr-xr-- 1 chavez chem 609 Nov 12 09:04 gold
----- w--wx 1 chavez chem 12874 Nov 12 09:04 silver

The current umask of 023 allows all access for the user, read and execute access for
the group, and read-only access for other users. Thus, the first chmod command acts
as one would expect, setting access in accordance with what is allowed by the
umask. However, the interaction between the current umask and chmod’s “~” opera-
tor may seem somewhat bizarre. The second chmod command clears only those access
bits that are permitted by the umask; in this case, write access for group and write
and execute access for other remain turned on.

Special-purpose access modes

The simple file access modes described previously do not exhaust the Unix possibili-
ties. Table 2-5 lists the other defined file modes.

Table 2-5. Special-purpose access modes

Code Name Meaning

t save text mode, sticky bit Files: Keep executable in memory after exit.
Directories: Restrict deletions to each user’s own files.

s setuid bit Files: Set process user ID on execution.

s setgid bit Files: Set process group ID on execution.

Directories: New files inherit directory group owner.

/ file locking Files: Set mandatory file locking on reads/writes (Solaris and Tru64 and some-
times Linux). This mode is set via the group access type and requires that group
execute access is off. Displayed as Sin 1s -1 listings.

The t access type turns on the sticky bit (the formal name is save text mode, which is
where the ¢ comes from). For files, this traditionally told the Unix operating system
to keep an executable image in memory even after the process that was using it had
exited. This feature is seldom implemented in current Unix implementations. It was
designed to minimize startup overhead for frequently used programs like vi. We’ll
consider the sticky bit on directories below.

When the set user ID (setuid) or set group ID (setgid) access mode is set on an exe-
cutable file, processes that run it are granted access to system resources based upon
the file’s user or group owner, rather than based on the user who created the pro-
cess. We'll consider these access modes in detail later in this chapter.

Files | 43

Save-text access on directories

The sticky bit has a different meaning when it is set on directories. If the sticky bit is
set on a directory, a user may only delete files that she owns or for which she has
explicit write permission granted, even when she has write access to the directory
(thus overriding the default Unix behavior). This feature is designed to be used with
directories like /tmp, which are world-writable, but in which it may not be desirable
to allow any user to delete files at will.

The sticky bit is set using the user access class. For example, to turn on the sticky bit
on /tmp, use this command:

chmod u+t /tmp

Oddly, Unix displays the sticky bit as a “t” in the other execute access slot in long
directory listings:

$ 1s -1d /tmp
drwxrwxrwt 2 root 8704 Mar 21 00:37 /tmp

Setgid access on directories

Setgid access on a directory has a special meaning. When this mode is set, it means
that files created in that directory will have the same group ownership as the direc-
tory itself (rather than the user owner’s primary group), emulating the default behav-
ior on BSD-based systems (FreeBSD and Tru64). This approach is useful when you
have groups of users who need to share a lot of files. Having them work from a com-
mon directory with the setgid attribute means that correct group ownership will be
automatically set for new files, even if the people in the group don’t share the same

primary group.
To place setgid access on a directory, use a command like this one:

chmod g+s /pub/chem2

Numerical equivalents for special access modes

The special access modes can also be set numerically. They are set via an additional
octal digit prepended to the mode whose bits correspond to the sticky bit (lowest bit:
1), setgid/file locking (middle bit: 2), and setuid (high bit: 4). Here are some examples:

chmod 4755 uid Setuid access

chmod 2755 gid Setgid access

chmod 6755 both Setuid and setgid access: 2 highest bits on
chmod 1777 sticky Sticky bit

chmod 2745 locking File locking (note that group execute is off)
#

1s -1d
-IWsr-sr-x 1 root chem 0 Mar 30 11:37 both
-IWXI-sr-x 1 root chem 0 Mar 30 11:37 gid
-IWXr-Sr-x 1 root chem 0 Mar 30 11:37 locking
drwxrwxrwt 2 root chem 8192 Mar 30 11:39 sticky
-IWsI-Xr-x 1 root chem 0 Mar 30 11:37 uid

44 | Chapter2: The Unix Way

How to Recognize a File Access Problem

My first rule of thumb about any user problem that comes up is this: it’s usually a file
ownership or protection problem.” Seriously, though, the majority of the problems
users encounter that aren’t the result of hardware problems really are file access
problems. One classic tip-off of a file protection problem is something that worked
yesterday, or last week, or even last year, but doesn’t today. Another clue is that
something works differently for root than it does for other users.

In order to work properly, programs and commands must have access to the input
and output files they use, any scratch areas they access, and any permanent files they
rely on, including the special files in /dev (which act as device interfaces).

When such a problem arises, it can come from either the file permissions being wrong
or the protection being correct but the ownership (user and/or group) being wrong.

The trickiest problem of this sort I've ever seen was at a customer site where I was
conducting a user training course. Suddenly, their main text editor, which happened
to be a clone of the VAX/VMS editor EDT, just stopped working. It seemed to start
up fine, but then it would bomb out when it got to its initialization file. But the edi-
tor worked without a hitch when root ran it. The system administrator admitted to
“changing a few things” the previous weekend but didn’t remember exactly what. I
checked the protections on everything I could think of, but found nothing. 1 even
checked the special files corresponding to the physical disks in /dev. My company
ultimately had to send out a debugging version of the editor, and the culprit turned
out to be /dev/null, which the system administrator had decided needed protecting
against random users!

There are at least three morals to this story:

* For the local administrator: always test every change before going on to the next
one—multiple, random changes almost always wreak havoc. Writing them
down as you do them also makes troubleshooting easier.

* For me: if you know it’s a protection problem, check the permissions on
everything.

* For the programmer who wrote the editor: always check the return value of sys-
tem calls (but that’s another book).

If you suspect a file protection problem, try running the command or program as
root. If it works fine, it’s almost certainly a protection problem.

A common, inadvertent way of creating file ownership problems is by accidentally
editing files as root. When you save the file, the file’s owner is changed by some edi-
tors. The most obscure variation on this effect that I've heard of is this: someone was

* At least, this was the case before the Internet.

Files | 45

editing a file as root using an editor that automatically creates backup files whenever
the edited file is saved. Creating a backup file meant writing a new file to the direc-
tory holding the original file. This caused the ownership on the directory to be set to
root.” Since this happened in the directory used by UUCP (the Unix-to-Unix copy
facility), and correct file and directory ownership are crucial for UUCP to function,
what at first seemed to be an innocuous change to an inconsequential file broke an
entire Unix subsystem. Running chown uucp on the directory fixed everything again.

Mapping Files to Disks

This section will change our focus from files as objects to files as collections of data
on disk. Users need not be aware of the actual disk locations of files they access, but
administrators need to have at least a basic conception of how Unix maps files to
disk blocks in order to understand the different file types and the purpose and func-
tioning of the various filesystem commands.

An inode (pronounced “eye-node”) is the data structure on disk that describes and
stores a file’s attributes, including its physical location on disk. When a filesystem is
initially created, a specific number of inodes are created. In most cases, this becomes
the maximum number of files of all types, including directories, special files, and
links (discussed later) that can exist in the filesystem. A typical formula is one inode
for every 8 KB of actual file storage. This is more than sufficient in most situations.t
Inodes are given unique numbers, and each distinct file has its own inode. When a
new file is created, an unused inode is assigned to it.

Information stored in inodes includes the following;:

* User owner and group owner IDs.
* File type (regular, directory, etc., or O if the inode is unused).
* Access modes (permissions).

¢ Most recent inode modification, data access, and data modification times. If the
file’s metadata does not change, the first item will correspond to the file creation
time.

* Clearly, the system itself was somewhat “broken” as well, since adding a file to a directory should never
change the directory’s ownership. However, it is also possible to do this accidentally with text editors that
allow you to edit a directory.

T There are a couple of circumstances where this may not hold. One is a filesystem containing an enormous
number of very small files. The traditional example of this is the USENET news spool directory tree
(although some modern news servers now use a better storage scheme). News files are typically both very
small and inordinately numerous, and their numbers have been known to exceed normal inode limits. A sec-
ond potential problem situation occurs with facilities that make extensive use of symbolic links for functions
such as source code version control, again characterized by many, many tiny files. In such cases, you can run
out of inodes before disk capacity is exhausted. You will want to take these factors into account when pre-
paring the disk (see Chapter 10). At the other extreme, filesystems that are designed to hold only a few very
large files might save a nontrivial amount of space by being configured with far fewer than the normal num-
ber of inodes.

46 | Chapter2: The Unix Way

* Number of hard links to the file (links are discussed later in this chapter). This is
0 if the inode is unused, and one for most regular files.

* Size of the file.
* Disk addresses of:
— Disk locations for the data blocks that make up the file, and/or

— Disk locations of disk blocks that hold the disk locations of the file’s data
blocks (indirect blocks), and/or

— Disk locations of disk blocks that hold the disk locations of indirect blocks
(double indirect blocks: two disk addresses removed from the actual data

blocks).”

In short, inodes store all available information about the file except its name and
directory location. The inodes themselves are stored elsewhere on disk.

On Unix systems, it is reasonably safe to say that “everything is a file”: the operating
system even represents I/O devices as files. Accordingly, there are several different
kinds of files, each with a different function.

Regular files

Regular files are files containing data. They are normally called simply “files.” These
may be ASCII text files, binary data files, executable program binaries, program
input or output, and so on.

Directories

A directory is a binary file consisting of a list of the other files it contains, possibly
including other directories (try running od -c on one to see this). Directory entries
are filename-inode number pairs. This is the mechanism by which inodes and direc-
tory locations are associated; the data on disk has no knowledge of its (purely logi-
cal) location within its filesystem.

Special files: character and block device files

Special files are the mechanism used for device I/O under Unix. They reside in the
directory /dev and its subdirectories, as well as the directory /devices under Solaris.

Generally, there are two types of special files: character special files, corresponding to
character-based or raw device access, and block special files, corresponding to block
I/O device access. Character special files are used for unbuffered data transfers to
and from a device (e.g., a terminal). In contrast, block special files are used when
data is transferred in fixed-size chunks known as blocks (e.g., most file I/O). Both
kinds of special files exist for some devices (including disks). Character special files

* In traditional System V filesystems, inode disk addresses can point to triple indirect blocks. FreeBSD also
uses triple indirect blocks.

Filess | 47

generally have names beginning with r (for “raw”)—/dev/rsdOa, for example—or
reside in subdirectories of /dev whose names begin with r—/dev/rdsk/c0t3d0s7, for
example. The corresponding block special files have the same name, minus the ini-
tial 7: /dev/diskOa, /dev/dsk/cOt3d0s7. Special files are discussed in more detail in later
in this chapter.

Links

A link is a mechanism that allows several filenames (actually, directory entries) to
refer to a single file on disk. There are two kinds of links: hard links and symbolic or
soft links. A hard link associates two (or more) filenames with the same inode. Hard
links are separate directory entries that all share the same disk data blocks. For
example, the command:

$ 1n index hlink

creates an entry in the current directory named hlink with the same inode number as
index, and the link count in the corresponding inode is increased by 1. Hard links
may not span filesystems, because inode numbers are unique only within a filesys-
tem. In addition, hard links should be used only for files and not for directories, and
correctly implemented versions of 1n won’t let you create the latter.

Symbolic links, on the other hand, are pointer files that refer to a different file or
directory elsewhere in the filesystem. Symbolic links may span filesystems, because
they point to a Unix pathname, not to a specific inode.

Symbolic links are created with the -s option to 1n.

The two types of links behave similarly, but they are not identical. As an example,
consider a file index to which there is a hard link hlink and a symbolic link slink. List-
ing the contents using either name with a command like cat will result in the same
output. For both index and hlink, the disk contents pointed to by the addresses in
their common inode will be accessed and displayed. For slink, the disk contents refer-
enced by the address in its inode contain the pathname for index; when it is followed,
index’s inode will be accessed next, and finally its data blocks will be displayed.

In directory listings, hlink will be indistinguishable from index. Changes made to
either file will affect both of them, since they share the same disk blocks. However,
moving either file with the mv command will not affect the other one, since moving a
file involves only altering a directory entry (keep in mind that pathnames are not
stored in the inode). Similarly, deleting index will not affect hlink, which will still
point to the same inode (the corresponding disk blocks are only freed when an
inode’s link count reaches zero).

If a new file in the current directory named index is subsequently created, there will
be no connection between it and hlink, because when the new file is created, it will
be assigned a free inode. Although they are initially created by referencing an exist-
ing file, hard links are linked only to an inode, not to the other file. In fact, all regu-
lar files are technically hard links (i.e., inodes with a link count > 1).

48 | Chapter2: The Unix Way

In contrast, a symbolic link slink to index will behave differently. The symbolic link
appears as a separate entry in directory listings, marked as a link with an “1” as the
first character in the mode string:

% 1ls -1

STW------- 2 chavez chem 5228 Mar 12 11:36 index
-IW------- 2 chavez chem 5228 Mar 12 11:36 hlink
Irwxrwxrwx 1 chavez chem 5 Mar 12 11:37 slink -> index

Symbolic links are always very small files, while every hard link to a given file (inode)
is exactly the same size (hlink is naturally the same length as index).

Changes made by referencing either the real filename or the symbolic link will affect
the contents of index. Deleting index will also break the symbolic link; slink will
point nowhere. But if another file index is subsequently recreated, slink will once
again be linked to it.” Deleting slink will have no effect on index.

Figure 2-2 illustrates the differences between hard and symbolic links. In the first pic-
ture, index and hlink share the inode N1 and its associated data blocks. The sym-
bolic link slink has a different inode, N2, and therefore different data blocks. The
contents of inode N2’s data blocks refer to the pathname to index.t Thus, accessing
slink eventually reaches the data blocks for inode N1.

When index is deleted (in the second picture), hlink is associated with inode N1 by
its own directory entry. Accessing slink will generate an error, however, since the
pathname it references does not exist. When a new index is created (in the third pic-
ture), its gets a new inode, N3. This new file clearly has no relationship to hlink, but
it does act as the target for slink.

Using the cd command can be a bit tricky when dealing with symbolic links to direc-
tories, as these examples illustrate:

$ pwd; cd ./htdocs

/home/chavez

$ cd ../bin

../bin: No such file or directory.

$ pwd

/public/web2/apache/htdocs

$ 1s -1 /home/chavez/htdocs

lrwxrwxrwx 1 chavez chem 18 Mar 30 12:06 htdocs ->
/public/web2/apache/htdocs

The subdirectory htdocs in the current directory is a symbolic link (its target is indi-
cated in the final command). Accordingly, the second cd command does not work as

* Symbolic links are actually interpreted only when accessed, so they can’t really be said to point anywhere at
other times. But conceptually, this is what they do.

T Some operating systems, including FreeBSD, store the target of the symbolic link in the inode itself, provided
the target is short enough.

Files | 49

The file index has same data points to
both a hard and asindex index
When index

symbolic link:
! hlink I slink
N2
N1
is deleted: unaffected points

N £ hiink "05‘::::9
—— .

(disk)

no relation points to v

If a new index toindex index

is created:
hlink /

B - node
[1 -DataBlock

Figure 2-2. Comparing hard and symbolic links
expected, and the current directory does not change to /home/chavez/bin. Similar
effects would occur with a command like this one:

$ cd /home/chavez/htdocs/../cgi-bin; pwd
/public/web2/apache/cgi-bin

For more information about links, see the 1n manual page, and experiment with cre-
ating and modifying linked files.

Tru64 Context-Dependent Symbolic Links. In a Tru64 clustered environment, many stan-
dard system files and directories are actually a type of symbolic link known as

50 | Chapter2: The Unix Way

context-dependent symbolic links (CDSLs). They are symbolic links with a variable
component that is resolved to a specific cluster host at access time. For example,
consider this directory listing (the output is wrapped to fit):

$ 1s -1F /var/adm/c*

-IW-r--r-- 1 root system 91 May 30 13:07 cdsl _admin.inv
-IW-r--r-- 1 root adm 232 May 30 13:07 cdsl check list
lrwxr-xr-x 1 root adm 43 Jan 3 12:09 collect.dated@ ->
../cluster/members/{memb}/adm/collect.dated
lrwxr-xr-x 1 root adm 35 Jan 3 12:04 crash@ ->
../cluster/members/{memb}/adm/crash/
lrwxr-xr-x 1 root adm 34 Jan 3 12:04 cron@ ->

../cluster/members/{memb}/adm/cron/

The first two files are regular files that reside in the /var/adm directory. The remain-
ing three files are context-dependent symbolic links, indicated by the {memb] compo-
nent. When such a file is accessed, this component is resolved to a directory named
membern, where n indicates the host’s number within the cluster.

Occasionally, you may need to create such a link. The mkcdsl command serves this
purpose, as in this example (output is wrapped):

cd /var/adm

mkcdsl pacct

1s -1 pacct

lrwxr-xr-x 1 root adm 43 Jan 3 12:09 pacct ->
../cluster/members/{memb}/adm/pacct

The 1n -s command may also be used to create context-dependent symbolic links:
1n -s "../cluster/members/{memb}/adm/pacct” ./pacct

The cdslinvchk -verify command may be used to verify that all expected CDSLs are
present on a system. It reports its findings to the file /var/adm/cdsl_check_list. Here is
some sample output (wrapped to fit):
Expected CDSL: ./usr/var/X11/Xserver.conf ->
../cluster/members/{memb}/X11/Xserver.conf
An administrator or application has replaced this CDSL with:

-Yw-1--r-- 1 root system 4545 Jan 3 12:41
/usr/var/X11/Xserver.conf

This report indicates that there is one missing CDSL.

Sockets

A socket, whose official name is a Unix domain socket, is a special type of file used
for communications between processes. A socket may be thought of as a communi-
cations end point, tied to a particular local system port, to which processes may
attach. For example, on a BSD-style system, the socket /dev/printer is used by pro-
cesses to send messages to the program lpd (the line-printer spooling daemon),
informing it that it has work to do.

Files | 51

Named pipes

Named pipes are pipes opened by applications for interprocess communication (they
are “named” in the sense that applications refer to them by their pathname). They
are a System V feature that has migrated to all versions of Unix. Named pipes often
reside in the /dev directory. They are also known as FIFOs (for “first-in, first-out”).

Using Is to identify file types

The long directory listing (produced by the 1s -1 command) identifies the type of

each file it lists via the initial character of the permissions string:

- Plain file (hard link)

Directory
Block special

Socket
Named pipe

™ . N T —H Q

For example, the following 1s -1 output includes each of the file types discussed

Symbolic link

file

above, in the same order:

STW------- 2 chavez
SIW------- 2 chavez
drwx------ 2 chavez
Irwxrwxrwx 1 chavez
brw-r----- 1 root
CIW-T----- 1 root
SIW-TW-Iw- 1 root
pIW------- 1 root

Note that the -1 option also displays the target file for symbolic links (following the ->

symbol).

1s has other options to make identifying file types easy. On many systems, the -F
option will append a special character to each filename, indicating its type:

STW------- 2 chavez
SIW------- 2 chavez
drwx------ 2 chavez
-IWXY-X--- 1 chavez

Irwxrwxrwx 1 chavez
STW-TW-Iw- 1 root
PIW------- 1 root

Note than an asterisk indicates an executable file (program or script). Some versions
of 1s also support a -o option, which color-codes filenames in the output based on

their file type.

You can use the -i option to 1s to determine the equivalent file in the case of hard
links. Using -1 tells 1s to display the inode number associated with each filename.

Here is an example:

chem
chem
chem
chem
system
system
system
system

chem
chem
chem
chem
chem
system
system

Character special file

28
28
512
8

o O O o

28

28
512
23478
8

0

0

Mar
Mar
Mar
Mar
Mar
Jun
Mar
Mar

Mar
Mar
Mar
Feb
Mar
Mar
Mar

12
12
12
12

2
12
11
11

12
12
12
23
12
11
11

11
11
11
11
15

136
136
136
137
:02

1989

08
08

11:
11:
11:
09:
11:
08:
08:

119
132

36
36
36
45
37
19
32

gold.dat

hlink.dat

old data

zn.dat -> gold.dat
/dev/sdoa
/dev/rsdoa
/dev/log
/usr/1ib/cron/FIFO

gold.dat

hlink.dat

old_data/

test prog*

zn.dat@ -> gold.dat
/dev/log=
/usr/1ib/cron/FIFO|

52 | Chapter2: TheUnix Way

$ 1s -i /dev/rmto /dev/rmt/*

290 /dev/rmt0 293 /dev/rmt/c0d6ln

292 /dev/rmt/c0d6h291 /dev/rmt/codém

295 /dev/rmt/cod6hn294 /dev/rmt/codémn

290 /dev/rmt/codé6l
From this display, we can determine that the special files /dev/rmt0 (the default tape
drive for many commands, including tar) and /dev/rmt/c0d6l are equivalent, because
they both reference inode number 290.

1s can’t distinguish between text and binary files (both are “regular” files). You can
use the file command to do so. Here is an example:

file *

appoint: ... executable not stripped

bin: directory

clean: symbolic link to bin/clean

fort.1: empty

gold.dat: ascii text

intro.ms: [nt]roff, tbl, or eqn input text

Tun_me.sh: commands text

xray.c: ascii text
The file appoint is an executable image; the additional information provided for such
files differs from system to system. Note that file tries to figure out what the con-
tents of ASCII files are, with varying success.

Processes

In simple terms, a process is a single executable program that is running in its own
address space.” It is distinct from a job or a command, which, on Unix systems, may
be composed of many processes working together to perform a specific task. Simple
commands like 1s are executed as a single process. A compound command contain-
ing pipes will execute one process per pipe segment. For Unix systems, managing
CPU resources must be done in large part by controlling processes, because the
resource allocation and batch execution facilities available with other multitasking
operating systems are underdeveloped or missing.

Unix processes come in several types. We'll look at the most common here.

Interactive Processes

Interactive processes are initiated from and controlled by a terminal session. Interac-
tive processes may run either in the foreground or the background. Foreground pro-
cesses remain attached to the terminal; the foreground process is the one with which

* T am not distinguishing between processes and threads at this point.

Processes | 53

the terminal communicates directly. For example, typing a Unix command and wait-
ing for its output means running a foreground process.

While a foreground process is running, it alone can receive direct input from the ter-
minal. For example, if you run the diff command on two very large files, you will be
unable to run another command until it finishes (or you kill it with CTRL-C).

Job control allows a process to be moved between the foreground and the back-
ground at will. For example, when a process is moved from the foreground to the
background, the process is temporarily stopped, and terminal control returns to its
parent process (usually a shell). The background job may be resumed and continue
executing unattached to the terminal session that launched it. Alternatively, it may
eventually be brought to the foreground, and once again become the terminal’s cur-
rent process. Processes may also be started initially as background processes.

Table 2-6 reviews the ways to control foreground and background processes pro-
vided by most current shells.

Table 2-6. Controlling processes

Form Meaning and examples
& Run command in background.
$ long_cmd &
rZ Stop foreground process.
$ long_cmd
~Z Stopped
$
jobs List background processes.
$ jobs

[1] - Stopped emacs

[2] - big job &

[3] + Stopped long cmd
%n Refers to background job number n.

$ kill %2

fg Bring background process to foreground.
$ fg %1

%2str Refers to the background job command containing the specified characters.
$ fg %?em

bg Restart stopped background process.

$ long_cmd

~Z Stopped

$ bg

[3] long_cmd &

~Z Suspend r1ogin session.

bridget-27 $ ~"Z
Stopped
henry-85 $

54 | Chapter2: The Unix Way

Table 2-6. Controlling processes (continued)

Form Meaning and examples

~AZ Suspend second-level r1ogin session. Useful for nested r1ogins; each additional tilde says to pop
back to the next highest level of r1ogin. Thus, one tilde pops all the way back to the lowest level job
(the job on the local system), two tildes pops back to the first r1ogin session, and so on.
bridget-28 $ ~~~Z
Stopped
peter-46 $

Batch Processes

Batch processes are not associated with any terminal. Rather, they are submitted to a
queue, from which jobs are executed sequentially. Unix offers a very primitive batch
command, but vendors whose customers require queuing have generally imple-
mented something more substantial. Some of the best known are the Network Queu-
ing System (NQS), developed by NASA and used on many high-performance
computers including Crays, as well as several network-based process-scheduling sys-
tems from various vendors. These facilities usually support heterogeneous as well as
homogeneous networks, and they attempt to distribute the aggregate CPU load
evenly among the workstations in the network, a process known as load balancing or
load leveling.

Daemons

Daemons are server processes, often initiated at boot time, that run continuously
while the system is up, waiting in the background until a process requires their ser-
vice.” For example, network daemons are idle until a process requests network
access.

Table 2-7 provides a brief overview of the most important Unix daemons.

Table 2-7. Important Unix daemons

Facility Description Daemon Names

init First created process init

syslog System status/error message logging syslogd

email Mail message transport sendmail

printing Print spooler 1pd, 1psched, gdaemon, r1pdaemon

*

Daemon is an ancient Greek word meaning “divinity” or “spirit” (but keep the character of the Greek gods
in mind). The OED defines it as a “tutelary deity”: the guardian of a particular person, place or thing. More
recently, the poet Yeats wrote at length about daemons, defining them as that which we continually struggle
against yet paradoxically need in order to survive, simultaneously the source of our pain and of our strength,
even in some sense, the very essence of our being. For Yeats, the daemon is “of all things not impossible the
most difficult.”

Processes | 55

Table 2-7. Important Unix daemons (continued)

Facility Description Daemon Names

cron Periodic process execution crond

tty Terminal support. getty (and similar)

sync Disk buffer flushing update, syncd, syncher, fsflush, bdflush,

kupdated

paging and swapping Daemons to support virtual memory pagedaemon, vhand, kpiod, pageout,
management swapper, kswapd, kreclaimd

inetd Master TCP/IP daemon, responsible for inetd
starting many others on demand:
telnetd, ftpd, rshd, imapd, pop3d,
fingerd, rwhod (see /etc/inetd.conf for
a full list)

name resolution DNS server process named

routing Routing daemon routed, gated

DHCP Dynamic network client configuration dhcpd, dhcpsd

RPC Remote procedure call facility network portmap, rpcbind
port-to-service mapper

NFS Network File System: native Unix network ~ nfsd, rpc.mountd, rpc.nfsd, rpc.statd,
file sharing rpc.lockd, nfsiod

Samba File/print sharing with Windows systems smbd, nmbd

Www HTTP server httpd

network time Network time synchronization timed, ntpd

Process Attributes

Unix processes have many associated attributes. Some of the most important are:

Process ID (PID)

A unique identifying number used to refer to the process.

Parent process ID (PPID)
The PID of the process’s parent process (the process that created it).

Nice number

The process’s scheduling priority, which is a number indicating its importance
relative to other processes. This needs to be distinguished from its actual execu-
tion priority, which is dynamically changed based on both the process’s nice
number and its recent CPU usage. See “Managing CPU Resources” in Chapter 15
for a detailed discussion of nice numbers and their effect on execution priority.

TTY
The terminal (or pseudo-terminal) device associated with the process.
Real and effective user ID (RUID, EUID)

A process’s real UID is the UID of the user who started it. Its effective UID is the
UID that is used to determine the process’s access to system resources (such as

56 | Chapter2: The Unix Way

files and devices). Usually the real and effective UIDs are the same, and the pro-
cess accordingly has the same access rights as the user who launched it. How-
ever, when the setuid access mode is set on an executable image, then the EUIDs
of processes executing it are set to the UID of the file’s user owner, and they are
accorded corresponding access rights.

Real and effective group ID (RGID, EGID)
A process’s real GID is the user’s primary or current group. Its effective GID,
used to determine the process’s access rights, is the same as the real GID except
when the setgid access mode is set on an executable image. The EGIDs of pro-
cesses executing such files are set to the GID of the file’s group owner, and they
are given corresponding access to system resources.

The life cycle of a process

A new process is created in the following manner. An existing process makes an
exact copy of itself, a procedure known as forking. The new process, called the child
process, has the same environment as its parent process, although it is assigned a dif-
ferent process ID. Then, this image in the child process’s address space is overwrit-
ten by the one the child will run; this is done via the exec system call. Hence, the
often-used phrase fork-and-exec. The new program (or command) completely
replaces the one duplicated from the parent. However, the environment of the par-
ent still remains, including the values of environment variables; the assignments of
standard input, standard output, and standard error; and its execution priority.

Let’s make this picture a bit more concrete. What happens when a user runs a com-
mand like grep? First, the user’s shell process forks, creating a new shell process to
run the command. Then, the new shell process execs grep, which overlays the shell’s
executable image in memory with grep’s, which begins executing. When the grep
command finishes, the process dies.

This is the way that all Unix processes are created. The ultimate ancestor for every
process on a Unix system is the process with PID 1, init, created during the boot
process (see Chapter 4). init creates many other processes (all by fork-and-exec).
Among them are usually one or more executing the getty program. The gettys are
each assigned to a different serial line; they display the login prompt and wait for
someone to respond to it. When someone does, the getty process execs the login
program, which validates user logins, among other activities.”

Once the username and password are verified,™ login execs the user’s shell. Forking is
not always required to run a new program, and login does not fork in this case. After

* The process is similar for an X terminal window. In the latter case, the xterm or other process is created by
the window manager in use, which was itself started by a series of other X-related processes, ultimately deriv-
ing from a command issued from the login shell (e.g., startx) or as part of the login process itself.

1 If the login attempt fails, login exits, sending a signal to its parent process, init, indicating it should create
a new getty process for the terminal.

Processes | 57

logging in, the user’s shell is the same process as the getty that was watching the
unused serial line. That process changed programs twice by execing a new execut-
able, and it will go on to create new processes to execute the commands that the user
types. Figure 2-3 illustrates Unix process creation in the context of initial user login.

@ fork

PID1 PID424 exec

@@

PID424 exec

Continues to execute

PID424 exec

Cr

fork °

¥ PID 424 PID563 exec

PID1 '

Figure 2-3. Unix process creation: fork and exec

When any process exits, it sends a signal to inform its parent process that is has com-
pleted. So, when a user logs out, her login shell sends a signal to its parent, init, as it
dies, letting init know that it’s time to create a new getty process for the terminal.
init forks again and starts the getty, and the whole cycle repeats itself again and
again as different users use that terminal.

Setuid and setgid file access and process execution

The purpose of the setuid and setgid access modes is to allow ordinary users to per-
form tasks requiring privileges and access rights that are ordinarily denied to them.
For example, on many systems the write command is owned by the tty group, which
also owns all of the terminal and pseudo-terminal device files. The write command
has setgid access, allowing any user to use it to write a message to another user’s ter-
minal or window (to which they do not normally have any access). When users exe-
cute write, their effective GID is set to that of the group owner of the executable file
(often /usr/bin/write) for the duration of the command.

58 | Chapter2: The Unix Way

Setuid and/or setgid access are also used by the printing subsystem, by programs like
mailers, and by some other system facilities. However, setuid programs are also
notorious security risks. In practice, setuid almost always means setuid to root, and
the danger is that somehow, through program stupidity or their own cleverness or
both, users will figure out a way to perform additional, unauthorized functions while
the setuid command is running or to retain their inherited root status after the com-
mand ends. In general, setuid access should be avoided since it involves greater secu-
rity risks than setgid, and almost any function can be performed by using the latter in
conjunction with carefully designed groups. See Chapter 7 for a more detailed dis-
cussion of the security issues involved with setuid and setgid programs. Keep in
mind, though, that while setgid programs are safer than setuid ones, they are not
risk-free themselves.

The relationship between commands and files

The Unix operating system does not distinguish between commands and files in the
ways that some systems do. Aside from a few commands that are built into each Unix
shell, Unix commands are executable files stored in one of several standard locations
within the filesystem. Access to commands is exactly equivalent to access to these
files. By default, there is no other privilege mechanism. Even I/O is handled via special
files, stored in the directory /dev, which function as interfaces to the device drivers. All
/O operations look just like ordinary file operations from the user’s point of view.

Unix shells use search paths to locate the executable’s images for commands that
users enter. In its simplest form, a search path is simply an ordered list of directories
in which to look for command executables, and it is typically set in an initialization
file (SHOME/.profile or $HOME/.login). A faulty (incomplete) search path is the
most common cause for “Command not found” error messages.

Search paths are stored in the PATH environment variable. Here is a typical PATH:

$ echo $PATH

/bin:/usr/ucb:/usr/bin:/usr/local/bin: . :$HOME/bin
The various directories in the PATH are separated by colons. The search path is used
whenever a command name is entered without an explicit directory location. As an
example, consider the following command:

$ od data.raw

The od command is used to display a raw dump of a file. To locate this command,
the operating system first looks for a file named od in /bin. If such a file exists, it is
executed. If there is no od file in the /bin directory, /usr/uchb is checked next, followed
by /usr/bin (where od is in fact usually located). If it were necessary, the search would
continue in /usr/local/bin, the current directory, and finally the bin subdirectory of
the user’s home directory.

The order of the directories in the search path is important when more than one ver-
sion of a command exists. Such effects come into play most frequently when both

Processes | 59

the BSD and the System V versions of commands are available on a system. In this
case, you should put the directory holding the versions you want to use first in your
search path. For example, if you want to use the BSD versions of commands such as
1s and 1n on a System V-based system, then put /usr/ucb ahead of /usr/bin in your
search path. Similarly, if you want to use the System V—compatible commands avail-
able on some systems, put /usr/5bin ahead of /usr/bin and /usr/ucb in your search
path. These same considerations will obviously apply to users’ search paths that you
define for them in their initialization files (see “Initialization Files and Boot Scripts”
in Chapter 4).

Most of the Unix administrative utilities are located in the directories /sbin and /usr/
sbin. However, the locations of administrative commands can vary widely between
Unix versions. These directories typically aren’t in the search path unless you put
them there explicitly. When executing administrative commands, you can either add
these directories to your search path or provide the full pathname for the command,
as in the example below:

/usr/sbin/ping hamlet

I'm going to assume in my examples that the administrative directories have been
added to the search path. Thus, I won’t be including the full pathname for any of the
commands I'll be discussing.

The Unix Way of System Administration

System administrators are stereotypically arrogant, single-minded, and opinionated.
For Unix system administrators, the stereotype was born in the days when Unix was
this bizarre operating system that ran on only a few systems, and the local Unix guru
was some guy who generally kept to himself, locked away with his system—or so the
story goes.

The skepticism I'm exhibiting with this view of Unix system managers does not mean
that there is no truth in it at all. Like most caricatures, this one has roots in reality. For
example, it is all too easy to find people who will tell you that there is one right editor
to use, one right shell for writing scripts, one right way to do anything you care to
name. Discussing the advantages and liabilities of alternative approaches to problems
can be both useful and entertaining, but only within reason.

Since you’re reading this introductory chapter, I'm assuming that you are only begin-
ning your exploration of Unix administration. I certainly want to encourage you to
consider for yourself all the tasks and issues you will face as you proceed and to provide
help when I can. You’ll quickly form your own opinions and define what system
administration is for you. Doing so is a process, which can continue for as long and
range as widely as you want it to. However, if you get to a point where fanaticism
replaces thinking, you’ve gone too far.

60 | Chapter2: The Unix Way

Devices

One of the strengths of Unix is that users don’t need to worry about the specific
characteristics of devices and device I/O very often. They don’t need to know, for
example, what disk drive a file they want to access physically sits on. And the Unix
special file mechanism allows many device I/O operations to look just like file 1/O.
As we’ve noted, the administrator doesn’t have these same luxuries, at least not all
the time. This section discusses Unix device handling and then surveys the special
files used to access devices.

Device files are characterized by their major and minor numbers, which allow the ker-
nel to determine which device driver to use to access the device (via the major num-
ber), as well as its specific method of access (via the minor number).

Major and minor numbers appear in place of the file size in long directory listings.
For example, consider these device files related to the mouse from a Linux system:

$ cd /dev; 1s -1 *mouse

CIW-TW-T-- 1 root root 10, 10 Jan 19 03:36 adbmouse
CIW-TW-T-- 1 root root 10, 4 Jan 19 03:35 amigamouse
CIW-TW-T-- 1 root root 10, 5 Jan 19 03:35 atarimouse
CIW-IW-I-- 1 root root 10, 8 Jan 19 03:35 smouse
CIW-TW-T-- 1 root root 10, 6 Jan 19 03:35 sunmouse
CIW-TW-T-- 1 root root 13, 32 Jan 19 03:36 usbmouse

The major number for all but the last special file is 10; only the minor number dif-
fers for these devices. Thus, all of these mouse device variations are handled by the
same device driver, and the minor number indicates the variation within that general
family. The final item, corresponding to a USB mouse, has a different major num-
ber, indicating that a different device driver is used.

Device files are created with the mknod command, and it takes the desired device
name and major and minor numbers as its arguments. Many systems provide a script
named MAKEDEYV (located in /dev), which is an easy-to-use interface to mknod.

An In-Depth Device Example: Disks

We'll use disk drives as an example in this overview discussion of Unix devices.” As
we’ve noted before, Unix organizes all user-accessible files into a single hierarchical
directory structure. The files and directories it contains may be spread across several
different disk drives.

On most Unix systems, disks are divided into one or more fixed-size partitions: phys-
ical subsets of the disk drive that are separately accessed by the operating system.

* This discussion will describe traditional ways of handling disks and filesystems. Unix versions that require
or offer a logical volume manager do things quite differently at the lowest level, but this overview is still con-
ceptually true for those systems (for “disk partition,” read “logical volume”). See Chapter 10 for details.

Devices | 61

There may be several partitions or just one on each physical disk. The disk partition
containing the root filesystem is called the root partition and sometimes the root disk,
although it obviously needn’t comprise the entire disk drive. The disk containing the
root partition is generally called the system disk.

The root filesystem is the first one mounted, early in the Unix boot process, and the
remaining ones are mounted afterwards. On many operating systems, mounting a
disk refers to the process of making the device’s contents available. For Unix, it
means something more. Like the overall Unix filesystem, the files and directories
physically located on each disk partition are arranged in a tree structure.” An integral
part of the process of mounting a disk partition involves grafting its local directory
structure into the overall Unix directory tree. Once this is done, the files physically
residing on that device may be accessed via the usual Unix pathname syntax; Unix
takes care of mapping pathnames to the correct physical device and data blocks.

For administrators, however, there are a few times when the disk partition must be
accessed directly. The actual mount operation is the most common. Remember that
disk partitions may be accessed in two modes, block mode and raw (or character)
mode, and different special files are used from each mode. Character access mode
does unbuffered I/O, generally making a data transfer to or from the device with
every read or write system call. Block devices do buffered I/O on a block basis, col-
lecting data in a buffer until the operating system can transfer an entire block of data
at one time.

For example, the disk partition containing the root filesystem traditionally corre-
sponded to the special files /dev/diskOa and /dev/rdiskOa, specifying the first partition
on the first disk (disk 0, partition a), accessed in block and raw mode respectively,t
with the r designating raw device access.

Most disk partition—related commands require a specific type of spe-
cial file and won’t accept the other kind.

* For this reason, each separate disk partition may also be referred to as a filesystem. Thus, “filesystem” is used
to refer both to the overall system directory tree (as in “the Unix filesystem”), comprising every user-acces-
sible disk partition on the system, and to the files and directories on individual disk partitions (as in “build
a filesystem on the disk partition” or “mounting the user filesystems”). Whether the overall Unix directory
tree or an individual disk partition is meant will be clear from the context. On a related note, the terms par-
tition and filesystem are often used synonymously. Thus, while technically only filesystems can be mounted,
common usage often refers to “mounting a disk” or “mounting a partition.”

T The names given to the two types of special files are overdetermined. For example, the special file /dev/diskOa
is referred to as a block special file, and /dev/rdiskOa is called a character special file. However, block special
files are also sometimes called block devices, and character special files may be referred to as character devices
or raw devices.

62 | Chapter2: The Unix Way

Note that most Linux versions and newer versions of BSD do not distinguish
between the two types of special files for IDE disks and provide only one special file
per disk partition.

As an example of the use of special files to access disk partitions, consider the mount
commands below:

mount /dev/diskoa /

mount /dev/diskie /home
Naturally, the command to mount a disk partition needs to specify the physical disk
partition to be mounted (mount’s first argument) and the location to place it in the
filesystem, its mount point (the second argument).” Thus, the first command makes
the files in the first partition on drive 0 available, placing them at the root of the Unix
filesystem. The second command accesses a partition on drive 1, placing it at /home
in the overall directory tree. Thus, regular files in the top-level directory on this sec-
ond disk partition will appear in /home, and top-level directories on the disk parti-
tion become subdirectories of /home. The mount command is discussed in greater
detail in Chapter 10.

Fixed-disk special files

Currently used special file names for disk partitions are highly implementation-
dependent. However, a common logic underlies all of the various naming schemes.
Disk special files can encode the type of disk, the disk controller, the disk location on
its controller, and the disk partition within the physical disk (as well as the access
mode) within the special file name.

Let’s take the Tru64 special files for disks as an example; these special files have
names of the following form, where 7 is the disk number (beginning at 0), and x is a
letter from a to h designating the partition on the physical disk:

/dev/disk/dsknx
Block device

/dev/rdisk/dsknx
Character (raw) device

The partitions have conventional uses, and not all partitions are used on every disk
(see Chapter 10 for more details). Traditionally, the a partition on the root disk con-
tains the root filesystem. b partitions are conventionally used as swap partitions. On
the root disk, other partitions might be used for various system directories: for exam-
ple, e for /usr, h for /var, d for other filesystems, and so on.

* In fact, on most Unix systems, mount is smarter than this. If you give it a single argument—either the physical
disk partition or the mount point—it will look up the other argument in a table. But you can always supply
both arguments, which means that you can rearrange your filesystem at will. (Why you would want to is a
different question.)

Devices | 63

The ¢ partition often refers to the entire disk as a whole: every bit of space on the
disk, including areas that should be accessed only by the kernel (such as the parti-
tion table at the beginning of the drive). For this reason, using the ¢ partition for a
filesystem was not allowed under older versions of Unix. More recent versions gener-
ally do not have this restriction.

System V-based systems use a similar naming philosophy, although the actual names
differ. Special filenames for disk partitions are often of the form /dev/dsk/cktmdpsn,
where k is the controller number, m is the drive number on that controller (often the
SCSI target ID), and n is the partition (section) number on that drive (all numbers
start at 0). p refers to the logical unit number (LUN) for SCSI devices and is thus usu-
ally 0. HP-UX uses this form but typically omits the s component.

In this scheme, character and block special files have the same names, but they are
stored in two different subdirectories of /dev: /dev/dsk and /dev/rdsk, respectively.
Thus, the special file /dev/dsk/c1t4d0s2 is the block special file for the third partition
on the disk with SCSI ID 4 on controller 1 (the second controller). The correspond-
ing character device is /dev/rdsk/c1t4d0s2.

Names in this format, known as controller-drive-section identifiers, are specified for
all disk and tape devices under the System V.4 standard. Actual System V-based
implementations start with this framework and may vary it somewhat according to
the devices actually supported. Sometimes, they also provide links to more mnemon-
ically or intuitively-named special files. For example, on some (mostly older) Solaris
systems, /dev/sd0a might be linked to /dev/dsk/c0t3d0s0, allowing the conventional
SunOS name to be used for the 0 partition on the disk with SCSI ID 3 on the first
controller.”

Table 2-8 illustrates the similarities among disk special file names. The special files in
the table all refer to a partition on the second SCSI disk drive on the first controller,
using SCSI ID 4.

Table 2-8. Interpreting disk special file names

FreeBSD HP-UX Linux Solaris Tru642
Spedial file /dev/rdald /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c
Raw access /dev/rdald /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c
Device = Disk /dev/rdald /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dskTc
Type =SCSI /dev/rdald /dev/sdb1
Controller # /dev/rdsk/c0t4d0 /dev/rdsk/c0t4d0s3
SCSIID /dev/rdsk/c0t4d0 /dev/rdsk/c0t4d0s3

* Even this isn’t the full truth about Solaris special files. The files in /dev are usually links to the real device files
in the /devices directory subtree.

64 | Chapter2: TheUnix Way

Table 2-8. Interpreting disk special file names (continued)

FreeBSD HP-UX Linux Solaris Tru642
Device # /dev/rdald /dev/sdb1 /dev/rdisk/dsk1c
Disk Partition /dev/rdald assumed /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c

a Qlder Tru64 systems use the now-obsolete device names of the form /dev/rz*, /dev/ra*, and /dev/re*.

In yet another twist, systems that use logical volume managers (including AIX by
default) allow the system administrator to specify names for the special files for logi-
cal volumes—virtual disk partitions—when they are created. These special files often
have names of the form /dev/name, where name is chosen when the filesystem is cre-
ated. On such systems, it is logical volumes rather than physical partitions that hold
filesystems. We’'ll leave the rest of the gory details about these topics until
Chapter 10.

Special Files for Other Devices

Other device types have special files named differently, but they follow the same
basic conventions. Some of the most common are summarized in Table 2-9 (they will
be discussed in more detail as appropriate in later chapters). In some cases, only the
more commonly used form (block versus character) of the file is listed. For example,
tape drives are seldom, if ever, accessed via the block device, and on many systems,

the block special files do not even exist.

Table 2-9. Common Unix special file names

Device/use Special file forms Example
Floppy disk /dev/[rIfdn* /dev/fd0
/dev/floppy
Tape devices? /dev/rmtn /dev/rmt1
/dev/rmt/n /dev/rmt/0
nonrewinding /dev/nrmtn /dev/nrmt0
SCSI /dev/rstn /dev/rst0
default tape drive /dev/tape
(D-ROM devices /dev/cdn /dev/cd0
/dev/cdrom
Serial lines /dev/ttyn [dev/tty1
/dev/term/n /dev/tty01
/dev/term/01
Slave virtual terminal (windows, net- /dev/tty[p-sin /dev/ttyp1
work sessions, etc.) /dev/pts/n /dev/pts/2
Master/control virtual terminal devices /dev/pty[p-sin /dev/ptyp3
Console device /dev/console
some System V /dev/syscon
AIX /dev/Ift0

Devices

65

Table 2-9. Common Unix special file names (continued)

Device/use Special file forms Example
Process controlling TTY (used toensure /dev/tty
1/0 comes from/goes to terminal,
regardless of any I/0 redirection)
Memory maps:
physical /dev/mem
kernel virtual /dev/kmem
Mouse interface /dev/mouse
Null devices: all output is discarded; /dev/null
reads return nothing (0 characters, 0 /dev/zero

bytes) or a zero-filled buffer, respec-
tively.

a Tape devices often have suffixes that specify the tape density.

Commands for listing the devices on a system

Most Unix versions provide commands that make it easy to quickly determine what
devices are present on the system, as well as their current status. Table 2-10 lists the
commands for the systems we are considering.

Table 2-10. Device listing and information commands

Unix Version Command(s) Description

AIX lscfg List all devices.
lscfg -v -1 device Device configuration detail.
1sdev -C -s scsi List all SCSI IDs.
lsattr -E -H -1 device Display device attributes.

FreeBSD pciconf -1 -v List PCl devices
camcontrol devlist List SCSI devices.

HP-UX ioscan -f -n Detailed device listing.
ioscan -f -n -C disk Limit to device class.

Linux 1sdev List major devices.
scsiinfo -1 List SCSI devices.
lspci List PCl devices.

Solaris? dmesgb Boot messages identify all devices.
getdev List devices.
getdev type=disk Limit to device class.
devattr -v device Device detail.

Tru64 dsfmgr -s List devices.

a Unfortunately, the getdev and devattr commands are often of limited use.
b dmesg is also available under FreeBSD, HP-UX, and Linux.

66 | Chapter2: The Unix Way

The AIX Object Data Manager

Under AIX, information about the devices on the system and other system configura-
tion is stored in a binary database. The management apparatus for this database is
known as the Object Data Manager (ODM), although “ODM?” is also used colloqui-
ally to refer to the database itself, as well. Information is stored in the ODM as
objects: items of various predefined types, with a collection of attributes and their
associated sets or ranges of legal values.

Here is a textual representation of a sample entry for a disk drive:

name = "hdisko"

status = 1

chgstatus = 2

ddins = "scdisk"

location = "00-00-0S-0,0"
parent = "scsio"

connwhere = "0,0"

PdDvLn = "disk/scsi/1000mb"

This entry illustrates the general form for a device; most devices use the same fields,

although their meaning varies somewhat depending on the device type. This entry
describes a 1 GB SCSI disk drive.

The preceding entry came from the current devices database, stored in /etc/objrepos/
CuDv. The attributes for this object (as well as those for the other objects on the sys-
tem) are stored in a separate, current attributes database (found in /etc/objrepos/
CuAt). This database may have several entries for any given object, one for each
defined attribute for that class of object for which a nondefault value is set. For
example, here are two of the attributes for the logical volume hd6 (one of the disk
partitions on hdisk0):
name = "hd6"

attribute = "type"
value = "paging"

type = "R"
generic = "DU"
rep = "s"

nls _index = 639
name = "hd6"

attribute = "size"
value = "16"

type = "R"

generic = "DU"

rep = "r"

nls index = 647

The first entry indicates that this is a paging space, and the second indicates that its
size is 16 logical partitions (64 MB, assuming the default partition size).

SMIT and the AIX commands it runs retrieve information from the ODM, as well as
adding and modifying entries as necessary.

Devices | 67

The Unix Filesystem Layout

Now that we’ve considered the Unix approach to major system components, it’s
time to acquaint you with the structure of the Unix filesystem. This brief tour will
begin with the root directory and its most important subdirectories.

The basic layout of traditional Unix filesystems is illustrated in Figure 2-4, which
shows an idealized directory structure (actually a superset of the items found on any
one system). Note that in practice, there are lots of variations with respect to this
paradigm.

You’ll find small deviations from this on most Unix systems you encounter, but the
basic structure will be quite similar. We’ll consider each of the major directories in
turn.

The Root Directory

This is the base of the filesystem’s tree structure; all other files and directories,
regardless of their physical disk locations, are logically contained underneath the
root directory (described in detail in Chapter 10).

There are a variety of important first-level directories under the / directory:

/bin
The traditional location for executable (binary) files for the various Unix user
commands and utilities. On many current systems, some files within /bin are
merely symbolic links to files in /usr/bin, and /bin is sometimes a link to /usr/bin.
Other directories that hold Unix commands are /usr/bin and /usr/ucbh.

/dev
The device directory, containing special files as described previously. The /dev
directory is divided into subdirectories in most System V-based versions of
Unix, with each subdirectory holding special files of a given type. Subdirectory
names indicate the type of devices it contains: dsk and rdsk for disks accessed in
block and raw mode, mt and rmt for tape drives, term for terminals (serial lines),
pts and ptc for pseudo-terminals, and so on.

Solaris introduces a new device directory tree, beginning at /devices, and many
files under /dev are links to files in subdirectories of /devices.

letc and /sbin
System configuration files and executables. These directories contain many
administrative files and configuration files. Among the most important files are
the System V—style boot script subdirectories, named ren.d and init.d, which are
located under one of these two locations on systems using this style of booting.

/etc also traditionally contained the executable binaries for most administrative
commands. In recent Unix versions, these files have moved to /sbin and /usr/sbin.
Conventionally, the former is used for files required to boot the system, and the
latter contains all other administrative commands.

68 | Chapter2: The Unix Way

/bin
/dev
Jetc
/shin

(root directory) /home

dsk

h=1
=
a

3

term

auth

1?"'

default
init.d

rc0.d

i

r.d
ra3.d

/lib

/mnt

/opt

/proc

Jtch

/tmp

Jusr

var

/stand

CEEECEEETEELEE

X1

[1L

include sic

:

v
<2
~

uch

X11R6
cron

lock
cron

i

1?

news

preserve
mqueue

i

samba

PLECEL

Figure 2-4. Generic Unix directory structure

On many systems, /etc also contains a subdirectory default, which holds files
containing default parameter values for various commands.

On Linux systems, the sysconfig subdirectory holds network configuration and
other package-specific, boot-related configuration files.

Devices

69

Under AIX, /etc contains two additional directories of note: /etc/objrepos stores
the device configuration databases, and /etc/security stores most security-related
configuration files.

/home

/lib

This directory is a conventional location for users’ home directories. For exam-
ple, user chavez’s home directory is often /home/chavez. The name is completely
arbitrary, however, and is often changed by the local site. It may also be a sepa-
rate filesystem.

Location of shared libraries required for booting the system (i.e., before /usr is
mounted).

Nlost+found

Lost files directory. Disk errors or incorrect system shutdown may cause files to
become lost: lost files refer to disk locations that are marked as in use in the data
structures on the disk, but that are not listed in any directory (i.e., an inode with
a link count greater than zero that isn’t listed in any directory). When the sys-
tem is booting, it runs a program called fsck that, among other things, finds
these files.

There is usually a lost+found directory on every disk partition; /lost+found is the
one on the root disk. However, some Unix systems do not create the directory
until it is needed.

/mnt

/opt

Temporary mount directory: an empty directory conventionally designed for
temporarily mounting filesystems.

Directory tree into which optional software is often installed. On some systems,
optional software products are installed instead under /var/opt. On AIX systems,
this function is provided by the directory /us/Ipp.

Iproc

Process directory, designed to enable processes to be manipulated using Unix file
access system calls. Files in this directory correspond to active processes (entries
in the kernel process table). On Linux systems, there are also additional files
containing various information about the system configuration: interrupt usage,
I/O port use, DMA channel allocation, CPU type, and the like. The HP-UX
operating system does not use /proc.

/stand

Boot-related files, including the kernel executable. Solaris uses /kernel, and
Linux systems use /boot for the same purpose. FreeBSD systems use /stand for
installation and system configuration—related programs and use /boot for kernels
and related files used for booting.

70

Chapter 2: The Unix Way

/tch
Directory tree for security-related database files on some systems offering
enhanced security features, including HP-UX and Tru64 (the name stands for
“trusted computing base”). Configuration files related to the TCB are also stored
under /etc/auth. /usr/tcb may also be used for this purpose.

/tmp
Temporary directory, available to all users as a scratch directory. The system
administrator should see that all the files in this directory are deleted occasion-
ally. Normally, one of the Unix startup scripts will clear /tmp.

lusr
This directory contains subdirectories for locally generated programs, executa-
bles for user and administrative commands, shared libraries, and other parts of
the Unix operating system. The most important subdirectories of /usr are dis-
cussed in more detail in the next section. /usr also sometimes contains applica-
tion programs.

var
Spooling and other volatile directories (varying data). Important subdirectories
are described below.

The /usr Directory
The directory /usr contains a number of important subdirectories:

lusr/bin
Command binary files and shell scripts. This directory contains public execut-
able programs that are part of the Unix system. Many executables for the X Win-
dow System are stored in /usr/bin/X11 or /usr/X11R6/bin.

lusr/include
Include files. This directory contains C-language header files that define the C
programmer’s interface to standard system features and program libraries. For
example, it contains the file stdio.h, which defines the user’s interface to the C
standard I/O library. The directory /ust/include/sys contains operating system
include files.

lust/lib
Library directory, for public library files. Among other things, this directory con-
tains the standard C libraries for mathematics and I/O. Library files generally
have names of the form libx.a or libx.so, where x is one or more characters
related to the library’s contents; the extensions specify a regular (statically
linked) and shared library, respectively.

lusr/local
Local files. By convention, the directory /usr/local/bin holds executable pro-
grams that were developed locally or retrieved from the Internet and any sources

Devices | 71

other than the operating-system vendor. There may be other subdirectories here
to hold related files: man (manual pages), lib (libraries), src (source code), doc
(documentation), and so on.

fusr/sbin

Administrative commands (except ones required for booting, which are in /sbin).

fusr/share

Shared data. On some recent systems, certain CPU architecture-independent
static data files (such as the online manual pages, font directories, the dictionary
files for spell, and the like) are stored in subdirectories under /usr/share. The
name share reflects the idea that such files could be shared among a group of
networked systems, eliminating the need for separate copies on every system.

lusr/share/man

One location for the manual pages directory tree. This directory contains the
online version of the Unix reference manuals. It is divided into subdirectories for
the various sections of the manual.

Traditionally, the subdirectory structure contains several mann subdirectories
holding the raw source for the manual pages in that section and corresponding
catn subdirectories storing the formatted versions. On many current systems,
however, the latter are eliminated, and manual pages are formatted as needed. In
many cases, the source files are stored in compressed form to save even more
space.

The significance of the manual sections is described in the Table 2-11.

Table 2-11. Manual-page sections

Contents BSD style System V style
User commands 1 1
System calls 2 2
Functions and library routines 3 3
Special files and hardware 4 7
Configuration files and file formats 5 4
Games and demos 6 6orl
Miscellaneous: character sets, filesystem types, data type definitions, etc. 7 5
System administration commands 8 m
Maintenance commands 8 8
Device drivers 4 7or9

Among the systems we are considering, the BSD-style organization is used by
FreeBSD, Linux, and Tru64, and the System V—style organization is more or less
followed by AIX, HP-UX, and Solaris.

72

Chapter 2: The Unix Way

lusr/src
Source code for locally built software packages (FreeBSD and Linux). FreeBSD
also uses the /usr/ports directory tree for retrieving and building additional soft-
ware packages.

lusriuch
A directory that contains standard Unix commands originally developed under
BSD. Recent System V-based systems also provide BSD versions of commands
so that users may use the form that they prefer. Some BSD-based versions have
similar directories for System V versions of commands, conventionally /usr/5bin.
lusr/opt/s5/bin and Jusr/opt/s5/sbin perform a similar function under Tru64.

The /var Directory

As we noted, the /var directory tree holds data that changes over time. These are its
most important subdirectories:

lvarladm
Administrative directory (home directory of the special adm user). This direc-
tory traditionally contains the Unix accounting files although many Unix ver-
sions have moved them.

fvar/cron, lvar/news
/var contains subdirectories used by many system facilities. These examples are
used by the cron and Usenet news facilities, respectively.

Nvar/log
Location for log files maintained by many system facilities.

fvar/mail
User mailbox location.

Mvar/run
Contains files holding the current process IDs of various system daemons and
other server and/or execution instance-specific data.

Mvar/spool
Contains subdirectories for Unix subsystems that provide different kinds of
spooling services. Some of the tools using /var/spool subdirectories are the print
spooling system, the mail system, and the cron facility.

Devices | 73

CHAPTER 3

Essential Administrative
Tools and Techniques

The right tools make any job easier, and the lack of them can make some tasks
almost impossible. When you need an Allen wrench, nothing but an Allen wrench
will do. On the other hand, if you need a Phillips head screwdriver, you might be
able to make do with a pocket knife, and occasionally it will even work better.

The first section of this chapter will consider ways the commands and utilities that
Unix provides can make system administration easier. Sometimes that means apply-
ing common user commands to administrative tasks, sometimes it means putting
commands together in unexpected ways, and sometimes it means making smarter
and more efficient use of familiar tools. And, once in a while, what will make your
life easier is creating tools for users to use, so that they can handle some things for
themselves. We’ll look at this last topic in Chapter 14.

The second section of this chapter will consider some essential administrative facili-
ties and techniques, including the cron subsystem, the syslog facility, strategies for
handling the many system log files, and management software packages. We’ll close
the chapter with a list of Internet software sources.

Getting the Most from Common Commands

In this section, we consider advanced and administrative uses of familiar Unix
commands.

Getting Help

The manual page facility is the quintessentially Unix approach to online help: super-
ficially minimalist, often obscure, but mostly complete. It’s also easy to use, once you
know your way around it.

Undoubtedly, the basics of the man command are familiar: getting help for a com-
mand, specifying a specific section, using -k (or apropos) to search for entries for a
specific topic, and so on.

74

There are a couple of man features that I didn’t discover until I'd been working on
Unix systems for years (I'd obviously never bothered to run man man). The first is that
you can request multiple manual pages within a single man command:

$ man umount fsck newfs

man presents the pages as separate files to the display program, and you can move
among them using its normal method (for example, with :n in more).

On FreeBSD, Linux, and Solaris systems, man also has a -a option, which retrieves the
specified manual page(s) from every section of the manual. For example, the first
command below displays the introductory manual page for every section for which
one is available, and the second command displays the manual pages for both the
chown command and system call:

$ man -a intro

$ man -a chown
Manual pages are generally located in a predictable location within the filesystem,
often /usr/share/man. You can configure the man command to search multiple man
directory trees by setting the MANPATH environment variable to the colon-sepa-
rated list of desired directories.

Changing the search order

The man command searches the various manual page sections in a predefined order:
commands first, followed by system calls and library functions, and then the other
sections (i.e., 1, 6, 8,2, 3,4, 5, and 7 for BSD-based schemes). The first manual page
matching the one specified on the command line is displayed. In some cases, a differ-
ent order might make more sense. Many operating systems allow this ordering
scheme to be customized via the MANSECTS entry within a configuration file. For
example, Solaris allows the search order to be customized via the MANSECTS entry
in the /usr/share/man/man.cf configuration file. You specify a list of sections in the
order in which you want them to be searched:

MANSECTS=8,1,2,3,4,5,6,7
This ordering brings administrative command sections to the beginning of the list.

Here are the available ordering customization locations for the versions we are con-
sidering that offer this feature:

FreeBSD
MANSECT environment variable (colon-separated)

Linux (Red Hat)
MANSECT in /etc/man.config (colon-separated)

Linux (SuSE)
SECTION in /etc/manpath.config (space-separated)

Getting the Most from Common Commands | 75

Solaris
MANSECTS in /usr/share/man/man.cf and/or the top level directory of any man-
ual page tree (comma-separated)

Setting up man —k

It’s probably worth mentioning how to get man -k to work if your system claims to
support it, but nothing comes back when you use it. This command (and its alias
apropos) uses a data file indexing all available manual pages. The file often must be
initially created by the system administrator, and it may also need to be updated
from time to time.

On most systems, the command to create the index file is makewhatis, and it must be
run by root. The command does not require any arguments except on Solaris sys-
tems, where the top-level manual page subdirectory is given:

makewhatis Most systems
makewhat /usr/share/man Solaris

On AIX, HP-UX, and Tru64, the older catman -w command is used instead.

Piping into grep and awk

As you undoubtedly already know, the grep command searches its input for lines
containing a given pattern. Users commonly use grep to search files. What might be
new is some of the ways grep is useful in pipes with many administrative com-
mands. For example, if you want to find out about all of a certain user’s current pro-
cesses, pipe the output of the ps command to grep and search for her username:

% ps aux | grep chavez

chavez 8684 89.5 9.627680 5280 ? R N 85:26 /home/j90/1988
root 10008 10.0 0.8 1408 352 p2 S 0:00 grep chavez
chavez 8679 0.0 1.4 2048 704 ? I N 0:00 -csh (csh)
chavez 8681 0.0 1.3 2016 672 ? I N 0:00 /usr/nqs/scl
chavez 8683 0.0 1.3 2016 672 2 I N 0:00 csh -cb rj9o
chavez 8682 0.0 2.6 1984 1376 ? I N 0:00 j90

This example uses the BSD version of ps, using the options that list every single pro-
cess on the system,” and then uses grep to pick out the ones belonging to user chavez.
If you’d like the header line from ps included as well, use a command like:

% ps -aux | egrep 'chavez|PID'
Now that’s a lot to type every time, but you could define an alias if your shell sup-

ports them. For example, in the C shell you could use this one:

% alias pu "ps -aux | egrep '\!:1|PID
% pu chavez

* Under HP-UX and for Solaris’ /usr/bin/ps, the corresponding command is ps -ef.

76 | Chapter3: Essential Administrative Tools and Techniques

USER PID %CPU 7%MEM SZ RSS TT STAT TIME COMMAND
chavez 8684 89.5 9.6 27680 5280 ? R N 85:26 /home/j90/1988

Another useful place for grep is with man -k. For instance, I once needed to figure out
where the error log file was on a new system—the machine kept displaying annoy-
ing messages from the error log indicating that disk 3 had a hardware failure. Now, I
already knew that, and it had even been fixed. I tried man -k error: 64 matches; man
-k log was even worse: 122 manual pages. But man -k log | grep error produced
only 9 matches, including a nifty command to blast error log entries older than a
given number of days.

The awk command is also a useful component in pipes. It can be used to selectively
manipulate the output of other commands in a more general way than grep. A com-
plete discussion of awk is beyond the scope of this book, but a few examples will
show you some of its capabilities and enable you to investigate others on your own.

One thing awk is good for is picking out and possibly rearranging columns within
command output. For example, the following command produces a list of all users
running the quake game:

$ ps -ef | grep "[qluake" | awk '{print $1}"

This awk command prints only the first field from each line of ps output passed to it
by grep. The search string for grep may strike you as odd, since the brackets enclose
only a single character. The command is constructed that way so that the ps line for
the grep command itself will not be selected (since the string “quake” does not
appear in it). It’s basically a trick to avoid having to add grep -v grep to the pipe
between the grep and awk commands.

Once you’ve generated the list of usernames, you can do what you need to with it.
One possibility is simply to record the information in a file:
$ (date ; ps -ef | grep "[qluake" | awk '{print $1 " [" $7 "]"}' \
| sort | uniq) >> quaked.users

This command sends the list of users currently playing quake, along with the CPU
time used so far enclosed in square brackets, to the file quaked.users, preceding the
list with the current date and time. We’ll see a couple of other ways to use such a list
in the course of this chapter.

awk can also be used to sum up a column of numbers. For example, this command
searches the entire local filesystem for files owned by user chavez and adds up all of
their sizes:

find / -user chavez -fstype 4.2 ! -name /dev/* -1s | \

awk '{sum+=$7}; END {print "User chavez total disk use = " sum}'

User chavez total disk use = 41987453
The awk component of this command accumulates a running total of the seventh col-
umn from the find command that holds the number of bytes in each file, and it

Getting the Most from Common Commands | 77

prints out the final value after the last line of its input has been processed. awk can
also compute averages; in this case, the average number of bytes per file would be
given by the expression sum/NR placed into the command’s END clause. The
denominator NR is an awk internal variable. It holds the line number of the current
input line and accordingly indicates the total number of lines read once all of them
have been processed.

awk can be used in a similar way with the date command to generate a filename based
upon the current date. For example, the following command places the output of the
sys_doc script into a file named for the current date and host:

$ sys_doc > “date | awk '{print $3 $2 $6}' . hostname™.sysdoc

If this command were run on October 24, 2001, on host ophelia, the filename gener-
ated by the command would be 240c¢t2001.ophelia.sysdoc.

Recent implementations of date allow it to generate such strings on its own, elimi-
nating the need for awk. The following command illustrates these features. It con-
structs a unique filename for a scratch file by telling date to display the literal string
junk_ followed by the day of the month, short form month name, 2-digit year, and
hour, minutes and seconds of the current time, ending with the literal string .junk:

$ date +junk_%d%b%y%HAM%S . junk
junk_08Dec01204256. junk

We’ll see more examples of grep and awk later in this chapter.

Is All of This Really Necessary?

If all of this fancy pipe fitting seems excessive to you, be assured that I'm not telling
you about it for its own sake. The more you know the ins and outs of Unix com-
mands—both basic and obscure—the better prepared you’ll be for the inevitable unex-
pected events that you will face. For example, you’ll be able to come up with an answer
quickly when the division director (or department chair or whoever) wants to know
what percentage of the aggregate disk space in a local area network is used by the chem
group. Virtuosity and wizardry needn’t be goals in themselves, but they will help you
develop two of the seven cardinal virtues of system administration: flexibility and inge-
nuity. ('l tell you what the others are in future chapters.)

Finding Files

Another common command of great use to a system administrator is find. find is
one of those commands that you wonder how you ever lived without—once you
learn it. It has one of the most obscure manual pages in the Unix canon, so I'll spend
a bit of time explaining it (skip ahead if it’s already familiar).

78 | Chapter3: Essential Administrative Tools and Techniques

find locates files with common, specified characteristics, searching anywhere on the
system you tell it to look. Conceptually, find has the following syntax:”

find starting-dir(s) matching-criteria-and-actions

Starting-dir(s) is the set of directories where find should start looking for files. By
default, find searches all directories underneath the listed directories. Thus, specify-
ing / as the starting directory would search the entire filesystem.

The matching-criteria tell find what sorts of files you want to look for. Some of the
most useful are shown in Table 3-1.

Table 3-1. find command matching criteria options

Option Meaning

-atime n File was last accessed exactly n days ago.

-mtime n File was last modified exactly n days ago.

-newer file File was modified more recently than file was.
-size n File is n 512-byte blocks long (rounded up to next block).
-type ¢ Specifies the file type: f=plain file, d=directory, etc.
-fstype typ Specifies filesystem type.

-name nam The filename is nam.

-perm p The file’s access mode is p.

-user usr The file's owner is usr.

-group grp The file’s group owner is grp.

-nouser The file’s owner is not listed in the password file.
-nogroup The file's group owner is not listed in the group file.

These may not seem all that useful—why would you want a file accessed exactly
three days ago, for instance? However, you may precede time periods, sizes, and
other numeric quantities with a plus sign (meaning “more than”) or a minus sign
(meaning “less than”) to get more useful criteria. Here are some examples:

-mtime +7 Last modified more than 7 days ago
-atime -2 Last accessed less than 2 days ago
-size +100 Larger than 50K

You can also include wildcards with the -name option, provided that you quote them.
For example, the criteria -name '*.dat' specifies all filenames ending in .dat.

Multiple conditions are joined with AND by default. Thus, to look for files last
accessed more than two months ago and last modified more than four months ago,
you would use these options:

-atime +60 -mtime +120

* Syntactically, find does not distinguish between file-selection options and action-related options, but it is
often helpful to think of them as separate types as you learn to use find.

Getting the Most from Common Commands | 79

Options may also be joined with -o for OR combination, and grouping is allowed
using escaped parentheses. For example, the matching criteria below specifies files
last accessed more than seven days ago or last modified more than 30 days ago:

\(-atime +7 -o -mtime +30 \)
An exclamation point may be used for NOT (be sure to quote it if you’re using the C
shell). For example, the matching criteria below specify all .dat files except gold.dat:

! -name gold.dat -name *.dat
The -perm option allows you to search for files with a specific access mode (numeric
form). Using an unsigned value specifies files with exactly that permission setting,
and preceding the value with a minus sign searches for files with at least the speci-

fied access. (In other words, the specified permission mode is XORed with the file’s
permission setting.) Here are some examples:

-perm 755 Permission = rwxr-xr-x
-perm -002 World-writeable files
-perm -4000 Setuid access is set
-perm -2000 Setgid access is set

The actions options tell find what to do with each file it locates that matches all the
specified criteria. Some available actions are shown in Table 3-2.

Table 3-2. find actions

Option Meaning

-print Display pathname of matching file.

-1s2 Display long directory listing for matching file.

-exec cmd Execute command on file.

-ok cmd Prompt before executing command on file.

-xdev Restrict the search to the filesystem of the starting directory (typically used to bypass mounted remote
filesystems).

-prune Don't descend into directories encountered.

2 Not available under HP-UX.

The default on many newer systems is -print, although forgetting to include it on
older systems like SunOS will result in a successful command with no output. Com-
mands for -exec and -ok must end with an escaped semicolon (\;). The form {} may
be used in commands as a placeholder for the pathname of each found file. For
example, to delete each matching file as it is found, specify the following option to
the find command:

-exec m -f {} \;

Note that there are no spaces between the opening and closing curly braces. The
curly braces may only appear once within the command.

80 | Chapter3: Essential Administrative Tools and Techniques

Now let’s put the parts together. The command below lists the pathname of all C
source files under the current directory:

$ find . -name *.c -print

« »

The starting directory is “.” (the current directory), the matching criteria specify file-
names ending in .c, and the action to be performed is to display the pathname of
each matching file. This is a typical user use for find. Other common uses include
searching for misplaced files and feeding file lists to cpio.

find has many administrative uses, including:

* Monitoring disk use
* Locating files that pose potential security problems

* Performing recursive file operations

For example, find may be used to locate large disk files. The command below dis-
plays a long directory listing for all files under /chem larger than 1 MB (2048 512-
byte blocks) that haven’t been modified in a month:

$ find /chem -size +2048 -mtime +30 -exec 1ls -1 {} \;

Of course, we could also use -1s rather than the -exec clause. In fact, it is more effi-
cient because the directory listing is handled by find internally (rather than having to
spawn a subshell for every file). To search for files not modified in a month or not
accessed in three months, use this command:

$ find /chem -size +2048 \(-mtime +30 -o -atime +120 \) -1s

Such old, large files might be candidates for tape backup and deletion if disk space is
short.

find can also delete files automatically as it finds them. The following is a typical
administrative use of find, designed to automatically delete old junk files on the sys-
tem:
find / \(-name a.out -o -name core -o -name '*~'\

-0 -name '.**' -0 -name '#*#' \) -type f -atime +14 \

-exec rm -f {} \; -o -fstype nfs -prune
This command searches the entire filesystem and removes various editor backup
files, core dump files, and random executables (a.out) that haven’t been accessed in
two weeks and that don’t reside on a remotely mounted filesystem. The logic is
messy: the final -0 option ORs all the options that preceded it with those that fol-
lowed it, each of which is computed separately. Thus, the final operation finds files
that match either of two criteria:

* The filename matches, it’s a plain file, and it hasn’t been accessed for 14 days.

* The filesystem type is nfs (meaning a remote disk).

If the first criteria set is true, the file gets removed; if the second set is true, a “prune”
action takes place, which says “don’t descend any lower into the directory tree.”

Getting the Most from Common Commands | 81

Thus, every time find comes across an NFS-mounted filesystem, it will move on,
rather than searching its entire contents as well.

Matching criteria and actions may be placed in any order, and they are evaluated
from left to right. For example, the following find command lists all regular files
under the directories /home and /aux1 that are larger than 500K and were last
accessed over 30 days ago (done by the options through -print); additionally, it
removes those named core:
find /home /auxi -type f -atime +30 -size +1000 -print \
-name core -exec rm {} \;

find also has security uses. For example, the following find command lists all files
that have setuid or setgid access set (see Chapter 7).

find / -type f \(-perm -2000 -o -perm -4000 \) -print

The output from this command could be compared to a saved list of setuid and set-
gid files, in order to locate any newly created files requiring investigation:

find / \(-perm -2000 -o -perm -4000 \) -print | \
diff - files.secure

find may also be used to perform the same operation on a selected group of files. For
example, the command below changes the ownership of all the files under user
chavez’s home directory to user chavez and group physics:

find /home/chavez -exec chown chavez {} \; \
-exec chgrp physics {} \;

The following command gathers all C source files anywhere under /chem into the
directory /chem1/src:

find /chem -name '*.c' -exec mv {} /chemi/src \;
Similarly, this command runs the script prettify on every C source file under /chem:

find /chem -name '*.c' -exec /usr/local/bin/prettify {} \;

Note that the full pathname for the script is included in the -exec clause.

Finally, you can use the find command as a simple method for tracking changes that
have been made to a system in the course of a certain time period or as the result of a
certain action. Consider these commands:

touch /tmp/starting_time

perform some operation

find / -newer /tmp/starting_time
The output of the final find command displays all files modified or added as a result
of whatever action was performed. It does not directly tell you about deleted files,
but it lists modified directories (which can be an indirect indication).

82 | Chapter3: Essential Administrative Tools and Techniques

Repeating Commands

find is one solution when you need to perform the same operation on a group of
files. The xargs command is another way of automating similar commands on a
group of objects; xargs is more flexible than find because it can operate on any set of
objects, regardless of what kind they are, while find is limited to files and directories.

xargs is most often used as the final component of a pipe. It appends the items it
reads from standard input to the Unix command given as its argument. For exam-
ple, the following command increases the nice number of all quake processes by 10,
thereby lowering each process’s priority:

ps -ef | grep "[q]uake" | awk '{print $2}' | xargs renice +10

The pipe preceding the xargs command extracts the process ID from the second col-
umn of the ps output for each instance of quake, and then xargs runs renice using all
of them. The renice command takes multiple process IDs as its arguments, so there
is no problem sending all the PIDs to a single renice command as long as there are
not a truly inordinate number of quake processes.

You can also tell xargs to send its incoming arguments to the specified command in
groups by using its -n option, which takes the number of items to use at a time as its
argument. If you wanted to run a script for each user who is currently running quake,
for example, you could use this command:

ps -ef | grep "[q]uake" | awk '{print $1}' | xargs -n1 warn_user

The xargs command will take each username in turn and use it as the argument to
warn_user.

So far, all of the xargs commands we’ve look at have placed the incoming items at
the end of the specified command. However, xargs also allows you to place each
incoming line of input at a specified position within the command to be executed.
To do so, you include its -i option and use the form {} as placeholder for each
incoming line within the command. For example, this command runs the System V
chargefee utility for each user running quake, assessing them 10000 units:
ps -ef | grep "[qluake" | awk '{print $1}' | \
xargs -i chargefee {} 10000

If curly braces are needed elsewhere within the command, you can specify a differ-
ent pair of placeholder characters as the argument to -i.

Substitutions like this can get rather complicated. xargs’s -t option displays each
constructed command before executing, and the -p option allows you to selectively
execute commands by prompting you before each one. Using both options together
provides the safest execution mode and also enables you to nondestructively debug a
command or script by answering no for every offered command.

Getting the Most from Common Commands | 83

-iand -n don’t interact the way you might think they would. Consider this command:

$ echoabcdef| xargs -n3 -i echo before {} after

before a b c d e f after

$ echoab cdef| xargs -i -n3 echo before {} after

before {} after a b ¢

before {} after d e f
You might expect that these two commands would be equivalent and that they
would both produce two lines of output:

before a b ¢ after

before d e f after
However, neither command produces this output, and the two commands do not
operate identically. What is happening is that -i and -n conflict with one another,
and the one appearing last wins. So, in the first command, -i is what is operative,
and each line of input is inserted into the echo command. In the second command,
the -n3 option is used, three arguments are placed at the end of each echo command,
and the curly braces are treated as literal characters.

Our first use of -i worked properly because the usernames are coming from separate
lines in the ps command output, and these lines are retained as they flow through the
pipe to xargs.

If you want xargs to execute commands containing pipes, I/O redirection, com-
pound commands joined with semicolons, and so on, there’s a bit of a trick: use the
-c option to a shell to execute the desired command. I occasionally want to look at
the final lines of a group of files and then view all of them a screen at a time. In other
words, I'd like to run a command like this and have it “work”:

$ tail testoo* | more

On most systems, this command displays lines only from the last file. However, I can
use xargs to get what [want:

$ 1s -1 testoo* | xargs -i /usr/bin/sh -c \
'echo "kkkkEkE [}:"e t3i]l -15 {}; echo ""' | more

This displays the last 15 lines of each file, preceded by a header line containing the
filename and followed by a blank line for readability.

You can use a similar method for lots of other kinds of repetitive operations. For
example, this command sorts and de-dups all of the .dat files in the current directory:

$ 1s *.dat | xargs -i /usr/bin/sh -c "sort -u -o {} {}"

Creating Several Directory Levels at Once

Many people are unaware of the options offered by the mkdir command. These
options allow you to set the file mode at the same time as you create a new directory
and to create multiple levels of subdirectories with a single command, both of which
can make your use of mkdir much more efficient.

84 | Chapter3: Essential Administrative Tools and Techniques

For example, each of the following two commands sets the mode on the new direc-
tory to rwxr-xr-x, using mkdir’s -m option:

$ mkdir -m 755 ./people

$ mkdir -m u=rwx,go=rx ./places
You can use either a numeric mode or a symbolic mode as the argument to the -m
option. You can also use a relative symbolic mode, as in this example:

$ mkdir -m g+w ./things

In this case, the mode changes are applied to the default mode as set with the umask
command.

mkdir’s -p option tells it to create any missing parents required for the subdirectories
specified as its arguments. For example, the following command will create the sub-
directories ./a and ./a/b if they do not already exist and then create ./a/b/c:

$ mkdir -p ./a/b/c

The same command without -p will give an error if all of the parent subdirectories
are not already present.

Duplicating an Entire Directory Tree

It is fairly common to need to move or duplicate an entire directory tree, preserving
not only the directory structure and file contents but also the ownership and mode
settings for every file. There are several ways to accomplish this, using tar, cpio, and
sometimes even cp. I'll focus on tar and then look briefly at the others at the end of
this section.

Let’s make this task more concrete and assume we want to copy the directory /chem/
olddir as /chem1/mewdir (in other words, we want to change the name of the olddir
subdirectory as part of duplicating its entire contents). We can take advantage of
tar’s -p option, which restores ownership and access modes along with the files from
an archive (it must be run as root to set file ownership), and use these commands to
create the new directory tree:

cd /chem1

tar -cf - -C /chem olddir | tar -xvpf -

mv olddir newdir
The first tar command creates an archive consisting of /chem/olddir and all of the
files and directories underneath it and writes it to standard output (indicated by the -
argument to the -f option). The -C option sets the current directory for the first tar
command to /chem. The second tar command extracts files from standard input
(again indicated by -f -), retaining their previous ownership and protection. The sec-
ond tar command gives detailed output (requested with the -v option). The final mv
command changes the name of the newly created subdirectory of /chem1 to newdir.

If you want only a subset of the files and directories under olddir to be copied to
newdir, you would vary the previous commands slightly. For example, these

Getting the Most from Common Commands | 85

commands copy the src, bin, and data subdirectories and the logfile and .profile files
from olddir to newdir, duplicating their ownership and protection:

mkdir /chemi/newdir

set ownership and protection for newdir if necessary

cd /chem1/olddir

tar -cvf - src bin data logfile.* .profile |\
tar -xvpf - -C /chem/newdir

The first two commands are necessary only if /chem1/newdir does not already exist.

This command performs a similar operation, copying only a single branch of the sub-
tree under olddir:

mkdir /chemi/newdir

set ownership and protection for newdir if necessary

cd /chemi/newdir

tar -cvf - -C /chem/olddir src/viewers/rasmol | tar -xvpf -
These commands create /cheml/newdir/src and its viewers subdirectory but place
nothing in them but rasmol.

