
SHELVE IN:
COM

PUTERS/PROGRAM
M

ING

$49.95 ($65.95 CDN)

C R E A T I N G
P O R T A B L E

S O F T W A R E J U S T
G O T E A S I E R

C R E A T I N G
P O R T A B L E

S O F T W A R E J U S T
G O T E A S I E R

The GNU Autotools make it easy to create software that
is portable across many Unix-like operating systems,
even Windows.

Autotools is a tutorial-based guide to the GNU build
system. You’ll begin with an overview of high-level
concepts and a hands-on tour of the philosophy and
design of the Autotools. Next, you will tackle details like
using the M4 macro processor with Autoconf, extending
the Automake framework, and building Java and C#
sources. At the end you’ll find answers to frequently
encountered problems.

This second edition has been updated to cover the latest
versions of the Autotools. Seven new chapters cover
topics like pkg-config, unit and integration testing with
Autotest, internationalizing with GNU tools, the portabil-
ity of gnulib, and using the Autotools with Windows.
You’ll focus on two projects: a simple “Hello, world!”
program, and a complex open source effort containing
four separate but interdependent subprojects.

Along the way, you’ll learn how to:

• Master the Autotools build system to maximize your
software’s portability

• Generate Autoconf configuration scripts to simplify
the compilation process

• Produce portable makefiles with Automake

• Build cross-platform software libraries with Libtool

• Write your own Autoconf macros

Stop fighting against the system and make sense of it all
with the second edition of Autotools!

A B O U T T H E A U T H O R

John Calcote is a senior software engineer at Hammer
space.com, a software company specializing in cloud
data management. He has been writing portable
networking and storage software for over 25 years
and actively develops, debugs, and analyzes diverse
open source software packages.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

A U T O T O O L SA U T O T O O L S
A P R A C T I T I O N E R ’ S G U I D E T O

G N U A U T O C O N F , A U T O M A K E , A N D L I B T O O L

J O H N C A L C O T E

C
A

L
C

O
T

E
A

U
T

O
T

O
O

L
S

A
U

T
O

T
O

O
L

S

2 N D E D I T I O N

2 N D E D I T I O N

AUTOTOOLS

A U T O T O O L S
2 N D E D I T I O N

A P r a c t i t i o n e r ’ s G u i d e t o
G N U A u t o c o n f , A u t o m a k e ,

a n d L i b t o o l

by John Calcote

San Francisco

AUTOTOOLS, 2ND EDITION. Copyright © 2020 by John Calcote.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-972-8
ISBN-13: 978-1-59327-972-1

Publisher: William Pollock
Production Editor: Janelle Ludowise
Cover and Interior Design: Octopod Studios
Developmental Editor: Ellie Bru
Technical Reviewer: Eric Blake
Copyeditor: Barton D. Reed
Compositors: Janelle Ludowise and Danielle Foster
Proofreader: Paula L. Fleming
Indexer: Beth Nauman-Montana

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress has catalogued the first edition as follows:

Calcote, John, 1964-
 Autotools : a practitioner's guide to GNU Autoconf, Automake, and Libtool / by John Calcote.

p. cm.
 ISBN-13: 978-1-59327-206-7 (pbk.)
 ISBN-10: 1-59327-206-5 (pbk.)
1. Autotools (Electronic resource) 2. Cross-platform software development. 3. Open source software.
4. UNIX (Computer file) I. Title.
QA76.76.D47C335 2010
005.3--dc22

2009040784

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

For Michelle

But to see her was to love her;
Love but her, and love forever.

—Robert Burns

About the Author
John Calcote is currently a senior software engineer at Hammerspace.com,
a software company specializing in cloud data management. He’s been
writing portable networking and storage software for over 25 years and
is active in developing, debugging, and analyzing diverse open source
software packages. John is an advocate for the open source movement,
participating in a number of open source communities.

About the Technical Reviewer
Eric Blake has contributed to a variety of open source projects since 2000.
He became maintainer for GNU M4 in 2006, and GNU Autoconf in 2007.
Eric currently works at Red Hat Inc. since 2010, where his primary focus
has been on the qemu and libvirt virtualization software. He is also an active
participant in the Austin Group which maintains the POSIX specification.

https://hammerspace.com

B R I E F C O N T E N T S

Foreword for the First Edition by Ralf Wildenhues . xix

Foreword for the Second Edition by Eric Blake . xxi

Preface . xxiii

Introduction . xxvii

Chapter 1: An End User’s Perspective on the GNU Autotools . 1

Chapter 2: A Brief Introduction to the GNU Autotools . 13

Chapter 3: Understanding the GNU Coding Standards . 35

Chapter 4: Configuring Your Project with Autoconf . 79

Chapter 5: More Fun with Autoconf: Configuring User Options 113

Chapter 6: Automatic Makefiles with Automake . 145

Chapter 7: Building Libraries with Libtool . 179

Chapter 8: Library Interface Versioning and Runtime Dynamic Linking 209

Chapter 9: Unit and Integration Testing with Autotest . 235

Chapter 10: Finding Build Dependencies with pkg-config . 271

Chapter 11: Internationalization . 293

Chapter 12: Localization . 331

Chapter 13: Maximum Portability with Gnulib . 353

Chapter 14: FLAIM: An Autotools Example . 367

Chapter 15: FLAIM Part II: Pushing the Envelope . 407

Chapter 16: Using the M4 Macro Processor with Autoconf . 431

Chapter 17: Using the Autotools with Windows . 451

Chapter 18: A Catalog of Tips and Reusable Solutions for Creating Great Projects . . . 499

Index . 541

C O N T E N T S I N D E T A I L

FOREWORD FOR THE FIRST EDITION by Ralf Wildenhues xix

FOREWORD FOR THE SECOND EDITION by Eric Blake xxi

PREFACE xxiii
Why Use the Autotools? . xxiv
Acknowledgments for the First Edition . xxvi
Acknowledgments for the Second Edition . xxvi
I Wish You the Very Best . xxvi

INTRODUCTION xxvii
Who Should Read This Book . xxviii
How This Book Is Organized . xxviii
Conventions Used in This Book . xxx
Autotools Versions Used in This Book . xxxi

1
AN END USER’S PERSPECTIVE ON THE GNU AUTOTOOLS 1
Software Source Archives . 2
Unpacking a Source Archive . 3
Building the Software . 4
Testing the Build . 7
Installing the Built Software . 9
Summary . 11

2
A BRIEF INTRODUCTION TO THE GNU AUTOTOOLS 13
Who Should Use the Autotools? . 14
When Should You Not Use the Autotools? . 14
Apple Platforms and Mac OS X . 15
The Choice of Language . 16
Generating Your Package Build System . 17
Configuration . 18
Autoconf . 18

autoreconf . 19
autoheader . 20
autoscan . 20
autoupdate . 20
ifnames . 21
autom4te . 21
Working Together . 21

xii Contents in Detail

Automake . 22
automake . 23
aclocal . 23

Libtool . 24
libtool . 25
libtoolize . 25
ltdl, the Libtool C API . 25

Building Your Package . 26
Running configure . 26
Running make . 29

Installing the Most Up-to-Date Autotools . 30
Summary . 33

3
UNDERSTANDING THE GNU CODING STANDARDS 35
Creating a New Project Directory Structure . 36
Project Structure . 37
Makefile Basics . 39

Rules . 39
Variables . 41
A Separate Shell for Each Command . 42
Variable Binding . 43
Rules in Detail . 44
Resources for Makefile Authors . 50

Creating a Source Distribution Archive . 50
Forcing a Rule to Run . 52
Leading Control Characters . 53

Automatically Testing a Distribution . 54
Unit Testing, Anyone? . 55
Installing Products . 56

Installation Choices . 58
Uninstalling a Package . 60
Testing Install and Uninstall . 61

The Filesystem Hierarchy Standard . 63
Supporting Standard Targets and Variables . 64

Standard Targets . 64
Standard Variables . 65
Adding Location Variables to Jupiter . 66

Getting Your Project into a Linux Distro . 67
Build vs . Installation Prefix Overrides . 69
User Variables . 71
Nonrecursive Build Systems . 73
Configuring Your Package . 77
Summary . 78

4
CONFIGURING YOUR PROJECT WITH AUTOCONF 79
Autoconf Configuration Scripts . 80
The Shortest configure .ac File . 82
Comparing M4 to the C Preprocessor . 82

Contents in Detail xiii

The Nature of M4 Macros . 83
Executing autoconf . 84
Executing configure . 85
Executing config .status . 86
Adding Some Real Functionality . 87
Generating Files from Templates . 90
Adding VPATH Build Functionality . 91
Let’s Take a Breather . 94
An Even Quicker Start with autoscan . 95

The Proverbial bootstrap .sh Script . 97
Updating Makefile .in . 99

Initialization and Package Information . 100
AC_PREREQ . 100
AC_INIT . 100
AC_CONFIG_SRCDIR . 101

The Instantiating Macros . 102
Generating Header Files from Templates . 107
Using autoheader to Generate an Include File Template 108

Back to Remote Builds for a Moment . 111
Summary . 112

5
MORE FUN WITH AUTOCONF: CONFIGURING USER OPTIONS 113
Substitutions and Definitions . 114

AC_SUBST . 114
AC_DEFINE . 115

Checking for Compilers . 116
Checking for Other Programs . 117
A Common Problem with Autoconf . 119
Checks for Libraries and Header Files . 123

Is It Right or Just Good Enough? . 126
Printing Messages . 131

Supporting Optional Features and Packages . 132
Coding Up the Feature Option . 134
Formatting Help Strings . 137

Checks for Type and Structure Definitions . 138
The AC_OUTPUT Macro . 141
Summary . 143

6
AUTOMATIC MAKEFILES WITH AUTOMAKE 145
Getting Down to Business . 146

Enabling Automake in configure .ac . 147
A Hidden Benefit: Automatic Dependency Tracking 151

What’s Actually in a Makefile .am File? . 153
Analyzing Our New Build System . 154

Product List Variables . 155
Product Source Variables . 160
PLV and PSV Modifiers . 161

xiv Contents in Detail

Unit Tests: Supporting make check . 162
Reducing Complexity with Convenience Libraries . 164

Product Option Variables . 167
Per-Makefile Option Variables . 169

Building the New Library . 169
What Goes into a Distribution? . 171
Maintainer Mode . 172
Cutting Through the Noise . 173
Nonrecursive Automake . 175
Summary . 177

7
BUILDING LIBRARIES WITH LIBTOOL 179
The Benefits of Shared Libraries . 180
How Shared Libraries Work . 181

Dynamic Linking at Load Time . 181
Using Libtool . 185

Abstracting the Build Process . 185
Abstraction at Runtime . 186

Installing Libtool . 187
Adding Shared Libraries to Jupiter . 188

Using the LTLIBRARIES Primary . 188
Public Include Directories . 189
Customizing Libtool with LT_INIT Options . 192
Reconfigure and Build . 197
So What Is PIC, Anyway? . 200
Fixing the Jupiter PIC Problem . 203

Summary . 207

8
LIBRARY INTERFACE VERSIONING AND
RUNTIME DYNAMIC LINKING 209
System-Specific Versioning . 210

Linux and Solaris Library Versioning . 210
IBM AIX Library Versioning . 212
Microsoft DLL Versioning . 214
HP-UX/AT&T SVR4 Library Versioning . 215

The Libtool Library Versioning Scheme . 216
Library Versioning Is Interface Versioning . 216
When Library Versioning Just Isn’t Enough . 220

Using libltdl . 221
Necessary Infrastructure . 221
Adding a Plug-In Interface . 222
Doing It the Old-Fashioned Way . 223

Converting to Libtool’s ltdl Library . 228
Preloading Multiple Modules . 232
Checking It All Out . 233

Summary . 234

Contents in Detail xv

9
UNIT AND INTEGRATION TESTING WITH AUTOTEST 235
Autotest Overview . 238
Wiring Up Autotest . 241
Adding a Test . 248

Defining Tests with AT_CHECK . 250
Defining Test Groups with AT_SETUP and AT_CLEANUP 251
So What Happened? . 255

Unit Testing vs . Integration Testing . 257
Administrative Details . 261

Distributing Test Files . 261
Checking Installed Products . 262
Cleaning Up . 266

Niceties . 267
A Minimal Approach . 268
Summary . 268

10
FINDING BUILD DEPENDENCIES WITH PKG-CONFIG 271
A pkg-config Overview . 272
Diving In . 274
Writing pkg-config Metadata Files . 276

Informational Fields . 278
Functional Fields . 279

Generating .pc Files with Autoconf . 282
Generating pc Files from pc .in Templates . 282
Generating .pc Files with make . 283

Uninstalled .pc Files . 285
Using pkg-config in configure .ac . 287
pkg-config Autoconf Macros . 290
Summary . 292

11
INTERNATIONALIZATION 293
Obligatory Disclaimer . 294
Internationalization (I18n) . 295

Instrumenting Source Code for Dynamic Messages 296
Instrumenting Source Code for Static Messages . 325

Summary . 329

12
LOCALIZATION 331
Getting Started . 331

Language Selection . 332
Building Message Catalogs . 334

xvi Contents in Detail

Integrating gettext with the Autotools . 339
What Should Be Committed? . 348
Adding a Language . 349
Installing Language Files . 350
Manual make Targets . 351

Summary . 352

13
MAXIMUM PORTABILITY WITH GNULIB 353
License Caveat . 354
Getting Started . 354
Adding Gnulib Modules to a Project . 355
Summary . 365

14
FLAIM: AN AUTOTOOLS EXAMPLE 367
What Is FLAIM? . 368
Why FLAIM? . 368
Logistics . 369
An Initial Look . 370
Getting Started . 372

Adding the configure .ac Files . 372
The Top-Level Makefile .am File . 376

The FLAIM Subprojects . 378
The FLAIM Toolkit configure .ac File . 379
The FLAIM Toolkit Makefile .am File . 388
Designing the ftk/src/Makefile .am File . 391
Moving On to the ftk/util Directory . 393

Designing the XFLAIM Build System . 394
The XFLAIM configure .ac File . 394
Creating the xflaim/src/Makefile .am File . 398
Turning to the xflaim/util Directory . 399

Summary . 405

15
FLAIM PART II:
PUSHING THE ENVELOPE 407
Building Java Sources Using the Autotools . 408

Autotools Java Support . 408
Using ac-archive Macros . 411
Canonical System Information . 412
The xflaim/java Directory Structure . 413
The xflaim/src/Makefile .am File . 414
Building the JNI C++ Sources . 415
The Java Wrapper Classes and JNI Headers . 416
A Caveat About Using the JAVA Primary . 418

Contents in Detail xvii

Building the C# Sources . 418
Manual Installation . 421
Cleaning Up Again . 422

Configuring Compiler Options . 422
Hooking Doxygen into the Build Process . 424
Adding Nonstandard Targets . 426
Summary . 429

16
USING THE M4 MACRO PROCESSOR WITH AUTOCONF 431
M4 Text Processing . 432

Defining Macros . 433
Macros with Arguments . 435

The Recursive Nature of M4 . 436
Infinite Recursion . 438
Quoting Rules . 438

Autoconf and M4 . 439
Writing Autoconf Macros . 441

Simple Text Replacement . 441
Documenting Your Macros . 444
M4 Conditionals . 445