If you prefer cpio to tar, cpio can perform similar functions. For example, this com-
mand copies the entire olddir tree to /chem1 (again as newdir):

mkdir /chemi/newdir

set ownership and protection for newdir if necessary

cd /chem1/olddir

find . -print | cpio -pdvm /chemi/newdir
On all of the systems we are considering, the cp command has a -p option as well,
and these commands create newdir:

cp -pr /chem/olddir /chemi

mv /chemi/olddir /chemi/newdir
The -r option stands for recursive and causes cp to duplicate the source directory
structure in the new location.

Be aware that tar works differently than cp does in the case of symbolic links. tar
recreates links in the new location, while cp converts symbolic links to regular files.

Comparing Directories

Over time, the two directories we considered in the last section will undoubtedly
both change. At some future point, you might need to determine the differences
between them. dircmp is a special-purpose utility designed to perform this very oper-
ation.” dircmp takes the directories to be compared as its arguments:

$ dircmp /chem/olddir /chemi/newdir

* On FreeBSD and Linux systems, diff -r provides the equivalent functionality.

86 | Chapter3: Essential Administrative Tools and Techniques

dircmp produces voluminous output even when the directories you’re comparing are
small. There are two main sections to the output. The first one lists files that are
present in only one of the two directory trees:

Mon Jan 4 1995 /chem/olddir only and /chemi/newdir only Page 1

./water.dat ./hf.dat
./src/viewers/rasmol/init.c ./h2f.dat

All pathnames in the report are relative to the directory locations specified on the
command line. In this case, the files in the left column are present only under /chem/
olddir, and those in the right column are present only at the new location.

The second part of the report indicates whether the files present in both directory trees
are the same or different. Here are some typical lines from this section of the report:
same ./h20.dat
different ./hcl.dat
The default output from dircmp indicates only whether the corresponding files are
the same or not, and sometimes this is all you need to know. If you want to know
exactly what the differences are, you can include the -d to dircmp, which tells it to
run diff for each pair of differing files (since it uses diff, this works only for text
files). On the other hand, if you want to decrease the amount of output by limiting
the second section of the report to files that differ, include the -s option on the
dircmp command.

Deleting Pesky Files

When I teach courses for new Unix users, one of the early exercises consists of figur-
ing out how to delete the files —delete_me and delete me (with the embedded space in
the second case).” Occasionally, however, a user winds up with a file that he just
can’t get rid of, no matter how creative he is in using rm. At that point, he will come
to you. If there is a way to get rm to do the job, show it to him, but there are some
files that rm just can’t handle. For example, it is possible for some buggy application
program to put a file into a bizarre, inconclusive state. Users can also create such files
if they experiment with certain filesystem manipulation tools (which they probably
shouldn’t be using in the first place).

One tool that can take care of such intransigent files is the directory editor feature of
the GNU emacs text editor. It is also useful to show this feature to users who just
can’t get the hang of how to quote strange filenames.

This is the procedure for deleting a file with emacs:

1. Invoke emacs on the directory in question, either by including its path on the
command line or by entering its name at the prompt produced by Ctrl-X Ctrl-F.

* There are lots of solutions. One of the simplest is rm delete\ me ./-delete me.

Getting the Most from Common Commands | 87

2. Opening the directory causes emacs to automatically enter its directory editing
mode. Move the cursor to the file in question using the usual emacs commands.

3. Enter a d, which is the directory editing mode subcommand to mark a file for
deletion. You can also use u to unmark a file, # to mark all auto-save files, and ~
to mark all backup files.

4. Enter the x subcommand, which says to delete all marked files, and answer the
confirmation prompt in the affirmative.

5. At this point the file will be gone, and you can exit from emacs, continue other
editing, or do whatever you need to do next.

emacs can also be useful for viewing directory contents when they include files with
bizarre characters embedded within them. The most amusing example of this that I
can cite is a user who complained to me that the 1s command beeped at him every
time he ran it. It turned out that this only happened in his home directory, and it was
due to a file with a Ctrl-G in the middle of the name. The filename looked fine in 1s
listings because the Ctrl-G character was being interpreted, causing the beep. Con-
trol characters become visible when you look at the directory in emacs, and so the
problem was easily diagnosed and remedied (using the r subcommand to emacs’s
directory editing mode that renames a file).

Putting a Command in a Cage

As we’ll discuss in detail later, system security inevitably involves tradeoffs between
convenience and risk. One way to mitigate the risks arising from certain inherently
dangerous commands and subsystems is to isolate them from the rest of the system.
This is accomplished with the chroot command.

The chroot command runs another command from an alternate location within the
filesystem, making the command think that that the location is actually the root
directory of the filesystem. chroot takes one argument, which is the alternate top-
level directory. For example, the following command runs the sendmail daemon,
using the directory /jail as the new root directory:

chroot /jail sendmail -bd -qio0m

The sendmail process will treat /jail as its root directory. For example, when sendmail
looks for the mail aliases database, which it expects to be located in /etc/aliases, it
will actually access the file /jail/etc/aliases. In order for sendmail to work properly in
this mode, a minimal filesystem needs to be set up under /jail containing all the files
and directories that sendmail needs.

Running a daemon or subsystem as a user created specifically for that purpose
(rather than root) is sometimes called sandboxing. This security technique is recom-
mended wherever feasible, and it is often used in conjunction with chrooting for
added security. See “Managing DNS Servers” in Chapter 8 for a detailed example of
this technique.

88 | Chapter3: Essential Administrative Tools and Techniques

S FreeBSD also has a facility called jail, which is a stronger versions of
.‘s‘ chroot that allows you to specify access restrictions for the isolated
U8y command.

Starting at the End

Perhaps it’s appropriate that we consider the tail command near the end of this sec-
tion on administrative uses of common commands. tail’s principal function is to
display the last 10 lines of a file (or standard input). tail also has a -f option that
displays new lines as they are added to the end of a file; this mode can be useful for
monitoring the progress of a command that writes periodic status information to a
file. For example, these commands start a background backup with tar, saving its
output to a file, and monitor the operation using tail -f:

$ tar -cvf /dev/rmt1 /chem /cheml > 240ct94 tar.toc &

$ tail -f 240ct94_tar.toc
The information that tar displays about each file as it is written to tape is eventually
written to the table of contents file and displayed by tail. The advantage that this
method has over the tee command is that the tail command may be killed and
restarted as many times as you like without affecting the tar command.

Some versions of tail also include a -1 option, which will display the lines in a file in
reverse order, which is occasionally useful. HP-UX does not support this option, and
Linux provides this feature in the tac command.

Be Creative

As a final example of the creative use of ordinary commands, consider the following
dilemma. A user tells you his workstation won’t reboot. He says he was changing his
system’s boot script but may have deleted some files in /etc accidentally. You go over
to it, type ls, and get a message about some missing shared libraries. How do you
poke around and find out what files are there?

The answer is to use the simplest Unix command there is, echo, along with the wild-
card mechanism, both of which are built into every shell, including the statically
linked one available in single user mode.

To see all the files in the current directory, just type:
$ echo *

This command tells the shell to display the value of “*”, which of course expands to
all files not beginning with a period in the current directory.

By using echo together with cd (also a built-in shell command), I was able to get a
pretty good idea of what had happened. I'll tell you the rest of this story at the end of
Chapter 4.

Getting the Most from Common Commands | 89

Essential Administrative Techniques

In this section, we consider several system facilities with which system administra-
tors need to be intimately familiar.

Periodic Program Execution: The cron Facility

cron is a Unix facility that allows you to schedule programs for periodic execution.
For example, you can use cron to call a particular remote site every hour to exchange
email, to clean up editor backup files every night, to back up and then truncate sys-
tem log files once a month, or to perform any number of other tasks. Using cron,
administrative functions are performed without any explicit action by the system
administrator (or any other user).’

For administrative purposes, cron is useful for running commands and scripts
according to a preset schedule. cron can send the resulting output to a log file, as a
mail or terminal message, or to a different host for centralized logging. The cron
command starts the crond daemon, which has no options. It is normally started
automatically by one of the system initialization scripts.

Table 3-3 lists the components of the cron facility on the various Unix systems we are
considering. We will cover each of them in the course of this section.

Table 3-3. Variations on the cron facility

Component Location and information
crontab files Usual: /var/spool/cron/crontabs

FreeBSD: /var/cron/tabs, /etc/crontab

Linux: /var/spool/cron (Red Hat) /var/spool/cron/tabs (SuSE), /etc/crontab (both)
crontab format Usual: System V (no username field)

BSD: /etc/crontab (requires username as sixth field)

cron.allow and cron.deny files Usual: /var/adm/cron
FreeBSD: /var/cron
Linux: /etc (Red Hat), /var/spool/cron (SuSE)
Solaris: /etc/cron.d

Related facilities Usual: none
FreeBSD: periodic utility
Linux: /etc/cron.* (hourly,daily,weekly,monthly)
Red Hat: anaczon utility2

* Note that cron is not a general facility for scheduling program execution off-hours; for the latter, use a batch
processing command (discussed in “Managing CPU Resources” in Chapter 15).

90 | Chapter3: Essential Administrative Tools and Techniques

Table 3-3. Variations on the cron facility (continued)

Component Location and information

cron log file Usual: /var/adm/cron/log
FreeBSD: /var/log/cron
Linux: /var/log/cron (Red Hat), not configured (SuSE)
Solaris: /var/cron/log

File containing PID of crond Usual: not provided
FreeBSD: /var/run/cron.pid
Linux: /var/run/crond.pid (Red Hat), var/run/cron.pid (SuSE)

Boot script that starts cron AIX: /etc/inittab
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/cron
Linux: /etc/init.d/cron
Solaris: /etc/init.d/cron
Tru64: /sbin/init.d/cron
Boot script configuration file: AIX: none used
cron-related entries FreeBSD: /etc/rc.conf. cron_enable="YES” and cron_flags="args-to-cron”
HP-UX: /etc/rc.config.d/cron: CRON=1
Linux: none used (Red Hat, SuSE 8), /etc/rc.config: CRON="YES” (SuSE 7)
Solaris: /etc/default/cron: CRONLOG=yes
Tru64: none used

2 The Red Hat Linux anacron utility is very similar to cron, but it also runs jobs missed due to the system being down when it reboots.

crontab files

What to run and when to run it are specified by crontab entries, which comprise the
system’s cron schedule. The name comes from the traditional cron configuration file
named crontab, for “cron table.”

By default, any user may add entries to the cron schedule. Crontab entries are stored
in separate files for each user, usually in the directory called /var/spool/cron/crontabs
(see Table 3-3 for exceptions). Users’ crontab files are named after their username:
for example, /var/spool/cron/crontabs/root.

& w
The preceding is the System V convention for crontab files. BSD sys-

.‘s\ tems traditionally use a single file, /etc/crontab. FreeBSD and Linux
N\ 4 & s . .
oi3) systems still use this file, in addition to those just mentioned.

.

Crontab files are not ordinarily edited directly but are created and modified with the
crontab command (described later in this section).

Crontab entries direct cron to run commands at regular intervals. Each one-line entry
in the crontab file has the following format:

minutes hours day-of-month month weekday command

Essential Administrative Techniques | 91

Whitespace separates the fields. However, the final field, command, can contain
spaces within it (i.e., the command field consists of everything after the space follow-
ing weekday); the other fields must not contain embedded spaces.

The first five fields specify the times at which cron should execute command. Their
meanings are described in Table 3-4.

Table 3-4. Crontab file fields

Field Meaning Range

minutes Minutes after the hour 0-59

hours Hour of the day 0-23 (0=midnight)
day-of-month Numeric day within a month 1-31

month The month of the year 1-12

weekday The day of the week 0-6 (0=Sunday)

Note that hours are numbered from midnight (0), and weekdays are numbered
beginning with Sunday (also 0).

An entry in any of these fields can be a single number, a pair of numbers separated
by a dash (indicating a range of numbers), a comma-separated list of numbers and/or
ranges, or an asterisk (a wildcard that represents all valid values for that field).

If the first character in an entry is a number sign (#), cron treats the entry as a com-
ment and ignores it. This is also an easy way to temporarily disable an entry without
permanently deleting it.

Here are some example crontab entries:

0,15,30,45 * * * * (echo ""; date; echo "") >/dev/console
0,10,20,30,40,50 7-18 * * * /usr/sbin/atrun

00 * ** find / -name "*.bak" -type f -atime +7 -exec rm {} \;
0 4 * ** /bin/sh /var/adm/mon_disk 2>&1 >/var/adm/disk.log
02 * ** /bin/sh /usr/local/sbin/sec_check 2>81 | mail root
30 3 1 * * /bin/csh /usr/local/etc/monthly 2>&1 >/dev/null

#30 2 * * 0,6 /usr/local/newsbin/news.weekend

The first entry displays the date on the console terminal every fifteen minutes (on the
quarter hour); notice that the multiple commands are enclosed in parentheses in
order to redirect their output as a group. (Technically, this says to run the com-
mands together in a single subshell.) The second entry runs /usr/sbin/atrun every 10
minutes from 7 A.M. to 6 P.M. daily. The third entry runs a find command to
remove all .bak files not accessed in seven days.

The fourth and fifth lines run a shell script every day, at 4 A.M. and 2 A.M., respec-
tively. The shell to execute the script is specified explicitly on the command line in
both cases; the system default shell, usually the Bourne shell, is used if none is
explicitly specified. Both lines’ entries redirect standard output and standard error,
sending both of them to a file in one case and as electronic mail to root in the other.

92 | Chapter3: Essential Administrative Tools and Techniques

The sixth entry executes the C shell script /ust/local/etc/monthly at 3:30 A.M. on the
first day of each month. Notice that the command format—specifically the output
redirection—uses Bourne shell syntax even though the script itself will be run under

the C shell.

Were it not disabled, the final entry would run the command /usr/local/newsbin/
news.weekend at 2:30 A.M. on Saturday and Sunday mornings.

The final three active entries illustrate three output-handling alternatives: redirecting
it to a file, piping it through mail, and discarding it to /dev/null. If no output redirec-
tion is performed, the output is sent via mail to the user who ran the command.

The command field can be any Unix command or group of commands (properly sep-
arated with semicolons). The entire crontab entry can be arbitrarily long, but it must
be a single physical line in the file.

If the command contains a percent sign (%), cron will use any text following this sign
as standard input for command. Additional percent signs can be used to subdivide
this text into lines. For example, the following crontab entry:

30 11 31 12 * /usr/bin/wall%Happy New Year!%lLet's make it great!

runs the wall command at 11:30 A.M. on December 31, using the text “Happy New
Year! Let’s make it great!” as standard input.

Note that the day of the week and day of the month fields are effectively ORed: if
both are filled in, the entry is run on that day of the month and on matching days of
the week. Thus, the following entry would run on January 1 and every Monday:

* * 1 1 1 /usr/local/bin/test55

In most implementations, the cron daemon reads the crontab files when it starts up
and whenever there have been changes to any of the crontab files. In some, generally
older versions, cron reads the crontab files once every minute.

R
s

The BSD crontab file, /etc/crontab, uses a slightly different entry for-

mat, inserting an additional field between the weekday and command

%s: fields: the user account that should be used to run the specified com-

" mand. Here is a sample entry that runs a script at 3:00 A.M. on every
weekend day:

0 3 * * 6-7 root /var/adm/weekend.sh

As this example illustratess, this entry format also encodes the days of
the week slightly differently, running from 1=Monday through 7=Sun-
day.

FreeBSD and Linux crontab entry format enhancements. FreeBSD and Linux systems use
the cron package written by Paul Vixie. It supports all standard cron features and
includes enhancements to the standard crontab entry format, including the following:

* Months and days of the week may be specified as names, abbreviated to their
first three letters: sun, mon, jan, feb, and so on.

Essential Administrative Techniques | 93

* Sunday can be specified as either 0 or 7.

* Ranges and lists can be combined: e.g., 2,4,6-7 is a legal entry. HP-UX also sup-
ports this enhancement.

* Step values can be specified with a /n suffix. For example, the hours entry 8-18/2
means “every two hours from 8 A.M. to 6 P.M.” Similarly, the minutes entry */5
means “every five minutes.”

* Environment variables can be defined within the crontab file, using the usual
Bourne shell syntax. The environment variable MAILTO may be used to specify
a user to receive any mail messages that cron thinks are necessary. For example,
the first definition below sends mail to user chavez (regardless of which crontab
the line appears in), and the second definition suppresses all mail from cron:
MAILTO=chavez
MAILTO=

Additional environment variables include SHELL, PATH, and HOME.

* On FreeBSD systems, special strings may be used to replace the scheduling fields
entirely:
@reboot Run at system reboots
@yearly Midnight on January 1
@monthly ~ Midnight on the first of the month
@weekly Midnight each Sunday
@daily Midnight
@hourly On the hour

Adding crontab entries

The normal way to create crontab entries is with the crontab command.” In its default
mode, the crontab command installs the text file specified as its argument into the
cron spool area, as the crontab file for the user who ran crontab. For example, if user
chavez executes the following command, the file mycron will be installed as /var/
spool/cron/crontabs/chavez:

$ crontab mycron

If chavez had previously installed crontab entries, they will be replaced by those in
mycron; thus, any current entries that chavez wishes to keep must also be present in
mycron.

The -1 option to crontab lists the current crontab entries, and redirecting the com-
mand’s output to a file will allow them to be captured and edited:

$ crontab -1 >mycron
$ vi mycron
$ crontab mycron

* Except for the BSD-style /etc/crontab file, which must be edited manually.

94 | Chapter3: Essential Administrative Tools and Techniques

The -1 option removes all current crontab entries.

The most convenient way to edit the crontab file is to use the -e option, which lets
you directly modify and reinstall your current crontab entries in a single step. For
example, the following command creates an editor session on the current crontab file
(using the text editor specified in the EDITOR environment variable) and automati-
cally installs the modified file when the editor exits:

$ crontab -e

Most crontab commands also accept a username as their final argument. This allows
root to list or install a crontab file for a different user. For example, this command
edits the crontab file for user adm:

crontab -e adm

The FreeBSD and Linux versions of this command provide the same functionality
with the -u option:

crontab -e -u adm

When you decide to place a new task under cron’s control, you’ll need to carefully
consider which user should execute each command run by cron, and then add the
appropriate crontab entry to the correct crontab file. The following list describes
common system users and the sorts of crontab entries they conventionally control:

root

General system functions, security monitoring, and filesystem cleanup
Ip

Cleanup and accounting activities related to print spooling
sys

Performance monitoring

uucp
Running tasks in the UUCP file exchange facility

cron log files

Almost all versions of cron provide some mechanism for recording its activities to a
log file. On some systems, this occurs automatically, and on others, messages are
routed through the syslog facility. This is usually set up at installation time, but occa-
sionally you’ll need to configure syslog yourself. For example, on SuSE Linux sys-
tems, you’ll need to add an entry for cron to the syslog configuration file /etc/syslog.
conf (discussed later in this chapter).

Solaris systems use a different mechanism. cron will keep a log of its activities if the
CRONLOG entry in /etc/default/cron is set to YES.

If logging is enabled, the log file should be monitored closely and truncated periodi-
cally, as it grows extremely quickly under even moderate cron use.

Essential Administrative Techniques | 95

Using cron to automate system administration

The sample crontab entries we looked at previously provide some simple examples
of using cron to automate various system tasks. cron provides the ideal way to run
scripts according to a fixed schedule.

Another common way to use cron for regular administrative tasks is through the use of
a series of scripts designed to run every night, once a week, and once a month; these
scripts are often named daily, weekly, and monthly, respectively. The commands in
daily would need to be performed every night (more specialized scripts could be run
from it), and the other two would handle tasks to be performed less frequently.

daily might include these tasks:

* Remove junk files more than three days old from /tmp and other scratch directo-
ries. More ambitious versions could search the entire system for old unneeded
files.

* Run accounting summary commands.
* Run calendar.
* Rotate log files that are cycled daily.

* Take snapshots of the system with df, ps, and other appropriate commands in
order to compile baseline system performance data (what is normal for that sys-
tem). See Chapter 15 for more details.

* Perform daily security monitoring.
weekly might perform tasks like these:

* Remove very old junk files from the system (somewhat more aggressively than
daily).
* Rotate log files that are cycled weekly.
* Run fsck -n to list any disk problems.
* Monitor user account security features.
monthly might do these jobs:
* List large disk files not accessed that month.
* Produce monthly accounting reports.
* Rotate log files that are cycled monthly.
* Use makewhatis to rebuild the database for use by man -k.

Additional or different activities might make more sense on your system. Such scripts
are usually run late at night:

01 * ** /bin/sh /var/adm/daily 2>81 | mail root

02 **1 /bin/sh /var/adm/weekly 2581 | mail root

03 1** /bin/sh /var/adm/monthly 2581 | mail root
In this example, the daily script runs every morning at 1 A.M., weekly runs every
Monday at 2 A.M., and monthly runs on the first day of every month at 3 A.M.

96 | Chapter3: Essential Administrative Tools and Techniques

cron need not be used only for tasks to be performed periodically forever, year after
year. It can also be used to run a command repeatedly over a limited period of time,
after which the crontab entry would be disabled or removed. For example, if you
were trying to track certain kinds of security problems, you might want to use cron
to run a script repeatedly to gather data. As a concrete example, consider this short
script to check for large numbers of unsuccessful login attempts under AIX (although
the script applies only to AIX, the general principles are useful on all systems):

#!/bin/sh
chk_badlogin - Check unsuccessful login counts

date >> /var/adm/bl
egrep '~[**].*:$|gin_coun' /etc/security/user | \
awk "BEGIN {n=0}
{if (NF>1 && $3>3) {print s,$0; n=1}}
{s=%0}
END {if (n==0) {print "Everything ok."}}"' \
>> /var/adm/bl
This script writes the date and time to the file /var/adm/bl and then checks /etc/
security/user for any user with more than three unsuccessful login attempts. If you sus-
pected someone was trying to break in to your system, you could run this script via
cron every 10 minutes, in the hopes of isolating that accounts that were being targeted:

0,10,20,30,40,50 * * * * /pin/sh /var/adm/chk_badlogin

Similarly, if you are having a performance problem, you could use cron to automati-
cally run various system performance monitoring commands or scripts at regular
intervals to track performance problems over time.

The remainder of this section will consider two built-in facilities for accomplishing
the same purpose under FreeBSD and Linux.

FreeBSD: The periodic command. FreeBSD provides the periodic command for the pur-
poses we’ve just considered. This command is used in conjunction with the cron
facility and serves as a method of organizing recurring administrative tasks. It is used
by the following three entries from /etc/crontab:

1 3 * * *x 7yoot periodic daily

15 4 * * 6 root periodic weekly

30 5 1 * * oot periodic monthly
The command is run with the argument daily each day at 3:01 A.M., with weekly on
Saturdays at 4:15 A.M., and with monthly at 5:30 A.M. on the first of each month.

The facility is controlled by the /etc/defaults/periodic.conf file, which specifies its
default behavior. Here are the first few lines of a sample file:

#!/bin/sh

#

What files override these defaults ?
periodic_conf_files="/etc/periodic.conf /etc/periodic.conf.local"

Essential Administrative Techniques | 97

This entry specifies the files that can be used to customize the facility’s operation.
Typically, changes to the default settings are all that appear in these files. The sys-
tem administrator must create a local configuration file if desired, because none is
installed by default.

The command form periodic name causes the command to run all of the scripts that
it finds in the specified directory. If the latter is an absolute pathname, there is no
doubt as to which directory is intended. If simply a name—such as daily—is given,
the directory is assumed to be a subdirectory of /etc/periodic or of one of the alter-
nate directories specified in the configuration file’s local_periodic entry:

periodic script dirs
local_periodic="/usr/local/etc/periodic /usr/X11R6/etc/periodic"

letc/periodic is always searched first, followed by the list in this entry.

The configuration file contains several entries for valid command arguments that
control the location and content of the reports that periodic generates. Here are the
entries related to daily:

daily general settings

daily output="root" Email report to root.
daily_show_success="YES" Include success messages.

daily show_info="YES" Include informational messages.
daily show _badconfig="NO" Exclude configuration error messages.

These entries produce rather verbose output, which is sent via email to root. In con-
trast, the following entries produce a minimal report (just error messages), which is
appended to the specified log file:

daily output="/var/adm/day.log" Append report to a file.

daily show_success="NO"

daily_show_info="NO"

daily_show_badconfig="N0"
The bulk of the configuration file defines variables used in the scripts themselves, as
in these examples:

100.clean-disks

daily clean_disks_enable="NO"# Delete files daily

daily clean disks files="[#,]* .#* a.out *.core .emacs [0-9]*"

daily clean disks days=3# If older than this

daily clean_disks_verbose="YES"# Mention files deleted

340.noid

weekly noid _enable="YES# Find unowned files
weekly noid_dirs="/"# Start here

The first group of settings are used by the /etc/periodic/daily/100.clean-disks script,
which deletes junk files from the filesystem. The first one indicates whether the script
should perform its actions or not (in this case, it is disabled). The next two entries
specify specific characteristics of the files to be deleted, and the final entry deter-
mines whether each deletion will be logged or not.

98 | Chapter3: Essential Administrative Tools and Techniques

The second section of entries apply to /etc/periodic/weekly/340.noid, a script that
searches the filesystem for files owned by an unknown user or group. This excerpt
from the script itself will illustrate how the configuration file entries are actually used:

case "$weekly noid enable" in
[Yy]l[Ee][Ss]) Value is yes.
echo "Check for files with unknown user or group:"
rc=$(find -H ${weekly noid dirs:-/} -fstype local \
\(-nogroup -o -nouser \) -print | sed 's/*/ /' |
tee /dev/stderr | wc -1)
[$rc -gt 1] 8& rc=1;;

*) 1c=0;; Any other value.
esac
exit $rc

If weekly_noid_enable is set to “yes,” then a message is printed with echo, and a pipe
comprised of find, sed, tee and wc runs (which lists the files and then the total num-
ber of files), producing a report like this one:
Check for files with unknown user or group:
/tmp/junk
/home/jack
2

The script goes on to define the variable r¢ as the appropriate script exit value
depending on the circumstances.

You should become familiar with the current periodic configuration and compo-
nent scripts on your system. If you want to make additions to the facility, there are
several options:

* Add a crontab entry running periodic /dir, where periodic’s argument is a full
pathname. Add scripts to this directory and entries to the configuration file as
appropriate.

* Add an entry of the form periodic name and create a subdirectory of that name
under /etc/periodic or one of the directories listed in the configuration file’s local
periodic entry. Add scripts to the subdirectory and entries to the configuration
file as appropriate.

* Use the directory specified in the daily_local setting (or weekly or monthly, as
desired) in /etc/defaults/periodic.conf (by default, this is /etc/{daily,weekly,monthly).
local). Add scripts to this directory and entries to the configuration file as
appropriate.

I think the first option is the simplest and most straightforward. If you do decide to
use configuration file entries to control the functioning of a script that you create, be
sure to read in its contents with commands like these:

if [-r /etc/defaults/periodic.conf]

then
. /etc/defaults/periodic.conf

Essential Administrative Techniques | 99

source_periodic_confs
fi

You can use elements of the existing scripts as models for your own.

Linux: The /etc/cron.* directories. Linux systems provide a similar mechanism for orga-
nizing regular activities, via the /etc/cron.* subdirectories. On Red Hat systems, these
scripts are run via these crontab entries:

01 * * * * root run-parts /etc/cron.hourly

02 4 * * * root run-parts /etc/cron.daily

22 4 * * 0 root run-parts /etc/cron.weekly

42 4 1 * * root run-parts /etc/cron.monthly
On SuSE systems, the script /ust/lib/cron/run-crons runs them; the script itself is exe-
cuted by cron every 15 minutes. The scripts in the corresponding subdirectories are
run slightly off the hour for /etc/cron.hourly and around midnight (SuSE) or 4 A.M.
(Red Hat). Customization consists of adding scripts to any of these subdirectories.

Under SuSE 8, the /etc/sysconfig/cron configuration file contains settings that control
the actions of some of these scripts.

cron security issues

cron’s security issues are of two main types: making sure the system crontab files are
secure and making sure unauthorized users don’t run commands using cron. The
first problem may be addressed by setting (if necessary) and checking the ownership
and protection on the crontab files appropriately. (In particular, the files should not
be world-writeable.) Naturally, they should be included in any filesystem security
monitoring that you do.

The second problem, ensuring that unauthorized users don’t run commands via
cron, is addressed by the files cron.allow and cron.deny. These files control access to
the crontab command. Both files contain lists of usernames, one per line. Access to
crontab is controlled in the following way:

* If cron.allow exists, a username must be listed within it in order to run crontab.

¢ If cron.allow does not exist but cron.deny does exist, any user not listed in cron.
deny may use the crontab command. cron.deny may be empty to allow unlim-
ited access to cron.

* If neither file exists, only root can use crontab, except under Linux and FreeBSD,
where the default build configuration of cron allows everyone to use it.

These files control only whether a user can use the crontab command
or not. In particular, they do not affect whether any existing crontab
entries will be executed. Existing entries will be executed until they are
removed.

The locations of the cron access files on various Unix systems are listed in Table 3-3.

100 | Chapter3: Essential Administrative Tools and Techniques

System Messages

The various normal system facilities all generate status messages in the course of
their normal operations. In addition, error messages are generated whenever there
are hardware or software problems. Monitoring such messages—and acting upon
important ones—is one of the system administrator’s most important ongoing
activities.

In this section, we first consider the syslog subsystem, which provides a centralized
system message collection facility. We go on to consider the hardware-error logging
facilities provided by some Unix systems, as well as tools for managing and process-
ing the large amount of system message data that can accumulate.

The syslog facility

The syslog message-logging facility provides a more general way to specify where and
how some types of system messages are saved. Table 3-5 lists the components of the
syslog facility.

Table 3-5. Variations on the syslog facility

Component Location and information
syslogd option to reject AIX: -1
nonlocal messages FreeBSD: -s
HP-UX: -N
Linux: - to allow remote messages
Solaris: -t

Tru64: List allowed hosts in /etc/syslog.auth (if if doesn't exist, all hosts are allowed)

File containing PID of syslogd Usual: /var/run/syslog.pid
AIX: /etc/syslog.pid

Current general message log file Usual: /var/log/messages
HP-UX: /var/adm/syslog/syslog.log
Solaris: /var/adm/messages
Tru64: /var/adm/syslog.dated/current/*.log

Boot script that starts syslogd AIX: /etc/rc.tepip
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/syslogd
Linux: /etc/init.d/syslog
Solaris: /etc/init.d/syslog
Tru64: /sbin/init.d/syslog
Boot script configuration file: Usual: none used
syslog-related entries FreeBSD: /etc/rc.conf: syslogd_enable="YES” and syslogd_flags="opts”

SuSE Linux: /etc/rc.config (SuSE 7), /etc/sysconfig/syslog (SuSE 8); SYSLOGD_
PARAMS="opts” and KERNEL_LOGLEVEL=n

Essential Administrative Techniques | 101

Configuring syslog

Messages are written to locations you specify by syslogd, the system message log-
ging daemon. syslogd collects messages sent by various system processes and routes
them to their final destination based on instructions given in its configuration file /
etc/syslog.conf. Syslog organizes system messages in two ways: by the part of the sys-
tem that generated them and by their importance.

Entries in syslog.conf have the following format, reflecting these divisions:
facility.level destination

where facility is the name of the subsystem sending the message, level is the severity
level of the message, and destination is the file, device, computer or username to send
the message to. On most systems, the two fields must be separated by tab characters
(spaces are allowed under Linux and FreeBSD).

There are a multitude of defined facilities. The most important are:

kern
The kernel.

user
User processes.
mail
The mail subsystem.
Ipr
The printing subsystem.
daemon
System server processes.

auth
The user authentication system (nonsensitive information).
authpriv
The user authentication system (security sensitive information). Some systems
have only one of auth and authpriv.
fip
The FTP facility.
cron
The cron facility.
syslog
Syslog facility internal messages.
mark
Timestamps produced at regular intervals (e.g., every 15 minutes).

local*
Eight local message facilities (0-7). Some operating systems use one or more of
them.

102 | Chapter3: Essential Administrative Tools and Techniques

Note that an asterisk for the facility corresponds to all facilities except mark.
The severity levels are, in order of decreasing seriousness:
emerg
System panic.
alert
Serious error requiring immediate attention.
crit
Critical errors like hard device errors.

err
Other errors.

warning
Warnings.
notice
Noncritical messages.
info
Informative messages.
debug
Extra information helpful for tracking down problems.
none
Ignore messages from this facility.

mark
Selects timestamp messages (generated every 20 minutes by default). This facility
is not included by the asterisk wildcard (and you wouldn’t really want it to be).

Multiple facility-level pairs may be included on one line by separating them with semi-
colons; multiple facilities may be specified with the same severity level by separating
them with commas. An asterisk may be used as a wildcard throughout an entry.

Here are some sample destinations:

/var/log/messages Send to a file (specify full pathname).
@scribe.ahania.com Send to syslog facility on a different host.
root Send message to a user...
root,chavez,ng ...or list of users.

* Send message via wall to all logged-in users.

All of this will be much clearer once we look at a sample syslog.conf file:

*.err;auth.notice /dev/console
*.err;daemon,auth.notice;mail.crit /var/log/messages
1pr.debug /var/adm/lpd-errs
mail.debug /var/spool/mqueue/syslog
*.alert root

*.emerg *

auth.info;*.warning @hamlet

*.debug /dev/tty01

Essential Administrative Techniques | 103

The first line prints all errors, as well as notices from the authentication system (indi-
cating successful and unsuccessful su commands) on the console. The second line
sends all errors, daemon and authentication system notices, and all critical errors
from the mail system to the file /var/log/messages.

The third and fourth lines send printer and mail system debug messages to their
respective error files. The fifth line sends all alert messages to user root, and the sixth
line sends all emergency messages to all users.

The final two lines send all authentication system nondebugging messages and the
warnings and errors from all other facilities to the syslogd process on host hamlet,
and it displays all generated messages on tty01.

You may modify this file to suit the needs of your system. For example, to create a
separate sulog file, add a line like the following to syslog.conf:

auth.notice /var/adm/sulog

All messages are appended to log files; thus, you’ll need to keep an eye on their size
and truncate them periodically when they get too big. This topic is discussed in
detail in “Administering Log Files,” later in this chapter.

R

On some systems, a log file must already exist when the syslogd pro-
cess reads the configuration file entry referring to it in order for it to be
1kt recognized. In other words, on these systems, you'll need to create an
* empty log file, add a new entry to syslog.conf, and signal (kill -HUP)
or restart the daemon in order to add a new log file.

Don’t make the mistake of using commas when you want semicolons. For example,
the following entry sends all cron messages at the level of warn and above to the indi-
cated file (as well as the same levels for the printing subsystem):

cron.err,lpr.warning /var/log/warns.log

Why are warnings included for cron? Each successive severity applies in order,
replacing previous ones, so warning replaces err for cron. Entries can include lists of
facility-severity pairs and lists of facilities at the same severity level, but not lists
including both multiple facilities and severity levels. For these reasons, the following
entry will log all error level and higher messages for all facilities:

*.warning,cron.err /var/log/errs.log

Enhancements to syslog.conf

Several operating systems offer enhanced versions of the syslog configuration file,
which we will discuss by example.

AIX. On AIX systems, there are some additional optional fields beyond the destination:

facility-level destination rotate size s files n time t compress archive path

104 | Chapter3: Essential Administrative Tools and Techniques

For example:
*.warn @scribe rotate size 2m files 4 time 7d compress

The additional parameters specify how to handle log files as they grow over time.
When they reach a certain size and/or age, the current log file will be renamed to
something like name.0, existing old files will have their extensions incremented and
the oldest file(s) may be deleted.

The rotate keyword introduces these parameters, and the others have the following
meanings:

size's
Size threshold: rotate the log when it is larger than this. s is followed by k or m
for KB and MB, respectively.

time t
Time threshold: rotate the log when it is older than this. ¢ is followed by h, d, w,
m, or y for hours, days, weeks, months, or years, respectively.

files n
Keep at most # files.

compress
Compress old files.

archive path
Move older files to the specified location.

FreeBSD and Linux. Both FreeBSD and Linux systems extend the facility.severity syn-
tax:

.=severity
Severity level is exactly the one specified.

I=severity
Severity level is anything other than the one specified (Linux only).

.<=severity
Severity level is lower than or equal to the one specified (FreeBSD only). The .<
and .> comparison operators are also provided (as well as .>= equivalent to the
standard syntax).

Both operating systems also allow pipes to programs as message destinations, as in
this example, which sends all error-severity messages to the specified program:

*.=err|/usr/local/sbin/save_errs

FreeBSD also adds another unusual feature to the syslog.conf file: sections of the file
which are specific to a host or a specific program.” Here is an example:

* Naturally, this feature will probably not work outside of the BSD environment.

Essential Administrative Techniques | 105

handle messages from host europa
+europa
mail.>debug/var/log/mailsrv.log

kernel messages from every host but callisto
-callisto
kern.*/var/log/kern all.log

messages from ppp

'ppp

./var/log/ppp.log
These entries handle non-debug mail messages from europa, kernel messages from
every host except callisto, and all messages from ppp from every host but callisto. As
this example illustrates, host and program settings accumulate. If you wanted the ppp
entry to apply only to the local system, you’d need to insert the following lines before
its entries to restore the host context to the local system:

reset host to local system

+0
A program context may be similarly cleared with !*. In general, it’s a good idea to
place such sections at the end of the configuration file to avoid unintended interac-
tions with existing entries.

Solaris. Solaris systems use the m4 macro preprocessing facility to process the syslog.
conf file before it is used (this facility is discussed in Chapter 9). Here is a sample file
containing m4 macros:

Send mail.debug messages to network log host if there is one.
mail.debug ifdef("LOCHOST", /var/log/syslog, @loghost)

On non-loghost machines, log "user" messages locally.
ifdef(LOGHOST', ,

user.err/var/adm/messages

user.emerg*

)

Both of these entries differ depending on whether macro LOGHOST is defined. In
the first case, the destination differs, and in the second section, entries are included
in or excluded from the file based on its status:

Resulting file when LOGHOST is defined (i.e., this host is the central logging host):

Send mail.debug messages to network log host if there is one.
mail.debug/var/log/syslog

Resulting file when LOGHOST is undefined:
Send mail.debug messages to network log host if there is one.
mail.debug@loghost

user.err/var/adm/messages
user.emerg*

106 | Chapter3: Essential Administrative Tools and Techniques

On the central logging host, you would need to add a definition macro to the config-
uration file:

define("LOGHOST', ~localhost')

The Tru64 syslog log file hierarchy. On Tru64 systems, the syslog facility is set up to log
all system messages to a series of log files named for the various syslog facilities. The
syslog.conf configuration file specifies their location as, for example, /var/adm/syslog.
dated/*/auth.log. When the syslogd daemon encounters such a destination, it auto-
matically inserts a final subdirectory named for the current date into the pathname.
Only a week’s worth of log files are kept; older ones are deleted via an entry in root’s
crontab file (the entry is wrapped to fit):

40 4 * * * find /var/adm/syslog.dated/* -depth -type d
-ctime +7 -exec rm -rf {} \;

The logger utility

The logger utility can be used to send messages to the syslog facility from a shell
script. For example, the following command sends an alert-level message via the auth
facility:
logger -p auth.alert -t DOT_FILE_CHK \
"$user's $file is world-writeable"
This command would generate a syslog message like this one:
Feb 17 17:05:05 DOT_FILE CHK: chavez's .cshrc is world-writable.

The logger command also offers a -i option, which includes the process ID within
the syslog log message.

Hardware Error Messages

Often, error messages related to hardware problems appear within system log files.
However, some Unix versions also provide a separate facility for hardware-related
error messages. After considering a common utility (dmesg), we will look in detail at
those used under AIX, HP-UX, and Tru64.

The dmesg command is found on FreeBSD, HP-UX, Linux, and Solaris systems. It is
primarily used to examine or save messages from the most recent system boot, but
some hardware informational and error messages also go to this facility, and examin-
ing its data may be a quick way to view them.

Here is an example from a Solaris system (output is wrapped):

$ dmesg | egrep 'down|up’

Sep 30 13:48:05 astarte eri: [ID 517527 kern.info] SUNW,erio :
No response from Ethernet network : Link down -- cable problem?
Sep 30 13:49:17 astarte last message repeated 3 times

Sep 30 13:49:38 astarte eri: [ID 517527 kern.info] SUNW,erio :

Essential Administrative Techniques | 107

No response from Ethernet network : Link down -- cable problem?
Sep 30 13:50:40 astarte last message repeated 3 times

Sep 30 13:52:02 astarte eri: [ID 517527 kern.info] SUNW,erio :
100 Mbps full duplex link up

In this case, there was a brief network problem due to a slightly loose cable.

The AlX error log

AIX maintains a separate error log, /var/adm/ras/errlog, supported by the errdemon
daemon. This file is binary, and it must be accessed using the appropriate utilities:
errpt to view reports from it and errclear to remove old messages.

Here is an example of errpt’s output:

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION

C60BB505 0807122301 P S SYSPROC SOFTWARE PROGRAM ABNORMALLY TERMINATED
369D049B 0806104301 I O SYSPFS UNABLE TO ALLOCATE SPACE IN FILE SYSTEM
112FBB44 0802171901 T H ento ETHERNET NETWORK RECOVERY MODE

This command produces a report containing one line per error. You can produce
more detailed information using options:

LABEL: JFS_FS_FRAGMENTED
IDENTIFIER: 5DFED6F1

Date/Time: Fri Oct 5 12:46:45
Sequence Number: 430

Machine Id: 000C2CAD4C00

Node Id: arrakis

(lass: 0

Type: INFO

Resource Name: SYSPFS

Description
UNABLE TO ALLOCATE SPACE IN FILE SYSTEM

Probable Causes
FILE SYSTEM FREE SPACE FRAGMENTED

Recommended Actions
CONSOLIDATE FREE SPACE USING DEFRAGFS UTILITY

Detail Data

MAJOR/MINOR DEVICE NUMBER

000A 0006

FILE SYSTEM DEVICE AND MOUNT POINT
/dev/hd9var, /var

This error corresponds to an instance where the operating system was unable to sat-
isfy an 1/O request because the /var filesystem was too fragmented. In this case, the
recommended actions provide a solution to the problem.

A report containing all of the errors would be very lengthy. However, I use the fol-
lowing script to summarize the data:

108 | Chapter3: Essential Administrative Tools and Techniques

#1/bin/csh

errpt | awk '{print $1}' | sort | uniq -c | \
grep -v IDENT > /tmp/err_junk
printf "Error \t# \tDescription: Cause (Solution)\n\n"
foreach f (“cat /tmp/err junk | awk '{print $2}'")
set count = “grep $f /tmp/err_junk | awk '{print $1}'"
set desc = “grep $f /var/adm/errs.txt | awk -F: '{print $2}'"
set cause = “grep $f /var/adm/errs.txt | awk -F: '{print $3}"°
set solve = “grep $f /var/adm/errs.txt | awk -F: '{print $4}'"
printf "%s\ths\t%hs: %s (%s)\n" $f $count \
"$desc" "$cause

$solve”

end

m -f /tmp/err_junk
The script is a quick-and-dirty approach to the problem; a more elegant Perl version
would be easy to write, but this script gets the job done. It relies on an error type
summary file 've created from the detailed errpt output, /var/adm/errs.txt. Here are
a few lines from that file (shortened):

071F4755:ENVIRONMENTAL PROBLEM:POWER OR FAN COMPONENT:RUN DIAGS.

0D1F562A:ADAPTER ERROR:ADAPTER HARDWARE:IF PROBLEM PERSISTS, ...

112FBB44:ETHERNET NETWORK RECOVERY MODE:ADAPTER:VERIFY ADAPTER ...
The advantage of using a summary file is that the script can produce its reports from
the simpler and faster default errpt output.

Here is an example report (wrapped):

Error # Description: Cause (Solution)

071F4755 2 ENVIRONMENTAL PROBLEM: POWER OR FAN
COMPONENT (RUN SYSTEM DIAGNOSTICS.)

0D1F562A 2 ADAPTER ERROR: ADAPTER HARDWARE (IF

PROBLEM PERSISTS, CONTACT APPROPRIATE
SERVICE REPRESENTATIVE)

112FBB44 2 ETHERNET NETWORK RECOVERY MODE: ADAPTER
HARDWARE (VERIFY ADAPTER IS INSTALLED
PROPERLY)

369D0498B 1 UNABLE TO ALLOCATE SPACE IN FILE SYSTEM:

FILE SYSTEM FULL (INCREASE THE SIZE OF THE
ASSOCIATED FILE SYSTEM)

476B351D 2 TAPE DRIVE FAILURE: TAPE DRIVE (PERFORM
PROBLEM DETERMINATION PROCEDURES)

499B30CC 3 ETHERNET DOWN: CABLE (CHECK CABLE AND
ITS CONNECTIONS)

SDFED6F1 1 UNABLE TO ALLOCATE SPACE IN FILE SYSTEM:
FREE SPACE FRAGMENTED (USE DEFRAGFS UTIL)

C60BB505 268 SOFTWARE PROGRAM ABNORMALLY TERMINATED:

SOFTWARE PROGRAM (CORRECT THEN RETRY)

The errclear command may be used to remove old messages from the error log. For
example, the following command removes all error messages over two weeks old:

errclear 14

Essential Administrative Techniques | 109

The error log is a fixed-size file, used as a circular buffer. You can determine the size
of the file with the following command:

/usr/lib/errdemon -1
Error Log Attributes

Log File /var/adm/ras/errlog
Log Size 1048576 bytes
Memory Buffer Size 8192 bytes

The daemon is started by the file /sbin/rc.boot. You can modify its startup line to
change the size of the log file by adding the -s option. For example, the following
addition would set the size of the log file to 1.5 MB:

/usr/lib/errdemon -i /var/adm/ras/errlog -s 1572864

The default size of 1 MB is usually sufficient for most systems.

Viewing errors under HP-UX. The HP-UX xstm command may be used to view errors on
these systems (stored in the files /var/stm/logs/os/log*.raw®. It is illustrated in
Figure 3-1.

The main window appears in the upper left corner of the illustration. It shows a hier-
archy of icons corresponding to the various peripheral devices present on the sys-
tem. You can use various menu items to determine information about the devices
and their current status.

Selecting the Tools — Utility = Run menu path and then choosing logtool from the
list of tools initiates the error reporting utility (see the middle window of the left col-
umn in the illustration). Select the File = Raw menu path and then the current log
file to view a summary report of system hardware status, given in the bottom win-
dow in the left column of the figure. In this example, we can see that there have been
417 errors recorded during the lifetime of the log file.

Next, we select File » Formatted Log to view the detailed entries in the log file (the
process is illustrated in the right column of the figure). In the example, we are look-
ing at an entry corresponding to a SCSI tape drive. This entry corresponds to a
power-off of the device.

Command-line and menu-oriented versions of xstm can be started with cstm and
mstm, respectively.

The Tru64 binary error logger. Tru64 provides the binlogd binary error logging server in
addition to syslogd. It is configured via the /etc/binlog.conf file:

* K /usr/adm/binary.errlog
dumpfile /usxr/adm/crash/binlogdumpfile

The first entry sends all error messages that binlogd generates to the indicated file.
The second entry specifies the location for a crash dump.

110 | Chapter3: Essential Administrative Tools and Techniques

Figure 3-1. View hardware errors under HP-UX

Messages may also be sent to another host. The /etc/binlog.auth file controls access to
the local facility. If it exists, it lists the hosts that are allowed to forward messages to
the local system.

You can view reports using the uerf and dia commands. I prefer the latter, although
uerf is the newer command.

dia’s default mode displays details about each error, and the -0 brief option pro-
duces a short description of each error.

[use the following pipe to get a smaller amount of output:”

dia | egrep '~(Event seq)|(Entry typ)|(ASCII Mes.*[a-z])’
Event sequence number 10.

Entry type 300. Start-Up ASCII Message Type
Event sequence number 11.

* The corresponding uerf command is uerf | egrep '~SEQU|MESS'.

Essential Administrative Techniques | 111

Entry type 250. Generic ASCII Info Message Type

ASCII Message Test for EVM connection of binlogd
Event sequence number 12.

Entry type 310. Time Stamp

Event sequence number 13.

Entry type 301. Shutdown ASCII Message Type

ASCII Message System halted by root:

Event sequence number 14.

Entry type 300. Start-Up ASCII Message Type

This command displays the sequence number, type, and human-readable descrip-
tion (if present) for each message. In this case, we have a system startup message, an
event manager status test of the binlogd daemon, a timestamp record, and finally a
system shutdown followed by another system boot. Any messages of interest could
be investigated by viewing their full record. For example, the following command
displays event number 13:

dia -e s:13 e:13

A w
y

You can send a message to the facility with the logger -b command.

Q‘
*1

Administering Log Files

There are two more items to consider with respect to managing the many system log
files: limiting the amount of disk space they consume while simultaneously retaining
sufficient data for projected future requirements, and monitoring the contents of
these log files in order to identify and act upon important entries.

Managing log file disk requirements

Unchecked, log files grow without bounds and can quickly consume quite a lot of
disk space. A common solution to this situation is to keep only a fraction of the his-
torical data on disk. One approach involves periodically renaming the current log file
and keeping only a few recent versions on the system. This is done by periodically
deleting the oldest one, renaming the current one, and then recreating it.

For example, here is a script that keeps the last three versions of the su.log file in
addition to the current one:

#1/bin/sh
cd /var/adm
if [-r su.log.1]; then
mv -f su.log.1 su.log.2
fi
if [-r su.log.0]; then
mv -f su.log.0 su.log.1
fi
if [-r su.log]; then

112 | Chapter3: Essential Administrative Tools and Techniques

cp su.log su.log.o Copy the current log file.

fi

cat /dev/null > su.log Then truncate it.
There are three old su.log files at any given time: su.log.0 (the previous one), su.log.1,
and su.log.2, in addition to the current su.log file. When this script is executed, the
su.log.n files are renamed to move them back: 1 becomes 2, 0 becomes 1, and the
current su.log file becomes su.log.0. Finally, a new, empty file for current su mes-
sages is created. This script could be run automatically each week via cron, and the
last month’s worth of su.log files will always be on the system (and no more).

Make sure that all the log files get backed up on a regular basis so that
older ones can be retrieved from backup media in the event that their
information is needed.

Note that if you remove active log files, the disk space won’t actually be released
until you send a HUP signal to the associated daemon process holding the file open
(usually syslogd). In addition, you’ll then need to recreate the file for the facility to
function properly. For these reasons, removing active log files is not recommended.

As we've seen, some systems provide automatic mechanisms for accomplishing the
same thing. For example, AIX has built this feature into its version of syslog.

FreeBSD provides the newsyslog facility for performing this task (which is run hourly
from cron by default). It rotates log files based on the directions in its configuration
file, /etc/newsyslog.conf:

file [own:grp] mode # sz when [ZB] [/pid_file] [sig]
/var/log/cron 600 3 100 * Z
/var/log/amd.log 644 7 100 * Z
/var/log/lpd-errs 644 7 100 * z
/var/log/maillog 644 7 * $p0 Z

The fields hold the following information:
* the pathname to the log file
* the user and group ownership it should be assigned (optional)
* the file mode
* the number of old files that should be retained
* the size at which the file should be rotated
* the time when the file should be rotated

* a flag field (Z says to compress the file; B specifies that it is a binary log file and
should be treated accordingly)

* the path to the file holding the process ID of the daemon that controls the file

* the numeric signal to send to that daemon to reinitialize it

The last three fields are optional.

Essential Administrative Techniques | 113

Thus, the first entry in the previous example configuration file processes the cron log
file, protecting it against all non-root access, rotating it when it is larger than 100 KB,
and keeping three compressed old versions on the system. The next two entries
rotate the corresponding log file at the same point, using a seven-old-files cycle. The
final entry rotates the mail log file every day at midnight, again retaining seven old
files. The “when” field is specified via a complex set of codes (see the manual page
for details).

If both an explicit size and time period are specified (i.e., not an asterisk), rotation
occurs when either condition is met.

Red Hat Linux systems provide a similar facility via logrotate, written by Erik
Troan. It is run daily by default via a script in /etc/cron.daily, and its operations are
controlled by the configuration file, /etc/logrotate.conf.

Here is an annotated example of the logrotate configuration file:

global settings

errors root Mail errors to root.
compress Compress old files.
create Create new empty log files after rotation.
weekly Default cycle is 7 days.
include /etc/logrotate.d Import the instructions in the files here.
/var/log/messages { Instructions for a specific file.

rotate 5 Keep 5 files.

weekly Rotate weekly.

postrotate Run this command after rotating,

/sbin/killall -HUP syslogd to activate the new log file.
endscript
}

This file sets some general defaults and then defines the method for handling the /var/
log/messages file. The include directive also imports the contents of all files in the /etc/
logrotate.d directory. Many software packages place in this location files containing
instructions for how their own log files should be handled.

R

logrotate is open source and can be built on other Linux and Unix
systems as well.

Monitoring log file contents

It is very easy to generate huge amounts of logging information very quickly. You’ll
soon find that you’ll want some tool to help you sift through it all, finding the few
entries of any real interest or importance. We'll look at two of them in this subsection.

The swatch facility, written by E. Todd Atkins, is designed to do just that. It runs in a
variety of modes: examining new entries as they are added to a system log file, moni-

114 | Chapter3: Essential Administrative Tools and Techniques

toring an output stream in real time, checking through a file on a one-time basis, and
so on. When it recognizes a pattern you have specified in its input, it can perform a
variety of actions. Its home page (at the moment) is http://oit.ucsb.edu/~eta/swatch/.

Swatch’s configuration file specifies what information the facility should look for and
what it should do when it finds that information. Here is an example:

Syntax:

event action

#

network events

/refused/ echo,bell,mail=root

/connect from iago/ mail=chavez

#

other syslog events

/(uk|usa).*file system full/exec="wall /etc/fs.full"

/panic|halt/exec="/usr/sbin/bigtrouble"
The first two entries search for specific syslog messages related to network access
control. The first one matches any message containing the string “refused”. Patterns
are specified between forward slashes using regular expressions, as in sed. When
such an entry is found, swatch copies it to standard output (echo), rings the terminal
bell (bell), and sends mail to root (mail). The second entry watches for connections
from the host iago and sends mail to user chavez whenever one occurs.

The third entry matches the error messages generated when a filesystem fills up on
host usa or host uk; in this case, it runs the command wall /etc/fs.full (this form
of wall displays the contents of the specified file to all logged-in users). The fourth
entry runs the bigtrouble command when the system is in severe distress.

This file focuses on syslog events, presumably sent to a central logging host, but
swatch can be used to monitor any output. For example, it could watch the system
error log for memory parity errors.

The following swatch command could be used to monitor the contents of the /var/
adm/messages file, using the configuration file specified with the -c option:

swatch -c /etc/swatch.config -t /var/adm/messages

The -t option says to continuously examine the tail of the file (in a manner analo-
gous to tail -f). This command might be used to start a swatch process in a win-
dow that could be periodically monitored throughout the day. Other useful swatch
options are -f, which scans a file once for matching entries (useful when running
swatch via cron), and -p, which monitors the output from a running program.

Another great, free tool for this purpose is logcheck from Psionic Software (http:/
www.psionic.com/abacus/logcheck/). We’ll consider its use in Chapter 7.

Managing Software Packages

Most Unix versions provide utilities for managing software packages: bundled collec-
tions of programs that provide a particular feature or functionality, delivered via a

Essential Administrative Techniques | 115

single archive. Packaging software is designed to make adding and removing pack-
ages easier. Each operating system we are considering provides a different set of
tools.” The various offerings are summarized in Table 3-6.

Table 3-6. Software package management commands

Function Command2
List installed packages AlX:1slpp -1 all
FreeBSD: pkg_info -a -Ib
HP-UX: swlist
Linux: rpm -q -a
Solaris: pkginfo
Tru64: setld -i
Describe package FreeBSD: pkg_info
HP-UX: swlist -v
Linux: rpm -q -i

Solaris: pkginfo -1

List package contents AIX:1s1pp -f
FreeBSD: pkg info -L
HP-UX: swlist -1 file
Linux: rpm -q -1
Solaris: pkgchk -1
Tru64: setld -i

List prerequisites AIX:1s1pp -p
Linux: rpm -q ---requires
Show file’s original package AIX:1s1lpp -w
Linux: rpm -q - - -whatprovides

Solaris: pkgchk -1 -p

List available packages on media AlX:installp -1 -d device

FreeBSD: sysinstall

Configure — Packages
HP-UX: swlist -s path [-1 type]
Linux: 1s /path-to-RPMs

yast2 Install/Remove software (SuSE)
Solaris: 1s /path-to-packages

Tru64: setld -i -D path

* The freely available epm utility can generate native format packages for many Unix versions including AIX,
BSD and Linux. It is very useful for distributing locally developed packages in a heterogeneous environment.
See http://www.easysw.com/epm/ for more information.

116 | Chapter3: Essential Administrative Tools and Techniques

Table 3-6. Software package management commands (continued)

Function Commanda

Install package AIX: installp -acX
FreeBSD: pkg add
HP-UX: swinstall
Linux: rpm -1
Solaris: pkgadd
Tru64: setld -1

Preview installation AIX: installp -p
FreeBSD: pkg_add -n
HP-UX: swinstall -p
Linux:xpm -i --test

Verify package AlX:installp -a -v
Linux: rpm -V
Solaris: pkgchk
Tru64: fverify
Remove package AlX:installp -u
FreeBSD: pkg_delete
HP-UX: swremove

Linux: rpm -e

Solaris: pkgrm

Tru64: setld -d
Menu/GUI interface for package management AIX: smit

HP-UX: sam swlist -i swinstall
Linux: xrpm, gnorpm yast2 (SuSE)
Solaris: admintool

Tru64: sysman

a On Linux systems, add the -p pkg option to examine an uninstalled RPM package.
b Note that this option is an uppercase | (“eye”). All similar-looking option letters in this table are lowercase I's (“ells”).

These utilities all work in a very similar manner, so we will consider only one of them
in detail, focusing on the Solaris commands and a few HP-UX commands as examples.

We'll begin by considering the method to list currently installed packages. Gener-
ally, this is done by running the general listing command, possibly piping its output
to grep to locate packages of interest. For example, this command searches a Solaris
system for installed packages related to file compression:

pkginfo | grep -i compres

system SUNWbzip The bzip compression utility

system SUNWbzipx The bzip compression library (64-bit)
system SUNWgzip The GNU Zip (gzip) compression utility
system SUNWzip The Info-Zip (zip) compression utility
system SUNWz1ib The Zip compression library

system SUNWz1ibx The Info-Zip compression 1lib (64-bit)

Essential Administrative Techniques | 117

To find out more information about a package, we add an option and package name
to the listing command. In this case, we display information about the bzip package:
pkginfo -1 SUNWbzip
PKGINST: SUNWbzip

NAME: The bzip compression utility
CATEGORY: system

ARCH: sparc
VERSION: 11.8.0,REV=2000.01.08.18.12
BASEDIR: /

VENDOR: Sun Microsystems, Inc.
DESC: The bzip compression utility
STATUS: completely installed
FILES: 21 installed pathnames
9 shared pathnames
2 linked files
9 directories
4 executables
382 blocks used (approx)

Other options allow you to list the files and subdirectories in the package. On Solaris
systems, this produces a lot of output, so we use grep to reduce it to a simple list (a
step that is unnecessary on most systems):

pkgchk -1 SUNWbzip | grep ~Pathname: | awk '{print $2}'

/usr Subdirectories in the package are created on
/usr/bin install if they do not already exist.
/usr/bin/bunzip2

/usr/bin/bzcat

/usx/bin/bzip2

It is also often possible to find out the name of the package to which a given file
belongs, as in this example:

pkgchk -1 -p /etc/syslog.conf

Pathname: /etc/syslog.conf

Type: editted file

Expected mode: 0644

Expected owner: root

Expected group: sys

Referenced by the following packages:

SUNWcsr
Current status: installed

This configuration file is part of the package containing the basic system utilities.

When you want to install a new package, you use a command like this one, which
installs the GNU C compiler from the CD-ROM mounted under /cdrom (s8-
software-companion is the Companion Software CD provided with Solaris 8):

pkgadd -d /cdrom/s8-software-companion/components/sparc/Packages SFWgcc
Removing an installed package is also very simple:

pkgrm SFWbzip

118 | Chapter3: Essential Administrative Tools and Techniques

You can use the pkgchk command to verify that a software package is installed cor-
rectly and that none of its components has been modified since then.

Sometimes you want to list all of the available packages on a CD or tape. On
FreeBSD, Linux, and Solaris systems, you accomplish this by changing to the appro-
priate directory and running the 1s command. On others, an option to the normal
installation or listing command performs this function. For example, the following
command lists the available packages on the tape in the first drive:

swlist -s /dev/rmt/om

HP-UX: Bundles, products, and subproducts

HP-UX organizes software packages into various units. The smallest unit is the fileset
which contains a set of related file that can be managed as a unit. Subproducts con-
tain one or more filesets, and products are usually made up of one or more subprod-
ucts (although a few contain the filesets themselves). For example, the fileset
MSDOS-Utils.Manuals. DOSU-ENG-A_MAN consists of the English language man-
ual pages for the Utils subproduct of the MSDOC-Utils product. Finally, bundles are
groups of related filesets from one or more products, gathered together for a specific
purpose. They can, but do not have to, be comprised of multiple complete products.

The swlist command can be used to view installed software at these various levels
by specifying the corresponding keyword to its -1 option. For example, this com-
mand lists all installed products:

swlist -1 product

The following command lists the subproducts that make up the MS-DOS utilities
product:

swlist -1 subproduct MSDOS-Utils

MSDOS-Utils B.11.00 MSDOS-Utils
MSDOS-Utils.Manuals Manuals
MSDOS-Utils.ManualsBylang ManualsByLang
MSDOS-Utils.Runtime Runtime

You could further explore the contents of this product by running the swlist -1
fileset command for each subproduct to list the component filesets. The results
would show a single fileset per subproduct and would indicate that the MSDOS-
Utils product is made up of runtime and manual page filesets.

AIX: Apply versus commit

On AIX systems, software installation is a two-step process. First, software packages
are applied: new files are installed, but the previous system state is also saved in case
you change your mind and want to roll back the package. In order to make an instal-
lation permanent, applied software must be committed.

Essential Administrative Techniques | 119

You can view the installation state of software packages with the 1slpp command.
For example, this command displays information about software compilers:

1slpp -1 all | grep -i compil
vacpp.cmp.C 5.0.2.0 COMMITTED VisualAge C++ C Compiler
x1fcmp 7.1.0.2 COMMITTED XL Fortran Compiler
vac.C 5.0.2.0 COMMITTED C for AIX Compiler

Alternatively, you can display applied but not yet committed packages with the
installp -s all command.

The installp command has a number of options controlling how and to what degree
software is installed. For example, use a command like this one to apply and commit
software:

installp -ac -d device [items | all]

Other useful options to installp are listed in Table 3-7.

Table 3-7. Options to the AIX installp command

Option Meaning

-a Apply software.

-C Commit applied software.

-T Reject uncommitted software.

-t dir Use alternate location for saved rollback files.
-u Remove software

-C Clean up after a failed installation.

-N Don't save files necessary for recovery.

-X Expand filesystems as necessary.

-d dev Specify installation source location.

-p Preview operation.

-v Verbose output.

-1 List media contents.

-M arch Limit listing to items for the specified architecture type.

Using apply without commit is a good tactic for cautious administra-
tors and delicate production systems.

FreeBSD ports

FreeBSD includes an easy-to-use method for acquiring and building additional soft-
ware packages. This scheme is known as the Ports Collection. If you choose to install
it, its infrastructure is located at /usr/ports.

120 | Chapter3: Essential Administrative Tools and Techniques

The Ports Collection provides all the information necessary for downloading,
unpacking, and building software packages within its directory tree. Installing such
pre-setup packages is then very simple. For example, the following commands are all
that is needed to install the Tripwire security monitoring package:

cd /usr/ports/security/tripwire
make && make install

The make commands automatically take all steps necessary to install the package.

Building Software Packages from Source Code

There are a large number of useful open source software tools. Sometimes, thought-
ful people will have made precompiled binaries available on the Internet, but there
will be times when you will have to build them yourself. In this section, we look
briefly at building three packages in order to illustrate some of the problems and
challenges you might encounter. We use will HP-UX as our example system.

mtools: Using configure and accepting imperfections

We begin with mtools, a set of utilities for directly accessing DOS-format floppy
disks on Unix systems. After downloading the package, the first steps are to uncom-
press the software archive and extract its files:

$ gunzip mtools-3.9.7.tar.gz

$ tar xvf mtools-3.9.7.tar

x mtools-3.9.7/INSTALL, 737 bytes, 2 tape blocks

x mtools-3.9.7/buffer.c, 8492 bytes, 17 tape blocks

x mtools-3.9.7/Release.notes, 8933 bytes, 18 tape blocks

x mtools-3.9.7/devices.c, 25161 bytes, 50 tape blocks

Note that we are not running these commands as root.

Next, we change to the new directory and look around:

$ cd mtools-3.9.7; 1s

COPYING floppyd_io.c mmount. ¢
Changelog floppyd io.h mmove. 1
INSTALL force io.c mmove. c
Makefile fs.h mpartition.1
Makefile.Be fsP.h mpartition.c
Makefile.in getopt.h mrd.1
Makefile.os2 hash.c mread.1
NEWPARAMS htable.h mren.1
README init.c msdos.h

We are looking for files named README, INSTALL, or something similar, which
will tell us how to proceed.

Essential Administrative Techniques | 121

Here is the relevant section in this example:

Compilation

To compile mtools on Unix, first type ./configure, then make.

This is a typical pattern in a well-crafted software package. The configure utility
checks the system for all the items needed to build the package, often selecting among
various alternatives, and creates a make file based on the specific configuration.

We follow the directions and run it:

$./configure

checking for gcc... cc

checking whether the C compiler works... yes

checking whether cc accepts -g... yes

checking how to run the C preprocessor... cc -E

checking for a BSD compatible install... /opt/imake/bin/install -c
checking for sys/wait.h that is POSIX.1 compatible... yes

checking for getopt.h... no

creating ./config.status
creating Makefile
creating config.h
config.h is unchanged

At this point, we could just run make, but I always like to look at the make file first.
Here is the first part of it:

$ more Makefile
Generated automatically from Makefile.in by configure.
Makefile for Mtools

MAKEINFO = makeinfo
TEXI2DVI = texi2dvi
TEXI2HTML = texi2html

do not edit below this line
SHELL = /bin/sh

prefix = /usr/local
exec_prefix = ${prefix}

bindir ${exec_prefix}/bin
mandir = ${prefix}/man

The prefix item could be a problem if T wanted to install the software somewhere
else, but I am satisfied with this location, so I run make. The process is mostly fine,
but there are a few error messages:

cc -Ae -DHAVE_CONFIG_H -DSYSCONFDIR=\"/usr/local/etc\" -DCPU_hppal 0 -DVENDOR_hp -
DOS_hpux11 00 -DOS hpux1l -DOS hpux -g -I. -I. -c floppyd.c
cc: "floppyd.c", line 464: warning 604: Pointers are not assignment-compatible.

cc -z -0 floppyd -1SM -1ICE -1Xau -1X11 -1lnsl

122

| Chapter3: Essential Administrative Tools and Techniques

/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (buffer.o) was detected.
The linked output may not run on a PA 1.x system.
It is important to try to understand what the messages mean. In this case, we get a
compiler warning, which is not an uncommon occurrence. We ignore it for the
moment. The second warning simply tells us that we are building architecture-
dependant executables. This is not important as we don’t plan to use them any-
where but the local system.

Now, we install the package, using the usual command to do so:

$ su

Password:

make -n install Preview first!

./mkinstalldirs /usr/local/bin

/opt/imake/bin/install -c mtools /usr/local/bin/mtools

make install Proceed if it looks ok.
./mkinstalldirs /usr/local/bin
/opt/imake/bin/install -c mtools /usr/local/bin/mtools

/opt/imake/bin/install -c floppyd /usr/local/bin/floppyd
cp: cannot access floppyd: No such file or directory

Make: Don't know how to make mtools.info. Stop.

We encounter two problems here. The first is a missing executable: floppyd, a dae-
mon to provide floppy access to remote users. The second problem is a make error
that occurs when make tries to create the info file for mtools (a documentation for-
mat common on Linux systems). The latter is unimportant since the info system is
not available under HP-UX. The first problem is more serious, and further efforts do
not resolve what turns out to be an obscure problem. For example, modifying the
source code to correct the compiler error message does not fix the problem. The fail-
ure actually occurs during the link phase, which simply fails without comment. I'm
always disappointed when errors prevent a package from working, but it does hap-
pen occasionally.

Since I can live without this component, I ultimately decide to just ignore its absence.
If it were an essential element, it would be necessary to resolve the problem to use the
package. At that point, I would either try harder to fix the problem, check news groups
and other Internet information sources, or just decide to live without the package.

Don’t let a recalcitrant package become a time sink. Give up and move
on.

bzip2: Converting Linux-based make procedures

Next, we will look at the bzip2 compression utility by Julian Seward. The initial steps
are the same. Here is the relevant section of the README file:

Essential Administrative Techniques | 123

HOW TO BUILD -- UNIX

Type “make'. This builds the library libbz2.a and then the
programs bzip2 and bzip2recover. Six self-tests are run.
If the self-tests complete ok, carry on to installation:

To install in /usr/bin, /usr/lib, /usr/man and /usr/include, type
make install

To install somewhere else, eg, /xxx/yyy/{bin,1lib,man,include}, type
make install PREFIX=/xxx/yyy

We also read the README.COMPILATION.PROBLEMS file, but it contains noth-
ing relevant to our situation.

This package does not self-configure, but simply provides a make file designed to
work on a variety of systems. We start the build process on faith:

$ make

gcc -Wall -Winline -02 -fomit-frame-pointer -fno-strength-reduce
-D_FILE OFFSET BITS=64 -c blocksort.c

sh: gcc: not found.

*¥** Error exit code 127

The problem here is that our C compiler is cc, not gcc (this make file was probably
created under Linux). We can edit the make file to reflect this. As we do so, we look
for other potential problems. Ultimately, the following lines:

SHELL=/bin/sh

CC=gcc

BIGFILES=-D_FILE OFFSET BITS=64

CFLAGS=-Wall -Winline -02 -fomit-frame-pointer ... $(BIGFILES)

are changed to:
SHELL=/bin/sh
CC=cc

BIGFILES=-D_FILE OFFSET BITS=64
CFLAGS=-Wall +w2 -0 $(BIGFILES)

The CFLAGS entry specifies options sent to the compiler command, and the original

value contains many gcc-specific ones. We replace those with their HP-UX
equivalents.

The next make attempt is successful:

cc -Wall +w2 -0 -D_FILE OFFSET BITS=64 -c blocksort.c
cc -Wall +w2 -0 -D _FILE OFFSET BITS=64 -c huffman.c
cc -Wall +w2 -0 -D_FILE_OFFSET_BITS=64 -c crctable.c

Doing 6 tests (3 compress, 3 uncompress) ...
./bzip2 -1 < samplel.ref > samplel.rb2
./bzip2 -2 < sample2.ref > sample2.rb2

124 | Chapter3: Essential Administrative Tools and Techniques

If you got this far, it looks like you're in business.

To install in /usr/bin, /usr/lib, /usr/man and /usr/include,
type: make install

To install somewhere else, eg, /xxx/yyy/{bin,lib,man,include},
type: make install PREFIX=/xxx/yyy

We want to install into /usr/local, so we use this make install command (after pre-
viewing the process with -n first):

make install PREFIX=/usr/local

If the facility had not provided the capability to specify the install directory, we
would have had to edit the make file to use our desired location.

jove: Configuration via make file settings

Lastly, we look at the jove editor by Jonathan Payne, my personal favorite editor.
Here is the relevant section from the INSTALL file:

Installation on a UNIX System.

To make JOVE, edit Makefile to set the right directories for the binaries, on line
documentation, the man pages, and the TMP files, and select the appropriate load
command (see LDFLAGS in Makefile). (IMPORTANT! read the Makefile carefully.)
"paths.h" will be created by MAKE automatically, and it will use the directories you
specified in the Makefile. (NOTE: You should never edit paths.h directly because
your changes will be undone by the next make.)

You need to set "SYSDEFS" to the symbol that identifies your system, using the
notation for a macro-setting flag to the C compiler. If yours isn't mentioned, use
"grep System: sysdep.h" to find all currently supported system configurations.

This package is the least preconfigured of those we are considering. Here is the part
of the make file I needed to think about and modify (from the original). Our changes
are highlighted in boldface:

JOVEHOME = <userinput>/usr/local</userinput>

SHAREDIR = $(JOVEHOME)/1lib/jove
BINDIR = $(JOVEHOME)/bin

Select the right libraries for your system.
LIBS = -Itermcap We uncommented the correct one.
#LIBS = -lcurses

define a symbol for your 0S if it hasn’t got one. See sysdep.h.
SYSDEFS = -DHPUX -Ac —Ac says to use the K&R Edition 1 version of C.

Once this configuration of the make file is completed, running make and make install
built and installed the software successtully.

Essential Administrative Techniques | 125

Internet software archives

I'll close this chapter with this short list of the most useful of the currently available
general and operating system-specific software archives (in my opinion). Unless oth-
erwise noted, all of them provide freely-available software.

General http://sourceforge.net
http://lwww.gnu.org
http://freshmeat.net
http:/lwww.xfree86.0rg
http://rtfm.mit.edu

AIX http://freeware.bull.net
http://aixpdslib.seas.ucla.edu/aixpdslib.html

FreeBSD http://www.freebsd.org/ports/
http://www.freshports.org

HP-UX http://hpux.cs.utah.edu
http://lwww.software.hp.com (drivers and commercial packages)

Linux http://www.redhat.com
http://lwww.suse.com
http://www.ibiblio.org/Linux
http://linux.davecentral.com

Solaris http://www.sun.com/bigadmin/downloads/
http://www.sun.com/download/
ftp:/lftp.sunfreeware.com/pub/freeware/
http://www.ibiblio.org/pub/packages/solaris/

Tru64 http://www.unix.digital.com/tools. html
ftp://ftp.digital.com
http://gatekeeper.dec.com
http://www.tru64.compaq.com (demos and commercial software)
(Compagq also offers a low-cost freeware CD for Tru64.)

126 | Chapter3: Essential Administrative Tools and Techniques

CHAPTER 4
Startup and Shutdown

Most of the time, bringing up or shutting down a Unix system is actually very sim-
ple. Nevertheless, every system administrator needs to have at least a conceptual
understanding of the startup and shutdown processes in order to, at a minimum, rec-
ognize situations where something is going awry—and potentially intervene. Provid-
ing you with this knowledge is the goal of this chapter. We will begin by examining
generic boot and shutdown procedures that illustrate the concepts and features com-
mon to virtually every Unix system. This will be followed by sections devoted to the
specifics of the various operating systems we are discussing, including a careful con-
sideration of the myriad of system configuration files that perform and control these
processes.

About the Unix Boot Process

Bootstrapping is the full name for the process of bringing a computer system to life
and making it ready for use. The name comes from the fact that a computer needs its
operating system to be able to do anything, but it must also get the operating system
started all on its own, without having any of the services normally provided by the
operating system to do so. Hence, it must “pull itself up by its own bootstraps.”
Booting is short for bootstrapping, and this is the term I'll use.”

The basic boot process is very similar for all Unix systems, although the mechanisms
used to accomplish it vary quite a bit from system to system. These mechanisms
depend on both the physical hardware and the operating system type (System V or
BSD). The boot process can be initiated automatically or manually, and it can begin
when the computer is powered on (a cold boot) or as a result of a reboot command
from a running system (a warm boot or restart).

* IBM has traditionally referred to the bootstrapping process as the IPL (initial program load). This term still
shows up occasionally in AIX documentation.

127

The normal Unix boot process has these main phases:

* Basic hardware detection (memory, disk, keyboard, mouse, and the like).
* Executing the firmware system initialization program (happens automatically).

* Locating and running the initial boot program (by the firmware boot program),
usually from a predetermined location on disk. This program may perform addi-
tional hardware checks prior to loading the kernel.

* Locating and starting the Unix kernel (by the first-stage boot program). The ker-
nel image file to execute may be determined automatically or via input to the
boot program.

* The kernel initializes itself and then performs final, high-level hardware checks,
loading device drivers and/or kernel modules as required.

* The kernel starts the init process, which in turn starts system processes (dae-
mons) and initializes all active subsystems. When everything is ready, the sys-
tem begins accepting user logins.

We will consider each of these items in subsequent sections of this chapter.

From Power On to Loading the Kernel

As we’ve noted, the boot process begins when the instructions stored in the com-
puter’s permanent, nonvolatile memory (referred to colloquially as the BIOS, ROM,
NVRAM, and so on) are executed. This storage location for the initial boot instruc-
tions is generically referred to as firmware (in contrast to “software,” but reflecting
the fact that the instructions constitute a program”).

These instructions are executed automatically when the power is turned on or the
system is reset, although the exact sequence of events may vary according to the val-
ues of stored parameters.t The firmware instructions may also begin executing in
response to a command entered on the system console (as we’ll see in a bit). How-
ever they are initiated, these instructions are used to locate and start up the system’s
boot program, which in turn starts the Unix operating system.

The boot program is stored in a standard location on a bootable device. For a nor-
mal boot from disk, for example, the boot program might be located in block 0 of the
root disk or, less commonly, in a special partition on the root disk. In the same way,
the boot program may be the second file on a bootable tape or in a designated loca-
tion on a remote file server in the case of a network boot of a diskless workstation.

* At least that’s my interpretation of the name. Other explanations abound.

T Or the current position of the computer’s key switch. On systems using a physical key switch, one of its posi-
tions usually initiates an automatic boot process when power is applied (often labeled “Normal” or “On”),
and another position (e.g., “Service”) prevents autobooting and puts the system into a completely manual
mode suitable for system maintenance and repair.

128 | Chapter4: Startup and Shutdown

There is usually more than one bootable device on a system. The firmware program
may include logic for selecting the device to boot from, often in the form of a list of
potential devices to examine. In the absence of other instructions, the first bootable
device that is found is usually the one that is used. Some systems allow for several
variations on this theme. For example, the RS/6000 NVRAM contains separate
default device search lists for normal and service boots; it also allows the system
administrator to add customized search lists for either or both boot types using the
bootlist command.

The boot program is responsible for loading the Unix kernel into memory and pass-
ing control of the system to it. Some systems have two or more levels of intermediate
boot programs between the firmware instructions and the independently-executing
Unix kernel. Other systems use different boot programs depending on the type of
boot.

Even PC systems follow this same basic procedure. When the power comes on or the
system is reset, the BIOS starts the master boot program, located in the first 512
bytes of the system disk. This program then typically loads the boot program located
in the first 512 bytes of the active partition on that disk, which then loads the kernel.
Sometimes, the master boot program loads the kernel itself. The boot process from
other media is similar.

The firmware program is basically just smart enough to figure out if the hardware
devices it needs are accessible (e.g., can it find the system disk or the network) and to
load and initiate the boot program. This first-stage boot program often performs
additional hardware status verification, checking for the presence of expected sys-
tem memory and major peripheral devices. Some systems do much more elaborate
hardware checks, verifying the status of virtually every device and detecting new ones
added since the last boot.

The kernel is the part of the Unix operating system that remains running at all times
when the system is up. The kernel executable image itself, conventionally named
unix (System V-based systems), vmunix (BSD-based system), or something similar. It
is traditionally stored in or linked to the root directory. Here are typical kernel names
and directory locations for the various operating systems we are considering:

AIX /unix (actually a link to a file in /usr/lib/boot)
FreeBSD /kernel

HP-UX [stand/vmunix

Linux /boot/vmlinuz

Tru64 /vmunix

Solaris /kernel/genunix

Once control passes to the kernel, it prepares itself to run the system by initializing
its internal tables, creating the in-memory data structures at sizes appropriate to cur-
rent system resources and kernel parameter values. The kernel may also complete the
hardware diagnostics that are part of the boot process, as well as installing loadable
drivers for the various hardware devices present on the system.

About the Unix Boot Process | 129

When these preparatory activities have been completed, the kernel creates another
process that will run the init program as the process with PID 1.

Booting to Multiuser Mode

As we’ve seen, init is the ancestor of all subsequent Unix processes and the direct
parent of user login shells. During the remainder of the boot process, init does the
work needed to prepare the system for users.

One of init’s first activities is to verify the integrity of the local filesystems, begin-
ning with the root filesystem and other essential filesystems, such as /usr. Since the
kernel and the init program itself reside in the root filesystem (or sometimes the /usr
filesystem in the case of init), you might wonder how either one can be running
before the corresponding filesystem has been checked. There are several ways around
this chicken-and-egg problem. Sometimes, there is a copy of the kernel in the boot
partition of the root disk as well as in the root filesystem. Alternatively, if the execut-
able from the root filesystem successfully begins executing, it is probably safe to
assume that the file is OK.

In the case of init, there are several possibilities. Under System V, the root filesys-
tem is mounted read-only until after it has been checked, and init remounts it read-
write. Alternatively, in the traditional BSD approach, the kernel handles checking
and mounting the root filesystem itself.

Still another method, used when booting from tape or CD-ROM (for example, dur-
ing an operating system installation or upgrade), and on some systems for normal
boots, involves the use of an in-memory (RAM) filesystem containing just the lim-
ited set of commands needed to access the system and its disks, including a version
of init. Once control passes from the RAM filesystem to the disk-based filesystem,
the init process exits and restarts, this time from the “real” executable on disk, a
result that somewhat resembles a magician’s sleight-of-hand trick.

Other activities performed by init include the following;:

* Checking the integrity of the filesystems, traditionally using the fsck utility

* Mounting local disks

* Designating and initializing paging areas

* Performing filesystem cleanup activities: checking disk quotas, preserving editor
recovery files, and deleting temporary files in /tmp and elsewhere

* Starting system server processes (daemons) for subsystems like printing, elec-
tronic mail, accounting, error logging, and cron

*

Process 0, if it exists, is really part of the kernel itself. Process 0 is often the scheduler (controls which pro-
cesses execute at what time under BSD) or the swapper (moves process memory pages to and from swap
space under System V). However, some systems assign PID 0 to a different process, and others do not have
a process 0 at all.

130 | Chapter4: Startup and Shutdown

* Starting networking daemons and mounting remote disks

* Enabling user logins, usually by starting getty processes and/or the graphical
login interface on the system console (e.g., xdm), and removing the file /etc/
nologin, if present

These activities are specified and carried out by means of the system initialization
scripts, shell programs traditionally stored in /etc or /sbin or their subdirectories and
executed by init at boot time. These files are organized very differently under Sys-
tem V and BSD, but they accomplish the same purposes. They are described in detail
later in this chapter.

Once these activities are complete, users may log in to the system. At this point, the
boot process is complete, and the system is said to be in multiuser mode.

Booting to Single-User Mode

Once init takes control of the booting process, it can place the system in single-user
mode instead of completing all the initialization tasks required for multiuser mode.
Single-user mode is a system state designed for administrative and maintenance
activities, which require complete and unshared control of the system. This system
state is selected by a special boot command parameter or option; on some systems,
the administrator may select it by pressing a designated key at a specific point in the
boot process.

To initiate single-user mode, init forks to create a new process, which then executes
the default shell (usually /bin/sh) as user root. The prompt in single-user mode is the
number sign (#), the same as for the superuser account, reflecting the root privileges
inherent in it. Single-user mode is occasionally called maintenance mode.

Another situation in which the system might enter single-user mode automatically
occurs if there are any problems in the boot process that the system cannot handle
on its own. Examples of such circumstances include filesystem problems that fsck
cannot fix in its default mode and errors in one of the system initialization files. The
system administrator must then take whatever steps are necessary to resolve the
problem. Once this is done, booting may continue to multiuser mode by entering
CTRL-D, terminating the single-user mode shell:

"D Continue boot process to multiuser mode.
Tue Jul 14 14:47:14 EDT 1987 Boot messages from the initialization files.

Alternatively, rather than picking up the boot process where it left off, the system
may be rebooted from the beginning by entering a command such as reboot (AIX
and FreeBSD) or telinit 6. HP-UX supports both commands.

Single-user mode represents a minimal system startup. Although you have root
access to the system, many of the normal system services are not available at all or
are not set up. On a mundane level, the search path and terminal type are often not

About the Unix Boot Process | 131

set correctly. Less trivially, no daemons are running, so many Unix facilities are shut
down (e.g., printing). In general, the system is not connected to the network. The
available filesystems may be mounted read-only, so modifying files is initially dis-
abled (we’ll see how to overcome this in a bit). Finally, since only some of the filesys-
tems are mounted, only commands that physically reside on these filesystems are
available initially.

This limitation is especially noticeable if /usr was created on a separate disk partition
from the root filesystem and is not mounted automatically under single-user mode.
In this case, even commands stored in the root filesystem (in /bin, for example) will
not work if they use shared libraries stored under /usr. Thus, if there is some prob-
lem with the /usr filesystem, you will have to make do with the tools that are avail-
able. For such situations, however rare and unlikely, you should know how to use
the ed editor if vi is not available in single-user mode; you should know which tools
are available to you in that situation before you have to use them.

On a few systems, vendors have exacerbated this problem by making /bin a symbolic
link to /usr/bin, thereby rendering the system virtually unusable if there is a problem
with a separate /usr filesystem.

Password protection for single-user mode

On older Unix systems, single-user mode does not require a password be entered to
gain access. Obviously, this can be a significant security problem. If someone gained
physical access to the system console, he could crash it (by hitting the reset button,
for example) and then boot to single-user mode via the console and be automatically
logged in as root without having to know the root password.

Modern systems provide various safeguards. Most systems now require that the root
password be entered before granting system access in single-user mode. On some
System V-based systems, this is accomplished via the sulogin program that is
invoked automatically by init once the system reaches single-user mode. On these
systems, if the correct root password is not entered within some specified time
period, the system is automatically rebooted.”

Here is a summary of single-user mode password protection by operating system:
AIX Automatic
FreeBSD Required if the console is listed in /etc/ttys with the insecure
option:
console none unknown off insecure

*

The front panel key position also influences the boot process, and the various settings provide for some types
of security protection. There is usually a setting that disables booting to single-user mode; it is often labeled
“Secure” (versus “Normal”) or “Standard” (versus “Maintenance” or “Service”). Such security features are
usually described on the init or boot manual pages and in the vendor’s hardware or system operations man-
uals.

132 | Chapter4: Startup and Shutdown

HP-UX Automatic
Linux Required if /etc/inittab (discussed later in this chapter) contains

a sulogin entry for single-user mode. For example:
sp:S:respawn:/sbin/sulogin

Tru64 Required if the SECURE_CONSOLE entry in /etc/rc.config is set
to ON.

Solaris Required if the PASSREQ setting in /etc/default/sulogin is set to
YES.

Current Linux distributions include the sulogin utility but do not
always activate it (this is true of Red Hat Linux as of this writing),
leaving single-user mode unprotected by default.

Firmware passwords

Some systems also allow you to assign a separate password to the firmware initializa-
tion program, preventing unauthorized persons from starting a manual boot. For
example, on SPARC systems, the eeprom command may be used to require a pass-
word and set its value (via the security-mode and security-password parameters,
respectively).

On some systems (e.g., Compaq Alphas), you must use commands within the firm-
ware program itself to perform this operation (set password and set secure in the
case of the Alpha SRM). Similarly, on PC-based systems, the BIOS monitor program
must generally be used to set such a password. It is accessed by pressing a desig-
nated key (often F1 or F8) shortly after the system powers on or is reset.

On Linux systems, commonly used boot-loader programs have configuration set-
tings that accomplish the same purpose. Here are some configuration file entries for
lilo and grub:

password = something fetc/lilo.conf

password -md5 XXXXXXXXXXXX /boot/grub/grub.conf
The grub package provides the grub-mds-crypt utility for generating the MD5 encod-
ing for a password. Linux boot loaders are discussed in detail in Chapter 16.

Starting a Manual Boot

Virtually all modern computers can be configured to boot automatically when power
comes on or after a crash. When autobooting is not enabled, booting is initiated by
entering a simple command in response to a prompt: sometimes just a carriage
return, sometimes a b, sometimes the word boot. When a command is required, you
often can tell the system to boot to single-user mode by adding a -s or similar option
to the boot command, as in these examples from a Solaris and a Linux system:

ok boot -s Solaris
boot: linux single Linux

About the Unix Boot Process | 133

In the remainder of this section, we will look briefly at the low-level boot commands
for our supported operating systems. We will look at some more complex manual-
boot examples in Chapter 16 and also consider boot menu configuration in detail.

AIX

AIX provides little in the way of administrator intervention options during the boot
process.” However, the administrator does have the ability to preconfigure the boot
process in two ways.

The first is to use the bootlist command to specify the list and ordering of boot
devices for either normal boot mode or service mode. For example, this command
makes the CD-ROM drive the first boot device for the normal boot mode:

bootlist -m normal cdi hdisko hdiski rmto

If there is no bootable CD in the drive, the system next checks the first two hard
disks and finally the first tape drive.

The second configuration option is to use the diag utility to specify various boot pro-
cess options, including whether or not the system should boot automatically in vari-
ous circumstances. These items are accessed via the Task Selection submenu.

FreeBSD
FreeBSD (on Intel systems) presents a minimal boot menu:
F1 FreeBSD
F2 FreeBSD
F5 Drive 1 Appears if there is a second disk with a bootable partition.

This menu is produced by the FreeBSD boot loader (installed automatically if
selected during the operating system installation, or installed manually later with the
bootocfg command). It simply identifies the partitions on the disk and lets you select
the one from which to boot. Be aware, however, that it does not check whether each
partition has a valid operating system on it (see Chapter 16 for ways of customizing
what is listed).

The final option in the boot menu allows you to specify a different disk (the second
IDE hard drive in this example). If you choose that option, you get a second, similar
menu allowing you to select a partition on that disk:

F1 FreeBSD
F5 Drive 0

In this case, the second disk has only one partition.

* Some AIX systems respond to a specific keystroke at a precise moment during the boot process and place
you in the System Management Services facility, where the boot device list can also be specified.

134 | Chapter4: Startup and Shutdown

Shortly after selecting a boot option, the following message appears:”
Hit [Enter] to boot immediately, or any other key for the command prompt

If you strike a key, a command prompt appears, from which you can manually boot,
as in these examples:

diskisia:> boot -s Boot to single-user mode

diskisia:> unload Boot an alternate kernel

diskisia:> load kernel-new

diskisia:> boot
If you do not specify a full pathname, the alternate kernel must be located in the root
directory on the disk partition corresponding to your boot menu selection.

FreeBSD can also be booted by the grub open source boot loader, which is dis-
cussed—along with a few other boot loaders—in the Linux section below.

HP-UX

HP-UX boot commands vary by hardware type. These examples are from an HP
9000/800 system. When power comes on initially, the greater-than-sign prompt (>)*
is given when any key is pressed before the autoboot timeout period expires. You can
enter a variety of commands here. For our present discussion, the most useful are
search (to search for bootable devices) and co (to enter the configuration menu). The
latter command takes you to a menu where you can specify the standard and alter-
nate boot paths and options. When you have finished with configuration tasks,
return to the main menu (ma) and give the reset command.

Alternatively, you can boot immediately by using the bo command, specifying one of
the devices that search found by its two-character path number (given in the first col-
umn of the output). For example, the following command might be used to boot
from CD-ROM:

> bo P1

The next boot phase involves loading and running the initial system loader (ISL).
When it starts, it asks whether you want to enter commands with this prompt:

Interact with ISL? y

If you answer yes, you will receive the ISL> prompt, at which you can enter various
commands to modify the usual boot process, as in these examples:

ISL> hpux -is Boot to single user mode
ISL> hpux /stand/vmunix-new Boot an alternate kernel
ISL> hpux 11 /stand List available kernels

* We’re ignoring the second-stage boot loader here.
T Preceded by various verbiage.

About the Unix Boot Process | 135

Linux

When using lilo, the traditional Linux boot loader, the kernels available for booting
are predefined. When you get 1ilo’s prompt, you can press the TAB key to list the
available choices. If you want to boot one of them into single-user mode, simply add
the option single (or -s) to its name. For example:

boot: linux single

You can specify kernel parameters generally by appending them to the boot selec-
tion command.

If you are using the newer grub boot loader, you can enter boot commands manually
instead of selecting one of the predefined menu choices, by pressing the ¢ key. Here
is an example sequence of commands:

grub> root (hdo,0) Location of /boot
grub> kernel /vmlinuz=new ro root=/dev/hda2

grub> initrd /initrd.img

grub> boot

The root option on the kernel command locates the partition where the root direc-
tory is located (we are using separate / and /boot partitions here).

If you wanted to boot to single-user mode, you would add single to the end of the
kernel command.

In a similar way, you can boot one of the existing grub menu selections in single-user
mode by doing the following:

1. Selecting it from the menu
2. Pressing the e key to edit it
3. Selecting and editing the kernel command, placing single at the end of the line
4. Moving the cursor to the first command and then pressing b for boot
The grub facility is discussed in detail in Chapter 16.

On non-Intel hardware, the boot commands are very different. For example, some
Alpha Linux systems use a boot loader named aboot.” The initial power-on prompt is
a greater-than sign (>). Enter the b command to reach aboot’s prompt.

Here are the commands to boot a Compaq Alpha Linux system preconfigured with
appropriate boot parameters:

aboot> p 2 Select the second partition to boot from.
aboot> 0 Boot predefined configuration 0.

The following command can be used to boot Linux from the second hard disk
partition:

aboot> 2/vmlinux.gz root=/dev/hda2

* This description will also apply to Alpha hardware running other operating systems.

136 | Chapter4: Startup and Shutdown

You could add single to the end of this line to boot to single-user mode.

Other Alpha-based systems use quite different boot mechanisms. Consult the manu-
facturer’s documentation for your hardware to determine the proper commands for
your system.

Tru64

When power is applied, a Tru64 system generally displays a console prompt that is a
triple greater-than sign (>>>). You can enter commands to control the boot process,
as in these examples:

>>> boot -fl s Boot to single-user mode

>>> boot dkb0.0.0.6.1 Boot an alternate device or kernel

>>> boot -file vmunix-new
The -f1 option specifies boot flags; here, we select single-user mode. The second set
of commands illustrate the method for booting from an alternate device or kernel
(the two commands may be combined).

Note that there are several other ways to perform these same tasks, but these meth-
ods seem the most intuitive.

Solaris

At power-on, Solaris systems may display the ok console prompt. If not, it is because
the system is set to boot automatically, but you can generate one with the Stop-a or
L1-a key sequence. From there, the boot command may be used to initiate a boot, as
in this example:

ok boot -s Boot to single user mode

ok boot cdrom Boot from installation media
The second command boots an alternate kernel by giving its full drive and directory
path. You can determine the available devices and how to refer to them by running
the devalias command at the ok prompt.

Booting from alternate media

Booting from alternate media, such as CD-ROM or tape, is no different from boot-
ing any other non-default kernel. On systems where this is possible, you can specify
the device and directory path to the kernel to select it. Otherwise, you must change
the device boot order to place the desired alternate device before the standard disk
location in the list.

Boot Activities in Detail

We now turn to a detailed consideration of the boot process from the point of ker-
nel initialization onward.

About the Unix Boot Process | 137

Boot messages

The following example illustrates a generic Unix startup sequence. The messages
included here are a composite of those from several systems, although the output is
labeled as for a mythical computer named the Urizen, a late-1990s system running a
vaguely BSD-style operating system. While this message sequence does not corre-
spond exactly to any existing system, it does illustrate the usual elements of booting
on Unix systems, under both System V and BSD.

We’ve annotated the boot process output throughout:

>b

Urizen Ur-Unix boot in progress...
testing memory

checking devices

loading vmunix

Initiate boot to multiuser mode.

Output from boot program.
Preliminary hardware tests.
Read in the kernel executable.

Urizen Ur-Unix Version 17.4.2: Fri Apr 24 23 20:32:54 GMT 1998

Copyright (c) 1998 Blakewill Computer, Ltd.

Copyright (c) 1986 Sun Microsystems, Inc.

Copyright for OS.
Subsystem copyrights.

Copyright (c) 1989-1998 Open Software Foundation, Inc.

Copyright (c) 1991 Massachusetts Institute of Technology

All rights reserved.
physical memory = 2.00 GB

Searching SCSI bus for devices:
rdisko bus 0 target o lun 0
rdisk1 bus 0 target 1 lun 0
rdisk2 bus 0 target 2 lun 0
mto bus 0 target 4 lun 0
cdrom0 buso target 6 lun 0
Ethernet address=8:0:20:7:58:jk

Root on /dev/diskoa
Activating all paging spaces

swapon: swap device /dev/diskob activated.

Using /dev/diskob as dump device

INIT: New run level: 3

The system is coming up. Please wait.
Tue Jul 14 14:45:28 EDT 1998

Checking TCB databases
Checking file systems:

fsstat: /dev/rdiskic (/home) umounted cleanly;

fsstat: /dev/rdisk2c (/chem) dirty
Running fsck:

Unix kernel is running now.
Amount of real memory.

Peripherals are checked next.

Ethernet address of network adapter.

Indicates disk partitions used as /...
...as paging spaces and. ..

...as the crash dump location.

Single-user mode could be entered here,...
...but this system is booting to run level 3.
Messages produced by startup scripts follow.
Means “Be patient.”

Verify integrity of the security databases.
Check and mount remaining local filesystems.
Skipping check.

This filesystem needs checking.

/dev/rdisk2c: 1764 files, 290620 used, 110315 free

Mounting local file systems.

138

| Chapter4: Startup and Shutdown

Checking disk quotas: done. Daemons for major subsystems start first, ...
cron subsystem started, pid = 3387
System message logger started.
Accounting services started.
...followed by network servers,...
Network daemons started: portmap inetd routed named rhwod timed.
NFS started: biod(4) nfsd(6) rpc.mountd rpc.statd rpc.lockd.
Mounting remote file systems.
Print subsystem started. ...and network-dependent local daemons.
sendmail started.

Preserving editor files. Save interrupted editor sessions.
Clearing /tmp. Remove files from /tmp.
Enabling user logins. Remove the /etc/nologin file.

Tue Jul 14 14:47:45 EDT 1998 Display the date again.

Urizen Ur-Unix 9.1 on hamlet The hostname is hamlet.

login: Unix is running in multiuser mode.

There are some things that are deliberately anachronistic about this example boot
sequence—running fsck and clearing /tmp, for instance—but we’ve retained them
for nostalgia’s sake. We’ll consider the scripts and commands that make all of these
actions happen in the course of this section.

Saved boot log files

Most Unix versions automatically save some or all of the boot messages from the
kernel initialization phase to a log file. The system message facility, controlled by the
syslogd daemon, and the related System V dmesg utility are often used to capture
messages from the kernel during a boot (syslog is discussed in detail Chapter 3). In
the latter case, you must execute the dmesg command to view the messages from the
most recent boot. On FreeBSD systems, you can also view them in the /var/run/
dmesg.boot file.

It is common for syslogd to maintain only a single message log file, so boot mes-
sages may be interspersed with system messages of other sorts. The conventional
message file is /var/log/messages.

The syslog facility under HP-UX may also be configured to produce a messages file,
but it is not always set up at installation to do so automatically. HP-UX also pro-
vides the /etc/rc.log file, which stores boot output from the multiuser phase.

Under AIX, /var/adm/ras/bootlog is maintained by the alog facility. Like the kernel
buffers that are its source, this file is a circular log that is maintained at a predefined
fixed size; new information is written at the beginning of the file once the file is full,

replacing the older data. You can use a command like this one to view the contents
of this file:

alog -f /var/adm/ras/bootlog -o

About the Unix Boot Process | 139

General considerations

In general, init controls the multiuser mode boot process. init runs whatever initial-
ization scripts it has been designed to run, and the structure of the init program
determines the fundamental design of the set of initialization scripts for that Unix
version: what the scripts are named, where they are located in the filesystem, the
sequence in which they are run, the constraints placed upon the scripts’ program-
mers, the assumptions under which they operate, and so on. Ultimately, it is the dif-
ferences in the System V and BSD versions of init that determines the differences in
the boot process for the two types of systems.

Although we’ll consider those differences in detail later, in this section, we’ll begin
by looking at the activities that are part of every normal Unix boot process, regard-
less of the type of system. In the process, we’ll examine sections of initialization
scripts from a variety of different computer systems.

Preliminaries

System initialization scripts usually perform a few preliminary actions before getting
down to the work of booting the system. These include defining any functions and
local variables that may be used in the script and setting up the script’s execution
environment, often beginning by defining HOME and PATH environment variables:
HOME=/; export HOME
PATH=/bin:/usr/bin:/sbin:/usr/sbin; export PATH
The path is deliberately set to be as short as possible; generally, only system directo-
ries appear in it to ensure that only authorized, unmodified versions of commands
get executed (we’ll consider this issue in more detail in “Protecting Files and the File-
system” in Chapter 7).

Alternatively, other scripts are careful always to use full pathnames for every com-

mand that they use. However, since this may make commands excessively long and

scripts correspondingly harder to read, some scripts take a third approach and define

a local variable for each command that will be needed at the beginning of the script:
mount=/sbin/mount

fsck=/sbin/fsck
rm=/usr/bin/rm

The commands would then be invoked in this way:
${rm} -f /tmp/*

This practice ensures that the proper version of the command is run while still leav-
ing the individual command lines very readable.

Whenever full pathnames are not used, we will assume that the appropriate PATH
has previously been set up in the script excerpts we’ll consider.

140 | Chapter4: Startup and Shutdown

Preparing filesystems

Preparing the filesystem for use is the first and most important aspect of the mul-
tiuser boot process. It naturally separates into two phases: mounting the root filesys-
tem and other vital system filesystems (such as /usr), and handling the remainder of
the local filesystems.

Filesystem checking is one of the key parts of preparing the filesystem. This task is
the responsibility of the fsck™ utility.

Most of the following discussion applies only to traditional, non-jour-
s naled Unix filesystems. Modern filesystem types use journaling tech-
Wt niques adapted from transaction processing to record and, if
" necessary, replay filesystem changes. In this way, they avoid the need
for a traditional fsck command and its agonizingly slow verification
and repair procedures (although a command of this name is usually
still provided).

For traditional Unix filesystem types (such as ufs under FreeBSD and ext2 under
Linux), fsck’s job is to ensure that the data structures in the disk partition’s super-
block and inode tables are consistent with the filesystem’s directory entries and
actual disk block consumption. It is designed to detect and correct inconsistencies
between them, such as disk blocks marked as in use that are not claimed by any file,
and files existing on disk that are not contained in any directory. fsck deals with file-
system structure, but not with the internal structure or contents of any particular file.
In this way, it ensures filesystem-level integrity, not data-level integrity.

In most cases, the inconsistencies that arise are minor and completely benign, and
fsck can repair them automatically at boot time. Occasionally, however, fsck finds
more serious problems, requiring administrator intervention.

System V and BSD have very different philosophies of filesystem verification. Under
traditional BSD, the normal practice is to check all filesystems on every boot. In con-
trast, System V-—style filesystems are not checked if they were unmounted normally
when the system last went down. The BSD approach is more conservative, taking
into account the fact that filesystem inconsistencies do on occasion crop up at times
other than system crashes. On the other hand, the System V approach results in
much faster boots.t

If the system is rebooting after a crash, it is quite normal to see many messages indi-
cating minor filesystem discrepancies that have been repaired. By default, fsck fixes
problems only if the repair cannot possibly result in data loss. If fsck discovers a

* Variously pronounced as “fisk” (like the baseball player Carlton, rhyming with “disk”), “ef-es-see-kay,” “ef-
es-check,” and in less genteel ways.

T FreeBSD Version 4.4 and higher also checks only dirty filesystems at boot time.

About the Unix Boot Process | 141

more serious problem with the filesystem, it prints a message describing the problem
and leaves the system in single-user mode; you must then run fsck manually to
repair the damaged filesystem. For example (from a BSD-style system):

/dev/disk2e: UNEXPECTED INCONSISTENCY;

RUN fsck MANUALLY Message from fsck.
Automatic reboot failed . . . help! Message from /Jetc/rc script.
Enter root password: Single-user mode.
/sbin/fsck -p /dev/disk2e Run fsck manually with —p.

. Many messages from fsck.
BAD/DUP FILE=2216 OWNER=190 M=120777 Mode=> file is a symbolic link, so deleting it is safe.
S=16 MTIME=Sep 16 14:27 1997

CLEAR? y

*** FILE SYSTEM WAS MODIFIED ***

D Resume booting.
Mounting local file systems. Normal boot messages

In this example, fsck found a file whose inode address list contained duplicate
entries or addresses of known bad spots on the disk. In this case, the troublesome file
was a symbolic link (indicated by the mode), so it could be safely removed (although
the user who owned it will need to be informed). This example is intended merely to
introduce you to fsck; the mechanics of running fsck are described in detail in
“Managing Filesystems” in Chapter 10.

Checking and mounting the root filesystem

The root filesystem is the first filesystem that the boot process accesses as it prepares
the system for use. On a System V system, commands like these might be used to
check the root filesystem, if necessary:
/sbin/fsstat ${rootfs} >/dev/null 2581
if [$7? -eq 1] ; then
echo "Running fsck on the root file system."”
/sbin/fsck -p ${rootfs}
fi
The shell variable rootfs has been defined previously as the appropriate special file
for the root filesystem. The fsstat command determines whether a filesystem is
clean (under HP-UX, fsclean does the same job). If it returns an exit value of 1, the
filesystem needs checking, and fsck is run with its -p option, which says to correct
automatically all benign errors that are found.

On many systems, the root filesystem is mounted read-only until after it is known to
be in a viable state as a result of running fsstat and fsck as needed. At that point, it
is remounted read-write by the following command:

mount -o rw,remount /
On FreeBSD systems, the corresponding command is:

mount -u -0 rw /

142 | Chapter4: Startup and Shutdown

Preparing other local filesystems

The traditional BSD approach to checking the filesystems is to check all of them via a
single invocation of fsck (although the separate filesystems are not all checked simul-
taneously), and some System V systems have adopted this method as well. The ini-
tialization scripts on such systems include a fairly lengthy case statement, which
handles the various possible outcomes of the fsck command:

/sbin/fsck -p

retval=$?
case $retval in Check fsck exit code.
0) No remaining problems,
55 so just continue the boot process
4) fsck fixed problems on root disk.

echo "Root file system was modified."
echo "Rebooting system automatically."
exec /sbin/reboot -n
)
8) fsck failed to fix filesystem.
echo "fsck -p could not fix file system."”
echo "Run fsck manually."

${single} Single-user mode.
12) fsck exited before finishing.
echo "fsck interrupted ... run manually."
${single}
35
*) All other fsck errors.
echo "Unknown error in fsck."
${single}
esac

This script executes the command fsck -p to check the filesystem’s consistency. The
-p option stands for preen and says that any needed repairs that will cause no loss of
data should be made automatically. Since virtually all repairs are of this type, this is a
very efficient way to invoke fsck. However, if a more serious error is found, fsck asks
whether to fix it. Note that the options given to fsck may be different on your sys-
tem.

Next, the case statement checks the status code returned by fsck (stored in the local
variable retval) and performs the appropriate action based on its value.

If fsck cannot fix a disk on its own, you need to run it manually when it dumps you
into single-user mode. Fortunately, this is rare. That’s not just talk, either. I've had to
run fsck manually only a handful of times over the many hundreds of times I've
rebooted Unix systems, and those times occurred almost exclusively after crashes
due to electrical storms or other power loss problems. Generally, the most vulnera-
ble disks are those with continuous disk activity. For such systems, a UPS device is
often a good protection strategy.

About the Unix Boot Process | 143

Once all the local filesystems have been checked (or it has been determined that they
don’t need to be), they can be mounted with the mount command, as in this example
from a BSD system:

mount -a -t ufs

mount’s -a option says to mount all filesystems listed in the system’s filesystem con-
figuration file, and the -t option restricts the command to filesystems of the type
specified as its argument. In the preceding example, all ufs filesystems will be
mounted. Some versions of mount also support a nonfs type, which specifies all file-
systems other than those accessed over the network with NFS.

Saving a crash dump

When a system crashes due to an operating system—level problem, most Unix ver-
sions automatically write the current contents of kernel memory—known as a crash
dump—to a designated location, usually the primary swap partition. AIX lets you
specify the dump location with the sysdumpdev command, and FreeBSD sets it via the
dumpdev parameter in /etc/rc.conf. Basically, a crash dump is just a core dump of the
Unix kernel, and like any core dump, it can be analyzed to figure out what caused
the kernel program—and therefore the system—to crash.

Since the swap partition will be overwritten when the system is booted and paging is
restarted, some provision needs to be made to save its contents after a crash. The
savecore command copies the contents of the crash dump location to a file within
the filesystem. savecore exits without doing anything if there is no crash dump
present. The HP-UX version of this command is called savecrash.

savecore is usually executed automatically as part of the boot process, prior to the
point at which paging is initiated:

savecore /var/adm/crash

savecore’s argument is the directory location to which the crash dump should be
written; /var/adm/crash is a traditional location. On Solaris systems, you can specify
the default directory location with the dumpadm command.

The crash dumps themselves are conventionally a pair of files named something like
vmcore.n (the memory dump) and kernel.n, unix.n, or vmunix.n (the running ker-
nel), where the extension is an integer that is increased each time a crash dump is
made (so that multiple files may exist in the directory simultaneously). Sometimes,
additional files holding other system status information are created as well.

HP-UX creates a separate subdirectory of /var/adm/crash for each successive crash
dump, using names of the form crash.n. Each subdirectory holds the corresponding
crash data and several related files.

The savecore command is often disabled in the delivered versions of system initial-
ization files since crash dumps are not needed by most sites. You should check the
files on your system if you decide to use savecore to save crash dumps.

144 | Chapter4: Startup and Shutdown

Starting paging

Once the filesystem is ready and any crash dump has been saved, paging can be
started. This normally happens before the major subsystems are initialized since they
might need to page, but the ordering of the remaining multiuser mode boot activi-
ties varies tremendously.

Paging is started by the swapon -a command, which activates all the paging areas
listed in the filesystem configuration file.

Security-related activities

Another important aspect of preparing the system for users is ensuring that available
security measures are in place and operational. Systems offering enhanced security
levels over the defaults provided by vanilla Unix generally include utilities to verify
the integrity of system files and executables themselves. Like their filesystem-check-
ing counterpart fsck, these utilities are run at boot time and must complete success-
fully before users are allowed access to the system.

In a related activity, initialization scripts on many systems often try to ensure that
there is a valid password file (containing the system’s user accounts). These Unix ver-
sions provide the vipw utility for editing the password file. vipw makes sure that only
one person edits the password file at a time. It works by editing a copy of the pass-
word file; vipw installs it as the real file after editing is finished. If the system crashes
while someone is running vipw, however, there is a slight possibility that the system
will be left with an empty or nonexistent password file, which significantly compro-
mises system security by allowing anyone access without a password.

Commands such as these are designed to detect and correct such situations:

if [-s /etc/ptmp]; then Someone was editing /etc/passwd.
if [-s /etc/passwd]; then If passwd is non-empty, use it...
1s -1 /etc/passwd /etc/ptmp >/dev/console
m -f /etc/ptmp ...and remove the temporary file.
else Otherwise, install the temporary file.

echo 'passwd file recovered from /etc/ptmp'
mv /etc/ptmp /etc/passwd
fi
elif [-t /etc/ptmp]; then Delete any empty temporary file.
echo 'removing passwd lock file'
m -f /etc/ptmp
fi
The password temporary editing file, /etc/ptmp in this example, also functions as a
lock file. If it exists and is not empty (-s checks for a file of greater than zero length),
someone was editing /etc/passwd when the system crashed or was shut down. If /etc/
passwd exists and is not empty, the script assumes that it hasn’t been damaged,
prints a long directory listing of both files on the system console, and removes the
password lock file. If /etc/passwd is empty or does not exist, the script restores /etc/

About the Unix Boot Process | 145

ptmp as a backup version of /etc/passwd and prints the message “passwd file recov-
ered from /etc/ptmp” on the console.

The elif clause handles the case where /etc/ptmp exists but is empty. The script
deletes it (because its presence would otherwise prevent you from using vipw) and
prints the message “removing passwd lock file” on the console. Note that if no /etc/
ptmp exists at all, this entire block of commands is skipped.

Checking disk quotas

Most Unix systems offer an optional disk quota facility, which allows the available
disk space to be apportioned among users as desired. It, too, depends on database
files that need to be checked and possibly updated at boot time, via commands like
these:

echo "Checking quotas: \c"

quotacheck -a

echo "done."
quotaon -a

The script uses the quotacheck utility to check the internal structure of all disk quota
databases, and then it enables disk quotas with quotaon. The script displays the
string “Checking quotas:” on the console when the quotacheck utility begins (sup-
pressing the customary carriage return at the end of the displayed line) and com-
pletes the line with “done.” after it has finished (although many current systems use
fancier, more aesthetically pleasing status messages). Disk quotas are discussed in
“Monitoring and Managing Disk Space Usage” in Chapter 15.

Starting servers and initializing local subsystems

Once all the prerequisite system devices are ready, important subsystems such as
electronic mail, printing, and accounting can be started. Most of them rely on dae-
mons (server processes). These processes are started automatically by one of the boot
scripts. On most systems, purely local subsystems that do not depend on the net-
work are usually started before networking is initialized, and subsystems that do
need network facilities are started afterwards.

For example, a script like this one (from a Solaris system) could be used to initialize
the cron subsystem, a facility to execute commands according to a preset schedule
(cron is discussed in Chapter 3):

if [-p /etc/cron.d/FIFO]; then
if /usr/bin/pgrep -x -u 0 -P 1 cron >/dev/null 2>&1; then
echo "$0: cron is already running"
exit 0
fi
elif [-x /usr/sbin/cron]; then
/usr/bin/rm -f /etc/cron.d/FIFO
/usr/sbin/cron &
fi

146 | Chapter4: Startup and Shutdown

The script first checks for the existence of the cron lock file (a named pipe called FIFO
whose location varies). If it is present, the script next checks for a current cron process
(via the pgrep command). It the latter is found, the script exits because cron is already
running. Otherwise, the script checks for the existence of the cron executable file. If it
finds the file, the script removes the cron lock file and then starts the cron server.

The precautionary check to see whether cron is already running isn’t made on all sys-
tems. Lots of system initialization files simply (foolishly) assume that they will be run
only at boot time, when cron obviously won’t already be running. Others use a dif-
ferent, more general mechanism to determine the conditions under which they were
run. We’ll examine that shortly.

Other local subsystems started in a similar manner include:

update
A process that periodically forces all filesystem buffers (accumulated changes to
inodes and data blocks) to disk. It does so by running the sync command, ensur-
ing that the disks are fairly up-to-date should the system crash. The name of this
daemon varies somewhat: bdflush is a common variant, AIX calls its version
syncd, the HP-UX version is syncer, and it is named fsflush on Solaris systems.
Linux runs both update and bdflush. Whatever its name, don’t disable this dae-
mon or you will seriously compromise filesystem integrity.

syslogd
The system message handling facility that routes informational and error mes-
sages to log files, specific users, electronic mail, and other destinations accord-
ing to the specifications in its configuration file (see Chapter 3).

Accounting
this subsystem is started using the accton command. If accounting is not
enabled, the relevant commands may be commented out.

System status monitor daemons
some systems provide daemons that monitor the system’s physical conditions (e.
g., power level, temperature, and humidity) and trigger the appropriate action
when a problem occurs. For example, the HP-UX ups_mond daemon watches for
a power failure, switching to an uninterruptible power supply (UPS) to allow an
orderly system shutdown, if necessary.

Subsystems that are typically started after networking (discussed in the next section)
include:

* Electronic mail: the most popular electronic mail server is sendmail, which can
route mail locally and via the network as needed. Postfix is a common alterna-
tive (its server process is also called sendmail).

* Printing: the spooling subsystem also may be entirely local or used for printing
to remote systems in addition to (or instead of) locally connected ones. BSD-type
printing subsystems rely on the 1pd daemon, and System V systems use 1psched.
The AIX printing server is qdaemon.

About the Unix Boot Process | 147

There may be other subsystems on your system with their own associated daemon
processes; some may be vendor enhancements to standard Unix. We’ll consider
some of these when we look at the specific initialization files used by the various
Unix versions later in this chapter.

The AIX System Resource Controller. On AIX systems, system daemons are controlled by
the System Resource Controller (SRC). This facility starts daemons associated with
the various subsystems and monitors their status on an ongoing basis. If a system
daemon dies, the SRC automatically restarts it.

The sremstr command is the executable corresponding to the SRC. The 1ssrc and
chssys commands may be used to list services controlled by the SRC and change
their configuration settings, respectively. We’ll see examples of these commands at
various points in this book.

Connecting to the network

Network initialization begins by setting the system’s network hostname, if neces-
sary, and configuring the network interfaces (adapter devices), enabling it to commu-
nicate on the network. The script that starts networking at boot time contains
commands like these:

ifconfig lo0 127.0.0.1
ifconfig ent0 inet 192.168.29.22 netmask 255.255.255.0

The specific ifconfig commands vary quite a bit. The first parameter to ifconfig,
which designates the network interface, may be different on your system. In this case,
lo0 is the loopback interface, and ent0 is the Ethernet interface. Other common
names for Ethernet interfaces include eri0, dnetO, and hme0 (Solaris); ethO (Linux);
tu0 (Tru64); xI0 (FreeBSD); lan0 (HP-UX); en0 (AIX); and ef0 and etO (some System
V). Interfaces for other network media will have different names altogether. Static
routes may also be defined at this point using the route command. Networking is
discussed in detail in Chapter 5.

Networking services also rely on a number of daemon processes. They are usually
started with commands of this general form:
if [-x server-pathname]; then
preparatory commands
server-start-cmd
echo Starting server-name
fi
When the server program file exists and is executable, the script performs any neces-
sary preparatory activities and then starts the server process. Note that some servers
go into background execution automatically, while others must be explicitly started
in the background. The most important network daemons are listed in Table 4-1.

148 | Chapter4: Startup and Shutdown

Table 4-1. Common network daemons

Daemon(s)

inetd

named, routed, gated
ntpd, xntpd, timed

portmap, rpc.statd, rpc.lockd

nfsd, biod, mountd

automount

smbd, nmbd

Purpose

Networking master server responsible for responding to many types of network
requests via a large number of subordinate daemons, which it controls and to
which it delegates tasks.

The name server and routing daemons, which provide dynamic remote host-
name and routing data for TCP/IP. At most, one of routed or gated is used.

Time-synchronization daemons. The timed daemon has been mostly replaced
by the newer ntpd and the latest xntpd.

Remote Procedure Call (RPC) daemons. RPCis the primary network interprocess
communication mechanism used on Unix systems. portmap connects RPC pro-
gram numbers to TCP/IP port numbers, and many network services depend on it.
rpc. Lockd provides locking services to NFS in conjunction with rpc. statd,
the status monitor. The names of the latter two daemons may vary.

NFS daemons, which service file access and filesystem mounting requests from
remote systems. The first two take an integer parameter indicating how many
copies of the daemon are created. The system boot scripts also typically execute
the exportfs -acommand, which makes local filesystems available to
remote systems via NFS.

NFS automounter, responsible for mounting remote filesystems on demand. This
daemon has other names on some systems.

SAMBA daemons that handle SMB/CIFS-based remote file access requests from
Windows (and other) systems.

Once basic networking is running, other services and subsystems that depend on it
can be started. In particular, remote filesystems can be mounted with a command
like this one, which mounts all remote filesystems listed in the system’s filesystem

configuration file:

mount -a -t nfs On some systems, —F replaces —t.

Housekeeping activities

Traditionally, multiuser-mode boots also include a number of cleanup activities such

as the following;:

* Preserving editor files from vi and other ex-based editors, which enable users to
recover some unsaved edits in the event of a crash. These editors automatically
place checkpoint files in /tmp or /var/tmp during editing sessions. The expreserve
utility is normally run at boot time to recover such files. On Linux systems, the
elvis vi-clone is commonly available, and elvprsv performs the same function

as expreserve for its files.

* Clearing the /tmp directory and possibly other temporary directories. The com-
mands to accomplish this can be minimalist:

m -f /tmp/*

About the Unix Boot Process | 149

utilitarian:

cd /tmp; find . ! -name . ! -name .. ! -name lost+found \
I -name quota* -exec rm -fr {} \;

OI rOCOCO:

If no /tmp exists, create one (we assume /tmp is not
a separate file system).
if [! -d /tmp -a ! -1 /tmp]; then
m -f /tmp
mkdir /tmp
fi
for dir in /tmp /var/tmp /usr/local/tmp ; do
if [-d $dir] ; then
cd $dir
find . \(\(-type f \(-name a.out -o \
-name *.bak -o -name core -o -name *v -0 \
-name *> -0 -name #*# -o -name #.*# -o \
-name *.0 -o \(-atime +1 -mtime +3 \) \) \) \
-exec rm -f {} \; -0 -type d -name * \
-prune -exec m -fr {} \; \)
fi
cd /
done
The first form simply removes from /tmp all files other than those whose names
begin with a period. The second form might be used when /tmp is located on a
separate filesystem from the root filesystem to avoid removing important files
and subdirectories. The third script excerpt makes sure that the /tmp directory
exists and then removes a variety of junk files and any subdirectory trees (with

names not beginning with a period) from a series of temporary directories.

On some systems, these activities are not part of the boot process but are handled in
other ways (see Chapter 15 for details).

Allowing users onto the system

The final boot-time activities complete the process of making the system available to
users. Doing so involves both preparing resources users need to log in and removing
barriers that prevent them from doing so. The former consists of creating the getty
processes that handle each terminal line and starting a graphical login manager like
xdm—or a vendor-customized equivalent facilitcy—for X stations and the system con-
sole, if appropriate. On Solaris systems, it also includes initializing the Service Access
Facility daemons sac and ttymon. These topics are discussed in detail in Chapter 12.

On most systems, the file /etc/nologin may be created automatically when the system
is shut down normally. Removing it is often one of the very last tasks of the boot
scripts. FreeBSD uses /var/run/nologin.

letc/nologin may also be created as needed by the system administrator. If this file is
not empty, its contents are displayed to users when they attempt to log in. Creating
the file has no effect on users who are already logged in, and the root user can always
log in. HP-UX versions prior to 11i do not use this file.

150 | Chapter4: Startup and Shutdown

Initialization Files and Boot Scripts

This section discusses the Unix initialization files: command scripts that perform
most of the work associated with taking the system to multiuser mode. Although
similar activities take place under System V and BSD, the mechanisms by which they
are initiated are quite different. Of the systems we are considering, FreeBSD follows
the traditional BSD style, AIX is a hybrid of the two, and all the other versions use
the System V scheme.

Understanding the initialization scripts on your system is a vital part of system
administration. You should have a pretty good sense of where they are located and
what they do. That way, you’ll be able to recognize any problems at boot time right
away, and you’ll know what corrective action to take. Also, from time to time, you’ll
probably need to modify them to add new services (or to disable ones you’ve decided
you don’t need). We’ll discuss customizing initialization scripts later in this chapter.

Although the names, directory locations, and actual shell program code for system
initialization scripts varies widely between BSD-based versions of Unix and those
derived from System V, the activities accomplished by each set of scripts as a whole
differs in only minor ways. In high-level terms, the BSD boot process is controlled by
a relatively small number of scripts in the /etc directory, with names beginning with
rc, which are executed sequentially. In contrast, System V executes a large number of
scripts (as high as 50 or more), organized in a three-tiered hierarchy.

N
\
o Unix initialization scripts are written using the Bourne shell (/bin/sh).
:‘,“ As a convenience, Bourne shell programming features are summarized
& . -
* e in Appendix A.

Aspects of the boot process are also controlled by configuration files that modify the
operations of the boot scripts. Such files consist of a series of variable definitions that
are read in at the beginning of a boot script and whose values determine which com-
mands in the script are executed. These variables can specify things like whether a
subsystem is started at all, the command-line options to use when starting a dae-
mon, and the like. Generally, these files are edited manually, but some systems pro-
vide graphical tools for this purpose. The dialog on the left in Figure 4-1 shows the
utility provided by SuSE Linux 7 as part of its YaST2 administration tool.

The dialog on the right shows the new run-level editor provided by YaST2 on SuSE 8
systems. In this example, we are enabling inetd in run levels 2, 3, and 5.

Initialization Files Under FreeBSD

The organization of system initialization scripts on traditional BSD systems such as
FreeBSD is the essence of simplicity. In the past, boot-time activities occurred via a
series of only three or four shell scripts, usually residing in /etc, with names beginning

Initialization Files and Boot Scripts | 151

Bhart LA o o8 Bt Gyl

ooen;
st eron demer? ("gea® or re') should
I L1 urcharged 1o the demalt T
g

Figure 4-1. Editing the boot script configuration file on a SuSE Linux system

with rc. Under FreeBSD, this number has risen to about 20 (although not all of them
apply to every system).

Multiuser-mode system initialization under BSD-based operating systems is con-
trolled by the file /etc/rc. During a boot to multiuser mode, init executes the rc
script, which in turn calls other rc.* scripts. If the system is booted to single-user
mode, rc begins executing when the single-user shell is exited.

The boot script configuration files /etc/default/rc.conf, /etc/rc.conf, and Jetc/rc.conf.
local control the functioning of the rc script. The first of these files is installed by the
operating system and should not be modified. The other two files contain overrides
to settings in the first file (although the latter is seldom used).

Here are some example entries from /etc/rc.conf:

accounting enable="YES"
check_quotas="YES"
defaultrouter="192.168.29.204"
hostname="ada.ahania.com"
ifconfig x10="inet 192.168.29.216 netmask 255.255.255.0"
inetd enable="YES"

nfs _client enable="YES"
nfs_server_enable="YES"
portmap_enable="YES"

sendmail enable="NO"
sshd_enable="YES"

This file enables the accounting, inetd, NFS, portmapper, and ssh subsystems and
disables sendmail. It causes disk quotas to be checked at boot time, and specifies var-
ious network settings, including the Ethernet interface.

Initialization Files on System V Systems

The system initialization scripts on a System V-style system are much more numer-
ous and complexly interrelated than those under BSD. They all revolve around the
notion of the current system run level, a concept to which we now turn.

152 | Chapter4: Startup and Shutdown

System V run levels

At any given time, a computer system can be in one of three conditions: off (not run-
ning, whether or not it has power), single-user mode, or multiuser mode (normal
operating conditions). These three conditions may be thought of as three implicitly
defined system states.

System V—based systems take this idea to its logical extreme and explicitly define a
series of system states, called run levels, each of which is designated by a one-charac-
ter name that is usually a number. At any given time, the system is at one of these
states, and it can be sent to another one using various administrative commands. The
defined run levels are listed in Table 4-2.

Table 4-2. System V—style run levels

Run Level Name and customary purpose

0 Halted state: conditions under which it is safe to turn off the power.

1 System administration/maintenance state.

Sands Single-user mode.

2 Multiuser mode: the normal operating state for isolated, non-networked systems or networked, non-server

systems, depending on the version of Unix.

3 Remote file sharing state: the normal operating state for server systems on networks that share their local
resources with other systems (irrespective of whether networking and resource sharing occurs via TCP/IP and
NFS or some other protocol).

4,7,8,9 Administrator-definable system states: a generally unused run level, which can be set up and defined locally.

5 Same as run level 3 but running a graphical login program on the system console (e.g., xdm).

6 Shutdown and reboot state: used to reboot the system from some running state (s, 2, 3, or 4). Moving to this
state causes the system to be taken down (to run level 0) and then immediately rebooted back to its normal
operating state.

Qandq A pseudo-state that tells init to reread its configuration file /etc/inittab.

a,b, ¢ Pseudo—run levels that can be defined locally. When invoked, they cause init to run the commands in /etc/

inittab corresponding to them without changing the current (numeric) run level.

In most implementations, states 1 and s/S are not distinguished in practice, and not
all states are predefined by all implementations. State 3 is the defined normal operat-
ing mode for networked systems. In practice, some systems collapse run levels 2 and
3, supporting all networking functions at run level 2 and ignoring run level 3, or
making them identical so that 2 and 3 become alternate names for the same system
state. We will use separate run levels 2 and 3 in our examples, making run level 3 the
system default level.

Note that the pseudo—run levels (a, b, ¢, and q/Q) do not represent distinct system
states, but rather function as ways of getting init to perform certain tasks on demand.

Table 4-3 lists the run levels defined by the various operating systems we are consid-
ering. Note that FreeBSD does not use run levels.

Initialization Files and Boot Scripts | 153

Table 4-3. Run levels defined by various operating systems

AIX HP-UX Linux Tru64 Solaris
Default run level 2 3 3or5 3 3
Q yes yes yes yes yes
7,8,9 yes no yes yes no
a,b,c yes yes yes no yes

The command who -r may be used to display the current run level and the time it
was initiated:

$ who -r

. run level 3 Mar 14 11:14 3 0 S Previous run level was S.
The output indicates that this system was taken to run level 3 from run level S on
March 14. The 0 value between the 3 and the S indicates the number of times the
system had been at the current run level immediately prior to entering it this time. If
the value is nonzero, it often indicates previous unsuccessful boots.

On Linux systems, the runlevel command lists the previous and current run levels.

Now for some concrete examples. Let’s assume a system whose normal, everyday sys-
tem state is state 3 (networked multiuser mode). When you boot this system after the
power has been off, it moves from state O to state 3. If you shut the system down to
single-user mode, it moves from state 3 through state 0 to state s. When you reboot
the system, it moves from state 3 through state 6 and state 0, and then back to state 3.”

Using the telinit command to change run levels

The telinit utility may be used to change the current system run level. Its name
comes from the fact that it tells the init process what to do next. It takes the new run
level as its argument. The following command tells the system to reboot:

telinit 6

Tru64 does not include the telinit command. However, because telinit is just a
link to init that has been given a different name to highlight what it does, you can
easily create it if desired:

cd /sbin
1n init telinit

You can also just use init itself: init 6.

AIX also omits the telinit command, since it does not implement run levels in the
usual manner.

* In practice, booting to state 3 often involves implicitly moving through state 2, given the way that inittab con-
figuration files employing both states are usually set up.

154 | Chapter4: Startup and Shutdown

Initialization files overview

System V-style systems organize the initialization process in a much more complex
way, using three levels of initialization files:

* /etc/inittab, which is init’s configuration file.

* A series of primary scripts named rcn (where 7 is the run level), typically stored
in /etc or /sbin.

* A collection of auxiliary, subsystem-specific scripts for each run level, typically
located in subdirectories named ren.d under /etc or /sbin.

* In addition, some systems also provide configuration files that define variables
specifying or modifying the functioning of some of these scripts.

On a boot, when init takes control from the kernel, it scans its configuration file, /
etc/inittab, to determine what to do next. This file defines init’s actions whenever
the system enters a new run level; it contains instructions to carry out when the sys-
tem goes down (run level 0), when it boots to single-user mode (run level S), when
booting to multiuser mode (run level 2 or 3), when rebooting (run level 6), and so
on.

Each entry in the inittab configuration file implicitly defines a process to be run at
one or more run levels. Sometimes, this process is an actual daemon that continues
executing as long as the system remains in a given run level. More often, the process
is a shell script that is executed when the system enters one of the run levels speci-
fied in its inittab entry.

When the system changes run levels, init consults the inittab file to determine the
processes that should be running at the new run level. It then kills all currently run-
ning processes that should not be running at the new level and starts all processes
specified for the new run level that are not already running.

Typically, the commands to execute at the start of each run level are contained in a
script named rcn, where 7 is the run level number (these scripts are usually stored in
the /etc directory). For example, when the system moves to run level 2, init reads the
letc/inittab file, which tells it to execute rc2. rc2 then executes the scripts stored in
the directory /etc/rc2.d. Similarly, when a running system is rebooted, it moves first
from run level 2 to run level 6, a special run level that tells the system to shut down
and immediately reboot, where it usually executes rc0 and the scripts in /etc/rc0.d,
and then changes to run level 2, again executing rc2 and the files in /etc/rc2.d. A few
systems use a single rc script and pass the run level as its argument: rc 2.

A simple version of the System V rebooting process is illustrated in Figure 4-2
(assuming run level 2 as the normal operating state). We will explain all of the com-
plexities and eccentricities in it as this section progresses.

Initialization Files and Boot Scripts | 155

MOUNTfsys

nfs

init.d

tep

inittab
[etc I—

rc0.d

D
=
o
o
b
=
=
o
[
=
(o}
m

rc0 T

}

r.d

'
.

........... symbolic links

Figure 4-2. Executing System V—style boot scripts

The init configuration file

As we’ve seen, top-level control of changing system states is handled by the file /etc/
inittab, read by init. This file contains entries that tell the system what to do when it
enters the various defined system states.

156 | Chapter4: Startup and Shutdown

Entries in the inittab have the following form:
cc:levels:action:process

where cc is a unique, case-sensitive label identifying each entry (subsequent entries
with duplicate labels are ignored).” levels is a list of run levels to which the entry
applies; if it is blank, the entry applies to all of them. When the system enters a new
state, init processes all entries specified for that run level in the inittab file, in the
order they are listed in the file.

process is the command to execute, and action indicates how init is to treat the pro-
cess started by the entry. The most important action keywords are the following:
wait
Start the process and wait for it to finish before going on to the next entry for
this run state.
respawn
Start the process and automatically restart it when it dies (commonly used for
getty terminal line server processes).
once
Start the process if it’s not already running. Don’t wait for it.
boot
Execute entry only at boot time; start the process but don’t wait for it.
bootwait
Execute entry only at boot time and wait for it to finish.
initdefault
Specify the default run level (the one to reboot t0).
sysinit
Used for activities that need to be performed before init tries to access the sys-
tem console (for example, initializing the appropriate device).
off
If the process associated with this entry is running, kill it. Also used to comment
out unused terminal lines.

Comments may be included on separate lines or at the end of any entry by preceding
the comment with a number sign (#).

Here is a sample inittab file:

set default init level -- multiuser mode with networking
is:3:initdefault:

initial boot scripts

* Conventionally, labels are 2 characters long, but the actual limit is usually four characters, and some systems
allow labels of up to 14 characters.

Initialization Files and Boot Scripts | 157

fs::bootwait:/etc/bcheckrc </dev/console >/dev/console 2>&1
br::bootwait:/etc/brc </dev/console >/dev/console 2581

shutdown script
10:06:wait:/etc/rco >/dev/console 2>81 </dev/console

run level changes

r1:1:wait:/sbin/shutdown -y -iS -g0 >/dev/console 2>81
r2:23:wait:/etc/rc2 >/dev/console 2>&1 </dev/console
r3:3:wait:/etc/rc3 >/dev/console 2>&1 </dev/console
pkg:23:once:/usr/sfpkg/sfpkgd # start daemon directly

off and reboot states
off:0:wait:/sbin/uadmin 2 0 >/dev/console 2>81 </dev/console
rb:6:wait:/sbin/uadmin 2 1 >/dev/console 2>81 </dev/console

terminal initiation
€0:12345:respawn:/sbin/getty console console
t0:234:respawn:/sbin/getty ttyo 9600
t1:234:respawn:/sbin/getty tty1l 9600
t2:234:0ff:/sbin/getty tty2 9600

special run level

acct:a:once:/etc/start_acct # start accounting
This file logically consists of seven major sections, which we’ve separated with blank
lines. The first section, consisting of a single entry, sets the default run level, which in
this case is networked multiuser mode (level 3).

The second section contains processes started when the system is booted. In the
sample file, this consists of running the /etc/bcheckrc and /etc/bre preliminary boot
scripts commonly used on System V systems in addition to the rcn structure. The
bcheckrc script’s main function is to prepare the root filesystem and other critical
filesystems like /usr and /var. Both scripts are allowed to complete before init goes
on to the next inittab entry.

The third section of the sample inittab file specifies the commands to execute when-
ever the system is brought down, either during a system shutdown and halt (to run
level 0) or during a reboot (run level 6). In both cases, the script /etc/rc0 is executed,
and init waits for it to finish before proceeding.

The fourth section, headed “run level changes,” specifies the commands to run when
system states 1, 2, and 3 begin. For state 1, the shutdown command listed in the sam-
ple file takes the system to single-user mode. Some systems execute the rc1 initializa-
tion file when the system enters state 1 instead of a shutdown command like the one
above.

For state 2, init executes the rc2 initialization script; for state 3, init executes rc2
followed by rc3. In all three states, each process is allowed to finish before init goes
on to the next entry. The final entry in this section starts a process directly instead of
calling a script. The sfpkgd daemon is started only once per run level, when the

158 | Chapter4: Startup and Shutdown

system first enters run level 2 or 3. Of course, if the daemon is already running, it will
not be restarted.

The fifth section specifies commands to run (after rc0) when the system enters run
levels 0 and 6. In both cases, init runs the uadmin command, which initiates system
shutdown. The arguments to uadmin specify how the shutdown is to be handled.
Many modern systems have replaced this legacy command, folding its functionality
into the shutdown command (as we’ll see shortly). Of the System V systems we are
considering, only Solaris still uses uadmin.

The sixth section initializes the system’s terminal lines via getty processes (which are
discussed in Chapter 12).

The final section of the inittab file illustrates the use of special run level a. This entry
is used only when a telinit a command is executed by the system administrator, at
which point the start_acct script is run. The run levels a, b, and c are available to be
defined as needed.

The reninitialization scripts

As we've seen, init typically executes a script named rcn when entering run level n
(rc2 for state 2, for example). Although the boot (or shutdown) process to each sys-
tem state is controlled by the associated rcn script, the actual commands to be exe-
cuted are stored in a series of files in the subdirectory r¢n.d. Thus, when the system
enters state 0, init runs 7¢O (as directed in the inittab file), which in turn runs the
scripts in rc0.d.

The contents of an atypically small rc2.d directory (on a system that doesn’t use a
separate run level 3) are listed below:

$ 1s -C /etc/xc2.d

K30tcp Si5preserve S30tcp S50RMTMPFILES
K4onfs S20sysetup S35bsd S75cron
SO1MOUNTFSYS S21perf S40nfs S851p

All filenames begin with one of two initial filename characters (S and K), followed by
a two-digit number, and they all end with a descriptive name. The rcn scripts exe-
cute the K-files (as I'll call them) in their associated directory in alphabetical order,
followed by the S-files, also in alphabetical order (this scheme is easiest to under-
stand if all numbers are the same length; hence the leading zeros on numbers under
10). Numbers do not need to be unique.

In this directory, files would be executed in the order K30tcp, K40nfs,
SOIMOUNTESYS, Sl15preserve, and so on, ending with S75cron and S85Ip. K-files
are generally used to kill processes (and perform related functions) when transition-
ing to a different state; S-files are used to start processes and perform other initializa-
tion functions.

Initialization Files and Boot Scripts | 159

The files in the rc*.d subdirectories are usually links to those files in the subdirectory
init.d, where the real files live. For example, the file rc2.d/S30tcp is actually a link to
init.d/tcp. You see how the naming conventions work: the final portion of the name
in the rcn.d directory is the same as the filename in the init.d directory.

The file K30tcp is also a link to init.d/tcp. The same file in init.d is used for both the
kill and start scripts for each subsystem. The K and S links can be in the same rcn.d
subdirectory, as is the case for the TCP/IP initialization file, or in different subdirec-
tories. For example, in the case of the print spooling subsystem, the S-file might be in
rc2.d while the K-file is in r¢0.d.

The same file in init.d can be put to both uses because it is passed a parameter indi-
cating whether it was run as a K-file or an S-file. Here is an example invocation, from
an rc2 script:

If the directory /etc/rc2.d exists,
run the K-files in it ...
if [-d /etc/rc2.d]; then
for f in /etc/rc2.d/K*
{
if [-s ${f}]; then
pass the parameter "stop" to the file
/bin/sh ${f} stop
fi

and then the S-files:
for f in /etc/rc2.d/S*
{
if [-s ${f} 1; then
pass the parameter "start" to the file
/bin/sh ${f} start
fi
}
fi

When a K-file is executed, it is passed the parameter stop; when an S-file is executed,

it is passed start. The script file will use this parameter to figure out whether it is
being run as a K-file or an S-file.

Here is a simple example of the script file, init.d/cron, which controls the cron facil-
ity. By examining it, you’ll be able to see the basic structure of a System V initializa-
tion file:

#1/bin/sh
case $1 in
commands to execute if run as "Snncron"
"start')
remove lock file from previous cron
m -f /usr/lib/cron/FIFO
start cron if executable exists
if [-x /sbin/cron]; then
/sbin/cron

160 | Chapter4: Startup and Shutdown

echo "starting cron."
fi
commands to execute if run as "Knncron"
"stop')
pid="/bin/ps -e | grep ' cron$' | \
sed -e 's/~ *//' -e 's/ *//'
if ["${pid}" = ""]; then
kill ${pid}
fi
handle other arguments
*)
echo "Usage: /etc/init.d/cron {start|stop}"
exit 1

3
esac
The first section in the case statement is executed when the script is passed start as
its first argument (when it’s an S-file); the second section is used when it is passed
stop, as a K-file. The start commands remove any old lock file and then start the cron
daemon if its executable is present on the system. The stop commands figure out the
process ID of the cron process and kill it if it’s running. Some scripts/operating sys-
tems define additional valid parameters, including restart (equivalent to stop then
start) and status.

The file /etc/init.d/cron might be linked to both /etc/rc2.d/S75cron and Jetc/rc0.d/
K75cron. The cron facility is then started by rc2 during multiuser boots and stopped
by 7¢c0 during system shutdowns and reboots.

Sometimes scripts are even more general, explicitly testing for the conditions under
which they were invoked:

set “who -1’ Determine previous run level.
if [$8 1= "0"] The return code of the previous state change.
then
exit
fi
case $argl in 'start')
if [$9 = "S"] Check the previous run level.
then

echo "Starting process accounting”
/usr/lib/acct/startup
fi

35
This file uses various parts of the output from who -r:

$ who -r
run level 2 Mar 14 11:14 2 0 S

Initialization Files and Boot Scripts | 161

The set command assigns successive words in the output from the who command to
the shell script arguments $1 through $9. The script uses them to test whether the
current system state was entered without errors, exiting if it wasn’t. It also checks
whether the immediately previous state was single-user mode, as would be the case
on this system on a boot or reboot. These tests ensure that accounting is started only
during a successful boot and not when single-user mode has been entered due to
boot errors or when moving from one multiuser state to another.

Boot script configuration files

On many systems, the functioning of the various boot scripts can be controlled and
modified by settings in one or more related configuration files. These settings may
enable or disable subsystems, specify command-line arguments for starting dae-
mons, and the like. Generally, such settings are stored in separate files named for the
corresponding subsystem, but sometimes they are all stored in a single file (as on
SuSE Linux systems, in /etc/rc.config).

Here are two configuration files from a Solaris system; the first is /etc/default/
sendmail:

DAEMON=yes Enable the daemon.
QUEUE=1h Set the poll interval to 1 hour.

The next file is /etc/default/samba:

Options to smbd

SMBDOPTIONS="-D"

Options to nmbd

NMBDOPTIONS="-D"
The first example specifies whether the associated daemon should be started, as well
as one of its arguments, and the second file specifies the arguments to be used when
starting the two Samba daemons.

File location summary

Table 4-4 summarizes the boot scripts and configuration files used by the various
System V-style operating systems we are considering. A few notes about some of
them will follow.

Table 4-4. Boot scripts for System V—style operating systems

Component Location

inittab file Usual: /etc

rc*files Usual: /sbin/rcn
AIX: /etc/rc.*

HP-UX: /sbin/rcna
Linux: /etc/rc.d/rcna

162 | Chapter4: Startup and Shutdown

Table 4-4. Boot scripts for System V—style operating systems (continued)

Component Location

ren.d and init.d subdirectories Usual: /sbin/rcn.d and /sbin/init.d
AIX: /etc/rc.d/ren.d (but they are empty)
Linux: /etc/rc.d/ren.d and /etc/re.d/init.d (Red Hat); Zetc/init.d/ren.d and Zetc/init.d (SuSE)
Solaris: /etc/rcn.d and Jetc/init.d
Boot script configuration files AIX: none used
FreeBSD: /etc/rc.conf, and/or /etc/rc.conf.local
HP-UX: /etc/rc.config.d/*
Linux: /etc/sysconfig/* (Red Hat, SuSE 8); /etc/rc.config and /etc/rc.config.d/* (SuSE 7)
Solaris: /etc/default/*
Tru64: /etc/rc.config

a pis the parameter to rc.

Solaris initialization scripts

Solaris uses a standard System V boot script scheme. The script #cS (in /sbin) replaces
bcheckrc, but it performs the same functions. Solaris uses separate rcn scripts for
each run level from 0 through 6 (excluding rc4, which a site must create on its own),
but the scripts for run levels 0, 5, and 6 are just links to a single script, called with
different arguments for each run level. There are separate rcn.d directories for run
levels O through 3 and S.

Unlike on some other systems, run level 5 is a “firmware” (maintenance) mode,
defined as follows:

s5:5:wait:/sbin/rcs >/dev/msglog 2>81 </dev/console

of:5:wait:/sbin/uadmin 2 6 >/dev/msglog 2>81 </dev/console

These entries illustrate the Solaris msglog device, which sends output to one or more
console devices via a single redirection operation.

Solaris inittab files also usually contain entries for the Service Access Facility dae-
mons, such as the following;:

sc:234:respawn:/usr/lib/saf/sac -t 300 ...

co0:234:respawn:/usr/lib/saf/ttymon ...
Run level 3 on Solaris systems is set up as the remote file-sharing state. When TCP/IP
is the networking protocol in use, this means that general networking and NFS client
activities—such as mounting remote disks—occur as part of run level 2, but NFS
server activities do not occur until the system enters run level 3, when local filesys-
tems become available to other systems. The rc2 script, and thus the scripts in rc2.d,
are executed for both run levels by an inittab entry like this one:

s2:23:wait:/sbin/rc2 ...

Initialization Files and Boot Scripts | 163

Tru64 initialization scripts

Tru64 feels generally like a BSD-style operating system. Its initialization scripts are
one of the few places where its true, System V-style origins are revealed. It uses
bcheckrc to check (if necessary) and mount the local filesystems.

Tru64 defines only four run levels: 0, S, 2, and 3. The latter two differ in that run
level 3 is the normal, fully networked state and is usually init’s default run level.
Run level 2 is a nonnetworked state. It is designed so that it can be invoked easily
from a system at run level 3. The /sbin/rc2.d directory contains a multitude of K-files
designed to terminate all of the various network servers and network-dependent sub-
systems. Most of the K-files operate by running the ps command, searching its out-
put for the PID of a specific server process, and then killing it if it is running. The
majority of the S-files in the subdirectory exit immediately if they are run at any time
other than a boot from single-user mode. Taken together, the files in 7¢2.d ensure a
functional but isolated system, whether run level 2 is reached as part of a boot or
reboot, or via a transition from run level 3.

Linux initialization scripts

Most Linux systems use a vanilla, System V—style boot script hierarchy. The Linux
init package supports the special action keyword ctrlaltdel that allows you to trap
CTRL-ALT-DELETE sequences (the standard method of rebooting a PC), as in this
example, which calls the shutdown command and reboots the system:

ca::ctrlaltdel:/sbin/shutdown -1 now

Linux distributions also provide custom initial boot scripts (run prior to rc). For
example, Red Hat Linux uses /etc/rc.d/rc.sysinit for this purpose, and SuSE Linux sys-
tems use /etc/init.d/boot. These scripts focus on the earliest boot tasks such as check-
ing and mounting filesystems, setting the time zone, and initializing and activating
swap space.

AIX: Making System V work like BSD

It’s possible to eliminate most of the layers of initialization scripts that are standard
under System V. Consider this AIX inittab file:

init:2:initdefault:

brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1

rc:2:wait:/etc/rc 2>81 | alog -tboot > /dev/console srcmstr:2:respawn:/usr/sbin/sremstr
tepip:2:wait:/etc/rc.tepip > /dev/console 2>81

nfs:2:wait:/etc/rc.nfs > /dev/console 2>&1

ihshttpd:2:wait:/usr/HTTPServer/bin/httpd > /dev/console 2>&1
cron:2:respawn:/usr/sbin/cron

qdaemon:2:wait:/usr/bin/startsrc -sqdaemon

cons::respawn:/etc/getty /dev/console

ttyo:2:respawn:/etc/getty /dev/ttyo

164 | Chapter4: Startup and Shutdown

Other than starting a server process for the system console and executing the file /etc/
bcheckrc at boot time, nothing is defined for any run level other than state 2 (mul-
tiuser mode).

This is the approach taken by AIX. When the system enters state 2, a series of initial-
ization files are run in sequence: in this case, /etc/rc, /etc/rc.tcpip, and Jetc/re.nfs (with
the System Resource Controller starting up in the midst of them). Then several dae-
mons are started via their own inittab entries. After the scripts complete, getty pro-
cesses are started. Since /etc/ren.d subdirectories are not used at all, this setup is a
little different from that used on BSD systems.

More recent AIX operating system revisions do include hooks for other run levels,
modifying the preceding inittab entries in this way:
Note that even run level 6 is included!

tcpip:23456789:wait:/etc/rc.tcpip > /dev/console 2>&1
The /etc/rc.d/ren.d subdirectories are provided, but they are all empty.

Customizing the Boot Process

Sooner or later, you will want to make additions or modifications to the standard
boot process. Making additions is less risky than changing existing scripts. We’ll
consider the two types of modifications separately.

Before adding to or modifying system boot scripts, you should be very
familiar with their contents and understand what every line within
them does. You should also save a copy of the original script so you
can easily restore the previous version should problems occur.

Adding to the boot scripts

When you want to add commands to the boot process, the first thing you need to
determine is whether there is already support for what you want to do. See if there is
an easy way to get what you want: changing a configuration file variable, for exam-
ple, or adding a link to an existing file in init.d.

If the operating system has made no provisions for the tasks you want to accom-
plish, you must next figure out where in the process the new commands should be
run. It is easiest to add items at the end of the standard boot process, but occasion-
ally this is not possible.

It is best to isolate your changes from the standard system initialization files as much
as possible. Doing so makes them easier to test and debug and also makes them less
vulnerable to being lost when the operating system is upgraded and the previous
boot scripts are replaced by new versions. Under the BSD scheme, the best way to
accomplish this is to add a line to rc (or any other script that you need to change)
that calls a separate script that you provide:

. /etc/rc.site specific >/dev/console 2>&1

Initialization Files and Boot Scripts | 165

Ideally, you would place this at the end of r¢, and the additional commands needed
on that system would be placed into the new script. Note that the script is sourced
with the dot command so that it inherits the current environment from the calling
script. This does constrain it to being a Bourne shell script.

N
Some systems contain hooks for an rc.local script specifically designed

as for this purpose (stored in /etc like r¢). FreeBSD does—it is called near
W . .
* a2 the end of re—but you will have to create the file yourself.

On System V systems, there are more options. One approach is to add one or more
additional entries to the inittab file (placing them as late in the file as possible):
site:23:wait:/etc/rc.site_specific >/dev/console 2>&1
h96:23:once:/usr/local/bin/h96d
The first entry runs the same shell script we added before, and the second entry
starts a daemon process. Starting a daemon directly from inittab (rather than from
some other initialization file) is useful in two circumstances: when you want the dae-
mon started only at boot time and when you want it to be restarted automatically if
it terminates. You would use the inittab actions once and respawn, respectively, to
produce these two ways of handling the inittab entry.

Alternatively, if your additions need to take place at a very specific point in the boot
process, you will need to add a file to the appropriate ren.d subdirectories. Follow-
ing the System V practice is best in this case: place the new file in the init.d directory,
giving it a descriptive name, and then create links to other directories as needed.
Choose the filenames for the links carefully, so that your new files are executed at the
proper point in the sequence. If you are in doubt, executing the 1s -1 command in
the appropriate directory provides you with an unambiguous list of the current
ordering of the scripts within it, and you will be able to determine what number to
use for your new one.

Eliminating certain boot-time activities

Disabling parts of the boot process is also relatively easy. The method for doing so
depends on the initialization scripts used by your operating system. The various pos-
sibilities are (in decreasing order of preference):

* Disable a subsystem by setting the corresponding control variable to no or 0 in
one of the boot script configuration files. For example:

sendmail enable="no"

* Remove the link in the ren.d directory to the init.d directory in the case of Sys-
tem V—style boot scripts. Alternatively, you can rename the link, for example, by
adding another character to the beginning (I add an underscore: _K20nfs). That
way, it is easy to reinstate the file later.

166 | Chapter4: Startup and Shutdown

* In some cases, you will need to comment out an entry in /etc/inittab (when a dae-
mon that you don’t want is started directly).

* Comment out the relevant lines of initialization scripts that you don’t want to
use. This is the only option under FreeBSD when no rc.conf parameter has been
defined for a command or subsystem.

Linux systems often provide graphical utilities for adding and removing links to files
in init.d. Figure 4-3 illustrates the ksysv utility running on a Red Hat Linux system.

BIDIEIE]
File Edit Tools Settings Help
e s g Sy e [T
& o BB
Available Runlevel 0 Funlevel 1 Runlevel 2 Funlevel 3 Runlevel 5
Services Start Start Start Start Start
Hane [|10 Hame Ho Hame io Haue [a] [1wo Hane |~ 1o Hame [=]
;““”;ﬁ (i killall (il single [iF] ipchains 05 (5 kudzu 05 Kudzu
ﬁzmz . Hlot @ heie 17 [keyrahle 02 [iptables 08 @ ipchains || |08 [J ipchains ||
ﬁfua zun 10 dualoonf | | (08 () iptables it} iptables
b unctions 10 [netwock 10 @ dualconf 10§ dualcont
ﬁgp'it 12 (@ syslog 10 network 10 (@ network
= > ¥ 17 [keytable 12 [syslog 12 3 syslog
ﬁ%lpza:;“ = 20 (@ random [12 @portnap [&] 13 @ portmsp |4
{;};1; :i 26 @ apnd [*] 14 Anfslock [=])14 Anfstock [=]
crotate
% eytable Stop Stop Stop Stop Stop
5 killa11 Hio Hame 2| |0 Hame Al 1o Hane (&l 1o Hane [~ |10 Hame (=]
| 1uden 03 [rhnsd 03 [rhnsd 03 @ rhnsd 00 [Linuxconf 03 (@ rhnsd
% Ldap 05 (8 anacron 05 (@ anacron 05 [atd 01 [kdcrotate 20 [nfs
5 L1 ousccont 05 [atd 05) atd 20 [nfs |03 @ rhnsd 20 [retatd
2 1pd |05 @ keytable 10 [xts 20 (@ rstaed 20) nfs ({20 @ rueerzd
% netes % 0 [xfs 15 [apn 20 @) rusersd 20) rstatd 20 [J rvalld —
=5 @ ogn 20 [nis 20 [rwalld 20 () rusersd 20 [rvhod
20 (@ nfs 20) retatd 20§ rvhod 1|20 @ rwalld L35 @ smd L]
& iz 20 () rstatd 20 (@) rusessd ECI s = 20 (@ cwhed (2 las @ acpwatch [
0 A e hn @ 13 at A ac. Tl @ [18 PSS~ T L=l
F¥- Properties for syslog R ¥~ Properties for syslog B
Entry | Serwice Entry Service ‘
Hane: [syslog Description
Boints to service: [syslog Syslag is the facility by which many daemons
4 use to Loy messages to various system log AR S &
Sorting nunber [12 B || | files. 1t'is a good idea to always run sysleg %
’7{ gdit | [stare |[stop || Bestart |
L : : :

Figure 4-3. Modifying boot script links

The main window lists the scripts assigned as S-files (upper lists) and K-files for each
run level. The Available Services list shows all of the files in init.d. You can add a
script by dragging it from that list box to the appropriate run level pane, and you can
remove one by dragging it to the trash can (we are in the process of deleting the
annoying Kudzu hardware detection utility in the example).

Clicking on any entry brings up the smaller dialog at the bottom of the figure (both
of whose panels are shown as separate windows). You can specify the location
within the sequence of scripts using the Entry panel. The Service panel displays a
brief description of the daemon’s purpose and contains buttons with which you can
start, stop, and restart it. If appropriate, you can use the Edit button to view and
potentially modify the startup script for this facility.

Initialization Files and Boot Scripts | 167

Modifying standard scripts

While it is usually best to avoid it, sometimes you have no choice but to modify the
commands in standard boot scripts. For example, certain networking functions
stopped working on several systems I take care of immediately after an operating sys-
tem upgrade. The reason was a bug in an initialization script, illustrated by the
following;:

Check the mount of /. If remote, skip rest of setup.

mount | grep ' / ' | grep ' nfs ' 2>&1 > /dev/null

if ["$?" -eq 0]

then

exit

fi
The second line of the script is trying to figure out whether the root filesystem is
local or remote—in other words, whether the system is a diskless workstation or not.
It assumes that if it finds a root filesystem that is mounted via NFS, it must be a disk-
less system. However, on my systems, lots of root filesystems from other hosts are
mounted via NFS, and this condition produced a false positive for this script, caus-
ing it to exit prematurely. The only solution in a case like this is to fix the script so
that your system works properly.

Whenever you change a system script, keep these recommendations in mind:

* As a precaution, before modifying them in any way, copy the files you intend to
change, and write-protect the copies. Use the -p option of the cp command, if it
is supported, to duplicate the modification times of the original files as well as
their contents; this data can be invaluable should you need to roll back to a pre-
vious, working configuration. For example:

cp -p /etc/xc /etc/rc.orig
cp -p /etc/rc.local /etc/rc.local.orig
chmod a-w /etc/rc*.orig
If your version of cp doesn’t have a -p option, use a process like this one:

cd /etc

mv rc rc.orig; cp rc.orig rc

mv rc.local rc.local.orig; cp rc.local.orig rc.local

chmod a-w rc.orig rc.local.orig
Similarly, when you make further modifications to an already customized script,
save a copy before doing so, giving it a different extension, such as .save. This
makes the modification process reversible; in the worst case, when the system
won’t boot because of bugs in your new versions—and this happens to every-
one—you can just boot to single-user mode and copy the saved, working ver-
sions over the new ones.

* Make some provision for backing up modified scripts regularly so that they can
be restored easily in an emergency. This topic is discussed in detail in Chapter 11.

* For security reasons, the system initialization scripts (including any old or saved
copies of them) should be owned by root and not be writable by anyone but the

168 | Chapter4: Startup and Shutdown

owner. In some contexts, protecting them against any non-root access is
appropriate.

Guidelines for writing initialization scripts

System boot scripts often provide both good and bad shell programming examples. If
you write boot scripts or add commands to existing ones, keep these recommended
programming practices in mind:

Use full pathnames for all commands (or use one of the other methods for ensur-
ing that the proper command executable is run).

Explicitly test for the conditions under which the script is run if it is relying on
the system being in some known state. Don’t assume, for example, that there are
no users on the system or that a daemon the script will be starting isn’t already
running; have the script check to make sure. Initialization scripts often get run in
other contexts and at times other than those for which their writers originally
designed them.

Handle all cases that might arise from any given action, not just the ones that
you expect to result. This includes handling invalid arguments to the script and
providing a usage message.

Provide lots of informational and error messages for the administrators who will
see the results of the script.

Include plenty of comments within the script itself.

Shutting Down a Unix System

From time to time, you will need to shut the system down. This is necessary for
scheduled maintenance, running diagnostics, hardware changes or additions, and
other administrative tasks.

During a clean system shutdown, the following actions take place:

All users are notified that the system will be going down, preferably giving them
some reasonable advance warning.

All running processes are sent a signal telling them to terminate, allowing them
time to exit gracefully, provided the program has made provisions to do so.

All subsystems are shut down gracefully, via the commands they provide for
doing so.

All remaining users are logged off, and remaining processes are killed.
Filesystem integrity is maintained by completing all pending disk updates.

Depending on the type of shutdown, the system moves to single-user mode, the
processor is halted, or the system is rebooted.

Shutting Down a Unix System | 169

After taking these steps, the administrator can turn the power off, execute diagnos-
tics, or perform other maintenance activities as appropriate.

Unix provides the shutdown command to accomplish all of this. Generally, shutdown
sends a series of timed messages to all users who are logged on, warning them that
the system is going down; after sending the last of these messages, it logs all users off
the system and places the system in single-user mode.

All Unix systems—even those running on PC hardware—should be
shut down using the commands described in this section. This is nec-
essary to ensure filesystem integrity and the clean termination of the
various system services. If you care about what’s on your disks, never
just turn the power off.

There are two main variations of the shutdown command. The System V version is
used by Solaris and HP-UX (the latter slightly modified from the standard), and the
BSD version is used under AIX, FreeBSD, Linux, Solaris (in /usr/ucb), and Tru64.

On systems that provide it, the telinit command also provides a fast
way to shut down (telinit S), halt (telinit 0) or reboot the system
(telinit 6).

The System V shutdown Command

The standard System V shutdown command has the following form:
shutdown [-y] [-g grace] [-i new-level] message

where -y says to answer all shutdown prompts with yes automatically, grace speci-
fies the number of seconds to wait before starting the process (the default is 60),
new-level is the new run level in which to place the system (the default is single-user
mode) and message is a text message sent to all users. This is the form used on
Solaris systems.

Under HP-UX, the shutdown command has the following modified form:
shutdown [-y] grace

where -y again says to answer prompts automatically with yes, and grace is the num-
ber of seconds to wait before shutting down. The keyword now may be substituted
for grace. The shutdown command takes the system to single-user mode.

Here are some example commands that take the system to single-user mode in 15
seconds (automatically answering all prompts):

shutdown -y -g 15 -i s "system going down" Solaris

shutdown -y 15 HP-UX
The HP-UX shutdown also accepts two other options, -r and -h, which can be used
to reboot the system immediately or to halt the processor once the shutdown is com-
plete (respectively).

170 | Chapter4: Startup and Shutdown

For example, these commands could be used to reboot the system immediately:

shutdown -y -g 0 -i 6 "system reboot" Solaris
shutdown -y -r now HP-UX

HP-UX shutdown security

HP-UX also provides the file /etc/shutdown.allow. 1f this file exists, a user must be
listed in it in order to use the shutdown command (and root must be included). If the
file does not exist, only root can run shutdown. Entries in the file consist of a host-
name followed by a username, as in these examples:

hamlet chavez Chavez can shut down hamlet.
+ root Root can shut down any system.
dalton + Anyone can shut down dalton.

As these examples illustrate, the plus sign serves as a wildcard. The shutdown.allow
file also supports the percent sign as an additional wildcard character denoting all
systems within a cluster; this wildcard is not valid on systems that are not part of a
cluster.

The BSD-Style shutdown Command

BSD defines the shutdown command with the following syntax:
shutdown [options] time message

where time can have three forms:

+m Shut down in m minutes.
h:m Shut down at the specified time (24-hour clock).
now Begin the shutdown at once.

now should be used with discretion on multiuser systems.

message is the announcement that shutdown sends to all users; it may be any text
string. For example, the following command will shut the system down in one hour:

shutdown +60 "System going down for regular maintenance"

It warns users by printing the message “System going down for regular mainte-
nance” on their screens. shutdown sends the first message immediately; as the shut-
down time approaches, it repeats the warning with increasing frequency. These
messages are also sent to users on the other systems on the local network who may
be using the system’s files via NFS.