Diagnosing Problems . 449
Summary . 450

17
USING THE AUTOTOOLS WITH WINDOWS 451
Environment Options . 452
Tool Chain Options . 452
Getting Started . 453
Cross-Compiling for Windows on Linux . 454

Installing a Windows Cross Tool Chain . 454
Testing the Build . 455

Windows Subsystem for Linux . 460
Cygwin . 462

Installing Cygwin . 464
Opening the Cygwin Terminal . 470
Testing the Build . 471
Building True Native Windows Software . 474
Analyzing the Software . 476

MinGW: Minimalist GNU for Windows . 477
Installing MinGW . 478
Testing the Build . 485

Msys2 . 487
What’s Msys? . 488
Installing Msys2 . 488
Installing Tools . 493
Testing the Build . 495

Summary . 497

xviii Contents in Detail

18
A CATALOG OF TIPS AND REUSABLE SOLUTIONS
FOR CREATING GREAT PROJECTS 499
Item 1: Keeping Private Details out of Public Interfaces . 499

Solutions in C . 501
Solutions in C++ . 502

Item 2: Implementing Recursive Extension Targets . 505
Item 3: Using a Repository Revision Number in a Package Version 508
Item 4: Ensuring Your Distribution Packages Are Clean . 510
Item 5: Hacking Autoconf Macros . 511

Providing Library-Specific Autoconf Macros . 516
Item 6: Cross-Compiling . 517
Item 7: Emulating Autoconf Text Replacement Techniques . 523
Item 8: Using the Autoconf Archive Project . 528
Item 9: Using Incremental Installation Techniques . 529
Item 10: Using Generated Source Code . 529

Using the BUILT_SOURCES Variable . 529
Dependency Management . 530
Built Sources Done Right . 533

Item 11: Disabling Undesirable Targets . 536
Item 12: Watch Those Tab Characters! . 537
Item 13: Packaging Choices . 539
Wrapping Up . 540

INDEX 541

F O R E W O R D F O R T H E
F I R S T E D I T I O N

When I was asked to do a technical review on a book
about the Autotools, I was rather skeptical. Several
online tutorials and a few books already introduce
readers to the use of GNU Autoconf, Automake, and
Libtool. However, many of these texts are less than
ideal in at least some ways: they were either written
several years ago and are starting to show their age, contain at least some
inaccuracies, or tend to be incomplete for typical beginner’s tasks. On
the other hand, the GNU manuals for these programs are fairly large and
rather technical, and as such, they may present a significant entry barrier to
learning your ways around the Autotools.

John Calcote began this book with an online tutorial that shared at
least some of the problems facing other tutorials. Around that time, he
became a regular contributor to discussions on the Autotools mailing lists,
too. John kept asking more and more questions, and discussions with him
uncovered some bugs in the Autotools sources and documentation, as well
as some issues in his tutorial.

xx Foreword for the First Edition

Since that time, John has reworked the text a lot. The review uncovered
several more issues in both software and book text, a nice mutual benefit.
As a result, this book has become a great introductory text that still aims to
be accurate, up to date with current Autotools, and quite comprehensive in
a way that is easily understood.

Always going by example, John explores the various software layers,
portability issues and standards involved, and features needed for package
build development. If you’re new to the topic, the entry path may just have
become a bit less steep for you.

Ralf Wildenhues
Bonn, Germany
June 2010

F O R E W O R D F O R T H E
S E C O N D E D I T I O N

The GNU Autotools have been around for a long
time. My own introduction to Autoconf was back in
1999, around the same time I began my first foray into
the world of Open Source Software. I had obtained
employment in a research lab using the Java language
to control FPGA hardware, and one of my co-workers
showed me a program he had found, jikes, which compiled our project
nearly 10 times faster than javac from Sun. But it crashed on one corner
case of string concatenation, and I was assigned to figure out why. The
jikes compiler was an Open Source project from IBM written in C++, and I
soon found and fixed the problem, and got the pleasure of seeing my patch
accepted upstream.

What’s more, since jikes used GNU Autoconf to allow building it on mul-
tiple platforms, after I had fixed the initial bug using the Solaris 7 machines
at my work, I was able to experiment with further fixes to jikes at home on
my Microsoft Windows 95 personal machine, using the Cygwin project that
I found on the internet to provide gcc. I did not immediately appreciate the
magnitude of the portability problems that had already been solved to be

xxii Foreword for the Second Edition

able to build software across vastly different systems, because the Autotools
already hid so much of that complexity. But over time, my interests shifted
away from Java and more into cross-platform compatibility, where I started
contributing patches for GNU M4, and later GNU Autoconf, and eventu-
ally reached the point where I took over as the maintainer for both projects.
Although my employment and my active project contributions have changed,
in the meantime, I still find myself using the Autotools on a regular basis.

The point of all this? While the Java programming language is still
around, it looks much different than 20 years ago. Between such changes
as the introduction of generic typing, a change in ownership when Oracle
bought Sun, and my own career taking me down a different path focused
on the C language, I find it hard to compare modern Java projects to the
work I did back then. And the jikes project that I worked on? It is now
obsolete, unmaintained because it never kept up with the changes in the
language, and because the javac compiler itself improved in quality and
speed, where jikes was no longer a strong competition. But in all that time,
the GNU Autotools have still been in active use, as a backbone behind the
many GNU/Linux distributions. Even if most Linux users these days have
never personally interacted with running a configure script, and instead
rely on the distribution to pre-package binaries, they are beneficiaries of
the power of the Autotools in making it easy for the distributions to bundle
so many Open Source products.

John Calcote has taken on the huge task of introducing the power of
the Autotools to a new user. And while I may not necessarily be the target
audience (after all, I am no longer a new user), I definitely learned some
things as I read through this book. The documentation shipped with the
various Autotools tends to feel more like a brain dump, trying to cover
every last feature with no regards to which features will be more useful to
the beginning user, and where it seems like you have to already know what
feature exists before you can search to find out the specifics of that fea-
ture. In contrast, John has done an an excellent job of breaking down the
tasks at hand into a series of logical steps, guiding the reader through a
typical evolutionary project that uses progressively more of the Autotools
along the way, focusing on the most commonly-used aspects, and provid-
ing good explanations as to why each newly-introduced feature is worth
using. I hope that you learn enough of the Autotools from reading this
book to feel comfortable using them with your project. Whether or not
you feel like an Autotools expert, this book is a success if it allows your
end user to run ./configure && make without any further thought as to the
portability problems solved by the Autotools on their behalf.

Eric Blake
GNU Autoconf Maintainer

P R E F A C E

I’ve often wondered during the last ten years how it
could be that the only third-party book on the GNU
Autotools that I’ve been able to discover is GNU
AUTOCONF, AUTOMAKE, and LIBTOOL by Gary
Vaughan, Ben Elliston, Tom Tromey, and Ian Lance
Taylor, affectionately known by the community as
The Goat Book (so dubbed for the front cover—an old-
fashioned photo of goats doing acrobatic stunts).1

I’ve been told by publishers that there is simply no market for such a
book. In fact, one editor told me that he himself had tried unsuccessfully
to entice authors to write this book a few years ago. His authors wouldn’t
finish the project, and the publisher’s market analysis indicated that there
was very little interest in the book. Publishers believe that open source soft-
ware developers tend to disdain written documentation. Perhaps they’re

1. Vaughan, Elliston, Tromey, and Taylor, GNU Autoconf, Automake, and Libtool (Indianapolis:
Sams Publishing, 2000).

xxiv Preface

right. Interestingly, books on IT utilities like Perl sell like Perl’s going out
of style—which is actually somewhat true these days—and yet people are
still buying enough Perl books to keep their publishers happy. All of this
explains why there are ten books on the shelf with animal pictures on the
cover for Perl, but literally nothing for open source software developers.

I’ve worked in software development for 25 years, and I’ve used open
source software for quite some time now. I’ve learned a lot about open source
software maintenance and development, and most of what I’ve learned,
unfortunately, has been by trial and error. Existing GNU documentation
is more often reference material than solution-oriented instruction. Had
there been other books on the topic, I would have snatched them all up
immediately.

What we need is a cookbook-style approach with the recipes covering
real problems found in real projects. First the basics are covered, sauces
and reductions, followed by various cooking techniques. Finally, master
recipes are presented for culinary wonders. As each recipe is mastered, the
reader makes small intuitive leaps—I call them minor epiphanies. Put enough
of these under your belt and overall mastery of the Autotools is ultimately
inevitable.

Let me give you an analogy. I’d been away from math classes for about
three years when I took my first college calculus course. I struggled the
entire semester with little progress. I understood the theory, but I had
trouble with the homework. I just didn’t have the background I needed.
So the next semester, I took college algebra and trigonometry back to
back as half-semester classes. At the end of that semester, I tried calculus
again. This time I did very well—finishing the class with a solid A grade.
What was missing the first time? Just basic math skills. You’d think it
wouldn’t have made that much difference, but it really does.

The same concept applies to learning to properly use the Autotools.
You need a solid understanding of the tools upon which the Autotools are
built in order to become proficient with the Autotools themselves.

Why Use the Autotools?
In the early 1990s, I was working on the final stages of my bachelor’s degree
in computer science at Brigham Young University. I took an advanced com-
puter graphics class where I was introduced to C++ and the object-oriented
programming paradigm. For the next couple of years, I had a love-hate rela-
tionship with C++. I was a pretty good C coder by that time, and I thought I
could easily pick up C++, as close in syntax as it was to C. How wrong I was!
I fought with the C++ compiler more often than I’d care to recall.

The problem was that the most fundamental differences between C and
C++ are not obvious to the casual observer, because they’re buried deep
within the C++ language specification rather than on the surface in the
language syntax. The C++ compiler generates an amazing amount of code
beneath the covers, providing functionality in a few lines of C++ code that
require dozens of lines of C code.

Preface xxv

Just as programmers then complained of their troubles with C++, so
likewise programmers today complain about similar difficulties with the
GNU Autotools. The differences between make and Automake are very
similar to the differences between C and C++. The most basic single-line
Makefile.am generates a Makefile.in (an Autoconf template) containing
300–400 lines of parameterized make script, and it tends to increase with
each revision of the tool as more features are added.

Thus, when you use the Autotools, you have to understand the under-
lying infrastructure managed by these tools. You need to take the time to
understand the open source software distribution, build, test, and instal-
lation philosophies embodied by—in many cases even enforced by—these
tools, or you’ll find yourself fighting against the system. Finally, you need
to learn to agree with these basic philosophies because you’ll only become
frustrated if you try to make the Autotools operate outside of the boundar-
ies set by their designers.

Source-level distribution relegates to the end user a particular portion
of the responsibility of software development that has traditionally been
assumed by the software developer—namely, building products from source
code. But end users are often not developers, so most of them won’t know
how to properly build the package. The solution to this problem, from the
earliest days of the open source movement, has been to make the package
build and installation processes as simple as possible for the end user so
that he could perform a few well-understood steps to have the package built
and installed cleanly on his system.

Most packages are built using the make utility. It’s very easy to type make, but
that’s not the problem. The problem crops up when the package doesn’t build
successfully because of some unanticipated difference between the user’s
system and the developer’s system. Thus was born the ubiquitous configure
script—initially a simple shell script that configured the end user’s environ-
ment so that make could successfully find the required external resources on
the user’s system. Hand-coded configuration scripts helped, but they weren’t
the final answer. They fixed about 65 percent of the problems resulting from
system configuration differences—and they were a pain in the neck to write
properly and to maintain. Dozens of changes were made incrementally over
a period of years, until the script worked properly on most of the systems any-
one cared about. But the entire process was clearly in need of an upgrade.

Do you have any idea of the number of build-breaking differences there
are between existing systems today? Neither do I, but there are a handful
of developers in the world who know a large percentage of these differ-
ences. Between them and the open source software community, the GNU
Autotools were born. The Autotools were designed to create configuration
scripts and makefiles that work correctly and provide significant chunks
of valuable end-user functionality under most circumstances, and on most
systems—even on systems not initially considered (or even conceived of) by
the package maintainer.

With this in mind, the primary purpose of the Autotools is not to make
life simpler for the package maintainer (although it really does in the long
run). The primary purpose of the Autotools is to make life simpler for the end user.

xxvi Preface

Acknowledgments for the First Edition
I could not have written a technical book like this without the help of a lot
of wonderful people. I would like to thank Bill Pollock and the editors and
staff at No Starch Press for their patience with a first-time author. They
made the process interesting and fun.

Additionally, I’d like to thank the authors and maintainers of the GNU
Autotools. Specifically, Ralf Wildenhues, who believed in this project enough
to spend hundreds of hours of his personal time in technical review. His
comments and insight were invaluable in taking this book from mere wish-
ful thinking to an accurate and useful text.

I would also like to thank my friend Cary Petterborg for encouraging me
to “ just go ahead and do it,” when I thought it would probably never happen.

Finally, I’d like to thank my wife Michelle and my children; Ethan,
Mason, Robby, Haley, Joey, Nick, and Alex for allowing me to spend all of
that time away from them while I worked on the book. A novel would have
been easier (and more lucrative), but the world has plenty of novels and not
enough books about the Autotools.

Acknowledgments for the Second Edition
I would like to thank my technical reviewer, Eric Blake, whose insights and
comments lead to a much better work than I’d originally envisioned. He’s
been an institution on the Autotools mailing lists; I was extremely lucky to
have his editorial contributions.

I would also like to thank Tony Mobily, editor and chief of Free Software
Magazine. Tony gave me my first chance at publishing this material. Without
his guidance and direction, I’d never have taken this project to paper format.
I should have made this acknowledgment in the first edition of this book but,
much to my own embarrassment, it was omitted.

I Wish You the Very Best
I spent a long time and a lot of effort learning what I now know about the
Autotools. Most of this learning process was more painful than it really had
to be. I’ve written this book so that you won’t have to struggle to learn what
should be a core set of tools for the open source programmer. Please feel free
to contact me, and let me know your experiences with learning the Autotools.
I can be reached at my personal email address at john.calcote@gmail.com. Good
luck in your quest for a better software development experience!

John Calcote
Elk Ridge, Utah
September 2019

I N T R O D U C T I O N

Few open source software developers would
deny that GNU Autoconf, Automake, and

Libtool (the Autotools) have revolutionized the
open source software world. However, although

there are many thousands of Autotools advocates,
there are also many software developers who hate the
Autotools—with a passion. I believe the reason for
this dread of the Autotools is that when you use them without understand-
ing the underlying infrastructure they manage, you find yourself fighting
against the system.

This book solves this problem by first providing a framework for under-
standing the underlying infrastructure of the Autotools and then building
on that framework with a tutorial-based approach to teaching Autotools
concepts in a logically ordered fashion.

xxviii Introduction

Who Should Read This Book
This book is primarily for the open source software package maintainer
who wants to become an Autotools expert. That said, this book also pro-
vides instructions to end users who wish to understand what’s happening
during the process of downloading, unpacking, and building software pack-
ages whose build processes are managed by the Autotools. Existing material
on the subject is limited to the GNU Autotools manuals and a few internet-
based tutorials. For years, most real-world questions have been answered
on the Autotools mailing lists, but mailing lists are an inefficient form of
teaching because the same answers to the same questions are given time
and again. This book provides a cookbook-style approach, covering real
problems found in real projects.