By default, the BSD-style shutdown command also takes the system to single-user
mode, except on AIX systems, where the processor is halted by default. Under AIX,
the -m option must be used to specify shutting down to single-user mode.

Other options provide additional variations to the system shutdown process:

* shutdown -1 says to reboot the system immediately after it shuts down. The
reboot command performs the same function.

Shutting Down a Unix System | 171

* shutdown -h says to halt the processor instead of shutting down to single-user
mode. Once this process completes, the power may be safely turned off. You can
also use the halt command to explicitly halt the processor once single-user mode
is reached.

* shutdown -k inaugurates a fake system shutdown: the shutdown messages are
sent out normally, but no shutdown actually occurs. I suppose the theory is that
you can scare users off the system this way, but some users can be pretty persis-
tent, preferring to be killed by shutdown rather than log out.

The Linux shutdown Command

The version of shutdown found on most Linux systems also has a -t option which
may be used to specify the delay period between when the kernel sends the TERM
signal to all remaining processes on the system and when it sends the KILL signal.
The default is 30 seconds. The following command shuts down the system more rap-
idly, allowing only 5 seconds between the two signals:

shutdown -h -t 5 now

The command version also provides a -a option, which provides a limited security
mechanism for the shutdown command. When it is invoked with this option, the
command determines whether any of the users listed in the file /etc/shutdown.allow
are currently logged in on the console (or any virtual console attached to it). If not,
the shutdown command fails.

The purpose of this option is to prevent casual passers-by from typing Ctrl-Alt-
Delete on the console and causing an (unwanted) system reboot. Accordingly, it is
most often used in the inittab entry corresponding to this event.

Ensuring Disk Accuracy with the sync Command

As we’ve noted previously, one of the important parts of the shutdown process is
syncing the disks. The sync command finishes all disk transactions and writes out all
data to disk, guaranteeing that the system can be turned off without corrupting the
files. You can execute this command manually if necessary:

sync

sync
Why is sync executed two or three times (or even more")? I think this is a bit of Unix
superstition. The sync command schedules but does not necessarily immediately per-
form the required disk writes, even though the Unix prompt returns immediately.
Multiple sync commands raise the probability that the write will take place before

* Solaris administrators swear that you need to do it five times to be safe; otherwise, the password file will
become corrupted. I have not been able to reproduce this.

172 | (Chapter4: Startup and Shutdown

you enter another command (or turn off the power) by taking up the time needed to
complete the operation. However, the same effect can be obtained by waiting a few
seconds for disk activity to cease before doing anything else. Typing “sync” several
times gives you something to do while you’re waiting.

There is one situation in which you do not want sync to be executed, either manu-
ally or automatically: when you have run fsck manually on the root filesystem. If you
sync the disks at this point, you will rewrite the bad superblocks stored in the kernel
buffers and undo the fixing fsck just did. In such cases, on BSD-based systems and
under HP-UX, you must use the -n option to reboot or shutdown to suppress the
usual automatic sync operation.

FreeBSD and System V are smarter about this issue. The fsck command generally
will automatically remount the root filesystem when it has modified the root filesys-
tem. Thus, no special actions are required to avoid syncing the disks.

Aborting a Shutdown

On most systems, the only way to abort a pending system shutdown is to kill the
shutdown process. Determine the shutdown process’ process ID by using a command
like the following:

ps -ax | grep shutdown BSD-style
ps -ef | grep shutdown System V—style

Then use the kill command to terminate it:

ps -ef | grep shutdown

25723 co S 0:01 /etc/shutdown -g300 -i6 -y

25800 co S 0:00 grep shutdown

kill -9 25723
It’s only safe to kill a shutdown command during its grace period; once it has actually
started closing down the system, you’re better off letting it finish and then rebooting.

The Linux version of shutdown includes a -c option that cancels a pending system
shutdown. Every version should be so helpful.

Troubleshooting: Handling Crashes and
Boot Failures

Even the best-maintained systems crash from time to time. A crash occurs when the
system suddenly stops functioning. The extent of system failure can vary quite a bit,
from a failure affecting every subsystem to one limited to a particular device or to the
kernel itself. System hang-ups are a related phenomenon in which the system stops
responding to input from any user or device or stops producing output, but the oper-
ating system nominally remains loaded. Such a system also may be described as
frozen.

Troubleshooting: Handling Crashes and Boot Failures | 173

There are many causes of system crashes and hangups. These are among the most
common:

* Hardware failures: failing disk controllers, CPU boards, memory boards, power
supplies, disk head crashes, and so on.

* Unrecoverable hardware errors, such as double-bit memory errors. These sorts
of problems may indicate hardware that is about to fail, but they also just hap-
pen from time to time.

* Power failures or surges due to internal power supply problems, external power
outages, electrical storms, and other causes.

* Other environmental problems: roof leaks, air conditioning failure, etc.
* 1/O problems involving a fatal error condition rather than a device malfunction.

* Software problems, ranging from fatal kernel errors caused by operating system
bugs to (much less frequently) problems caused by users or third-party programs.

* Resource overcommitment (for example, running out of swap space). These situ-
ations can interact with bugs in the operating system to cause a crash or hang-up.

Some of these causes are easier to identify than others. Rebooting the system may
seem like the most pressing concern when the system crashes, but it’s just as impor-
tant to gather the available information about why the system crashed while the data
is still accessible.

Sometimes it’s obvious why the system crashed, as when the power goes out. If the
cause isn’t immediately clear, the first source of information is any messages appear-
ing on the system console. They are usually still visible if you check immediately,
even if the system is set to reboot automatically. After they are no longer on the
screen, you may still be able to find them by checking the system error log file, usu-
ally stored in /var/log/messages (see Chapter 3 for more details), as well as any addi-
tional, vendor-supplied error facilities.

Beyond console messages lie crash dumps. Most systems automatically write a dump
of kernel memory when the system crashes (if possible). These memory images can
be examined using a debugging tool to see what the kernel was doing when it
crashed. Obviously, these dumps are of use only for certain types of crashes in which
the system state at the time of the crash is relevant. Analyzing crash dumps is beyond
the scope of this book, but you should know where crash dumps go on your system
and how to access them, if only to be able to save them for your field service engi-
neers or vendor technical support personnel.

Crash dumps are usually written to the system disk swap partition. Since this area
may be overwritten when the system is booted, some provisions need to be made to
save its contents. The savecore command solves this problem, as we have seen (the
command is called savecrash under HP-UX).

174 | Chapter4: Startup and Shutdown

If you want to be able to save crash dumps, you need to ensure that
the primary swap partition is large enough. Unless your system has the
ability to compress crash dumps as they are created (e.g., Tru64) or
selectively dump only the relevant parts of memory, the swap parti-
tion needs to be at least as large as physical memory.

If your system crashes and you are not collecting crash dumps by default, but you
want to get one, boot the system to single-user mode and execute savecore by hand.
Don’t let the system boot to multiuser mode before saving the crash dump; once the
system reaches multiuser mode, it’s too late.

AIX also provides the snap command for collecting crash dump and other system
data for later analysis.

Power-Failure Scripts

There are two other action keywords available for inittab that we’ve not yet consid-
ered: powerfail and powerwait. They define entries that are invoked if a SIGPWR sig-
nal is sent to the init process, which indicates an imminent power failure. This
signal is generated only for detectable power failures: those caused by faulty power
supplies, fans, and the like, or via a signal from an uninterruptable power supply
(UPS). powerwait differs from powerfail in that it requires init to wait for its process
to complete before going on to the next applicable inittab entry.

The scripts invoked by these entries are often given the name rc.powerfail. Their
purpose is to do whatever can be done to protect the system in the limited time avail-
able. Accordingly, they focus on syncing the disks to prevent data loss that might
occur if disk operations are still pending when the power does go off.

Linux provides a third action, powerokwait, that is invoked when power is restored
and tells init to wait for the corresponding process to complete before going on to
any additional entries.

When the System Won't Boot

As with system crashes, there can be many reasons why a system won’t boot. To
solve such problems, you first must figure out what the specific problem is. You’ll
need to have a detailed understanding of what a normal boot process looks like so
that you can pinpoint exactly where the failure is occurring. Having a hard copy of
normal boot messages is often very helpful. One thing to keep in mind is that boot
problems always result from some sort of change to the system; systems don’t just
stop working. You need to figure out what has changed. Of course, if you’ve just
made modifications to the system, they will be the prime suspects.

This section lists some of the most common causes of booting problems, along with
suggestions for what to do in each case.

Troubleshooting: Handling Crashes and Boot Failures | 175

Keeping the Trains on Time

If you can keep your head when all about you
Are losing theirs and blaming it on you...

—Kipling

System administration is often metaphorically described as keeping the trains on time,
referring to the pervasive attitude that its effects should basically be invisible—no one
ever pays any attention to the trains except when they’re late. To an even greater
extent, no one notices computer systems except when they’re down. And a few days of
moderate system instability (in English, frequent crashes) can make even the most
good-natured users frustrated and hostile.

The system administrator is the natural target when that happens. People like to
believe that there was always something that could have been done to prevent what-
ever problem has surfaced. Sometimes, that’s true, but not always or even usually. Sys-
tems sometimes develop problems despite your best preventative maintenance.

The best way to handle such situations involves two strategies. First, during the period
of panic and hysteria, do your job as well as you can and leave the sorting out of who
did or didn’t do what when for after things are stable again. The second part gets car-
ried out in periods of calm between crises. It involves keeping fairly detailed records of
system performance and status over a significant period of time; they are invaluable for
figuring out just how much significance to attach to any particular period of trouble
after the fact. When the system has been down for two days, no one will care that it has
been up 98% of the time it was supposed to be over the last six months, but it will mat-
ter once things have stabilized again.

It’s also a good idea to document how you spend your time caring for the system, divid-
ing the time into broad categories (system maintenance, user support, routine activi-
ties, system enhancement), as well as how much time you spend doing so, especially
during crises. You’ll be amazed by the bottom line.

Bad or flaky hardware

Check the obvious first. The first thing to do when there is a device failure is to see if
there is a simple problem that is easily fixed. Is the device plugged in and turned on?
Have any cables connecting it to the system come loose? Does it have the correct
SCSIID (if applicable)? Is the SCSI chain terminated? You get the idea.

Try humoring the device. Sometimes devices are just cranky and can be coaxed back
to life. For example, if a disk won’t come on line, try power-cycling it. If that doesn’t
work, try shutting off the power to the entire system. Then power up the devices one
by one, beginning with peripherals and ending with the CPU if possible, waiting for
each one to settle down before going on to the next device. Sometimes this approach
works on the second or third try even after failing on the first. When you decide
you've had enough, call field service. When you use this approach, once you’ve

176 | Chapter4: Startup and Shutdown

turned the power off, leave it off for a minute or so to allow the device’s internal
capacitors to discharge fully.

Device failures. If a critical hardware device fails, there is not much you can do
except call field service. Failures can occur suddenly, and the first reboot after the
system power has been off often stresses marginal devices to the point that they
finally fail.

Unreadable filesystems on working disks

You can distinguish this case from the previous one by the kind of error you get. Bad
hardware usually generates error messages about the hardware device itself, as a
whole. A bad filesystem tends to generate error messages later in the boot process,
when the operating system tries to access it.

Bad root filesystem. How you handle this problem depends on which filesystem is
damaged. If it is the root filesystem, then you may be able to recreate it from a boota-
ble backup/recovery tape (or image on the network) or by booting from alternate
media (such as the distribution tape, CD-ROM, or diskette from which the operat-
ing system was installed), remaking the filesystem and restoring its files from backup.
In the worst case, you’ll have to reinstall the operating system and then restore files
that you have changed from backup.

Restoring other filesystems. On the other hand, if the system can still boot to single-
user mode, things are not nearly so dire. Then you will definitely be able to remake
the filesystem and restore its files from backup.

Damage to non-filesystem areas of a disk

Damaged boot areas. Sometimes, it is the boot partition or even the boot blocks of
the root disk that are damaged. Some Unix versions provide utilities for restoring
these areas without having to reinitialize the entire disk. You’ll probably have to boot
from a bootable backup tape or other distribution media to use them if you discover
the problem only at boot time. Again, the worst-case scenario is having to reinstall
the operating system.

Corrupted partition tables. On PCs, it is possible to wipe out a disk’s partition tables
if a problem occurs while you are editing them with the fdisk disk partitioning util-
ity. If the power goes off or fdisk hangs, the disk’s partition information can be
incorrect or wiped out entirely. This problem can also happen on larger systems as
well, although its far less common to edit the partition information except at installa-
tion (and often not even then).

The most important thing to do in this case is not to panic. This happened to me on
a disk where I had three operating systems installed, and I really didn’t want to have
to reinstall all of them. The fix is actually quite easy: simply rerun fdisk and recreate
the partitions as they were before, and all will be well again. However, this does

Troubleshooting: Handling Crashes and Boot Failures | 177

mean that you need to have complete, detailed, and accessible (e.g., hardcopy)
records of how the partitions were set up.

Incompatible hardware

Problems with a new device. Sometimes, a system hangs when you try to reboot it
after adding new hardware. This can happen when the system does not support the
type of device that you’ve just added, either because the system needs to be reconfig-
ured to do so or because it simply does not support the device.

In the first case, you can reconfigure the system to accept the new hardware by build-
ing a new kernel or doing whatever else is appropriate on your system. However, if
you find out that the device is not supported by your operating system, you will
probably have to remove it to get the system to boot, after which you can contact the
relevant vendors for instructions and assistance. It usually saves time in the long run
to check compatibility before purchasing or installing new hardware.

Problems after an upgrade. Hardware incompatibility problems also crop up occa-
sionally after operating system upgrades on systems whose hardware has not
changed, due to withdrawn support for previously supported hardware or because of
undetected bugs in the new release. You can confirm that the new operating system
is the problem if the system still boots correctly from bootable backup tapes or
installation media from the previous release. If you encounter sudden device-related
problems after an OS upgrade, contacting the operating system vendor is usually the
best recourse.

Device conflicts. On PCs, devices communicate with the CPU using a variety of meth-
ods: interrupt signals, DMA channels, I/O addresses/ports, and memory addresses
(listed in decreasing order of conflict likelihood). All devices that operate at the same
time must have unique values for the items relevant to it (values are set via jumpers
or other mechanisms on the device or its controller or via a software utility provided
by the manufacturer for this purpose). Keeping detailed and accurate records of the
settings used by all of the devices on the system will make it easy to select appropri-
ate ones when adding a new device and to track down conflicts should they occur.

System configuration errors

Errors in configuration files. This type of problem is usually easy to recognize. More
than likely, you’ve just recently changed something, and the boot process dies at a
clearly identifiable point in the process. The solution is to boot to single-user mode
and then correct the erroneous configuration file or reinstall a saved, working ver-
sions of it.

Unbootable kernels. Sometimes, when you build a new kernel, it won’t boot. There
are at least two ways that this can occur: you may have made a mistake building or
configuring the kernel, or there may be bugs in the kernel that manifest themselves

178 | Chapter4: Startup and Shutdown

on your system. The latter happens occasionally when updating the kernel to the lat-
est release level on Linux systems and when you forget to run lilo after building a
new kernel.

In either case, the first thing to do is to reboot the system using a working, saved ker-
nel that you’ve kept for just this contingency. Once the system is up, you can track
down the problem with the new kernel. In the case of Linux kernels, if you’re con-
vinced that you haven’t made any mistakes, you can check the relevant newsgroups
to see if anyone else has seen the same problem. If no information is available, the
best thing to do is wait for the next patch level to become available (it doesn’t take
very long) and then try rebuilding the kernel again. Frequently, the problem will dis-
appear.

Errors in initialization files are a very common cause of boot problems. Usually, once
an error is encountered, the boot stops and leaves the system in single-user mode.
The incident described in Chapter 3 about the workstation that wouldn’t boot ended
up being a problem of this type. The user had been editing the initialization files on
his workstation, and he had an error in the first line of /etc/rc (I found out later). So
only the root disk got mounted. On this system, /usr was on a separate disk parti-
tion, and the commands stored in /bin used shared libraries stored under /usr. There
was no 1s, no cat, not even ed.

As T told you before, I remembered that echo could list filenames using the shell’s
internal wildcard expansion mechanism (and it didn’t need the shared library). 1
typed:

echo /etc/xc*

and found out there was an rc.dist file there. Although it was probably out of date, it
could get things going. I executed it manually:

. /etc/rc.dist

The moral of this story is, of course, test, test, test. Note once more that obsessive
prudence is your best hope every time.

Troubleshooting: Handling Crashes and Boot Failures | 179

CHAPTER 5
TCP/IP Networking

Since very few computers exist in isolation, managing networks is an inextricable
part of system administration. In fact, in some circles, the designations “system
administrator” and “network administrator” are more or less synonymous.

This chapter provides an overview of TCP/IP networking on Unix systems. It begins
with a general discussion of TCP/IP concepts and procedures and then covers basic
network configuration for client systems, including the variations and quirks of each
of our reference operating systems. There are other discussions of network-related
topics throughout the remainder of the book, including in-depth treatments of net-
work security issues in Chapter 7 and coverage of administering and configuring net-
work facilities and services in Chapter 8.

For a book-length discussion of TCP/IP networking, consult Craig Hunt’s excellent
book, TCP/IP Network Administration (O’Reilly & Associates).

Understanding TCP/IP Networking

The term “TCP/IP” is shorthand for a large collection of protocols and services that
are used for internetworking computer systems. In any given implementation, TCP/IP
encompasses operating system components, user and administrative commands and
utilities, configuration files, and device drivers, as well as the kernel and library sup-
port upon which they all depend. Many of the basic TCP/IP networking concepts are
not operating system—specific, so we’ll begin this chapter by considering TCP/IP net-
working in a general way.

Figure 5-1 depicts an example TCP/IP network including several kinds of network
connections. Assuming that these computers are in reasonably close physical prox-
imity to one another, this network would be classed as a local area network (LAN)."

* You may wonder whether this is one LAN or two LANS. In fact, the term LAN is not precisely defined, and
usage varies.

180

In contrast, a wide area network (WAN) consists of multiple LANSs, often widely sep-
arated geographically (see Figure 5-5, later in this chapter). Different physical net-
work types are also characteristic of the LAN/WAN distinction (e.g., Ethernet versus
frame relay).

Each computer system on the network is known as a host™ and is identified by both a
name and an IP address (more on these later). Most of the hosts in this example have
a permanent name and IP address. However, two of them, italy and chile, have their
IP address dynamically assigned when they first connect to the network (typically, at
boot time), using the DHCP facility (indicated by the highlighted final element in the
IP address).

10.1.1.1 Dialup 10.1.1.100
brazil ppP chile
Wireless 4 10.1.1.101
bridge italy

10.1.1.3
usa

: et duncan hamlet
s ; | 10121 E | 10.1.26 I
: : 10.1.1.5
T] england =
10.1.1.6
greece hal
10.1.2.5
10118 :
russia iago puck
10.1.2.3 10.1.2.4

FDDI

10.1.1.2
spain

E

10.1.1.4
canada

Ela

CRICIE

Figure 5-1. TCP/IP local area network

If I am logged in to, say, spain (either by direct connection or via a modem), spain is
said to be the local system, and brazil is a remote system with respect to processes
running on spain. A system that performs a task for a remote host is called a server;
the host for whom the task is performed is called the client. Thus, if I request a file
from brazil, that system is a server for the client spain during that transfer.

* The term node is sometimes used as a synonym for host in non-Unix networking lexicons.

Understanding TCP/IP Networking | 181

In our example, the network is divided into two subnets that communicate via the
host romeo. The systems named for countries are all connected to an Ethernet back-
bone, and those named for Shakespearean characters are connected via FDDI.

The host romeo serves as a gateway between the two subnets. It is part of both sub-
nets and passes data from one to the other. In this case, the gateway is a computer
with two network interfaces (adapters). However, it is probably more common to
use a special-purpose computer known as a router for this purpose.

The host named italy connects to the network using a wireless connection. The wire-
less bridge (colored black in the illustration) accepts wireless connections and con-
nects their originating computers to the hosts in the LAN by serving as the conduit
to the Ethernet.

Host chile connects to the network by dialing up a modem connected to brazil, using
the PPP facility. Unlike a regular dialup session, which simply starts a normal login
session on the server, dialup networking connections like this one allow full network
participation by the dialing-in host, as if that computer were directly connected to
the network. Once the initial connection is made, the fact that the connection actu-
ally goes through brazil will be transparent to users on chile.

Finally, the illustration shows Unix disk sharing via the Network File System (NFS)
facility. NFES allows TCP/IP hosts to share disks, with remote filesystems merged into
the local directory tree. Users on canada and greece potentially have access to four disk
drives, even though both systems only have three disks physically connected to them.

Media and Topologies

TCP/IP networks can run over a variety of physical media. Traditionally, most net-
works have used some sort of coaxial cable (thick or thin), twisted pair cable, or fiber
optic cable. Network adapters provide the interface between a computer and the
physical medium comprising the network connection. In hardware terms, they usu-
ally consist of a single board. Network adapters support one or more communica-
tion protocols, which specify how the computers use the physical medium to
exchange data. Most protocols are not media-specific.

For example, Ethernet communications can be carried over all four of the media
types mentioned previously, and FDDI networks can run over either fiber optic or
twisted pair cable. Such protocols specify networking characteristics, such as the
structure of the lowest level data unit, the way that data moves from host to host
across the physical medium, how multiple simultaneous network accesses are han-
dled, and the like. Currently, Ethernet accounts for more than 80% of all networks.

Figure 5-2 illustrates the various types of connectors you may see on Ethernet net-
work cables. These days, the one at the bottom is the most prevalent: unshielded
twisted pair (UTP) cable with an RJ-45 connector. The type of cable required for
100 Mb/sec communication is known as Category 5. Category SE cable is used for
1000 Mb/sec (Gigabit) Ethernet.

182 | Chapter5: TCP/IP Networking

Figure 5-2. Ethernet connectors

The other items in Figure 5-2 illustrate older cable types, which you may still run
into. The top item is the most common connector for RG-11 coax. The middle two
items are connectors used for RG-58 coax (Thinnet). The upper item in the pair is a
simple connector. The lower item illustrates the tap design used for a computer con-
nector. The connector is part of a T junction attached to the coaxial cable. In the
illustration, there is a terminator on the right side of the tap, but a continuation of
the cable could also be placed there.

Table 5-1 summarizes some useful characteristics of the various Ethernet media. Note
that the maximum cable length for UTP at any speed is 100 meters. Longer distances
require fiber optic cable, of which there are two main varieties. Single-mode fiber
equipment is technically more complex than multimode fiber because it uses a laser
to force the light traveling within the cable to a single frequency (“mode”), making
the optical system and the connectors much more expensive to produce. However,

Understanding TCP/IP Networking | 183

single-mode fiber also works reliably for cable lengths measured in kilometers instead
of just meters.

Table 5-1. Popular media characteristics

Media Ethernet type Speed Maximum length
RG-11 coax Thicknet (10Base5) 10 Mb/sec 500m

RG-58 coax Thinnet (10Base2) 10 Mb/sec 180 m

Category 3 UTP 10BaseT 10 Mb/sec 100m

Category 5 UTP 100BaseTX 100 Mb/sec 100 m
Single-mode fiber 100BaseFX 100 Mb/sec 20 km

Category SEUTP Gigabit (1000BaseT) 1Gh/sec 100 m
Single-mode fiber 1000BaseLX 1 Gh/sec 3km

Multimode fiber 1000BaseSX 1Gb/sec 440m

Wireless 802.11b2 11 Mb/sec 100 m

2 Not an Ethernet medium.

All of the hosts within a given network segment—a portion of the network separated
from the rest by switches or routers—use the same type of Ethernet. Connecting seg-
ments with different characteristics requires special hardware that can use both types
and translate between them.

Identifying network adapters

All network adapters have a Media Access Control (MAC) address, which is a numeri-
cal identifier that is globally unique to that individual adapter. For Ethernet devices,
MAC addresses are 48-bit values expressed as twelve hexadecimal digits, usually
divided into colon-separated pairs: for example, 00:00:8:23:31:al. There are thus
over 280 trillion distinct MAC addresses (which ought to be enough, even for us).

MAC addresses were formerly referred to as Ethernet addresses and are occasionally
called hardware addresses. The first 24 bits of the MAC address is a hardware ven-
dor—specific prefix called an Organizationally Unique Identifiier (OUI). Knowing the
OUI can be helpful if you ever have to figure out which device corresponds to a spe-
cific MAC address. OUIs are assigned by the IEEE, which maintains the master data-
base of OUI-to-vendor mappings.

You can find the MAC address for an adapter on a Unix system using these
commands:”

* The term network interface is commonly used as a synonym for network adapter (as in NIC). In the Unix
world, an interface is really a logical entity consisting of an adapter plus its operating system level configu-
ration. On AIX systems, adapters and interfaces have different names (e.g., ent0 and en0, respectively).

184 | Chapter5: TCP/IP Networking

AIX entstat adapter (for Ethernet adapters)

FreeBSD ifconfig interface

HP-UX lanscan

Linux ifconfig interface

Solaris ifconfig interface (must be run as root)
Tru64 ifconfig -v interface

There is also a special network interface present on every computer, known as the
loopback interface. There is no physical network adapter corresponding to the loop-
back interface, but even so, it is sometimes called the loopback device. The loopback
interface allows a computer to send network packets to itself: implemented in soft-
ware, it intercepts the packets and redirects them back to the local host, as if they
had arrived from an external source.

Hosts within a local area network can be connected in a variety of arrangements
known as topologies. For example, the 10.1.1 subnet in Figure 5-1 uses a bus topol-
ogy in which each host taps into a backbone, which is standard for coax Ethernet
networks. Often, the backbone is not a cable at all but merely a junction point where
connections from the various hosts on the network converge, commonly known as a
hub or a switch, depending on its capabilities. The 10.1.2 subnet uses a ring topology.

One of the fundamental characteristics of Ethernet is also illustrated in the diagram.
Each host on an Ethernet is logically connected to every other host: to communicate
with any other host, a system sends a message out on the Ethernet, where it arrives at
the target host directly. By contrast, for the other network, messages between dun-
can and puck must be handled by two other hosts first. At typical network speeds,
however, this difference is not significant.

Networking protocols may include a required topology as part of their specification,
as in the 10.1.2 subnet in Figure 5-1. For example, full FDDI networks are com-
posed of two counter-rotating rings (two duplicate rings through which data flows in
opposite directions), an arrangement designed to enable a network to easily bypass
breaks in one ring and to scale well as network load increases.

A w
< Although T've used FDDI quite a bit here for illustration purposes,
.‘s‘ general-purpose FDDI networks are pretty rare. FDDI is currently
Y ;‘ used in storage area networks (SANSs) to interconnect the storage

media (disks) and the one or two hosts to which they are attached.

The Ethernet protocol is based on a communication strategy known as Carrier Sense
Multiple Access/Collision Detection (CSMA/CD). On an Ethernet, a device that
wants to transmit a message is able to determine if any other device is already using
the medium (carrier sense). In other words, a device waits until there is a lull in activ-
ity before trying to “talk.” If two or more devices both start to talk at the same time,
both of them stop (collision detection), and they each wait a semi-random amount of

Understanding TCP/IP Networking | 185

time before trying again in the hopes of avoiding a second collision. “Multiple
access” refers to the fact that any host is able to use the communication medium.

This is a lightweight protocol that works very well for most common networking
uses. Its one disadvantage is that it does not perform as well under heavy loads as do
some other topologies (e.g., token rings). In fact, under heavy network loads, the
overhead caused by frequent collisions and the resulting wait times can become a sig-
nificant factor in actual network throughput (although this is less true of current
UTP-based 100 Mb networks than it is of older, coax-based 10 Mb networks).

Protocols and Layers

Network communication is organized as a series of layers. With the exception of the
layer referring to the physical transmission medium, these layers are logical or con-
ceptual rather than literal or physical, and they are implemented in the networking
software running on computers and other network devices. Every network message
moves down through the layers on its originating system, travels across the physical
medium, and then moves up through the same stack of layers on the destination sys-
tem. In addition, as it passes through various network devices, it may travel partway
up and down the stack (as we’ll see).

No discussion of any network architecture is complete without at least a brief men-
tion of the Open Systems Interconnection (OSI) Reference Model. This description
of networking has seldom been the basis of actual network implementations, but it
can be quite helpful in clearly identifying the distinct functions necessary for net-
work communications to occur. Things are not really divided up according to its
specification in real networks, because many of the distinct communication phases
and functions that it identifies are handled equally well or more efficiently by a sin-
gle network layer (with correspondingly lower overhead). The OSI Reference Model
is probably best thought of as an after-the-fact, generalized, logical description of
network communications.

Figure 5-3 lists the layers in the OSI Reference Model and those actually used in
TCP/IP implementations, including the most important protocols defined for each
layer.

When a network operation is initiated by a user command or program, it travels
down the protocol stack on the local host (via software), across the physical medium
to the destination host, and then back up the protocol stack on the remote host to
the proper recipient process. For example, a network transmission originating from a
user program like rcp moves down the stack on the local system from the Applica-
tion layer to Network Access layer, travels across the wire to the destination system,
and then moves up the stack from the Network Access layer to the Application layer,
finally communicating with a daemon process in the latter. Replies to this message
travel the same route in reverse.

186 | Chapter5: TCP/IP Networking

05l TCP/IP
Application layer Application layer
Specifies how application programs interface to | Handles everything else. TCP/IP network services
the network and provides services to them. (generally implemented as daemons) and end
user applications have to perform the jobs of the
. 0S| Presentation Layer and part of its
Presentation layer Session Layer.
Specifies data representation to applications.
The many protocols include NFS, DNS, FTP, Telnet,
SSH,HTTP and so on.
Session layer
(reates, manages and terminates Transport layer
network connections. Manages all aspects of data delivery, including
session initiation, error control and sequence
Transport layer checking.
Handles error control and sequence checking
for data moving across the network. TCP and UDP protocols.
Internet layer
Network layer Responsible for data addressing, transmission,
Responsible for data addressing, routingand | fouting, and packet fragmentation
communications flow control. and reassembly.
IP and ICMP protocols.
Data link layer Network access layer
Defines access methods for the physical medium | Specifies procedures for transmitting data across
via network adapters and their associated the network, including how to access the
device drivers. physical medium.
Physical layer .) Ethernet and ARP protocols (although not
Specifies the physical medium’s operating actually part of TCP/IP).
characteristics.

Figure 5-3. Idealized and real network protocol stacks

Each network layer is equipped to handle data in particular predefined units. The
traditional names of these units for the two main transport protocols are listed in
Table 5-2.

Table 5-2. Traditionale network data unit names

Layer TCP Protocol UDP Protocol
Application stream message
Transport segment packet
Internet datagram

Network Access frame

a To complicate things even further, current usage seems to be moving
toward calling the UDP transport layer unita “datagram” and the IP layer
data unit a “packet.”

The term packet is also used generically to refer to any network transmission (includ-
ing in this book).

Understanding TCP/IP Networking | 187

On the originating end, each layer adds a header to the data it receives from the layer
above it until the data reaches the bottom layer for transmission; this process is
called encapsulation. Similarly, on the receiving end, each layer strips off its own
header before passing the data to the next higher layer (combining multiple units
together if appropriate), so that what is finally received is the same as what was origi-
nally sent.

In addition, network data may in some cases be divided into parts that are transmit-
ted separately, a process known as fragmentation. For example, different network
hardware and media types have somewhat different characteristics that can give rise
to different values of the maximum transmission unit (MTU) network parameter: the
largest data unit that can be transmitted across a network segment. As it travels, if a
packet encounters a network segment that has a lower MTU than the one in use
where it originated, it is fragmented for transmission and reassembled at the other
end. A typical MTU for an Ethernet segment is 1500 bytes.

A more typical example occurs when a higher-level protocol passes more data than
will fit into a lower-level protocol packet. The data in a UDP packet can easily be
larger than the largest IP datagram, so the data would need to be divided into multi-
ple datagrams for transmission.

These are some of the most important lower-level protocols in the TCP/IP family:

ARP
The Address Resolution Protocol specifies how to determine the corresponding
MAC address for an IP address. It operates at the Network Access layer. While
this protocol is required by TCP/IP networking, it is not actually part of the
TCP/IP suite.

IP
The Internet Protocol manages low-level data transmission, routing, and frag-
mentation/reassembly. It operates at the Internet layer.

TCP
The Transmission Control Protocol provides reliable network communication
sessions between applications, including flow control and error detection and
correction. It operates at the Transport layer.

UDP
The User Datagram Protocol provides “connectionless” communication between
applications. In contrast to TCP, data transmitted using UDP is not delivery-ver-
ified; if expected data fails to arrive, the application simply requests it again.
UDP operates at the Transport layer.

We'll consider other protocols when we look at network services in Chapter 8.

188 | Chapter5: TCP/IP Networking

Ports, Services, and Daemons

Network operations are performed by a variety of network services, consisting of the
software and other facilities needed to perform a specific type of network task. For
example, the ftp service performs file transfer operations using the FTP protocol; the
software program that does the actual work is the FTP daemon (whose actual name
varies).

A service is defined by the combination of a transport protocol—TCP or UDP—and
a port: a logical network connection endpoint identified by a number. The TCP and
UDP port numbering schemes are part of the definition of these protocols.

v
NN

Port numbers need be unique only within a given transport protocol.
TCP and UDP each define a unique set of ports, even though they use
1+ the same port numbers. However, recent practice is to assign both the
UDP and TCP ports to standard services.

Various configuration files in the /etc directory indicate the standard mappings
between port numbers and TCP/IP services:

* Jetc/protocols lists the protocol numbers assigned to the various transport proto-
cols in the TCP/IP family. Although this list is large, most systems need to use
only the TCP, UDP, and ICMP protocols.

* Jetc/services lists the port numbers assigned to the various TCP and UDP services.

Individual TCP/IP connections are defined by a pair of host-port combinations, each
known as a socket, which is unique during the connection’s lifetime: source IP
address, source port, destination IP address, destination port (as seen from the cli-
ent’s point of view). For example, when a user first connects to a remote host using
ssh, it contacts that computer on the standard port 22 (such ports are commonly
referred to as well-known ports). The process is assigned a random (dynamically
allocated or ephemeral) port which is used as the source (outgoing) port by the cli-
ent. Multiple simultaneous ssh sessions on the destination system are possible using
this scheme since each one will have a different source port/source IP address combi-
nation and thus a unique socket.

For example, the first ssh connection might use port 2222 as the source port. The
next ssh connection might use port 3333. In this way, the messages intended for the
two sessions can be easily distinguished, even if they came from the same user on the
same remote system.

Most standard services usually use ports below 1024, and such ports are restricted to
root (at least on Unix systems). Table 5-3 lists some common services and their asso-
ciated ports. In most cases, both the TCP and UDP ports are assigned to the service;
for the few exceptions, the protocol follows the port number (as in /etc/services
entries). The shaded portion of the table contains port numbers for commonly used
services from non-Unix operating systems.

Understanding TCP/IP Networking | 189

Table 5-3. Important services and their associated ports

Service Port(s) Service Port(s)
FTP 21 (also 20), NetBIOS 137-139
990 (secure; also 989) SAMBA
SSH 22 SRC (AIX) 200/udp
TELNET 23,992 (secure) Remote Exec 512/tep
SMTP 25, 465 (secure) Remote Login 513/tep
DNS 53 Remote Shell 514/tcp
DHCP (BOOTP) 67 (server), 68 (client) SYSLOG 514/udp, 601 (reliable)
TFTP 69 LPD 515
FINGER 79 ROUTE 520
HTTP 80, 443 (secure) NFS 2049, 4045/udp (Solaris)
Kerberos 88,749-50 RSYNC 873
POP-2 109 m 6000-19, 6063, 7100 (fonts)
POP-3 110, 995 (secure) AppleTalk 201-208
RPC m IPX 213
NTP 123 SMB 445
IMAP 143 (v2), 220 (v3), QuickTime 458
993 (v4 secure)
SNMP 161,162 (traps) Active Directory 3268, 3269 (secure)
Global Catalog
LDAP 389, 636 (secure) America Online 5190-5193

Administrative Commands

Unix operating systems include a number of generic TCP/IP user commands that
may be used to display various network-related information, including the following:

hostname
Display the name of the local system
ifconfig
Display information about network interfaces (also configure them)
ping
Perform a simple network connectivity test
arp
Display or modify the IP-to-MAC address-translation tables

netstat
Display various network usage statistics

route
Display or modify the static routing tables

190 | Chapter5: TCP/IP Networking

traceroute
Determine the route to a specified target host

nslookup
Determine IP address-to-hostname and other translations produced by the
Domain Name Service

We'll see examples of many of these commands later in this chapter.

A Sample TCP/IP Conversation

All of these concepts will come together when we look at a sample TCP/IP conversa-
tion. We'll consider what must happen in order for the following command to be
successfully executed:

hamlet> finger chavez@greece

Login name: chavez In real life: Rachel Chavez
Directory: /home/chem/new/chavez Shell: /bin/csh

On since Apr 28 08:35:42 on pts/3 from puck

No Plan.

This finger command causes a network connection to be formed between the hosts
hamlet and greece, and more specifically between the finger client process running
on hamlet and the fingerd daemon on greece (which will be started by greece’s inetd
process).

The finger service uses the TCP transport protocol (number 6) and port 79. TCP
connections are always created via a three-step handshaking process. Here is a dump
of the packet corresponding to Step 1, in which the most important fields have been

highlighted:”

ETH: ====(60 bytes recd on en0)====Sun Apr 28 13:38:27 1996
ETH: [32:21:a6:el:7f:c1 18:33:e4:2a:43:2d] type 800 (IP)
IP: < SRC = 192.168.2.6 (hamlet)
IP: < DST = 192.168.1.6 (greece)

IP: 1ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=56107, ip_off=0
IP: ip_ttl=60, ip_sum=f84, ip p = 6 (TCP)

TCP: <source port=1031, destination port=79(finger)>

TCP: th_seq=d83ab201, th_ack=0

TCP: th_off=6, flags<SYN>

TCP: th win=16384, th sum=3577, th_urp=0 data in ASCII
data: 00000000 020405b4 [.... |

Each line of this packet display is labeled with the protocol that created it: ETH lines
were created at the Ethernet level (Network Access layer), IP lines by the IP protocol
(Internet layer), and TCP lines by the TCP protocol (Transport layer).

Lines labeled as data are used by whatever layer is sending data in the packet. The
data is dumped in hex and ASCII (the latter at the extreme right between the two

*

Slightly modified from that created with AIX’s iptrace and ipreport utilities.

Understanding TCP/IP Networking | 191

vertical bars). In this case, the data consists of TCP options (negotiating a maximum
segment length of 1460 bytes) and not finger-related data.

The initial ETH line is actually created by the packet dumping software, and it lists
the date and time of the message. The actual data from the packet begins with the
second ETH line, which lists the MAC addresses of the two hosts.

The IP lines indicate that the packet comes from the TCP transport protocol (ip_p),
as well as its source and destination hosts. The TCP header indicates the destination
port, allowing the network service to be identified. The th_seq field in this header
indicates the sequence number for this packet. The TCP protocol requires that all
packets be acknowledged by the receiving host (although not necessarily individu-
ally). The SYN flag (for synchronize) by itself indicates an attempt to create a new
network connection, and in this case, the sequence number is an initial sequence
number for the conversation. It will be incremented by one for each byte of data
transmitted.

Here are the next two packets in the sequence, which complete the handshake:

ETH: ====(60 bytes trans on en0)====Sun Apr 28 13:38:27 1996
ETH: [18:33:e4:2a:43:2d -> 32:21:a6:el:7f:cl] type 800 (IP)
IP: < SRC = 192.168.1.6 > (greece)

IP: < DST 192.168.2.6 > (hamlet)

IP: 1ip v=4, ip hl=20, ip tos=0, ip len=44, ip id=54298, ip off=0
IP: ip_ttl=60, ip_sum=1695, ip_p = 6 (TCP)

TCP: <source port=79(finger), destination port=1031 >

TCP: th_seq=d71b9601, th_ack=d83ab202

TCP: th_off=6, flags<SYN | ACK>

TCP: th win=16060, th sum=c98c, th_urp=0

data: 00000000 020405b4 [.... |

ETH: ====(60 bytes recd on en0)====Sun Apr 28 13:38:27 1996
ETH: [32:21:a6:e1:7f:c1 -> 18:33:e4:2a:43:2d] type 800 (IP)
IP: < SRC = 192.168.2.6 > (hamlet)

IP: < DST = 192.168.1.6 > (greece)

IP: 1ip v=4, ip hl=20, ip tos=0, ip len=40, ip id=56108, ip off=0

IP: ip_ttl=60, ip_sum=87, ip p = 6 (TCP)

TCP: <source port=1031, destination port=79(finger) >

TCP: th_seq=d83ab202, th_ack=d71b9602

TCP: th_off=5, flags<ACK>

TCP: th win=16060, th sum=e149, th urp=0
In the packet with sequence number d71b9601, sent from greece back to hamlet, both
the SYN and ACK (acknowledge) flags are set. The ACK is the acknowledgement of
the previous packet, and the SYN establishes communication from greece to hamlet.
The contents of the th_ack field indicate the last byte of data that has been received
(one byte so far). The th_seq field indicates greece’s starting sequence number. The
next packet simply acknowledges greece’s SYN, and the connection is complete.

Now we are ready to get some work done (packets are abbreviated from here on):

IP: < SRC = 192.168.2.6 > (hamlet)
IP: < DST = 192.168.1.6 > (greece)

192 | Chapter5: TCP/IP Networking

TCP: <source port=1031, destination port=79(finger) >
TCP: th_seg=d83ab202, th_ack=d71b9602

TCP: th_off=5, flags<PUSH | ACK>

TCP: th _win=16060, th sum=4c86, th_urp=0

data: 00000000 61656(65 656E3A29 | chavez

This packet sends the data “chavez” to fingerd on greece (the final characters don’t
print); user data is indicated by the presence of the PUSH flag. In this case, the data
is from the Application layer. The packet also acknowledges the previous packet
from greece. This data is passed up the various network layers, to be delivered ulti-
mately to fingerd.

greece acknowledges this packet and eventually sends fingerd’s response:

IP: < SRC = 192.168.1.6 > (greece)

IP: < DST = 192.168.2.6 > (hamlet)

TCP: <source port=79(finger), destination port=1031 >

TCP: th_seq=d71b9602, th_ack=d83ab20c

TCP: th_off=5, flags<PUSH | ACK>

TCP: th_win=16060, th_sum=e29b, th urp=0

data: |Login name: chavez ..In real life: Rachel Chavez..Director|
data: |y: /home/chem/new/chavez ..Shell:/bin/csh. On since Apr 28|
data: | 08:35:42 on pts/3 from puck..No Plan...

The output from the finger command constitutes the data in this packet (the hex
version is omitted). The packet also acknowledges data received from hamlet (10
bytes since the previous packet).

All that remains is to close down the connection:

IP: < SRC = 192.168.1.6 > (greece)
IP: < DST = 192.168.2.6 > (hamlet)
TCP: th_off=5, flags<FIN | ACK>

IP: < SRC = 192.168.2.6 > (hamlet)
IP: < DST = 192.168.1.6 > (greece)
TCP: th_off=5, flags<FIN | ACK>

IP: < SRC = 192.168.1.6 > (greece)
IP: < DST = 192.168.2.6 > (hamlet)

TCP: th_off=5, flags<ACK>

The FIN flag indicates that a connection is to be terminated. greece indicates that it is
finished first. hamlet sends its own FIN (also acknowledging that packet), which
greece acknowledges.

Names and Addresses

Every system on a network has a hostname. When fully qualified, this name must be
unique within the relevant naming space. Hostnames let users refer to any computer
on the network by using a short, easily remembered name rather than the host’s net-
work address.

Understanding TCP/IP Networking | 193

Each system on a TCP/IP network also has an IP address that is unique for all hosts
on the network. Systems with multiple network adapters usually have a separate IP
address for each adapter.

When an actual network operation occurs, the hostnames of the systems involved
are used to determine their numerical IP addresses, either by looking them up in a
table or requesting translation from a server designated for this task.

A traditional Internet network address is a sequence of 4 bytes™ (32 bits). Network
addresses are usually written in the form a.b.c.d, where a, b, ¢, and d are all decimal
integers: e.g. 192.168.10.23. Each component is 8 bits long and thus runs from 0 to
255. The address is split into two parts: the first part—highest-order bits—identifies
the local network, specifically those hosts that may be connected directly (without
the need for any routing information. The second part of the IP address (i.e., all
remaining bits) identifies the host within the network.

The size of the two parts vary. The first byte of the address (a) determines the
address type (called its class), and hence the number of bytes allocated to each part.
Table 5-4 gives more specific details about how this scheme traditionally works.

Table 5-4. Traditional Internet address types

Maximum Maximum
Initial Bits Range of a Address class Network part Host part networks hosts/net
0... 1-126 Class A a b.cd 126 16,777,214
10... 128-191 Class B a.b cd 16,384 65,534
10... 192-223 Class C a.b.c d 2,097,152 254
1110... 224-239 Class D Multicast addresses
1. 240-254 Class E Reserved for research

Class A addresses provide millions of hosts per network, since 24 bits can be used for
host addresses: 1 through 224-1 (0 is not allowed as a host address). There are, how-
ever, only a total of 126 of them (these network numbers were typically assigned to
major national networks and very large organizations). At the other extreme, Class C
addresses traditionally support only 254 hosts per network (since only 8 bits are used
for the host address), but there are over two million of them. Class B addresses fall in
between these two types.

Multicast addresses are part of the reserved range of addresses (a=224-254). They
are used to address a group of hosts as a single entity and are designed for applica-
tions such as video conferencing. They are assigned on a temporary basis. Normal IP
addresses are sometimes referred to as unicast addresses in contrast to multicast
addresses.

* More precisely, octets (since standardized bytes are more recent than IP addresses).

194 | Chapter5: TCP/IP Networking

Some values of the various network address bytes have special meanings:

* The address with a host part of 0 refers to the network itself, as in 192.168.10.0.
The 0.0.0.0 network is sometimes used to refer to the local network.

* The 127.0.0.1 address is always assigned to the loopback interface. The remain-
der of the 127.0 network is reserved.

* A host part of all ones defines the broadcast address for the network: the destina-
tion address used when a computer wants to send a query to every host on the
local network. For example, the broadcast address for the network containing
the Class C address 192.168.10.23 is 192.168.10.255, and the broadcast address
for the network containing the Class A address 10.1.12.43 is 10.255.255.255.

Network addresses for networks connected to the Internet must be obtained from
some official source. These days, network addresses for new sites are obtained from
one of the ISPs that is authorized to assign them. Every host that will communicate
directly with a host on the Internet must have an officially assigned IP address.

Networks that are not directly connected to the Internet also use network addresses
that obey the Internet numbering conventions. The following IP address blocks are
reserved for private networks:”

* 10.0.0.0 through 10.255.255.255
* 172.16.0.0 through 172.31.255.255
* 192.168.0.0 through 192.168.255.255

Sites that connect to the Internet via an ISP or other dedicated gateway frequently
use Network Address Translation (NAT) to map internal IP addresses to their exter-
nal (“real”) TP address space. NAT can be performed by a computer and many rout-
ers. It is often used to map a large number of private addresses to a small number of
real IP addresses, often just one.

NAT processes all Internet-bound packets, transforming their original source
addresses into the address appropriate for use on the Internet. This may be done to
translate private addresses to the organization’s actual assigned IP address space or
to conflate/hide the internal network structure from the outside world. It also keeps
track of this mapping data so that it can perform the reverse translation process for
incoming packets (responses).

R
s

So far, we’ve assumed that IP addresses are permanently assigned to
each host within a network, but this need not be true for all hosts
4+ within a network. The Dynamic Host Configuration Protocol (DHCP)
" is a facility that allows IP addresses to be assigned to systems dynami-
cally when they require network access. It is discussed later in this
chapter.

* Traditionally, many sites that were not on the Internet used IP addresses of the form 192.0.x.y or 193.0.x.y.
Some probably still do.

Understanding TCP/IP Networking | 195

Subnets and Supernets

A site can divide its block of addresses—also known as its address space—in any way
that makes sense. For example, consider the block of addresses that begin with 192.
168. Traditionally, this is a Class B address and so would be interpreted as 256 net-
works of 254 hosts each: the networks are 192.168.0.0, 192.168.1.0, 192.168.2.0, ...,
192.168.255.0, and the hosts are numbered 1 through 254 for each network. How-
ever, this is not the only way of dividing the 16 site-specific bits. In this case, the the-
oretical possibilities range from one network with over two million hosts (all 16 bits
are used for the host part) to 16,384 networks of 2 hosts each (only the lowest two
bits are used for the host part, and the remaining 14 bits are used for the subnet).

The number of hosts per subnet is always 27—2 where # is the number
of bits in the host part of the IP address. Why —2? We must exclude
the invalid host addresses consisting of all zeros and all ones.

A subnet mask specifies how the 32-bit IP address is divided between the network
part (including the subnet) and the host part, and all computers participating in a
TCP/IP network have one assigned to them. Computers and other devices on the
same subnet always use the same subnet mask.

The subnet mask is a 32-bit value constructed by placing 1 in each bit location for
the network portion of the IP address and 0 in all the bit locations for the host part of
the address. This results in a string of ones followed by a string of zeros. For exam-
ple, a traditional Class A IP address would use a subnet mask of
11111111000000000000000000000000, conventionally written as 4 period-sepa-
rated decimal integers: 255.0.0.0. Similarly, traditional Class B and Class C addresses
would use a subnet mask of 255.255.0.0 and 255.255.255.0, respectively.

The subnet mask can also be used to further subdivide one network ID among sev-
eral local networks. For example, if you use a subnet mask of 255.255.255.192 for
the network 192.168.10.0, you are making the highest 2 bits of the final address byte
part of the network address (the final byte is 11000000), thereby subdividing the
192.168.10 network into 4 subnets, each of which can have up to 62 hosts on it
(since the host ID is coded into the remaining 6 bits). Contrast this with the normal
interpretation, which yields 256 networks of 254 hosts each.
A w

AN
.

In contrast to host addresses, subnet addresses of all ones or all zeros

LA are | 1

are legal.

©wh a 2
S

You can also use fewer than the standard number of bits for the network part of the
address (this strategy is known as supernetting). For example, for the network
address 192.168.0.0, you could use only 4 bits for the subnet part rather than the
usual 8, yielding 16 subnets of up to 1022 hosts each.

196 | Chapter5: TCP/IP Networking

Memorizing all the powers of 2 from 20 to 216 makes all of this much
easier.

Classless Inter-Domain Routing (CIDR, usually pronounced like apple cider) address-
ing is the more common way of expressing the subnet mask these days.” CIDR
appends a suffix indicating the number of bits in the host part to the IP address. For
example, 192.168.10.212/24 designates a subnet mask of 255.255.255.0, and the /27
suffix specifies a subnet mask of 255.255.255.224.

Table 5-5 shows how this works in detail. In the first example, we divide the 192.
168.10 network into 8 subnets of 30 hosts each. In the second example, we organize
a block of 256 traditional Class C addresses into 64 subnets of 1022 hosts each with
supernetting by assigning the upper 6 bits of the third IP address byte to the network
address, thereby leaving 10 bits for the host part.

Table 5-5. Subnetting and supernetting examples

Subnet Bits Subnet Addressa Broadcast Addressb Host Addresses
Subnetting: subnets of 192.168.10.0/27 (subnet mask: 255.255.255.224)

000 192.168.10.0 192.168.10.31 192.168.10.1-30
001 192.168.10.32 192.168.10.63 192.168.10.33-62
010 192.168.10.64 192.168.10.95 192.168.10.65-94
011 192.168.10.96 192.168.10.127 192.168.10.97-126
100 192.168.10.128 192.168.10.159 192.168.10.129-158
101 192.168.10.160 192.168.10.191 192.168.10.161-190
110 192.168.10.192 192.168.10.223 192.168.10.193-222
m 192.168.10.224 192.168.10.255 192.168.10.225-254
Supernetting: subnets of 192.168.0.0/22 (subnet mask: 255.255.248.0)

000000 192.168.0.0 192.168.3.255 192.168.0.1-3.254
000001 192.168.4.0 192.168.7.255 192.168.4.1-7.254
000010 192.168.8.0 192.168.11.255 192.168.8.1-11.254
111101 192.168.244.0 192.168.247.255 192.168.244.1-247.254

*

CIDR’s primary purpose is not to make notation more compact but to decrease the number of entries in the
routing tables at major Internet hubs. CIDR minimizes the number of routing table entries required per site
(often to just one) by allowing sites to be assigned a block of contiguous IP addresses that can be addresses
via a single CIDR address. While CIDR was developed to address this specific problem arising from the
uncontrolled growth of the Internet, it has also helped to stave off feared address shortages (for example, the
entire traditional Class C address space supports only around 530 million hosts). For more information on
the current status of available Internet address space consumption, consult the report at http://www.caida.
orgloutreach/resources/learn/ipv4space/.

Understanding TCP/IP Networking | 197

Table 5-5. Subnetting and supernetting examples (continued)

Subnet Bits Subnet Addressa Broadcast Addressb Host Addresses
11110 192.168.248.0 192.168.251.255 192.168.248.1-251.254
min 192.168.252.0 192.168.255.255 192.168-252.1-255.254

a Host part=all 0's
b Host part=all 1's

Note that some of the host addresses in the second part of Table 5-5 have 255 as
their last byte. These are legal host addresses with the specified subnet mask since
the entire host part is not all ones (write one of these addresses, say 192.168.0.255/
22, out in binary if you’re not sure). With CIDR addresses, there is nothing special
about the byte boundaries, and classes really are irrelevant.

Table 5-6 lists commonly used CIDR suffixes and their associated subnet masks.

Table 5-6. CIDR suffixes and subnet masks

Suffix Subnet mask Maximum hosts
122 255.255.252.0 1022

123 255.255.254.0 510

124 255.255.255.0 254

25 255.255.255.128 126

126 255.255.255.192 62

127 255.255.255.224 30

/28 255.255.255.240 14

129 255.255.255.248 6

30 255.255.255.252 2

If you’d rather avoid the math, there are tools that can help with these calculations.
Figure 5-4 illustrates the output from a Perl script named ipcalc.pl (this one is from
http://jodies.delipcalc/, written by krischan@jodies.de; there are several versions of the
script by different authors”). It takes a CIDR address as its input and prints a variety
of useful information about the local network that can be derived from it. The Wild-
card field displays the inverted netmask (used by Cisco).

Introducing IPv6 host addresses

At some point in the future, Internet addresses may switch over to the next-genera-
tion design, IPv6 (the current one is IPv4). IPv6 was designed in the 1990s to address
the perceived future shortage of Internet addresses (which fortunately has not yet
arrived). In this brief subsection, we’ll take a look at the major features of IPv6
addresses. All the vendors we are considering support IPv6 addresses.

* For a Palm Pilot version, see http://www.ajw.com (written by Alan Weiner).

198 | Chapter5: TCP/IP Networking

% ipcalc.pl 192.168.14.283-22

Address:
Netmask:
Hildcard:

Network:

HostMin:
HostMax:
Hosts/Net:

dpcalc.pl 192.168.14.2083/27

Address:
Netmask:
Hjldcard:

Network:

Broadcast:

HostMin: | - E 1
HostMax: 1 o | 118 11118
Hosts/Net: (Private Internet RFC 1918>

3 |

Figure 5-4. Output from the ipcalc.pl Script

IPv6 addresses are 128 bits long, expressed as a series of 8 colon-separated 16-bit val-
ues written in hexadecimal, e.g., 1111:2222:3333:4444:5555:6666:7777:8888. Each
value runs from 0x0 to OxFFFF (from O to 65535 in decimal). The network host
boundary is fixed at 64 bits, and there is some additional internal structure defined,
described in Table 5-7.

Table 5-7. IPv6 host address interpretation

Bits Name Purpose (Example use)

1-3 Format Prefix (FP) Address type (unicast, multicast)

4-16 Top-level aggregation ID (TLA D) Highest-level organization (major upstream ISP)

17-24 Reserved

25-48 Next-level aggregation ID (NLA ID) Regional organization (local ISP)

49-64 Site-level aggregation ID (SLA ID) Site-specific subdivision (subnet)

65-128 Interface ID Specific device address: a transformation of the MAC address

As the table indicates, sites get 16 bits for subnetting. The entire initial prefix of 48
bits is provided by the ISP. One advantage of IPv6 is that host addresses may be
automatically derived from the device’s MAC address, so that aspect of host configu-
ration can be eliminated (optionally).

IPv6 allows for backward compatibility with IPv4 by assigning addresses of the form
0:0:0:FFFF:a.b.c.d to IPv4-only devices, where a.b.c.d is the IPv4 address. This is
generally written as ::FFFF:a.b.c.d, where :: replaces a contiguous block of zeros (any
length) in the IPv6 address (but the double colon may be used only once). Finally,
the loopback address is always defined as ::1, and the broadcast address is FF02::1.

Understanding TCP/IP Networking | 199

Connecting Network Segments

At the physical level, individual networks can be organized, subdivided and joined in
a variety of ways, as illustrated in Figure 5-5 (constructed to include many different
connectivity examples and not as a general model for network design).

é)

Subnet A

~
Building 2 LAN
J
Slow, expensive
links
~
Chicago office LAN)

Subnet C

Building 1 LAN
\

Figure 5-5. A wide area network and its component LANs

The Chicago office LAN in the figure is geographically separated from the organiza-
tion’s main site in San Francisco—the Building 1 and Building 2 LANs—and it is
connected to it via relatively slow links. The two LANs at the main site are con-
nected via high-speed fiber optic cable, so that site’s entire network runs at the same
speed, despite the separation of the two buildings. Collectively, these three LANs
comprise the WAN for this organization.

The Building 1 LAN illustrates several hardware networking devices. All the hosts in
Subnet A are connected to devices called hubs. Traditional hubs serve as an Ethernet
backbone, linking all of the connected hosts together. In this case, there are two hubs

200 | Chapter5: TCP/IP Networking

in this network segment, as well as a repeater. The latter device connects hosts that
are farther apart than the maximum cable length, passing all signals from one wire to
the other. Actually, a repeater is also a hub; in this case, it has only two ports. Ether-
net imposes a maximum number of four hubs between the most distant hosts. Sub-
net A follows this rule.

Subnet B is another network segment, connected to the other two subnets by rout-
ers. Although its internal structure is not shown, the various hosts in this subnet are
all connected to hubs or switches. The same is true for the two parts of subnet C.

The two branches of subnet C are connected by a switch, a somewhat more intelli-
gent device than a hub, which selectively passes only the data destined for the other
segment between the two. A hub is just a point where connections come together,
while a switch includes some ability to decide which “side” a given packet is des-
tined for. Two-port switches like the one in the figure are sometimes called bridges.

These days, plain hubs/repeaters are seldom used. Switches are gener-
ally used as the central connector to which individual hosts are
% attached. (I've used hubs in the diagram for illustrative purposes.)
Occasionally, devices that are really switches are labeled as hubs, pre-
sumably for marketing purposes.

More complex switches can handle more than one media type or have the ability to
filter the traffic in a variety of ways, and some are capable of connecting networks of
different types—say, TCP/IP and SNA—by translating or encapsulating the data
from one protocol family to/within the other as it is passed across. These tasks, per-
formed by such devices, overlap those traditionally assigned to routers.

The various subnets and the three local LANs in Figure 5-5 are connected to one
another via routers, a still more sophisticated network linking device that is essentially
a small computer. In addition to selectively handling data based on its destination,
routers also have the ability to determine the current best path to that destination;
finding a path to a destination is known as routing.” The best routers are highly pro-
grammable and can also perform very complex filtering of the data they receive,
accepting or rejecting it based upon criteria specified by the network administrator.

The routers that connect our three locations are arranged so that there are multiple
paths to every destination; losing any one of them will cause no harm to communica-
tions between the two unaffected networks.

Hubs/repeaters, switches/bridges, and routers can be distinguished by where their
operations fall within the TCP/IP protocol stack. Repeaters operate at the Network

* Both common pronunciations of this word are technically correct. However, I still believe that rooting is
something humans do at baseball games and pigs do when looking for truffles. Routing is what partisans do
to occupying armies, and its homonym is what enables packets to travel across a network.

Understanding TCP/IP Networking | 201

Access layer, bridges use the Internet layer,” and routers operate within the Trans-
port layer. A full network host, which obviously supports all four TCP/IP layers, can
thus perform the functions of any of these types of devices. Note that many devices
labeled with one name may actually function like lower-end versions of the next
higher device (e.g., high end switches are simple routers).

Although inexpensive dual-speed (e.g., 10BaseT and 100BaseT)
switches exist, I don’t recommend using them. The network will pro-
vide better performance if you segregate devices by speed and don’t
mix speeds on the same (low-end) switch.t The low-speed switch will
thus be the only low-speed device on the high speed switch.

Adding a New Network Host

To add a new host to the network, you must:

Install networking software and build a kernel capable of supporting network-
ing and the installed networking hardware (if necessary). These days, basic net-
working is almost always installed by default with the operating system, but you
may have to add some features manually.

Physically connect the system to the network and enable the hardware network
interface. Occasionally, on older PC systems, the latter may involve setting
jumpers or switches on the network adapter board or setting low-level system
parameters (usually via the pre-boot monitor program).

Assign a hostname and network address to the system (or find out what has
been assigned by the network administrator). When you add a new host to an
existing network, the unique network address you assign it must fit in with
whatever addressing scheme is already in use at your site. You can also decide to
use DHCP to assign the IP address and other networking parameters dynami-
cally instead of specifying a static address.

Ensure that necessary configuration tasks occur at boot time, including starting
all required networking-related daemons.

Configure name resolution (hostname-to-IP address translation).

Set up any static routes and configure any other routing facilities in use. This
includes defining a default gateway for packets destined beyond the local subnet.

* The smartest switches intrude a tiny bit into the Transport layer.

t One of the book’s technical reviewers notes that this problem occurs only with inexpensive switches and is
not a problem on high quality (higher priced) ones.

202

| Chapter5: TCP/IP Networking

¢ Test the network connection.

* Enable and configure any additional network services that you plan to use on
that computer.

Configuring the Network Interface with ifconfig

The ifconfig command (“if” for interface) is used to set the basic characteristics of
the network adapter, the most important of which is associating an IP address with
the interface. Here are some typical commands:

ifconfig 1loo localhost up

ifconfig etho inet 192.168.1.9 netmask 255.255.255.0
The first command configures the loopback interface, designating it as up (active). In
many versions of ifconfig, up is the default when the first IP address is assigned to an
interface, and thus it is usually omitted.

The second command configures the Ethernet interface on this system, named en0,
assigning it the specified Internet address and netmask.

The second parameter in the second ifconfig command designates the address fam-
ily. Here, inet refers to IPv4; inet6 is used to refer to IPv6. This parameter is optional
and defaults to IPv4.

The first example command above also illustrates the use of a hostname to specify
the IP address. If you do so, the IP address corresponding to the hostname must be
available when the ifconfig command is run, generally because it is in /etc/hosts.

FreeBSD, Solaris, and Tru64 systems allow you to replace the IP address and net-
mask parameters with a CIDR address:

ifconfig tuo 192.168.9.6/24

Ethernet interface names

The loopback interface is almost always named 00 (but Linux calls it simply lo).
Ethernet interface names vary tremendously among systems. Here are some com-
mon names for the first Ethernet interface on the various systems:”

AIX en0

FreeBSD x10, de0, and others (depends on hardware)
HP-UX lan0

Linux eth0

Solaris hme0, dnet0, eri0, leO

Tru64 tu0, In0

* AIX uses different interface names for other networking types: et0 for so-called 803.2 (a related but slightly
different protocol), tr0 for Token Ring etc.

Adding a New Network Host | 203

Other uses of ifconfig

Without any other options, ifconfig displays the configuration of the specified net-
work interface, as in this example:

$ ifconfig etho

en0: flags=c63<UP,BROADCAST,NOTRAILERS,RUNNING, FILTMULTI,MULTICAST>

inet 192.168.1.9 netmask oxffffffoo broadcast 192.168.1.255
You can display the status of all configured network interfaces with ifconfig -a
except under HP-UX. On AIX, FreeBSD, and Tru64 systems, the -1 option can be
used to list all network interfaces:

$ ifconfig -1
en0 enl loo

This system has two Ethernet interfaces installed, as well as the loopback interface.

The HP-UX lanscan command provides similar functionality.

ifconfig on Solaris systems

Solaris systems provide two versions of ifconfig, one in /sbin and another in /usr/
sbin. Their syntax is identical. They differ only in the way in which they attempt to
resolve hostnames specified as arguments. The /sbin version always checks /etc/hosts
before consulting DNS, while the other version uses whatever name resolution order
is specified in the network switch file (discussed below). The former is used at boot
time, when DNS may not be available.

Solaris also requires that an interface be “plumbed” before it is configured, via com-
mands like the following:

ifconfig hmeo plumb

ifconfig hmeo inet 192.168.9.2 netmask + up
The first command sets up the kernel data structures needed for the device to be
used with IP. Other operating systems also perform this setup function, but they do
so automatically when the first IP address is assigned to an interface. The plus sign
parameter to the netmask keyword is shorthand that tells the command to look up
the default netmask for the specified subnet in the file /etc/inet/netmasks. The file has
entries like the following:

#subnet netmask
192.168.9.0 255.255.255.0

Interface configuration at boot time

Table 5-8 lists the configuration files that store the parameters for ifconfig for each
Unix version we are considering and also provides some example entries from the
file, using the first interface of a common type. The third column in the table indi-
cates which boot script actually performs the interface configuration operation and
where in the boot process it occurs.

204 | Chapter5: TCP/IP Networking

Table 5-8. Boot-time network interface configuration

Unix version
AIX

Configuration file

Data is stored in the ODM; use smit mktcpip or the
mktcpip command to modify it (not ifconfig com-
mands).

Boot script (Invoked by)
/sbin/rc.boot (first /etc/inittab entry)

FreeBSD

/Jetc/rc.conf.

hostname="clarissa"
ifconfig x10="192.168.9.2 netmask
255.255.255.0"

/Jetc/rc.network (called from /etc/rc)

HP-UX

/etc/rc.config.d/netconf:

HOSTNAME="acrasia"
INTERFACE_NAME[0]=1ano
IP_ADDRESS[O]:192.168.9.55
SUBNET_MASK[0]=255.255.255.0
INTERFACE_STATE[O]="up"

/sbin/init.d/net (link in /sbin/rc2.d)

Linux (Red Hat)

/Jetc/sysconfig/network-scripts/ifcfg_eth0:

DEVICE=etho
BOOTPROTO=static
IPADDR=192.168.9.220
NETMASK=255.255.255.0
ONBOOT=yes

/etc/sysconfig/network:
HOSTNAME="selene"

/Jetc/init.d/network (link in /etc/rc2.d)

Linux (SuSE 7)

/etc/rc.config:

NETCONFIG="_0" Number of interfaces

IPADDR_0="192.168.9.220"

NETDEV_0="etho"

IFCONFIG 0="192.168.9.220 broadcast
192.0.9.255 netmask 255.255.255.0"

/etc/HOSTNAME:
sabina

/etc/init.d/network (link in /etc/rc2.d)

Linux (SuSE 8)

/etc/sysconfig/network/ifcfg_eth0

BOOTPROTO=static
IPADDR=192.168.9.220
NETMASK=255.255.255.0
STARTMODE=yes

/etc/HOSTNAME:
sabina

/Jetc/init.d/network (link in /etc/rc2.d)

Solaris

/etc/hostname.hme0:
ishtar

/Jetc/init.d/network (link in /sbin/rcS.d)

Tru64

/etc/rc.config:

HOSTNAME="1udwig"

NETDEV_0="tu0"

IFCONFIG 0="192.168.9.73 netmask
255.255.255.0"

NUM_NETCONFIG="1" Number of interfaces

export HOSTNAME NETDEV 0 ...

/sbin/init.d/inet (link in /sbin/rc3.d)

Adding a New Network Host |

205

These files and their entries are quite straightforward and self-explanatory. Multiple
interfaces are configured in the same manner. Parameters for additional interfaces are
defined in the same way as the first one, typically using the next element in the array
(e.g., IP_ADDRESS[1] (HP-UX), NETDEV_1 (Tru64), and the like), corresponding syntax
(e.g., ifconfig x11 for FreeBSD), or an analogous filename (e.g., hostname.hmel for
Solaris or ifcfg_ethl for Linux).

The Solaris /etc/hostname.interface (where interface is the interface name, e.g., hme0)
file merits additional comment. In general, this file requires only a hostname as its
contents, but you can also place specific parameters to ifconfig on additional lines if
desired, as in this example:

kali
192.168.24.37 netmask 255.255.248.192 broadcast 192.168.191.255

Generally, Solaris attempts to locate the system’s IP address automatically by con-
sulting all the available name services, but you can specify specific parameters in this
way if you choose. The /etc/init.d/network script will append each additional line in
turn to ifconfig interface inet to form a complete command, which is then executed
immediately. The hostname still needs to be the first line in the file or other parts of
the script will break.
& w

The file /etc/nodename also contains the hostname of the local host; it
s is used when the system is in standalone mode and in other circum-
1kt stances within the boot scripts. If you decide to change a system’s

" hostname, you’ll need to change it in both /etc/nodename and the /etc/

hostname.* file (as well as in /etc/hosts, DNS and any other directory
service you may be running).

Dynamic IP Address Assignment with DHCP

The Dynamic Host Configuration Protocol (DHCP) facility is used to dynamically
assign IP addresses and configuration settings to network hosts.” This facility is
designed to decrease the amount of individual workstation configuration necessary
for a system to be successfully connected to the network. It is especially suited to
computer systems that change network locations frequently (e.g., laptops).

Never use dynamic addressing for any system that shares any of its
resources—filesystems (via NFS or SAMBA), printers, or other
devices—or provides any network resources (DNS, DHCP, electronic
mail services, and so on). It is OK to use DHCP to assign static
addresses to servers (see “Configuring a DHCP Server” in Chapter 8).

* DHCP is a follow-on to the BOOTP remote booting facility.

206 | Chapter5: TCP/IP Networking

The DHCP facility assigns an IP address to a requesting host for a specified period of
time known as a lease, via a process like the following:

* The requesting (client) system broadcasts a DHCP Discover” message to UDP
port 67. At this point, the system does not need to know anything about the
local network, not even the subnet mask (the source address for this message is
0.0.0.0, and the destination is 255.255.255.255).

* One or more DHCP servers reply with a DHCP Offer message (to UDP port 68),
containing an IP address, subnet mask, server IP address, and lease duration
(and possibly other parameters). The server reserves the offered address until it is
accepted or rejected by the requesting client or a timeout period expires.

* The client selects an offered IP address and broadcasts a DHCP Request mes-
sage. All servers other than the successful one release the pending reservation.

* The selected server sends a DHCP Acknowledge message to the client.t

* When the lease is 50% expired, the client attempts to renew it (via another
DHCP Request). If it cannot do so at that time, it will try when it reaches 87.5%
of the lease period; if the second renewal attempt also fails, the client looks for a
new server. During the lease period, DHCP-assigned parameters persist across
boots on most systems. On some systems, the client tries to extend its lease each
time it boots.

As this description indicates, the DHCP facility depends heavily on broadcast mes-
sages, but it does not generate an inordinate amount of network traffic if it is config-
ured properly. Typical default lease periods are a few hours, but the time period can
be shortened or lengthened as appropriate (see “Configuring a DHCP Server” in
Chapter 8).

DHCP can also be used to assign other parameters related to networking to the cli-
ent, including the default gateway (router), the hostname, and which server(s) to use
for a variety of functions, including DNS, syslog message destination, X fonts, NTP,
and so on. In addition, DHCP clients can request that specific parameters be sup-
plied by the server and optionally reject offers that do not fulfill them. Some clients
can also specify terms for the lease, such as the time period. DHCP additional
parameters are known as options, and they are identified via standard identifying
numbers.

In the remainder of this section, we’ll look at configuring DHCP clients. We’ll dis-
cuss DHCP servers in Chapter 8.

* More precisely, it is a DHCPDISCOVER message, but I've tried to make the text more readable by adding a
space and changing letter case.

T Occasionally, things don’t work out after an offer has been selected. The server also has the option of sending
a Negative Acknowledgement if there is some problem with the request. Also, the client can send a Decline
message to the server if its initial test of the IP address fails. In either case, the client restarts the discovery
process from the beginning.

Adding a New Network Host | 207

Table 5-9 summarizes the various files and settings involved in DHCP client configu-
ration on the various systems we are considering, using the first Ethernet interface of
a common type as an example in each case. The table is followed by discussions of
the specifics for each Unix version.

Table 5-9. DHCP client configuration summary

Item Location and/or configuration

Enable DHCP AIX: ODM; interface stanza (/etc/dhcped.ini)

FreeBSD: ifconfig x10="DHCP" (/etc/rc.conf)

HP-UX: DHCP_ENABLE=1 (/etc/rc.config.d/netconf)

Linux: IFCONFIG_0="dhcpclient"in/etc/rc.config (SuSE7); BOOTPROTO="dhcp"
(ifcfg_ethQ in /etc/sysconfig/network-scripts in Red Hat, /etc/sysconfig/network in SuSE
8)

Solaris: Create /etc/dhcp.hme0

Tru64: IFCONFIG_0="DYNAMIC" (/etc/rc.config)

Additional Configuration Files FreeBSD: /etc/dhclient.conf
Solaris: /etc/default/dhcpagent
Tru64: /etc/join/client.pcy

Primary Command or Daemon AIX: dhcpcd daemon
FreeBSD: dhclient command
HP-UX: dhcpclient daemon
Linux: dhcpcd daemon
Solaris: dhcpagent daemon
Tru64: joinc daemon

Boot Script where DHCP Config- AIX: /etc/rc.tepip

uration Occurs FreeBSD: /etc/rc.network
HP-UX: /sbin/rc
Linux: /etc/init.d/network
Solaris: /etc/init.d/network
Tru64: /sbin/init.d/inet

Automated/ Graphical Configu- AIX: smit usedhcp

ration Tool FreeBSD: sysinstall
HP-UX: SAM
Linux: Linuxconf (Red Hat), YAST2 (SuSE)
Solaris: Solaris Management Console
Tru64: netconfig

Current Lease Information AIX: /usr/tmp/dhcpcd.log
FreeBSD: /var/db/dhclient.leases
HP-UX: /etc/auto_parms.log
Linux: /etc/dhep/dhepcd-eth0.info (Red Hat); /var/lib/dhcpcd/dhcpcd-eth0.info (SuSE)
Solaris: /etc/dhcp/hme0.dhc
Tru64: /etc/join/leases

208 | Chapter5: TCP/IP Networking

AIX

The easiest way to enable DHCP on an AIX system is to use SMIT, specifically the
smit usedhcp command. The resulting dialog is illustrated in Figure 5-6.

= S ________|
Notvork TNTEREIE f
Use DHCP starting lm EI Al ¥
s
Site Class Identifier
Client Identifier
TP Address Lease Time (seconds)(Nuwn.) lauuuui
Requested TP Address li
Server Identifier (ip address) IW
Subnet Mask 255.255.255.0
Time 0ffset(Num.)
P — A
0K Cormand Reset Cancel ?

Figure 5-6. Enabling DHCP with SMIT

As the figure illustrates, SMIT allows you not only to enable DHCP but also to spec-
ify a desired lease length and other DHCP parameters. In this example, we request a
lease length of 30,000 seconds (5 hours), and we also specify a specific DHCP server
to contact (giving its IP address and subnet mask). This second item is not necessary
and in fact is usually omitted; it is included here only for illustrative purposes.

AIX DHCP client configuration consists of three parts:

* Configuring and starting the dhcped daemon, which requests configuration infor-
mation and keeps track of the lease status. In particular, the relevant lines in /etc/
rc.tepip must be activated by removing the initial comment marker:

Start up dhcpcd daemon

start /usr/sbin/dhcpcd "$src_running"

* Adding a stanza for the network interface and other settings to dhcped’s config
file /etc/dhcpcd.ini. Here is an example of this file:

Use 4 log files of 500KB each and log lots of info

numLogFiles 4
logFileSize 500
logFileName

logItem SYSERR
logItem OBJERR
logItem WARNING
logItem EVENT
logItem ACTION

/usr/tmp/dhcped. log

Adding a New Network Host

209

updateDNS "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' A NONIM
>> /tmp/updns.out 2> &1 " Command is wrapped.
clientid MAC Identify client via its MAC address.

interface eno

{

option 12 "lovelace" Hostname.
option 51 30000 Requested lease period in seconds.

}

The first section of the file specifies desired logging options. Here we request
substantial detail by selecting five types of events to log. The next section
includes a command to be used for updating DNS with the IP address assigned
to this host (changing this command is not recommended). The final section
specifies the configuration for the en0 interface. The items between the curly
braces set values for various DHCP options. (The file /etc/options.file defines
DHCP option numbers.)

* Setting parameters within the interface’s record in the ODM. This step can be
accomplished via SMIT or manually, using the mktcpip command.

FreeBSD

FreeBSD uses the DHCP implementation created by the Internet Software Consor-
tium (ISC). The dhclient command requests DHCP services when they are needed.
At boot time, it is called from rc.network. It uses the configuration file, /etc/dhclient.
conf. Here is a simple example:
interface "x10" {
request subnet-mask, broadcast-address, host-name,
time-offset, routers, domain-name, domain-name-servers;
require subnet-mask;

send requested-lease-time 360000;
media "media 10baseT/UTP", "media 10base2/BNC";

}
This file configures DHCP for the interface xI0, for which DHCP is enabled in /etc/rc.
conf (ifconfig x10="DHCP'). This example specifies a list of options for which to
request values from the DHCP server. Leases without most of these options will still

be acceptable, but the subnet mask parameter is required. The client also requests a
lease time of 360,000 seconds (100 hours).

All the items within the braces apply only to this particular interface. However, these
same commands can appear independently within the configuration file, in which
case they apply to all specified interfaces. Many other options are provided, includ-
ing the ability to specify a specific DHCP server.

The default version of /etc/dhclient.conf usually works fine unmodified.

210 | Chapter5: TCP/IP Networking

HP-UX

Once DHCP has been enabled for an interface in /etc/rc.config.d/metconf, it will be
started at boot time automatically. The auto_parms script is called from /etc/rc, and it
performs the actual DHCP operations, with help from set_parms. The script also
calls dhcpdb2conf, which merges the configuration data provided by DHCP into the
network configuration file mentioned above, and the ifconfig process proceeds in
the same way it does for hosts with static IP addresses. In addition, auto_parms starts
the dhcpclient daemon, which oversees the lease and its renewal.

Other than enabling DHCP for the network interface, HP-UX provides nothing in
terms of DHCP client configuration. When you enable DHCP, you will also need to
set the corresponding IP_ADDRESS and SUBNET_MASK variables to an empty
string.

Linux

DHCP configuration differs slightly among different Linux distributions. However,
both Red Hat and SuSE use the file ifcfg.ethO to hold configuration information for
the first Ethernet interface (see Table 5-8 for the directory locations), and DHCP is
enabled in this file as well, via the BOOTPROTO parameter. The actual interface
configuration happens in the /etc/init.d/network boot script, which is called during a
boot, during the transition to run level 2.

On both systems, the network script calls additional scripts and commands to help it
perform its tasks. The most important of these is /sbin/ifup which is responsible for
network interface activation both for systems with static IP addresses and for DHCP
clients.

On Red Hat Linux systems, ifup starts the dhcpcd daemon, which monitors and
renews the DHCP lease as necessary. On SuSE Linux systems, it calls another com-
mand, ifup-dhcp (also in /shin) to perform the core configuration tasks, including
starting the daemon.

On SuSE systems, there is also another option for DHCP clients: the dhclient com-
mand, part of the same Internet Software Consortium (ISC) DHCP implementation
used by FreeBSD. It uses a similar /etc/dhclient.conf configuration file to the one
described above for FreeBSD. The default on SuSE systems is to use dhcped, but
dhclient can be selected using the following entry in the /etc/sysconfig/network/dhcp
configuration file:

DHCLIENT BIN="dhclient"

On older Red Hat systems, the default DHCP client is pump. This facility is still avail-
able as an option if you want to use it (currently, it is not included in an installation
unless you specifically request it).

Adding a New Network Host | 211

Solaris

On a Solaris system, you can specify that a network interface be configured using
DHCP by issuing a command like the following:

ifconfig hmeo dhcp
(You can change back to a static configuration by adding drop to this command.)

Initiating DHCP in this way automatically invokes the dhcpagent daemon. It will ini-
tiate and manage the DHCP lease.

For an interface to be configured with DHCP at boot time, a file of the form /etc/
dhcp.interface must exist. Such files can be empty. If one of these files contains the
word “primary” as its contents, the corresponding interface will be configured first
(if more than one includes the word “primary,” the first one listed in the file will be
used as the primary interface).

The dhcpagent daemon uses the configuration file /etc/default/dhcpagent. The follow-
ing is the most important entry within it:

PARAM_REQUEST LIST=1,3,12,43

This entry specifies the list of parameters that the client will request from the DHCP
server. The standard DHCP parameter numbers are translated to descriptive strings
in the /etc/dhcpl/inittab file.

Tru64

Tru64 also uses a daemon to manage DHCP client leases. Its name is joinc, and it is
started at boot time by the dhcpconf command; the latter is invoked by /sbin/init.d/
inet when moving to run level 3.