How This Book Is Organized
The book starts with an end-user perspective on the Autotools and then
moves from high-level development build concepts to mid-level use
cases and examples, finally finishing with more advanced details and
examples. As though you were learning arithmetic, we’ll begin with some
basic math—algebra and trigonometry—and then move on to analytic
geometry and calculus.

Chapter 1 provides an end-user perspective on the Autotools. It cov-
ers topics that a Linux power user, who is not necessarily a software devel-
oper, needs to understand in order to take full advantage of the features
of Autotools-managed source packages (so-called “tarballs”) downloaded
from project websites containing perhaps the latest beta version of some
software the user would like to try out. Often, Linux users find that the
solution to a software problem involves updating to a version that contains
the fix for that problem, only to discover that the version they need is so
new there is no RPM or Debian package for that version in any of the pack-
age repositories for their Linux distribution of choice. Chapter 1 provides
relief to the newbie who needs to know what to do with that tar.gz file con-
taining that configure script and all those .c source files.

Chapter 2 begins the discussion of concepts of interest to software devel-
opers. It presents a general overview of the packages considered part of the
GNU Autotools. This chapter describes the interaction between these pack-
ages and the files consumed by and generated by each one. In each case, fig-
ures depict the flow of data from hand-coded input to final output files.

Chapter 3 covers open source software project structure and organiza-
tion. This chapter also goes into some detail about the GNU Coding Standards
(GCS) and the Filesystem Hierarchy Standard (FHS), both of which have played
vital roles in the design of the GNU Autotools. This chapter presents some
fundamental tenets upon which the design of each of the Autotools is based.
With these concepts, you’ll better understand the theory behind the architec-
tural decisions made by the Autotools designers.

In this chapter, we’ll also design a simple project, Jupiter, from start
to finish using hand-coded makefiles. We’ll add to Jupiter in a stepwise

Introduction xxix

fashion as we discover functionality that we can use to simplify tasks and to
provide features that open source software users have come to expect.

Chapters 4 and 5 present the framework designed by the GNU Autoconf
engineers to ease the burden of creating and maintaining portable, func-
tional project configuration scripts. The GNU Autoconf package provides the
basis for creating complex configuration scripts with just a few lines of infor-
mation provided by the project maintainer.

In these chapters, we’ll quickly convert our hand-coded makefiles into
Autoconf Makefile.in templates and then begin adding to them in order to
gain some of the most significant Autoconf benefits. Chapter 4 discusses
the basics of generating configuration scripts, while Chapter 5 moves on to
more advanced Autoconf topics, features, and uses.

Chapter 6 begins by converting the Jupiter project Makefile.in templates
into Automake Makefile.am files. Here, you’ll discover that Automake is to
makefiles what Autoconf is to configuration scripts. This chapter presents
the major features of Automake in a manner that will not become outdated
as new versions of Automake are released.

Chapters 7 and 8 explain the basic concepts behind shared librar-
ies and show how to build shared libraries with Libtool—a standalone
abstraction for shared-library functionality that can be used with the other
Autotools. Chapter 7 begins with a shared-library primer and then covers
some basic Libtool extensions that allow Libtool to be a drop-in replace-
ment for the more basic library generation functionality provided by
Automake. Chapter 8 covers library versioning and the runtime dynamic
module management abstraction provided by Libtool.

Chapter 9 presents a relatively new addition to the Autotools—autotest.
The autotest functionality in Autoconf allows you to easily create and manage
integration test execution frameworks for your projects. In previous chapters,
we will have covered unit testing in individual makefiles. Autotest provides a
mechanism for adding more global testing that depends on multiple compo-
nents in your project. Honestly, autotest can be used to do about any sort of
testing you want. We’ll focus on adding autotest suites that ensure your proj-
ect works the way you believe it should—automatically.

Chapter 10 discusses the concepts of finding compile- and link-time
dependencies and adding the appropriate references to build tool com-
mand lines. Specifically, this chapter introduces pkg-config, which has
become a de facto standard in Linux software development, providing the
framework for easily finding and consuming components that your pack-
age depends on. This chapter shows you how to both consume pkg-config
.pc files to find your dependencies and how to play nicely in the sandbox by
providing .pc files for your projects.

Chapters 11 and 12 discuss internationalization (abbreviated i18n)
and localization (l10n), respectively—the ability to easily manage text
strings and other locale-specific attributes (such as references to numbers,
money, and dates) within your project that should be different for local-
ized releases of your project.

Chapter 13 talks about obtaining maximum portability in your projects
by using Gnulib.

xxx Introduction

Chapters 14 and 15 illustrate the transformation of an existing, fairly
complex open source project (FLAIM) from using a hand-built build system
to using an Autotools build system. This example will help you to understand
how you might autoconfiscate one of your own existing projects.

Chapter 16 provides an overview of the features of the M4 macro proces-
sor that are relevant to obtaining a solid understanding of Autoconf. This
chapter also considers the process of writing your own Autoconf macros.

Chapter 17 discusses using the Autotools to build software designed to
run on Microsoft Windows platforms. I’ll show you how to cross compile
on Linux for Windows, and how to install and use the three most popular
Windows-based POSIX platforms—Cygwin, Msys2, and MinGW—to build
Windows software using GNU tools, including the Autotools.

Microsoft has a great set of free tools for building Windows software,
but if your package is already working on Linux and being built with POSIX
build tools, using the Autotools to build for Windows can be a great way to
get you up and running there fast. From there, you can decide whether what
you have is good enough for your project or if you need to provide a native
build environment for Windows.

Chapter 18 is a compilation of tips, tricks, and reusable solutions to
Autotools problems. The solutions in this chapter are presented as a set of
individual topics or items. Each can be understood without context from
the surrounding items.

Chapters 3 through 9 are built around the Jupiter project. Chapters 14
and 15 cover the FLAIM project. Chapters 11 and 12 cover the gettext proj-
ect and Chapter 13 covers the b64 project. These projects are found on the
GitHub NSP-Autotools site at https://github.com/NSP-Autotools.

Except for the FLAIM project, each of these repositories are tagged at
commits representing topic transitions. The tags are called out within the
margins of the chapters pertaining to these projects. You can easily follow
along by checking out the tagged commit in the repository when you see
one in the book.

Conventions Used in This Book
This book contains hundreds of program listings in roughly two categories:
console examples and file listings. Console examples have no captions, and
user input is bolded.

Often, I’ll use the Linux ls command with various options to show the
contents of a directory before or after changes are made. Different Linux
distributions often ship with an alias for ls enabled by default. I’m using
Linux Mint 18 with the Cinnamon desktop to write this book; my pre-
defined alias for ls is:

$ alias
--snip--
alias ls='ls --color=auto'
$

https://github.com/NSP-Autotools

Introduction xxxi

You may find you have an ls alias on your system that provides a dif-
ferent default set of functionality that will defeat your attempts to exactly
duplicate my console examples. Just be aware of the reasons for these
possible differences.

File listings contain full or partial listings of the files discussed in the
text. All named listings are provided in the associated git repositories. I’ve
tried to provide enough context around modified portions of partial list-
ings so that you can easily see where lines are added or changed. However,
there are a few listings where lines are deleted. In these cases, I’ve called
out the deleted lines in the text near the listing.

Listings without filenames are entirely contained in the printed listing
itself, are meant to be considered independently without context, and are
not part of the provided source repositories. In general, text that remains
the same as a previously listed version of the file will be grayed out, whereas
modified areas will be in black text.

For listings that do relate to the Jupiter and FLAIM projects, the caption
first specifies the path of the file relative to the project root directory and
then provides a description of the changes made to that file in the listing.

Throughout this book, I refer to the GNU/Linux operating system
simply as Linux. It should be understood that by the use of the term Linux,
I’m referring to GNU/Linux, its actual official name. I use Linux simply as
shorthand for the official name.

Autotools Versions Used in This Book
The Autotools are always being updated—on average, a significant update of
each of the three most important tools, Autoconf, Automake, and Libtool, is
released every year and a half, and minor updates are released every three to
six months. The Autotools developers attempt to maintain a reasonable level
of backward compatibility with each new release, but occasionally something
significant is broken, and older documentation simply becomes out-of-date.
More recently, the Autotools have been considered mature and complete;
release cycles have slowed and major changes seldom happen anymore. This
is good for the community and for you, the reader, as it means that the mate-
rial you find in this book will remain relevant for a long time to come.

Although I describe new, major features of recent releases of the
Autotools, in my efforts to make this book more evergreen, I’ve tried to stick
to descriptions of Autotools features (Autoconf macros, for instance) that
have been in widespread use for several years. Minor details change occasion-
ally, but the general use has stayed the same through many releases.

At appropriate places in the text, I mention the versions of the Autotools
I used for this book, but I’ll summarize here. I used version 2.69 of Autoconf,
version 1.15 of Automake (the latest version as of this writing is actually
1.16.1), and version 2.4.6 of Libtool. Through the publication process, I
was able to make minor corrections and update to new releases as they
became available.

xxxii Introduction

Additionally, I used version 0.19.7 of GNU gettext (the latest is 0.20.1)
and version 0.29.1 of pkg-config (the latest is 0.29.2). The GNU portability
library, Gnulib, is not distributed as a package but rather as a set of code
snippets that are downloaded directly from the GNU website (https://www
.gnu.org/software/gnulib/).

https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/

1
A N E N D U S E R ’ S P E R S P E C T I V E

O N T H E G N U A U T O T O O L S

If you’re not a software developer, either
by trade or by hobby, you may still have a

need or desire at some point to build open
source software to be installed on your com-

puter. Perhaps you’re a graphic artist who wishes to
use the latest version of GIMP, or maybe you’re a
video enthusiast and you need to build a late version
of FFmpeg. This chapter, therefore, may be the only one you read in this
book. I hope that is not the case, because even a power user can gain
so much more by striving to understand what goes on under the covers.
Nevertheless, this chapter is designed for you. Here, I’ll discuss what to
do with that so-called tarball you downloaded from that project website.
I’ll use the Autoconf package to illustrate, and I’ll try to provide enough

I am not afraid of storms, for I am
learning how to sail my ship.

—Louisa May Alcott, Little Women

2 Chapter 1

context so that you can follow the same process for any package you down-
load1 from a project website.

If you are a software developer, there’s a good chance the material in
this chapter is too basic for you; therefore, I’d recommend skipping right to
the next chapter, where we’ll jump into a more developer-centric discussion
of the Autotools.

Software Source Archives
Open source software is distributed as single-file source archives containing
the source and build files necessary to build the software on your system.
Linux distributions remove much of the pain for end users by prebuilding
these source archives and packaging the built binaries into installation
packages ending in extensions like .rpm (for Red Hat–based systems) and
.deb (for Debian/Ubuntu-based systems). Installing software using your
system package manager is relatively easy, but sometimes you need the lat-
est feature set of some software and it hasn’t yet been packaged for your
particular flavor of Linux. When this happens, you need to download the
source archive from the project website’s download page and then build
and install it yourself. Let’s begin by downloading version 2.69 of the
Autoconf package:

$ wget https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz

Source archive names generally follow a de facto standard format sup-
ported by the Autotools. Unless the project maintainer has gone out of
their way to modify this format, the Autotools will automatically generate
a source archive file named according to the following template: pkgname
-version.format. Here, pkgname is the short name of the software, version is
the version of the software, and format represents the archive format, or file
extensions. The format portion may contain more than one period, depend-
ing on the way the archive was built. For instance, .tar.gz represents two
encodings in the format—a tar archive that has been compressed with the
gzip utility, as is the case with the Autoconf source archive:

$ ls -1
autoconf-2.69.tar.gz
automake-1.16.1.tar.gz
gettext-0.19.8.1.tar.gz
libtool-2.4.6.tar.gz
pkg-config-0.29.2.tar.gz
$

1. It’s important to distinguish the difference between a distribution archive—often found
on the project website’s download page—and a GitHub tarball downloaded from the green
“Clone or download” button on a GitHub project page. In fact, any online source repository
presenting a download button on the source browsing page is likely to send you an archive
containing the raw contents of the repository, rather than a distribution archive designed
to be unpacked and built by users.

An End User’s Perspective on the GNU Autotools 3

Unpacking a Source Archive
By convention, source archives contain a single root directory as the top-
level entry. You should feel safe unpacking a source archive to find only
a single new directory in the current directory, named the same as the
archive file minus the format portion. Source archives packaged using
Autotools-based build systems never unpack the contents of the original
top-level directory into the current directory.

Nevertheless, occasionally, you’ll download an archive and unpack it to
find dozens of new files in the current directory. It’s therefore prudent to
unpack a source archive of unknown origin into a new, empty subdirectory.
You can always move it up a level if you need to. Additionally, you can see
what will happen by using the tar utility’s t option (instead of x), which
lists the contents of the archive without unpacking it. The unzip utility
supports the -l option to the same effect.

Source archives can take many shapes, each ending in a unique file
extension: .zip, .tar, .tar.gz (or .tgz), .tar.bz2, .tar.xz, tar.Z, and so on. The files
contained in these source archives are the source code and build files used
to build the software. The most common of these formats are .zip, .tar.gz (or
.tgz), and .tar.bz2. Newer formats that are gaining in popularity include .xz
(for which the latest Autotools even have native support) and .zstd.

ZIP files use compression techniques developed decades ago by Phil
Katz on Microsoft DOS systems. ZIP was a proprietary multifile compressed
archive format that was eventually released into the public domain. Since
then, versions have been written for Microsoft Windows and Linux as well
as other Unix-like operating systems. In later versions of Windows, a user
can unpack a .zip file merely by right-clicking it in Windows Explorer and
selecting an Extract menu option. The same is true of the Nautilus (Nemo
on Mint’s Cinnamon desktop) file browser on Linux Gnome desktops.

ZIP files can be unpacked at the Linux command line using the more
or less ubiquitous unzip program,2 like so:

$ unzip some-package.zip

ZIP files are most often intended by project maintainers to be used on
Microsoft Windows systems. A much more common format used on Linux
platforms is the compressed .tar file. The name tar comes from tape archive.
The tar utility was originally designed to stream the contents of online stor-
age media, such as hard disk drives, to more archival storage formats, such
as magnetic tape. Because it’s not a random-access format, magnetic tape
doesn’t have a hierarchical filesystem. Rather, data is written to tape in one
long string of bits, with these archive files appended end to end. To find

2. Reading the man page, you might get the impression that the gunzip utility can handle .zip
files as well as .gz files, but this feature is intended only to convert .tar.zip files into .tar.gz files.
Essentially, the gunzip utility cannot understand compressed archives that contain more than
one file. If you do have a .tar.zip file, you can uncompress it to a .tar file using a command like
gunzip < file.tar.zip. It doesn’t recognize the .zip extension, so piping it from stdin is the only
way to get it to work.

4 Chapter 1

a particular file on tape, you have to read from the beginning of the tape
through to the file you’re interested in. Hence, it’s better to store fewer files
on tape to reduce search time.

The tar utility was designed to convert a set of files in a hierarchical
filesystem into just such a long string of bits—an archive. The tar utility
was specifically not designed to compress this data in a manner that would
reduce the amount of space it takes up, as there are other utilities to do that
sort of thing—remember, a founding principle of Unix is that of a single
responsibility per tool. In fact, a .tar file is usually slightly larger than the
sum of the sizes of the files it contains because of the overhead of storing
the hierarchy, names, and attributes of the archived files.

Occasionally, you’ll find a source archive that ends only in a .tar exten-
sion. This implies that the file is an uncompressed .tar archive. More often,
however, you’ll see extensions such as .tar.gz, .tgz, and .tar.bz2. These are
compressed .tar archives. An archive is created from the contents of a direc-
tory tree using the tar utility, and then the archive is compressed using the
gzip or bzip2 utility. A file with an extension of .tar.gz or .tgz is a .tar archive
that has been compressed with the gzip utility. Technically, you can extract
the contents of a .tar.gz file by using a pipeline of commands to first uncom-
press the .gz file with gunzip and then unpack the remaining .tar file with
tar, in the following manner:

$ gunzip -c autoconf-2.69.tar.gz | tar xf -

However, the tar utility has evolved since it was used for creating tape
data streams. Nowadays, it’s used as a general-purpose archive file man-
agement tool. It understands, based on file extensions and sometimes the
initial bytes of an archive, how to execute the correct tools to uncompress a
compressed .tar archive before unpacking the files. For example, the follow-
ing command recognizes autoconf-2.69.tar.gz as a .tar archive that was subse-
quently compressed with the gzip utility:

$ tar xf autoconf-2.69.tar.gz

This command first executes the gunzip program (or the gzip program
with the -d option) to uncompress the archive, and then it uses internal
algorithms to convert the archive into its original multifile directory struc-
ture, complete with original timestamps and file attributes.

Building the Software
Once you’ve unpacked the source archive, the next step usually involves
examining the contents of the unpacked directory tree in an effort to deter-
mine how the software should be built and installed. A few patterns have
become pervasive in the open source world, and GNU and the Autotools
try to promote the use of these patterns as the default behavior of an
Autotools-based project.

An End User’s Perspective on the GNU Autotools 5

First, look for a file named INSTALL in the root directory of the
unpacked archive. This file usually contains step-by-step instructions for
how to build and install the software, or it tells you how to find those
instructions—perhaps via a URL reference to a project web page.

The INSTALL file for GNU packages such as Autoconf is pretty ver-
bose. The GNU project tends to try to set an example for the rest of the
open source world. Nevertheless, it does carefully outline the steps required
to build the Autoconf package. I’d recommend reading a GNU project
INSTALL file completely at least once, because it contains details about
how most GNU projects are built and installed. In fact, the one bundled
with the Autoconf package is actually a generic one that GNU bundles with
many of its packages—which in itself is a testament to the consistency of
Autotools-generated build systems. Let’s dive in and see what it tells us about
building Autoconf:

$ tar xf autoconf-2.69.tar.gz
$ cd autoconf-2.69
$ more INSTALL
--snip--

The instructions indicate that you should use the cd command to
change to the directory containing the project’s source code and then
type ./configure to configure the package for your system. However, it
should be clear that if you’re reading the INSTALL file, you’re probably
already in the directory containing configure.

Running configure can take a while if the package is large and complex.
For the Autoconf package, it takes only a couple of seconds and spews a sin-
gle page of text to the screen in the process. Let’s take a closer look at what
gets displayed during a successful Autoconf configuration process:

$./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
--snip--
configure: creating ./config.status
config.status: creating tests/Makefile
--snip--
config.status: creating bin/Makefile
config.status: executing tests/atconfig commands
$

There are basically two parts to configure’s output. The first part con-
tains lines that start with checking (though there are a few in the middle that
start with configure:). These lines indicate the status of the features that
configure was programmed to look for. If a feature is not found, the trailing
text will be no. On the other hand, if the feature is found, the trailing text
will sometimes be yes but will often be the filesystem location of the tool or
feature that was discovered.

6 Chapter 1

It’s not uncommon for configure to fail due to missing tools or utilities,
especially if this is a newly installed system or if you haven’t downloaded
and built a lot of software on this system. A new user will often start posting
questions to online forums at this point—or just give up.

It’s important to understand the contents of this section because it can
help you figure out how to solve problems. Addressing a failure is often as
simple as installing a compiler using your system’s package manager. For
the Autoconf package, not much is required that isn’t installed by default
on most Linux systems. There are a few exceptions, however. For example,
here’s the output of configure on a system that doesn’t have M4 installed:

$./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
--snip--
checking for GNU M4 that supports accurate traces... configure: error: no
 acceptable m4 could be found in $PATH.
GNU M4 1.4.6 or later is required; 1.4.16 or newer is recommended.
GNU M4 1.4.15 uses a buggy replacement strstr on some systems.
Glibc 2.9 - 2.12 and GNU M4 1.4.11 - 1.4.15 have another strstr bug.
$

Here, you’ll notice the last few lines show an error. The Autoconf
package is a GNU software tool, and, true to form, it provides a lot of
information to help you figure out what’s wrong. You need to install an
M4 macro processor, and we’ll do that with our package manager. My
system is a Linux Mint system, based on Ubuntu, so I’ll use the apt utility.
If you’re using a Red Hat–based system, you may use yum to accomplish the
same thing or just use the graphical user interface (GUI) for your system
package manager from the GUI desktop. The key here is that we’re install-
ing the m4 package:

$ sudo apt install m4

Now configure can complete successfully:

$./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
--snip--

 configure: creating ./config.status
config.status: creating tests/Makefile
config.status: creating tests/atlocal
--snip--
config.status: creating bin/Makefile
config.status: executing tests/atconfig commands
$

An End User’s Perspective on the GNU Autotools 7

The second section is a set of lines beginning with config.status:. This
section starts with the line configure: creating ./config.status, at . The
last thing configure does is create another script called config.status and then
execute this script. The lines that start with config.status: are actually dis-
played by config.status. The primary task of config.status is to generate the
build system based on the findings of configure. The lines output by this
script merely tell you the names of the files being generated.

You can also run configure from a different directory, if you wish, by
using a relative path to the configure command. This is useful if, for exam-
ple, the project source code comes to you on a CD or via a read-only NFS
mount. You could, at this point, create a build directory in your home direc-
tory and, using a relative or absolute path, execute configure from the read-
only source directory. The configure script will create the entire build tree
for the project in the current directory, including makefiles and any other
files needed to build the project with make.

Once configure has completed, it’s possible to run make. Before this point,
there are no files in the directory tree named Makefile. Running make after
configure yields the following:

$ make
make all-recursive
make[1]: Entering directory '/.../autotools/autoconf-2.69'
Making all in bin
make[2]: Entering directory '/.../autotools/autoconf-2.69/bin'
--snip--
make[2]: Leaving directory '/.../autotools/autoconf-2.69/man'
make[1]: Leaving directory '/.../autotools/autoconf-2.69'
$

The primary task of configure is to ensure that make will succeed, so it’s
not likely that make will fail. If it does, the problem will probably be very spe-
cific to your system, so I can’t provide any guidelines here except to suggest
a careful reading of the make output in order to determine what caused the
failure. If you can’t discover the problem by reading the output, you can
check the Autoconf mailing list archives, ask on the mailing list directly,
and finally post a bug report to the Autoconf project website.

Testing the Build
Once we’ve built the software using make, it would be nice to exercise any
tests the project maintainers might have added to the build system to pro-
vide some level of assurance that the software will run correctly on our
system.

When we built the software, we ran make without any command line
arguments. This caused make to assume we wanted to build the default target,
which by convention is the all target. Therefore, running make all is the
same as running make without any arguments. However, Autotools build sys-
tems have many targets that can be directly specified on the make command
line. The one we’re interested in at this point is the check target.

8 Chapter 1

Running make check within the source directory will build and execute
any test programs that were included by the project maintainers (this takes
several minutes to complete for Autoconf):

$ make check
if test -d ./.git; then \
 cd . && \
 git submodule --quiet foreach test '$(git rev-parse $sha1)' \
 = '$(git merge-base origin $sha1)' \
 || { echo 'maint.mk: found non-public submodule commit' >&2; \
 exit 1; }; \
else \
 : ; \
fi
make check-recursive
make[1]: Entering directory '/home/jcalcote/Downloads/autotools/autoconf-2.69'
Making check in bin
--snip--
/bin/bash ./testsuite

GNU Autoconf 2.69 test suite.

Executables (autoheader, autoupdate...).
 1: Syntax of the shell scripts skipped (tools.at:48)
 2: Syntax of the Perl scripts ok
--snip--
501: Libtool FAILED (foreign.at:61)
502: shtool ok
Autoscan.
503: autoscan FAILED (autoscan.at:44)

Test results.

ERROR: 460 tests were run,
6 failed (4 expected failures).
43 tests were skipped.

testsuite.log was created.

Please send `tests/testsuite.log' and all information you think might help:
 To: <bug-autoconf@gnu.org>
 Subject: [GNU Autoconf 2.69] testsuite: 501 503 failed
You may investigate any problem if you feel able to do so, in which
case the test suite provides a good starting point. Its output may
be found below `tests/testsuite.dir'.
--snip--
make: *** [check] Error 2
$

N O T E Your output may differ slightly in minor ways from mine. Different Linux distribu-
tions and tool versions display differently, so don’t be too concerned about minor dif-
ferences. The number of tests skipped or failed may also differ from system to system
due to differences in the tools installed.

An End User’s Perspective on the GNU Autotools 9

As you can see, the Autoconf package provides 503 tests; 460 of those
were run and 43 were purposely skipped. Of the 460 tests that were exe-
cuted, six failed, but four of those were expected failures, so we have only
two problems: test 501 and test 503.

With only two failures out of 460, I’d personally call this a whopping
success, but if you would like to dig a little deeper to see what’s causing
these problems, there are two approaches you can take. The first is to go
to the Autoconf mailing list archives and either search for a similar ques-
tion with answers or ask the list directly; notice the request in the preced-
ing output to send the tests/testsuite.log file to bug-autoconf@gnu.org.

The other option requires a bit more programming skill. These tests are
run by Autoconf’s autotest framework, which automatically creates a direc-
tory for each failed test under tests/testsuite.dir. Each directory found under
testsuite.dir is named after the number of the failed test. If you look there,
you’ll see six directories, including directories for the four expected failures.
Each of these numbered directories contains a run script that will re-execute
the failed test, displaying output to stdout rather than to a log file. This allows
you to experiment with your system (perhaps by installing a different version
of Libtool for test 501, for example) and then try running the test again.

There is also the possibility, however slight, that the project maintain-
ers are aware of these test failures. In this case, they would likely respond to
your email with a comment to this effect (or a quick search of the archives
may also turn up the same answer), at which point you can simply ignore the
failed tests.

Installing the Built Software
Running make usually leaves built software products—executables, libraries,
and data files—scattered throughout the build directory tree. Take heart,
you’re almost there. The final step is installing the built software onto your
system so you can use it. Thankfully, most build systems, including those
managed by the Autotools, provide a mechanism for installing built software.

A complex build system is only useful to non-experts if it assumes a
lot of basic defaults; otherwise, the poor user would be required to specify
dozens of command line options for even the simplest build. The location
of software installation is one such assumption; by default, the build system
assumes you want to install built software into the /usr/local directory tree.

The /usr/local directory tree mirrors the /usr directory tree; it’s the
standard location for software that is built locally. The /usr directory tree,
on the other hand, is where Linux distribution packages get installed. For
instance, if you installed the Autoconf package using the command sudo
apt-get install autoconf (or sudo yum install autoconf), the package binaries
would be installed into the /usr/bin directory. When you install your hand-
built Autoconf binaries, they’ll go into /usr/local/bin, by default.

It’s most often the case that /usr/local/bin is positioned in your PATH
environment variable before /usr/bin. This allows your locally built and
installed programs to override the ones installed by your distribution’s
package manager.

10 Chapter 1

If you wish to override this default behavior and install your software
into a different location, you can use the --prefix option on configure’s
command line,3 as shown here:

$./configure --prefix=$HOME

This will cause configure to generate the build scripts such that execut-
able binaries will be installed into your $HOME/bin directory.4 If you don’t
have root access on your system, this is a good compromise that will allow
you to install built software without asking your system administrator for
extra rights.

Another reason for choosing a different --prefix location is to allow your-
self to install the software into an isolated location. You can then examine
the location after installation to see exactly what got installed and where it
went, relative to --prefix.

Let’s first install into a private installation location so we can see what
the Autoconf project installs onto our system:

$./configure --prefix=$PWD/private-install
--snip--
$ make
--snip--
$ make install
--snip--
$ tree --charset=ascii private-install
private-install
├── bin
│ ├── autoconf
│ ├── autoheader
│ ├── autom4te
│ ├── autoreconf
│ ├── autoscan
│ ├── autoupdate
│ `── ifnames
`── share
 ├── autoconf
 │ ├── autoconf
 │ │ ├── autoconf.m4
--snip--
 `── man
 `── man1
 ├── autoconf.1
--snip--
 `── ifnames.1

11 directories, 61 files
$

3. Another way of saying $HOME is ~, so the command ./configure --prefix ~ has the same effect.

4. The existence and relative position of the $HOME/bin entry in the PATH is distribution depen-
dent. Some distros put it before the /usr/bin directory, some put it after, and some don’t even
add it to PATH by default. You may need to update your PATH to make it work the way you want.

An End User’s Perspective on the GNU Autotools 11

N O T E As with the earlier build process, the number of files and directories on your system
may differ slightly from mine, based on the difference in tool availability between our
systems. If you have additional documentation tools installed, for example, you may
see more directories than I do, as Autoconf will build more documentation if the tools
are available.

Note that I specified the installation location on configure’s command
line using a full path—the PWD environment variable contains the absolute
path of the current directory in the shell. It’s important to always use a
full path in --prefix. In many cases, using a relative path will cause instal-
lation failures because the --prefix argument is referenced from different
directories during the installation process.5

I used the tree command on the private-install directory in order to get
a visual picture of what Autoconf installs.6 There were 61 files installed into
11 directories within private-install.

Now, let’s install Autoconf into the default location in /usr/local/bin:

$./configure
--snip--
$ make
--snip--
$ sudo make install
--snip--
$

It’s important to note the use of sudo on this command line to run make
install with root privileges. When you install software outside of your home
directory, you’ll need higher privileges. If you set the --prefix directory to
somewhere within your home directory, then you can omit the use of sudo
in the command.

Summary
At this point, you should understand what a source archive is and how to
download, unpack, build, test, and install it. I hope I’ve also given you the
impetus to dig further and discover more about open source build systems.
Those generated by the Autotools follow common patterns so pedantically
that they’re reasonably predictable. For hints on the sorts of things you can
do, try running ./configure --help.

There are other build systems out there. Most of them follow a reason-
able set of patterns, but once in a while you’ll run into one that’s significantly
different from all the rest. All open source build systems tend to follow
some very fundamental, high-level concepts—the idea of a configuration

5. Modern Autoconf generates configure scripts that require a full path for --prefix anyway.
An error is generated if you try to use a relative path.