The DHCP client configuration file is /etc/join/client.pcy Here is a simple example of

this file:

use_saved config Use existing lease if still valid
lease_desired 604800 One week lease.

options to request from server
request broadcast _address
request dns_servers

request dns_domain_name

request routers

request host_name

request lease_time

The bulk of this file consists of a list of options to be requested from the server. The
full list of supported options is given in the client.pcy manual page.

Name Resolution Options

The term name resolution refers to the process of translating a hostname to its corre-
sponding IP address. Hostnames are much more convenient for users and adminis-

212 | Chapter5: TCP/IP Networking

trators within commands and configuration files, but actual network operations
require IP addresses.” Thus, when a user enters a command like finger
chavez@hamlet, one of the first things that must happen is that the hostname hamlet
gets translated to its IP address (say, 192.168.2.6). There are several ways that this
can happen, but the two most prevalent are:

* The IP address can be looked up in a file. The list of translations is traditionally
stored in /etc/hosts. When a directory service is in use, the contents of the local
hosts file may be integrated into it, and a common master file can be automati-
cally propagated throughout a network (e.g., NIS).

* The client can contact a Domain Name System (DNS) server and ask it to per-
form the translation.

In the first case, the hostnames and IP addresses of all hosts with which the local
host will need to communicate must be entered into /etc/hosts (or another central
location). In the second case, a host trying to translate a name will contact a local or
remote named server process to determine the corresponding IP address.

For a relatively small network not on the Internet, using just /etc/hosts may not be a
problem. For even a medium-sized network, however, this strategy may result in a
lot of work every time a new host is added, because the master hosts file must be
propagated to every system in the network. For networks on the Internet, using DNS
is the only practical way to translate hostnames for systems located beyond the local
domain.

The /etc/hosts file

The file /etc/hosts traditionally contains a list of the hosts in the local network
(including the local host itself). If you use this file for name resolution, whenever you
add a new system to the network, you will have to edit it on (or copy a master ver-
sion to) every system on the Unix local network (and take whatever action is equiva-
lent for hosts running other operating systems).

Even systems that use DNS for name resolution typically have a small
hosts file for use during booting.

Here is a sample /etc/hosts file for a small LAN:

Loopback address for localhost
127.0.0.1 localhost

Local hostname and address
192.168.1.2 spain

* And, ultimately, MAC addresses.

Adding a New Network Host | 213

Other hosts

192.168.1.3 usa

192.168.1.4 canada england uk

192.168.1.6 greece olympus

10.154.231.42 paradise
Lines beginning with # are comments and are ignored. Aside from the comments,
each line has three fields: the IP address of a host in the network, its hostname, and
any aliases (synonyms) for the host.

Every /etc/hosts file should contain at least two entries: the loopback address and the
address by which the local system is known to the rest of the network. The remain-
ing lines describe the other hosts in your local network. This file may also include
entries for hosts that are not on your immediate local network.

On Solaris systems, the hosts file has moved to the /etc/inet directory (as have several
other standard network configuration files), but a link to the standard location is
provided.

Configuring a DNS client

On the client side, DNS configuration is very simple and centers around the /etc/
resolv.conf configuration file. This file lists the local domain name and the locations
of one or more name servers to be used by the local system.

Here is a simple resolver configuration file:

search ahania.com DNS domains to search for names.

nameserver 192.168.9.44

nameserver 192.168.10.200
The first entry specifies the DNS domain(s) in which to search for name translations.
Up to six domains can be specified (separated by spaces), although listing only one is
quite common. In general, they should be ordered from most to least specific (e.g.,
subdomains before their parent domain). On some systems, domain will replace the
search keyword in the installed configuration file version; this is an older resolver
configuration convention, and such entries are used to specify only the name of the
local domain (i.e., a list is not accepted).

Name servers are identified by IP address, and up to three may be listed. When a
name server needs to be located, they are contacted in the order in which they are
listed in the file. However, once a server has successfully replied to a query, it will
continue to be used. Thus, the best practice is to place servers in preferential order
within this file. Usually, this means from closest to most distant, but when there are
multiple local name servers, clients are generally configured so that each server is
preferred by the appropriate fraction of clients (e.g., half of the clients in the case of
two local name servers).

There are two other configuration file entries which are useful in some special cir-
cumstances:

214 | Chapter5: TCP/IP Networking

sortlist network-1list
This entry specifies how to select among multiple responses that may be
returned by a DNS query when the target has multiple network interfaces.

options ndots:n
This entry determines when the domain name will be automatically added to a
hostname. The domain name will be added only when the target name has less
than n periods within it. The default for » is 1, causing the domain name to be
added only to bare hostnames.

On most systems, removing (or renaming) /etc/resolv.conf will disable DNS lookups
from the system.

The name service switch file

Some operating systems, including Linux, HP-UX, and Solaris, provide an addi-
tional configuration file relevant to DNS clients, /etc/nsswitch.conf. This name ser-
vice switch file enables the system administrator to specify which of the various
name resolution services are to be consulted when a hostname needs to be trans-
lated, as well as the order in which they are called. Here is an example:

hosts: files dns

This entry says to consult /etc/hosts first when attempting to resolve a hostname, and
to use DNS if the name is not present in the file.

In fact, the file contains similar entries for many networking functions, as these
entries illustrate:

passwd: files nis

services: files
The first entry says to consult the traditional password file when looking for user
account information and then to consult the Network Information Service (NIS) if
the account is not found in /etc/passwd. The second entry says to use only the tradi-
tional file for definitions of network services.

This sort of construct is also frequently used in nsswitch.conf:
passwd: nis [NOTFOUND=return] files

This entry says to contact NIS for user account information. If the required informa-
tion is not found there, the search will stop (the meaning of return), and cause the
originating command to fail with an error. The traditional password file is used only
when the NIS service is unavailable (e.g., at boot time).

The other operating systems we are considering offer similar facilities. Currently,
FreeBSD provides the /etc/host.conf file, which looks like this:

hosts FreeBSD 4 resolver order configuration
bind

Adding a New Network Host | 215

This file says to look in the hosts file first and then to consult DNS. Older versions of
Linux also used this file, with a slightly different syntax:

order hosts,bind Linux host.conf syntax

AIX uses the /etc/netsve.conf file for the same purpose. Here is an example which sets
the same order as the preceding:

hosts = local, bind AIX resolver order configuration
Finally, Tru64 uses the /etc/svc.conf file, as in this example:
hosts=local,bind Tru64 resolver order configuration

The AIX and Tru64 file also contain entries for other system and network configura-
tion files.

Routing Options

As with hostname resolution, there are a number of options for configuring routing
within a network:

* If the LAN consists of a single Ethernet network not connected to any other net-
works, no explicit routing is usually needed (since all hosts are visible and adja-
cent to all others). The ifconfig commands used to configure the network
interfaces will usually provide them with enough information for them to route
packets to their destination.

* Static routing may be used for small- to medium-sized networks not character-
ized by many redundant paths to most destinations. This is set up by explicit
route commands that are executed at boot time.

* Dynamic routing, in which optimal paths to destinations are determined at
packet transmission time, may be used via the routed or gated daemon. They are
discussed in “Routing Daemons” in Chapter 8.

Static routing relies on the route command. Here are some examples of its use:

route add 192.168.1.12 192.168.3.100
route add -net 192.168.2.0 netmask 255.255.255.0 192.168.3.100

The first command adds a static route to the host 192.168.1.12, specifying host 192.
168.3.100 as the intermediate point (gateway). The second command adds a route to
the subnet 192.168.2 (recall that host O refers to a network itself), via the same gate-
way.
The command form is slightly different under FreeBSD, Solaris, and AIX (note the
hyphen used with the netmask keyword):

route add -net 192.168.2.0 -netmask 255.255.255.0 192.168.3.100
Linux uses a slightly different form for the route command:

route add -net 10.1.2.0 netmask 255.255.240.0 gw 10.1.3.100

The gw keyword is required.

216 | Chapter5: TCP/IP Networking

The command form route add default is used to define a default gateway. All non-
local packets for which there is not an explicit route in the routing table are sent to
this host for forwarding.

For many client systems, defining the default gateway will be all the
routing configuration that is necessary.

The command netstat -r may be used to display the routing tables. Here is the out-
put from a Solaris system named kali:

netstat -r
Routing Table: IPv4

Destination Gateway Flags Ref Use Interface
192.168.9.0 kali U 1 4 hme0
default suzanne UG 1 0
localhost localhost UH 3 398 1o0

The first line in the output’s table of routes specifies the route to the local network,
through the local host itself. The second line specifies the default route for all traffic
destined beyond the local subnet; here, it is the host named suzanne. The final line
specifies the route used by the loopback interface to redirect packets to the local
host.

Use the -n option to view IP addresses rather than hostnames. This can be useful
when there are DNS problems.

To remove a route, replace the add keyword with delete:
route delete -net 192.168.1.0 netmask 255.255.255.0 192.168.2.100

The Linux version of the route command will also display the current routing tables
when executed without arguments.

The AIX, FreeBSD, Solaris, and Tru64 versions of route also provide a change key-
word for modifying existing routes (e.g., to change the gateway). These versions also
provide a flush keyword for removing all routes to remote subnets from the routing
table in a single operation; HP-UX provides the same functionality with route’s -f
option.

All the operating systems provide mechanisms for specifying a list of static routes to
be set up each time the system boots. The various configuration files are summa-
rized in the sections that follow.

AIX

On AIX systems, static routes are stored in the ODM. You can use the smit mkroute
command to add one or simply issue a route command. The results of the latter per-
sist across boots.

Adding a New Network Host | 217

FreeBSD

FreeBSD stores static routes in the /etc/rc.conf and/or /etc/rc.conf.local configuration
files. Here are some examples of its syntax for these entries:

defaultrouter="192.168.1.200"

static_routes="r1 r2"

route_r1="-net 192.168.13.0 192.168.1.49"

route_r2="192.168.99.1 192.168.1.22"
The first entry specifies the default gateway for the local system. The second line
specifies labels of the static routes that should be created at boot time. Each label
refers to a route_ entry later in the file. The latter hold the arguments and options to
be passed to the route command.

HP-UX

Static routes are defined in /etc/rc.config.d/metconf on HP-UX systems, via entries like
these, which define the default gateway for this system:

ROUTE_DESTINATION[O]=default

ROUTE_MASK[0]="255.255.255.0"

ROUTE_GATEWAY[0]=192.168.9.200

ROUTE_COUNT[0]=1 Total number of static routes.

ROUTE_ARGS[0]="" Additional arguments to the route command.
Additional static routes can be defined by increasing the value of the route count
parameter and adding additional entries to the array (i.e., [1] would indicate the sec-
ond static route).

Linux

Linux systems generally list the static routes to be created at boot time in a configu-
ration file in or under /etc/sysconfig. On Red Hat systems, this file is named static-
routes. Here is an example:

#interface type destination gw 1ip-address

etho net 192.168.13.0 gw 192.168.9.49

any host 192.168.15.99 gw 192.168.9.100
The first line specifies a route to the 192.168.13 network via the gateway 192.168.9.
49, limiting it to the eth0 interface. The second line specifies a route to the host 192.
168.15.99 via 192.168.9.100 (valid for any network interface).

On Red Hat systems, the default gateway is defined in the network configuration file
in the same directory:
GATEWAY=192.168.9.150

SuSE Linux uses the file /etc/sysconfig/etwork/routes to define both the default gate-
way and static routes. It contains the same information as the Red Hat version, but it
uses a slightly different syntax:

Destination Gateway Netmask Device
127.0.0.0 0.0.0.0 255.255.255.0 lo

218 | Chapter5: TCP/IP Networking

192.168.9.0 0.0.0.0 255.255.255.0 etho

default 192.168.9.150 0.0.0.0 etho

192.168.13.0 192.168.9.42 255.255.255.0 etho
The first two entries specify the routes for the loopback interface and for the local
network (the latter is required on Linux systems, in contrast to most other Unix ver-
sions). The third entry specifies the default gateway, and the final entry defines a
static route to the 192.168.13 subnet via the gateway 192.168.9.42.

Solaris

Specitying the default gateway under Solaris is very easy. The file /etc/defaultrouter
contains a list of one or more IP addresses (on separate lines) corresponding to sys-
tems/devices that serve as default gateways for the local system.

Be aware that you need to create this file yourself. It is not created as
part of the installation process.

There is no built-in mechanism for specifying additional static routes to be added at
boot time. However, you can create a script containing the desired commands and
place it in (or link it to) the /etc/rc2.d directory (or rc3.d if you prefer).

Tru64
Tru64 lists static routes in the file /etc/routes. Here is an example:

default 192.168.9.150
-net 192.168.13.0 192.168.10.200

Each line of the file is passed as the arguments to the route command. The first entry
in the example file illustrates the method for specifying the default gateway for the
local system.

Network Testing and Troubleshooting

Once network configuration is complete, you will need to test network connectivity
and address any problems that may arise. Here is an example testing scheme:

* Verify that the network hardware is working by examining any status lights on
the adapter and switch or hub.

* Check basic network connectivity using the ping command. Be sure to use IP
addresses instead of hostnames so you are not dependent on DNS.

* Test name resolution using ping with hostnames or nslookup (see “Managing
DNS Servers” in Chapter 8).

* Check routing by pinging hosts beyond the local subnet (but inside the firewall).

Network Testing and Troubleshooting | 219

* Test higher-level protocol connectivity by using telnet to a remote host. If this
fails, be sure that inetd is running, that the telnet daemon is enabled, and that
the remote host from which you are attempting to connect is allowed to do so
(inetd is discussed in Chapter 8).

 If appropriate, verify that other protocols are working. For example, use a
browser to test the web server and/or proxy setup. If there are problems, verify
that the browser itself is configured properly by attempting to view a local page.

* Test any network servers that are present on the local system (see Chapter 8).

The first step is to test the network setup and connection with the ping command.
ping is a simple utility that will tell you whether the connection is working and the
basic setup is correct. It takes a remote hostname or IP address as its argument:”

$ ping hamlet

PING hamlet: 56 data bytes

64 bytes from 192.0.9.3: icmp_seq=0. time=0. ms

64 bytes from 192.0.9.3: icmp_seg=1. time=0. ms

64 bytes from 192.0.9.3: icmp_seq=4. time=0. ms

~C

----hamlet PING Statistics----

8 packets transmitted, 8 packets received, 0% packet loss

round-trip (ms) min/avg/max = 0/0/0
From this output, it is obvious that hamlet is receiving the data sent by the local sys-
tem, and the local system is receiving the data hamlet sends. On Solaris systems,
ping’s output is much simpler, but still answers the same central question: “Is the
network working?”:

$ ping duncan
duncan is alive

Use the -s option if you want more detailed output.

Begin by pinging a system in the local subnet. If this succeeds, try testing the net-
work routes by pinging systems that should be reachable via defined gateways.

If pinging any remote system inside the firewall fails,T try pinging localhost and then
the system’s own IP address. If these fail also, check the output of ifconfig again to
see if the interface has been configured correctly. If so, there may be a problem with
the network adapter.

On the other hand, if pinging the local system succeeds, the problem lies either with
the route to the remote host or in hardware beyond the local system. Check the rout-
ing tables for the former (make sure there is a route to the local subnet), and check

* Control-C terminates the command. Entering Control-T while it is running displays intermediate status
information.

T If you need to check connectivity beyond the firewall, you need to use the ssh facility or some other higher-
level protocol that is not blocked (e.g., http).

220 | Chapter5: TCP/IP Networking

the status lights at the hub or switch for the latter. If hardware appears to be the
problem, try swapping the network cable. This will either fix the problem or suggest
that it lies with the connecting device or port within that device.

Once basic connectivity has been verified, continue testing by moving up the proto-
col stack, as outlined above.

Another utility that is occasionally useful for network troubleshooting is arp. This
command displays and modifies IP-to-MAC address translation tables. Here is an
example using its -a option, which displays all entries within the table:

arp -a

mozart (192.168.9.99) at 00:00:F8:71:70:0C [ether] on etho

bagel (192.168.9.75) at 00:40:95:9A:11:18 [ether] on etho

lovelace (192.168.9.143) at 00:01:02:ED:FC:91 [ether] on etho

sharon (192.168.9.4) at 00:50:04:0A:38:00 [ether] on etho

acrasia (192.168.9.27) at 00:03:BA:0D:A7:EC [ether] on etho

venus (192.168.9.35) at 00:D0:B7:88:53:8D [ether] on etho

I found arp very useful for diagnosing a duplicate IP address that had been inadvert-
ently assigned. The symptom of the problem was that a new printer worked only
intermittently and often experienced long delays when jobs attempted to connect to
it. After checking the printer and its configuration several times, it finally occurred to
me to check arp. The output revealed another host with the IP address the printer
was using. Once the printer’s IP address was changed to a unique value, everything
was fine.

arp also supports an -n option which bypasses name resolution and displays only IP
addresses in the output. This can again be useful when there are DNS problems.

Once networking is configured and working, your next task is to monitor its activity
and performance on an ongoing basis. These topics are covered in detail in “Moni-
toring the Network” in Chapter 8 and “Network Performance” in Chapter 15,
respectively.

Network Testing and Troubleshooting | 221

CHAPTER 6
Managing Users and Groups

User accounts and authentication are two of the most important areas for which a
system administrator is responsible. User accounts are the means by which users
present themselves to the system, prove that they are who they claim to be, and are
granted or denied access to the information and resources on a system. Accordingly,
properly setting up and managing user accounts is one of the administrator’s chief
tasks.

In this chapter we consider Unix user accounts, groups, and user authentication (the
means by which the system verifies a user’s identity). We will begin by spending a
fair amount of time looking at the process of adding a new user. Later sections of the
chapter will consider passwords and other aspects of user authentication in detail.

Unix Users and Groups

From the system’s point of view, a user isn’t necessarily an individual person. Tech-
nically, to the operating system, a user is an entity that can execute programs or own
files. For example, some user accounts exist only to execute the processes required
by a specific subsystem or service (and own the files associated with it); such users
are sometimes referred to as pseudo users. In most cases, however, a user means a
particular individual who can log in, edit files, run programs, and otherwise make
use of the system.

Each user has a username that identifies him. When adding a new user account to
the system, the administrator assigns the username a user identification number
(UID). Internally, the UID is the system’s way of identifying a user. The username is
just mapped to the UID. The administrator also assigns each new user to one or
more groups: a named collection of users who generally share a similar function (for
example, being members of the same department or working on the same project).
Each group has a group identification number (GID) that is analogous to the UID: it is
the system’s internal way of defining and identifying a group. Every user is a mem-
ber of one or more groups. Taken together, a user’s UID and group memberships
determine what access rights he has to files and other system resources.

222

User account information is stored in several ASCII configuration files:

letc/passwd
User accounts.

letc/shadow
Encoded passwords and password settings. As we’ll see, the name and location
of this file varies.

letc/group
Group definitions and memberships.

letc/gshadow
Group passwords and administrators (Linux only).

We’ll consider each of these files in turn.

The Password File, /etc/passwd

The file /etc/passwd is the system’s master list of information about users, and every
user account has an entry within it. Each entry in the password file is a single line
having the following form:

username:x:UID:GID:user information:home-directory:login-shell

The fields are separated by colons, and blank spaces are legal only within the user
information field.

The meanings of the fields are as follows:

username
The username assigned to the user. Since usernames are the basis for communi-
cations between users, they are not private or secure information. Most sites gen-
erate the usernames for all of their users in the same way: for example, by last
name or first initial plus last name. Usernames are generally limited to 8 charac-
ters on Unix systems, although some Unix versions support longer ones.

Traditionally, the second field in each password file entry holds the user’s
encoded password. When a shadow password file is in use (discussed below)—
as is the case on most Unix systems—this field is conventionally set to the single

character “x”. AIX uses an exclamation point (!), and FreeBSD and trusted HP-
UX use an asterisk (*).

UID
The user identification number. Each distinct human user should have a unique
UID. Conventionally, UIDs below 100 are used for system accounts (Linux now
uses 500 as the cutoff, and FreeBSD uses 1000). Some sites choose to assign UID
values according to some coding scheme where ranges of UIDs correspond to
projects or departments (for example, 200-299 is used for chemistry depart-
ment users, 300-399 is used for physics, and so on).

Unix Users and Groups | 223

Multiple user accounts with the same UID are the same account from the sys-
tem’s point of view, even when the usernames differ. If you can, it’s best to keep
UIDs unique across your entire site and to use the same UID for a given user on
every system to which he is given access.

GID
The user’s primary group membership. This number is usually the identification
number assigned to a group in the file /etc/group (discussed later in this chap-
ter), although technically the GID need not be listed there.” This field deter-
mines the group ownership of files the user creates. In addition, it gives the user
access to files that are available to that group. Conventionally, GIDs below 100
are used for system groups.

user information

Conventionally contains the user’s full name and, possibly, other job-related
information. This field is also called the GECOST field, after the name of the
operating system whose remote login information was originally stored in the
field. Additional information, such as office locations and office and home
phone numbers, may also be stored here. Up to five distinct items may be placed
within it, separated by commas. The interpretations of these five subfields vary
substantially from system to system.

home directory
The user’s home directory. When the user logs in, this is her initial working
directory, and it is also the location where she will store her personal files.

login shell
The program used as the command interpreter for this user. Whenever the user
logs in, this program is automatically started. This is usually one of /bin/sh
(Bourne shell), /bin/csh (C shell), or /bin/ksh (Korn shell).# There are also alterna-
tive shells in wide use, including bash, the Bourne-Again shell (a Bourne shell-
compatible replacement with many C shell- and Korn shell-like enhance-
ments), and tcsh, an enhanced C shell-compatible shell.

On most systems, the /etc/shells file lists the full pathnames of the programs that
may be used as user shells (accounts with an invalid shell are refused login). On
AIX systems, the valid shells are listed in the shells field in the usw stanza of /etc/
security/login.cfg:
usw:
shells = /bin/sh,/bin/csh,/bin/ksh,/usr/bin/tcsh,...

* Except under AIX. No one will be able to log in to an AIX system without a group file; similarly, any user
whose password file entry lists a GID not present in /etc/group will not be able to log in.

T Sometimes spelled “GCOS.”

1 The actual shell programs are seldom, if ever, really stored in /bin—in fact, many systems don’t even have a
real /bin directory—but there are usually links from the real path to this location.

224 | Chapter6: Managing Users and Groups

Here is a typical entry in /etc/passwd:
chavez:x:190:100:Rachel Chavez:/home/chavez:/bin/tcsh

This entry defines a user whose username is chavez. Her UID is 190, her primary
group is group 100, her full name is Rachel Chavez, her home directory is /home/
chavez, and she runs the enhanced C shell as her command interpreter.

Since /etc/passwd is an ordinary ASCII text file, you can edit the file with any text edi-
tor. If you edit the password file manually, it’s a good idea to save a copy of the
unedited version so you can recover from errors:

cd /etc
cp passwd passwd.sav Save a copy of the current file
chmod go= passwd.sav Protect the copy (or use a umask that does this)

emacs passwd

If you want to be even more careful, you can copy the password file again, to some-
thing like passwd.new, and edit the new copy, renaming it /etc/passwd only when
you’ve successfully exited the editor. This will save you from having to recopy it
from passwd.sav on those rare occasions when you totally munge the file in the edi-
tor.

However, a better tactic is to use the vipw command to facilitate the process, allow-
ing it to be careful for you. vipw invokes an editor on a copy of the password file (tra-
ditionally /etc/ptmp or /etc/opasswd, but the name varies). The presence of this copy
serves as a locking mechanism to prevent simultaneous password-file editing by two
different users. The text editor used is selected via the EDITOR environment vari-
able (the default is vi).

When you save the file and exit the editor, vipw performs some simple consistency
checking. If this is successful, it renames the temporary file to /etc/passwd. On Linux
systems, it also stores a copy of the previous password file as /etc/passwd.OLD (Red
Hat) or /etc/passwd— (SuSE).

The vipw command also has the advantage that it automatically performs—or reminds
you about—other related activities that are required to activate the changes you just
made. For example, on Solaris systems, it offers you the chance to edit the shadow
password file as well. More importantly, on FreeBSD and Tru64 systems, it automati-
cally runs the binary password database creation command, which turns the text file
into the binary format used on those systems (pwd_mkdb and mkpasswd, respectively).

AIX does not provide vipw.

The Shadow Password File, /etc/shadow

Most Unix operating systems support a shadow password file: an additional user-
account database file designed to store the encrypted passwords. On most systems,
the password file must be world-readable in order for any command or service that
translates usernames to/from UIDs to function properly. However, a world-readable

Unix Users and Groups | 225

password file means that it’s very easy for the bad guys to get a copy of it. If the
encrypted passwords are included there, a password cracking program could be run
against them, and potentially discover some poorly chosen ones. A shadow pass-
word file has the advantage that it can be protected against anyone accessing it
except the superuser, making it harder for anyone to acquire encoded passwords
(you can’t crack what you can’t get).”

Here are the locations of the shadow password file on the various systems we are
considering:

AIX letc/security/passwd
FreeBSD /etc/master.passwd
Linux letc/shadow

Solaris letc/shadow

HP-UX and Tru64 store encoded passwords in the protected password database
when enhanced security is installed (as we will see). Tru64 also has the option of
using a traditional shadow password file with the enhanced security package.

At present, entries in the shadow password file typically have the following syntax:
username:encoded password:changed:minlife:maxlife:warn:inactive:expires:unused

username is the name of the user account, and encoded password is the encoded user
password (often somewhat erroneously referred to as the “encrypted password”).
The remaining fields within each entry are password aging settings. These items con-
trol the conditions under which a user is allowed to and is forced to change his pass-
word, as well as an optional account expiration date. We will discuss these items in
detail later in this chapter.

The SuSE Linux version of the vipw command accepts a -s option with which to edit
the shadow password file instead of the normal password file. On other systems,
however, editing the shadow password file by hand is not recommended. The passwd
command and related commands are provided to add and modify entries within the
file (as we shall see), a task which can also be accomplished via the various graphical
user account management tools (discussed later in this chapter).

The FreeBSD /etc/ master.passwd file

FreeBSD uses a different password file, /etc/master.passwd, which also functions as a
shadow password file in that it stores the encoded passwords and is protected from
all non-root access. FreeBSD also maintains /etc/passwd.

* Don’t be too sanguine about this fact or let it make you complacent about user account security. Shadow
password files provide another barrier against the bad guys, nothing more, and they are not invulnerable.
For example, some network clients and services have had bugs in the past that made them vulnerable to
buffer overrun attacks that could cause them to crash during their authentication phase. Encoded passwords
from a shadow password file may be present in the resulting core dumps.

226 | Chapter6: Managing Users and Groups

Here is a sample entry from master.passwd:
ng:encoded-pwd:194:100:staff:0:1136005200:]. Ng:/home/ng:/bin/tcsh

Entries in this file include three additional fields sandwiched between the GID and
user’s full name (highlighted in the example entry): a user class (see “FreeBSD user
account controls,” later in this chapter), the password expiration date, and the
account expiration date (the latter are expressed as seconds since midnight on Janu-
ary 1, 1970 GMT). In this case, user ng is assigned to the staff user class, has no pass-
word expiration date, and has an account expiration date of June 1, 2002. We'll
consider these fields in more detail later in this chapter.

The protected password database under HP-UX and Tru64

Systems that must conform to the C2 security level (a U.S. government—defined sys-
tem security specification) have additional user account requirements. C2 security
requires many system features, including per-user password requirements, aging
specifications, and nonaccessible encoded passwords. When the optional enhanced
security features are installed and enabled on HP-UX and Tru64 systems, a protected
password database is used in addition to /etc/passwd. (It is part of the Trusted Com-
puting Base on these systems.)

Under HP-UX, the protected password database consists of a series of files, one per
user, stored in the /tcb/files/auth/x directory hierarchy, where x is a lowercase letter.
Each user’s file is placed in a file named the same as his username, in the subdirec-
tory corresponding to its initial letter: chavez’s protected password database entry is /
tcblfiles/auth/c/chavez. On Tru64 systems, the data is stored in the binary database /
teb/files/auth.db.

The HP-UX files are structured as authcap entries (just as terminal capabilities are
specified via termcap entries on some systems), consisting of a series of colon-sepa-
rated keywords, each of which specifies one particular account attribute (see the
authcap manual page for details).

All of this is best explained by an excerpt from chavez’s file:

chavez:u_name=chavez:u_id#190:\
:u_pwd=*dkIkf,/Jd.:u lock@:u_pickpw:chkent:

The entry begins with the username to which it applies. The u_name field again indi-
cates the username and illustrates the format for attributes that take a character
string value. The u_id field sets the UID and illustrates an attribute with a numerical
value; u_pwd holds the encoded password. The u_lock and u_pickpw fields are Bool-
ean attributes, for which true is the default when the name appears alone; a value of
false is indicated by a trailing at-sign (@). In this case, the settings indicate that the
account is not currently locked and that user chavez is allowed to select her pass-
word. The chkent keyword completes the entry.

Table 6-1 lists the fields in the protected password database. Note that all time peri-
ods are stored as seconds, and dates are stored as seconds since the beginning of

Unix Users and Groups | 227

Unix time (although the tools for modifying these entries will prompt for days or
weeks and actual dates).

Table 6-1. Protected password database fields

Field
u_name
u_id
u_pwd
u_succhg
u_lock
u_nullpw
u_minlen
u_maxlen
u_minchg
u_exp
u_life
u_maxtries

u_unlock

u_expdate
u_acct_expire
u_pickpw
u_genpw
u_restrict
u_policy
u_retired

u_booauth

u_pw_admin_num

Meaning

Username.

ui.

Encrypted password.

Date of last successful password change.

Whether the account is locked.

Whether a null password is allowed.

Minimum password length in characters (Tru64 only).

Maximum password length.

Minimum time between password changes.

Time period between forced password changes.

Amount of time after which account will be locked if password remains unchanged.
Number of consecutive invalid password attempts after which account will be locked.

Amount of time after which an account locked because of u_maxtries will be unlocked
(Tru64 only).

Date account expires (Tru64 only).

Account lifetime (HP-UX only).

Whether user is allowed to select a password.

Whether user is allowed to use the system password generator.
Whether quality of proposed new passwords is checked.
Site-specific program used to check proposed password (Tru64 only).
Account is retired: no longer in use and locked (Tru64 only).

If > 0, user can boot the system when d_boot_authenticate is true in the system default file
(HP-UX only).

Random number that functions as an initial account password.

All of the available fields are documented on the prpwd manual page.

System default values for protected password database fields are stored in /etc/auth/
system/default under Tru64 and /tcb/files/auth/system/default under HP-UX. The val-
ues in users’ records hold changes with respect to these settings. In addition, these
system-wide defaults may be set in the default file:

* Tru64: d_pw_expire_warning, the default warning period for about-to-expire

passwords.

e HP-UX: d_boot_authenticate, which indicates whether the boot command is
password-protected or not.

228 | Chapter6: Managing Users and Groups

It is not necessary to edit the protected password database files directly. Indeed, the
relevant manual pages discourage you from doing so. Instead, you are encouraged to
use the graphical utilities that are provided. Doing so is often helpful because these
tools describe the various settings in a more understandable form than the corre-
sponding field name alone provides. Nevertheless, there will be times when examin-
ing the entry for a particular user is the best way to diagnose a problem with an
account, so you’ll need to be able to make some sense of these files. We’ll consider the
most important of them when we discuss password management later in this chapter.

The Group File, /etc/group

Unix groups are a mechanism provided to enable arbitrary collections of users to
share files and other system resources. As such, they provide one of the cornerstones
of system security.

Groups may be defined in two ways:

* Implicitly, by GID; whenever a new GID appears in the fourth field of the pass-
word file, a new group is defined.

* Explicitly, by name and GID, via an entry in the file /etc/group.

The best administrative practice is to define all groups explicitly in the
letc/group file, although this is not required except under AIX.

Each entry in /etc/group consists of a single line with the following form:
name:*:GID:additional-users
The meanings of these fields are as follows:

name
A name identifying the group. For example, a development group working on
new simulation software might have the name simulate. Names are often
restricted to eight characters.

*

or!
The second field is the traditional group password field, but it now holds some
sort of placeholder character. Group passwords are no longer stored in the group
file (and, in fact, they are used only by Linux systems).

GID
This is the group’s identification number. User groups generally start number-
ing at 100.

* Usernames and group names are independent of one another, even when the same name is both a username
and a group name. Similarly, UIDs and GIDs sharing the same numerical value have no intrinsic relation to
one another.

Unix Users and Groups | 229

additional-users
This field holds a list of users (and, on some systems, groups) who are members
of the group, in addition to those users belonging to the group by virtue of /etc/
passwd (who need not be listed). Names must be separated by commas (but no
spaces may appear within the list).

Here are some typical entries from an /etc/group file:

chem: !:200:root,williams,wong, jones

bio:!:300:r00t,chavez,harvey

genome: | :360:ro0t
The first line defines the chem group. It assigns the group identification number (GID)
200 to this group. Unix will allow all users in the password file with GID 200 plus the
additional users williams, wong, jones, and root to access this group’s files. The bio and
genome groups are also defined, with GIDs of 300 and 360, respectively. Users chavez
and harvey are members of the bio group, and root is a member of both groups.

The various administrative tools for managing user accounts generally have facilities
for manipulating groups and group memberships. In addition, the group file may be
edited directly.

On Linux systems, the vigr command may be used to edit the group file while ensur-
ing proper locking during the process. It works in an analogous way to vipw, creat-
ing a temporary copy of the group file for actual editing, and saving a copy of the
previous group file when modifications are complete.

A w
\
< If your Linux system has vipw but not vigr, chances are that the latter
.‘s‘ is supported anyway. Create a symbolic link to vipw named vigr in the
"o @
112 same directory location as the former to enable the variant version of

" the command: 1n -s /usr/sbin/vipw /usr/sbin/vigr.

Most Unix systems impose a limit of 16 (or sometimes 32) group memberships per
user. Tru64 also limits each line in /etc/group to 225 characters. However, group defi-
nitions can be continued onto multiple lines by repeating the initial three fields.

User-private groups

Red Hat Linux uses a different method, known as user-private groups (UPGs), for
assigning user primary group membership. In this scheme, every user is the sole
member of a group with the same name as his username, whose GID is the same as
his UID. Users can then be added as additional members to other groups as needed.

This approach is designed to make project file sharing easier. The goal is to allow a
group of users, say chem, to share files in a directory, with every group member being
able to modify any file. To accomplish this, you change the group ownership of the
directory and its files to chem, and you turn on the setgid permission mode for the
directory (chmod g+s), which causes new files created there to take their group owner-
ship from the directory rather than the user’s primary group.

230 | Chapter6: Managing Users and Groups

The dilemma for this line of reasoning comes when deciding how group write access
should be enabled for files in the shared directory. UPG proponents argue that this
needs to be accomplished automatically by using a umask of 002. However, the side-
effect of this convenience—users not having to explicitly assign write permission to
files they want to share—means that other files the user creates (e.g., ones in his
home directory) will also be group-writeable, a very undesirable outcome for security
reasons. The “solution” is to make the user’s primary group a private group, to which
granting write access is benign or irrelevant, since the group is equivalent to the user.

In the end, however, UPGs are deeply embedded within the Red Hat Linux way of
doing things, so administrators of Red Hat systems must learn to live with them.

UPGs are also created by the FreeBSD adduser command.

Dynamic Group Memberships

In most cases, Unix does not distinguish between the two ways of establishing group
membership; exceptions are the group ownership of new files and accounting data
records, both of which generally reflect/record the current primary group member-
ship. In other contexts—for example, file access—a user is simultaneously a mem-
ber of all of her groups: her primary group and all of the groups for which she is
listed as an additional member in /etc/group.

The groups command displays a user’s current group memberships:

$ groups

chem bio phys wheel
The groups command will also take a username as an argument. In this case, it lists
the groups to which the specified user belongs. For example, the following com-
mands lists the groups of which user chavez is a member:

$ groups chavez

users bio
In a few circumstances, the group that is the user’s primary group is important. The
most common example is accounting systems where resource usage is tracked by
project or department in addition to user. In such contexts, the primary group is typ-
ically the one that is charged for a user’s resource use.”

For such cases, a user can temporarily change the group designated as her primary
group by using the newgrp command:

$ newgrp chem

* Solaris provides project-based accounting in another way. See “System V-Style Accounting: AIX, HP-UX,
and Solaris” in Chapter 17 for details.

Unix Users and Groups | 231

The newgrp command creates a new shell for this user, setting the primary group to
be chem. Without an argument, newgrp resets the primary group to the one specified
in the password file. The user must be a member of the group specified as the argu-
ment to this command.

FreeBSD does not support changing the primary group and so does not provide
newgrp.

The id command can be used to display the currently active primary and secondary
group memberships:

$ id

uid=190(chavez) gid=200(chem) groups=100(users),300(bio)
Current primary group membership is indicated by the “gid=" field in the command
output. On Solaris systems, you must include the -a option to view the equivalent
information.

The Linux group shadow file, /etc/gshadow

On Linux systems, an additional group configuration file is used. The file /etc/
gshadow is the group shadow password file. It contains entries of the form:

group-name:encoded password:group-admins:additional-users

where group-name is the name of the group, and encoded password is the encoded
version of the group password. group-admins is a list of users who are allowed to
administer the group by changing its password and modifying memberships within
the group (note that being so designated does not make them members of the speci-
fied group). additional-users is almost always a copy of the additional group mem-
bers list from /etc/group; it is used by the newgrp command to determine which users
can designate this group as their primary group (see below). Both lists are comma-
separated and may not contain spaces.

Here are some sample entries from a group shadow file:

drama:xxxxxxxxxx:foster:langtree, siddons

bio:*:root:root,chavez,harvey
The group drama has a group password, and users langtree and siddons are members
of it (as are any users who have it as their primary group, as defined in /etc/passwd).
Its group administrator is user foster (who may or may not be a member of this
group). In contrast, group bio has a disabled group password (since an asterisk is not
a valid encoding for any password character), root is its group administrator, and
users root, chavez, and harvey are additional members of the group.

The SuSE version of the vigr command accepts a -s option in order to edit the
shadow group file instead of the normal group file.

On Linux systems, the newgrp command works slightly differently, depending on the
group’s entry in the group password file:

232 | Chapter6: Managing Users and Groups

* If the group has no password, newgrp fails unless the user is a member of the
specified new group, either because it is her primary group or because her user-
name is present in the additional members list in the group shadow password
file, /etc/gshadow.

Because secondary group memberships for file access purposes are taken from
the /etc/group file, it makes no sense for a user to appear in the group shadow file
but not in the main group file. Omitting a secondary user defined in /etc/group
from the shadow group list prevents him from using newgrp with that group,
which might be desirable in some unusual circumstances.

* If the group has a password defined, any user who knows the password can
change to this group with newgrp (the command prompts for the group
password).

* If the group has a disabled password (indicated by an asterisk in the password
field of /etc/gshadow), no user may change her primary group to that group with
newgrp.

The HP-UX /etc/logingroup file

If the file /etc/logingroup exists on an HP-UX system, its contents are used to deter-
mine the initial group memberships when a user logs in. In this case, the additional
members list in the group file is used to determine which users may change their pri-
mary group to a given group with newgrp. Common sense dictates that the addi-
tional members list in the logingroup file be a superset of the list in the corresponding
entry in /etc/group.

AlX group sets

AIX extends the basic Unix groups mechanism to allow a distinction to be made
between the groups a user belongs to, which are defined by the password and group
files, and those that are currently active. The latter are referred to as the concurrent
group set; we’ll refer to them as the “group set.” The current real group and group set
are used for a variety of accounting and security functions. The real group at login is
the user’s primary group, as defined in the password file. When a user logs in, the
group set is set to the entire list of groups to which the user belongs.

The setgroups command is used to change the active group set and designated real
group. The desired action is specified via the command’s options, which are listed in
Table 6-2.

Table 6-2. Options to the AIX setgroups command

Option Meaning
-a glist Add the listed groups to the group set.
-d glist Delete the listed groups from the group set.

Unix Users and Groups | 233

Table 6-2. Options to the AIX setgroups command (continued)

Option Meaning
-s glist Set the group set to the specified list of groups.
-r group Set the real group (group owner of new files and processes, etc.).

For example, the following command adds the groups phys and bio to the user’s cur-
rent group set:

$ setgroups -a phys,bio
The following command adds phys to the current group set (if necessary) and desig-
nates it as the real group ID:
$ setgroups -r phys
The following command deletes the phys group from the current group set:
$ setgroups -d phys
If the phys group was also the current real group, the next group in the list (in this

case system) becomes the real group when phys is removed from the current group
set. Note that each time a setgroups command is executed, a new shell is created.

Without arguments, setgroups lists the user’s defined groups and current group set:

$ setgroups

chavez:

user groups = chem,bio,phys,genome,staff

process groups = phys,bio,chem
The groups labeled “user groups” are the entire set of groups to which user chavez
belongs, and the groups labeled “process groups” form the current group set.

User Account Database File Protections

Proper file ownership and protection on the user accounts database files are
extremely important to maintaining system security. All of these files must be owned
by root and a system group such as GID 0. The two shadow files should also prevent
access by anyone but their owner. root may have write access to any of these files.

Apply the same ownership and protection to any copies of these files you make. For
example, here is a long directory listing of the various files from one of our systems:

1s -1 /etc/pass* /etc/group* /etc/*shad*

-Iw-r--r-- 1 root root 681 Mar 20 16:15 /etc/group
-Iw-r--r-- 1 root root 752 Mar 20 16:11 /etc/group-
-r--r--r-- 1 root root 631 Mar 6 12:46 /etc/group.orig
-Iw-r--r-- 1 root root 2679 Mar 19 13:15 /etc/passwd
-IW-r--r-- 1 root root 2674 Mar 19 13:15 /etc/passwd-
-IW------- 1 root shadow 1285 Mar 19 13:11 /etc/shadow
-TW------- 1 root shadow 1285 Mar 15 08:37 /etc/shadow-

We made a copy of the group file (group.orig) which we protected against all write
access. The files with the hyphens appended to their name are backup files created

234 | Chapter6: Managing Users and Groups

by the vipw and vigr utilities. Whatever the specific files present on your system,
ensure that all of them are protected properly, and make doubly sure that no shadow
file is readable by anyone but the superuser.

Standard Unix Users and Groups

All Unix systems typically predefine many user accounts. With the exception of root,
these accounts are seldom used for logins. The password file as shipped usually has
these accounts disabled. Be sure to check the shadow password file on your system,
however. System accounts without passwords are significant security holes that
should be plugged right away.

The most common system user accounts are listed in Table 6-3.

Table 6-3. Standard Unix user accounts

Usernames Description

root User 0, the superuser. The defining feature of the superuser account is UID 0, not the username root; any
account with UID 0 is a superuser account.

bin, daemon, System accounts traditionally used to own system files and/or execute the associated system server pro-

adm, Ip, sync, cesses. However, many Unix versions define these users but never actually use them for file ownership or

shutdown, sys process execution.

mail, news, ppp Accounts associated with various subsystems and facilities. Again, these accounts serve to own the corre-
sponding files and to execute the component processes.

postgres, Accounts created by optional facilities installed on the system to administer and execute their services.
mysql, xfs These three examples are accounts associated with Postgres, MySQL, and the X font server, respectively.
tch Administrative account that owns the (2-style security-related files and databases on some systems with

enhanced security (tcb=trusted computing base).

nobody Account used by NFS and some other facilities. As defined on BSD systems, nobody traditionally has the
UID -2, which usually appears in the password file as 65534=216-2 (UIDs are of the unsigned data type:
on 64-bit systems, this number may be much larger). System V's nobody UID is 60001. Some systems
define usernames for both of them. Inexplicably, Red Hat uses 99 as nobody’s UID, although it defines
other usernames for the traditional values.

Unix systems are similarly shipped with a /etc/group file containing entries for stan-
dard groups. The most important of these are:

* root, system, wheel, or sys: The group with GID 0. Like the superuser, this group
is very powerful and is the group owner of most system files.

* Most systems define a number of system groups, analogous to the similarly
named system user accounts: bin, daemon, sys, adm, tty, disk, lp, and so on. Tra-
ditionally, these groups own various system files (e.g., tty often owns all the spe-
cial files connected to serial lines); however, not all of them are actually used on
every Unix system.

* FreeBSD and other BSD-based systems use the kmem group as the owner of pro-
grams required to read kernel memory.

Unix Users and Groups | 235

* mail, news, cron, uucp: groups associated with various system facilities.

* users or staff (often GID 100): Many Unix systems provide a group as the default
primary group for ordinary user accounts.

Using Groups Effectively

Effective file permissions are intimately connected to the structure of your system’s
groups. On many systems, groups are the only method the operating system pro-
vides to refer to and operate on arbitrary sets of users. Some sites define the groups
on their systems to reflect the organizational divisions of their institution or com-
pany: one department becomes one group, for example (assuming a department is a
relatively small organizational unit). However, this isn’t necessarily what makes the
most sense in terms of system security.

Groups should be defined on the basis of the need to share files and, correlatively,
the need to protect files from unwanted access. This may involve combining several
organizational units into one group or splitting a single organizational unit into sev-
eral distinct groups. Groups need not mirror “reality” at all if that’s not what secu-
rity considerations call for.

Group divisions are often structured around projects; people who need to work
together, using some set of common files and programs, become a group. Users own
the files they use most exclusively (or sometimes a group administrator owns all the
group’s files), common files are protected to allow group access, and all of the
group’s files can exclude non—group member access without affecting anyone in the
group. When someone works on more than one project, then he is made a member
of both relevant groups.

When a new project begins, you can create a new group for it and set up some com-
mon directories to hold its shared files, protecting them to allow group access (read-
execute if members won’t need to add or delete files and read-write-execute if they
will). Similarly, files will be given appropriate group permissions when they are cre-
ated based on the access group members will need. New users added to the system
for this project can have the new group as their primary group; relevant existing
users can be added to it as secondary group members in the group file.

The Unix group mechanism is not a perfect security solution, however. For example,
suppose that a user needs access to just one or two files that are owned by a group to
which she doesn’t belong, and you don’t want to make her a member of the second
group because it will give her other privileges that you don’t want her to have. One
solution is to provide a setgid program that allows her to access the needed files; the
setuid and setgid access modes are the subject of the next subsection. However, to
properly address such a dilemma, you have to go beyond what is offered by the stan-
dard Unix group scheme. Access control lists, a mechanism that allows file permis-
sions to be specified on a per-user basis, are the best solution to such problems, and
we will consider them in “Protecting Files and the Filesystem” in Chapter 7.

236 | Chapter6: Managing Users and Groups

Managing User Accounts

In this section, we will consider the processes of adding, configuring, and removing
user accounts on Unix systems.

Adding a New User Account
Adding a new user to the system involves the following tasks:

* Assign the user a username, a user ID number, and a primary group, and decide
which other groups she should be a member of (if any). Enter this data into the
system user account configuration files.

* Assign a password to the new account.
* Create a home directory for the user.
* Place initialization files in the user’s home directory.

* Use chown and/or chgrp to give the new user ownership of his home directory
and initialization files.

* Set other user account parameters appropriate for your system (possibly includ-
ing password aging, account expiration date, resource limits, and system privi-
leges).

* Add the user to any other facilities in use as appropriate (e.g., the disk quota sys-
tem, mail system, and printing system).

* Grant or deny access to additional system resources as appropriate, using file
protections or the resources’ own internal mechanisms (e.g., the /etc/ftpusers file
controls access to the ftp facility).

* Perform any other site-specific initialization tasks.

¢ Test the new account.

We will consider each of these steps in detail in this section. This discussion assumes
that you’ll be adding a user by hand. Few people actually do this anymore, but it is
important to understand the whole process even if you use a tool that automates a
lot of it for you. The available tools are discussed later in this chapter.

Defining a New User Account

The process of creating a new user account begins by deciding on its basic settings:
the username, UID, primary group, home directory location, login shell, and so on. If
you assign UIDs by hand, it is usually easiest to do so according to some scheme. For
example, you could choose the next available UID, assign UIDs from each range of
100 by department, or do whatever makes sense at your site. In any case, once these

parameters have been chosen, the new account may be entered into the password
file.

Managing User Accounts | 237

If you decide to edit the password file directly, keep the entries within
it ordered according to user ID. New entries will be easier to add, and
you’ll be less likely to create unwanted duplicates.

Assigning a Shell

As we’ve seen, the final field in the password file specifies the login shell for each
user. If this field is empty, it usually defaults to /bin/sh, the Bourne shell.” On Linux
systems, this is a link to the Bourne-Again shell bash (usually /ust/bin/bash).

Users can change their login shell using the chsh command (or a similar command;
see Table 6-4), and the system administrator may also use chsh to set or modify this
password file field. For example, the following command will change user chavez’s
login shell to the enhanced C shell:

chsh -s /bin/tcsh chavez

For this purpose, the legal shells are defined in the file /etc/shells; only programs
whose pathnames are listed here may be selected as login shells by users other than
root.T Here is a sample /etc/shells file:

/bin/sh

/bin/csh

/bin/false

/usr/bin/bash

/usr/bin/csh

/usr/bin/ksh

/usr/bin/tcsh

Most of these shells are probably familiar to you. The unusual one, /bin/false, is a
shell used to disable access to an account;¥ it results in an immediate logout to any
account using it as a login shell.

You may add additional entries to this file, if necessary. Be sure to specify a full path-
name (in which no directory component is world-writable).

Table 6-4. Shell and full-name modification commands

Task Command
Change login shell Usual: chsh

Solaris: passwd -e (root use only)
Change full name (GECOS field) Usual: chfn

Solaris: passwd -g (root use only)

* Or the superficially similar POSIX shell (which more closely resembles the Korn shell).

t This is actually a configuration option of the chsh command, so this restriction may or may not be enforced
on your system.

1 More accurately, the false command always exits immediately, with a return value signifying failure (the
value 1). When this command is used as a login shell, the described behavior results.

238 | Chapter6: Managing Users and Groups

Captive accounts

Sometimes it is desirable to limit what users can do on the system. For example,
when users spend all their time running a single application program, you can make
sure that’s all they do by making that program their login shell (as defined in the
password file). After the user successfully logs in, the program begins executing, and
when the user exits from it, they are automatically logged out.

Not all programs can be used this way, however. If interactive input is required, for
example, and there is no single correct way to invoke the program, then simply using
it as a login shell won’t work. Unix provides a restricted shell to address such
problems.

A restricted shell is a modified version of the Bourne or Korn shell. The name and
location of the restricted Bourne shell within the filesystem vary, but it is usually /bin/
Rsh (often a link to /usr/bin/Rsh). rksh is the restricted Korn shell, and rbash is the
restricted Bourne Again shell. These files are hard links to the same disk file as the
regular shell, but they operate differently when invoked under the alternate names.
AIX and Tru64 provide Rsh, HP-UX and Solaris provide rksh, and Linux systems pro-
vide rbash. Some shells let you specify restricted mode with a command-line flag (e.g.,
bash -restricted).

Restricted shells are suitable for creating captive accounts: user accounts that run
only an administrator-specified set of actions and that are logged off automatically
when they are finished. For example, a captive account might be used for an opera-
tor who runs backups via a menu set up by the administrator. Or a captive account
might be used to place users directly into an application program at login. A captive
account is set up by specifying the restricted shell as the user’s login shell and creat-
ing a .profile file to perform the desired actions.

The restricted shell takes away some of the functionality of the normal shell. Specifi-
cally, users of a restricted shell may not:

¢ Use the cd command.
* Set or change the value of the PATH, ENV, or SHELL variables.

* Specify a command or filename containing a slash (/). In other words, only files
in the current directory can be used.

* Use output redirection (> or >>).

Given these restrictions, a user running from a captive account must stay in what-
ever directory the .profile file places him. This directory should not be his home
directory, to which he probably has write access; if he ended up there, he could
replace the .profile file that controls his actions. The PATH variable should be set as
minimally as possible.

A captive account must not be able to write to any of the directories in the defined
path. Otherwise, a clever user could substitute his own executable for one of the
commands he is allowed to run, allowing him to break free from captivity. What this

Managing User Accounts | 239

means in practice is that the user should not be placed in any directory in the path as
his final destination, and the current directory should not be in the search path if the
current directory is writable.

Taking this idea to its logical conclusion, some administrators set up a separate rbin
directory—often located as a subdirectory of the captive account’s home directory—
containing hard links to the set of commands the captive user is allowed to run.
Then the administrator sets the user’s search path to point only there. If you use this
approach, however, you need to be careful in choosing the set of commands you give
to the user. Many Unix commands have shell escape commands: ways of running
another Unix command from within the command. For example, in vi you can run a
shell command by preceding it with an exclamation point and entering it at the colon
prompt (when available, the restricted version, rvi, removes this feature). If a com-
mand supports shell escapes, the user can generally run any command, including a
unrestricted shell. While the path you set will still be in effect for commands run in
this way, the user is not prevented from specifying a full pathname in a shell escape
command. Thus, even a command as seemingly innocuous as more can allow a user
to break free from a captive account, because a shell command may be run from more
(and man) by preceding it with an exclamation point.

Be sure to check the manual pages carefully before deciding to include a command
among the restricted set. Unfortunately, shell escapes are occasionally undocu-
mented, although this is most true of game programs. In many cases, shell escapes
are performed via an initial exclamation point or tilde-exclamation point (~!).

In general, you should be wary of commands that allow any other pro-
grams to be run within them, even if they do not include explicit shell
escapes. For example, a mail program might let a user invoke an edi-
tor, and most editors allow shell escapes.

Assigning a Password

Since passwords play a key role in overall system security, every user account should
have a password. The passwd command may be used to assign an initial password for
a user account. When used for this purpose, it takes the relevant username as its
argument. For example, the following command assigns a password for the user
chavez:

passwd chavez

You are prompted for the password twice, and it does not appear on the screen. The
same command may also be used to change a user’s password, should this ever be
necessary (for example, if she forgets it).

240 | Chapter6: Managing Users and Groups

Criteria for selecting good passwords and techniques for checking password strength
and specifying password lifetimes are discussed later in this chapter, after we have
finished our consideration of creating user accounts.

Under AIX, whenever the superuser assigns a password to an account with passwd
(either manually or indirectly via SMIT), that password is pre-expired, and the user
will be required to change it at the next login.

Traditionally, Unix passwords were limited to a maximum length of 8 characters.
Recent systems, including FreeBSD and Linux when using the MD5 encoding mechan-
ims, and HP-UX and Tru64 in enhanced security mode, allow much longer ones (at
least 128 characters). AIX and Solaris still currently limit passwords to 8 characters.

Creating a Home Directory

After adding a user to the /etc/passwd file, you must create a home directory for the
user. Use the mkdir command to create the directory in the appropriate location, and
then set the permissions and ownership of the new directory appropriately. For
example:

mkdir /home/chavez

chown chavez.chem /home/chavez

chmod 755 /home/chavez
On Unix systems, user home directories conventionally are located in the /home
directory, but you may place them in any location you like.

User Environment Initialization Files

Next, you should give the user copies of the appropriate initialization files for the
shell and graphical environment the account will run (as well as any additional files
needed by commonly used facilities on your system).

The various shell initialization files are:

Bourne shell .profile
C shell dogin, .logout, and .cshrc
Bourne-Again shell .profile, .bash_profile, .bash_login, .bash_logout,
and .bashrc
Enhanced C shell login, .logout, and .tcshrc (or .cshrc)
Korn shell .profile and any file specified in the ENV environment

variable (conventionally .kshrc)

These files must be located in the user’s home directory. They are all shell scripts
(each for its respective shell) that are executed in the standard input stream of the
login shell, as if they had been invoked with source (C shells) or . (sh, bash, or ksh).
The .profile, .bash_profile, .bash_login, and .login initialization files are executed at

Managing User Accounts | 241

login.” .cshre, .teshre, .bashrc, and .kshrc are executed every time a new shell is
spawned. .logout and .bash_logout are executed when the user logs out.

As administrator, you should create standard initialization files for your system and
store them in a standard location. Conventionally, the directory used for this
purpose is /etc/skel, and most Unix versions provide a variety of starter initialization
files in this location. These standard initialization files and the entire directory tree in
which they are kept should be writable only by root.

Here are the locations of the skeleton initialization file directories on the various
systems:

AIX letc/security (contains .profile only)
FreeBSD fusr/share/skel

HP-UX fetc/skel

Linux fetc/skel

Solaris Jetc/skel

Tru64 fusr/skel

In any case, you should copy the relevant file(s) to the user’s home directory after
you create it. For example:

cp /etc/skel/.bash* /home/chavez

cp /etc/skel/.log{in,out} /home/chavez

cp /etc/skel/.tcshrc /home/chavez

chown chavez.chem /home/chavez/.[a-z]*
There are, of course, more clever ways to do this. I tend to copy all the standard ini-
tialization files to a new account in case the user wants to use a different shell at
some later point. It is up to the user to modify these files to customize her own user
environment appropriately.

Depending on how you use your system, several other initialization files may be of
interest. For example, many editors have configuration files (e.g., .emacs), as do user
mail programs. In addition, the Unix graphical environments use various configura-
tion files.

Sample login initialization files

The ."login or .*profile files are used to perform tasks that only need to be executed
upon login, such as:

* Setting the search path

* Setting the default file protection (with umask)

* Setting the terminal type and initializing the terminal

* The bash shell executes as many of .bash_profile, .bash_login, and .profile as exist in a user’s home directory
(in that order).

242 | Chapter6: Managing Users and Groups

* Setting other environment variables

* Performing other customization functions necessary at your site

The contents of a simple .login file are listed below; it will serve to illustrate some of
its potential uses (which we have indicated with comments):

sample .login file

limit coredumpsize ok # suppress core files

umask 022 # set default umask

mesg y # enable messages via write
biff y # enable new mail messages

add items to the system path
setenv PATH "$PATH:/usr/local/bin:~/bin:."

setenv PRINTER ps # default printer
setenv EDITOR emacs # preferred editor
setenv MORE -c # make more always clear screen

set an application-specific environment variable
setenv ARCH_DIR /home/pubg95/archdir/
set command prompt to hostname plus current command number
set prompt = '“hostname™-\!> '
very simple terminal handling
echo -n "Enter terminal type: "; set tt=$<
if ("$tt" == "") then
set tt="vt100"
endif
setenv TERM $tt

We can create a very similar .profile file:

sample .profile file
ulimit -c o
umask 022
mesg y
biff y
PATH=$PATH:usr/local/bin:$HOME/bin:.
PRINTER=ps
EDITOR=emacs
MORE=-c
ARCH_DIR=/home/pubg95/archdir/
PS1=""hostname™-\!> "
export PATH PRINTER EDITOR MORE ARCH DIR PS1
echo -n "Enter terminal type: "; read tt
if ["$tt" = ""]; then

tt="vt100"
fi
export TERM=$tt

The main differences are in the ulimit command, the different syntax for environ-
ment variables (including the export commands), and the different mechanism for
obtaining and testing user input.

Sample shell initialization files

Shell initialization files are designed to perform tasks that need to be executed when-
ever a new shell is created. These tasks include setting shell variables (some of which

Managing User Accounts | 243

have important functions; others are useful abbreviations) and defining aliases (alter-
nate names for commands). Unlike environment variables such as TERM, shell vari-
ables and aliases are not automatically passed to new shells; therefore, they need to
be established whenever the operating system starts a new shell.

The contents of a simple .cshrc file are illustrated by this example:

sample .cshrc file

alias j jobs # define some aliases

alias h history

alias 1 1s -aFx

alias 11 1s -aFxl

alias psa "ps aux | head"

the next alias shows the method for including a replaceable
command line parameter within an alias definition: \!:1 => $1
alias psg "ps aux | egrep 'PID|\!:1' | more -c"

set shell variables to specified various features

set history = 100 # remember 100 commands

set savehist = 100 # save 100 commands across logins
set nobeep # never beep!

set autologout 60 # logout after 1 hour idle time
set noclobber # warn about overwriting files
set ignoreeof # don't interpret "D as logout
set prompt = "“hostname-\!>> " # set prompt

If you are using the enhanced C shell, tcsh, you might modify the last two com-
mands and add a couple of others:

set correct cmd # try to correct mistyped commands
set ignoreeof 2 #2 "D's => logout
set rmstar # confirm rm * commands

set prompt="%m:%~-%h>> # prompt is: hostname:dir-cmd num>>

The Bourne-Again shell similarly uses .bashrc as its shell initialization file. In the
Korn shell, a shell initialization file may be defined via the ENV environment vari-
able (usually in .profile):

export ENV=$HOME/.kshrc

An alternate shell initialization file can be specified for bash via the BASH_ENV envi-
ronment variable.

Both of these shells define aliases using a slightly variant syntax; an equal sign is
included between the alias and its definition:
alias 1="ls -1xF"

Consult the documentation for any of the shells to determine all of the available
options and features and the shell variables used enable them.

Be aware that the Bourne-Again shell (bash) behaves differently
depending on whether it is invoked as /bin/sh or not (if so, it emulates
s+ the behavior of the traditional Bourne shell in some areas).

244 | Chapter6: Managing Users and Groups

The AIX /etc/security/environ file

AIX provides an additional configuration file where you may set environment vari-
ables that are applied to the user’s process at login. Here is a sample stanza from that
file:

chavez:
userenv = "MAIL=/var/spool/mail/chavez,MAILCHECK=1800"
sysenv = "NAME=chavez@dalton"
This entry specifies three environment variables for user chavez, specifying her mail
spool folder, how often to check for new mail (every 30 minutes), and the value of
the NAME environment variable, respectively. The userenv and sysenv entries differ
in that the latter may not be modified.

If you include an entry named default in this file, its settings will be applied to all
users who do not have an explicit stanza of their own.

Desktop environment initialization files

System administrators are frequently asked to provide configuration files that initial-
ize a user’s graphical environment. These environments are all based on the X win-
dow system, and its most commonly used initialization files are named .xinitrc, .
xsession, and .Xauthority. Specific window managers and desktop environments also
generally support one or more separate configuration files. For example, the Com-
mon Desktop Environment (CDE) uses the .dtprofile initialization file, as well as
many files below the ~/.dt subdirectory.

Commercial Unix versions generally install CDE as the default windowing system.
Unix versions available for free allow users to choose from several offerings, usually
at installation time (FreeBSD works this way). On Linux systems, the systemwide X
initialization files dynamically choose a desktop environment when X is started.

For example, on Red Hat Linux systems, in the absence of any other configuration,
desktop initialization occurs via the file /etc/X11/xinit/xinitrc, which then runs /etc/
X11/xinit/Xclients. The latter file uses the following process to determine which envi-
ronment to start:

* If the file /etc/sysconfig/desktop exists, its contents are compared to the keywords
GNOME, KDE, and AnotherLevel (in this order). If a keyword is found within
the file, the corresponding environment is started if it is available. If not, the sys-
tem attempts to start the GNOME desktop environment, falling back to KDE in
the event of failure (for example, if GNOME is not installed).

* Next, the file .wm_style is searched for in the user’s home directory. If it is found
and it contains any of the keywords AfterStep, WindowMaker, fvwm95, Mwm
or Lesstif (searching in that order and taking only the first match), the corre-
sponding window manager is started if it is available.

Managing User Accounts | 245

If nothing else has been selected or is present at this point, the fvwm (tried first)
or twm simple window manager is started (the latter is available on virtually every
Unix system because it is part of the X11 distribution).

As you can see, the default process tries to start a fancy graphical environment first,
falling back to various simpler ones if necessary.

What happens on SuSE Linux systems depends on the specifics of how the user
account was created:

In the absence of any .xinitrc file in the user’s home directory, the default X ini-
tialization file (/usr/lib/X11/xinit/xinitrc) attempts to start the fvwm2, fvwm, and
twm window managers (in that order).

If the default .xinitrc file (contained in /etc/skel) has been copied to the user’s
home directory, a different procedure is used. First, the script checks to see
whether the environment variable WINDOWMANAGER is set. If so, it uses the
path specified as its value as the location of the desired window manager.

If this environment variable is not set, the initialization file attempts to locate the
KDE environment files on the system. If these files cannot be located, those for
fvwm2 are tried next, followed by all window managers listed in the file /usr/X11/
binfwmlist.

The first window manager that is located is set as the value of the
WINDOWMANAGER environment variable. As the file concludes, this variable
is used to initiate the selected graphical environment. In this way, the SuSE
scheme differs from that of Red Hat in that it attempts to start only a single win-
dow manager.

Systemwide initialization files

For Bourne, Bourne-Again, and Korn shell users, the file /etc/profile serves as a sys-
temwide initialization file that is executed before the user’s personal login initializa-
tion file. The PATH variable is almost always defined in it; it therefore applies to
users without explicit PATH variables set in their .profile. Sometimes a default umask
is also specified here. Here is a simple /etc/profile file designed for the bash shell,
adapted from a Red Hat Linux system; we have annotated it with comments:

PATH="$PATH: /usr/X11R6/bin"

PS1="[\u@\h \w]\\$ " # prompt: [user@host dir]$
ulimit -c o # suppress core files
set umask, depending on whether UPGs are used or not
alias id=/usr/bin/id # shorthand to save space
if ["id -gn® = “id -un” -a “id -u" -gt 99]; then
umask 002 # UID=GID>99 so it's a UPG
else
umask 022
fi

246

| Chapter6: Managing Users and Groups

USER="1id -un’
unalias id # remove id alias
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
HOSTNAME="/bin/hostname”
HISTSIZE=100
HISTFILESIZE=100
export PATH PS1 USER LOGNAME MAIL HOSTNAME HISTSIZE HISTFILESIZE
execute all executable shell scripts in /etc/profile.d
for i in /etc/profile.d/*.sh ; do

if [-x $1]; then

51

fi
done
unset i # clean up

Under Red Hat Linux, the files in the installed /etc/profile.d directory initialize the
user’s language environment and also set up various optional facilities. The system
administrator may, of course, add scripts to this directory, as desired.

All systemwide initialization files should be writable only by the
superuser.

The tcsh shell also has systemwide initialization files: /etc/csh.cshrc, /etc/csh.login and
letc/csh.logout.

AIX supports an additional systemwide initialization file, /etc/environment (in addi-
tion to /etc/security/environ, mentioned earlier). This file is executed by init and
affects all login shells via the environment they inherit from init. It is used to set the
initial path and a variety of environment variables.

The best way to customize systemwide initialization files is to create
your own scripts that are designed to run after the standard scripts
complete. Hooks are sometimes provided for you. For example, on
SuSE Linux systems, /etc/profile automatically calls a script named /etc/
profile.local, if it exists, as its final action. Even if your version of the
initialization file does not have such a hook, it is easy enough to add
one (via the source or . command, depending on the shell).

This approach is preferable to modifying the vendor-supplied file itself
since future operating system upgrades will often replace these files
without warning. If all you’ve added to them is a simple call to your
own local, systemwide initialization script, it will be easy to insert the
same thing into the new version of the vendor’s file. On the other
hand, if you do decide to modify the original files, be sure to keep a
copy of your modified version in a safe location so that you can restore
it or merge it into the new vendor file after the upgrade.

Managing User Accounts | 247

Setting File Ownership

After you copy the appropriate initialization files to the user’s home directory, you
must make the new user the owner of the home directory and all its files and subdi-
rectories. To do this, execute a command like this one:

chown -R chavez:chem /home/chavez

The -R (“recursive”) option changes the ownership on the directory and all the files
and subdirectories it contains, all the way down. Note that the second component of
chown’s first parameter should be the user’s primary group.

Adding the User to Other System Facilities

The user should also be added to the other facilities in use at your site. Doing so may
involve the following activities:

* Adding the user to various security facilities, which may include assigning sys-
tem privileges. Some of these are discussed later in this chapter.

* Assigning disk quotas (see “Monitoring and Managing Disk Space Usage” in
Chapter 15).

* Defining a mail alias and fulfilling any other requirements for the mail system
that is in use (see Chapter 9).

* Setting print-queue access (see Chapter 13).

Any other site-specific user account tasks, for local or third-party applications,
should ideally be performed as part of the account creation process.

Specifying Other User Account Controls

Many systems provide additional methods for specifying various characteristics of
user accounts. The sorts of controls include password change and content, valid
login times and locations, and resource limits. Table 6-5 lists the general sorts of
account attributes provided by the various Unix flavors.

Table 6-5. Available user account attribute types

Password lifetimes Password strength Logintimes Login locations Resource limits

AIX yes yes yes yes yes
FreeBSD yes no yes yes yes
HP-UX yes yes yes no no
Linux yes yes PAMa PAMa PAMa
Solaris yes yes no no no
Tru64 yes yes yes no yes

a Functionality is provided by the PAM facility (discussed later in this chapter).

248 | Chapter6: Managing Users and Groups

We will defer consideration of password-related account controls until later in this
chapter. In this section, we’ll consider available controls on when and where logins
can occur and how to set user account resource limits in other context of each oper-
ating system. We'll also consider other settings related to the login process as

appropriate.

AlX user account controls

AIX provides several classes of user account attributes, which are stored in a series of

files in /etc/security:

letc/security/environ

Environment variable settings (discussed previously)

letc/security/group
Group administrators

letc/security/limits
Per-account resource limits

letc/security/login.cfg

Per-tty valid login time and system-wide valid login shells

letc/security/passwd

User passwords and password change data and flags

letc/security/user

Per-user account login controls and attributes

The contents of all of these files may be modified with the chuser command and
from SMIT. We’ll look at several of these file in this subsection and at /etc/security/

passwd and the password-related controls in /etc/security/user later in this chapter.

Here are two sample stanzas from /etc/security/user:

default:
admin = false
login = true
daemon = true
rlogin = true
su = true
sugroups = ALL
logintimes = ALL
ttys = ALL
umask = 022
expires = 0
account_locked =
loginretries = 0
chavez:
admin = true
admingroups = chem,bio
expires = 1231013004
loginretries = 5
logintimes = 1-5:0800-2000

false

Is an administrative user.

Can login locally.

Can run cron/SRC processes.
Can connect with rlogin.

Users can su to this account.
Groups that can su to this user.
Valid login times.

Valid terminal locations.
Default umask.

Expiration date (O=never).
Account is not locked.
Unlimited tries before account is locked.

Groups she administers.

Account expires 1:30 A.M. 12/31/04
Lock account after 5 login failures.
User can log in M-F, 8 A.M.—6 P.M.

Managing User Accounts

249

The first stanza specifies default values for various settings. These values are used
when a user has no specific stanza for her account and when her stanza omits one of
these settings. The second stanza sets some characteristics of user chavez’s account,
including an expiration date and allowed login times.

Here is a sample stanza from /etc/security/limits, which sets resource limits for user
processes:

chavez:
fsize = 2097151
core = 0
cpu = -1
data = 262144
1ss = 65536

stack = 65536
nofiles = 2000

The default stanza specifies default values. Resource limits are discussed in detail in
“Monitoring and Controlling Processes” in Chapter 15.

The /etc/security/login.cfg file contains login-related settings on a per-tty basis. Here
is a sample default stanza:

default:
logintimes = Valid login times (blank=all).
logindisable = 10 Disable terminal after 10 unsuccessful tries.
logindelay = 5 Wait 5*#tries seconds between login attempts.
logininterval = 60 Reset failure count after 60 seconds.
loginreenable = 30 Unlock a locked port after 30 minutes (O=never).

This file also contains the list of valid shells in its usw stanza (as noted previously).

FreeBSD user account controls

FreeBSD uses two additional configuration files to control user access to the system
and to set other user account attributes. The first of these, /etc/login.access, controls
system access by user and/or system and/or tty port. Here are some sample entries:

+:chavez:dalton.ahania.com Chavez can login from dalton
+:users:.ahania.com The users group can log in from this domain.
-:ALL EXCEPT wheel:console Only administrators on the console.

The three fields hold + or — (for allow and deny), a list of users and/or groups, and a
login origination location, respectively.

The order of entries within this file is important: the first matching entry is used.
Thus, the example file would not work properly, because users who are not mem-
bers of the wheel group would still be able to log in on the console due to the second
rule. We would need to move the third entry to the beginning of the file to correct
this. In general, entries should move from the most specific to the most general.

The /etc/login.conf is used to specify a wide variety of user account attributes. It does
so by defining user classes, consisting of named groups of settings. User accounts are
assigned to a class via the fifth field in the /etc/master.passwd file.

250 | Chapter6: Managing Usersand Groups

The following example file defines three classes, the default class, used for users not
assigned to a specific class, and the classes standard and gauss:

default:\

Initial environment settings
:copyright=/etc/COPYRIGHT:\
:welcome=/etc/motd:\
:nologin=/etc/nologin:\
:requirehome:\
:setenv=PRINTER=picasso, EDITOR=emacs:
:path=/bin /usr/bin /usr/X11R6/bin ...:\
:umask=022:\

Login time and origin settings
:times.allow=MoTulWeThFr0700-1800,5a0900-1700:\
:ttys.deny=console:\
:hosts.allow=*.ahania.com:\

System resource settings
:cputime=3600:\

:maxproc=20:\
:priority=0:\

Password settings
:passwd_format=mds:\
:minpasswordlen=8:

standard:\

:tc=default:

gauss:\

:cputime=unlimited:\
:coredumpsize=0:\
spriority=1:\
:times.allow=:times.deny=:
:tc=default:

The default class contains settings related to the initial user environment (login mes-
sages file, the location for the nologin file, settings for environment variables, and the
umask), allowed and/or denied login times, originating ttys and/or hosts (denials
take precedence over allows if there are conflicts), system resource settings (see
“Monitoring and Controlling Processes” in Chapter 15 for more information) and
settings related to password encoding, selection and lifetimes (discussed later in this
chapter).

The standard class is equivalent to the default class since its only attribute is the tc
capability include directive (used to include the settings from one entry within
another). The gauss class defines a more generous maximum CPU-usage setting, dis-
ables core file creation, sets the default process priority to 1 (one step lower than nor-
mal), and allows logins all of the time. Its final attribute also includes the settings
from the default class. The preceding attributes act as overrides to the default set-
tings since the first instance of an attribute within an entry is the one that is used.

After editing the login.conf file, you need to run the cap_mkdb command:

cap_mkdb -v /etc/login.conf
cap_mkdb: 9 capability records

Managing User Accounts | 251

Linux user account controls

On Linux systems, the file /etc/login.defs contains settings related to the general login
process and user account creation and modification. The most important entries in
this file are described in the following annotated example file:

ENV_PATH path Search paths for users and root.
ENV_ROOTPATH path

FAIL DELAY 10 Wait 10 seconds between login tries.
LOGIN_RETRIES 5 Maximum number of login attempts.
LOGIN_TIMEOUT 30 Seconds to wait for a password.

FAILLOG ENAB yes Record login failures in /var/log/faillog.
LOG_UNKFAIL_ENAB yes Include usernames in the failure log.
LASTLOG_ENAB yes Record all logins to /var/log/lastlog.

MOTD FILE /etc/motd;/etc/motd.1 List of message-of-the-day files.
HUSHLOGIN_FILE .hushlogin Name of hushlogin file (see below).
DEFAULT_HOME yes Allow logins when user's home is inaccessible.
UID MIN 100 Minimum/maximum values for UIDs/GIDs
UID_MAX 20000 (used by the standard user account
GID_MIN 100 creation tools).

GID_MAX 2000

CHFN_AUTH no Don't require a password to use chfn.
CHFN_RESTRICT frw Allow changes to full name and office and work phones.

The HUSHLOGIN_FILE setting controls whether any message-of-the-day display
can be suppressed on a per-user basis. If this parameter is set to a filename without a
path (traditionally .hushlogin), these messages will not be displayed if a file of that
name is present in the user’s home directory (the file’s contents are irrelevant).

This parameter may also be set to a full pathname, for example, /etc/hushlogin. In
this case, its contents are a list of usernames and/or login shells; when a user logs in,
if either the user’s login name or shell is listed within this file, the messages will not
be displayed.

In addition to the settings listed in the sample file, /etc/login.defs includes several
other settings related to user passwords; we will consider them later in this chapter.
See the manual page for login.defs for additional information about the contents of
this configuration file.

Solaris login process settings

Solaris supports a systemwide login process configuration file, /etc/default/login. Here
are some of the most useful login-related settings within it:

CONSOLE=/dev/console If defined, limits logins on this tty to root.
TIMEOUT=300 Abandon login attempt after 5 minutes.
SYSLOG=YES Log root logins and login failures to syslog.
SLEEPTIME=4 Wait 4 seconds between failed logins.

SYSLOG_FAILED LOGINS=1 Generate syslog record at second failure.

252 | Chapter6: Managing Users and Groups

Specifying login time restrictions under HP-UX and Tru64

HP-UX and Tru64 allow the system administrator to specify when during a day,
week, or other time period a user’s account may be used. This is done with the u_tod
attribute in the protected password database. For example, the following entry from
an HP-UX system generally allows access on weekdays and during the day (6 A.M. to
6 A.M.) on the weekend but forbids access on any day between 2 A.M. and 5 A.M.:

u_tod=Wk0500-2359, Sa0600- 1800, SU0600-1800
Here is the equivalent setting under Tru64:
u_tod=Wk, Sa-Su0600-1800,Never0200-0500

The Never keyword supported by Tru64 allows for a more compact description of
the same restrictions.

Testing the New Account

Minimally, you should try logging in as the new user. A successful login will confirm
that the username and password are valid and that the home directory exists and is
accessible. Next, verify that the initialization files have executed: for example, look at
the environment variables, or try an alias that you expect to be defined. This will
determine if the ownership of the initialization files is correct; they won’t execute if it
isn’t. (You should test the initialization files separately before installing them into the
skeleton directory.) Try clearing the terminal screen. This will test the terminal type
setup section of the initialization file.

Using su to re-create a user’s environment

The su command is ideal for some types of testing of newly created accounts. When
given a username as an argument, su allows a user to temporarily become another
user (root is simply the default username to change to when none is specified). Under
the default mode of operation, most of the user environment is unchanged by the su
command: the current directory does not change, values of most environment vari-
ables don’t change (including USER), and so on. However, the option — (a minus
sign alone) may be used to simulate a full login by another user without actually log-
ging out yourself. This option is useful for testing new user accounts and also when
you are trying to reproduce a user’s problem.

For example, the following command simulates a login session for user harvey:

su - harvey
Skskokosk ok sk sk kskokosk sk sk ok sk sk skosk sk sk sk sk skokosk sk sk sk sk skokok sk sk sk sk skoskok sk sk sk sk skokok sk sk sk sk skokok sk k

ok Regular Maintenance from 20:00 - 23:00 today **
Skeskoskokokoskok sk sk sk sk skokokosksk sk sk sk sk skokokoskok sk sk sk sk skokokokokok sk sk sk sk skokokokok sk sk sk sk kokokokok sk

harvey@phoenix /home/harvey>> clear

In addition to its usefulness for new-account testing, such a technique is very handy
when users complain about “broken” commands and the like.

Once testing is complete, the new user account is ready to use.

Managing User Accounts | 253

Disabling and Removing User Accounts

Users come and users go, but it isn’t always completely clear what to do with their
accounts when they leave. For one thing, they sometimes come back. Even when
they don’t, someone else will probably take their place and may need files related to
projects that were in progress when they left.

When someone stops using a particular computer or leaves the organization, it is a
good idea to disable their account(s) as soon as you are notified. If the person was
dismissed or otherwise left under less than ideal circumstances, it is imperative that
you do so. Disabling an account is one task that you can do very quickly: simply add
an asterisk to the beginning of the encoded password” in the shadow password file,
and they will no longer be able to log in. You can then do whatever else needs to be
done to retire or remove their account in whatever haste or leisure is appropriate.

On many systems, you can also lock an account from the command line using the
y sy Y 8
passwd command’s -1 option. Locking an account via an administrative command
generally uses the same strategy of prepending a character to the encoded password.

For example, the following command locks user chavez’s account:
passwd -1 chavez

Disabling or locking an account rather than immediately removing its password file
entry prevents file ownership problems that can crop up when a username is deleted.
On some systems, the passwd command’s -u option may be used to unlock a locked
user account; changing the user’s password also has the side effect of unlocking the
account.

Here are the specifics for the systems we are considering (all commands take the
username as their final argument):

System Lock account Unlock account

AIX chuser account_locked=true chuser account_locked=false

FreeBSD chpass -e chpass -e

HP-UX passwd -1 edit /etc/passwd manually

Linux passwd -1 passwd -u

Solaris passwd -1 edit /etc/shadow manually

Tru64 usermod -x administrative lock usermod -x administrative lock
applied=1 applied=0

On FreeBSD systems, you can disable an account by setting the account expiration
date to a date in the past with chpass -e, or you can edit the shadow password file
manually.

* By adding an asterisk to the beginning of the password field, you can even restore the account at a later time
with its password intact, should that be appropriate. This is an example of the recommended practice of
making an action reversible whenever possible and practical.

254 | Chapter6: Managing Users and Groups

On HP-UX and Tru64 systems running enhanced security, a user account is locked via
the u_lock protected password database attribute (where u_lock means locked, and u_
lock@ means unlocked), rather than via the password modification mechanism.

When it is clear that the user account is no longer needed, the account can either be
retired or completely removed from the system (by deleting the user’s home direc-
tory and changing ownerships of all other files he owned). A retired account contin-
ues to exist as a UID within the user account databases,” but no access is allowed
through it; its password is set to asterisks and its expiration date is often set to the
date the user departed. You will also want to change the login shell to /bin/false to
prevent access via Kerberos or ssh.

Removing a user account
When removing or retiring a user from the system, there are several other things that
you might need to do, including the following:

* Change other passwords that the user knew.

* Terminate any running processes belonging to the user (possibly after investigat-
ing any that appear strange or suspicious).

* Remove the user from any secondary groups.
* Remove the user’s mail spool file (possibly archiving it first).

* Define/redefine a mail alias for the user account in the mail aliases file (fetc/
aliases) and any include files referenced in it, sending mail to someone else or to
the user’s new email address, as appropriate. Don’t forget to remove the user
from any mailing lists.

* Make sure the user hasn’t left any cron or at jobs around. If there is any other
batch system in use, check those queues too. See if the user has any pending
print jobs, and delete them if she does. (I found an enormous, gratuitous one on
one occasion.)

* Make a backup of the user’s home directory and then delete it, change its owner-
ship, move all or part of it, or leave it alone, as appropriate.

* Search the system for other files owned by the user and handle them as appropri-
ate (find will be helpful here).

* Remove the user from the quota system or set the account’s quota to 0.

* Remove the user from any other system facilities where her username may be
specified (e.g., printer permissions, /etc/hosts.equiv and .rhosts files if they are in
use).

* Perform any other site-specific termination activities that may be necessary.

* C2 and higher U.S. government security levels require that accounts be retired rather than removed so that
UIDs don’t get reused, and system audit, accounting, and other records remain unambiguous.

Managing User Accounts | 255

In most cases, writing a script to perform all of these activities is very helpful and
time-saving in the long run.

Administrative Tools for Managing
User Accounts

Shell scripts to automate the user account creation process have been common for a
long time on Unix systems, and most Unix vendors/environments also provide
graphical utilities for the same purpose. The latter tools allow you to make selec-
tions from pick lists and radio buttons and type information into blank fields to spec-
ify the various user account settings.

The advantage of these tools is that they take care of remembering a lot of the steps
in the process for you. They usually add entries to all relevant account configuration
files (including ones related to enhanced security, if appropriate), and they make sure
that the entries are formatted correctly. They also typically create the user’s home
directory, copy initialization files to it, and set the correct ownerships and protec-
tion. Most of the tools are extremely easy to use, if somewhat tedious and occasion-
ally time-consuming.

All of these tools also suffer from the same disadvantage: their abilities usually end
after completing the activities I've already listed. A few of them perform one or two
additional activities—adding the user to the mail system is among the most com-
mon—but that still leaves a lot to do. The best of these tools allow you to customize
the activities that are performed, as well as the default values for available account
settings; unfortunately, many of the currently available Unix user account manage-
ment facilities lack any serious customization capabilities.

The best way to use any of these tools is first to set up defaults that reflect how
things are done on your system, to the extent that the tool you’ve chosen allows you
to do so. Doing so will minimize the time it takes to add a new user account to the
configuration files. Then write a script that you can run by hand after the tool com-
pletes its work to automate the rest of the steps required to fully set up a new
account.

In this section, we’ll consider the most important and useful command-line utilities
and graphical facilities for managing user accounts that are available on the Unix sys-
tems we are considering.

Command-Line Utilities

Most systems provide something in the way of command-line utilities for manipulat-
ing user accounts and sometimes groups. Note that in most cases, user passwords
still need to be set separately using the passwd command.

256 | Chapter6: Managing Users and Groups

The useradd command: HP-UX, Linux, Solaris, and Tru64

Three commands for managing user accounts are provided on many Unix systems:
useradd, for adding new accounts; usermod, for changing the settings of existing
accounts; and userdel, for deleting user accounts. HP-UX, Linux, Solaris, and Tru64
support these commands.

The useradd command has two modes: defining a new user and setting systemwide
defaults. By default, useradd adds a new user to the system, with the desired user-
name specified as its final argument. Other attributes of the user account are speci-
fied using useradd’s many options, described in the Table 6-6.

Table 6-6. useradd command options

Option Meaning

-u uid UID (defaults to next highest unused UID).

-g group Primary group.

-G groups Comma-separated list of secondary groups.

-d dir Home directory full pathname (defaults to current-base-dir/username; the current base directory is

itself specified with useradd's -D option, and is usually set to /home). Tru64 also provides the -H
option for specifying the home directory base when creating a new user account.

-s shell Full path to login shell.

-C name Full name (GECOS field text).

-m Create user’s home directory and copy the standard initialization files to it.

-k dir Skeleton directory containing initialization files (defaults to /etc/skel); only valid with -m. Not provided
by Tru64.

-e date Account expiration date (default is none); format: yyyy-mm-dd.

-fn Number of days the account can be inactive before being disabled automatically.

-p On Tru64 systems, requests a prompt for the user's initial password. On Linux systems, the option

requires the encoded password as its parameter, making it useful in scripts where you are importing
user accounts from another Unix system’s password file, but it is of little use otherwise. Solaris and
HP-UX do not provide this option.

-D Set option defaults using the -, -e, -g, and -b options (the last option is - d on Tru64 systems). The
-5 option may also be used on Linux systems, and the -x skel dir=path option provides the
same functionality under Tru64.

-b dir Default base directory for user home directories (for example /home); only valid with -D. Tru64 uses -d
for this function (as well as for its normal role when creating a user account).

Here is the useradd command to create user chavez:
useradd -g chem -G bio,phys -s /bin/tcsh -c "Rachel Chavez" -m chavez

This command creates user chavez, creates the directory /home/chavez if it doesn’t
already exist (the home directory’s pathname is the concatenation of the base direc-
tory and the username), and copies initialization files from /etc/skel to the new direc-
tory. It also places chavez in the groups chem, bio, and phys (the first one is her
primary group). Her UID will be the next available number on the system.

Administrative Tools for Managing User Accounts | 257

The Tru64 version of useradd also supports setting some extended attributes using
the -x option. For example, the following command sets the valid login hours for
user chavez to weekdays during normal U.S. business hours:

useradd normal options -x logon_hours=Wk0900-1700 chavez

Setting useradd’s defaults. The -D option tells useradd to set systemwide default values
for various account attributes to be used when creating new users. For example, the
following command sets the default group to chem, sets the base directory to /abode,
and disables the account inactivity feature.

useradd -D -g chem -b /abode -f -1

You can display the current options by executing useradd -D alone or by examining
the command’s configuration file, /etc/default/useradd; here is an example file:

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=2005-01-01

SHELL=/bin/bash

SKEL=/etc/skel
Although there is no command option to do so, you can change the default skeleton
directory location by editing the SKEL line in the file.

Modifying accounts with usermod. A user’s current attributes may be changed with the
usermod command, which accepts all useradd options except -k. The -d and -m now
refer to the new home directory for the user (and -m now requires -d). In addition,
usermod supports a -1 option, used to change the username of an existing user. For
example, the following command changes chavez’s username to vasquez, moving her
home directory appropriately:

usermod -m -1 vasquez chavez

In addition to these commands, the normal chsh and chfn commands available to all
users may be used by the superuser to quickly change the login shell and user infor-
mation fields for a user account, respectively (passwd -e and -g under Solaris).

For example, on a Linux system, the following commands change user harvey’s login
shell to the Korn shell and specify a variety of information to be stored in the user
information field of his password file entry:

chsh -s /bin/ksh harvey
chfn -f "Harvey Thomas" -o 220 -p 555-9876 -h 555-1234 harvey

User harvey’s password file entry now looks like this:

harvey:x:500:502:Harvey Thomas,220,555-9876,555-1234:/home/harvey:/bin/ksh

258 | Chapter6: Managing Users and Groups

The various items of information stored within the user information field are sepa-
rated by commas.

N

o There is no hard-and-fast convention for what the various subfields of
.‘s‘ the password file user information field should be used for, and differ-
- ent tools use them to hold different information. Accordingly, the for-

mat of the chfn command varies somewhat in different Unix versions
and even within individual versions. The preceding example was from
a Red Hat Linux system; the SuSE Linux version of the command
would be:

chfn -f "Harvey Thomas" -r 220 -w 555-9876 \
-h 555-1234 harvey

In the same way, the GUI tools for managing user accounts also divide
this field using different schemes.

Removing accounts with userdel. The userdel command is used to remove a user
account. For example, the following command removes user chavez from the pass-
word and shadow password file:

userdel chavez

The -1 option may be added to remove her home directory and all files within it as
well as the account itself.

On Tru64 systems, userdel retires user accounts by default. You must use the -D
option to actually delete them.

Commands for managing groups

Similarly, the groupadd and groupmod commands may be used to set up and modify
new groups (although not their memberships). For example, the following com-
mand adds a new group named socio:

groupadd socio

The new group is assigned the next available user group GID number (greater than
99); alternatively, a specific GID may be specified by adding the -g option to the
command.

The following command renames the bio group to biochem:
groupmod -n biochem bio
A group’s GID may also be changed with the -g option to groupmod.

Finally, you can remove unwanted groups in a way analogous to userdel with the
groupdel command, which takes the name of the group to be deleted as its argu-
ment. Note that this command does not let you remove a group that is serving as the
primary group for any user account.

Administrative Tools for Managing User Accounts | 259

The Linux gpasswd command

Linux systems provide the gpasswd command for adding and removing members of
groups and for specifying group administrators. For example, the following com-
mand adds user chavez to the drama group:

gpasswd -a chavez drama
In a similar way, the -d option may be used to remove the user from a group.

The -A and -M options are used to specify the list of group administrators and addi-
tional group members (allowed to use newgrp) in the group shadow file. For exam-
ple, the following command designates users root and nielsen as group
administrators for the bio group:

gpasswd -A root,nielsen bio

The list of users specified as the argument to either option is comma-separated and
must not contain any internal spaces. Note that these options replace the current set-
tings in /etc/gshadow; they do not add additional users to the existing list.

The FreeBSD user account utilities

FreeBSD provides the adduser command for creating new user accounts. It does so
by prompting you for all of the required information, as in this example, which cre-
ates an account for user zelda:

adduser -s

Enter username [a-z0-9 -]: zelda
Enter full name []: Zelda Zelinski
Enter shell csh ... ksh [tcsh]: return
Enter home directory (full path) [/home/zelda]: return
Uid [1021]: return

Enter login class: default []: staff
Login group zelda [zelda]: return
Login group is "“zelda''.

Invite zelda into other groups: chem phys bio no
[no]: chem

Enter password []: not echoed

Enter password again []: not echoed
Name: zelda

Password: *¥**

Fullname: Zelda Zelinski

Uid: 1021

Gid: 1021 (zelda)

Class: staff

Groups: zelda chem

HOME : /home/zelda

Shell: /bin/tcsh

0K? (y/n) [yl:y

Add another user? (y/n) [y]: n

The command’s -s (silent) option provides a less verbose prompt sequence. The
opposite is -v, which prompts for default settings for this session before adding
users:

260 | Chapter6: Managing Users and Groups

adduser -v

Enter your default shell: csh ... ksh no [sh]: tcsh

Your default shell is: tcsh -> /bin/tcsh

Enter your default HOME partition: [/home]: return

Copy dotfiles from: /usr/share/skel no [/usr/share/skel]: return
Send message from file: /etc/adduser.message no
[/etc/adduser.message]: return

Use passwords (y/n) [y]: return

Verbose mode also inserts additional prompts for an alternate message file and addi-
tional message recipient, and it allows you to add to the generated message before it
is sent. The verbose/silent setting for the command is sticky: when neither option is
included, it defaults to the last value to which it was set.

Normally, the adduser command generates a mail message for the new user as it cre-
ates the account. The default message template is stored in /etc/adduser.message.
Here is the default new user welcome message for our new user zelda:

To: zelda

Subject: Welcome
Zelda Zelinski,

your account "zelda
Have fun!

See also chpass(1), finger(1), passwd(1)

was created.

I always modify the standard message file to fix the capitalization error and hideous
quoting. This is one case where I don’t bother keeping a copy of the original!

adduser’s defaults are stored in the /etc/adduser.conf configuration file. Here is an
example:

defaultpasswd = yes Require passwords.

dotdir = "/usr/share/skel”

send_message = "/etc/adduser.message"

logfile = "/var/log/adduser"

home = "/home"

path = ('/bin', '/usr/bin', '/usr/local/bin')
shellpref = ('csh', 'sh', 'bash', 'tcsh', 'ksh', 'no")
defaultshell = "tcsh"

defaultgroup = USER This setting enables user-private groups.
defaultclass = "users" Default user class (initially empty).
uid start = "1000" Lowest UID assigned.

As is noted in the comment, the defaultclass variable is initially unassigned. If you
want to have a specific login class assigned to new accounts, you’ll need to modify
this entry in the configuration file (as we have done above). User classes are
described in detail later in this chapter.

You can also specify some of these items via adduser options, as in this example:

adduser -dotdir /etc/skel -group chem -home /homes2 \
-shell /usr/bin/tcsh -class users

Administrative Tools for Managing User Accounts | 261

The chpass command may be used to modify existing user accounts. When invoked,
it places you into a form within an editor (selected with the EDITOR environment
variable), where you may modify the account settings. Here is the form you will edit:

#Changing user database information for zelda.

Login: zelda

Password: 1dGoBvscW$kE7rMy8xCPnrBuxkw//QHO

uid [#]: 1021

Gid [# or name]: 1021

Change [month day year]: January 1, 2002 Most recent pwd change.
Expire [month day year]: December 31, 2005 Account expiration date.
Class: staff

Home directory: /home/zelda

Shell: /bin/tcsh

Full Name: Zelda Zelinski

Office Location: Additional (optional) GECOS subfields.
Office Phone:

Home Phone:

Other information:

Be sure to modify only the settings data, leaving the general structure of the form
intact.

The rmuser command may be used to remove a user account, as in this example:

rmuser zelda

Matching password entry:

zelda:*:1021:1021:staff:0:0:Zelda Zelinski:/home/zelda:/bin/tcsh
Is this the entry you wish to remove? y

Remove user's home directory (/home/zelda)? y

The command also removes files belonging to the specified users from the various
system temporary directories.

The AIX user account utilities

AIX provides the mkuser, chuser, and rmuser commands for creating, modifying, and
deleting user accounts, respectively. Their syntax is so verbose, however, that it is
usually much easier to use the SMIT tool when adding users interactively.

The mkuser command requires a series of attribute=value pairs specifying the account
characteristics, followed at last by the username. Here is an example of using mkuser
to add a new user account:

mkuser home=/home/chavez gecos="Rachel Chavez" pgrp=chem chavez

Of the standard password file fields, we allow mkuser to select the UID and assign the
default shell. mkuser uses the settings in /fusr/lib/security/mkuser.default for basic
account attribute defaults, as in this example file:

user:
pgrp = staff
groups = staff
shell = /usr/bin/ksh
home = /home/$USER

262 | Chapter6: Managing Users and Groups

admin:

pgrp = system

groups = system
shell = /usr/bin/ksh
home = /home/$USER

The two stanzas specify defaults for normal and administrative users, respectively.
You create an administrative user by specifying the -a option on the mkuser com-
mand or by specifying the attribute admin=true to either mkuser or chuser.

Table 6-7 lists the most useful account attributes which can be specified to mkuser
and chuser. Password-related attributed are omitted; they are discussed later in this

chapter.

Table 6-7. AIX user account attributes

Attribute

id=UID

prgp=group
groups=list
gecos="full name"
shell=path
home=path
login=true/false
rlogin=true/false
daemon=true/false
logintimes=1list
ttys=1ist
loginretries=n
expire=date
su=true/false
sugroups=list
admin=true/false
admgroups=1ist
umask=mask
usrenv=list

sysenv=list

Meaning

uip

Primary group

Group memberships (should include the primary group)
GECOS field entry

Login shell

Home directory

Whether local logins are allowed

Whether remote logins are allowed

Whether user can use cron or the SRC

Valid login times

Valid tty locations

Number of login failures after which to lock account
Account expiration date

Whether other users can su to this account

Groups allowed to su to this account

Whether account is an administrative account

Groups this account administers

Initial umask value

List of initial environment variable assignments (normal user context)
List of initial environment variable assignments (administrative user context)

The mkuser command runs the mkuser.sys script in /usr/lib/security as part of its
account creation process. The script is passed four arguments: the home directory,
username, group, and shell for the new user account.

Administrative Tools for Managing User Accounts | 263

This script serves to create the user’s home directory and copy one or both of /etc/
security/.profile and an internally generated .login file to it. Here is the .login file that
the script generates:

#!/bin/csh

set path = (/usr/bin /etc /usr/sbin /usr/ucb $HOME/bin ...)

setenv MAIL "/var/spool/mail/$LOGNAME"

setenv MAILMSG "[YOU HAVE NEW MAIL]"

if (- "$MAIL" 8& ! -z "$MAIL") then

echo "$MAILMSG"
endif

It is equivalent to the standard .profile file.

You can modify or replace this script to perform more and/or different activities, if
desired. For example, you might want to replace the exiting if statement that copies
initialization files with commands like these (which use a standard skeleton file
directory):
if [-d /etc/skel]; then
for f in .profile .login .logout .cshrc .kshrc; do
if [-f Jetc/skel/$F] 8& [| -f $1/$F]; then
cp /etc/skel/$f $1
chmod u+rwx,go-w $1/$F
chown $2 $1/%f
chgrp $3 $1/%f
fi
done
fi
These commands ensure that the skeleton directory and the files within it exist
before attempting the copy. They also are careful to avoid overwriting any existing
files.

Because /usr/lib/security may be overwritten during an operating system upgrade,
you’ll need to save a copy of the new version of mkuser.sys if you modify it.

Removing user accounts. The rmuser command removes a user account. Include the -p
option to remove the corresponding stanzas from all account configuration files
rather than just the password file. For example, the following command removes all
settings for user chavez:

rmuser -p chavez

Utilities for managing groups. The mkgroup, chgroup, and rmgroup commands may be
used to add, modify, and remove groups under AIX. Once again, the SMIT interface
is at least as useful as the raw commands, although these come in handy once in a
while. For example, the following command creates a new group named webart and
assigns users to it (via secondary memberships):

mkgroup users=lasala,yale,cox,dubail webart

264 | Chapter6: Managing Users and Groups

Graphical User Account Managers

With the exception of FreeBSD, all of the Unix variations we are considering provide
some sort of graphical tool for managing user accounts. Some of them, most notably
Linux, offer several tools. We’'ll consider the most useful of these for each operating
system.

Managing users with SMIT under AIX

Figure 6-1 illustrates the SMIT user management facilities. The dialog on the left
(and behind) displays the Security and Users submenu, and the dialog on the right
displays the user account attributes dialog. In this case, we are adding a new user,
but the dialog is the same for modifying a user account. The various fields in the dia-
log correspond to fields within the password file and the various secondary account
configuration files within /etc/security.

(8| System Management Interface Tool =R
Exit Show Help
Retwrn To: x
_| Systen

%

_| security & Users * User NAME

Usexr ID{Num.)

Users ANMINISTRATIVE USER?
| Add a User

_| thange a User's Pas|
J Change # Show Charal
_ | Lock / Unlock a Usel
_| Resst User's Failed

Prinary GROUP

CGroup SET

ADMINISTRATIVE GROUPS

_| Revove a User ROLES

_| 1ist A1l Users
Inother user can SU TO USER?

= [= = - = =

H- H. B H. H. B M.

7} “ @ 7}) @ 7]

o o o o o o f2d
L

5U GROUPS

HOME directory
Initial PROGRAM

User INFORMATION

fhome/chavez
fusr/fbin/tesh
Rachel Chavez

EXPIRATION date (MMDDhhmyy)

Is this user AGGOUNT LOCKED?

,..,|
|
N
@
5
@
&
s

User can LOGIN?

E‘
ELEE

User can LOGIN REMOTELY{rsh,tn,rlogin)?

E‘
[

#Mlloved LOGIN TIMES

| =] T =

Figure 6-1. User account management with SMIT

The SMIT facility functions as an interface to the mkuser and related commands we
considered earlier, and it is quite obvious which attributes the various dialog fields
correspond to. SMIT also uses the same default values as mkuser.

Administrative Tools for Managing User Accounts | 265

Managing users with SAM under HP-UX

Figure 6-2 illustrates the SAM user management facilities on HP-UX systems. The
dialog on the left shows the items available by selecting the Accounts for Users and
Groups item in SAM’s main window. The dialog at the upper left is used to access
user account attributes when adding or modifying a user (we are doing the latter
here). Its fields correspond to the traditional password file entries.

Matdify a User {grace)

System Administratiol

Figure 6-2. User account management with SAM

The dialog at the bottom of the figure appears as a result of clicking the Modify Pass-
word Options button in the main user account window. We’ll consider its contents
later in this chapter.

You can customize the user account creation and removal processes via the Actions —
Task Customization menu path from the main user accounts window. This brings up
a dialog in which you can enter the paths to scripts to be run before and after creat-
ing or removing a user account. The full pathname for the program name must be
given to SAM, root must own it, it must have a mode of either 500 or 700—in other
words, no group or other access and no write access for root—and every directory in
its pathname must be writable only by root. (All of these are excellent security pre-
cautions to take for system programs and scripts that you create in general.)

266 | Chapter6: Managing Users and Groups

The programs will be invoked as follows:

prog_name -1 login -u uid -h home_dir -g group -s shell -p password \
-R real_name -L office -H home_phone -0 office_phone
SAM also allows you to define user templates: named sets of user account settings
that can customize and speed up the account creation process. The Actions — User
Templates submenu allows templates to be created, manipulated and activated.
When defining or modifying a template, you use dialogs that are essentially identical
to the ones used for normal user accounts.

Choose the Actions — User Templates — Select menu item to activate a template
(selecting the desired template from the dialog that follows). Once this is done, the
template’s defaults are used for all new user accounts created in that SAM session
until the template is changed or deselected.

Defaults for user accounts created without a template come from the file /usr/sam/lib/
Clug.ui. Search the file for the string “default”; it should be apparent which ones set
account attribute defaults. You can change them with a text editor, and the new val-
ues will be in effect the next time you run SAM. Note that some defaults (e.g., the
home directory base) appear in more than one place within the file. Obviously, you’ll
need to be careful when editing this file. Copy the original before you edit so that
you’ll have a recovery path should something break.

HP-UX account and file exclusion. On HP-UX systems, SAM allows you to specify user
accounts and files that it should never remove. The file /etc/sam/rmuser.excl lists
usernames that will not be removable from within SAM (although they may be
retired). Similarly, the file rmfiles.excl in the same directory lists files that should
never be removed from the system, even if the account of the user who owns them is
removed. Naturally, these restrictions have no meaning except within SAM.

Linux graphical user managers

There are a plethora of choices for administering user accounts on Linux systems,
including these:

* The Linuxconf facility, a distribution-independent system administration tool
* The Ximian Setup Tools’ user accounts module

The KDE User Manager

* The Red Hat User Manager on Red Hat Linux systems

The YaST menu-based utility and the YaST2 graphical user account editor on
SuSE Linux systems

We'll look at three of these here: Linuxconf and the KDE and Red Hat user managers.
Managing users with Linuxconf. The Linuxconf package is a graphical system adminis-

tration tool designed specifically for Linux and available by default on some Red Hat
systems. It includes a module for managing user accounts, which may be accessed

Administrative Tools for Managing User Accounts | 267

from its main navigation tree or executed separately and directly by entering the
userconf command. Once you select a user (or choose to add a new account), the
User information dialog is displayed (see Figure 6-3).

el User information e [B

You must specify at least the name
and the full name

Basze info | FParams | rail settings | Privileges |

[The account is enabled

Lagin name chavez
Full name Rachel Chavez
group chavez _p’l
Supplementary groups |chem
Hame directory{opf) fhomelfchavez
Command interpreterfopt)f hindcsh _,’I
User ID{opt) a00
.-’-\c:c:eptl Cancel | Del | FPasswd | Tasks | Help

Figure 6-3. Managing user accounts with Linuxconf

The Base info panel allows you to enter information in the traditional password file
fields; you may select from predefined lists of groups and login shells to specify those
fields. The User ID field is optional; if it is left blank, Linuxconf assigns the next
available UID number to a new user account. A user account may also be disabled by
deselecting the click box at the top of the form.

On Red Hat systems, this tool automatically creates a user-private group when add-
ing a new user account. It also automatically creates the user’s home directory and
populates it with the files from /etc/skel. We will discuss the method for modifying
the tool’s default behavior later in this section.

The Params panel contains settings related to password aging, and we will consider it
later in this chapter. The Mail settings panel sets up the user’s email account. The
final, rightmost panel, Privileges, contains settings related to this user’s ability to use
the Linuxconf tool for system administration tasks (discussed in “Role-Based Access
Control” in Chapter 7).

Once you have finished entering or modifying a user account, use the buttons at the
bottom of the dialog to complete the operation. The Accept button confirms the
addition or change, and the Cancel button discards it. The Passwd button may be
used to set or change the user’s password, and the Del button deletes the current
user account.

268 | Chapter6: Managing Users and Groups

Deleting a user account is done via the dialog in Figure 6-4. It asks you to confirm
the operation and also allows you to specify how to deal with the user’s home direc-
tory. The first option (Archive the account’s data) copies the home directory to a
compressed tar file in, e.g., /home/oldaccounts,with a name like gomez-2002-04-02-
12061.tar.gz, with the first five components filled in with the username, year, month,
day and time; the oldaccounts subdirectory is placed under Linuxconf’s current
default home directory location. After completing this backup operation, the home
directory and all of its contents are deleted. The second option simply deletes the
home directory and contents without saving them, and the third option leaves the
directory and all of its files unchanged.

Deleting account edwina

‘You are deleting an account.
The hame directary and the mail inhaox falder
may ke archived, deleted ar left in place

+ Archive the account’s data

|A Delete the account’™s data |

~ Leave the account’s data in place

Acceptl Cancel Help |

Figure 6-4. Deleting a user with Linuxconf

Linuxconf provides similar facilities for managing groups.

The defaults for various aspects of Linuxconf user account management may be
specified via the Config — Users accounts — Policies - Password & account policies
menu path. The resulting dialog is illustrated in Figure 6-5.

The lone click box in the dialog specifies whether user-private groups are in use. The
next two fields specify the base directory and default permissions mode for user
home directories. The next four fields specify scripts to be run when various actions
are performed. By default, the first two of these fields are filled in and hold the paths
to the scripts that Linuxconf uses when deleting a user account: the first (Delete
account command) specifies the script used when a user account and the home
directory are simply deleted, and the second (Archive account command) specifies
the script used to archive a user home directory and then delete the user account.

I don’t recommend modifying or replacing either of these scripts—although examin-
ing them can be instructive. Instead, use the next two fields to specify additional
scripts to be run when accounts are created and deleted. Note that the account cre-
ation script runs after Linuxconf has completed its normal operations, and the
account deletion script runs before Linuxconf performs its account deletion
operations.

Administrative Tools for Managing User Accounts | 269

il gnome -linuxconf O E

Server fasks R Passwardfaccount setting policiesl
Migc
- Users accounts YYou must enter here the validation rules

—-Marmal for passward. Once setup, a user (or you) won't
User aCCUUUFS he ahle to change a password to one that does not
Group definitions fullfill this requirements
Change root password

EHSpecial accounts Minimum length b

FPP accounts

SLIP accounts via normal lo
UUCF accounts Private group I~ One group per user
FOP accounts {mail only)

Minimum amount of non alpha char |0

Default base dir for homes ‘home
Wirtual POP accounts (mail
EHEmail aliases Creation permissions 700
}&user aliases Delete account command Austilibflinuxconfilibfaccount
virtual domain user aliases : T 7
Bk Policles Archive account command fusrflibflinuxcontilib/account
[Password & account policid Post-create command
— &vailahle user shells Fra—delete command

—&vailable PPP shells |
— Available SLIP shells

Account management defaults

L Message of the day Must keep # days —1
[File systems Must change after # days 93393
Accasslocal drive warn # days before expiration -1
Access nfs volume
Canfigure swap files and parti ACCount expire afier # days)
Set quota defaulls Standard account duration i
Check some file permissions
Ey Miscellaneous services
}&Initial system services
kodem
EI;EDDt made I~ I 2o
Lilo 7] P.cceptl Cancel | Help l
I~ E=)

Figure 6-5. Specifying Linuxconf account defaults

The remaining settings in this dialog relate to password aging, and we will consider
them later in this chapter.

The KDE User Manager. The KDE User Manager (written by Denis Perchine) is included
as part of the KDE desktop environment. You start this facility by selecting the Sys-
tem — User Manager menu path on the KDE main menu or by running the kuser
command. Figure 6-6 illustrates the facility’s user account properties window.

] Usar Properiing - KUZer

| (e Infa |r-nwd-nn:-¢ fircams |

El———= s e
User Info | Passward Hanegeert. | Grows

Uear Login: chwvex T, : -
U Tt 530 $at._passiord |

oy [zpmves Groups user 'chaves® belongs to: =]
Full Hame: [Reackml Chavez =

Frisch

Login Shell: | /bun,

Home Directoru: [/rome/chavez

(¥fice ai: [

0FF iem w21 [

Fodress: |

-t Pecount, Oetions

B Creats hows directory
¥ Copy sheloton L] puribust
B Uss Privats Grous Ao

m|
]
e[l

Figure 6-6. The KDE User Manager

270 | Chapter6: Managing Users and Groups

The User Info panel (on the left in the figure) is used to set traditional password file
fields as well as the password itself. The highlighted portion appears only when add-
ing a new user account, and it allows you optionally to create the user home direc-
tory under /home, copy files from the skeleton directory (fetc/skel), and create a user-
private group for the user account. As you can see, the tool also provides an interpre-
tation of the various optional fields of the GECOS field.

The Groups panel displays the user’s primary and secondary group memberships.

The third panel in this dialog, labeled Password Management, deals with password
aging settings. We will look at it later in this chapter.

The KDE User Manager also provides similar dialog boxes for adding, modifying and
deleting groups.

The KDE User Manager has a Preferences panel (reached via the Settings — Prefer-
ences menu path) that allows you to specify a different default home directory base
and login shell, as well as whether to automatically create the home directory and/or

copy files from /etc/skel. It also specifies whether the user-private groups scheme
should be used.

The Red Hat User Manager. Red Hat Linux provides its own user management utility
(pictured in Figure 6-7). You can invoke it from the menus of the KDE and Gnome
desktops as well as with the redhat-config-users command.

-~ User Properties BIEY -~ user Properties [=][x]
User Dalal Account Info | Passward Info | Grnupsl User Datal Account Info | Fassword Info Groups |
User Mame Iaefrisch Select the groups that the user will be a member of:
[adm £ |
Full Narme |#Etzen Frisch seftisch
xxxxx L] bin
Raseharg. |
Confirm Password: [+ E g;‘fmm
Home Directary: I#humefaefrisch 0] disk
E floppy
Login Shell: ‘hinfcsh / fip
. I |J [A names V|
ok | of Apply | X cancel | @OK | o Apply | X Cancel |
T T T

Figure 6-7. The Red Hat User Manager

The User Properties dialog of this tool contains four panels. The User Data panel
(displayed on the left in the figure) holds the traditional password file entry fields.
The Groups panel lists groups of which the user is a member (display on the right).
Note that the primary group is not shown because user-private groups are always
used and so the primary group name is always the same as the user account name.

Administrative Tools for Managing User Accounts | 271

The Account Info panel displays information about whether the user account is
locked and any account expiration data which has been assigned. The Password Info
panel displays password lifetime data (as we’ll see).

Solaris GUI tools for managing user accounts

On Solaris systems, the Sun Management Console may be used to administer user
accounts. The relevant module is accessed via the Infrastructure - AdminSuite menu
path (and not via the seemingly more obviously named final main menu option). It is
illustrated in Figure 6-8.

[Ei e

|
o
=

Choose the user's logon

User Information

e

shell {Bourne, Korn, or C
shell) User Name: chavez
- Bourne shell is the Userae: solaris
standard shell used by User Id: it
most syster Description: [Rachel Chavez
administrators
Logon Shell

—Kaorn shellis used { Shell: m
primarily by developers
and advanced users. Atciunt il

@ Account is Always Available
- Cshellis the shell used >y Account is Available Until:
most frequently by the mrr/ddfyyyy
typical end user (r Account is Locked

Console Wiew Help Logged into sparky as aefrisch.
(Repang W v srer v |
solaris Management Console Application Name | Server Name | Run As
= Connectivity AdminSuite sparky User
3 Documentation . — . —— —— -
T infrastructurs =l Solaris AdminSuite — sparky(Server) =
3 adminsuite Window Domain Help
1 admintool | NG
=7 Performance Meatar i
[Shutdown/Restart Cornj | Sparky b Action View % || A |@\ | |® |ﬁl 03|82 | GDr-
[Terminal [&] Users
£ Workstation Informatior 4 User Accounts
C oo R ® R R
[Software & Mailing Lists aefrisch burant chavez cheese
=1 User & Group
E User Properties for chavez |
@ Ccontext Help

o o]

Figure 6-8. The Solaris AdminSuite user manager

The bottom dialog in the figure illustrates the interface for modifying an individual
user account. The General panel (pictured) holds some of the traditional password
file information as well as account locking and expiration settings. The other panels
are Group (group memberships), Home Directory (specifies the home directory
server and directory, whether it should be automounted, and its sharing protec-
tions), Password (allows you to set a password and force a password change), Pass-
word Options (password aging settings, discussed later in this chapter), Mail (email

272 | Chapter6: Managing Users and Groups

account information), and Rights (assigned roles, discussed in “Role-Based Access
Control” in Chapter 7).

Managing user accounts with dxaccounts under Tru64

The Tru64 dxaccounts command starts the user account management facility. It may
also be reached via sysman. It is pictured in Figure 6-9.

Account Manager on mahler

User ™ fAdd v fodify Template

ernamne
ry Group
Shell

Haome Ii

Full Mame

Dffice

Dffice Phone |
Home Phone |

Figure 6-9. The Tru64 Account Manager

The window at the top of the figure displays icons for the user accounts. The but-
tons under the menu bar may be used to perform various operations on the selected
account.

The window at the bottom of the figure displays the main user account dialog (in
this case, we are modifying a user account). It holds the usual password file fields, as

Administrative Tools for Managing User Accounts | 273

well as buttons that may be used to assign secondary group memberships and a pass-
word. The check boxes in the bottom section of the dialog allow you to change the
location of the user’s home directory and to lock and unlock the account.

The Security button is present only when enhanced security is activated on the sys-
tem. We will discuss its use later.

The Options — General menu path from the user icon window allows you to specify
default settings for new user accounts. Selecting it results in the dialog shown in
Figure 6-10. It allows you to specify minimum and maximum user and group IDs,
default primary group, home base directory, shell and skeleton directory locations,
and several other settings.

r 10z ' Allow Duplicate Group 1Ds

olicy

Hinimum User 1D 12 Minimum Group 1D 22
. Group 1D

imum U=er 1D Maximum Group 1D

Default Primary Group
Default Home Dir
Default Shell fo

Default ° ston Dir

ard Datab
d For Hel

and PC accounts

| Apply

Figure 6-10. Setting user account default values

These default settings are actually stored in the file $SHOME/.sysman/Account_
defaults. Editing this file often presents a quicker method for setting them.

The Tru64 Account Manager also allows you to define templates for user accounts:
named groups of account settings, which can be used as defaults when creating new
accounts and which may also be applied to existing accounts as a group. You can

274 | Chapter6: Managing Users and Groups

view the existing templates via the View — Local Templates menu path from the
main window (illustrated in Figure 6-11).

Account Manager on mahler

Figure 6-11. Tru64 user account templates

When you create or edit a template, you use dialogs that are essentially identical to
those used in the Secuirty section for individual user accounts.

Templates are selected and applied via the Template pull-down menu at the upper
left of the main user account dialog (see Figure 6-9). For a new account, selecting a
template fills in the various fields in the dialog with the value from the template.
When you change the template for an existing account or simply reselect the same
template, you apply its current settings to the current account.

Automation You Have to Do Yourself

As we’ve noted, currently even the most full-featured automated account creation
tools don’t do everything that needs to be done to fully prepare an account for a new
user. However, you can create a script yourself to do whatever the account creation
tool you choose omits, and the time you spend on it will undoubtedly be more than
made up for in the increased efficiency and decreased frustration with which you
thereafter add new users.

The following is one approach to such a script (designed for a Linux system but eas-
ily adapted to others). It expects a username as its first argument and then takes any
of several options, processing each one in turn and ignoring any it doesn’t recognize.
For space reasons, this approach contains only minimal error checking (but it
doesn’t do anything very risky, either):

#!/bin/sh
local add user - finish account creation process

Administrative Tools for Managing User Accounts | 275

if [$# -eq 0]; then # no username

exit
fi
do mail=1 # send mail unless told not to
user=%$1; shift # save username
/usr/bin/chage -d 0 $user # force password change
while [$# -gt 0]; do # loop over options
case $1 in # process each option
"em™) # don't send mail
do_mail=0
35
"-q") # turn on disk quotas

(cd /chem; /usr/sbin/edquota -p proto $user)
"-p") # enable LPRng printer use
make sure there is a valid local printer group name
if [$# -gt 1]; then
val="/usr/bin/grep -c "ACCEPT .* GROUP=$2" /etc/lpd.perms”
if [$val -gt o]; then
Add user to that printer group
/usr/bin/gpasswd -a $user $2

else
/bin/echo "Invalid printer group name: $2"
fi
shift # gobble printer name
else
/bin/echo "You must specify a printer group name with -p"
fi
"-g") # set up application program

/bin/cat /chem/bin/g2k+/login >> /home/$user/.login
/bin/cat /chem/bin/g2k+/profile >> /home/$user/.profile
/chem/bin/g2k+/setup $user
*) # anything else
/bin/echo "Garbage in, nothing out: $1"
esac
shift # drop completed option off list
done
if [$do mail -eq 1]; then
/usr/bin/mail -s Welcome $user < /chem/sys/welcome.txt
fi

At the discretion of the system administrator, this script can add the user to the disk
quota facility (see “Monitoring and Managing Disk Space Usage” in Chapter 15), the
LPRng printing subsystem (see “LPRng” in Chapter 13), send a welcoming mail mes-
sage, and configure the account to use an application program. It also forces the user
to change his password at his next login. We will consider user passwords and their
administration in detail in the next section.

276 | Chapter6: Managing Users and Groups

Administering User Passwords

Because passwords play a central role in overall system security, all user accounts
should have passwords.” However, simply having a password is only the first step in
making a user account secure. If the password is easy to figure out or guess, it will pro-
vide little real protection. In this section, we’ll look at characteristics of good and bad
passwords. The considerations discussed here apply both to choosing the root pass-
word (which the system administrator chooses) and to user passwords. In the latter
case, your input usually takes the form of educating users about good and bad choices.

Selecting Effective Passwords

The purpose of passwords is to prevent unauthorized people from accessing user
accounts and the system in general. The basic selection principle is this: Passwords
should be easy to remember but hard to figure out, guess, or crack.

The first part of this principle argues against imposing automatically-generated ran-
dom passwords (except when government or other mandated security policies
require it). Many users have a very hard time remembering them, and in my experi-
ence, most users will keep a written record of their password for some period of time
after they first receive it, even when this is explicitly prohibited.

If users are educated about easier ways to create good passwords, and you take
advantage of features that Unix systems provide requiring passwords to be a reason-
able length, users can select passwords that are just as good as system-generated
ones. Allowing users to select their own passwords will make it much more likely
that they will choose one that they can remember easily.

In practical terms, the second part of the principle means that passwords should be
hard to guess even if someone is willing to go to a fair amount of effort—and there
are plenty of people who are. This means that the following items should be avoided
as passwords or even as components of passwords:

* Any part of your name or the name of any member of the your extended family
(including significant others and pets) and circle of friends. Your maternal
grandmother’s maiden name is a lot easier to find out than you might think.

* Significant numbers to you or someone close to you: social security numbers, car
license plate, phone number, birth dates, etc.

* The name of something that is or was important to you, like your favorite food,
recording artist, movie, TV character, place, sports team, hobby, etc. Similarly, if

* The only possible exception I see is an isolated, non-networked system with no dial-in modems at a personal
residence, but even then you might want to think about the potential risks from repair people, houseguests,
neighborhood kids, and so on, before deciding not to use passwords. Every system in a commercial environ-
ment, even single-user systems in locked offices, should use passwords.

Administering User Passwords | 277

your thesis was on benzene, don’t pick benzene as a password. The same goes
for people, places, and things you especially dislike.

Any names, numbers, people, places, or other items associated with your com-
pany or institution or its products.

We could obviously list more such items, but this should illustrate the basic idea.

Passwords should also be as immune as possible to attack by password-cracking pro-
grams, which means that the following items should not be selected as passwords:

English words spelled correctly (because lists of them are so readily available in
online dictionaries). You can use the spell or similar command to see if a word
appears in the standard dictionary:

$ echo cerise xyzzy | spell -1

Xyzzy
In this case, spell knows the word cerise (a color) but not xyzzy (although xyzzy
is a bad password on other grounds). Note that the standard dictionary is quite
limited (although larger ones are available on the web), and with the widespread
availability of dictionaries on CD-ROM, virtually all English words ought to be
avoided.

Given the wide and easy accessibility of online dictionaries, this restriction is a
good idea even at non-English-speaking sites. If two or more languages are in
common use at your site, or in the area in which it’s located, words in all of
them should be avoided. Words in other kinds of published lists should also be
avoided (for example, Klingon words).

Truncated words spelled correctly should similarly be avoided: “conseque” is
just as bad as “consequence.” Such strings are just as vulnerable to dictionary-
based attacks as is the entire word, and most existing password-cracking pro-
grams look specifically for them.

The names of famous people, places, things, fictional characters, movies, TV
shows, songs, slogans, and the like.

Published password examples.

Avoiding passwords like the items in the first list makes it harder for someone to fig-
ure out your password. Avoiding the items in the second list makes it harder for
someone to successfully break into an account using a brute-force, trial-and-error
method, like a computer program.

278

| Chapter6: Managing Users and Groups

If it seems farfetched that someone would go to the trouble of finding
out a lot about you just to break into your computer account, keep in

mind that hackers roaming around on the Internet looking for a sys-
tem to break into represent only one kind of security threat. Internal
security threats are at least as important for many sites, and insiders
have an easier time locating personal information about other users.

In any case, getting on a specific system via any account is often just
the first step toward some ultimate destination (or in a random stroll
across the Internet); the account that opens the door need not neces-
sarily have any obvious connection to the true goal, which might be
elsewhere on the same system or on a completely different computer
or site.

Simple modifications of any of these bad passwords, created by adding a single addi-
tional character, spelling it backwards, or permuting the letters, are still bad pass-
words and ought to be avoided. For example, avoid not only “john” but also “nhoj”
and “ohnj” and “john2.” It doesn’t take a password-guessing program very long to
try all combinations of adding one character, reversing, and permuting.

Although they are risky themselves, items from the second list can serve as the base
for creating a better password (I don’t recommend using any personal items in pass-
words at all). Passwords that use two or more of the following modifications to ordi-
nary words are much more likely to be good choices:

Embedding one or more extra characters, especially symbol and control
characters.

Misspelling it.

Using unusual capitalization. All lowercase is not unusual; capitalization or
inverse capitalization by word is not unusual (e.g., “StarTrek,” “sTARtREK”);
always capitalizing vowels is not unusual.

Concatenating two or more words or parts of words.

Embedding one word in the middle of another word (“kitdogten” embeds “dog”
within “kitten”).

Interleaving two or more words: for example, “cdaotg” interleaves “dog” and
“cat.” With a little practice, some people can do this easily in their heads; others

can’t. If you need any significant delay between characters as you type in such a
password, don’t use them.

Table 6-8 illustrates some of these recommendations, using “StarTrek” as a base
(although I'd recommend avoiding altogether anything having to do with Star Trek
in passwords).

Administering User Passwords | 279

Table 6-8. Creating good passwords from bad ones

Bad Better Better Still

StarTrek sTartRek sTarkErT

(predictable capitalization) (unusual capitalization) (unusual capitalization and reversal)

startrak starTraK StaRTra#

(misspelling) (misspelling and unusual capitalization) ~ (misspelling, symbols and unusual capitalization)
StarDrek jetrekdi jetr@kdi

(slang) (embedding) (embedding and symbols)

trekstar sttraerk sttr@erk

(word swapping) (interleaving) (interleaving, unusual capitalization and symbols)

Of course, these would all be poor choices now. When selecting passwords and
advising users about how to do so, keep in mind that the overall goal is that pass-
words be hard to guess, for humans and programs, but easy to remember and fast to

type.

There are other ways of selecting passwords other than using real words as the base.
Here are two popular examples:

* Form a password from the initial letters of each word in a memorable phrase,
often a song lyric. Such passwords are easy to remember despite being nonsense
strings. Transforming the resulting string results in an even better password.
Two examples are given in Table 6-9.

Table 6-9. Forming passwords from memorable phrases

Phrasea Password Better Password
“Now it's a disco, but not for Lola” niadbnfl Ni1db'4L
“I'can well recall the first time | ever went to sea” icwrtftiepts @cWr1t@eP2c

a The lines are from the songs “Copacabana” by Barry Manilow and “Old Admirals” by Al Stewart. Naturally, you wouldn’t want to use either
of these passwords now.

As the final example illustrates, Unix passwords can be longer than eight charac-
ters if you have so configured the system (discussed later in this chapter).

* Form a password by keyboard shifting: select a word or phrase that you can type
easily, and then shift your hands on the keyboard in some way before typing it
(e.g., up one and over one).” You have to be fairly coordinated for this method to
be practical for you, but it does generate hard-to-crack passwords since they are
essentially random.

* Some current password-cracking programs can crack words shifted by one position to the left or right, so a
more complex shift is required.

280 | Chapter6: Managing Users and Groups

Even using these techniques, passwords containing any part of your
user account name, your full name, or any other item appearing in
your password file entry are fundamentally insecure. Password-crack-
ing programs perform a truly staggering amount of transformations on
this information in order to attempt to crack passwords (including
simple keyboard shifting!).

Here are some additional general recommendations about passwords and system
security:

* There should be no unprotected accounts on the system. This includes accounts
without passwords and accounts whose users have left the system but whose
passwords remain unchanged. When a user leaves, always disable her account.

* Specify a minimum password length. We recommend setting it to at least eight
characters, the traditional Unix maximum password length, which isn’t really
long enough anyway. Most Unix systems have the ability to use very long pass-
words; see the section on the PAM facility later in this chapter for details.

* Passwords must be changed under any of these (and similar) conditions:

— Whenever someone other than the user it belongs to learns it, the password
needs to be changed.

— When a user leaves, all passwords that he knew must be changed.

— When a system administrator leaves, the root password and all other site-
wide passwords (e.g., dialup passwords) must be changed. Whether to force
users to change their passwords is a matter of discretion, but keep in mind
that the system administrator had full access to the shadow password file.

— When a system administrator is fired, every password on the system should
be changed since he had access to the list of encrypted passwords.

— If you have even a suspicion that the shadow password file has been read via
the network, the prudent thing is, again, to change every password on the
system.

* The root password should be changed periodically in any case. Not every site
needs to change it religiously once a month, but changing it once in a while
when you don’t think anyone has learned it errs on the side of caution, just in
case you’re wrong. Users can be sneaky; if you think someone was paying a bit
too much attention to your fingers when you typed in the root password, change
1t.

* Equally important considerations apply to formulating password guidelines for
users who have accounts at multiple sites. When we give an account to a new
user, we always stress the importance of choosing a brand-new password for our
site and not falling back on one of his old favorites, and he is similarly instructed
not to use any password in effect at our site in any other context, either concur-
rently or in the future. Such regulations strike some users as excessively para-
noid, but they are really just common sense.

Administering User Passwords | 281

Unix offers options for enforcing password-selection policies; they are discussed later
in this section. If you’d like to use a carrot as well as a stick in this regard, see the sec-
tion on educating users about passwords later in this chapter.

Forcing a password change

Most Unix systems provide commands that allow you to force a user to change her
password at the next login. You can use such commands in a script on those (hope-
fully rare) occasions when everyone must change their password right away.

These are the commands provided by the versions we are considering (they all take a
username as their final argument):

AIX pwdadm -f ADMCHG

FreeBSD chpass (interactive, but see below)
HP-UX passwd -f

Linux chage -d 0 -M 999 (if not using aging)
Solaris passwd -f

Tru64 usermod -x password_must_change=1

The Linux command works by setting the date of the last password change to Janu-
ary 1, 1970, and the maximum password lifetime to 999 days. This is a bit of a
kludge, but it gets the job done when password aging is not in effect (you can go
back and later remove the maximum password lifetime if desired). However, if you
are using password aging, you can omit the -M option and allow the normal setting to
perform the same function.

On FreeBSD systems, the user account modification utility is interactive and places
you into an editor session by default. However, you can use the following script to
automate the process of forcing a password change (accomplished by placing a date
in the past into the Change field of the form):

#!1/bin/tcsh

setenv EDITOR ed

/usr/bin/chpass $1 <<END

/Change/

s/:.*¥$/: 12 31 1999/
W

q
END

You can choose any past date that you like.

Managing dozens of passwords

When choosing successive passwords—and especially root passwords—try to avoid
falling into a simple recognizable pattern. For example, if you always capitalize all the
vowels, and someone knows this, you effectively lose the value of the unusual capitali-
zation. Similarly, successive passwords are often chosen in the same way; don’t
always choose names of planets for your passwords. It is especially important to break

282 | Chapter6: Managing Users and Groups

such patterns when someone with longtime access to the root account—and hence
well aware of past patterns in passwords—Ileaves the system or loses root access.

That said, it is impossible for most people—even system administrators—to remem-
ber all of the root passwords that they may need to know across a large enterprise
without some scheme for generating/predicting the password for each system.

One approach is to use the same root password on all the systems administered by
the same person or group of people. This may be effective for some sites, but it has
the disadvantage that if the root password is compromised on any system, the entire
group of systems is then wide open to unauthorized root-level access. Sites that have
experienced such a break-in tend to give up the convenience of a single root pass-
word in favor of enhanced security and the ability to contain an intruder should the
worst happen.

The solution in this case is to have some scheme (algorithm) for generating root pass-
words based on some characteristics of the computer system in question. Here is a
simple example that indicates how to generate each character of the password in turn:

* First letter of the computer manufacturer

* Number of characters in the hostname

* Last letter of the hostname in uppercase

* First letter of the operating system name

* Operating system version number (first digit)

* The symbol character that is on the same diagonal of the keyboard as the first
letter of the hostname (moving up and to the right)

For a Sun system running Solaris 7 named dalton, this would yield a password of
“s6Ns8r%”; similarly, for an IBM RS/6000 running AIX 4.3 named venus, the pass-
word would be “15Sa4&”. Although they are too short at only six characters, these
are decent passwords in terms of character variety and capitalization, and they are
easy to generate mentally as needed with just a little practice.

Another problem that occurs with root passwords that are changed on a regular
schedule is coordination of changes and getting the new value to everyone involved.
Again, this is a case where an algorithm can be of great use. Let’s suppose the root
password must be changed monthly. Successive passwords can be generated from a
base component that everyone knows and a varying portion generated from the cur-
rent month and year. We’ll use “xxxx”—a lousy choice, of course—for our base
component in a simple example. Each month, we append the month and year to it,

adding an additional “x” for months less than 10. In 2000, this would yield the pass-
words: xxxxx100, xxxxx200, ..., xxxx1200.

A real scheme would need to be more complex, of course. This could be done by
choosing a more obscure base component and generating the varying portion
according to a more complex algorithm: something involving a simple mathematical
computation using the month and year as variables, for example.

Administering User Passwords | 283

The advantage of such a system is that any administrator can change the monthly
root password without inconveniencing other administrators. If someone attempts to
use the old root password and is unsuccessful, she will realize that the monthly
change has occurred and will already know the new password.

In fact, these two separate approaches could be combined. The remaining two (or
more) characters of the system information-based password could be used for the
varying portion based on the time period.

Educating Users About Selecting Effective Passwords

Helping users use the system more effectively is part of a system administrator’s job.
Sometimes, this means providing them with the information they need to do some-
thing, in this case, choose a good password. There are a variety of ways you might
convey information and suggestions about password selection to the users on your
systems or at your site:

* A one-page handout (one- or two-sided as appropriate)

* A mail message sent to all new users and, on occasion, to everyone with an
account

* A manual page that you create—call it something like goodpass—and put into
the local manual-page directory

* A script named passwd that (perhaps optionally) offers brief advice for selecting
good passwords and then calls the real passwd command.

One or more of these suggestions may make sense at your site.

Password advice in the age of the Internet

The Internet and its myriad web sites, many of which now request or require user
names and passwords for access, has made advising users on good password usage
practices significantly more complicated. As we noted above, users should be prohib-
ited from using their password(s) for the local site in any other context, and espe-
cially not on the Internet. But beyond that, users often need to have the risks
associated with Internet access and transactions explicitly pointed out from time to
time, accompanied by a reminder that the passwords they choose to protect such
activities are their only defense against the bad guys.

It is not uncommon for a user to visit several to dozens of such web sites on a regu-
lar basis. In theory, the best practice is to use a different password for every one of
them. Realistically, however, very few users are capable of remembering that many
passwords, especially when some of the sites involved are visited rather infrequently
(say, less than once a month). Clearly, we need to modify our usual password
selection and usage advice to deal with the realities of the Internet and to be of more
genuine help to users.

284 | Chapter6: Managing Users and Groups

Treating equally every web site requesting an account name and password merely
exacerbates the problem and its inherent combinatorics. Instead, we can divide such
Web sites into classes based on the potential losses that might occur if the username
and password associated with them was discovered by an unscrupulous person: in
other words, by what we have to lose (if anything). There are several general types of
such sites:

Information-only sites

These sites merely make information available to their users. They require a
password to gain access to that information, but a username and password are
available for the asking and have no associated cost. An example of a site would
be the technical support area of vendor’s web site. Such sites seem to collect user
information strictly for marketing purposes and still provide their informational
content free of charge. From the user’s point of view, the password used at such
a site is unimportant, because no loss or other negative consequences would
occur even if someone were to discover it.

Fee-based informational sites

These sites make information available to their users upon payment of a fee
(usually on a subscription basis, but sometimes on per-visit basis). An example
of this kind of site is a magazine’s online subscription site, which makes addi-
tional information available to its subscribers beyond what it places on its gen-
eral public web site. The discovery of this kind of password would allow an
unauthorized person to gain access to this information, but it would not usually
bring any harm to the user himself, provided that the site exercised normal secu-
rity precautions and did not reveal sensitive information (such as credit card
numbers) even to the account holder.

Password-protected purchases, auction bids and other financial transactions

At these sites, a username and password is required to purchase something, but
account information related to purchases is not stored. These kinds of sites will
allow only registered users to make purchases, but they do not require a full
account including billing and shipping addresses, credit card numbers, and so
on to be set up and maintained. Rather, they force the user to enter this informa-
tion for every order (or give the user the option of doing so), without perma-
nently storing the results. Auction sites are similar (from the buyer’s point of
view): they require bidders to have a registered account, but the actual sale and
the corresponding exchange of sensitive information takes place privately
between the buyer and seller. The security implications associated with this type
of password are more serious than those for information-based sites, but the
potential loss from a discovered password is still fairly limited. The bad guy still
needs additional information to actually make a purchase (in the case of an auc-
tion, he could make a bogus bid while masquerading as the legitimate account
holder, but he could not force an actual purchase).

Administering User Passwords | 285

Sites with ongoing purchasing accounts

These sites assign a username and password to registered users and store their
complete account information in order to facilitate future purchases, including
their billing address, shipping addresses, and multiple credit card numbers. Most
online merchants offer such facilities, and in fact you often do not have a choice
as to whether an account is set up for you or not if you want to make even one
purchase. The unauthorized discovery of the password for such a site can have
significant financial consequences, because the bad guy can make purchases
using the legitimate user’s information and redirect their shipment to any desired
location. The choice on the part of such sites to allow such complete access on
the basis of a single password clearly favors convenience over security.

Note that sites that store important information about the user or something the
user owns or administers also fall into this class. If, for example, the password
associated with an account at a site where the official information associated
with an Internet domain is stored were to be compromised, the bad guy could
modify that information, and the consequences could range from significant
inconvenience to all-out havoc.

Sites associated with user finances

These web sites allow account holders to access their bank accounts, stock port-
folios, and similar financial instruments, and they obviously pose the greatest
risk of immediate financial loss to the user. Some of these are protected only by a

username and password; the passwords for such sites must be chosen very care-
fully indeed.

Note that even the most innocuous sites can change their character over time. For
example, a site that now merely provides access to information might at some point
in the future add other services; at such time, the password in use there would need
to be rethought.

Obviously, the different security needs of the different kinds of sites make different
demands on the rigor of password selection. Given that it is seldom practical to have a
unique password for every Internet site, we can make the following recommendations:

Don’t use any password from any of your regular computer accounts for any
Internet sites, and vice versa. (I can’t repeat this often enough).

Select all passwords for Internet sites using the same good password selection
principles as for any other password.

There is no harm in using the same password for all of the unimportant sites,
especially those requiring a (nuisance) password for access to otherwise free
information.

You may also choose to use the same password for fee-based information sites
(depending upon the extent to which you wish to protect against unauthorized
access to such sites), or you may choose to use a different one, but again there is
probably no harm in using the same one for more than one site.

286

| Chapter6: Managing Users and Groups

* Consider using a different password at each site where there is anything to lose.
Doing so may still result in a large number of passwords to be remembered, and
there are many strategies for dealing with this. The most obvious is to write
them down. I tend not to prefer this approach; it may be that too many years of
system administration have made the mere idea of writing down any password
anathema to me, but keeping such a list in a secure location at home is probably
an acceptable risk (I wouldn’t keep such a list in my wallet or on my PDA).

Another approach is to have a different password at each site but to use a consis-
tent scheme for selecting them. As a simple example, one might generate each
password by taking one’s favorite woman’s name that begins with the same let-
ter as the most important word in the site name, transforming the spelling
according to some rule, and appending a favorite number. By constructing pass-
words in the same way for each site, you can always reconstruct the password
for a given site if it is forgotten. Ideally, you would devise a password scheme
that generates a deterministic password for a given site and prevents frequent
duplicates (the latter is probably not true of this simple example).

Setting Password Restrictions

Users don’t like to change their passwords. However, Unix provides mechanisms by
which you can force them to do so anyway. You can specify how long a user can
keep the same password before being forced to change it (the maximum password
lifetime), how long he must keep a new password before being allowed to change it
again (the minimum password lifetime), the minimum password length, and some
other related parameters. Setting the minimum and maximum password lifetimes is
referred to as specifying password aging information.

Before you decide to turn on password aging on your system, you should consider
carefully how much password fascism you really need. Forcing users to change their
password when they don’t want to is one of the least effective system security tac-
tics. Certainly, there are times when passwords must be changed whether users like
it or not, such as when an employee with high-level system access is terminated.
However, random forced password changes don’t ensure that good passwords will
be chosen (in fact, the opposite effect is at least as likely). And using a minimum
password lifetime to prevent a user from changing her new password right back to
what it was before (a password she liked and could remember without writing it
down) can also have some unexpected side effects.

One potential problem with a minimum password lifetime comes when a password
really needs to be changed—when someone who shouldn’t know it does, for exam-
ple. At such times, a user might be unable to change his password even though he
needs to. Of course, the superuser can always change passwords, but then the user
will have to hunt down the system administrator, admit what happened, and get it
changed. Depending on the security policies and general atmosphere at your site, the
user may decide just to wait until the minimum lifetime expires and change it

Administering User Passwords | 287

himself, and live with the risk until then. You’ll need to decide which is more likely
on your system: users attempting to circumvent necessary password aging or users
needing to be able to change their passwords at will; either one could be more
important for system security in your particular situation.

Many Unix versions also offer other controls related to password selection and
related items:

* Minimum password length

* Password selection controls, such as using more than one character class (lower-
case letters, uppercase letters, numbers, and symbols) and avoiding personal
information and dictionary words

* Password history lists, preventing users from reselecting recent passwords

* Automatic account locking after too many failed login attempts (discussed previ-
ously

* Account expiration dates

Password aging

On most systems, password aging settings for user accounts are stored with the
entries in the shadow password file. As we noted earlier, entries in the shadow pass-
word file have the following syntax:

username:coded password:last_change:minlife:maxlife:warn:inactive:expires:unused

where username is the name of the user account, and coded password is the encoded
user password. The remaining fields within each entry control the conditions under
which a user is allowed to and is forced to change his password, as well as an
optional account expiration date:

last_change
Stores the date of the last password change, expressed as the number of days
since January 1, 1970. Set to O to force a password change at the next login
(works only when max_days is greater than 0 and less than the number of days
since 1/1/1970).

maxlife
Specifies maximum number of days that a user is allowed to keep the same pass-
word (traditionally set to a high value such as 9999 to disable this feature).

minlife
Specifies how long a user must keep a new password before he is allowed to
change it again; it is designed to prevent a user from circumventing a forced
password change by changing his password and then changing it right back
again to the old value (set to zero to disable this feature).

warn

Indicates how many days in advance the user will be notified of an upcoming
password expiration (leave blank to disable this feature).

288 | Chapter6: Managing Users and Groups

inactive
Specifies the number of days after the password expires that the account will be
automatically disabled if the password has not changed (set to —1 to disable this
feature).

expires
Specifies the date on which the account expires and will be automatically dis-
abled (leave blank to disable this feature).

The settings provide a system administrator with considerable control over user pass-
word updating practices.

You can edit these fields directly in the shadow password file, or you may use the
command provided by the system, usually passwd (Linux systems use the chage com-
mand). The options corresponding to each setting are listed in Table 6-9.

HP-UX and Tru64 systems running enhanced security and AIX provide the same
functionality via different mechanisms: the protected password database and the set-
tings in the /etc/security/user configuration file, respectively. FreeBSD provides an
account expiration date via a field in the master.passwd file. Table 6-10 also lists the
commands for modifying this data.

Table 6-10. Specifying user account password aging settings

Setting Command

Minimum lifetime AIX: chuser minage=weeks
HP-UX: passwd -n days
Linux: chage -m days
Solaris: passwd -n days
Tru64: usermod -x password min change time=days

Maximum lifetime AIX: chuser maxage=weeks
HP-UX: passwd -x days
Linux: chage -M days
Solaris: passwd -x days
Tru64: usermod -x password expire time=days

Warning period AIX: chuser pwdwarntime=days
HP-UX: passwd -w days
Linux: chage -W days
Solaris: passwd -w days

Inactivity period AIX: chuser maxexpired=weeks
Linux: chage -I days
Tru64: usermod -x account_inactive=days

Expiration date AIX: chuser expires=MMDDhhmmyy
FreeBSD: chpass -e date
Linux: chage -E days
Tru64: usermod -x account_expiration=date

Administering User Passwords | 289

Table 6-10. Specifying user account password aging settings (continued)

Setting Command

Last change date FreeBSD: chpass (interactive)
Linux: chage -d yyyy-mm-dd (ordays-since-1/1/1970)

View settings AIX: 1suser -f
HP-UX: passwd -s
Linux: chage -1
Solaris: passwd -s
Tru64: edauth -g

For example, the following commands set the minimum password age to seven days
and the maximum password age to one year for user chavez:

passwd -n 7 -x 365 chavez HP-UX and Solaris
chage -m 7 -M 365 chavez Linux

chuser maxage=52 minage=1 chavez AIX

usermod -x password_min_change_time=7 \ Tru64

password_expire_time=365 chavez
Here is the display produced by passwd -s for listing a user’s password aging settings:

passwd -s chavez

chavez PS 05/12/2000 0 183 7 -1
The second item in the display is the password status, one of PS or P (password
defined), NP (no password), or LK or L (account is locked via a password modifica-
tion). The third item is the date chavez last changed her password. The fourth and
fifth items indicate the minimum and maximum password lifetimes (in days), and
the sixth item shows the number of days prior to password expiration that chavez
will begin to receive messages to that effect. The final column indicates the inactivity
period. In our example, chavez must change her password about twice a year, and
she will be warned seven days before her password expires; the minimum password
age and inactivity periods are not used.

Here is the corresponding display produced by chage under Linux, which is much
more informative and self-explanatory:

chage -1 harvey

Minimum: 0

Maximum: 99999

Warning: 0

Inactive: -1

Last Change: Sep 05, 2002
Password Expires: Never
Password Inactive: Never
Account Expires: Never

These settings provide user harvey with complete freedom about when (or if) to
change his password.

You can also set user account password aging settings with most of the graphical
administrative tools we considered earlier. Figure 6-12 illustrates these features.

290 | Chapter6: Managing Usersand Groups

[l tatos -] @ contest Help
e
Chopse the number ol
= Fi deys Ihal can slapse [Passward Options In Days.
. before the users User Must hange In:
[l "‘—— pessword expres, d the] o0 5
A |~—J' = wser does nal log en le | et Rt ke
otk T | [] [this accounl, Nl_“":
i o i :"‘;"‘“‘i"‘”'“:‘;;ge' ol || Cannet Re-uss OId Pastwerd for
% possbie 25
Choose O (zero) i ths |
. password should never Expires If Mot Usod for:
! expite: EE
Mintmm Geeratns Leesth
aw
-
[P sy p—
L)
[=3 J r—— —
Hininm Chesen Lamgit [on || caneat |

i T L I
T
[Ty re— - [3
Vecks bobveen password BPIRATION and LOCEOUT

Fasmeerd irtary Linge Passvord BAX. ASE(Nm.]

Prrvard N, AEOHE.)
T Feree Parsonrd Dhargs . Bext Lagin
— _— Passwurd HIN, LENITH(, }
June e ot | Passvord MIN. HLPHA charackers{Sm.)

Passvord HIN, OTHER characters{Hom. §

Tha s Exparis

- pxe
Sus ot 5

Fassward sellings

Pasevord MAX, HIFIATIN charsctars(Mm. }

Pasword MIN. DLFFERENT charscters{Mum.)

Tassord RECTSTEY

LR

(i [=

Checks i
B Checks for new passeords T
’VB Pasasibiling test for password I | = | omnand | _Bamet. | _Gancel. | ||

Password length =)
bnimum Madmum .
[e & [e5000 = Ut Data | wcount infs. Paswsea ot | Groups |

s of passward chenge waming Lses It changed pastweed on Thi Mov 20 2001
[Lt L - Enaln passwnrd epiminn
[Hfw = F—
) Dy ttfore chinge alowed: [2
Days before passwrd evpres waming:
I;‘“"“"“"“'—-E Cays before change required. 120

Diays warming befare changs: [5
ows st e matve]

(e] [awen] | bed |

Figure 6-12. Specifying password aging settings

Starting from the upper left and moving clockwise, the figure shows the forms pro-
vided by HP-UX’s SAM, Solaris’ SMC, AIX’s SMIT, the Red Hat User Manager, and
YaST2. The latter provides a convenient way of setting the system default password
aging and length settings (it is reached via the Security — Local security configuration
— Predefined security level » Custom settings path from the main panel). Note that
three of the four dialogs also include other password-related controls in addition to
aging settings. We'll consider them in the next few subsections of this chapter.

Password triviality checks

Security weaknesses arising from user passwords are of two main sorts: poorly cho-
sen passwords are easy to guess or crack, and passwords of any quality may be dis-
covered or inadvertently revealed in a variety of ways. Imposing password aging
restrictions represents an attempt to deal with the second sort of risk by admitting up
front that sometimes passwords are discovered and by reasoning that changing them
periodically will deal with these exigencies.

Administering User Passwords | 291

Fascist or Slave?

Sometimes, that would seem to be the choice that system administrators have. If you
don’t rule your system with an iron hand and keep users in their place, those same
hordes of users will take advantage of you and bury you with their continuous
demands. The Local Guru/Unix Wizard role isn’t really an alternative to these two
extremes; it is just a more benign version of the fascist—the system administrator is
still somehow fundamentally different than users and just as inflexible and unap-
proachable as the overt despot.

Of course, there are alternatives, but I'm not thinking of some sort of stereotypical,
happy-medium type solution, as if it really were possible. The solution in this case isn’t
some shade of gray, but a different color altogether. It is time to think about what other
metaphors might be used to describe the relationship of a system administrator to his
user community. There are many possibilities—resource, service provider, mentor,
technical attache, regent, conductor (as in orchestra, not train or electricity), catalyst—
and obviously there’s not just one right answer. What all of these suggested alterna-
tives attempt to capture is some sense of the interdependence of system administrators
and the users with whom they are connected.

Not that defining the system administrator/users role in some other way will be easy.
Users, as least as much as system administrators, are comfortable with the familiar, ste-
reotypical ways of thinking about the job, even if they are seldom entirely satisfied with
what they yield in practice.

Helping users to choose better, more secure passwords in the first place is the goal of
password triviality checking systems (the process is also known as obscurity check-
ing and checking for obviousness). This approach involves checking a new password
proposed by a user for various characteristics that will make it easy to crack and
rejecting the password if these characteristics are found. Obscurity-checking capabil-
ities are usually integrated into the passwd command and may reject passwords of a
variety of types, including the following:

* Passwords shorter than some minimum length
* All lowercase or all alphabetic passwords

* Passwords that are the same as the account’s username or any of the informa-
tion in the GECOS field of its password file entry

* Simple transformations of GECOS items: reversals, rotations, doubling

* Passwords or partial passwords that appear in online dictionaries

* Passwords that are simple keyboard patterns—e.g., qwerty or 123456—and thus
easily discerned by an observer

Many Unix systems check for the second and third items on the list automatically.
Unfortunately, these tests still accept many poor passwords. Some versions allow
you to optionally impose additional checks.

292 | Chapter6: Managing Users and Groups

Tru64. Tru64 automatically checks that new passwords are not the same as any local
username or group name, are not palindromes, and are not recognized by the spell
utility (the final test means that the password may not appear in the online dictio-
nary /usr/share/dict/words, nor be a simple transformation, such as a plural form, of a
word within it). Triviality checks are imposed if the user’s protected password data-
base file contains the u_restrict field, which corresponds to the Triviality checks
check box on the Modify Account form.

AIX. AIX provides a different subset of triviality-checking capabilities via these
account attributes (stored in /etc/security/user), which may also be specified using the
chuser command:

minalpha
Minimum number of alphabetic characters in the password.
minother
Minimum number of nonalphabetic characters in the new password.
mindiff
Minimum number of characters in the new password that are not present in the
old password.

maxrepeats
Maximum number of times any single character can appear in the password.

minlen
Minimum password length. However, if the sum of minalpha and minother is
less than minlen, the former is the minimum length that is actually imposed, up
to the systemwide maximum of 8.

dictionlist
Comma-separated list of dictionary files containing unacceptable passwords

pwdchecks
List of site-specific loadable program modules for performing additional pass-
word preselection checking (see the pwdrestrict method subroutine manual page).

By default, password triviality checking is not imposed. The dictionlist attribute
allows site-specific word lists to be added to the standard online dictionary, and the
pwdchecks attribute provides a hook for whatever checking a site deems appropriate,
although developing such a module will take time.

Here are some sample settings that impose a reasonable set of password content
restrictions:

minalpha=6

minother=2

maxrepeats=2
mindiff=2

Linux. Linux systems provide a very simple password obscurity checking facility. It is
enabled via the OBSCURE_CHECK_ENAB entry in the /etc/login.defs configuration

Administering User Passwords | 293

file. The facility performs some simple checks on its own and then calls the library
provided with the Crack password-cracking package (described later in this chap-
ter). The path to the associated dictionary files can be specified with the
CRACKLIB_DICTPATH entry in the same file.

Note that the obscurity checks do not apply when the superuser changes any pass-
word, but you can specify whether root is warned when a specified password would
not pass via the PASS_ ALWAYS_WARN setting.

FreeBSD. FreeBSD provides password content controls via user classes; the settings
are accordingly specified in /etc/login.conf. These are the most useful:

minpasswordlen
Minimum password length.

passwd_format
Password encoding scheme. The md5 setting enables passwords longer than 8
characters.

mixpasswordcase
If set to true, all lowercase passwords are disallowed.

The freely available npasswd command

If you’d like to precheck user passwords but your version of Unix doesn’t provide
this feature, or if you want to impose more rigorous restrictions on password selec-
tion than your system supports, there are freely available programs that you can use
for this purpose. For example, the npasswd package (written by Clyde Hoover) is
widely available (including all of our systems). It provides a replacement for the nor-
mal passwd command that can be configured to check proposed passwords accord-
ing to a variety of criteria.

Looking at npasswd’s configuration file, which is /usr/lib/passwd/passwd.conf by
default, provides a good sense of the kind of checking it does:

npasswd configuration file

Dictionaries

passwd.dictionaries /usr/dict/words
passwd.dictionaries /usr/dict/new words
passwd.dictionaries /etc/local_words

Content controls

passwd.singlecase no Disallow single-case passwords.
passwd.alphaonly no Disallow all alphabetic passwords.
passwd.charclasses 2 Minimum number of character types in password.
passwd.whitespace yes Allow whitespace characters in passwords.
passwd.printableonly no Allow nonprinting characters in passwords.
passwd.maxrepeat 2 Only two adjacent characters can be the same.

Minimum password length

passwd.minpassword 8

294 | Chapter6: Managing Users and Groups

npasswd performs some simple length and character-type tests on a proposed pass-
word and then checks it against the words in the dictionaries specified in the config-
uration file.

Checking a proposed password against every login name, group name, and so on, on
the system—rather than merely against the user’s own—seems an unambiguous
improvement. It is fairly easy to generate a list of such words. The following script
performs a basic version of this task:

#!/bin/sh
mk_local words - generate local word list file
PATH=/bin:/usr/bin:/usr/ucb; export PATH
umask 077# protect against prying eyes
rm -f /etc/local_words
set “hostname | awk -F. '{print $1,$2,$3,%4,$5,%6,$7}""
while [$# -gt 0]; do
echo $1 >> /etc/local_tmp; shift
done
set “domainname | awk -F. '{print $1,$2,$3,%$4,$5,$6,$7}""
while [$# -gt 0]; do
echo $1 >> /etc/local_tmp; shift
done
usernames, then GECOS names
cat /etc/passwd | awk -F: '{print $1}' >> /etc/local_ tmp
cat /etc/passwd | awk -F: '{print $5}' | \
awk -F, '{print $1}' | \
awk '{print tolower($1)};{print tolower($2)}"' | \
grep -v '*$' >> /etc/local tmp
cat /etc/group | awk -F: '{print $1}' >> /etc/local_tmp
cat /etc/hosts.equiv >> /etc/local_tmp
add other local stuff to this file (e.g. org name)
if [-f /etc/local_names]; then
chmod 400 /etc/local_names
cat /etc/local names >> /etc/local tmp
fi
sort /etc/local tmp | unig > /etc/local words
m -f /etc/local tmp

This version can be easily modified or extended to capture the important words on

your system. Note that standard awk does not contain the tolower function, although
both nawk and gawk (GNU awk) do.

Password history lists

Users tend to dislike creating new passwords almost as much as they dislike having
to change them in the first place, so it is a common practice for users to oscillate
between the same two passwords. Password history records are designed to prevent
this. Some number of previous passwords for each user are remembered by the sys-
tem and cannot be reselected. The HP-UX, Tru64, and AIX password facilities offer
this feature. Note that the password history feature is only effective when it is com-
bined with a minimum password lifetime (otherwise, a user can just keep changing
his password until the one he wants falls off the list).

Administering User Passwords | 295

Under AIX, the following attributes in /etc/security/user control how and when previ-
ous passwords can be reused:

histexpire
Number of weeks until a user can reuse an old password (maximum is 260,
which is 5 years).

histsize
The number of old passwords to remember and reject if reselected too soon
(maximum is 50).

On Tru64 systems, this feature is enabled when the u_pwdepth in a user’s protected
password database file is nonzero. Its maximum value is 9. It corresponds to the
Password History Limit slider on the user account modification screen. The list of
old passwords is stored in the u_pwdict field, and items cannot be reselected as long
as they remain in the history list.

On HP-UX systems, password history settings can be specified on a system-wide
basis in the /etc/default/security file, as in this example:

PASSWORD_HISTORY_DEPTH=5 Remember 5 passwords.

The maximum setting is 10.

Password settings default values

Default values for password aging settings can be specified on systems using them.
These are the default value locations on the systems we are considering:

AIX The default stanza in /etc/security/user

FreeBSD The default user class in /etc/login.conf (although this serves as a
default only for users not assigned to a specific class)

HP-UX letc/default/security and /tcb/auth/files/system/default

Linux letc/login.defs
Solaris fetc/default/passwd and Jetc/default/login
Tru64 fletc/auth/system/default

We've seen examples of most of these already.

Here is an example of the Linux defaults file, /etc/login.defs:

PASS_MAX_DAYS 90 Must change every 3 months.

PASS MIN_DAYS 3 Keep new password 3 days.

PASS WARN_AGE 7 Warn 7 days before expiration.
PASS_MIN_LEN 8 Passwords must be at least 8 chars long.
OBSCURE_CHECKS_ENABLE yes Reject very poor passwords.

PASS CHANGE_TRIES 3 Users get 3 tries to pick a valid password.
PASS_ALWAYS_WARN yes Warn root of bad passwords (but allow).
PASS_MAX_LEN 8 Encode this many password characters.

CRACKLIB DICTPATH /usr/lib/cracklib dict Path to dictionary files.

296 | Chapter6: Managing Users and Groups

Note that some of these settings can interact with the PAM facility used on most
Linux systems, so they may not operate exactly as described in this section. PAM is
discussed later in this chapter.

The Solaris /etc/default/passwd file is very similar (although the attribute names are
spelled differently):

MAXWEEKS=1 Keep new passwords for one week.
MINWEEKS=26 Password expires after 6 months.
PASSLENGTH=6 Minimum password length.
WARNWEEKS=1 Warn user 7 days before expiration.

Testing User Passwords for Weaknesses

As we've noted, having users select effective passwords is one of the best ways to
protect system security, and educating them about good selection principles can go a
long way in this direction. Sometimes, however, you want to be able to assess how
well users are doing at this task. Attempting to discern user passwords using a pass-
word-cracking program is one way to go about finding out. In this section, we will
consider two such programs, crack and john, beginning with the latter, somewhat
simpler facility.

It is usually reasonable to test the security of passwords on systems
you administer (depending on site policies). However, cautious
administrators obtain written permission to run password cracking
programs against their own systems.

In contrast, attempting to crack passwords on computers you don’t
administer is both unethical and (in most cases) illegal. Avoid this
temptation and the complications it can bring.

John the Ripper

The John package—its full name is John the Ripper—is an easy-to-use and effective
password cracking facility. It is available for all of the Unix systems we are considering.

Once installed, the john command is used to test the passwords contained in the
password file given as its argument. The package includes the unshadow command,
which can be used to create a traditional Unix password file from passwd and shadow
files.

Here is a simple example of running john:

unshadow /etc/passwd /etc/shadow > /secure/pwdtest

chmod go= /secure/pwdtest

john -rules -wordfile:/usr/dict/many_words /secure/pwdtest
The first command creates a password file for testing, and the second command pro-
tects it from unauthorized access. The final command initiates a john session (which
it starts in the background), in this case checking the passwords against the words in
the specified dictionary file and many transformations of these words.

Administering User Passwords | 297

As john runs, it periodically writes status information to files in its installation direc-
tory (usually /usr/lib/john); the file john.pot holds information about the passwords
cracked so far, and the file restore contains information necessary for restarting the
current session if it is interrupted (the command to do so is simply john -restore).
You can specify an alternate restart filename by including the -session:name option
on the john command line, which takes the desired session name as its argument and
names the file accordingly.

The john facility can operate in several distinct password-cracking modes (requested
via distinct options to the john command):

Single crack mode (-single)
Passwords are checked against GECOS field information and a multitude of
transformations of it.

Wordlist mode (-rules)
Passwords are checked against the words in a dictionary file—a text file contain-
ing one word per line—whose location can be specified as an argument to the -
wordfile option. The default file is /var/lib/john/password.lst. The transforma-
tions are defined in the facility’s configuration file and can be extended and/or
customized by the system administrator.

Incremental mode (-incremental[:modename])
Tries all combinations of characters or a subset of characters in a brute-force
attempt to crack passwords. The optional modename specifies the character sub-
set to use, as defined in john’s configuration file (discussed below). This mode
can take an arbitrarily long amount of time to complete.

External mode (-external:modename)
Attempt to crack passwords using an administrator-defined procedure specified
in the configuration file (written in a C-like language). The modename specifies
which procedure to use.

As we noted, John records its progress periodically to its restart file. You can force
this information to be written and displayed using commands like these:

kill -HUP pid

john -status

guesses: 3 time: 0:00:21:52 68% c/s: 46329
Similarly, the following command reports the last recorded status information for the
session named urgent:

john -status:urgent

Some aspects of john’s functioning are controlled by the facility’s configuration file,
typically /var/lib/john/john.ini. Here are some sample entries from that file:

John settings

[Options]

Wordlist file name, to be used in batch mode
Wordfile = /var/lib/john/password.lst

298 | Chapter6: Managing Users and Groups

If Y, use idle cycles only

Idle = N

Crash recovery file saving delay in seconds

Save = 600

Beep when a password is found (who needs this anyway?)

Beep = N
Later sections of this file contain rules/specifications of the procedures for each of
the cracking modes.

Using Crack to find poorly chosen passwords

Crack is a freely available package that attempts to determine Unix passwords using
the words in an online dictionary as starting points for generating guesses. The pack-
age includes a lot of files and may seem somewhat daunting at first, but it generally
builds without problems and is actually quite easy to use. These are the most impor-
tant parts of its directory structure (all relative to its top-level directory, created when
the package is unpacked):

Crack
Crack driver script; edit the first section of the script to configure Crack for your
system, and then build the package with the Crack -makeonly command. This
same script is used to run the program itself.

Dict
Subdirectory tree containing dictionary source files (in addition to the standard
online dictionary, usually /ust/dict/words). Dictionary source files are text files
containing one word per line, and they are given the extension .dwg. You may
add files here as desired; placing them into one of the existing subdirectories is
the easiest way.

src
Location of Crack source code.

scripts/mkgecosd
Rules for generating guesses from GECOS field entries.

conflrules.*
Rules for generating guesses from dictionary words.

run/F-merged
Text file containing clear text form of all cracked passwords. We don’t advise
keeping this file online except when you are actually running Crack. During a
Crack run, several other temporary files are also kept here.

run/Dhost.pid
Results files for a particular Crack run, including passwords cracked during that
run (the hostname and PID filename components are filled in as appropriate).

run/dict
The compressed Crack dictionaries used during a run are built as needed and
stored here.