6. The tree utility is not often installed by default; you can install it using your system’s pack-
age manager—the package name is usually simply tree.

12 Chapter 1

process, followed by a build step, is one such principle. However, the nature
of the configuration process as well as the command used to build the soft-
ware might not align very closely with what we’ve discussed here. One of
the benefits of the Autotools is the consistent nature of the build systems
they generate.

If you want to understand how all this magic works, keep reading.

2
A B R I E F I N T R O D U C T I O N T O T H E

G N U A U T O T O O L S

As stated in the preface to this book, the
purpose of the GNU Autotools is to make

life simpler for the end user, not the main-
tainer. Nevertheless, using the Autotools will

make your job as a project maintainer easier in the
long run, although maybe not for the reasons you sus-
pect. The Autotools framework is as simple as it can
be, given the functionality it provides. The real purpose of the Autotools
is twofold: it serves the needs of your users, and it makes your project
incredibly portable—even to systems on which you’ve never tested,
installed, or built your code.

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started

And know the place for the first time.
—T.S. Eliot, “Quartet No. 4: Little Gidding”

14 Chapter 2

Throughout this book, I will often use the term Autotools, although you
won’t find a package in the GNU archives with this label. I use this term to
signify the following three GNU projects, which are considered by the com-
munity to be part of the GNU build system:

•	 Autoconf, which is used to generate a configuration script for a project

•	 Automake, which is used to simplify the process of creating consistent
and functional makefiles

•	 Libtool, which provides an abstraction for the portable creation of
shared libraries

Other build tools, such as the open source projects CMake and SCons,
attempt to provide the same functionality as the Autotools but in a more user-
friendly manner. However, because these tools attempt to hide much of their
complexity behind GUI interfaces and script builders, they actually end up
being less functional, and more difficult to manage, because the build system
is not as transparent. In the final analysis, this transparency is what makes
the Autotools both simpler to use and simpler to understand. Initial frustra-
tion with the Autotools, therefore, comes not from their complexity—for they
are truly very simple—but from their extensive use of less well understood
tools and subsystems, such as the Linux command shell (Bash), the make util-
ity, and the M4 macro processor and accompanying macro libraries. Indeed,
the meta-language provided by Automake is so simple it can be entirely
digested and comprehended within a few hours of perusing the manual
(though the ramifications of this meta-language may take a bit longer to
thoroughly internalize).

Who Should Use the Autotools?
If you’re writing open source software that targets Unix or Linux systems, you
should absolutely be using the GNU Autotools, and even if you’re writing pro-
prietary software for Unix or Linux systems, you’ll still benefit significantly
from using them. The Autotools provide you with a build environment that
allows your project to build successfully on future versions or distributions
with virtually no changes to the build scripts. This is useful even if you only
intend to target a single Linux distribution, because—let’s be honest—you
really can’t know in advance whether or not your company will want your soft-
ware to run on other platforms in the future.

When Should You Not Use the Autotools?
About the only time it makes sense not to use the Autotools is when
you’re writing software that will only run on non-Unix platforms, such
as Microsoft Windows.

A Brief Introduction to the GNU Autotools 15

Autotools support for Windows requires an Msys1 environment in
order to work correctly, because Autoconf-generated configuration scripts
are Bourne-shell scripts, and Windows doesn’t provide a native Bourne
shell.2 Unix and Microsoft tools are just different enough in command line
options and runtime characteristics that it’s often simpler to use Windows
ports of GNU tools, such as Cygwin, Msys2, or MinGW, to build Windows
programs with an Autotools build system.

For these reasons, I’ll focus mostly on using the Autotools on POSIX-
compliant platforms. Nevertheless, if you’re interested in trying out the
Autotools on Windows, check out Chapter 17 for an in-depth overview.

N O T E I’m not a typical Unix bigot. While I love Unix (and especially Linux), I also appre-
ciate Windows for the areas in which it excels.3 For Windows development, I highly
recommend using Microsoft tools. The original reasons for using GNU tools to develop
Windows programs are more or less academic nowadays because Microsoft has made the
better part of its tools available for download at no cost. For download information, see
Visual Studio Community at https://visualstudio.microsoft.com/vs/express/.

Apple Platforms and Mac OS X
The Macintosh operating system has been POSIX compliant since 2007 when
the “Leopard” release of macOS version 10 (OS X) was published. OS X is
derived from NeXTSTEP/OpenStep, which is based on the Mach kernel,
with parts taken from FreeBSD and NetBSD. As a POSIX-compliant operat-
ing system, OS X provides all the infrastructure required by the Autotools.
The problems you’ll encounter with OS X will most likely involve Apple’s
graphical user interface and package management systems, both of which are
specific to the Mac.

The user interface presents the same issues you encounter when deal-
ing with the X Window system on other Unix platforms, and then some.
The primary difference is that the X Window system is used exclusively on
most Unix systems, but macOS has its own graphical user interface called
Cocoa. While the X Window system can be used on the Mac (Apple provides

1. See MinGW, Minimalist GNU for Windows at http://www.mingw.org/ for more information
on the Msys concept.

2. Windows 10 actually supports a Linux environment called the Windows Subsystem for Linux
(WSL). The integration between the Windows host and the Linux subsystem is much tighter
than that of, say, a virtual machine running Linux on a Windows host. It’s well worth explor-
ing if you’re interested in running Linux but don’t want to entirely give up your Windows
applications. Be aware, however, that open source software programs built using the Autotools
will not run as native Windows applications but will instead interface with the WSL kernel
components. Perhaps these days the distinction simply isn’t that important.

3. Hard-core gamers will agree with me, I’m sure. I wrote the original edition of this book on a
laptop running Windows 7, but I used OpenOffice as my content editor, and I wrote the book’s
sample code on a 3GHz 64-bit dual-processor openSUSE 11.2 Linux workstation. Lately I’ve
been running the Ubuntu-based Linux Mint distribution and using LibreOffice 5.3.

http://www.mingw.org

16 Chapter 2

a window manager that makes X applications look a lot like native Cocoa
apps), Mac programmers will sometimes wish to take full advantage of the
native user interface features provided by the operating system.

The Autotools skirt the issue of package management differences
between Unix platforms by simply ignoring them. Instead, they create
packages that are little more than compressed source archives using the
tar and gzip utilities, and they install and uninstall products from the make
command line. The macOS package management system is an integral
part of installing an application on an Apple system, and projects like Fink
(http://www.finkproject.org/) and MacPorts (http://www.macports.org/) help
make existing open source packages available on the Mac by providing
simplified mechanisms for converting Autotools packages into installable
Mac packages.

The bottom line is that the Autotools can be used quite effectively on
Apple Macintosh systems running OS X or later, as long as you keep these
caveats in mind.

The Choice of Language
Your choice of programming language is another important factor to
consider when deciding whether to use the Autotools. Remember that the
Autotools were designed by GNU people to manage GNU projects. In the
GNU community, two factors determine the importance of a computer pro-
gramming language:

•	 Are there any GNU packages written in the language?

•	 Does the GNU compiler tool set support the language?

Autoconf provides native support for the following languages based on
these two criteria (by native support, I mean that Autoconf will compile, link,
and run source-level feature checks in these languages):

•	 C

•	 C++

•	 Objective C

•	 Objective C++

•	 Fortran

•	 Fortran 77

•	 Erlang

•	 Go

Therefore, if you want to build a Java package, you can configure
Automake to do so (as you’ll see in Chapters 14 and 15), but you can’t ask

http://www.finkproject.org
https://www.macports.org

A Brief Introduction to the GNU Autotools 17

Autoconf to compile, link, or run Java-based checks,4 because Autoconf sim-
ply doesn’t natively support Java. However, you can find Autoconf macros
(which I will cover in more detail in later chapters) that enhance Autoconf’s
ability to manage the configuration process for projects written in Java.

The general feeling is that Java has plenty of its own build environ-
ments and tools that work very well (maven, for instance); therefore, adding
full support for Java seems like a wasted effort. This is especially true since
Java and its build tools are themselves highly portable—even to non-Unix/
Linux platforms such as Windows.

Rudimentary support does exist in Automake for Java compilers and
JVMs. I’ve used these features myself on projects, and they work well, as
long as you don’t try to push them too far.

If you’re into Smalltalk, ADA, Modula, Lisp, Forth, or some other non-
mainstream language, you’re probably not too interested in porting your
code to dozens of platforms and CPUs. However, if you are using a non-
mainstream language and you’re concerned about the portability of your
build systems, consider adding support for your language to the Autotools
yourself. This is not as daunting a task as you may think, and I guarantee
that you’ll be an Autotools expert when you’re finished.5

Generating Your Package Build System
The GNU Autotools framework includes three main packages: Autoconf,
Automake, and Libtool. The tools in these packages can depend on utili-
ties and functionality from the gettext, M4, sed, make, and Perl packages,
among others; however, the build systems generated by these packages rely
only on a Bourne shell and the make utility.

With respect to the Autotools, it’s important to distinguish between
a maintainer’s system and an end user’s system. The design goals of the
Autotools specify that an Autotools-generated build system should rely
only on tools that are readily available and preinstalled on the end user’s
machine (assuming the end user’s system has rudimentary support for
building programs from source code). For example, the machine a main-
tainer uses to create distributions requires a Perl interpreter, but a machine
on which an end user builds products from release distribution source
archives should not require Perl (unless, of course, the project sources are
written in Perl).

A corollary is that an end user’s machine doesn’t need to have the
Autotools installed—an end user’s system only requires a reasonably

4. This statement is not strictly true: I’ve seen third-party macros that use the Java virtual
machine (JVM) to execute Java code within checks, but these are usually very special cases.
None of the built-in Autoconf checks rely on a JVM in any way. Chapters 14 and 15 outline
how you might use a JVM in an Autoconf check. Additionally, the portable nature of Java and
the Java virtual machine specification make it fairly unlikely that you’ll need to perform a
Java-based Autoconf check in the first place.

5. For example, native Erlang support made it into the Autotools because members of the
Erlang community thought it was important enough to add it themselves.

18 Chapter 2

POSIX-compliant version of make and some variant of the Bourne shell
that can execute the generated configuration script. And, of course, any
package will also require compilers, linkers, and other tools needed to
convert source files into executable binary programs, help files, and other
runtime resources.

Configuration
Most developers understand the purpose of the make utility, but what’s the
point of configure? While Unix systems have followed the de facto standard
Unix kernel interface for decades, most software has to stretch beyond
these boundaries.

Originally, configuration scripts were hand-coded shell scripts designed
to set environment variables based on platform-specific characteristics.
They also allowed users to configure package options before running make.
This approach worked well for decades, but as the number of Linux distri-
butions and Unix-like systems grew, the variety of features and installation
and configuration options exploded, so it became very difficult to write a
decent portable configuration script. In fact, it was much more difficult to
write a portable configuration script than it was to write makefiles for a new
project. Therefore, most people just created configuration scripts for their
projects by copying and modifying the script for a similar project.

In the early 1990s, it was apparent to many open source software devel-
opers that project configuration would become painful if something wasn’t
done to ease the burden of writing massive complex shell scripts to manage
configuration options. The number of GNU project packages had grown to
hundreds, and maintaining consistency across their separate build systems
had become more time-consuming than simply maintaining the code for
these projects. These problems had to be solved.

Autoconf
Autoconf 6 changed this paradigm almost overnight. David MacKenzie
started the Autoconf project in 1991, but a look at the AUTHORS file in the
Savannah Autoconf project7 repository will give you an idea of the number of
people who had a hand in making the tool. Although configuration scripts
were long and complex, users needed to specify only a few variables when
executing them. Most of these variables were simply choices about compo-
nents, features, and options, such as Where can the build system find libraries
and header files? Where do I want to install my finished products? Which optional
components do I want to build into my products?

6. For more on Autoconf origins, see the GNU web page on the topic at http://www.gnu.org
/software/autoconf/.

7. See http://savannah.gnu.org/projects/autoconf/.

https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/autoconf/
http://savannah.gnu.org/projects/autoconf/

A Brief Introduction to the GNU Autotools 19

Instead of modifying and debugging hundreds of lines of supposedly
portable shell script, developers can now write a short metascript file using
a concise, macro-based language, and Autoconf will generate a perfect con-
figuration script that is more portable, more accurate, and more maintain-
able than a hand-coded one. In addition, Autoconf often catches semantic
or logic errors that could otherwise take days to debug. Another benefit of
Autoconf is that the shell code it generates is portable between most varia-
tions of the Bourne shell. Mistakes made in portability between shells are
very common and, unfortunately, are the most difficult kinds of mistakes to
find, because no one developer has access to all Bourne-like shells.

N O T E While portable scripting languages like Perl and Python are now more pervasive than
the Bourne shell, this was not the case when the idea for Autoconf was first conceived.

Autoconf-generated configuration scripts provide a common set of
options that are important to all portable software projects running on
POSIX systems. These include options to modify standard locations (a
concept I’ll cover in more detail in Chapter 3), as well as project-specific
options defined in the configure.ac file (which I’ll discuss in Chapter 5).

The autoconf package provides several programs, including the following:

•	 autoconf

•	 autoreconf

•	 autoheader

•	 autoscan

•	 autoupdate

•	 ifnames

•	 autom4te

The autoconf program is a simple Bourne shell script. Its main task is
to ensure that the current shell contains the functionality necessary to exe-
cute the m4 macro processor. (I’ll discuss Autoconf’s use of M4 in detail in
Chapter 4.) The remainder of the script parses command line parameters
and executes autom4te.

autoreconf
The autoreconf utility executes the configuration tools in the autoconf,
automake, and libtool packages as required by the project. This utility
minimizes the amount of regeneration required to address changes in
timestamps, features, and project state. It was written as an attempt to con-
solidate existing maintainer-written, script-based utilities that ran all the
required Autotools in the right order. You can think of autoreconf as a sort
of smart Autotools bootstrap utility. If all you have is a configure.ac file, you
can run autoreconf to execute all the tools you need, in the correct order, so
that configure will be properly generated. Figure 2-1 shows how autoreconf
interacts with other utilities in the Autotools suite.

20 Chapter 2

autoreconf
(Perl script)

Scripts and Programs

aclocal
(Perl script)

autoconf
(shell script)

autoheader
(Perl script)

automake
(Perl script)

Figure 2-1: A dataflow diagram for the autoreconf utility

Nevertheless, there are times when a project requires more than simply
bootstrapping the Autotools to get a developer up and running on a newly
checked-out repository work area. In these cases, a small shell script that
runs autoreconf, along with any non-Autotools-related processes, is appropri-
ate. Many projects name such a script autogen.sh, but this is often confus-
ing to developers because there is a GNU Autogen project. A better name
would be something like bootstrap.sh.

Additionally, when used with the -i option, autoreconf will bootstrap
a project into a distributable state by adding missing files that are recom-
mended or required by GNU for proper open source projects. These
include a proper ChangeLog and template INSTALL, README, and
AUTHORS files and so on.

autoheader
The autoheader utility generates a C/C++ compatible header file template
from various constructs in configure.ac. This file is usually called config.h.in.
When the end user executes configure, the configuration script generates
config.h from config.h.in. As maintainer, you’ll use autoheader to generate the
template file you will include in your distribution package. (We’ll examine
autoheader in greater detail in Chapter 4.)

autoscan
The autoscan program generates a default configure.ac file for a new project;
it can also examine an existing Autotools project for flaws and opportuni-
ties for enhancement. (We’ll discuss autoscan in more detail in Chapters 4
and 14.) autoscan is very useful as a starting point for a project that uses a
non-Autotools-based build system, but it may also be useful for suggesting
features that might enhance an existing Autotools-based project.

autoupdate
The autoupdate utility is used to update configure.ac or the template (.in) files
to match the syntax supported by current versions of the Autotools.

A Brief Introduction to the GNU Autotools 21

ifnames
The ifnames program is a small and generally underused utility that
accepts a list of source file names on the command line and displays a
list of C-preprocessor definitions. This utility was designed to help main-
tainers determine what to put into the configure.ac and Makefile.am files
to make them portable. If your project was written with some level of
portability in mind, ifnames can help you determine where those attempts
at portability are located in your source tree and give you the names of
potential portability definitions.

autom4te
The autom4te utility is a Perl-based intelligent caching wrapper for m4 that
is used by most of the other Autotools. The autom4te cache decreases the
time successive tools spend accessing configure.ac constructs by as much as
30 percent.

I won’t spend a lot of time on autom4te (pronounced automate) because
it’s primarily used internally by the Autotools. The only sign that it’s work-
ing is the autom4te.cache directory that appears in your top-level project
directory after you run autoconf or autoreconf.

Working Together
Of the previously listed tools, autoconf and autoheader are the only ones proj-
ect maintainers use when generating a configure script, and autoreconf is the
only one that the developer needs to directly execute. Figure 2-2 shows the
interaction between input files and autoconf and autoheader that generates
the corresponding product files.

configure.ac
(m4 / shell) configure

(shell script)

config.h.in
(cpp / ac-vars)

autom4te
(Perl script)

autom4te.cache
(cache directory)

acsite.m4
(m4 / shell)

autoheader
(Perl script)

autoconf
(shell script)

User-provided data filesGenerated scriptsAutotools-provided scripts Generated data files

m4
(binary)

aclocal.m4
(m4 / shell)

Figure 2-2: A data flow diagram for autoconf and autoheader

N O T E I use the data flow diagram format shown in Figure 2-2 throughout this book.
Dark boxes represent objects provided either by the user or by an Autotools package.
Light boxes represent generated objects. Boxes with square corners are scripts and
programs, and boxes with rounded corners are data files. The meaning of most of

22 Chapter 2

the labels here should be obvious, but at least one deserves an explanation: the term
ac-vars refers to Autoconf-specific replacement text. I’ll explain the gradient shad-
ing of the aclocal.m4 box shortly.

The primary task of this suite of tools is to generate a configuration
script that can be used to configure a project build directory for a target
platform (not necessarily the local host). This script does not rely on the
Autotools themselves; in fact, autoconf is designed to generate configuration
scripts that will run on all Unix-like platforms and in most variations of the
Bourne shell. This means that you can generate a configuration script using
autoconf and then successfully execute that script on a machine that does
not have the Autotools installed.

The autoconf and autoheader programs are executed either directly by you
or indirectly by autoreconf. They take their input from your project’s configure
.ac file and various Autoconf-flavored M4 macro definition files (which,
by convention, have a .m4 extension), using autom4te to maintain cache
information. The autoconf program generates a configuration script called
configure, a very portable Bourne shell script that enables your project to offer
many useful configuration capabilities. The program autoheader generates the
config.h.in template based on certain macro definitions in configure.ac.

Automake
Once you’ve done it a few times, writing a basic makefile for a new project
is fairly simple. But problems may occur when you try to do more than just
the basics. And let’s face it—what project maintainer has ever been satisfied
with just a basic makefile?

Attention to detail is what makes an open source project successful.
Users lose interest in a project fairly easily—especially when functional-
ity they expect is missing or improperly written. For example, power users
have come to expect makefiles to support certain standard targets or goals,
specified on the make command line, like this:

$ make install

Common make targets include all, clean, and install. In this example,
install is the target. But you should realize that none of these are real
targets: a real target is a filesystem object that is produced by the build sys-
tem—usually a file (but sometimes a directory or a link). When building an
executable called doofabble, for instance, you’d expect to be able to enter:

$ make doofabble

For this project, doofabble is a real target, and this command works for
the doofabble project. However, requiring the user to enter real targets
on the make command line is asking a lot of them, because each project
must be built differently—make doofabble, make foodabble, make abfooble, and
so on. Standardized targets for make allow all projects to be built in the

A Brief Introduction to the GNU Autotools 23

same way using commonly known commands like make all and make clean.
But commonly known doesn’t mean automatic, and writing and maintaining
makefiles that support these targets is tedious and error prone.

Automake’s job is to convert a simplified specification of your project’s
build process into boilerplate makefile syntax that always works correctly
the first time and provides all the standard functionality expected. Automake
creates projects that support the guidelines defined in the GNU Coding
Standards (discussed in Chapter 3).

Just like autoconf produces a configure script that is portable to many
flavors of the Bourne shell, automake produces make script that is portable
to many flavors of make.

The automake package provides the following tools in the form of
Perl scripts:

•	 automake

•	 aclocal

automake
The automake program generates standard makefile templates (named
Makefile.in) from high-level build specification files (named Makefile.am).
These Makefile.am input files are essentially just regular makefiles. If you
were to put only the few required Automake definitions in a Makefile.am file,
you’d get a Makefile.in file containing several hundred lines of parameter-
ized make script.

If you add additional make syntax to a Makefile.am file, Automake will
move this code to the most functionally correct location in the resulting
Makefile.in file. In fact, you can write your Makefile.am files so all they con-
tain is ordinary make script, and the resulting makefiles will work just fine.
This pass-through feature gives you the ability to extend Automake’s func-
tionality to suit your project’s specific requirements.8

aclocal
In the GNU Automake Manual, the aclocal utility is documented as a temporary
workaround for a certain lack of flexibility in Autoconf. Automake enhances
Autoconf by adding an extensive set of macros, but Autoconf was not really
designed with this level of enhancement in mind.

The original documented method for adding user-defined macros to an
Autoconf project was to create a file called aclocal.m4, place the user-defined
macros in this file, and place the file in the same directory as configure.ac.
Autoconf then automatically includes this set of macros while processing
configure.ac. The designers of Automake found this extension mechanism
too useful to pass up; however, users would have been required to add an
m4_include statement to a possibly unnecessary aclocal.m4 file in order to

8. Other metabuild tools like CMake also generate makefiles but do not allow you to directly
specify what ends up in these files. Rather, you have to find the correct approach in CMake’s
macro language in order to coerce it into writing make script that does what you want it to.

24 Chapter 2

include the Automake macros. Since both user-defined macros and the use
of M4 itself are considered advanced concepts, this was deemed too harsh
a requirement.

The aclocal script was designed to solve this problem. This utility gener-
ates an aclocal.m4 file for a project that contains both user-defined macros
and all required Automake macros.9 Instead of adding user-defined macros
directly to aclocal.m4, project maintainers should now add them to a new file
called acinclude.m4.

To make it clear to readers that Autoconf doesn’t depend on Automake
(and perhaps due to a bit of stubbornness), the GNU Autoconf Manual doesn’t
make much mention of the aclocal utility. The GNU Automake Manual origi-
nally suggested that you rename aclocal.m4 to acinclude.m4 when adding
Automake to an existing Autoconf project, and this approach is still com-
monly used. The flow of data for aclocal is depicted in Figure 2-3.

aclocal
(Perl script)

aclocal.m4
(m4 / shell)

configure.ac
(m4 / shell)

m4/*.m4 files
(m4 / shell)

acinclude.m4
(m4 / shell)

User-provided data files Generated data filesAutotools-provided scripts

Figure 2-3: A data flow diagram for aclocal

However, the latest documentation for both Autoconf and Automake
suggests that the entire paradigm is now obsolete. Developers should now
specify a directory that contains a set of M4 macro files. The current recom-
mendation is to create a directory in the project root directory called m4
and add macros as individual .m4 files to it. All files in this directory will be
gathered into aclocal.m4 before Autoconf processes configure.ac.10

It may now be more apparent why the aclocal.m4 box in Figure 2-2
couldn’t decide which color it should be. When you’re using it without
Automake and Libtool, you write aclocal.m4 by hand. However, when you’re
using it with Automake, the file is generated by the aclocal utility, and you
provide project-specific macros either in acinclude.m4 or in an m4 directory.

Libtool
How do you build shared libraries on different Unix platforms without add-
ing a lot of very platform-specific conditional code to your build system and
source code? This is the question that the Libtool project tries to address.

9. Automake macros are copied into this file, but the user-written acinclude.m4 file is merely
referenced with an m4_include statement at the end of the file.

10. As with acinclude.m4, this gathering is virtual; aclocal.m4 merely contains m4_include state-
ments that reference these other files in place.

A Brief Introduction to the GNU Autotools 25

There’s a significant amount of common functionality among Unix-
like platforms. However, one very significant difference has to do with
how shared libraries are built, named, and managed. Some platforms
name their libraries libname.so, others use libname.a or even libname.sl.
The Cygwin system for Windows names Cygwin-generated shared libraries
cygname.dll. Still others don’t even provide native shared libraries. Some
platforms provide libdl.so to allow software to dynamically load and access
library functionality at runtime, while others provide different mechanisms,
and some platforms don’t provide this functionality at all.

The developers of Libtool have carefully considered all of these dif-
ferences. Libtool supports dozens of platforms, not only providing a set
of Autoconf macros that hide library-naming differences in makefiles but
also offering an optional library of dynamic loader functionality that can
be added to programs. This functionality allows maintainers to make their
runtime, dynamic shared-object management code more portable and
easier to maintain.

The libtool package provides the following programs, libraries, and
header file:

•	 libtool (program)

•	 libtoolize (program)

•	 ltdl (static and shared libraries)

•	 ltdl.h (header file)

libtool
The libtool shell script that ships with the libtool package is a generic ver-
sion of the custom script that libtoolize generates for a project.

libtoolize
The libtoolize shell script prepares your project to use Libtool. It generates a
custom version of the generic libtool script and adds it to your project direc-
tory. This custom script is shipped with the project along with the Automake-
generated makefiles, which execute the script on the user’s system at the
appropriate time.

ltdl, the Libtool C API
The libtool package also provides the ltdl library and associated header
files, which provide a consistent runtime shared-object manager across
platforms. The ltdl library may be linked statically or dynamically into
your programs, giving them a consistent runtime shared-library access
interface between platforms.

Figure 2-4 illustrates the interaction between the automake and libtool
scripts, and the input files used to create products that configure and build
your projects.

Automake and Libtool are both standard pluggable options that can be
added to configure.ac with just a few simple macro calls.

26 Chapter 2

libtoolize
(shell script)

configure.ac
(m4 / shell)

Makefile.am
(am / make)

install-sh

missing

depcomp

mkinstalldirs
(shell scripts)

COPYING
INSTALL

(text files)

config.guess

Makefile.in
(make / ac-vars)

ltmain.sh
(shell script)

autom4te
(Perl script)

autom4te.cache
(cache directory)

automake
(Perl script)

User-provided data files

Generated scripts

Autotools-provided scripts

Generated data files

config.sub
(shell scripts)

Figure 2-4: A data flow diagram for automake and libtool

Building Your Package
As maintainer, you probably build your software packages fairly often, and
you’re also probably intimately familiar with your project’s components,
architecture, and build system. However, you should make sure that your
users’ build experiences are much simpler than your own. One way to do
this is to give users a simple, easy-to-understand pattern to follow when
building your software packages. In the following sections, I’ll show you
the build pattern supported by the Autotools.

Running configure
After running the Autotools, you’re left with a shell script called configure
and one or more Makefile.in files. These files are intended to be shipped
with your project release distribution packages.11 Your users will download
these packages, unpack them, and enter ./configure && make from the top-
level project directory. The configure script will generate makefiles (called
Makefile) from the Makefile.in templates created by automake and a config.h
header file from the config.h.in template generated by autoheader.

Automake generates Makefile.in templates rather than makefiles because
without makefiles, your users can’t run make; you don’t want them to run make
until after they’ve run configure, and this functionality guards against them
doing so. Makefile.in templates are nearly identical to makefiles you might

11. GPL licensing also requires configure.ac and Makefile.am to be shipped with your package,
and the Autotools ensure that these files are in the distribution tarball. The reasoning is that
the GPL requires the full source of a project to be distributed in preferred-editing form. A
user obtaining the distribution tarball would not be able to edit anything without the base
source files for the build system. However, end users need not touch or interact with these
files unless they wish to customize the program in a manner not supported by project con-
figuration options.

A Brief Introduction to the GNU Autotools 27

write by hand, except that you didn’t have to. They also do a lot more than
most people are willing to hand-code. Another reason for not shipping ready-
to-run makefiles is that it gives configure the chance to insert platform char-
acteristics and user-specified optional features directly into the makefiles.
This makes them a better fit for their target platforms and the end user’s
build preferences. Finally, the makefiles can also be generated outside the
source tree, which means you can create custom build systems in differ-
ent directories for the same source directory tree. I’ll discuss this topic in
greater detail in “Building Outside the Source Directory” on page 28.

Figure 2-5 illustrates the interaction between configure and the scripts it
executes during the configuration process in order to create the makefiles
and the config.h header file.

config.cache

configure
(shell script)

config.h
(cpp)

config.site
(m4 / shell)

ltmain.sh
(shell script)

config.status
(shell script)

config.guess

Makefile
(make)

libtool
(shell script)

config.log
(text)

User-provided data filesGenerated scriptsAutotools-provided scripts Generated data files

config.sub
(shell scripts)

config.h.in
(cpp / ac-vars)

Makefile.in
(make / ac-vars)

Figure 2-5: A data flow diagram for configure

The configure script has a bidirectional relationship with another script
called config.status. You may have thought that your configure script gen-
erated your makefiles. But actually, the only file (besides a log file) that
configure generates is config.status.

The configure script is designed to determine platform characteristics
and features available on the user’s system, as specified in the maintainer-
written configure.ac. Once it has this information, it generates config.status,
which contains all of the check results, and then it executes this script. The
config .status script, in turn, uses the check information embedded within
it to generate platform-specific config.h and makefiles, as well as any other
template-based output files specified in configure.ac.

N O T E As the double-ended fat arrow in Figure 2-5 shows, config.status can also call
configure. When used with the --recheck option, config.status will call configure
using the same command line options used to originally generate config.status.

The configure script also generates a log file called config.log, which will
contain very useful information in the event that an execution of configure
fails on the user’s system. As the maintainer, you can use this information

28 Chapter 2

for debugging. The config.log file also logs how configure was executed. (You
can run config.status --version to discover the command line options used
to generate config.status.) This feature can be particularly handy when, for
example, a user returns from vacation and can’t remember which options
they used to originally generate the project build directory.