Administering User Passwords | 299

The entire Crack directory tree should be owned by root and should allow no access
by anyone but root.

Crack also provides a utility to convert the password and shadow password files into
a single conventional-style file suitable for use by the program; it is named
shadowmrg.sv and is stored in the scripts subdirectory. It takes the two filenames as
its arguments and writes the merged file to standard output.

Here is an example invocation of Crack:
Crack -nice 5 /secure/pwdtest

The script builds the compressed dictionary files, if necessary, and then starts the
password cracker program in the background. While Crack is running, you can use
the Reporter script to check on its progress (located in the same directory as the
Crack script). In this case, Crack runs at lower priority than normal jobs due to the
inclusion of -nice.

If you want to stop a Crack run in progress, run the plaster script in the scripts
subdirectory.

Eventually—or quickly, depending on the speed of your CPU and the length of the
dictionary files—Crack produces output like the following (in the file Dhost.pid
where host is the hostname and pid is the process ID of the main Crack process):
1:968296152:0penDictStream: status: /ok/ stat=1 look=679 find=679
genset="conf/rules.basic’ rule="!?Xc' dgrp="1'
prog="'smartcat run/dict/1.*’
0:968296152:679
1:968296155: LoadDictionary: loaded 130614 words into memory
G:968296209:KHcqrOsvoY800:Arcana

The general procedure Crack uses is illustrated by this output. It opens each dictio-
nary file in turn and then applies each rule from the various collection of rules files in
the run subdirectory to the words in it, using each transformed word as a guess for
every remaining uncracked user password. When it finds a match, it displays the
cracked and encoded versions of the password in the output; in this example, the
password “Arcana” has just been cracked. Once a rule has been applied to every dic-
tionary word and every password, Crack continues on to the next rule, and
eventually on to the next dictionary, until all possibilities have been exhausted or all
passwords have been cracked.

Rules specify transformations to apply to a dictionary word and are written using a
metalanguage unique to Crack. Here are some example entries illustrating some of
its features:

1?A1 Choose only all-alphabetic-character words and convert to
lowercase before using as a guess.
1?Ac Choose only all-alphabetic-character words and capitalize.

300 | Chapter6: Managing Users and Groups

>4t Select words longer than four characters and reverse them.
Other transformations are reflection (f) and doubling (d).

>2<812A%0 Choose all alphabetic words having 3—7 characters and add
a final “0”.

>2<812A%1 Same as previous but adds a final “1”.

>2<712A$2$2 Choose all-alphabetic words of 3—6 characters and append
“227.

>712A1x05$9$9 Choose all-alphabetic words of 8 or more characters, convert
to lowercase, extract the first 6 characters, and append “99”
(note that character numbering within a word begins at 0).

The installed rules files contain several important types of transformations, and they
can be extended and customized as desired.

Once a Crack run has completed, it is important to remove any remaining scratch
files, because they may contain clear-text passwords. Running the command make
tidy is one way to do so. You will also want to copy the D* results files and run/F-
merged file to offline storage and then delete the online copies (restoring the latter
the next time you want to run Crack).

There are several large dictionary files available on the Internet (for
example, see fip:/fip.ox.ac.uk/pub/wordlists). Using them to augment
the standard Unix dictionary (and any package-provided ones) will
make any password cracking program more successful (but it will also
take longer to complete).

How well do they do?

We ran Crack and John on a password file containing several poorly chosen pass-
words. Table 6-11 shows the results we obtained with the standard program options
and configurations, using only the standard Unix dictionary with the words “arcana”
and “vermillion” added.

Table 6-11. Password-cracking results

Test Password Crack John
vermilli yes yes
marymary yes yes
maryyram yes yes
arcana yes yes
Arcana yes yes
arcanal yes yes
arca’\Na no no
arcana# no no
arcana24 no no

Administering User Passwords | 301

Both of them cracked passwords with simple transformations, but not with special
characters or the addition of two numerals. However, adding rules to either facility
to handle these cases is very easy.

User Authentication with PAM

Traditionally, with very few exceptions, user authentication on Unix systems occurs
at login time. In recent years, however, a new scheme has emerged that allows the
authentication process to be performed and customized for a variety of system con-
texts. This functionality is provided by the PAM facility.

PAM stands for Pluggable Authentication Modules. PAM is a general user authenti-
cation facility available under and provided by current versions of FreeBSD, HP-UX,
Linux, and Solaris. PAM’s goal is to provide a flexible and administrator-config-
urable mechanism for authenticating users, independent of the various programs and
facilities which require authentication services. In this way, programs can be devel-
oped independently of any specific user-authentication scheme instead of having one
explicitly or implicitly embedded within them. When using this approach, utilities
call various authentication modules at runtime to perform the actual user-validation
process, and the utilities then act appropriately depending on the results the mod-
ules return to them.

There are several components to the PAM facility:

* PAM-aware versions of traditional Unix authentication programs (for example,
login and passwd). Such programs are referred to as services.

* Modules to perform various specific authentication tasks. These are imple-
mented as shared libraries (.so files), stored in /lib/security under Linux, /usr/lib/
security under Solaris and HP-UX, and in /usr/lib under FreeBSD. Each module is
responsible for just one small aspect of authentication. After executing, a mod-
ule returns its result value to the PAM facility, indicating whether it will grant
access or deny access to the user in question. A module may also return a neu-
tral value, corresponding to no specific decision (essentially abstaining from the
final decision).”

* Configuration data indicating what authentication process should be performed
for each supported service, specified via one or more PAM configuration files.
On Linux systems, each service has its own configuration file—with the same
name as the service itself—in the directory /etc/pam.d (thus, the configuration
file for the login service would be /etc/pam.d/login). Alternatively, the entire facil-
ity may use a single configuration file, conventionally /etc/pam.conf; this is how
the other three systems are set up by default. If both sorts of configuration

* For information about available PAM modules, see http://www.kernel.org/pub/linux/libs/pam/modules.html.
Although this location is part of a Linux site, most PAM modules can be built for other systems, as well.

302 | Chapter6: Managing Usersand Groups

information are present (and the PAM facility has been compiled to allow multi-
ple configuration sources), the files in /etc/pam.d take precedence over the con-
tents of /etc/pam.conf.

* Additional configuration settings required by some of the PAM modules. These
configuration files are stored in /etc/security, and they have the same name as the
corresponding service with the extension .conf appended.

The best way to understand how PAM works is with an example. Here is a simple
PAM configuration file from a Linux system; this file is used by the su service:"

auth sufficient /lib/security/pam rootok.so

auth required /1ib/security/pam_wheel.so

auth required /1ib/security/pam_unix.so shadow nullok
account required /1ib/security/pam_unix.so

password required /1ib/security/pam_unix.so

session required /1ib/security/pam unix.so

As you can see, there are four types of entries that may appear within a PAM configu-
ration file. Auth entries specify procedures for user authentication. Account entries
are used to set user account attributes and apply account controls. Password entries
are used when a password changes within the context of the current service. Session
entries are generally used at present for login purposes to the syslog facility. The
group of entries of a particular type are processed in turn and form a stack. In the
example file, there is a stack of three auth entries and a single entry of each of the
other three types.

The second field in each entry is a keyword that specifies how the results of that par-
ticular module affect the outcome of the entire authentication process. In its sim-
plest form,T this field consists of one of four keywords:

sufficient
If this module grants access to the user, skip any remaining modules in the stack
and return an authentication success value to the service).

requisite
If this module denies access, return an authentication failure value to the service
and skip any remaining modules in the stack.

required
This module must grant access in order for the entire authentication process to
succeed.

optional
The result of this module will be used to determine access only if no other mod-
ule is deterministic.

* The format for the corresponding /etc/pam.conf file entries differs only slightly; the service name becomes
the first field, with the remaining fields following, as in this example: su auth sufficient /usr/lib/
security/pam_unix.so.

T There is a newer, more complex syntax for the severity field, which we will consider later in this section.

User Authentication with PAM | 303

The first two keywords are easy to understand, because they immediately either
allow or deny access and terminate the authentication process at that point. The sec-
ond two indicate whether the module is an essential, integral part of the authentica-
tion process. If no module denies or grants access before all of the modules in the
stack have executed, authentication success or failure is determined by combining
the results of all the required modules. If at least one of them grants access and none
of them denies it, authentication is successful. Optional modules are used only when
no definitive decision is reached by the required modules.

The third field in each configuration file entry is the path to the desired module
(sometimes, only a filename is given, in which case the default library location is
assumed). Any required and/or optional arguments used by the module follow its
path.

Looking again at the su PAM configuration file, we can now decode the authentica-
tion process that it prescribes. When a user enters an su command, three modules
are used to determine whether she is allowed to execute it. First, the pam_rootok
module runs. This module checks whether or not the user is root (via the real UID).
If so, success is returned, and authentication ends here because of the sufficient key-
word (root does not need to enter any sort of password in order to use su); if the user
is not root, authentication continues on to the next module. The pam_wheel module
checks whether the user is a member of the system group allowed to su to root,
returning success or failure accordingly (emulating a feature of BSD Unix systems),
thereby limiting access to the command to that group. The authentication process
then continues with the pam_unix module, which requests and verifies the appropri-
ate password for the command being attempted (which depends on the specific user
who is the target of su); it returns success or failure depending on whether the cor-
rect password is entered. This module is given two arguments in this instance:
shadow indicates that a shadow password file is in use, and nullok says that a null
password for the target account is acceptable (omitting this keyword effectively dis-
ables accounts without passwords).

The other three entries in the configuration file all call the same module, pam_unix.
In the account context, this module establishes the status of the target user’s account
and password, generating an automatic password change if appropriate; the pass-
word entry is invoked when such a password change is necessary, and it handles the
mechanics of that process. Finally, this session entry generates a syslog entry for this
invocation of su.

Many PAM modules allow for quite a bit of configuration. The pam_wheel module,
for example, allows you to specify which group su access is limited to (via its group
option). It also allows you to grant access to everyone except members of a specific
group (via the deny option). Consult the PAM documentation, usually found within
the /usr/doc tree, for full details on the activities and options for available modules.

304 | Chapter6: Managing Usersand Groups

Here is a more complex configuration file, for the rlogin service, again taken from a
Linux system:

auth requisite /1ib/security/pam_securetty.so

auth requisite /1ib/security/pam_nologin.so

auth sufficient /lib/security/pam rhosts auth.so

auth required /1ib/security/pam_unix.so

account required /1ib/security/pam_unix.so

account required /1ib/security/pam time.so

password required /1ib/security/pam _cracklib.so retry=3 \
type=UNIX minlen=10 ocredit=2 \
dcredit=2

password required /1ib/security/pam_unix.so \
use_authtok shadow md5

session required /1ib/security/pam unix.so

session optional /1ib/security/pam motd.so motd=/etc/pmotd

When a user attempts to connect to the system via the rlogin service, authentication
proceeds as follows: the pam_securetty module presents connections to the root
account via rlogin (if someone attempts to rlogin as root, the module returns fail-
ure, and authentication ends due to the requisite keyword).

Next, the pam_nologin module determines whether the file /etc/nologin exists; if so,
its contents are displayed to the user, and authentication fails immediately. When /
etc/nologin is not present, the pam_rhosts_auth module determines whether the tradi-
tional Unix /etc/hosts.equiv mechanisms allow access to the system or not; if so,
authentication succeeds immediately. In all cases, the pam_unix module prompts for
a user password (the module uses the same arguments here as in the preceding
example).

If authentication succeeds, the account stack comes into play. First, user account and
password controls are checked via the pam_unix module (which makes sure that the
account is not expired and determines whether the password needs to be changed at
this time). Next, the pam_time module consults its configuration file to determine
whether this user is allowed to log in at the current time (discussed below). In order
for system access to be granted, neither of these modules must deny access, and at
least one of them must explicitly grant it.

When a password change is required, the password stack is used. The first module,
pam_cracklib, performs several different triviality checks on the new password before
allowing it to be chosen. This module is discussed in more detail later in this section.

Finally, the first session entry generates a syslog entry each time the rlogin service is
used. The second session entry displays a message-of-the-day at the end of the login
process, displaying the contents of the file specified with the pam_motd’s motd option.

User Authentication with PAM | 305

PAM Defaults

The PAM facility also defines an additional service called other, which serves as a
default authentication scheme for commands and facilities not specifically defined as
PAM services. The settings for the other service are used whenever an application
requests authentication but has no individual configuration data defined. Here is a
typical other configuration file:

auth required pam_warn.so

auth required pam_deny.so
These entries display a warning to the user that PAM has not been configured for the
requested service, and then deny access in all cases.

PAM Modules Under Linux

As these examples have indicated, Linux systems provide a rich variety of PAM mod-
ules. Unfortunately, the other systems we are considering are not as well provided for
by default, and you will have to build additional modules if you want them.

We will now briefly list the most important Linux PAM modules. Two of the most
important are discussed in more detail in subsequent subsections of this chapter. For
each module, the stacks in which it may be called are given in parentheses.

pam_deny (account, auth, passwd, session)

pam_permit (account, auth, passwd, session)
Deny/allow all access by always returning failure/success (respectively). These
modules do not log, so stack them with pam_warn to log the events.

pam_warn (account, auth, passwd, session)
Log information about the calling user and host to syslog.

pam_access (account)
Specify system access based on user account and originating host/domain as in
the widely used logdaemon facility. Its configuration file is /etc/security/access.conf.

pam_unix (account, auth, passwd, session)

pam_pwdb (account, auth, passwd, session)
Two modules for verifying and changing user passwords. When used in the auth
stack, the modules check the entered user password.

When used as an account module, they determine whether a password change is
required (based on password aging settings in the shadow password file); if so,
they delay access to the system until the password has been changed.

When used as a password component, the modules update the user password.
In this context, the shadow (use the shadow password file) and try_first_pass
options are useful; the latter forces the modules to use the password given to a
previous module in the stack (rather than generating another, redundant pass-
word prompt).

306 | Chapter6: Managing Users and Groups

In any of these modes, the nullok option is required if you want to allow users to
have blank passwords, even as initial passwords to be changed at the first login;
otherwise, the modules will return an authorization failure.

pam_cracklib (passwd)
Password triviality checking. Needs to be stacked with pam_pwdb or pam_unix.
See the separate discussion below.

pam_pwcheck (passwd)
Another password-checking module, checking that the proposed password con-
forms to the settings specified in /etc/login.defs (discussed previously in this
chapter).

pam_env (auth)
Set or unset environment variables with a PAM stack. It uses the configuration
file /etc/security/pam_env.conf.

pam_issue (auth)

pam_motd (session)
Display an issue or message-of-the-day file at login. The issue file (which defaults
to /etc/issue) is displayed before the username prompt, and the message of the
day file (defaults to /etc/motd) is displayed at the end of a successful login pro-
cess. The location of the displayed file can be changed via an argument to each
module.

pam_krb4 (auth, passwd, session)
pam_krb5 (auth, passwd, session)
Interface to Kerberos user authentication.

pam_lastlog (auth)
Adds an entry to the /var/log/lastlog file, which contains data about each user
login session.

pam_limits (session)

Sets user process resource limits (root is not affected), as specified in its configu-
ration file, /etc/security/limits.conf (the file must be readable only by the super-
user). This file contains entries of the form:

name hard/soft resource limit-value
where name is a user or group name or an asterisk (indicating the default entry).
The second field indicates whether it is a soft limit, which the user can increase if
desired, or a hard limit, the upper bound that the user cannot exceed. The final
two fields specify the resource in question and the limit assigned to it. The
defined resources are:

as
Maximum address space

core
Maximum core file size

User Authentication with PAM | 307

cpu
CPU time, in minutes
data
Maximum size of data portion of process memory
fsize
Maximum file size

maxlogins
Maximum simultaneous login sessions

memlock

Maximum locked-in memory
nofile

Maximum number of open files

rss
Maximum resident set

stack

Maximum stack portion of address space
All sizes are expressed in kilobytes.

pam_listfile (auth)

Deny/allow access based on a list of usernames in an external file. This module
is best explained by example (assume this is found in the PAM configuration file
for the ftp facility):

auth required pam_listfile.so onerr=fail sense=deny \

file=/etc/ftpusers item=user

This entry says that the file /etc/ftpusers (file argument) contains a list of user-
names (item=user) who should be denied access to ftp (sense=allow). If any error
occurs, access will be denied (onerr=fail). If you want to grant access to a list of
users, use the option sense=allow. The item option indicates the kind of data
present in the specified file, one of user, group, rhost, ruser, tty, and shell.

pam_mail (auth, session)
Displays a message indicating whether the user has mail. The default mail file
location (/var/spool/mail) can be changed with the dir argument.

pam_mkhomedir (session)
Creates the user’s home directory if it does not already exist, copying files from
the /etc/skel directory to the new directory (use the skel option to specify a differ-
ent location). You can use the umask option specify a umask to use when the
directory is created (e.g., umask=022).

pam_nologin (auth)
Prevents non-root logins if the file /etc/nologin exists, the contents of which are
displayed to the user.

308 | Chapter6: Managing Users and Groups

pam_rhosts_auth (auth)
Performs traditional /etc/rhosts and ~/.rhosts password-free authentication for
remote sessions between networked hosts (see “Network Security” in
Chapter 7).

pam_rootok (auth)
Allows root access without a password.

pam_securetty (auth)
Prevents root access unless the current terminal line is listed in the file /etc/
securetty.

pam_time(account)
Restricts access by time of day, based on user, group, tty, and/or shell. Dis-
cussed in more detail later in this chapter.

pam_wheel (auth)
Designed for the su facility, this module prevents root access by any user who is
not a member of a specified group (group=name option), which defaults to GID
0. You can reverse the logic of the test to deny root access to members of a spe-
cific group by using the deny option along with group.

Checking passwords at selection time

As we've seen, the pam_cracklib module can be used to check a proposed user pass-
word for strength. By default, the module checks the entered new password against
each word in its dictionary, /usr/lib/cracklib_dict. It also checks that the new pass-
word is not a trivial transformation of the current one: not a reversal, palindrome,
character case modification, or rotation. The module also checks the password
against the module’s list of previous passwords for the user, stored in /etc/security/
opasswd.

The arguments to this module specify additional criteria to be used for some of these
checks. These are the most important:

retry=n
Number of tries allowed to successfully choose a new password. The default is 1.
type=string
Operating system name to use in prompts (defaults to Linux).
minlen=n
Minimum “length” value for the new password (defaults to 10). This is com-
puted on the basis of the number of characters in the password, along with some
weighting for different types of characters (specified by the various credit argu-
ments). Due to the character-type credit scheme, this value should be equal to or
greater than the desired password length plus one.

User Authentication with PAM | 309

ucredit=u

leredit=1

deredit=d

ocredit=0
Maximum “length” credits for having uppercase letters, lowercase letters, digits,
and other characters (respectively) in proposed passwords (all of them default to
1). If set, characters of each type will add 1 to the “length” value, up to the speci-
fied maximum number. For example, dcredit=2 means that having two or more
digits in the new password will add 2 to the number of characters in the pass-
word when comparing its “length” to minlen (one or zero digits will similarly
add 1 or 0 to the “length”).

difok=n
The number of characters in the new password that must not be present in the
old password (old passwords are stored in /etc/security/opasswd). The default is
10. Decrease this value when you are using long MD5 passwords.

As an example, consider our previous invocation of pam_cracklib:

passwordrequiredpam cracklib.so retry=3 type=Linux \

minlen=12 ocredit=2 dcredit=2 difok=3
In this case, the user is allowed three tries to select an appropriate password
(retry=3), and the word “Linux” will be used in the new password prompt rather
than Unix (type=Linux). Also, the password must have a minimum length-value of
12, where each character in the password counts as 1, and up to two numbers
(dcredit=2) and two nonalphanumeric characters (ocredit=2) can each add an addi-
tional 1 to the “length.” This effectively forces passwords to be at least seven charac-
ters long, and in that case, they must contain two digits and two non-alphanumeric
characters (7 characters + 1 alpha + 2 digits + 2 other). Passwords containing only
upper- and lowercase letters will have to be at least 10 characters long. The final
option specifies that three characters in the new password must not be present in the
old password.

Specifying allowed times and locations for system access

The pam_time module uses a configuration file, /etc/security/time.conf, that specifies
hours when users may access defined PAM services. Here’s an example:

#services; ttys; users; times (Mo Tu We Th Fr Sa Su Wk Wd Al)

login;tty*;!root & !harvey & !chavez;Wd0000-2400|Wk0800-2000

games;*;smith|jones|williams |wong|sanchez|ng; !A10700-2000
The first line is a comment indicating the contents of the various fields (note that
entries are separated by semicolons). Each entry within this configuration file speci-
fies when access to the indicated services are allowed; the entry applies when all of
the first three fields match the current situation, and the fourth entry indicates the
times when access is allowed.

310 | Chapter6: Managing Users and Groups

In our example, the first line specifies that access to the login and rlogin services will
be granted to any user except root, harvey, and chavez (the logical NOT is indicated
by the initial !) all the time on weekends (Wd keyword in the fourth field) and on
weekdays between 8:00 A.M. and 6:00 P.M., on any serial-line connected terminal.
The second line prohibits access to any PAM-aware game by the listed users between
7:00 A.M. and 8:00 P.M. (again, regardless of tty); it does so by granting access at
any time except those noted (again indicated by the initial exclamation point). Note
that & and | are used for logical AND and OR, respectively, and that an asterisk may
be used as a wildcard (although a bare wildcard is allowed only once within the first
three fields).

As you create entries for this configuration file, keep in mind that you
are creating matching rules: use the first three fields to define applica-
bility and the final field to specify allowed or denied access periods.
Note that ampersands/ANDs usually join negative (NOT-ed) items,
and vertical bars/ORs usually join positive items.

Be aware that this module can provide time-based controls only for initial system
access. It does nothing to enforce time limits after users have already logged in; they
can stay logged in as long as they like.

MD5 passwords

Linux and some other Unix systems support much longer passwords (up to at least
128 characters) using the MD35 encryption algorithm. Many PAM modules are also
compatible with such passwords, and they provide an md5 option that may be used
to indicate they are in use and to request their usage. These include pam_pwdb,
pam_unix, pam_cracklib, and pam_pwcheck.

If you decided to enable MD35 passwords, you will need to add the md5 option to all
relevant modules in the configuration files for login, rlogin, su, sshd, and passwd ser-
vices (and perhaps others as well).

Not all Unix facilities are compatible with MD35 passwords. For exam-
ple, some ftp client programs always truncate the entered password
and so will not send long passwords correctly, thereby preventing ftp
access by users with long passwords. Test your environment thor-
oughly before deciding to enable MD5 passwords.

PAM Modules Provided by Other Unix Systems

As we noted earlier, HP-UX, FreeBSD, and Solaris do not provide nearly as many
PAM modules as Linux does by default. Each provides from 8 to 12 modules. All
include a version of the basic password-based authentication module, pam_unix

User Authentication with PAM | 311

(named libpam_unix on HP-UX systems). There are also a few unique modules pro-
vided by these systems, including the following:

System Module Description

HP-UX libpam_updbe This module provides a method for defining user-specific PAM stacks (stored in
the /etc/pam_user.conf configuration file).

Solaris pam_projects This module succeeds as long as the user belongs to a valid project, and fails
otherwise. Solaris projects are discussed in “System V-Style Accounting: AlX,
HP-UX, and Solaris” in Chapter 17.

pam_dial_auth Perform dialup user authentication using the traditional /etc¢/dialup and /etc/
d_passwd files (see “User Authentication Revisited” in Chapter 7).

pam_roles Performs authentication when a user tries to assume a new role (see “Role-
Based Access Control” in Chapter 7).

FreeBSD pam_cleartext_pass_ ok Accepts authentication performed via cleartext passwords.

More Complex PAM Configuration

The latest versions of PAM introduce a new, more complex syntax for the final sever-
ity field:
return-val=action [, return-val=action [,...]]

where return-val is one of approximately fifteen defined values that a module may
return, and action is a keyword indicating what action should be taken if that return
value is received (in other words, if that condition occurs). The available actions are
ok (grant access), ignore (no opinion on access), bad (deny access), die (immediate
deny access), done (immediate grant access), and reset (ignore the results of all mod-
ules processed so far and force the remaining ones in the stack to make the deci-
sion). In addition, a positive integer (n) may also be specified as the action, which
says to skip next n modules in the stack, allowing simple conditional authentication
schemes to be created.

Here is an example severity field using the new syntax and features:

success=ok,open_err=ignore,cred insufficient=die,\

acct_expired=die,authtok_expired=die,default=bad
This entry says that a success return value from the module grants access; it will still
need to be combined with the results of the other modules in order to determine
overall authentication success or failure (as usual). A file open error causes the mod-
ule to be ignored. If the module indicates that the user’s credentials are insufficient
for access or that his account or authentication token is expired, the entire authenti-
cation process fails immediately. The final item in the list specifies a default action to
be taken when any other value is returned by the module; in this case, it is set to
deny access.

These examples have shown some of the features and flexibility of the PAM facility.
Now it is time for you to experiment and explore it further on your own, in the
context of the needs of your particular system or site. As always, be careful as you do

312 | Chapter6: Managing Users and Groups

so, and do some preliminary testing on a noncritical system before making any
changes in a production system. Using PAM effectively requires experience, and
everyone locks themselves out in some context as they are learning to do so.

LDAP: Using a Directory Service
for User Authentication

For several years now, every time anyone put together a list of hot system administra-
tion topics, LDAP was sure to be near the top. Many sites are beginning to use LDAP
for storing employee information, including user account information, and as a
means for performing enterprise-wide user authentication. In this way, LDAP-based
account data and authentication can replace separate, per-system logins and net-
work-based authentication schemes like NIS.

In this closing section of the chapter, we’ll take a brief look at LDAP—and specifi-
cally, the OpenLDAP environment—and consider how it may be used for user
authentication.

About LDAP

LDAP, as its fully expanded name—Lightweight Directory Access Protocol—indi-
cates, is a protocol that supports a directory service. The best analogy for a directory
service is the phone company’s directory assistance. Directory assistance is a mecha-
nism for customers to find information that they need quickly. Traditionally, human
operators provided the (hopefully friendly) interface between the user (customer)
and the database (the list of phone numbers). Directory assistance is not a means for
customers to change their phone number, indicate whether their phone number
should be listed or unlisted, or to obtain new telephone service.

A computer-based directory service provides similar functionality. It is a database
and means of accessing information within it. Specifically, the directory service data-
base has several specific characteristics that are different from, say, databases used
for transaction processing:

* It is optimized for reading (writing may be expensive).

* It provides advanced searching features.

* Its fundamental data structures—collectively known as the schema—can be
extended according to local needs.

* It adheres to published standards to ensure interoperability among vendor
implementations (specifically, a boatload of RFCs).

* It takes advantage of distributed storage and data-replication techniques.

LDAP’s roots are in the X.500 directory service and its DAP protocol. LDAP was
designed to be a simpler and more efficient protocol for accessing an X.500

LDAP: Using a Directory Service for User Authentication | 313

directory. It is “lightweight” in several ways: LDAP runs over the TCP/IP network
stack (instead of DAP’s full implementation of all seven OSI layers), it provides only
the most important small subset of X.500 operations, and data is formatted as sim-
ple strings rather than complex data structures. Like DAP itself, LDAP is an access
protocol. The actual database services are provided by some other facility, often
referred to as the back end. LDAP serves a means for efficiently accessing the infor-
mation stored within it.

In order to emphasize these differences with respect to standard relational data-
bases, different terminology is used for the data stored in a directory. Records are
referred to as entries, and fields with a record are called attributes.

LDAP was first implemented at the University of Michigan in the early 1990s. There
are many commercial LDAP servers available. In addition, OpenLDAP is an open
source implementation of LDAP based on the work at Michigan (http://www.
openldap.org). The OpenLDAP package includes daemons, configuration files, star-
tup scripts, libraries, and utilities.

These are the most important OpenLDAP components:

Daemons
slapd is the OpenLDAP daemon, and slurpd is the data replication daemon.

A database environment
OpenLDAP supports the Berkeley DB and the GNU GDBM database engines.

Directory entry-related utilities
These utilities are ldapadd and ldapmodify (add/modify directory entries),
ldapdelete (delete directory entries), ldapsearch (search directory for entries
matching specified criteria), and ldappasswd (change entry password).

Related utilities
Related utilities include, for example, slappasswd (generate encoded passwords).

Configuration files
Configuration files are stored in /etc/openldap.

A w
Unix versions differ in their LDAP support. Some, like Linux and
FreeBSD, use OpenLDAP exclusively. Others, like Solaris, provide
% only client support by default (although Solaris offers an LDAP server
" as an add-on facility at extra cost). Be sure to check what your version
uses if you plan to use the provided facilities. Switching to OpenLDAP
is also an option for all of the systems we are considering.

qs
[

.

LDAP Directories

LDAP directories are logically tree structures, and they are typically rooted at a con-
struct corresponding to the site’s domain name, expressed in a format like this one:

dc=ahania,dc=com

314 | Chapter6: Managing Users and Groups

Each component of the domain name becomes the value for a dc (domain compo-
nent) attribute, and all of them are collected into a comma-separated list. This is
known as the directory’s base, corresponding in this case to ahania.com. Domain
names with more than two components would have additional dc attributes in the
list (e.g., dc=research,dc=ahania,dc=com).

Such a list of attribute=value pairs is the method for referring to any location (entry)
with the directory. Spaces are not significant between items.

Let’s now turn to a sample record from a directory service database:

dn: cn=Jerry Carter, ou=MylList, dc=ahania, dc=com
objectClass: person

cn: Jerry Carter

sn: Carter

description: Samba and LDAP expert
telephoneNumber: 22

This data format is known as LDIF (LDAP Data Interchange Format). It is organized

as a series of attribute and value pairs (colon-separated). For example, the attribute
telephoneNumber has the value 22.

The first line is special. It specifies the entry’s distinguished name (dn), which func-
tions as its unique key within the database (I like to think of it as a Borg “designa-
tion”). As expected, it is constructed as a comma-separated list of attribute-value
pairs. In this case, the entry is for common name “Jerry Carter,” organizational unit
“MyList” in the example directory for ahania.com.

The objectClass attribute specifies the type of record: in this case, a person. Every
entry needs at least one objectClass attribute. Valid record types are defined in the
directory’s schema, and there are a variety of standard record types that have been
defined (more on this later). The other attributes in the entry specify the person’s sur-
name, description and phone number.

The first component of the dn is known as the entry’s relative distinguished name
(rdn). In our example, that would be cn=Jerry Carter. It corresponds to the location
within the ou=MyList,dc=ahania,dc=com subtree where this entry resides. An rdn
must be unique within its subtree just as the dn is unique within the entire directory.

Here is a simple representation of the directory tree in which successive (deeper) lev-
els are indicated by indentation:

dc=ahania,dc=com
ou=MylList,dc=ahania,dc=com
cn=Jerry Carter,ou=MylList,dc=ahania,dc=com
cn=Rachel Chavez,ou=MylList,dc=ahania,dc=com
more people ...
ou=HislList,dc=ahania,dc=com
different people ...

The directory is divided into two organization units, each of which has a number of
entries under it (corresponding to people).

LDAP: Using a Directory Service for User Authentication | 315

About schemas

The schema is the name given to the collection of object and attribute definitions
which define the structure of the entries (records) in an LDAP database. LDAP
objects are standardized in order to provide interoperability with a variety of direc-
tory-services servers. Schema definitions are stored in files located in the /etc/
openldap/schema subdirectory. The OpenLDAP package provides all of the most
common standard schema, and you can add additional definitions, if necessary. You
specify the files that are in use via entries in slapd.conf, as in these examples:

include /etc/openldap/schema/core. schema
include /etc/openldap/schema/misc.schema

Object definitions in the schema files are fairly easy to understand:”

objectclass (2.5.6.6 NAME 'person' SUP top STRUCTURAL

MUST (sn $ cn)

MAY (userPassword $ telephoneNumber $ seeAlso $ description))
This is the definition of the person object class. The first line specifies the class name.
It also indicates that it is a structural object (the other sort is an auxiliary object,
which adds supplemental attributes to its parent object) and that its parent class is
top (a pseudo-object indicating the top of the hierarchy). The remaining lines specify
required and optional attributes for the object.

Attributes are defined in separate stanzas having an even more obscure format. For
example, here is the definition of the sn (surname) attribute:
attributetype (2.5.4.4 NAME ('sn' 'surname') SUP name)
attributetype (2.5.4.41 NAME 'name’
EQUALITY caselgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768})
The sn attribute draws its definition from its parent, the name attribute. Its defini-
tion specifies its syntax and how equality and substring comparisons are to be per-
formed (themselves defined via keywords and values defined elsewhere in the
schema).

In general, you can figure out what’s going on with most objects by examining the
relevant schema files. The website http://ldap.hklc.com provides a very convenient
interface for exploring standard LDAP schema objects.

Installing and Configuring OpenLDAP: An Overview

Installing OpenLDAP is not difficult, but it can be time-consuming. The first step is
to obtain all of the needed software. This includes not only OpenLDAP itself, but
also its prerequisites:

* For those of you familiar with SNMP, LDAP uses ASN.1 syntax for its schemas, and thus its object defini-
tions somewhat resemble SNMP MIB definitions.

316 | Chapter6: Managing Users and Groups

* A database manager: GNU gdbm (http://www.fsf.org) or BerkeleyDB (http://
www.sleepycat.com)

* The Transport Layer Security (TLS/SSL) libraries (http://www.openssl.org)
* The Cyrus SASL libraries (http://asg.web.cmu.edu/sasl/)

Once the prerequisites are met, we can build and install OpenLDAP. The
OpenLDAP documentation for doing so is pretty good.

Once the software is installed, the next step is to create a configuration file for the
slapd daemon, /etc/openldap/slapd.conf-

/etc/openldap/slapd.conf

include /etc/openldap/schema/core.schema
pidfile /var/run/slapd.pid

argsfile /var/run/slapd.args

database 1dbm

suffix "dc=ahania, dc=com"

rootdn "cn=Manager, dc=ahania, dc=com"

encode with slappasswd -h '{MD5}' -s <password> -v -u
Tootpw {MD5}Xr4110z04PC0q3aQ0qbuaQ==

directory /var/lib/ldap

Additional items may appear in your file. Change any paths that are not correct for
your system, and set the correct dc components in the suffix (directory base) and
rootdn (database owner) entries (Manager is the conventional common name to use
for this purpose). Set a password for the root dn in the rootpw entry. This may be in
plain text, or you can use the slappasswd utility to encode it.

Finally, make sure that the specified database directory exists, is owned by root, and
has mode 700. The configuration file itself should also be readable only by root.

Once the configuration file is prepared, you can start slapd manually. On some sys-
tems, you can use the provided boot script, as in this example:

/etc/init.d/ldap start

If you want the LDAP daemons to be started at boot time, you’ll need to ensure that
this file is run by the boot scripts.

Next, we create the first directory entries, via a text file in LDIF format (the default
LDAP text-based import and export format). For example:

Domain entry

dn: dc=ahania,dc=com
objectclass: dcObject
objectclass: organization

o: Ahania, LLC

dc: ahania.com

Manager entry

dn: cn=Manager,dc=ahania,dc=com
objectclass: organizationalRole
cn: Manager

LDAP: Using a Directory Service for User Authentication | 317

Use a command like this one to add the entries from the file:

ldapadd -x -D "cn=Manager,dc=ahania,dc=com” -W -f /tmp/entryo

Enter LDAP Password: Not echoed

adding new entry "dc=ahania,dc=com"

adding new entry "cn=Manager,dc=ahania,dc=com"
The -f option to ldapadd specifies the location of the prepared LDIF file. -D specifies
the dn with which to connect to the server (this process is known as “binding”), and
-x and -W say to use simple authentication (more about this later) and to prompt for
the password, respectively.

You can verify that everything is working by running the following command to
query the directory:

ldapsearch -x -b 'dc=ahania,dc=com’' -s base '(objectclass=*)'
version: 2

ahania,dc=com

dn: dc=ahania,dc=com
objectClass: dcObject
objectClass: organization
o: Ahania, LLC

dc: ahania.com

This command displays the directory’s base level (topmost) entry (we’ll discuss the
command’s general syntax in a bit).

At this point, the server is ready to go to work. For more information on installing
OpenLDAP, consult Section 2, “Quick Start,” of the OpenLDAP 2.0 Administrator’s
Guide.

More about LDAP searching
The full syntax of the 1dapsearch command is:
ldapsearch options search-criteria [attribute-Iist]

where options specify aspects of command functioning, search-criteria specify which
entries to retrieve, and attribute-list specifies which attributes to display (the default
is all of them). Search criteria are specified according to the (arcane) LDAP rules,
whose simplest format is:

(attribute-name=pattern)

The pattern can include a literal value or a string containing wildcards. Thus, the cri-
teria (objectclass=") returns entries having any value for the objectclass attribute (i.e.,
all entries).

The following command illustrates some useful options and a more complex search
criterion:
ldapsearch -x -b 'dc=ahania,dc=com' -S cn \

' (&(objectclass=person)(cn=Mike*))"' \
telephoneNumber description

318 | Chapter6: Managing Users and Groups

dn: cn=Mike Frisch, ou=MylList, dc=ahania, dc=com
telephoneNumber: 18

description: Computational chemist

dn: cn=Mike Loukides, ou=MylList, dc=ahania, dc=com
telephoneNumber: 14

description: Editor and writer

The output is (considerably) shortened.

This query returned two entries. The options said to use the simple authentication
scheme (-x), to start the search at the entry dc=ahania,dc=com (-b), and to sort the
entries by the ¢n attribute (-5).

The search criteria specified that the objectclass should be person and the ¢n should
start with “Mike” (illustrating the syntax for an AND condition). The remaining
arguments selected the two attributes that should be displayed in addition to the dn.

The following command could be used to perform a similar query on a remote host:

ldapsearch -H ldap://bella.ahania.com -x -b 'dc=ahania,dc=com' \
'(cn=Mike*)' telephoneNumber description

The -H option species the URI for the LDAP server: bella.

The search context for LDAP clients can be preset using the Idap.conf configuration
file (also in /etc/openldap). Here is an example:
/etc/openldap/ldap.conf

URI 1ldap://bella.ahania.com
BASE dc=ahania,dc=com

With this configuration file, the previous command could be simplified to:
ldapsearch -x '(cn=Mike*)' telephoneNumber description

There are a variety of LDAP clients available to make directory-entry viewing and
manipulation easier than using LDIF files and command-line utilities. Some com-
mon ones are kldap (written by Oliver Jaun, http://www.mountpoint.ch/oliver/kldap/),
gq (http://biot.com/gq/), and web2ldap (http://web2ldap.de). The gq utility is pictured
in Figures 6-13 and 6-14.

Using OpenLDAP for User Authentication

Enterprise-level user authentication is another appropriate and desirable application
for an OpenL.DAP-based directory service. Setting up such functionality is not diffi-
cult, but the process does require several steps.

Select an appropriate schema

You’ll need to incorporate user account and related configuration information con-
ventionally stored in files (or in the NIS facility) into the directory service. Fortu-
nately, there are standard objects for this purpose. In the case of user accounts, the
ones to use are posixAccount and shadowAccount (both defined in the nis.schema

LDAP: Using a Directory Service for User Authentication | 319

file). In addition, if you wish to place users into an organizational unit (which is the
standard practice, as we’ll see), then the account object is also used (defined in
cosine.schema).

Accordingly, we’ll add these lines to slapd.conf:

include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/nis.schema
index cn,uid eq
index uidNumber eq
index gidNumber eq
The final three lines create indexes on the specified fields in order to speed up

searches.

While you are performing this process, you may also want to enable slapd logging
via this configuration file entry:

log connection setup, searches and various stats (8+32+256)

loglevel 296
The parameter specifies the desired items to be logged; it is a mask that ANDs bits
for the various available items (see the OpenLDAP Administrator’s Guide for a list).
Specify a log level of 0 to disable logging. Log messages are sent to the syslog local4.
debug facility.

Don’t forget to restart slapd after editing its configuration file.

Convert existing user account data

The next step is to transfer the user account data to the directory. The easiest way to
do so is to use the open source migration tools provided by PADL software (http:/
www.padl.com). These are a series of Perl scripts that extract the required data from
its current location and create corresponding directory entries. Using them goes like
this:

* Install the scripts to a convenient location.

* Edit the migrate_common.ph file. You will have to modify at least these entries:
DEFAULT_BASE, DEFAULT_MAIL_DOMAIN, DEFAULT_MAIL_HOST, and
the various sendmail-related entries (if you plan to use OpenLDAP for this pur-
pose as well).

You should also set EXTENDED_SCHEMA to 1 if you want the scripts to cre-
ate user account entries such as person, organizationalPerson, and inetOrgPerson
objects in addition to the account-related objects.

There are two ways to proceed with the migration. First, you can run a script that
automatically transfers all of the information to the directory: migrate_all_online.pl is
used if slapd is running, and migrate_all_offline.pl is used otherwise.

320 | Chapter6: Managing Users and Groups

I am not brave enough to just go for it; I run the various component scripts by hand
so I can examine their work before importing the resulting LDIF files. For example,
this command converts the normal and shadow password files to LDIF format:

migrate_passwd.pl /etc/passwd passwd.ldif
The desired output file is specified as the second parameter.

Here is an example of the conversion process in action. The script takes the follow-
ing entries from /etc/passwd and /etc/shadow:

letc/passwd chavez:x:502:100:Rachel Chavez:/home/chavez:/bin/tcsh
letc/shadow chavez:zcPv/0XSSS9hJg:11457:0:99999:7:0: :

It uses those entries to create the following directory entry:

dn: uid=chavez,ou=People,dc=ahania,dc=com
uid: chavez

cn: Rachel Chavez

objectClass: top

objectClass: account

objectClass: posixAccount
objectClass: shadowAccount
uidNumber: 502

gidNumber: 100

gecos: Rachel Chavez

homeDirectory: /home/chavez
loginShell: /bin/tcsh

userPassword: {crypt}zcPv/oXSSS9hlg
shadowLastChange: 11457

shadowMax: 99999

shadowhWarning: 7

If you choose this route, you will need also to run the migrate_base.pl script to cre-
ate the top-level directory entries corresponding to the ous (e.g., People above) in
which the scripts place the accounts (and other entities). Another advantage of this
method is that you can change the ou name if you don’t like it, subdivide it, or trans-
form it in other ways, before importing.

Specify the name service search order

Now we are ready to use the directory service for user account operations. In order
to do so, we will need two additional packages: nss_Ildap and pam_ldap (both avail-
able from http://'www.padl.com). The first of these provides an interface to the /etc/
nsswitch file. The relevant lines need to be edited to add LDAP as an information
source:

passwd: files ldap
shadow: files ldap

These lines tell the operating system to look in the conventional configuration file
first for user account information and then to consult the OpenL.DAP server.

LDAP: Using a Directory Service for User Authentication | 321

This module also requires some entries in the Idap.conf client configuration file. For
example:

nss_base_passwd ou=People,dc=ahania,dc=com
nss_base shadow ou=People,dc=ahania,dc=com
nss_base group ou=Group,dc=ahania, dc=com

These entries specify the directory tree location of the ous holding the user account
and group information.

This configuration file is usually in /etc/openldap, but it is also possi-
ble to place it directly in /etc, and the latter location takes precedence.
If you install the nss_Ildap package manually, it will probably place an
example copy in /etc. This can cause some trouble and be hard to
debug when you don’t know that it is there! The pam_Ildap package
does the same thing.

Once things are configured, you can use the following command to view user
accounts:

getent passwd

In the testing phase, you will want to migrate a few test accounts and then run this
command. The migrated accounts will appear twice until you remove them from the
configuration files.

Configure PAM to use OpenLDAP. The PAM facility (discussed previously) provides the
means for interfacing the OpenLDAP directory data to the user authentication pro-
cess. Accordingly, you will need the pam_Idap package to interface to OpenLDAP.

Once the package is installed, you will need to modify the files in /etc/pam.d or /etc/
pam.conf to use the LDAP module (examples are provided with the package). For
example, here is the modified version of the PAM configuration file for rlogin
(shown in the format used by per-service PAM configuration files):

auth required /1ib/security/pam securetty.so
auth required /1ib/security/pam_nologin.so
auth sufficient /lib/security/pam rhosts_auth.so
auth sufficient /lib/security/pam ldap.so

auth required /1ib/security/pam_unix.so

auth required /1ib/security/pam mail.so

account sufficient /lib/security/pam ldap.so

account required /1ib/security/pam_unix.so

password sufficient /lib/security/pam_ldap.so

password required /1ib/security/pam unix.so strict=false
session required /1ib/security/pam_unix.so debug

Generally, the pam_Ildap.so module is just inserted into the stack above pam_unix.so
(or equivalent module).

322 | Chapter6: Managing Users and Groups

There are also several optional PAM-related entries which may be included in Idap.
conf. For example, the following Idap.conf entries restrict user access by host, based
on the contents of the user’s directory entry:

Specify allowed hosts for each user
pam_check host attr yes

The following directory entry illustrates the method for granting user chavez access
to a list of hosts:
dn: uid=chavez,ou=People,dc=ahania,dc=com

objectClass: account Parent of hos.t
objectClass: posixAccount Unix user account.

List of allowed hosts
host: milton.ahania.com
host: shelley.ahania.com
host: yeats.ahania.com

Similarly, the following configuration file entries specify a list of allowed users for
each host computer:

Limit host access to the specified users
pam_groupdn cn=dalton.ahania.com,dc=ahania,dc=com
pam_member attribute uniquemember

Here is the corresponding entry for a host:

List of allowed users on the local host
dn: cn=dalton.ahania.com,dc=ahania,dc=com

objectClass: device Parent of ipHost.

objectClass: ipHost Parent of groupOfUniqueNames.
objectClass: groupOfUniqueNames

cn: dalton

cn: dalton.ahania.com
uniqueMember: uid=chavez,ou=People,dc=ahania,dc=com
uniqueMember: uid=carter,ou=People,dc=ahania,dc=com

Configure directory access control

The final steps in setting things up involves directory access control. The database
files themselves are protected against all non-root access, so permissions are enforced
by the server. Access control information is specified in the server’s configuration
file, slapd.conf, via access control entries like these:

simple access control: read-only except passwords
access to dn=".*,dc=ahania,dc=com" attr=userPassword
by self write
by dn=root,ou=People,dc=ahania,dc=com write
by * auth
access to dn=".*,dc=ahania,dc=com"
by self write
by * read

LDAP: Using a Directory Service for User Authentication | 323

The access to entry specifies a pattern that the dn must match in order for the entry
to apply. In the case of multiple entries, the first matching entry is used, and all
remaining entries are ignored, so the ordering of multiple entries is very important.
The first access to entry applies to the userPassword attribute of any entry: any dn in
dc=ahania,dc=com. The owner can modify the entry, where the owner is defined as
someone binding to the server using that dn and its associated password. Everyone
else can access it only for authentication/binding purposes; they cannot view it, how-
ever. This effect is illustrated in Figure 6-13, which shows user a2’s search results for
the specified query.

i . - — . s
File Help |

Search | Browse | Schemal

filter |Iucalhusl Jdc:ahama,dc:cum ﬂ F\mjl

D |ui|:| IIuginSheH |uidNumher Ig\dNumher |hnmeDirectnry |gezus |userPasswurd
uid=al,ou=People,dc=ahania,dc=com al fhinftesh 501 100 fhomesad A1 User

uid=az ,nu=People,dc=ahania,dc=com az Jhinfcsh a0z 100 fhomesaz A2 User [cryptlyP4cGragwES
uid=h1,0u=People,dc=ahania,dc=com b1 fhinfbash 503 100 fhomedhl

~ | =

[5 entries found

Figure 6-13. The OpenLDAP server prevents unauthorized access

The access control second entry serves as a default for the remainder of the data-
base. Again, the owner can modify an entry, and everyone else can read it, an access
level which allows both searching and display. These permissions are often appropri-
ate for a company directory, but they are too lax for user account data. We’ll need to
examine access control entries in more detail to design something more appropriate.

OpenLDAP access control
An access control entry has the following general form:

access to what-data
by what-users allowed-access
[by ...]
where what-data is an expression for the entries and possibly attributes to which this
directive applies, what-users specifies who this directive applies to, and allowed-
access is the access level that they are granted. There can be multiple by clauses. All
variables can be literal values or include regular expressions.

The defined access levels are the following:

none
No access.

auth
Use for authentication only.

324 | Chapter6: Managing Users and Groups

compare
Values are accessible to comparison operations.

search
Values are accessible to search filters.

read
Data can be viewed.

write
Data can be viewed and modified.

The target of the by clause has many possibilities, including a dn (which may con-
tain wildcards) and the keywords self (the entry’s owner), domain (which takes an
expression for a domain as its argument), and anonymous (access by users who
haven’t been authenticated). A single asterisk can be used to signify access by any-
one.

Let’s look at some examples. The following configuration file directive allows every-
one to have read access to the entire specified directory and also allows each entry’s
owner to modify it:
access to dn=".*,dc=ahania,dc=com"
by self write
by * read
The following example directives allow each entry’s owner to read the entire entry
but modify only a few attributes:
access to dn=".*,dc=ahania,dc=com" attrs="cn,sn,description,gecos"
by self write
access to dn=".*,dc=ahania,dc=com"
by self read
The following example allows the uid of root (in any top-level organizational unit) to
modify any password attribute in the directory:

access to dn=".*,dc=ahania,dc=com" attrs="password"
by dn="uid=root,ou=[A-Za-z]+,dc=ahania,dc=com" write

Note that we are assuming that ou names contain only letters.

Finally, this example controls access to the entries under the specified ou, limiting
read access to members of the local domain:
access to dn=".*,ou=People,dc=ahania,dc=com"
by domain=.*\.ahania\.com read
by anonymous auth
Nonauthenticated users can use the data in this subtree only for LDAP authentica-
tion purposes.

You can use constructs like these to implement whatever access control design
makes sense for your security objectives and needs. Consult the OpenLDAP
Administrator’s Guide for full details about access control directives.

LDAP: Using a Directory Service for User Authentication | 325

Securing OpenLDAP Authentication

In all of our examples to this point, we have considered only the simplest method of
presenting authentication credentials to the LDAP server: supplying a password asso-
ciated with a specific distinguished name’s password attribute. This is known as sim-
ple authentication, and it is the easiest way to bind to the LDAP server. However,
since the passwords are sent to the server in the clear, there are significant security
problems with this approach.

OpenLDAP supports the common authentication schemes: simple authentication
using passwords, Kerberos-based authentication, and using the authentication ser-
vices provided by the Simple Authentication and Security Layer (SASL). The first two
of these are selected by the -x and -k options to the various LDAP client commands,
respectively, and the absence of either of them implies SASL should be used. The
Kerberos authentication method is deprecated, however, since superior Kerberos
functionality is provided by SASL.

SASL was designed to add additional authentication mechanisms to connection-ori-
ented network protocols like LDAP. Unix systems generally use the Cyrus SASL
library, which provides the following authentication methods:

ANONYMOUS and PLAIN
Standard anonymous and simple, plain text password-based binds

DIGEST-MDS
MD35-encoded passwords

KERBEROS_V4 and GSSAPI
Kerberos-based authentication for Kerberos 4 and Kerberos 5, respectively

EXTERNAL
Site-specific authentication modules

Installing and configuring SASL is somewhat complex, and we don’t have space to
consider it here. Consult http://asg.web.cmu.edu/sasl/ for more information.

Fortunately, OpenLDAP also provides the means for securing the simple authentica-
tion scheme. It uses an interface to the Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) networking functions. SSL provides encrypted authentication
and data transfer via port 636 (assigned to the ldaps service), while TLS provides this
via the standard LDAP port of 389. The advantage of the latter is that both encrypted
and unencrypted clients can use the same standard port. However, it is usually best
to enable both of them since client support is varied and unpredictable.

In order to use SSL and TLS, you will need to create a certificate for the LDAP server,
using a process like this one:

cd /usr/ssl/cert

openssl req -newkey rsa:1024 -x509 -days 365 \
keyout slapd_key.pem -out slapd_cert.pem

Using configuration from /usr/ssl/openssl.cnf

Generating a 1024 bit RSA private key

326 | Chapter6: Managing Users and Groups

writing new private key to 'newreq.pem’
Enter PEM pass phrase: Not echoed
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that

will be incorporated into your certificate request.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Connecticut

First, we change to the SSL certificates directory, and then we run the command that
creates the certificate and key files. This process requires you to enter a pass phrase
for the private key and to provide many items of information, which are used in cre-
ating the certificate. When this process completes, the certificate is located in the file
slapd_cert.pem, and the key is stored in slapd_key.pem.

The next steps consist of removing the pass phrase from the key file (otherwise,
you’ll need to enter it every time you start slapd), and then setting appropriate own-
ership and protections for the files:

openssl rsa -in slapd_key.pem -out slapd_key.pem

chown slapd-user.sldap-group sl*.pem

chmod 600 s1*.pem
Once the certificate files are created, we add entries to slapd.conf pointing to the cer-
tificate files:

SSL/TLS

TLSCertificateFile /usr/ssl/certs/slapd_cert.pem

TLSCertificateKeyFile /usr/ssl/certs/slapd key.pem

Specify ciphers to use -- this is a reasonable default

TLSCipherSuite HIGH:MEDIUM:+SSLv2
Finally, we need to modify the boot script that controls slapd so that the startup
command lists both normal and secure LDAP as supported protocols. Here is the rel-
evant line:

slapd -h "ldap:/// ldaps:///"

After you restart the server, you can verify that things are working in several ways.
An easy way is to run a search command and watch the associated network traffic as
the command runs. For example, you can use the ngrep utility to watch the two
LDAP ports and look for unencrypted passwords. In this example, we look for the
string “bbb”, which is the password used for binding to the server:

ngrep 'bbb' port 636 or port 389

Then, in another window, we run an ldapsearch command, which binds to a test
entry in the directory (uid=a2), specifying the password first with -x and then with -w,
using the 1dap and 1daps services, respectively. Here is the second command:

ldapsearch -H ldaps://10.0.49.212:636 -w bbb -x \
-D 'uid=a2,ou=People,dc=ahania,dc=com' 'uid=a*'

LDAP: Using a Directory Service for User Authentication | 327

The search command should return some entries both times, but the ngrep com-
mand will not find any matching packets for the second search since the password is
encrypted.

Alternatively, you can use a client that supports one or both of these facilities.
Figure 6-14 illustrates the gq utility’s server properties dialog. You can check the
appropriate box to use TLS and then run a similar test to the preceding, again
searching for the cleartext password (and not finding it when TLS is enabled).

—[+] Server bella B E

Ganeral Detailsl

Bind D |uid=a2,nu=Penple,dc=ahania,

Bing Password |hhb

Bind type |Simp|e |j
Search Attribute |cn

haximum entries |2E|E|

[T Cache connection

Ok | Cancel |

Figure 6-14. Enabling TLS support in the gq client

If you have problems binding to the server, make sure that the password you are
using is the correct one for that entry and that the access level for your test entry is
sufficient for the operation to succeed. Finally, be sure that you have restarted the
slapd process and that it has not generated any error messages.

This introduction to OpenLDAP should be sufficient to get you
started experimenting with this facility. As with any change of this size
and complexity, it is important to test changes in a controlled and lim-
ited environment before attempting to apply them to production sys-
tems and/or on a large scale.

Wither NIS?

The Network Information Service (NIS) is another distributed database service that
allows a single set of system configuration files to be maintained for an entire local
network of computers. NIS was created by Sun Microsystems. With NIS, a single

328 | Chapter6: Managing Users and Groups

password file can be maintained for an entire network of computers almost automat-
ically (you still have to add or modify entries on one copy by hand). This section will
provide a brief description of NIS. Consult your system documentation for more
details (use man -k nis and man -k yp to get started). In addition, Managing NFS and
NIS, by Hal Stern, Mike Eisler, and Ricardo Labiaga (O’Reilly & Associates), con-
tains an excellent discussion of NIS.

NIS was designed for a very open environment in which significant trust among all
systems is desired (and assumed). As such, many considerations related to protect-
ing systems from the bad guys—outside or inside—were overlooked or ignored in its
design. Unfortunately, it isn’t an exaggeration to say that NIS is a security nightmare.

If your network has direct connections to other computers outside of your control,
or if there are any internal systems that need to be protected from others within the
local network, then I'd advise you not to use NIS or even NIS+ (which fixes only a
few of NIS’s most egregious security flaws). Use NIS only when you want an open,
mutually trusting security environment across an entire local network that has all its
entrances—from the outside world as well as untrusted parts of the same site—pro-
tected by very rigorous firewalls.

LDAP: Using a Directory Service for User Authentication | 329

CHAPTER 7
Security

These days, the phrase “computer security” is most often associated with protecting
against break-ins: attempts by an unauthorized person to gain access to a computer
system (and the person will bear a strong resemblance to an actor in a movie like
War Games or Hackers). Such individuals do exist, and they may be motivated by
maliciousness or mere mischievousness. However, while external threats are impor-
tant, security encompasses much more than guarding against outsiders. For exam-
ple, there are almost as many security issues relating to authorized users as to
potential intruders.

This chapter will discuss fundamental Unix security issues and techniques, as well as
important additional security features offered by some Unix versions. See Practical
Internet and Unix Security by Simson Garfinkel and Gene Spafford (O’Reilly & Asso-
ciates) for an excellent, book-length discussion of Unix security.

This chapter will undoubtedly strike some readers as excessively paranoid. The gen-
eral approach I take to system security grows out of my experiences working with a
large manufacturing firm designing its new products entirely on CAD-CAM worksta-
tions and experiences working with a variety of fairly small software companies. In
all these environments, a significant part of the company’s future products and assets
existed solely online. Naturally, protecting them was a major focus of system admin-
istration and the choices that are appropriate for sites like these may be very differ-
ent from what makes sense in other contexts. This chapter presents some options for
securing a Unix system. It will be up to you and your site to determine what you
need.

Security considerations permeate most system administration activities, and security
procedures work best when they are integrated with other, normal system activities.
Given this reality, discussions of security issues can’t really be isolated to a single
chapter. Rather, they pop up again and again throughout the book.

330

Prelude: What’s Wrong with This Picture?

Before turning to the specifics of securing and monitoring Unix systems, let’s take a
brief look at three well-known historical Unix security problems (all of them were
fixed years ago):

* The Sendmail package used to include a debug mode designed to allow a system
administrator to type in raw commands by hand and observe the effects. Unfor-
tunately, because anyone can run the sendmail program, and because it runs as
setuid root, a nefarious user could use sendmail to execute commands as root.
This is an example of a security hole created by a back door in a program: an
execution mode that bypasses the program’s usual security mechanisms.

* Traditionally, the passwd -f command enabled users to change the information
in the GECOS field of their password-file entries. However, as originally imple-
mented, the command simply added the new information to the user’s GECOS
field without examining it first for characters such as, for example, colons and
new lines. This oversight meant that a treacherous user could use the command
to add an entry to the password file. This is an example of a program’s failure to
validate its input. The program simply assumes that the input it receives is valid
and harmless without checking that it is in the form and length that is expected.

Another variation of this problem is called a buffer overflow. A buffer overtlow
occurs when a program receives more input than the maximum amount that it is
able to handle. When it later chokes on that input, there can be unexpected side
effects, including the ability to run arbitrary commands in the user context of the
program (often root). Modern programs are usually written to reject input that is
too large, but we are still finding and fixing such bugs in programs written in
previous years/decades.

* The finger command displays various information about the user you specify as
its argument: his full name and other password-file information, as well as the
contents of the .plan and .project files in his home directory. finger is designed
to make it easy to find out who is on the system and how to contact them. In the
past, however, the command failed to check whether the .plan file in a user’s
home directory was readable by the user running finger before displaying its
contents. This meant that an unscrupulous user could create a .plan in his own
home directory as a link to any file on the system, then run finger on his own
account and be able to view the contents of the target file, even when its file pro-
tection mode prevented his access. This is an example of a bug that arises from
unconscious assumptions about the circumstances and context in which the pro-
gram will be run.

What do these three items have in common? They all illustrate the fundamental Unix
view that the system exists in a trustworthy environment of reasonable people. In all
three cases, the programs failed to anticipate or check for unintended uses of their
features. Seeing these problems merely as ancient bugs that have been long fixed

Prelude: What's Wrong with This Picture? | 331

misses the important point that such a view is inherent in the Unix operating system
at a very deep level. This belief is evident even in the rhetoric of Unix commands as
simple tools performing one task in a general and optimal way. You can do a lot
more with a screwdriver than tightening and loosening screws.

Thinking About Security

Security discussions often begin by considering the kinds of threats facing a system.
I'd like to come at this issue from a slightly different angle by focusing first on what
needs to be protected. Before you can address any security-related issue on your sys-
tem, you need to be able to answer the following questions:

* What are you trying to protect?
* What valuable asset might be lost?

If you can answer these questions, you’ve gone a long way toward identifying and
solving potential security problems. One way to approach them is to imagine discov-
ering one morning that your entire computer system/network was stolen during the
previous night. Having this happen would upset nearly everyone, but for many dif-
ferent reasons:

* Because of the monetary cost: what is valuable is the computer as a physical
object (loss of equipment).

* Because of the loss of sensitive or private data, such as company secrets or infor-
mation about individuals (one type of loss of data).

* Because you can’t conduct business: the computer is essential to manufacturing
your product or providing services to your customers (loss of use). In this case,
the computer’s business or educational role is more important than the hard-
ware per se.

Of course, in addition to outright theft, there are many other causes of all three kinds
of losses. For example, data can also be stolen by copying it electronically or by
removing the medium on which it is stored, as well as by stealing the computer itself.
There is also both physical and electronic vandalism. Physical vandalism can mean
broken or damaged equipment (as when thieves break into your office, get annoyed
at not finding any money, and pour the cup of coftee left on a desk into the vents on
the computer and onto the keyboard). Electronic vandalism can consist of corrupted
or removed files or a system overwhelmed by so many garbage processes that it
becomes unusable; this sort of attack is called a denial of service attack.

Depending on which of these concerns are relevant to you, different kinds of threats
need to be forestalled and prepared for. Physical threats include not only theft but
also natural disasters (fires, burst pipes, power failures from electrical storms, and so
on). Data loss can be caused by malice or accident, ranging from deliberate theft and
destruction to user errors to buggy programs wreaking havoc. Thus, preventing data
loss means taking into account not only unauthorized users accessing the system and

332 | Chapter7: Security

authorized users on the system doing things they’re not supposed to do, but also
authorized users doing things they’re allowed to but didn’t really mean or want to
do. And occasionally it means cleaning up after yourself.

Once you've identified what needs to be protected and the potential acts and events
from which it needs to be protected, you’ll be in a much better position to determine
what concrete steps to take to secure your system or site.

For example, if theft of the computer itself is your biggest worry, you need to think
more about locks than about how often to make users change their passwords. Con-
versely, if physical security is no problem but data loss is, you need to think about
ways to prevent data loss from both accidental and deliberate acts and to recover
data quickly should loss occur despite all your precautions.

The final complication is that security inevitably corresponds inversely with conve-
nience: the more secure a system is, the less convenient it is to use, and vice versa. You
and your organization will need to find the right set of trade-offs for your situation.
For example, isolated systems are easier to make secure than those on networks, but
few people want to have to write a tape to transfer files between two local systems.

The key to a well-secured system is a combination of policies that:

* Prevent every possible relevant threat, to the extent that they can be prevented—
and they can’t always—and the extent that you, your users, and your organiza-
tion as a whole are willing to accept (or impose) the inconveniences that these
security measures entail.

* Plan and prepare for what to do when the worst happens anyway. For example,
the best backup plans are made by imagining that tomorrow morning you come
in and all your disks have had head crashes. It’s helpful to imagine that even the
impossible can happen. If it’s important that certain people not have access to
the root account, don’t leave root logged in on an unattended terminal, not even
on the console in the locked machine room where these users can never get in.
Never is almost always sooner than you think.

Threats can come from a variety of sources. External threats range from electronic
joy-riders who stumble into your system more or less at random to crackers who
have specifically targeted your system (or another system that can be reached by a
route including your system). Internal threats come from legitimate users attempting
to do things that they aren’t supposed to do, with motivations ranging from curios-
ity and mischievousness to malice and industrial espionage. You’ll need to take dif-
ferent steps depending on which threats are most applicable to your site.

In the end, good security, like successful system administration in general, is largely a
matter of planning and habit: designing responses to various scenarios in advance
and faithfully and scrupulously carrying out the routine, boring, daily actions
required to prevent and recover from the various disasters you've foreseen. Although
it may seem at times like pounds, rather than ounces, of prevention are needed, I
think you’ll find that they are far less burdensome than even grams of cure.

Thinking About Security | 333

Security Policies and Plans

Many sites find written security policies and plans helpful. By “security policy,” 1
mean a written statement for users of what constitutes appropriate and unaccept-
able uses of their accounts and the data associated with them. I'll refer to a written
description of periodic security-related system administration activities as a “security
plan.” At some sites, the computer security policy is part of a more comprehensive
security policy; similarly, an administrative security plan is often part of a more gen-
eral disaster-recovery plan.

Security policies

Security policies are most effective when users read, understand, and agree to abide
by them at the time they receive their computer accounts, usually by signing some
sort of form (retaining a copy of the written policy for future reference). For employ-
ees, this usually occurs when they are hired, as part of the security briefing they
attend sometime during the first few days of employment. In an educational setting,
students can also be required to sign the written security policy when they receive
their accounts. During my brief stint in academia, one of my tasks was to create and
deliver a BITNET security presentation for students wanting network access; if 1
were a system administrator at a university now, I’d recommend requiring a general
computer security awareness session before a student receives an account for the first
time.

A good computer security policy will cover these areas:

* Who is allowed to use the account (generally no one but the user herself). Don’t
forget to consider spouses, significant others, and children as you formulate this
item.

* Password requirements and prohibitions (don’t reveal it to anyone, don’t use a
password here that you have ever used anywhere else and vice versa, etc.). It may
also be worth pointing out that no one from the computing/system administra-
tion staff will ever ask for it by phone or in person, nor will anyone from a law
enforcement agency.

* Proper and improper use of local computers and those accessed via the Internet.
This can include not only prohibitions against hacking but also whether per-
sonal use of an account is allowed, whether commercial use of a university
account is permitted, policies about erotic/pornographic images being kept or
displayed online, and the like.

* Conditions under which the user can lose her account. This item can also be
somewhat broader and include, for example, when a job might be killed (when
the system needs to go down for maintenance, when a job is overwhelming the
system, and so on).

* Rules about what kinds of use are allowed on which computers (for example,
when and where game-playing is allowed, where large jobs should be run, etc.).

334 | Chapter7: Security

* Consent to monitoring of all aspects of account activity by system administra-
tion staff as needed for system/network security, performance optimization, gen-
eral configuration, and/or accounting purposes.

* Policies concerning how printed output is to be disposed of, whether it can leave
the building or site, and similar policies for tapes and other media.

Some sites will need more than one policy for different classes of users. When you
formulate or revise a written security policy, it may be appropriate to run it by your
organization’s legal department.

Security Begins and Ends with People

Getting users to care about security takes time and effort. In the end, a system is only
as secure as its most vulnerable part, and it is important not to forget or neglect the sys-
tem’s users. When users cause security problems, there are three main reasons: igno-
rance, laziness, and malice.

Ignorance is the easiest to address. Developing formal and informal training tactics and
procedures is something that happens over time. Users also need to be reminded of
things they already know from time to time.

Laziness is always a temptation—for system administrators as well as users—but
you’ll find it is less of a problem when users have bought in to the system security goals.
This requires both support from management—theirs as well as yours—and the orga-
nization as a whole and a formal commitment from individual users. In addition, an
atmosphere that focuses on solutions rather than on blame is generally more successful
than raw intimidation or coercion. When people are worried about getting in trouble,
they tend to cover up problems rather than fix them.

Consideration of the third cause, malice, will have to wait. Creating a corporate culture

that encourages and fosters employee loyalty and openness rather than deceit and
betrayal is the subject of another book, as is recognizing and neutralizing malefactors.

Security plans

Formulating or revising a security plan is often a good way to assess and review the
general state of security on a system or network. Such a plan will address some or all
of the following issues:

* General computer access policies: the general classes of users present on the sys-
tem, along with the access and privileges that they are allowed or denied. Describ-
ing this will include noting the purpose and scope of the various user groups.

* Optional system security features that are in effect (password aging and other
restrictions, user account retirement policies, and so on).

Thinking About Security | 335

* Preventative measures in effect (for example, the backup schedule, actions to be
performed in conjunction with operating system installations and upgrades, and

the like).

* What periodic (or continuous) system monitoring is performed and how it is
implemented.

* How often complete system security audits are performed and what items they
encompass.

* Policies and strategies for actively handling and recovering from security
breaches.

Like any policy or procedure, the security plan needs to be reviewed and updated
periodically.

Unix Lines of Defense

At an individual system level, Unix offers three basic ways of preventing security
problems:

* A variety of network security mechanisms designed to prevent unauthorized
connections from being accepted (where unauthorized can be defined based on
one or more characteristics: connection source, type of connection, service
requested, and the like).

* Passwords are designed to prevent unauthorized users from obtaining any access
to the system, even via allowed channels.

* File permissions are designed to allow only designated users access to the vari-
ous commands, files, programs, and system resources.

In theory, network protection filters out all unauthorized connections, passwords
prevent the bad guys from getting on the system in the allowed ways, and proper file
permissions prevent normal users from doing things they aren’t supposed to do. On
a system that is isolated both physically and electronically, theory pretty well
matches reality, but the picture becomes much more complicated once you take net-
working into account. And the various kinds of security mechanisms can interact.
For example, network access often bypasses the normal password authentication
procedures. For these reasons, in the end, your system is only as secure as the worst-
protected system on the network.

Permissions, passwords, and network barriers are useful only as part of an overall
security strategy for your system. I find it helpful to think of them in the context of
the various “lines of defense” that could potentially be set up to protect your system
from the various losses it might experience.

Physical security

The first line of defense is physical access to your computer. The most security-con-
scious installations protect their computers by eliminating all network and dialup

336 | Chapter7: Security

access and strictly limiting who can get physically near the computers. At the far
extreme are systems in locked rooms (requiring a password be entered on a keypad
in addition to the key for the door lock), isolated in restricted access areas of installa-
tions with guarded entrances (usually military or defense-related). To get onto these
systems, you have to get into the site, into the right building, past another set of
guards in the secure part of that building, and finally into the computer room before
you even have to worry about having a valid password on the system. Such an
approach effectively keeps out outsiders and unauthorized users; thus, security
threats can come only from insiders.

Although this extreme level of physical security is not needed by most sites, all
administrators face some physical security issues. Some of the most common
include:

* Preventing theft and vandalism by locking the door or locking the equipment to
a table or desk. If these are significant threats for you, you might also need to
consider other aspects of the computer’s physical location. For example, the best
locks in the world can be basically worthless if the door has a glass window in it.

* Limiting access to the console and the CPU unit to prevent someone from crash-
ing the system and rebooting it to single-user mode. Even if your system allows
you to disable single-user—mode access without a password, there still may be
issues here for you. For example, if your system is secured by a key position on
its front panel, but you keep the key in the top middle drawer of your desk (right
next to your file-cabinet keys) or inserted in the front panel, this level of security
is effectively stripped away.

* Controlling environmental factors as much as realistically possible. This con-
cern can include special power systems (backup generators, line conditioners,
surge suppressors, and so on) to prevent downtime or loss of data, and fire
detection and extinguishing systems to prevent equipment damage. It also
includes simple, common-sense policies like not putting open cups of liquid next
to a keyboard or on top of a monitor.

* Restricting or monitoring access to other parts of the system, like terminals,
workstations, network cables (vulnerable to tapping and eavesdropping), and so
on.

* Limiting access to backup tapes. If the security of your data is important to your
system, backup tapes need to be protected from theft and damage as well (see
Chapter 11). Keep in mind also that backup tapes contain sensitive system con-
figuration data: the password and shadow password file, security key files, and
so on.

Firewalls and network filters

Packet filtering and dedicated firewall systems represent an attempt to mitigate the
risks associated with placing systems on a network. A firewall is placed between the
Internet and the site to be protected; firewalls may also be used within a site or orga-

Thinking About Security | 337

nization to isolate some systems from others (remember that not all threats are exter-
nal). Packet filtering restricts the sort of network traffic that a system will accept.

We'll look at both of these topics in more detail later in this chapter.

Passwords

When someone gains access to the system, passwords form the next line of defense
against unauthorized users and the risks associated with them. As I've said before, all
accounts should have passwords (or be disabled). The weakness with passwords is
that if someone breaks into an account by finding out its password, he has all the
rights and privileges granted to that account and can impersonate the legitimate user
in any way. File permissions form the next line of defense, against both bad guys
who succeeded in breaking into an account and legitimate users trying to do some-
thing they’re not supposed to. Properly set up file protection can prevent many
potential problems. The most vulnerable aspects of file protection are the setuid and
setgid access modes, which we’ll look at in detail later in this chapter.

Some Unix versions also provide other ways to limit non-root users’ access to vari-
ous system resources. Facilities such as disk quotas, system resource limits, and
printer and batch queue access restrictions protect computer subsystems from unau-
thorized use, including attacks by “bacteria” designed specifically to overwhelm sys-
tems by completely consuming their resources.”

If someone succeeds in logging in as root (or breaks into another account with access
to important files or other system resources), system security is irreparably compro-
mised in most cases. When this happens, the administrative focus must shift from
prevention to detection: finding out what has been done to the system (and repair-
ing it) and determining how the system was compromised—and plugging that gap.
We'll look at both preventing and detecting security breaches in detail in the course
of this chapter.

* It seems that no new type of security threat is uncovered without acquiring a cute name. Bacteria, also
known as rabbits, are programs whose sole purpose is to reproduce and thereby overwhelm a system, bring-
ing it to a standstill. There are a few other creatures in the security jungle whose names you should know.
Viruses are programs that insert themselves into other programs, often legitimate ones, producing noxious
side effects when their host is later executed. Worms are programs that move from system to system over a
network, sometimes leaving behind bacteria, viruses, or other nasty programs. Trojan horses are programs
that pretend to do one thing while doing another. The most common type is a password-stealing program,
which mimics a normal login sequence but actually records the password the user types in and then exits.
The term is also applied to programs or commands embedded within certain types of files that get executed
automatically when the file is processed (PDF files, PostScript files, and attachments to electronic mail mes-
sages). Back doors, also called trap doors, are undocumented, alternative entrances to otherwise legitimate
programs which allow a knowledgeable user to bypass security features. Time bombs are programs designed
to perform particular—usually destructive—actions at a specific date and time. Programs with time bombs
may be benign or inactive until the designated moment. In practice, these creatures often work in concert
with one another.

338 | Chapter7: Security

Encrypting data

There is one exception to the complete loss of security if the root account is compro-
mised. For some types of data files, encryption can form a fourth line of defense, pro-
viding protection against root and other privileged accounts.

Backups

Backups provide the final line of defense against some kinds of security problems
and system disasters. In these cases, a good backup scheme will almost always enable
you to restore the system to something near its previous state (or to recreate it on
new hardware if some part of the computer itself is damaged). However, if someone
steals the data from your system but doesn’t alter or destroy it, backups are irrele-
vant.

Backups provide protection against data loss and filesystem damage only in conjunc-
tion with frequent system monitoring, designed to detect security problems quickly.
Otherwise, a problem might not be uncovered for a long time. If this occurs, back-
ups would simply save the corrupted system state, making it necessary to go back
weeks or months to a known clean state when the problem finally is uncovered and
restore or re-create newer versions of files by hand.

Version-Specific Security Facilities

Every commercial Unix version we are considering offers an enhanced security facil-
ity of some sort, either as part of the normal operating system or as an optional lay-
ered product; we’ll consider many of their features in the course of this chapter. The
primary commands associated with these facilities are listed below as an aid to your
own explorations of what is available on your systems (in other words, check these
manual pages first). I've also listed some related facilities available on FreeBSD and
SuSE Linux systems:

AIX chuser, audit, tcbck
FreeBSD /etc/periodic/security/*
HP-UX audsys, swverify
Linux harden_suse (SuSE)
Solaris bsmconv, aset, audit
Tru64 prpwd, secsetup

man -k secur (to match “secure” and “security”) will also often yield information, as
will consulting any security manual or manual chapters in the system documentation.

User Authentication Revisited

We've already looked at the issues surrounding password selection and aging in
“Administering User Passwords” in Chapter 6. In this section, we will consider
optional user authentication methods and techniques that extend beyond standard

User Authentication Revisited | 339

password selection and aging. We will also consider another method of securing
remote access—the secure shell—later in this chapter.

Smart Cards

The purpose of all user authentication schemes, from passwords on, is to require a
prospective user to prove that she really is the person she is claiming to be. The stan-
dard Unix login procedure and most secondary authentication programs validate a
user’s identity based on something she knows, like a password, assuming that no one
else knows it.

There are other approaches to user authentication. A user can also be validated
based on something she is, that is, some unique and invariant physical characteristic
such a fingerprint” or retina image. Biometric devices validate a person’s identity in
this way. They are commonly used to protect entrances to secure installations or
areas, but they are seldom used just to authenticate users on a computer system.

A third approach is to validate the user based upon something she has. That some-
thing, known generically as a token, can be as simple as a photo ID badge. In the
context of login authentication, smart cards are used most often. Smart cards are
small, ranging in size from more or less credit card—size to about the same size as a
small calculator. Some of them operate as a simple token that must be placed into a
reader before computer access is granted.

Other smart cards look something like a calculator, with a keypad and a display in
which a number appears. Users are required to enter a number from the display in
addition to their normal password when they log in to a protected computer. This
type of card generally requires the user to enter a personal identification number
(PIN) before the card will operate (to provide some protection if the card is lost or
stolen). Smart cards are also often designed to stop working if anyone tries take them
apart or otherwise gain access to their protected memory.

Once the correct PIN is entered, smart cards can work in several different ways. In
the most common mode of operation, the user is presented with a number when he
tries to log in, known as a challenge. He types that number into his smart card and
then types the number the card displays—the response—into the computer. The
challenge and response values are generated cryptographically.

Under another scheme, the number to give the computer appears automatically after
the proper PIN is entered. In this case, the card is synchronized with software run-
ning on the target computer; the most elaborate cards of this type can be synchro-
nized with multiple hosts and can also operate in challenge/response mode to access
still other computers.

* Fingerprints have been recently demonstrated to be quite easy to counterfeit, so they cannot be recom-
mended.

340 | Chapter7: Security

For me, the most convenient type of card is made by RSA Security (http://www.
rsasecurity.com). These cards automatically generate new numeric passwords every
60 seconds. The cards have an internal clock in addition to their cryptographic func-
tionality, ensuring that they remain synchronized with the server software running
on the target system. These cards are most often used as an additional authentica-
tion mechanism for dialup and other remote system access.

Smart cards provide an effective and relatively low-cost means of substantially
increasing login authentication effectiveness. While they do not replace well-chosen
user passwords, the combination of the two can go a long way toward securing a
computer system against user account—based attacks.

One-Time Passwords

One-time passwords (OTPs) are another mechanism designed primarily for addi-
tional authentication for remote users. As the name implies, such passwords can be
used only a single time, after which they become invalid. In addition, successive
passwords are not easily predictable. For these reasons, they are a good choice when
clear-text passwords are necessary for remote access.

The OPIE package—short for “One-time Passwords in Everything”—is an open
source facility for OTPs. It was written by Randall Atkinson, Dan McDonald, and
Craig Metz, and was derived from the earlier S/Key package. It is available from http:/
/www.inner.net/pub/opie/.

Once OPIE is built and installed, you must replace the login, ftp, su, and/or passwd
commands with the versions provided with the package. For example:

cd /bin

mv login login.save

1n -s opielogin login
Next, you must set up user accounts that you want to have use the OTPs. First, at
the system console, you add the user account to the OPIE system:

opiepasswd -c chavez Must be run on the system console.

Adding chavez:

Using MD5 to compute responses

Enter new secret pass phrase: not echoed

Again new secret pass phrase: not echoed

ID chavez OTP key is 123 ab4567
ASKS BARD DID LADY MARK EYES

As with any password, the secret pass phrase should be chosen with care.” Make it as
long as possible (an entire sentence is good). The opiepasswd command displays the
user identifying key and the first password.

* All OPIE keys and passwords in these examples are simulated.

User Authentication Revisited | 341

OPIE stores its information in the file /etc/opiekeys. This file is thus extremely sensi-
tive and should be protected against all non-root access.

The opiekey command is used to generate OTPs:

$ opiekey 123 ab4567

Using the MD5 algorithm to compute response.
Enter secret pass phrase: not echoed

ASKS BARD DID LADY MARK EYES

$ opiekey -n 3 123 ab4567

Using the MD5 algorithm to compute response.
Enter secret pass phrase: not echoed

121: TELL BRAD HIDE HIS GREY HATS

122: SAYS BILL NOT HERO FROM MARS

123: ASKS BARD DID LADY MARK EYES

In the second example, three passwords are generated. They are used in inverse
numerical order (highest numbered to lowest numbered). Such a list can be printed
for use when traveling, provided that users are aware of the need to keep it secure.

The opiekey command must not be run over the network, because the
secret pass phrase would be transmitted in the clear, defeating the
entire OPIE security mechanism. It must be run on the local system.

This is how an OPIE login session looks:

login: chavez

otp-md5 123 ab4567 ext

Response: ASKS BARD DID LADY MARK EYES
$

The OPIE package includes a PAM module for systems that use PAM. For example,
it might be included in an rlogin authentication stack as follows:

auth required pam_securetty.so
auth required pam_nologin.so
auth required pam_opie.so

auth required pam_unix.so

This form of the stack uses both OPIE and normal Unix passwords. Alternatively,
you could designate the OPIE module as sufficient and remove the pam_unix mod-
ule to replace standard passwords with OTPs.

Note that only users added to the OPIE system with opiepasswd will be prompted for
OTPs. In general, it is usually best to incorporate all users within the OPIE system,
perhaps limiting the package’s use to the system that accepts dialup and other
remote connections.

When PAM is not in use, you can exempt users from using OPIE with the /etc/opie-
access configuration file. Entries in this file take the form:

action net-or-host/netmask

342 | Chapter7: Security

Here are some examples:

deny 192.168.20.24/255.255.255.0 Require passwords from this host.
permit 192.168.10.0/255.255.255.0 Exempt this subnet.

If this file does not exist, all access uses OPIE. This is the recommended configuration.

Solaris and HP-UX Dialup Passwords

Dialup passwords add another level of user authentication for systems allowing
dialup access via modems. When dialup passwords are in use, users are required to
provide a dialup password in addition to their username and password before being
allowed access to a system over a dialup line. Dialup passwords may also be used as
a way to restrict dialup access to certain users (by only giving the password to them).

Dialup passwords are supported by HP-UX and Solaris.

The dialup password facility uses two configuration files: /etc/d_passwd, the dialup
password file (described later in this section), and /etc/dialups (the file is occasionally
named dial-ups on a few older systems), which lists the terminal lines that are con-
nected to dial-in modems, one per line:

/dev/tty10

/dev/tty11
Users who log in through one of these terminal lines must supply a dialup password,
as specified in the file /etc/d_passwd, or they will not be allowed access to the sys-
tem. If you decide to use dialup passwords, enter all the terminal lines connected to
modems into this file; even a single unprotected dialup line is a significant security
risk.

The file /etc/d_passwd contains a set of encrypted dialup passwords. The dialup pass-
word required depends on the user’s login shell.

In the following line, the d_passwd file contains three colon-separated fields:
shell:encrypted-password: Final field is left empty

shell is the complete pathname of a shell that can be listed in the user’s passwd entry.
The second field is the encrypted password. The final field is always empty, but the
second colon is required.

In general, the dialup password file does not provide any support for generating the
encrypted password; you must generate it yourself.

On HP-UX systems, you can do this using the -F option to the passwd command. For
example:

passwd -F /etc/d_passwd /bin/sh

On Solaris systems, encrypted dialup passwords may be generated by changing your
own password and then copying the string that appears in the password or shadow
password file into /etc/d_passwd. Be sure to change your password back afterwards.

User Authentication Revisited | 343

If you decide to use the same dialup password for all user shells, you should encrypt
them using different salts. Their encrypted representation will look different in the
file, so it will not be obvious that they are the same password. Changing your own
password to the same value a second time will also use a different salt and generate a
different encoded string.

Here is a sample dialup password file:

/bin/sh:10gw4c39EHIAM:

/bin/csh:p9k3tI6RZzSTKQ:

/bin/ksh:9pk36RksieQd3:

/bin/Rsh:*:
In this example, there are specific entries for the Bourne shell, Korn shell, and C
shell. Dialup access from the restricted Bourne shell (/bin/Rsh) is disabled by the
asterisk in the password field. Users who use other shells may log in from remote ter-
minals without giving an additional dialup password. However, I recommend that
you assign a dialup password to all shells in use at your site (if you need dialup pass-
words, you need them for everyone).’

Dialup passwords should be changed periodically, even if you don’t impose any
password-aging restrictions on user passwords. They must be changed whenever
anyone who knows the dialup password stops using the system (as part of the gen-
eral account deactivation procedure), or if there is any hint that an unauthorized user
has learned it.

AIX Secondary Authentication Programs

The software supporting smart card numeric passwords is one type of secondary
authentication program. In general, this term refers to any program that requires
additional information from the user before accepting that he is who he claims to be.
For example, a program might require the user to answer several questions about
their personal preferences (“Which of the following flowers do you prefer?”) and
compare the responses to those given when the user was initially added to the sys-
tem (the question may be multiple choice, with the four or five wrong responses cho-
sen randomly from a much larger list). The theory behind this sort of approach is
that even if someone discovers or guesses your password, they won’t be able to guess
your favorite flower, bird, color, and so on, and you won’t need to write the answers
down to remember them, either, since the questions are multiple choice. It also relies
on there being enough questions and choices per question to make blind guessing
extremely unlikely to succeed. To be effective, accounts must be automatically dis-
abled after quite a small number of unsuccessful authentications (two or three).

* If you decide to use dialup password for PPP access, you will have to modify the chat scripts accordingly to
take the additional prompt into account.

344 | Chapter7: Security

AIX provides for an administrator-defined alternative login authentication method,
which may be used in addition to or instead of standard passwords. A program is
designated an authentication program in the file /etc/security/login.cfg, via a stanza
defining a name for the authentication method (uppercase by convention) and speci-
fying the pathname of the authentication program:
LOCALAUTH:

program = /usr/local/admin/bin/local auth_prog
This stanza defines an authentication method LOCALAUTH using the specified pro-
gram. Note that the standard AIX password authentication method is named SYS-
TEM.

Once a method is defined, it may be invoked for a user by including it in the list for
the authl user attribute. You can modify this attribute from SMIT, by using the
chuser command, or by editing /etc/security/user directly. For example, the first com-
mand below replaces the standard password authentication with the LOCALAUTH
method for user chavez:

chuser auth1=LOCALAUTH chavez

chuser auth1=SYSTEM,LOCALAUTH chavez
The second command adds LOCALAUTH as an additional authentication method,
run after the standard password check for user chavez. The program defined in the
LOCALAUTH method will be passed the argument “chavez” when user chavez tries
to log in. Of course, it would be wise to test an additional authentication method
thoroughly on a single account before installing it on the system as a whole.

User accounts also have an attribute named auth2. This attribute works in the same
way that authl does. However, the user does not have to pass the authentication
procedure to be allowed onto the system; more technically, the return value from any
program specified in the auth2 list is ignored. Thus, auth2 is a poor choice for a sec-
ondary authentication program, but it will allow a system administrator to specify a
program that all users must run at login time.

Better Network Authentication: Kerberos

So far, we’ve seen several attempts at strengthening user authentication in various
ways. The Kerberos system provides another mechanism for securing network
authentication operations. Its goal is to allow systems and services to be secure
within a network environment controlled by an adversary. Its strategy for accom-
plishing this is to make sure that no sensitive data is ever sent across the network.

This section provides a very brief introduction to Kerberos Version 5. Figure 7-1
illustrates the basic Kerberos authentication scheme, which relies on tickets to
authenticate users and authorize access to services. A ticket is just an encrypted net-
work message containing request and/or authentication data and credential expira-
tion data (as we’ll see).

User Authentication Revisited | 345

Social Engineering

Social engineering is the colorful term used to describe crackers’ attempts to get users
to tell them their passwords and other information about the system, and no discus-
sion of account security is complete without some consideration of it. Most descrip-
tions of such attempts seem laughably obvious, but unfortunately, P. T. Barnum was
right. Experience shows that it is essential to include seemingly obvious points such as
these in user security education:

* No member of the system administration staff, other computing center staff,
field service team, and so on, will ever ask you to reveal your password or any
other information about the system. (This is to protect against the computer
equivalent of the bank examiner scam.)

* No law enforcement or local security officer will ever ask for such information,
either.

* Don’t reveal such information to someone you don’t know if they call asking for
help with the system (i.e., pretending to be a new user).

* Report any suspicious questions that anyone asks you to the system administra-
tor (or other designated person) right away.

Social-engineering techniques are generally an indication that someone has targeted
your particular installation, which is why suspicious questions from outsiders need to
be taken seriously.

You may also want to warn users against other unwise practices, such as sending local
proprietary information or personal credit card numbers over the Internet (or generally
including in email any information that they want to remain private), even though
these practices do not impact system security as such.

In the figure, the data passed between the user workstation (Kerberos client) and the
various servers is depicted in the middle column of the drawing, passing between the
two relevant computers. The legend describes the layout of this data. Included data
is a darker shade, and the key used to encrypt it (if any) is indicated to its left, in the
lighter shaded column. The sequence of events follows the circled numbers.

When a user logs in to a Kerberos-enabled workstation and enters his password, a
one-way hash is computed from the password (1). This value is used as an encryp-
tion key within the Kerberos authentication request (2). The request consists of the
unencrypted username and the current time; the time is encrypted using the hash
created from the entered password (designated as Kp in the diagram). This is then
sent to the Kerberos server, where its authentication function is invoked (3).

The Kerberos server knows the user’s correct encoded password (which is not, in
fact, stored on the workstation), so it can decrypt the time. If this operation is suc-
cessful, the time is checked (to avoid replay attacks based on intercepted earlier com-
munications). The server then creates a session key: an encryption key to be used for

346 | Chapter7: Security

Initial authentication
Authentication request @)

Kerberos server

0 NS * Knows hgshed user passwords
....... > > C Auth > « Checks time to avoid relay attacks
K, | time « Creates session key Kg;
User workstation @ * Knows ticket granting services key ;g

Kp= hash (password)

[5) Ky | K, session key (4]
e K = k S TLLCTTIPLTTERE :
K IR—— Ticket granting
User workstation P | Authentication data ticket (TGT)
K
Ksy
{TGT} Kygs
Using a service
Service-specific ticket
request (7]
e> Service Kerberos server | - Knows session key
Kq; lTJ'ser * Knows service-specific key K,
User workstation ime o4 + TGS knows its on key Kg
K Kes (6T & L « Creates server-specific session K,
Ks;
{TGT} Kygs
@ Ks; K, service session key 0
e — S TLLCTTIPLTTERE :
Authentication data o
K pp— " Service ticket 1 (ST)
User workstation Ks,:service session key
P
Ks;
Kog 5
{TGT} Kygs ® erver
* Knows own ke
YL — K, |sT 4

* Decrypts K,

pesparanes

Services are provided using K, <&+

Figure 7-1. Basic Kerberos 5 authentication

communicating with this client during the current session (which typically expires
after about 8 hours). This is labeled as Kg; in the diagram.

The Kerberos server also knows all the keys corresponding to its own services and
services under its control. One of the former is the Kerberos Ticket Granting Service
(TGS). Upon successful user authentication, the Kerberos server builds a response
for the user (4). This transmission has two sets of data: the session key encrypted
with the user password hash Kp, and a ticket-granting ticket (TGT) encrypted with
the TGS’s own key (designated Ktgs). The TGT contains another copy of the ses-
sion key as well as user authentication data and time-stamps. The TGT will be used

User Authentication Revisited | 347

to request tickets for the actual services that the client wants to use. It can be thought
of as a sort of meta-ticket: an authorization to request and receive actual tickets.

When the workstation receives this response (5), it decrypts the session key and
stores it. It also saves the TGT in encrypted form (because it does not know the
TGS’s key).

The process of requesting access to a specific network service—for example, a file
access service—begins at (6). The client builds a request for a ticket for the desired
service to be sent to the Kerberos server’s TGS. The request (7) contains the name of
the desired service (unencrypted), the user information and current time encrypted
with the session key, and the TGT.

The TGS can decrypt both parts of the message (8) because it knows both the ses-
sion key and its own key (Kgs). If the authentication is successful and the ticket’s
time is within the allowed window, the TGS creates a ticket for the client to use with
the actual service (9). As part of this process, it generates another session key for use
between the client and the target service (Ksy). The second service-specific session
key is encrypted using the client’s Kerberos server session key, Kg1, and the ticket to
be supplied to the service is encrypted using the service’s own key (designated Ky),
which the Kerberos server also knows. The latter ticket consists of another copy of
the new session key and user authentication and time-stamp data.

When the client receives this response (10), it decrypts the new session key using
Ks1, and it stores the service ticket in encrypted form (because it does not know Ky)).
It presents the latter (11) to the desired server (12). The service decrypts it using its
own key (Ky) and in doing so learns the session key to be used for future communi-
cation with the client (Kgy). Subsequent communications between the two rely solely
on the latter session key.

As this description indicates, the Kerberos method assumes an untrustworthy net-
work environment and encrypts all important data. Another nice feature is that it
requires no action on the part of the user. All of the requests and ticket presentation
happen automatically, triggered by the initial user login.

On the down side, Kerberos relies fundamentally on the security of the Kerberos
server. If it is compromised, the security of the entire Kerberos infrastructure is at risk.

Protecting Files and the Filesystem

In general, the goal of every security measure on a system is to prevent people from
doing things they shouldn’t. Given the all-or-nothing structure of Unix privileges, in
practical terms this means you are trying to prevent unauthorized access to the root
account—it also implies that the root account is what the bad guys are trying to gain
access to. When they cannot do so directly because the root password has been well
chosen, they may try other, indirect routes through the filesystem to gain superuser
status.

348 | Chapter7: Security

So, how can you get root access from an ordinary, unprivileged user account? One
way is to get root to execute commands like these:

cp /bin/sh /tmp/.junk

chmod 4755 /tmp/.junk
These commands create a setuid root version of the Bourne shell: any user can start a
shell with this file, and every command that he runs within it will be executed as if he
were root. Of course, no reputable system administrator will run these commands on
demand, so a cracker will have to trick her into doing it anyway by hiding these com-
mands—or other commands just as deadly—within something that she will execute.
One large class of system attack revolves around substituting hacked, pernicious
copies of normally benign system entities: Unix command executables, login or other
initialization files, and so on. Making sure that the filesystem is protected will pre-
vent many of them from succeeding.

In this section, we’ll consider the types of vulnerabilities that come from poorly-cho-
sen filesystem protections and general system disorganization. In the next section,
we’ll look at ways of finding potential problems and fixing them.

Search Path Issues

It is important to place the current directory and the bin subdirectory of the user’s
home directory at the end of the path list, after the standard locations for Unix com-
mands:

$ echo $PATH

/usr/ucb:/bin:/usr/bin:/usr/bin/X11:/usr/local/bin:$HOME/bin: .
This placement closes a potential security hole associated with search paths. If, for
example, the current directory is searched before the standard command locations, it
is possible for someone to sneak a file named, say, 1s into a seemingly innocuous
directory (like /tmp), which then performs some nefarious action instead of or in
addition to giving a directory listing. Similar effects are possible with a user’s bin sub-
directory if it or any of its components is writable.

Most importantly, the current directory should not even appear in root’s search path,
nor should any relative pathname appear there. In addition, none of the directories
in root’s search path, nor any of their higher-level components, should be writable by
anyone but root; otherwise someone could again substitute something else for a stan-
dard command, which would be unintentionally run by and as root.

Scripts should always set the search path as their first action (which
includes only system directories protected from unauthorized write
access). Alternatively, a script can use the full pathname for every
command, but it’s easy to slip up using the latter approach.

Protecting Files and the Filesystem | 349

Small Mistakes Compound into Large Holes

It is possible, and probably even common, for large security problems to arise from
small mistakes, an effect tangentially related to the one described in the science fic-
tion story “Spell My Name with an S” by Isaac Asimov. Consider these two small file
protection errors:

* User chavez’s .login file is writable by its group owner (chem).

* The directory /etc is writable by its user and group owners (root and system,
respectively).

Suppose user chavez is also a member of group system: now you have a situation
where anyone in the chem group has a very good chance of replacing the password

file.

How does that work? Since ~chavez/.login is writable by group chem, anyone in that
group can edit it, adding commands like:

m -f /etc/passwd

cp /tmp/data526 /etc/passwd
Since chavez is a member of the system group and /etc is writable by group system,
both commands will succeed the next time chavez logs in (unless she notices that the
file has been altered—would you?). Keep in mind how powerful write access to a
directory is.

More subtle variations on this theme are what usually happen in practice; /etc being
writable is not really a small mistake. Suppose instead that the system administrator
had been careless and had the wrong umask in effect when she installed a new pro-
gram, xpostit (which creates memo pad windows under X), into /usr/local/bin, and
that file was writable by group system. Now the bad guy is able to replace only the
xpostit executable. Exploiting this weakness will take more work than in the previ-
ous case but is ultimately just as successful: writing a program that merely starts the
real xpostit when most users run it but does something else first when root runs it.
(A smart version would replace itself with the real xpostit after root has used it to
cover its tracks.)

It usually isn’t hard to get root to run the doctored xpostit. The system administra-
tor may already use it anyway. If not, and if the bad guy is bold enough, he will walk
over to the system administrator’s desk and say he’s having trouble with it and hope
she tries it herself to see if it works. I'm sure you can imagine other ways.

In addition to once again pointing out the importance of the appropriate ownership
and protection for all important files and directories on the system, the preceding
story highlights several other points:

* Because it is always world-writable, don’t use /tmp as any user’s home directory,
not even a pseudo-user who should never actually log in.

350 | Chapter7: Security

* Think carefully about which users are supplementary members of group 0 and
any other system groups, and make sure that they understand the implications.

* root’s umask should be 077 or a more restrictive setting. System administrators
should turn on additional access by hand when necessary.

The setuid and setgid Access Modes

The set user ID (setuid) and set group ID (setgid) file access modes provide a way to
grant users increased system access for a particular command. However, setuid
access especially is a double-edged sword. Used properly, it allows users access to
certain system files and resources under controlled circumstances, but if it is mis-
used, there can be serious negative security consequences.

setuid and setgid access are added with chmod’s s access code (and they can similarly
be recognized in long directory listings):

chmod u+s files setuid access

chmod g+s files setgid access
When a file with setuid access is executed, the process’ effective UID (EUID) is
changed to that of the user owner of the file, and it uses that UID’s access rights for
subsequent file and resource access. In the same way, when a file with setgid access is
executed, the process’ effective GID is changed to the group owner of the file, acquir-
ing that group’s access rights.

The passwd command is a good example of a command that uses setuid access. The
command’s executable image, /bin/passwd, typically has the following permissions:

$ 1s -1lo /bin/passwd

-IWsT-Xr-x 3 root 55552 Jan 29 2002 /bin/passwd
The file is owned by root and has the setuid access mode set, so when someone exe-
cutes this command, his EUID is changed to root while that command is running.
setuid access is necessary for passwd, because the command must write the user’s
new password to the password file, and only root has write access to the password
file (or the shadow password file).

The various commands to access line printer queues are also usually setuid files. On
systems with BSD-style printing subsystems, the printer commands are usually set-
uid to user root because they need to access the printer port /dev/printer (which is
owned by root). In the System V scheme, the printing-related commands are some-
times setuid to the special user Ip. In general, setuid access to a special user is prefer-
able to setuid root because it grants fewer unnecessary privileges to the process.

Other common uses of the setuid access mode are the at, batch, and mailer facilities,
all of which must write to central spooling directories to which users are normally
denied access.

setgid works the same way, but it applies to the group owner of the command file
rather than to the user owner. For example, the wall command is setgid to group tty,

Protecting Files and the Filesystem | 351

the group owner of the special files used to access user terminals. When a user runs
wall, the process’ EGID is set to the group owner of /ust/bin/wall, allowing him to
write to all TTY devices.

A
S As the examples we’ve considered have illustrated, setuid and setgid
.“.\ access for system files varies quite a bit from system to system (as does
AN . . . e
13, file ownership and even directory location). You should familiarize

* yourself with the setuid and setgid files on your system (finding all of
them is discussed later in this chapter).

To be secure, a setuid or setgid command or program must not allow the user to per-
form any action other than what it was designed to do, including retaining the set-
uid or setgid status after it completes. The threat is obviously greatest with programs
that are setuid to root.

Aside from commands that are part of Unix, other setuid and setgid programs
should be added to the system with care. If at all possible, get the source code for any
new setuid or setgid program being considered and examine it carefully before
installing the program. It’s not always possible to do so for programs from third-
party application vendors, but such programs are usually less risky than free pro-
grams. Ideally, the part requiring privileged access will be isolated to a small portion
of the package (if it isn’t, I'd ask a lot of questions before buying it). Methods to
ensure security when creating your own setuid and setgid programs are discussed in
the next section.

Writing setuid/setgid programs

Two principles should guide you in those rare instances where you need to write a
setuid or setgid program:

Use the minimum privilege required for the job.

Whenever possible, make the program setgid instead of setuid. 99 percent of all
problems can be solved by creating a special group (or using an existing one) and
making the program setgid. Almost all of the remaining 1 percent can be solved
by creating a special user and using setuid to that special user ID. Using setuid to
root is a bad idea because of the difficulty in foreseeing and preventing every pos-
sible complication, system call interaction, or other obscure situation that will
turn your nice program into a security hole. Also, if the program doesn’t need
setuid or setgid access for its entire lifetime, reset its effective UID or GID back
to the process’ real UID or GID at the appropriate point.

Avoid extra program entrances and exits.

In addition to writing in an explicit back door, this principle rules out many dif-
ferent features and programming practices. For example, the program should not

352 | Chapter7: Security

support shell escapes,” which allow a shell command to be executed inside
another program. If a setuid program has a shell escape, any shell command
executed from within it will be run using the process’ effective UID (in other
words, as root if the program is setuid to root). To be completely secure, the pro-
gram should not call any other programs (if it does so, it inherits the security
holes of the secondary program). Thus, if a setuid program lets you call an editor
and the editor has shell escapes, it’s just as if the first program had shell escapes.

This principle also means that you should avoid system calls that invoke a shell
(popen, system, exec{vp,1lp,ve}, and so on). These calls are susceptible to attacks
by clever users.

Access Control Lists

Access control lists (ACLs) offer a further refinement to the standard Unix file per-
missions capabilities. ACLs enable you to specify file access for completely arbitrary
subsets of users and/or groups. All of our reference operating systems provide ACLs,
with the exception of FreeBSD.t

The first part of this section covers AIX ACLs. It also serves as a general introduc-
tion to ACLs and should be read by all administrators encountering this topic for the
first time. Table 7-1 lists features of the ACL implementations on the systems we are
considering.

Table 7-1. ACL features by operating system

Feature AIX FreeBSD2 HP-UX Linux Solaris Tru64

Follows POSIX standard? no yes no yes yes yes

chmod deletes extended ACEs? numeric no variesb no no no
mode only

ACL inheritance from parent no yes no yes yes yes

directory’s default ACL?

NFS support? yes no no yes yes yes

ACL backup/restore support backup no fbackup star¢ ufsdump dump
(by inode)

a ACL support in FreeBSD is preliminary.
b The most recent versions of chmod support the - A option, which retains ACL settings
¢ See http://www.fokus.gmd.de/research/cc/glone/employees/joerg.schilling/private/star.htmi.

Note that the NFS support listed in the table refers to whether NFS file operations
respect ACLs for other systems running the same operating system (homogeneous

* Strictly speaking, as long as the program ensured that any created child processes did not inherit the parent’s
setuid or setgid status (by resetting it between the fork and the exec), shell escapes would be OK.

t Actually, POSIX ACL functionality is partially present in current releases of FreeBSD, but the facility is still
considered experimental.

Protecting Files and the Filesystem | 353

NFS, if you will). Heterogeneous NFS support is seldom offered. Even when NFS is
supported, there can still be privilege glitches arising from NFS’s practice of caching
files and their permissions for read purposes in a user-independent manner. Consult
the documentation for your systems to determine how such situations are handled.

Introducing access control lists

On an AIX system, an access control list looks like this:

attributes: Special modes like setuid.
base permissions Normal Unix file modes:
owner(chavez): rw- User access.
group(chem): rw- Group access
others: r-- Other access.
extended permissions More specific permission entries:
enabled Whether they're used or not.
specify r-- u:harvey Permissions for user harvey.
deny -w- g:organic Permissions for group organic.
permit rw- u:hill, g:bio Permissions for hill when group bio is active.

The first line specifies any special attributes on the file (or directory). The possible
attribute keywords are SETUID, SETGID, and SVTX (the sticky bit is set on a direc-
tory). Multiple attributes are all placed on one line, separated by commas.

The next section of the ACL lists the base permissions for the file or directory. These
correspond exactly to the Unix file modes. Thus, for the file we’re looking at, the
owner (who is chavez) has read and write access, members of the group chem (which
is the group owner of the file) also have read and write access, and all others have
read access.

The final section specifies extended permissions for the file: access information speci-
fied by user and group name. The first line in this section is the word enabled or dis-
abled, indicating whether the extended permissions that follow are actually used to
determine file access. In our example, extended permissions are in use.

The rest of the lines in the ACL are access control entries (ACEs), which have the fol-
lowing format:

operation access-types user-and-group-info

The operation is one of the keywords permit, deny, and specify, which correspond to
chmod’s +, -, and = operators, respectively. permit says to add the specified permis-
sions to the ones the user already has, based on the base permissions; deny says to
take away the specified access; and specify sets the access for the user to the listed
value. The access-types are the same as those for normal Unix file modes. The user-
and-group-info consists of a user name (preceded by u:) or one or more group names
(each preceded by g:) or both. Multiple items are separated by commas.

Let’s look again at the ACEs in our sample ACL:

specify r-- u:harvey Permissions for user harvey.
deny -w- g:organic Permissions for group organic.
permit rw- wu:hill, g:bio Permissions for hill when group bio is active.

354 | Chapter7: Security

The first line grants read-only access to user harvey on this file. The second line
removes write access for the organic group from whatever permissions a user in that
group already has. The final line adds read and write access to user hill while group
bio is part of the current group set (see “Unix Users and Groups” in Chapter 6). By
default, the current group set is all of the groups to which the user belongs.

ACLs that specify a username and group are useful mostly for accounting purposes;
the previous ACL ensures that user hill has group bio active when working with this
file. They are also useful if you add a user to a group on a temporary basis, ensuring
that the added file access goes away if the user is later removed from the group. In
the previous example, user hill would no longer have access to the file if she were
removed from the bio group (unless, of course, the file’s base permissions grant it to
her).

If more than one item is included in the user-and-group-info, all of the items must be
true for the entry to be applied to a process (Boolean AND logic). For example, the
first ACE below is applied only to users who have both bio and chem in their group
sets (which is often equivalent to “are members of both the chem and bio groups”):

permit r-- g:chem, g:bio

permit rw- u:hill, g:chem, g:bio
The second ACE applies to user hill only when both groups are in the current group
set. If you wanted to grant write access to anyone who was a member of either group
chem or group bio, you would specify two separate entries:

permit rw- g:bio

permit rw- g:chem
At this point, it is natural to wonder what happens when more than one entry
applies. When a process requests access to a file with extended permissions, the per-
mitted accesses from the base permissions and all applicable ACEs—all ACEs that
match the user and group identity of the process—are combined with a union opera-
tion. The denied accesses from the base permissions and all applicable ACEs are also
combined. If the requested access is permitted and it is not explicitly denied, then it
is granted. Thus, contradictions among ACEs are resolved in the most conservative
way: access is denied unless it is both permitted and not denied.

A

This conservative, least-privilege approach is true for all the ACL
implementations we are considering.

‘X
(152

For example, consider the ACL below:

attributes:

base permissions
owner(chavez): rw-
group(chem): -
others: ---

Protecting Files and the Filesystem | 355

extended permissions

enabled

specify r-- u:stein

permit rw- g:organic, g:bio

deny Twx g:physics
Now suppose that the user stein, who is a member of both the organic and bio
groups (and not a member of the chem group), wants write access to this file. The
base permissions clearly grant stein no access at all to the file. The ACEs in lines one
and two of the extended permissions apply to stein. These ACEs grant him read
access (lines one and two) and write access (line two). They also deny him write and
execute access (implicit in line one). Thus, stein will not be given write access,
because while the combined ACEs do grant it to him, they also deny write access,
and so the request will fail.

Manipulating AIX ACLs

ACLs may be applied and modified with the acledit command. acledit retrieves the
current ACL for the file specified as its argument and opens the ACL for editing,
using the text editor specified by the EDITOR environment variable. The use of this
variable under AIX is different than in other systems. For one thing, there is no
default (most Unix implementations use vi when EDITOR is unset). Second, AIX
requires that the full pathname to the editor be supplied, /usr/bin/vi, not just its
name. Once in the editor, make any changes to the ACL that you wish. If you are
adding extended permissions ACEs, be sure to change disabled to enabled in the first
line of that section. When you are finished, exit from the editor normally. AIX will
then print the message:

Should the modified ACL be applied? (y)

@,

If you wish to discard your changes to the ACL, enter “n”; otherwise, you should
press Return. AIX then checks the new ACL and, if it has no errors, applies it to the
file. If there are errors in the ACL (misspelled keywords or usernames are the most
common), you are placed back in the editor, where you can correct them and try
again. AIX puts error messages like this one at the bottom of the file, describing the
errors it found:

* line number 9: unknown keyword: spceify
* line number 10: unknown user: chavze

You don’t have to delete the error messages themselves from the ACL.

But this is the slow way of applying an ACL. The aclget and aclput commands offer
alternative ways to display and apply ACLs to files. aclget takes a filename as its
argument and displays the corresponding ACL on standard output (or to the file
specified to its -o option). The aclput command is used to read an ACL in from a
text file. By default, it takes its input from standard input or from an input file speci-
fied with the -i option. Thus, to set the ACL for the file gold to the ACL stored in the
file metal.acl, you could use this command:

$ aclput -i metal.acl gold

356 | Chapter7: Security

This form of aclput is useful if you use only a few different ACLs, all of which are
saved as separate files to be applied as needed.

To copy an ACL from one file to another, put aclget and aclput together in a pipe.
For example, the command below copies the ACL from the file silver to the file emer-

ald:

$ aclget silver | aclput emerald
To copy an ACL from one file to a group of files, use xargs:
$ 1s *.dat *.0ld | xargs -i /bin/sh -c "aclget silver | aclput {}"

These commands copy the ACL in silver to all the files ending in .dat and .old in the
current directory.

You can use the 1s -le command to quickly determine whether a file has an
extended permissions set or not:

-IW-T----- + 1 chavez chem 51 Mar 20 13:27 has_acl

-TwWXIws---- 2 chavez chem 512 Feb 08 17:58 no_acl

The plus sign appended to the normal mode string indicates the presence of
extended permissions; a minus sign indicates that there are no extended permissions.

Additional AIX ACL notes:

* The base permissions on a file with an extended access control list may be
changed with chmod’s symbolic mode, and any changes made in this way will be
reflected in the base permissions section of the ACL. However, chmod’s numeric
mode must not be used for files with extended permissions, because using it
automatically removes any existing ACEs.

* Only the backup command in backup-by-inode mode will backup and restore the
ACLs along with the files.

Unlike other ACL implementations, files do not inherit their initial ACL from their
parent directory. Needless to say, this is a very poor design.

HP-UX ACLs

The 1sacl command may be used to view the ACL for a file. For a file with only nor-
mal Unix file modes set, the output looks like this:

(chavez.%,rw-)(%.chem,1--)(%.%,---) bronze

This shows the format an ACL takes under HP-UX. Each parenthesized item is
known as an access control list entry, although I'm just going to call them “entries.”
The percent sign is a wildcard within an entry, and the three entries in the previous
listing specify the access for user chavez as a member of any group, for any user in
group chem, and for all other users and groups, respectively.

Protecting Files and the Filesystem | 357

A file can have up to 16 ACL entries: three base entries corresponding to normal file
modes and up to 13 optional entries. Here is the ACL for another file (generated this
time by lsacl -1):

silver:

wx chavez.%

1-x %.chem

r-X %.phys

r-x hill.bio

wx harvey.%

--- %%
This ACL grants all access to user chavez with any current group membership (she is
the file’s owner). It grants read and execute access to members of the chem and phys
groups and to user hill when a member of group bio, and it grants user harvey read,
write and execute access regardless of his group membership and no access to any
other user or group.

Entries within an HP-UX access control list are examined in order of decreasing spec-
ificity: entries with a specific user and group are considered first, followed by those
with only a specific user, those with only a specific group, and the other entry last of
all. Within a class, entries are examined in order. When determining whether to per-
mit file access, the first applicable entry is used. Thus, user harvey will be given write
access to the file silver even if he is a member of the chem or phys group.

The chacl command is used to modify the ACL for a file. ACLs can be specified to
chacl in two distinct forms: as a list of entries or with a chmod-like syntax. By default,
chacl adds entries to the current ACL. For example, these two commands both add
read access for the bio group and read and execute access for user hill to the ACL on
the file silver:

$ chacl "(%.bio,r--) (hill.%,r-x)" silver

$ chacl "%.bio = r, hill.% = rx" silver
In either format, the ACL must be passed to chacl as a single argument. The second
format also includes + and - operators, as in chmod. For example, this command adds
read access for group chem and user harvey and removes write access for group
chem, adding or modifying ACL entries as needed:

$ chacl "%.chem -wtr, harvey.% +r" silver
chacl’s -r option may be used to replace the current ACL:
$ chacl -r "@.% = 7, %.@ = rx, %.bio = r, %.% = " *.dat

The @ sign is a shorthand for the current user or group owner, as appropriate, and it
also enables user-independent ACLs to be constructed. chacl’s -f option may be
used to copy an ACL from one file to another file or group of files. This command
applies the ACL from the file silver to all files with the extension .dat in the current
directory:

$ chacl -f silver *.dat

358 | Chapter7: Security

Be careful with this option: it changes the ownership of target files if necessary so
that the ACL exactly matches that of the specified file. If you merely want to apply a
standard ACL to a set of files, you're better off creating a file containing the desired
ACL, using @ characters as appropriate, and then applying it to files in this way:

$ chacl -r "“cat acl.metal™" *.dat

You can create the initial template file by using 1sacl on an existing file and captur-
ing the output.

You can still use chmod to change the base entries of a file with an ACL if you include
the -A option. Files with optional entries are marked with a plus sign appended to
the mode string in long directory listings:

-IW------- + 1 chavez chem 8684 Jun 20 16:08 has_one
-IW-1--r-- 1 chavez chem 648205 Jun 20 11:12 none_here

Some HP-UX ACL notes:

* ACLs for new files are not inherited from the parent directory.
* NFS support for ACLs is not included in the implementation.

* Using any form of the chmod command on a file will remove all ACEs except
those for the user owner, group owner, and other access.

POSIX access control lists: Linux, Solaris, and Tru64

Solaris, Linux, and Tru64 all provide a version of POSIX ACLs, and a stable FreeBSD
implementation is forthcoming. On Linux systems, ACL support must be added
manually (see http://acl.bestbits.ac); the same is true for the preliminary FreeBSD ver-
sion, part of the TrustedBSD project (e.g., see hitp://www.freebsd.org/mews/status/
report-dec-2001-jan-2002.html, as well as the project’s home page at http://www.
trustedbsd.org). Linux systems also require that the filesystem be mounted with the
option -0 acl.

Here is what a simple POSIX access control list looks like:

u:iIwx Owner access.

g iTWX Group owner access.

0:--- Other access.

u:chavez:rw- Access for user chavez.

g:chem:r-x Access for group chem.

g:bio:rw- Access for group bio.

g:phys:-w- Access for group phys.

m:r-x Access mask: sets maximum allowed access.

The first three items correspond to the usual Unix file modes. The next four entries
illustrate the ACEs for specific users and groups; note that only one name can be
included in each entry. The final entry specifies a protection mask. This item sets the
maximum allowed access level for all but user owner and other access.

In general, if a required permission is not granted within the ACL, the correspond-
ing access will be denied. Let’s consider some examples using the preceding ACL.

Protecting Files and the Filesystem | 359

Suppose that harvey is the owner of the file and the group owner is prog. The ACL
will be applied as follows:

* The user owner, harvey in this case, always uses the u:: entry, so harvey has rwx
access to the file. All group entries are ignored for the user owner.

* Any user with a specific u: entry always uses that entry (and all group entries are
ignored for her). Thus, user chavez uses the corresponding entry. However, it is
subject to the mask entry, so her actual access will be read-only (the assigned
write mode is masked out).

* Users without specific entries use any applying group entry. Thus, members of
the prog group have r-x access, and members of the bio group have r-- access
(the mask applies in both cases). Under Solaris and Tru64, all applicable group
entries are combined (and then the mask is applied). However, on Linux sys-
tems, group entries do not accumulate (more on this in a minute).

* Everyone else uses the specified other access. In this case, that means no access
to the file is allowed.

On Linux systems, users without specific entries who belong to more than one group
specified in the ACL can use all of the entries, but the group entries are not com-
bined prior to application. Consider this partial ACL:

g:chem:r--

g:phys:--x

m:Iwx
The mask is now set to rwx, so the permissions in the ACEs are what will be granted.
In this case, the access for users who are members of group chem and group phys can
use either ACE. If this file is a script, they will not be able to execute it because they
do not have rx access. If they try to read the file, they will be successful, because the
ACE for chem gives them read access. However, when they try to execute the file,
neither ACE gives them both r and x. The separate permissions in the two ACEs are
not combined.

New files are given ACLs derived from the directory in which they reside. However,
the directory’s own access permission set is not used. Rather, separate ACEs are
defined for use with new items. Here are some examples of these default ACEs:

d:iu::iTwx Default user owner ACE.
dig:ir-x Default group owner ACE.
d:o:r-- Default other ACE.

d:m:Twx Default mask.
d:u:chavez:rwx Default ACE for user chavez.
d:g:chem:r-x Default ACE for group chem.

Each entry begins with d:, indicating that it is a default entry. The desired ACE fol-
lows this prefix.

We'll now turn to some examples of ACL-related commands. The following com-
mands apply two access control entries to the file gold:

360 | Chapter7: Security

Solaris and Linux

setfacl -m user:harvey:r-x,group:geo:r-- gold
Tru64

setacl -u user:harvey:r-x,group:geo:r-- gold

The following commands apply the ACL from gold to silver:

Solaris
getfacl gold > acl; setfacl -f acl silver
Linux
getfacl gold > acl; setfacl -S acl silver
Tru64
getacl gold > acl; setacl -b -U acl silver

As the preceding commands indicate, the getfacl command is used to display an
ACL under Solaris and Linux, and getacl is used on Tru64 systems.

The following commands specify the default other ACE for the directory /metals:

Solaris
setfacl -m d:o:r-x /metals
Linux
setfacl -d -m o:r-x /metals
Tru64

setacl -d -u o:r-x /metals

Table 7-2 lists other useful options for these commands.

Table 7-2. Useful ACL manipulation commands

Operation Linux Solaris Tru64

Add/modify ACEs ~ setfacl -m entries setfacl -m entries setacl -u entries
setfacl -M acl-file setfacl -m -f acl-file setacl -U acl-file

Replace ACL setfacl -s entries setfacl -s entries setacl -b -u entries
setfacl -S acl-file setfacl -s -f acl-file setacl -b -U acl-file

Remove ACEs setfacl -x entries setfacl -d entries setacl -x entries
setfacl -X acl-file setacl -X acl-file

Remove entire setfacl -b setacl -b

ACL

Operateondirec- setfacl -d setfacl -m d:entry setacl -d

tory default ACL

Remove default setfacl -k setacl -k

ACL

Edit ACL in editor setacl -E

On Linux systems, you can also backup and restore ACLs using commands like
these:

getfacl -R --skip-base / > backup.acl
setfacl --restore=backup.acl

The first command backs up the ACLs from all files into the file backup.acl, and the
second command restores the ACLs saved in that file.

Protecting Files and the Filesystem | 361

On Tru64 systems, the acl_mode setting must be enabled in the ker-
nel for ACL support.

*i‘
(152

Encryption

Encryption provides another method of protection for some types of files. Encryp-
tion involves transforming the original file (the plain or clear text) using a mathemati-
cal function or technique. Encryption can potentially protect the data stored in files
in several circumstances, including:

* Someone breaking into the root account on your system and copying the files (or
tampering with them), or an authorized root user doing similar things

* Someone stealing your disk or backup tapes (or floppies) or the computer itself
in an effort to get the data

* Someone acquiring the files via a network

The common theme here is that encryption can protect the security of your data even
if the files themselves somehow fall into the wrong hands. (It can’t prevent all mis-
haps, however, such as an unauthorized root user deleting the files, but backups will
cover that scenario.

Most encryption algorithms use some sort of key as part of the transformation, and
the same key is needed to decrypt the file later. The simplest kinds of encryption
algorithms use external keys that function much like passwords; more sophisticated
encryption methods use part of the input data as the part of the key.

The crypt command

Most Unix systems provide a simple encryption program, crypt.” The crypt com-
mand takes the encryption key as its argument and encrypts standard input to stan-
dard output using that key. When decrypting a file, crypt is again used with the
same key. It’s important to remove the original file after encryption, because having
both the clear and encrypted versions makes it very easy for someone to discover the
keys used to encrypt the original file.

crypt is a very poor encryption program (it uses the same basic encryption scheme as
the World War II Enigma machine, which tells you that, at the very least, it is 50
years out of date). crypt can be made a little more secure by running it multiple
times on the same file, for example:

$ crypt keyi < clear-file | crypt key2 | crypt key3 > encr-file
$ rm clear-file

* U.S. government regulations forbid the inclusion of encryption software on systems shipped to foreign sites
in many circumstances.

362 | Chapter7: Security

Each successive invocation of crypt is equivalent to adding an additional rotor to an
Enigma machine (the real machines had three or four rotors). When the file is
decrypted, the keys are specified in the reverse order. Another way to make crypt
more secure is to compress the text file before encrypting it (encrypted binary data is
somewhat harder to decrypt than encrypted ASCII characters).

In any case, crypt is no match for anyone with any encryption-breaking skills—or
access to the chw package.” Nevertheless, it is still useful in some circumstances. I use
crypt to encrypt files that I don’t want anyone to see accidentally or as a result of
snooping around on the system as root. My assumption here is that the people I'm
protecting the files against might try to look at protected files as root but won’t
bother trying to decrypt them. It’s the same philosophy behind many simple auto-
mobile protection systems; the sticker on the window or the device on the steering
wheel is meant to discourage prospective thieves and to encourage them to spend
their energy elsewhere, but it doesn’t really place more than a trivial barrier in their
way. For cases like these, crypt is fine. If you anticipate any sort of attempt to decode
the encrypted files, as would be the case if someone is specifically targeting your sys-
tem, don’t rely on crypt.

Public key encryption: PGP and GnuPG

Another encryption option is to use the free public key encryption packages. The
first and best known of these is Pretty Good Privacy (PGP) written by Phil Zimmer-
man (http://www.pgpi.com). More recently, the Gnu Privacy Guard (GnuPG) has
been developed to fulfill the same function while avoiding some of the legal and
commercial entanglements that affect PGP (see http://www.gnupg.org).

In contrast to the simple encoding schemes that use only a single key for both
encryption and decryption, public key encryption systems use two mathematically-
related keys. One key—typically the public key, which is available to anyone—is
used to encrypt the file or message, but this key cannot be used to decrypt it. Rather,
the message can be decrypted only with the other key in the pair: the private key that
is kept secret from everyone but its owner. For example, someone who wants to send
you an encrypted file encrypts it with your public key. When you receive the mes-
sage, you decrypt it with your private key.

Public keys can be sent to people with whom you want to communicate securely, but
the private key remains secret, available only to the user to whom it belongs. The
advantage of a two-key system is that public keys can be published and dissemi-
nated without any compromise in security, because these keys can be used only to
encode messages but not to decode them. There are various public key repositories
on the Internet; two of the best known public key servers are http://pgp.mit.edu and
http://'www.keyserver.net. The former is illustrated in Figure 7-2.

* See, for example, http://www.jjtc.com/Security/cryptanalysis.htm for information about various tools and
web sites of this general sort.

Protecting Files and the Filesystem | 363

Both PGP and GnuPG have the following uses:

Encryption

They can be used to secure data against prying eyes.

Validation

Messages and files can be digitally signed to ensure that they actually came from
the source that they claim to.

These programs can be used as standalone utilities, and either package can also be
integrated with popular mail programs to protect and sign electronic mail messages
in an automated way.

[ELMIT PGP Key Server - Netscape 6 =] <)
. Flle Edit ¥iew Search Go Bookmarks Tasks Help

A e @ @ @ | [Srttputipge micaut =] ([Cuseara]| ga

o % Home O Search | EJBocknarks

MIT PGP Public Key Server

Key Server Status: Runming normally
Help: Exfracting keys / Submitfing keys / Email interface / About this server / FAS
Related Info: Information about PGP / MIT distribution site for PGP

Extract a key

Search String: [phil ammerman Do the searchl

Indez: @ Verbose Index;

i

[¥] Show PGP fingerprints for keys

[Only return exact matches

Submit a key

Enter ASCII-armored PGP key here: I
Clear Submit this ey to the kepserver =

Remove a key

Search String: Fiamove the key!

Fleara samd bug raparts or prodien reparis o big gl Ol egit
Thi page it & modifed veron of the axampler provided by
Lrzan Lalfacatic and st (Bt ecle)

=
=
O & A O 5 | bocument: bone (084 sec) | —

Figure 7-2. Accessing a public key server

Using either package begins with a user creating his key pair:

PGP GnuPG
$ pgp -kg $ gpg --gen-key

Each of these commands is followed by a lot of informational messages and several
prompts. The most important prompts are the identification string to be associated
with the key and the passphrase. The identifier generally has the form:

Harvey Thomas <harvey@ahania.com>

364 | Chapter7: Security

Sometimes an additional, parenthesized comment item is inserted between the full
name and the email address. Pay attention to the prompts when you are asked for
this item, because both programs are quite particular about how and when the vari-
ous parts of it are entered.

The passphrase is a password that identifies the user to the encryption system. Thus,
the passphrase functions like a password, and you will need to enter it when per-
forming most PGP or GnuPG functions. The security of your encrypted messages
and files relies on selecting a phrase that cannot be broken. Choose something that is
at least several words long.

Once your keys have been created, several files will be created in your SHOME/.pgp
or SHOME/.gnupg subdirectory. The most important of these files are pubring.pgp
(or .gpg), which is the user’s public key ring, and secring.pgp (or .gpg), which holds
the private key. The public key ring stores the user’s public key as well as any other
public keys that he acquires.

A w
y

All files in this key subdirectory should have the protection mode 600.

ﬁ‘
*1

When a key has been acquired, either from a public key server or directly from another
user, the following commands can be used to add it to a user’s public key ring:

PGP GnuPG

$ pgp -ka key-file $ gpg --import key-file
The following commands extract a user’s own public key into a file for transmission
to a key server or to another person:

PGP GnuPG
$ pgp -kxa key-file $ gpg -a --export -o key-file username

Both packages are easy to use for encryption and digital signatures. For example,
user harvey could use the following commands to encrypt (-e) and digitally sign (-s)
a file destined for user chavez:

PGP GnuPG
$ pgp -e -s file chavez@ahania.com $ gpg -e -s -r chavez@ahania.com file

Simply encrypting a file for privacy purposes is much simpler; you just use the -c
option with either command:

PGP GnuPG
$ pgp -c file $ gpg -c file

These commands result in the file being encrypted with a key that you specify, using
a conventional symmetric encryption algorithm (i.e., the same key will be used for
decryption). Should you decide to use this encryption method, be sure to remove the
clear-text file after encrypting. You can have the pgp command do it automatically by
adding the -w (“wipe”) option.

Protecting Files and the Filesystem | 365

I don’t recommend using your normal passphrase to encrypt files
using conventional cryptography. It is all too easy to inadvertently
have both the clear text and encrypted versions of a file on the system
at the same time. Should such a mistake cause the passphrase to be
discovered, using a passphrase that is different from that used for the
public key encryption functions will at least contain the damage.

These commands can be used to decrypt a file:

PGP GnuPG
$ pgp encrypted-file $ gpg -d encrypted-file

If the file was encrypted with your public key, it is automatically decrypted, and both
commands also automatically verify the file’s digital signature as well, provided that
the sender’s public key is in your public key ring. If the file was encrypted using the
conventional algorithm, you will be prompted for the appropriate passphrase.

Selecting passphrases

For all encryption schemes, the choice of good keys or passphrases is imperative. In
general, the same guidelines that apply to passwords apply to encryption keys. As
always, longer keys are generally better than shorter ones. Finally, don’t use any of
your passwords as an encryption key; that’s the first thing that someone who breaks
into your account will try.

It’s also important to make sure that your key is not inadvertently discovered by being
displayed to other users on the system. In particular, be careful about the following:

* Clear your terminal screen as soon as possible if a passphrase appears on it.

* Don’t use a key as a parameter to a command, script, or program, or it may
show up in ps displays (or in lastcomm output).

* Although the crypt command ensures that the key doesn’t appear in ps displays,
it does nothing about shell command history records. If you use crypt in a shell
that has a command history feature, turn history off before using crypt, or run
crypt via a script that prompts for it (and accepts input only from /dev/tty).

Role-Based Access Control

So far, we have considered stronger user authentication and better file protection
schemes. The topic we turn to next is a complement to both of these. Role-based
access control (RBAC) is a technique for controlling the actions that are permitted to
individual users, irrespective of the target of those actions and independent of the
permissions on a specific target.

For example, suppose you want to delegate the single task of assigning and resetting
user account passwords to user chavez. On traditional Unix systems, there are three
approaches to granting privileges:

366 | Chapter7: Security

* Tell chavez the root password. This will give her the ability to perform the task,
but it will also allow here to do many other things as well. Adding her to a sys-
tem group that can perform administrative functions usually has the same draw-

back.

* Give chavez write access to the appropriate user account database file (perhaps
via an ACL to extend this access only to her). Unfortunately, doing so will give
her access to many other account attributes, which again is more than you want
her to have.

* Give her superuser access to just the passwd command via the sudo facility. Once
again, however, this is more privilege than she needs: she’ll now have the ability
to also change the user’s shell and GECOS information on many systems.

RBAC can be a means for allowing a user to perform an activity that must tradition-
ally be handled by the superuser. The scheme is based on the concept of roles: a
definable and bounded subset of administrative privileges that can be assigned to
users. Roles allow a user to perform actions that the system security settings would
not otherwise permit. In doing so, roles adhere to the principle of least privilege,
granting only the exact access that is required to perform the task. As such, roles can
be thought of as a way of partitioning the all powerful root privilege into discrete
components.

Ideally, roles are implemented in the Unix kernel and not just pieced together from
the usual file protection facilities, including the setuid and setgid modes. They differ
from setuid commands in that their privileges are granted only to users to whom the
role has been assigned (rather than to anyone who happens to run the command). In
addition, traditional administrative tools need to be made roles-aware so that they
perform tasks only when appropriate. Naturally, the design details, implementation
specifics, and even terminology vary greatly among the systems that offer RBAC or
similar facilities.

A

We’ve seen somewhat similar, if more limited, facilities earlier in this
book: the sudo command and its sudoers configuration file (see
1t “Becoming Superuser” in Chapter 1) and the Linux pam listfile mod-
ule (see “User Authentication with PAM” in Chapter 6).

Currently, AIX and Solaris offer role-based privilege facilities. There are also projects
for Linux” and FreeBSD.t The open source projects refer to roles and role based
access using the term capabilities.

* The Linux project may or may not be active. The best information is currently at http://www.kernel.org/pub/
linux/libs/security/linux-privs/kernel-2.4/capfaq-0.2.txt.

T See http://www.trustedbsd.org/components.html.

Role-Based Access Control | 367

AIX Roles

AIX provides a fairly simple roles facility. It is based on a series of predefined authori-
zations, which provide the ability to perform a specific sort of task. Table 7-3 lists the
defined authorizations.

Table 7-3. AIX authorizations

Authorization Meaning

UserAdmin Add/remove all users, modify any account attributes.
UserAudit Modify any user account’s auditing settings.
GroupAdmin Manage administrative groups.
PasswdManage Change passwords for nonadministrative users.
PasswdAdmin Change passwords for administrative users.
Backup Perform system backups.

Restore Restore system backups.

RoleAdmin Manage role definitions.

ListAuditClasses Display audit classes.

Diagnostics Run system diagnostics.

These authorizations are combined into a series of predefined roles; definitions are
stored in the file /etc/security/roles. Here are two stanzas from this file:

ManageBasicUsers: Role name
authorizations=UserAudit,ListAuditClasses List of authorizations
rolelist=
groups=security Users should be a member of this group.
screens=* Corresponding SMIT screens.
ManageAllUsers:
authorizations=UserAdmin,RoleAdmin,PasswdAdmin,GroupAdmin
rolelist=ManageBasicUsers Include another role within this one.

The ManageBasicUsers role consists of two authorizations related to auditing user
account activity. The groups attribute lists a group that the user should be a member
of in order to take advantage of the role. In this case, the user should be a member of
the security group. By itself, this group membership allows a user to manage audit-
ing for nonadministrative user accounts (as well as their other attributes). This role
supplements those abilities, extending them to all user accounts, normal and admin-
istrative alike.

The ManageAllUsers role consists of four additional authorizations. It also includes
the ManageBasicUsers role as part of its capabilities. When a user in group security is
given ManageAllUsers, he can function as root with respect to all user accounts and
account attributes.

Table 7-4 summarizes the defined roles under AIX.

368 | Chapter7: Security

Table 7-4. AIX pre-defined roles

Role Group Authorizations Abilities

ManageBasicUsers security UserAudit Modify audit settings for any user account.
ListAuditClasses

ManageAllUsers security UserAudit Add/remove user accounts; modify attributes of any user
ListAuditClasses ~ account.
UserAdmin
RoleAdmin

PasswdAdmin

GroupAdmin
ManageBasicPasswds secu- PasswdManage Change passwords of all nonadministrative users.
ritya
ManageAllPasswds security ~ PasswdManage Change passwords of all users.
PasswdAdmin
ManageRoles RoleAdmin Administer role definitions.
ManageBackup Backup Backup any files.
ManageBackupRestore Backup Backup or restore any files.
Restore
RunDiagnostics Diagnostics Run diagnostic utilities; shutdown or reboot the system.
ManageShutdownb shut- Shutdown or reboot the system.
down

a Membership in group security is actually equivalent to ManageBasicPasswd with respect to changing passwords.
b This is actually a pseudo-role in that it is defined solely via group membership and does not use any authorizations.

Roles are assigned to user accounts in the file /etc/security/user.roles. Here is a sam-
ple stanza:

chavez:
roles = ManageAllPasswds

This stanza assigns user chavez the ability to change any user account password.

You can also use SMIT to assign roles (use the chuser fast path), or the chuser com-
mand:

chuser roles=ManageAllUsers aefrisch

In some cases, the AIX documentation advises additional activities in conjunction
with assigning roles. For example, when assigning the ManageBackup or Manage-
BackupResore roles, it suggests the following additional steps:

* Create a group called backup.

* Assign the ownership of the system backup and restore device to root user and
group backup with mode 660.

* Place users holding either of the backup related roles to group backup.

Check the current AIX documentation for advice related to other roles.

Role-Based Access Control | 369

You can administer roles themselves with SMIT or using the mkrole, rmrole, 1srole,
and chrole commands. You can add new roles to the system as desired, but you are
limited to the predefined set of authorizations.

Solaris Role-Based Access Control

The Solaris RBAC facility is also based upon a set of fundamental authorizations.
They are listed in the file /etc/security/auth_attr. Here are some example entries from

this file:

authorization name :::description ::attributes

solaris.admin.usermgr.:::User Accounts::help=AuthUsermgrHeader.html

solaris.admin.usermgr.pswd:::Change Password::help=AuthUserMgrPswd.html

solaris.admin.usermgr.read:::View Users and Roles::help=AuthUsermgrRead.html

solaris.admin.usermgr.write:::Manage Users::help=AuthUsermgriWrite.html
The first field in each entry is the name of the attribute; the naming convention uses
a hierarchical format for grouping related authorizations. Many of the fields within
the entries are reserved or unused. In general, only the name (first), short description
(fourth), and attributes (seventh) fields are used, and the latter field generally holds
only the name of the help file corresponding to the authorization (the HTML files are
located in the /ust/lib/help/auths/locale/C directory).

The first entry after the comment introduces a group of authorizations related to user
account management. The following three entries list authorizations that allow their
holder to change passwords, view user account attributes, and modify user accounts
(including creating new ones and deleting them), respectively. Note that this file is
merely a list of implement authorizations. You should not alter it.

Authorizations can be assigned to user accounts in three separate ways:

* Directly, as plain authorizations.
* As part of a profile, a named group of authorizations.

* Via a role, a pseudo-account that users can assume (via the su command) to
acquire additional privilege. Roles can be assigned authorizations directly or via
profiles.

Profiles are named collections of authorizations, defined in /etc/security/prof_attr.
Here are some sample entries (wrapped to fit here):

User Management:::Manage users, groups, home directory:
auths=solaris.profmgr.read,solaris.admin.usermgr.write,
solaris.admin.usermgr.read;help=RtUserMngmnt.html

User Security:::Manage passwords,clearances:
auths=solaris.role.*,solaris.profmgr.*,
solaris.admin.usermgr.*;help=RtUserSecurity.html

The entries in this file also have empty fields that are reserved for future use. Those
in use hold the profile name (first field), description (field four), and attributes (field
five). The final field consists of one or more keyword=value-list items, where items in

370 | Chapter7: Security

the value list are separated by commas and multiple keyword items are separated by
semicolons.

For example, the first entry defines the User Management profile as a set of three
authorizations (specified in the auths attribute) and also specifies a help file for the
profile (via the help attribute). The profile will allow a user to read profile and user
account information and to modify user account attributes (but not passwords,
because solaris.admin.usermgr.pswd is not granted).

The second entry specifies a more powerful profile containing all of the user account,
profile management, and role management authorizations (indicated by the wild-
cards). This profile allows a user to make any user modifications whatsoever.

Solaris defines quite a large number of profiles, and you can create ones of your own
as well to implement the local security policy. Table 7-5 lists the most important
Solaris profiles. The first four profiles are generic and represent increasing levels of
system privilege. The remainder are specific to a single subsystem.

Table 7-5. Solaris RBAC profiles

Profile Abilities
Basic Solaris User Default authorizations.
Operator Perform simple, nonrisky administrative tasks

System Administrator
Primary Administrator

Perform nonsecurity-related administrative tasks
Perform all administrative tasks.

Audit Control Configure auditing.

Audit Review Review auditing logs.

Cron Management Manage at and cron jobs.
Device Management Manage removable media.
Device Security Manage devices and the LVM.
DHCP Management Manage the DHCP service.

Filesystem Management
Filesystem Security

FTP Management

Mail Management
Media Backup

Media Restore

Mount and share filesystems.

Manage filesystem security attributes.
Manage the FTP server.

Manage sendmail and mail queues.
Backup files and filesystems.

Restore files from backups.

Name Service Management Run nonsecurity-related name service commands.
Name Service Security Run security-related name service commands.
Network Management Manage the host and network configuration.
Network Security Manage network and host security.

Object Access Management
Printer Management

Process Management

Change file ownership/permissions.
Manage printers, daemons, spooling.

Manage processes.

Role-Based Access Control

3n

Table 7-5. Solaris RBAC profiles (continued)

Profile Abilities

Software Installation Add application software to the system

User Management Manage users and groups (except passwords).
User Security Manage all aspects of users and groups.

The /etc/security/exec_attr configuration file elaborates on profiles definitions by
specifying the UID and GID execution context for relevant commands. Here are the
entries for the two profiles we are considering in detail:

User Management:suser:cmd:::/etc/init.d/utmpd:uid=0;gid=sys

User Management:suser:cmd:::/usr/sbin/grpck:euid=0

User Management:suser:cmd:::/usr/sbin/pwck:euid=0

User Security:suser:cmd:::/usr/bin/passwd:euid=0

User Security:suser:cmd:::/usr/sbin/pwck:euid=0

User Security:suser:cmd:::/usr/sbin/pwconv:euid=0

The /etc/user_attr configuration is where user accounts and profiles and/or authori-
zations are associated. Here are some sample entries (lines are wrapped to fit):
#acct ::::attributes (can include auths;profiles;roles;type;project)
chavez::::type=normal;profiles=System Adminstrator
harvey::::type=normal;profiles=Operator,Printer Management;
auths=solaris.admin.usermgr.pswd
sofficer::::type=role;profiles=Device Security,File System Security,
Name Service Security,Network Security,User Security,
Object Access Management;auths=solaris.admin.usermgr.read
sharon::::type=normal;roles=sofficer

The first entry assigns user chavez the System Administrator profile. The second
entry assigns user harvey two profiles and an additional authorization.

The third entry defines a role named sofficer (Security Officer), assigning it the listed
profiles and authorization. An entry in the password file must exist for sofficer, but
no one will be allowed to log in using it. Instead, authorized users must use the su
command to assume the role. The final entry grants user sharon the right to do so.

The final configuration file affecting user roles and profiles is /etc/security/policy.conf.
Here is an example of this file:

AUTHS_GRANTED=solaris.device.cdrw
PROFS_GRANTED=Basic Solaris User

The two entries specify the authorizations and profiles to be granted to all users.

Users can list their roles, profiles, and authorizations using the roles, profiles, and
auths commands, respectively. Here is an example using profiles:

$ profiles
Operator

Printer Management
Media Backup

Basic Solaris User

372 | Chapter7: Security

Here is an example using the auths command, sent to a pipe designed to make its
output readable:

$ auths | sed 's/,/ /g' | fold -s -w 30 | sort
solaris.admin.printer.delete
solaris.admin.printer.modify
solaris.admin.printer.read
solaris.admin.usermgr.pswd
solaris.admin.usermgr.read

solaris.device.cdrw

solaris.jobs.user

solaris.jobs.users

Solaris also includes a PAM module, pam_roles.so, which determines whether the
user has the right to assume a role he is trying take on.

Network Security

We'll now turn our attention beyond the single system and consider security in a net-
work context. As with all types of system security, TCP/IP network security inevita-
bly involves tradeoffs between ease-of-use issues and protection against (usually
external) threats. And, as is true all too often with Unix systems, in many cases your
options are all or nothing.

Successful network-based attacks result from a variety of problems. These are the
most common types:

Poorly designed services that perform insufficient authentication (or even none
at all) or otherwise operate in an inherently insecure way (NFS and X11 are
examples of facilities having such weaknesses that have been widely and fre-
quently exploited).

Software bugs, usually in a network-based facility (for example, sendmail) and
sometimes in the Unix kernel, but occasionally, bugs in local facilities can be
exploited by crackers via the network.

Abuses of allowed facilities and mechanisms. For example, a user can create a
.rhosts file in her home directory that will very efficiently and thoroughly com-
promise system security (these files are discussed later in this section).

Exploiting existing mechanisms of trust by generating forged network packets
impersonating trusted systems (known as IP spoofing).

User errors of many kinds, ranging from innocent mistakes to deliberately cir-
cumventing security mechanisms and policies.

Problems in the underlying protocol design, usually a failure to anticipate mali-
cious uses. This sort of problem is often what allows a denial-of-service attack to
succeed.

Attacks often use several vulnerabilities in combination.

Network Security | 373

Maintaining a secure system is an ongoing process, requiring a lot of initial effort and
a significant amount of work on a permanent basis. One of the most important
things you can do with respect to system and network security is to educate yourself
about existing threats and what can be done to protect against them. I recommend
the following classic papers as good places to start:

* Steven M. Bellovin, “Security Problems in the TCP/IP Protocol Suite.” The clas-
sic TCP/IP security paper, available at http://lwww.research.att.com/~smb/papers/.
Many of his other papers are also useful and interesting.

* Dan Farmer and Wietse Venema, “Improving the Security of Your Site by Break-
ing Into It,” available at ftp:/ftp.porcupine.org/pub/security/index.html. Another
excellent discussion of the risks inherent in Internet connectivity.

We'll discuss TCP/IP network security by looking at how systems on a network were
traditionally configured to trust one another and allow each other’s users easy access.
Then we’ll go on to look at some of the ways that you can back off from that posi-
tion of openness by considering methods and tools for restricting access and assess-
ing the vulnerabilities of your system and network.

Security Alert Mailing Lists

One of the most important ongoing security activities is keeping up with the latest bugs
and threats. One way to do so is to read the CERT or CIAC advisories and then act on
them. Doing so will often be inconvenient—closing a security hole often requires some
sort of software update from your vendor—but it is the only sensible course of action.

One of the activities of the Computer Emergency Response Team (CERT) is adminis-
tering an electronic mailing list to which its security advisories are posted as necessary.
These advisories contain a general description of the vulnerability, detailed informa-
tion about the systems to which it applies, and available fixes. You can add yourself to
the CERT mailing list by sending email to majordomo@cert.org with “subscribe cert-
advisory” in the body of the message. Past advisories and other information are avail-
able from the CERT web site, http://www.cert.org.

The Computer Incident Advisory Capability (CIAC) performs a similar function, orig-
inally for Department of Energy sites. Their excellent web site is at http://www.ciac.org/
ciac/.

Establishing Trust

Unless special steps are taken, users must enter a password each time they want
access to the other hosts on the network. However, users have traditionally found
this requirement unacceptably inconvenient, and so a mechanism exists to establish
trust between computer systems which then allows remote access without pass-
words. This trust is also known as equivalence.

374 | Chapter7: Security

The first level of equivalence is the host level. The /etc/hosts.equiv configuration file
establishes it. This file is simply a list of hostnames, each on a separate line.” For
example, the file for the system france might read:

spain.ahania.com

italy.ahania.com

france.ahania.com
None, any, or all of the hosts in the network may be put in an /etc/hosts.equiv file. Tt
is convenient to include the host’s own name in /etc/hosts.equiv, thus declaring a host
equivalent to itself. When a user from a remote host attempts an access (with rlogin,
rsh, or rcp), the local host checks the file /etc/hosts.equiv. 1f the host requesting
access is listed in /Jetc/hosts.equiv and an account with the same username as the
remote user exists, remote access is permitted without requiring a password.

If the user is trying to log in under a different username (by using the -1 option to rsh
or rlogin), the /etc/hosts.equiv file is not used. The /etc/hosts.equiv file is also not
enough to allow a superuser on one host to log in remotely as root on another host.

The second type of equivalence is account-level equivalence, defined in a file named
.rhosts in a user’s home directory. There are various reasons for using account-level
instead of host-level equivalence. The most common cases for doing so are when
users have different account names on the different hosts or when you want to limit
use of the .rhosts mechanism to only a few users.

Each line of .rhosts consists of a hostname and, optionally, a list of usernames:
hostname [usernames]

If username is not present, only the same username as the owner of the .rhosts file
can log in from hostname. For example, consider the following .rhosts file in the
home directory of a user named wang:

england.ahania.com guy donald kim

russia.ahania.com felix

usa.ahania.com felix
The .rhosts allows the user felix to log in from the host russia or usa, and users
named guy, donald, or kim to log in from the host england.

If remote access is attempted and the access does not pass the host-level equivalence
test, the remote host then checks the .rhosts file in the home directory of the target
account. If it finds the hostname and username of the person making the attempted
access, the remote host allows the access to take place without requiring the user to
enter a password.

* The file may also contain NIS netgroup names in the form: +@name. However, the hosts.equiv file should
never contain an entry consisting of a single plus sign, because this will match any remote user having the
same login name as one in the local password file (except root).

Network Security | 375

Host-level equivalence is susceptible to spoofing attacks, so it is rarely
acceptable anymore. However, it can be used safely in an isolated net-
working environment if it is set up carefully and in accord with the
site’s security policy.

Account-level equivalence is a bad idea all the time because the user is
free to open up his account to anyone he wants, and it is a disaster
when applied to the root account. I don’t allow it on any of my sys-
tems.

The implications of trust

Setting up any sort of trust relationship between computer systems always carries a
risk with it. However, the risks go beyond the interaction between those two sys-
tems alone. For one thing, trusts operates in a transitive manner (transitive trust). If
hamlet trusts laertes, and laertes trusts ophelia, then hamlet trusts ophelia, just as
effectively as if ophelia were listed in hamlet’s /etc/hosts.equiv file (although not as
conveniently). This level of transitivity is easy to see for a user who has accounts on
all three systems; it also exists for all users on ophelia with access to any account on
laertes that has access to any account on hamlet.

There is also no reason that such a chain need stop at three systems. The point here
is that hamlet trusts ophelia despite the fact that hamlet’s system administrator has
chosen not to set up a trusting relationship between the two systems (by not includ-
ing ophelia in /etc/hosts.equiv). hamlet’s system administrator may have no control
over ophelia at all, yet his system’s security is intimately dependent on ophelia
remaining secure.

In fact, Dan Farmer and Wietse Venema argue convincingly that an implicit trust
exists between any two systems that allow users to log in from one to the other. Sup-
pose system yorick allows remote logins from hamlet, requiring passwords in all cases.
If hamlet is compromised, yorick is at risk as well; for example, some of hamlet’s users
undoubtedly use the same passwords on both systems—which constitutes users’ own
form of account-level equivalence—and a root account intruder on hamlet will have
access to the encrypted passwords and most likely be able to crack some of them.

Taken to its logical conclusion, this line of reasoning suggests that any time two sys-
tems are connected via a network, their security to some extent becomes inter-
twined. In the end, your system’s security will be no better than that of the least
protected system on the network.

The Secure Shell

The secure shell is becoming the accepted mechanism for remote system access. The
most widely used version is OpenSSH (see http://www.openssh.org). OpenSSH is
based on the version originally written by Tatu Ylonen. It is now handled by the
OpenBSD team. The secure shell provides an alternative to the traditional clear-text
remote sessions using telnet or rlogin since the entire session is encrypted.

376 | Chapter7: Security

From an administrative point of view, OpenSSH is wonderfully easy to set up, and
the default configuration is often quite acceptable in most contexts. The package
consists primarily of a daemon, sshd; several user tools (ssh, the remote shell; sftp,
an ftp replacement; and scp, an rcp replacement); and some related administrative
utilities and servers (e.g., sftp-server).

Be sure you using a recent version of OpenSSH: some older versions
have significant security holes. Also, I recommend using SSH protocol
112 2 over the earlier protocol 1 as it closes several security holes.

The OpenSSH configuration file are stored in /etc/ssh. The most important of these is
letc/sshisshd_config. Here is a simple, annotated example of this file:

Protocol 2 Only use SSH protocol 2.

Port 22 Use the standard port.

ListenAddress 0.0.0.0 Only accept IPv4 addresses.
AllowTcpForwarding no Don't allow port forwarding.
SyslogFacility auth Logging settings.

LoglLevel info

Banner /etc/issue Display this file before the prompts.
PermitEmptyPasswords no Don't accept connections for accounts w/o passwords.
PermitRootLogin no No root logins allowed.

LoginGraceTime 600 Disconnect after 5 minutes if no login occurs.
KeepAlive yes Send keep alive message to the client.
X11Forwarding no No X11 support.

X11DisplayOffset 10

sftp subsystem Enable the sftp subsystem.

Subsystem sftp /usr/lib/ssh/sftp-server
This file is designed for a server using SSH in its simplest mode: user authentication
occurs via normal user passwords (encrypted for transmission). The package also
offers stricter authentication, which involves using public key cryptography to ensure
that the remote session is originating from a known host. See the documentation for
details on these features.

Securing Network Daemons

TCP/IP-related network daemons are started in two distinct ways. Major daemons
like named are started at boot time by one of the boot scripts. The second class of dae-
mons are invoked on demand, when a client requests their services. These are han-
dled by the TCP/IP “super daemon,” inetd. inetd itself is started at boot time, and it
is responsible for starting the other daemons that it controls as needed. Daemons
controlled by inetd provide the most common TCP/IP user-oriented services: telnet,
ftp, remote login and shells, mail retrieval, and so on.

Network Security | 377

inetd is configured via the file /etc/inetd.conf. Here are some sample entries in their
conventional form:

#service socket prot wait? user program arguments

telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

tftp dgram udp wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot
As indicated in the comment line, the fields hold the service name (as defined in /etc/
services), the socket type, protocol, whether or not to wait for the command to
return when it is started, the user who should run the command, and the command
to run along with its arguments.

Generally, most common services will already have entries in /etc/inetd.conf. How-
ever, you may need to add entries for some new services that you add (e.g., Samba
servers).

TCP Wrappers: Better inetd access control and logging

The free TCP Wrappers facility provides for finer control over which hosts are
allowed to access what local network services than that provided by the standard
TCP/IP mechanisms (hosts.equiv and .rhosts files). It also provides for enhanced log-
ging of inetd-based network operations to the syslog facility. The package was writ-
ten by Wietse Venema, and it is included automatically on most current Unix
systems. It is also available from fip://ftp.porcupine.org/pub/security/tcp_wrapper_7.6-
ipv61.tar.gz (although the filename will undoubtedly change over time).

The package is centered around tcpd, an additional daemon positioned between
inetd and the subdaemons that it manages. It requires that you modify inetd’s con-
figuration file, /etc/inetd.conf, replacing the standard daemons you want the facility
to control with tcpd, as in these examples:

Before:

#service socket protocol wait? user program arguments

shell stream tcp nowait root /usr/sbin/rshd rshd

login stream tcp nowait root /usr/sbin/rlogind rlogind

After:

#service socket protocol wait? user program arguments

shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/rshd
login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/rlogind

(Note that daemon names and locations vary from system to system). The tcpd pro-
gram replaces the native program for each service that you want to place under its
control. As usual, after modifying inetd.conf, you would send a HUP signal to the
inetd process.

Once inetd is set up, the next step is to create the files /etc/hosts.allow and /etc/hosts.
deny, which control what hosts may use which services. When a request for a net-
work service comes in from a remote host, access is determined as follows:

* If /etc/hosts.allow authorizes that service for that host, the request is accepted
and the real daemon is started. The first matching line in /etc/hosts.allow is used.

378 | Chapter7: Security

* When no line in hosts.allow applies, hosts.deny is checked next. If that file denies
the service to the remote host, the request is denied. Again, the first applicable
entry is used.

* In all other cases, the request is granted.

Here are some sample entries from hosts.allow:

fingerd : ophelia hamlet laertes yorick lear duncan
rshd, rlogind : LOCAL EXCEPT hamlet
ftpd : LOCAL, .ahania.com, 192.168.4

The first entry grants access to the remote finger service to users on any of the listed
hosts (hostnames may be separated by commas and or spaces). The second entry
allows rsh and rlogin access by users from any local host—defined as one whose
hostname does not contain a period—except the host hamlet. The third entry allows

ftp access to all local hosts, all hosts in the domain ahania.com, and all hosts on the
subnet 192.168.4.

Here is the /etc/hosts.deny file:

tftpd : ALL : (/usr/sbin/safe_finger -1 @%h | /usr/bin/mail -s %d-%h root) &

ALL : ALL :
The first entry denies access to the Trivial FTP facility to all hosts. It illustrates the
optional third field in these files: a command to be run whenever a request matches
that entry.” In this case, the safe_finger command is executed (it is provided as part
of the package) in an attempt to determine who initiated the tftp command, and the
results are mailed to root (%h expands to the remote hostname from which the
request emanated, and %d expands to the name of the daemon for that service). This
entry has the effect of intercepting requests to undesirable services (the package’s
author, Wietse Venema, refers to it as “bugging” that service and as “an early warning
system” for possible intruder trouble). Note that the daemon must be active within /
etc/inetd.conf for this to be effective; if you don’t need or want such logging, it is bet-
ter to comment out the corresponding line in /etc/inetd.conf to disable the service.

The second entry in the example hosts.deny file serves as a final stopgap, preventing
all access that has not been explicitly permitted.

tcpd uses the syslog daemon facility, using the warning (for denials of service) and
info (for configuration file syntax errors) severity levels. You will probably want to
use the swatch facility or a similar tool to sift thought the huge amounts of logging
information it will generate (see “Essential Administrative Techniques” in Chapter 3).

* If you try to place a command into either of these files, you may get errors similar to this one from syslog:
error: /etc/hosts.deny, line 3: bad option name or syntax
Comment out the following line in the Makefile and rebuild tcpd:
#STYLE = -DPROCESS_OPTIONS # Enable language extensions.

Alternatively, you can convert the file to the extended version of the access language described on the hosts_
options manual page.

Network Security | 379

S This section describes basic TCP Wrappers functionality. There is also
.‘s‘ an extended configuration language available for more fine-grained
" 9 access control. See the hosts_options manual page for details.

Xinetd

Red Hat Linux systems provide an alternate version of inetd named xinetd, written
by Panos Tsirigotis and Rob Braun. The package is also available for most Unix ver-
sions. xinetd provides many more features for access control and logging than the
traditional daemon does. Some of its functionality overlaps with TCP Wrappers,
although you can also use the two packages in concert. The package’s home page is
http://www.xinetd.org.

xinetd uses the configuration file /etc/xinetd. Here is an example from a Red Hat
system:

defaults
{
log_type = SYSLOG authpriv
log on_success = HOST PID
log on_failure = HOST
instances =20

:JTanludedir /etc/xinetd.d
The defaults section lists default settings that will apply to all subdaemons con-
trolled by xinetd unless they are specifically overridden. In this case, the file specifies
that logging should go to the syslog authpriv facility, and it selects the items to be
included in log messages for successful and failing connection attempts. In addition,
no server can have more than 20 processes running; this limit affects services that
start additional server processes to handle increased request loads.

The final line specifies a directory location where additional configuration files are
stored. Each file in the indicated directory will be used by xinetd. This feature allows
you to store the settings for individual subdaemons in their own files.

Here is the configuration file for rlogin, which defines the same settings as a tradi-
tional /etc/inetd.conf entry:

service rlogin

{
socket type = stream
protocol = tecp
wait = no
user = root
server = /usr/sbin/in.rlogind
server-args = -1
log on_success += USERID
log on_failure += USERID
disable = no

}

380 | Chapter7: Security

The entry specifies items to include in log messages in addition to the defaults (the
meaning of +=), and the final item enables the subdaemon.

If you want to use TCP Wrappers with xinetd, you specify tcpd as the server and the
subdaemon as a server argument. For example, these configuration entries will cause
TCP Wrappers to control the telnetd daemon:”

flags = NAMEINARGS
server = /usr/sbin/tcpd
server args = /usr/sbin/in.telnetd

Here is a sample entry for the imapd daemon that illustrates the use of access control:

service imap

{
socket_type = stream
protocol = tcp
wait = no
user = root
server = /usr/sbin/imapd
only from = 192.168.10.0 localhost
no_access = dalton.ahania.com
access_times = 07:00-20:00
banner_fail = /usr/etc/deny_banner
}

The only_from entry specifies the hosts that are allowed to use this service; requests
from any remote host not on the specified subnet will be refused. The no_access
entry performs the opposite function and denies access to the specified host(s).

The access_times entry specifies when the service is available to users who are
allowed to use it.

The final entry specifies a file to be displayed whenever a connection is refused (or
fails for some other reason).

See the xinetd.conf manual page for details on all of the available configuration
options.

Disable what you don’t need

A better solution to securing some services is to remove then altogether. You can
decide to disable some of the TCP/IP daemons in the interest of system security or
performance (each places a small but measurable load on the system). There are,

* Most inetd-controlled daemons take the daemon name as their first argument. xinetd knows this and so
automatically passes the command name from the server entry as the first argument when the daemon is
started. This is a convenience feature which makes it unnecessary to include the server name in the server_
args entry. However, when TCP Wrappers is involved, this process would be incorrect, as the daemon is now
specified in server_args rather than server. This flag is designed to handle this case, and it causes the com-
mand name from server_args to be inserted into the resulting daemon-starting command in the appropriate
location.

Network Security | 381

naturally, consequences for eliminating certain daemons. If you disable rwhod, then
the rwho and ruptime commands won’t work.

To disable a daemon like rwhod, comment out the lines that start it in your system
initialization files. For example, the following lines are typical of those used to start
rwhod:

#if [-f /etc/rwhod]; then

/etc/rwhod; echo -n ' rwhod' > /dev/console

#fi
Disabling services managed by the inetd daemon is accomplished by commenting
out the corresponding line from /etc/inetd.conf. For example, these lines disable the
tftp and rexd services (both notorious security holes):

#service socket protocol wait? user program arguments

#

#tftp dgram udp nowait nobody /usr/sbin/tftpdtftpd -n

#rexd sunrpc_tcp tcp wait root /usr/sbin/rpc.rexd rexd 100017 1

When inetd is running, send it a HUP signal to get it to reread its configuration file.

In general, you should disable inetd services that you are not using. Make it one of
your short-term goals to figure out what every entry in its configuration file does and
to get rid of the ones you don’t need. Some likely candidates for commenting out:
tftp and bootps (except for boot servers for diskless workstations), rexd, uucp (sel-
dom has any effect on the real uucp facility), pop-2 and pop-3 (if you are not using
these mail-related services), and netstat, systat, and finger (the latter three give
away too much gratuitous information that is helpful to crackers—run the com-
mand telnet localhost for the first two to see why).

On AIX systems, use SMIT to remove services that are controlled by
the system resource controller.

Port Scanning

Port scanning is the process of searching a network for available network services.
The technique is used by potential intruders to find possible points of attack on a
system. For this reason, you need to have at least a basic understanding of port-scan-
ning tools.

The nmap utility is one of the most widely used port scanners. Its home page is http:/
www.insecure.org/nmapl/.

Here is a sample nmap run that scans ports on host kali:

nmap kali

Starting nmap (www.insecure.org/nmap/)

Interesting ports on kali.ahania.com (192.168.19.84):

(The 1529 ports scanned but not shown below are in state: closed)

382 | Chapter7: Security

Port State Service

22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
37/tcp open time
79/tcp open finger
80/tcp open http
512/tcp open exec
513/tcp open login
514/tcp open shell
515/tcp open printer
4559/tcp open hylafax
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds

This information is quite useful to a system administrator. It reveals that at least one
questionable service is running (the finger service). In addition, this one told me that
I have forgotten to remove the web server from this system (why anyone would think
it is a good idea to enable a web server as part of the operating system installation
process is beyond me).

As this example illustrates, running nmap on your own hosts can be a useful security
diagnostic tools. Be aware that running it on hosts that you do not control is a seri-
ous ethical breach.

R

There are many utilities that watch for and report port-scanning
attempts. I don’t have any recent experience with any of them and so
* Qkir can’t recommend any particular package. However, a web search