N O T E To regenerate makefiles and the config.h header files, just enter ./config.status
from within the project build directory. The output files will be generated using the
same options originally used to generate config.status.

The config.site file can be used to customize the way configure works based
on the --prefix option passed to it. The config.site file is a script, but it’s not
meant to be executed directly. Rather, configure looks for $(prefix)/share/config
.site and “sources” it (incorporates it as part of its own script) before execut-
ing any of its own code. This can be a handy way of specifying the same set of
options for many packages, all destined to be built and installed the same way.
Since configure is just a shell script, config.site should just contain shell code.

The config.cache file is generated by configure when the -C or --config-cache
options are used. The results of configuration tests are cached in this file and
are reusable by subdirectory configure scripts or by future runs of configure.
By default, config.cache is disabled because it can be a potential source of
configuration errors. If you’re confident with your configuration process,
config.cache can really speed up the configuration process between execu-
tions of configure.

Building Outside the Source Directory

A little-known feature of Autotools build environments is that they don’t
need to be generated within a project source tree. That is, if a user executes
configure from a directory other than the project source directory, they can
generate a full build environment within an isolated build directory.

In the following example, the user downloads doofabble-3.0.tar.gz,
unpacks it, and creates two sibling directories called doofabble-3.0.debug
and doofabble-3.0.release. They change into the doofabble-3.0.debug direc-
tory; execute doofabble’s configure script, using a relative path, with a
doofabble-specific debug option; and then run make from within this same
directory. Then they switch over to the doofabble-3.0.release directory and
do the same thing, this time running configure without the debug option:

$ gzip -dc doofabble-3.0.tar.gz | tar xf -
$ mkdir doofabble-3.0.debug
$ mkdir doofabble-3.0.release
$ cd doofabble-3.0.debug
$../doofabble-3.0/configure --enable-debug
--snip--
$ make
--snip--
$ cd ../doofabble-3.0.release
$../doofabble-3.0/configure

A Brief Introduction to the GNU Autotools 29

--snip--
$ make
--snip--

Users generally don’t care about remote build functionality, because all
they usually want to do is configure, build, and install your code on their
platforms. Maintainers, on the other hand, find remote build functional-
ity very useful, as it allows them to not only maintain a reasonably pristine
source tree but also to maintain multiple build environments for their proj-
ect, each with complex configuration options. Rather than reconfigure a
single build environment, a maintainer can simply switch to another build
directory that has been configured with different options.

There is one case, however, where a user might wish to use remote-
build. Consider the case where one obtains the full unpacked source code
of a project on CD or has access to it via a read-only NFS mount. The ability
to build outside the source tree can grant the ability to build the project
without having to copy it to writable media.

Running make
Finally, you run plain old make. The designers of the Autotools went to a lot
of trouble to ensure that you didn’t need any special version or brand of
make. Figure 2-6 depicts the interaction between make and the makefiles that
are generated during the build process.

N O T E There has been some discussion on the Autotools mailing lists during the last few
years about supporting only GNU make, as modern GNU make is so much more func-
tional than other make utilities. Almost all Unix-y platforms (and even Microsoft
Windows) have a version of GNU make today, so the rationale for continuing to sup-
port other brands of make is no longer as important as it once was.

As you can see, make runs several generated scripts, but these are all
really ancillary to the make process. The generated makefiles contain com-
mands that execute these scripts under the appropriate conditions. These
scripts are part of the Autotools, and they are either shipped with your
package or generated by your configuration script.

libtool

config.h
(cpp)

make
(binary program)

Makefile
(make)

Project Sources
(language of choice)

missing

install-sh

mkinstalldirs
(shell scripts)

Project
Targets

Generated scripts

Generated data files

System tools

User-provided data files

Figure 2-6: A data flow diagram for make

30 Chapter 2

Installing the Most Up-to-Date Autotools
If you’re running a variant of Linux and you’ve chosen to install the com-
pilers and tools used for developing C-language software, you probably
already have some version of the Autotools installed on your system. To
determine which versions of Autoconf, Automake, and Libtool you’re using,
simply open a terminal window and type the following commands (if you
don’t have the which utility on your system, try type -p instead):

$ which autoconf
/usr/local/bin/autoconf
$
$ autoconf --version
autoconf (GNU Autoconf) 2.69
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+/Autoconf: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>, <http://gnu.org/licenses/exceptions.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by David J. MacKenzie and Akim Demaille.
$
$ which automake
/usr/local/bin/automake
$
$ automake --version
automake (GNU automake) 1.15
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv2+: GNU GPL version 2 or later <http://gnu.org/licenses/gpl-
2.0.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by Tom Tromey <tromey@redhat.com>
 and Alexandre Duret-Lutz <adl@gnu.org>.
$
$ which libtool
/usr/local/bin/libtool
$
$ libtool --version

libtool (GNU libtool) 2.4.6
Written by Gordon Matzigkeit, 1996

Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
$

N O T E If you have the Linux-distribution varieties of these Autotools packages installed on
your system, the executables will probably be found in /usr/bin rather than /usr/
local/bin, as you can see from the output of the which command here.

mailto:adl@gnu.org

A Brief Introduction to the GNU Autotools 31

If you choose to download, build, and install the latest released version
of any one of these packages from the GNU website, you must do the same
for all of them, because the Automake and Libtool packages install macros
into the Autoconf macro directory. If you don’t already have the Autotools
installed, you can install them using your system package manager (for
example, yum or apt), or from source, using their GNU distribution source
archives. The latter can be done with the following commands (be sure to
change the version numbers as necessary):

$ mkdir autotools && cd autotools
$ wget -q https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz
$ wget -q https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz.sig
$ gpg autoconf-2.69.tar.gz.sig
gpg: assuming signed data in `autoconf-2.69.tar.gz'
gpg: Signature made Tue 24 Apr 2012 09:17:04 PM MDT using RSA key ID 2527436A
gpg: Can't check signature: public key not found
$
$ gpg --keyserver keys.gnupg.net --recv-key 2527436A
gpg: requesting key 2527436A from hkp server keys.gnupg.net
gpg: key 2527436A: public key "Eric Blake <eblake@redhat.com>" imported
gpg: key 2527436A: public key "Eric Blake <eblake@redhat.com>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 2
gpg: imported: 2 (RSA: 2)$ gpg autoconf-2.69.tar.gz.sig
gpg: assuming signed data in `autoconf-2.69.tar.gz'
gpg: Signature made Tue 24 Apr 2012 09:17:04 PM MDT using RSA key ID 2527436A
gpg: Good signature from "Eric Blake <eblake@redhat.com>"
gpg: aka "Eric Blake (Free Software Programmer) <ebb9@byu.net>"
gpg: aka "[jpeg image of size 6874]"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 71C2 CC22 B1C4 6029 27D2 F3AA A7A1 6B4A 2527 436A
$
$ gzip -cd autoconf* | tar xf -
$ cd autoconf*/
$./configure && make all check
 # note – a few tests (501 and 503, for example) may fail
 # – this is fine for this release)
--snip--
$ sudo make install
--snip--
$ cd ..
$ wget -q https://ftp.gnu.org/gnu/automake/automake-1.16.1.tar.gz
$ wget -q https://ftp.gnu.org/gnu/automake/automake-1.16.1.tar.gz.sig
$ gpg automake-1.16.1.tar.gz.sig
gpg: assuming signed data in `automake-1.16.1.tar.gz'
gpg: Signature made Sun 11 Mar 2018 04:12:47 PM MDT using RSA key ID 94604D37
gpg: Can't check signature: public key not found
$
$ gpg --keyserver keys.gnupg.net --recv-key 94604D37
gpg: requesting key 94604D37 from hkp server keys.gnupg.net
gpg: key 94604D37: public key "Mathieu Lirzin <mthl@gnu.org>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1

32 Chapter 2

gpg: imported: 1 (RSA: 1)
$
$ gpg automake-1.16.1.tar.gz.sig
gpg: assuming signed data in `automake-1.16.1.tar.gz'
gpg: Signature made Sun 11 Mar 2018 04:12:47 PM MDT using RSA key ID 94604D37
gpg: Good signature from "Mathieu Lirzin <mthl@gnu.org>"
gpg: aka "Mathieu Lirzin <mthl@openmailbox.org>"
gpg: aka "Mathieu Lirzin <mathieu.lirzin@openmailbox.org>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: F2A3 8D7E EB2B 6640 5761 070D 0ADE E100 9460 4D37
$
$ gzip -cd automake* | tar xf -
$ cd automake*/
$./configure && make all check
--snip--
$ sudo make install
--snip--
$ cd ..
$ wget -q https://ftp.gnu.org/gnu/libtool/libtool-2.4.6.tar.gz
$ wget -q https://ftp.gnu.org/gnu/libtool/libtool-2.4.6.tar.gz.sig
$ gpg libtool-2.4.6.tar.gz.sig
gpg: assuming signed data in `libtool-2.4.6.tar.gz'
gpg: Signature made Sun 15 Feb 2015 01:31:09 PM MST using DSA key ID 2983D606
gpg: Can't check signature: public key not found
$
$ gpg --keyserver keys.gnupg.net --recv-key 2983D606
gpg: requesting key 2983D606 from hkp server keys.gnupg.net
gpg: key 2983D606: public key "Gary Vaughan (Free Software Developer) <gary@vaughan.pe>"
imported
gpg: key 2983D606: public key "Gary Vaughan (Free Software Developer) <gary@vaughan.pe>"
imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 2
gpg: imported: 2 (RSA: 1)
$
$ gpg libtool-2.4.6.tar.gz.sig
gpg: assuming signed data in `libtool-2.4.6.tar.gz'
gpg: Signature made Sun 15 Feb 2015 01:31:09 PM MST using DSA key ID 2983D606
gpg: Good signature from "Gary Vaughan (Free Software Developer) <gary@vaughan.pe>"
gpg: aka "Gary V. Vaughan <gary@gnu.org>"
gpg: aka "[jpeg image of size 9845]"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: CFE2 BE70 7B53 8E8B 2675 7D84 1513 0809 2983 D606
$
$ gzip -cd libtool* | tar xf -
$ cd libtool*/
$./configure && make all check
--snip--
$ sudo make install
--snip--
$ cd ..
$

A Brief Introduction to the GNU Autotools 33

The preceding example shows how to use the associated .sig files to vali-
date the signature on GNU packages. The example assumes you have not
configured a gpg key server on your system and that you have not installed
the public key for any of these packages. If you have already configured a
preferred key server, you can skip the gpg command line --keyserver options.
Once you’ve imported the public keys for these packages, you need not
do it again.

You may also wish to install in a manner that does not require root
access via sudo. To do this, execute configure with a --prefix option such as
--prefix=$HOME/autotools and then add ~/autotools/bin to your PATH environ-
ment variable.

You should now be able to successfully execute the version-check
commands from the previous example. If you still see older versions,
ensure your PATH environment variable properly contains /usr/local/bin
(or wherever you installed to) before /usr/bin.

Summary
In this chapter, I presented a high-level overview of the Autotools to give
you a feel for how everything ties together. I also showed you the pattern
to follow when building software from distribution tarballs created by
Autotools build systems. Finally, I showed you how to install the Autotools
and how to tell which versions you have installed.

In Chapter 3, we’ll step away from the Autotools briefly and begin cre-
ating a hand-coded build system for a toy project called Jupiter. You’ll learn
the requirements of a reasonable build system, and you’ll become familiar
with the rationale behind the original design of the Autotools. With this
background knowledge, you’ll begin to understand why the Autotools do
things the way they do. I can’t really emphasize this enough: Chapter 3 is one
of the most important chapters in this book, because it will get you past any emotional
stigma you may have associated with the Autotools due to misconceptions.

3
U N D E R S T A N D I N G T H E G N U

C O D I N G S T A N D A R D S

In Chapter 2, I gave an overview of the
GNU Autotools and some resources that

can help reduce the learning curve required
to master them. In this chapter, we’re going to

step back a little and examine project organization
techniques that you can apply to any project, not just
one that uses the Autotools.

When you’re done reading this chapter, you should be familiar with the
common make targets and why they exist. You should also have a solid under-
standing of why projects are organized the way they are. You will, in fact, be
well on your way to becoming an Autotools expert.

I don’t know what’s the matter with people: they don’t
learn by understanding, they learn by some other way—

by rote or something. Their knowledge is so fragile!
—Richard Feynman, “Surely You’re Joking,

Mr. Feynman!”

36 Chapter 3

The information provided in this chapter comes primarily from
two sources:

•	 The GNU Coding Standards (GCS)1

•	 The Filesystem Hierarchy Standard (FHS)2

If you’d like to brush up on your make syntax, you may also find the GNU
Make Manual 3 very useful. If you’re particularly interested in portable make
syntax, then check out the POSIX man page for make.4 Note, however, there
are current discussions on the Autotools mailing lists around making GNU
make the target standard because it’s so widely available today. Therefore,
portable make script isn’t as important as it used to be.

Creating a New Project Directory Structure
You need to ask yourself two questions when you’re setting up the build
system for an open source software project:

•	 Which platforms will I target?

•	 What do my users expect?

The first is an easy question—you get to decide which platforms to
target, but you shouldn’t be too restrictive. Open source software projects
are only as good as their communities, and arbitrarily limiting the number
of platforms reduces the potential size of your community. However, you
might consider supporting only current versions of your target platforms.
You can check with user groups and communities to determine which ver-
sions of each are relevant.

The second question is more difficult to answer. First, let’s narrow the
scope to something manageable. What you really need to ask is, What do my
users expect of my build system? Experienced open source software developers
become familiar with these expectations by downloading, unpacking, build-
ing, and installing hundreds of packages. Eventually, they come to know
intuitively what users expect of a build system. But, even so, the processes of
package configuration, build, and installation vary widely, so it’s difficult to
define any solid norm.

Rather than taking a survey of every build system out there yourself,
you can consult the Free Software Foundation (FSF), sponsor of the GNU
project, which has done a lot of the legwork for you. The FSF provides some
of the best definitive sources of information on free, open source software,
including the GCS, which covers a wide variety of topics related to writing,

1. See the Free Software Foundation’s GNU Coding Standards at http://www.gnu.org/prep/standards/.

2. See Daniel Quinlan’s overview at http://www.pathname.com/fhs/.

3. See the Free Software Foundation’s GNU Make Manual at http://www.gnu.org/software/make/
manual/.

4. See the “Open Group Base Specifications,” Issue 6, at http://www.opengroup.org/online
pubs/009695399/utilities/make.html.

https://www.gnu.org/prep/standards/
http://www.pathname.com/fhs/
https://www.gnu.org/software/make/manual/
https://pubs.opengroup.org/onlinepubs/009695399/utilities/make.html
https://pubs.opengroup.org/onlinepubs/009695399/utilities/make.html

Understanding the GNU Coding Standards 37

publishing, and distributing free, open source software. Even many non-
GNU open source software projects align themselves with the GCS. Why?
Well, the FSF invented the concept of free software, and the ideas make
sense, for the most part.5 There are dozens of issues to consider when
designing a system that manages packaging, building, and installing soft-
ware, and the GCS takes most of them into account.

W H AT’S IN A N A ME?

You probably know that open source software projects generally have quirky
names—they might be named after some device, an invention, a Latin term,
a past hero, an ancient god, or they might be named after some small, furry
animal that has (vaguely) similar characteristics to the software. Some names
are just made-up words or acronyms that are catchy and easy to pronounce.
Another significant characteristic of a good project name is uniqueness—it’s
important that your project be easy to distinguish from others. You also want
your project name to be easy to distinguish from any other uses of the name in
a search engine. Additionally, you should ensure that your project’s name does
not have negative connotations in any language or culture.

Project Structure
We’ll start with a basic sample project and build on it as we continue our
exploration of source-level software distribution. We’ll call our project Jupiter
and create a project directory structure using the following commands:

$ cd projects
$ mkdir -p jupiter/src
$ cd jupiter
$ touch Makefile src/Makefile jupiter/src/main.c
$

We now have one source code directory called src, one C source file
called main.c, and a makefile for each of the two directories in our project.
Minimal, yes, but this is a new endeavor and the key to a successful open
source software project is evolution. Start small and grow as needed—and
as you have the time and inclination.

Let’s start by adding support for building and cleaning our project.
We’ll need to add other important capabilities to our build system later
on, but these two will get us going. The top-level makefile does very little at
this point; it merely passes requests down to src/Makefile, recursively. This

5. In truth, it’s likely that the standards that came about from the BSD project were written
much earlier than the standards of the FSF, but the FSF had a big hand in spreading the
information to many different platforms and non-system-specific software projects. Thus, it
had a large part in making these standards publicly visible and widely used.

38 Chapter 3

constitutes a fairly common type of build system, known as a recursive build
system, so named because makefiles recursively invoke make on subdirectory
makefiles.6 We’ll spend a little time at the end of this chapter considering
how to convert our recursive system into a nonrecursive system.

Listings 3-1 through 3-3 show the contents of each of these three files,
thus far.

all clean jupiter:
 cd src && $(MAKE) $@

.PHONY: all clean

Listing 3-1: Makefile: An initial draft of a top-level makefile for Jupiter

all: jupiter

jupiter: main.c
 gcc -g -O0 -o $@ main.c
clean:
 -rm jupiter

.PHONY: all clean

Listing 3-2: src/Makefile: The first draft of Jupiter’s src directory makefile

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char * argv[])
{
 printf("Hello from %s!\n", argv[0]);
 return 0;
}

Listing 3-3: src/main.c: The first version of the only C source file in the Jupiter project

N O T E As you read this code, you will probably notice places where a makefile or a source
code file contains a construct that is not written in the simplest manner or is perhaps
not written the way you would have chosen to write it. There is a method to my mad-
ness: I’ve tried to use constructs that are portable to many flavors of the make utility.

Now let’s discuss the basics of make. If you’re already pretty well versed
in it, you can skip the next section. Otherwise, give it a quick read, and we’ll
return our attention to the Jupiter project later in the chapter.

6. Peter Miller’s seminal paper “Recursive Make Considered Harmful” (http://aegis.source
forge.net/auug97.pdf), published over 20 years ago, discusses some of the problems recursive
build systems can cause. I encourage you to read this paper and understand the issues Miller
presents. While the issues are valid, the sheer simplicity of implementing and maintaining a
recursive build system makes it, by far, the most widely used form of build system.

Git tag 3.0

http://aegis.sourceforge.net/auug97.pdf
http://aegis.sourceforge.net/auug97.pdf

Understanding the GNU Coding Standards 39

Makefile Basics
If you don’t use make on a regular basis, it’s often difficult to remember
exactly what goes where in a makefile, so here are a few things to keep in
mind. Besides comments, which begin with a hash mark (#), there are only
two basic types of entities in a makefile:

•	 Rule definitions

•	 Variable assignments

While there are several other types of constructs in a makefile (including
conditional statements, directives, extension rules, pattern rules, function
variables, and include statements, among others), for our purposes, we’ll just
touch lightly on them as needed instead of covering them all in detail. This
doesn’t mean they’re unimportant. On the contrary, they’re very useful if
you’re going to write your own complex build system by hand. However, our
purpose is to gain the background necessary for understanding the GNU
Autotools, so I’ll only cover the aspects of make you need to know to accom-
plish that goal.

If you want a broader education on make syntax, refer to the GNU Make
Manual. For strictly portable syntax, the POSIX man page for make is an
excellent reference. If you want to become a make expert, be prepared to
spend a good deal of time studying these resources—there’s much more to
the make utility than is initially apparent.

Rules
Rules follow the general format shown in Listing 3-4.

targets: [dependencies][; command-0]
[<tab>command-1
<tab>command-2
--snip--
<tab>command-N]

Listing 3-4: The syntax of a rule within a makefile

In this syntax definition, square brackets ([and]) denote optional por-
tions of a rule and <tab> represents a tab (ctrl-i) character.

Except for the tab characters and the line feeds, all other whitespace is
optional and ignored. When a line in a makefile begins with a tab charac-
ter, make generally considers it a command (with the exception of continu-
ation lines, discussed later). Indeed, one of the most frustrating aspects of
makefile syntax to neophytes and experts alike is that commands must be
prefixed with an essentially invisible character. The error messages gener-
ated by the legacy UNIX make utility when a required tab is missing (or
has been converted to spaces by your editor), or when an unintentional
tab is inserted at the start of a line that follows something that could be

40 Chapter 3

interpreted as a rule, are obscure at best. GNU make does a better job with
such error messages. Nonetheless, be careful to use leading tab characters
properly in your makefiles—always and only before commands.7

Note that almost everything in a rule is optional; the only required
aspect of a rule is the targets portion and its colon (:) character. Use of the
first command, command-0 and its preceding semicolon (;), is an optional
form that’s generally discouraged by the Autotools, but is perfectly legiti-
mate make syntax if you have a single command to execute. You may even
combine command-0 with additional commands, but this almost never done.

In general, targets are objects that need to be built, and dependencies are
objects that provide source material for targets. Thus, targets are said to
depend upon the dependencies. Dependencies are essentially prerequisites of
the targets, and therefore they should be updated first.8

Listing 3-5 shows the general layout of a makefile.

var1 = val1
var2 = val2
--snip--
target1 : t1_dep1 t1_dep2 ... t1_depN
<tab>shell-command1a
<tab>shell-command1b
--snip--
target2 : t2_dep1 t2_dep2 ... t2_depN
<tab>shell-command2a
<tab>shell-command2b
--snip--

Listing 3-5: The general layout of a makefile

The contents of a makefile comprise a declarative language wherein you
define a set of desired goals and make decides the best way to accomplish
those goals. The make utility is a rule-based command engine, and the rules
at work indicate which commands should be executed and when. When you
define commands within rules, you’re telling make that you want it to execute
each of the following statements from a shell whenever the preceding target
should be built. Presumably, the commands actually do create or update
the target. The existence and timestamps of the files mentioned in the tar-
gets and dependencies of rules indicate whether the commands should be
executed and in what order.

As make processes the text in a makefile, it builds a web of dependency
chains (technically called a directed acyclic graph, or DAG). When building a
particular target, make must walk backward through the entire graph to the
beginning of each “chain.” While traversing a chain, make executes the com-
mands for each rule, beginning with the rule farthest from the target and

7. In the spirit of full disclosure, it is possible to use tab characters at the start of some other
lines, but you have to be careful not to accidentally trick make into thinking you’re building a
rule, so I find it easiest to simply not use tab except at the start of commands.

8. You’ll often hear dependencies referred to as prerequisites for this reason. In fact, the GNU
Make Manual calls dependencies “prerequisites” and commands “recipes.”

Understanding the GNU Coding Standards 41

working forward to the rule for the desired target. As make discovers targets
that are older than their dependencies, it must execute the associated set
of commands to update those targets before it can process the next rule in
the chain. As long as the rules are written correctly, this algorithm ensures
that make will build a completely up-to-date product using the least num-
ber of operations possible. Indeed, as we’ll see shortly, when the rules in a
makefile are written properly, it’s rather a joy to watch it run after various
changes to files in the project.

Variables
Lines in a makefile containing an equal sign (=) are variable definitions.
Variables in makefiles are somewhat similar to shell or environment vari-
ables, but there are some key differences.

In Bourne-shell syntax, you’d reference a variable in this manner:
${my_var}. Equally viable, without the curly brackets, is $my_var. The syntax
for referencing variables in a makefile is nearly identical, except that you
have the choice of using curly brackets or parentheses: $(my_var). To mini-
mize confusion, it has become somewhat of a convention to use paren-
theses rather than curly brackets when dereferencing make variables. For
single-character make variables, using these delimiters is optional, but you
should use them in order to avoid ambiguity. For example, $X is function-
ally equivalent to $(X) or ${X}, but $(my_var) would require parentheses so
make does not interpret the reference as $(m)y_var.

N O T E To dereference a shell variable inside a make command, escape the dollar sign by dou-
bling it—for example, $${shell_var}. Escaping the dollar sign tells make not to interpret
the variable reference but rather to treat it as literal text in the command. The variable
reference is thus left to be interpolated by the shell when the command is executed.

By default, make reads the process environment into its variable table
before processing the makefile; this allows you to access most environment
variables without explicitly defining them in the makefile. Note, however,
that variables set inside the makefile will override those obtained from the
environment.9 It’s generally not a good idea to depend on the existence of
environment variables in your build process, although it’s okay to use them
conditionally. In addition, make defines several useful variables of its own,
such as the MAKE variable, the value of which is the command used to invoke
make for the current process.

You can assign variables at any point in the makefile. However, you
should be aware that make processes a makefile in two passes. In the first
pass, it gathers variables and rules into tables and internal structures. In the
second pass, it resolves dependencies defined by the rules, invoking those
rules as necessary to rebuild the dependencies based on the filesystem

9. You can use the -e option on the make command line to reverse this default behavior so
that variables defined within the environment override those defined within the makefile.
However, relying on this option can lead to problems caused by subtle environmental differ-
ences between systems.

42 Chapter 3

timestamps gathered during the first pass. If a dependency in a rule is
newer than the target or if the target is missing, then make executes the
commands of the rule to update the target. Some variable references are
resolved immediately during the first pass while processing rules, and oth-
ers are resolved later during the second pass while executing commands.

A Separate Shell for Each Command
As it processes rules, make executes each command independently of those
around it. That is, each individual command under a rule is executed in its
own shell. This means that you cannot export a shell variable in one com-
mand and then try to access its value in the next.

To do something like this, you would have to string commands
together on the same command line with command separator charac-
ters (for example, semicolons in Bourne-shell syntax). When you write
commands like this, make passes the set of concatenated commands as
one command line to the same shell. To avoid long command lines and
increase readability, you can wrap them using a backslash at the end of
each line—by convention, after the semicolon.10 The wrapped portion of
such commands may also be preceded by a tab character. POSIX specifies
that make remove all leading tab characters (even those following escaped
newlines) before processing commands, but be aware that some imple-
mentations of make do output—usually harmlessly—the tab characters
embedded within wrapped commands.11

Listing 3-6 shows a few simple examples of multiple commands that will
be executed by the same shell.

 foo: bar.c
 sources=bar.c; \
 gcc -o foo $${sources}

 fud: baz.c
 sources=baz.c; gcc -o fud $${sources}

 doo: doo.c
 TMPDIR=/var/tmp gcc -o doo doo.c

Listing 3-6: A makefile with some examples of multiple commands executed by the
same shell

In the first example at , both lines are executed by the same shell
because the backslash escapes the newline character between the lines.
The make utility will remove any escaped newline characters before passing
a single, multi-command statement to the shell. The second example at
is identical to the first, from make’s perspective.

10. Some shell commands may naturally be wrapped without semicolons, such as within parts
of if or case statements. In these cases, you still need the backslash before the newline, but
you don’t need the semicolon.

11. Experiments have shown that many make implementations generate cleaner output if you
don’t use tab characters after escaped newlines. Nevertheless, the community seems to have
settled on the consistent use of tab characters in all command lines, whether wrapped or not.

Understanding the GNU Coding Standards 43

The third example at is a bit different. In this case, I’ve defined the
TMPDIR variable only for the child process that will run gcc.12 Note the miss-
ing semicolon; as far as the shell is concerned, this is a single command.13

N O T E If you choose to wrap commands with a trailing backslash, be sure that there are
no spaces or other invisible characters after it. The backslash escapes the newline
character, so it must immediately precede that character.

Variable Binding
Variables referenced in commands may be defined after the command in
the makefile because such references are not bound to their values until
just before make passes the command to the shell for execution—long after
the entire makefile has been read. In general, make binds variables to values
as late as it possibly can.

Since commands are processed at a later stage than rules, variable
references in commands are bound later than those in rules. Variable ref-
erences found in rules are expanded when make builds the directed graph
from the rules in the makefile. Thus, a variable referenced in a rule must
be fully defined in a makefile before the referencing rule. Listing 3-7 shows
a portion of a makefile that illustrates both of these concepts.

--snip--
mytarget = foo

 $(mytarget): $(mytarget).c
 gcc -o $(mytarget) $(mytarget).c

mytarget = bar
--snip--

Listing 3-7: Variable expansion in a makefile

In the rule at , both references to $(mytarget) are expanded to foo
because they’re processed during the first pass, when make is building the
variable list and directed graph. However, the outcome is probably not what
you’d expect, because both references to $(mytarget) in the command at
are not expanded until much later, long after make has already assigned bar
to mytarget, overwriting the original assignment of foo.

Listing 3-8 shows the same rule and command the way make sees them
after the variables are fully expanded.

--snip--
foo: foo.c
 gcc -o bar bar.c
--snip--

Listing 3-8: The results after variable expansion of the code in Listing 3-7

12. The gcc compiler uses the value of the TMPDIR variable to determine where to write tempo-
rary intermediate files between tools such as the C-preprocessor and the compiler.

13. You cannot dereference TMPDIR on the command line when it’s defined in this manner.
Only the child process has access to this variable; the current shell does not.

44 Chapter 3

The moral of this story is that you should understand where variables
will be expanded in makefile constructs so you’re not surprised when make
refuses to act in a sane manner when it processes your makefile. It is good
practice (and a good way to avoid headaches) to always assign variables
before you intend to use them. For more information on immediate and
deferred expansion of variables in makefiles, refer to “How make Reads a
Makefile” in the GNU Make Manual.

Rules in Detail
The rules used in my examples, known as common make rules, contain a
single colon character (:). The colon separates targets on the left from
dependencies on the right.

Remember that targets are products—that is, filesystem entities that
can be produced by running one or more commands, such as a C or C++
compiler, a linker, or a documentation generator like Doxygen or LaTeX.
Dependencies, on the other hand, are source objects, or objects from which
targets are created. These may be computer language source files, interme-
diate products built by a previous rule, or anything else that can be used by
a command as a resource.

You can specify any target defined within a makefile rule directly on
the make command line, and make will execute all the commands necessary
to generate that target.

N O T E If you don’t specify any targets on the make command line, make will use the default
target—the first one it finds in the makefile.

For example, a C compiler takes dependency main.c as input and gener-
ates target main.o. A linker then takes dependency main.o as input and gen-
erates a named executable target—program, in this case.

Figure 3-1 shows the flow of data as it might be specified by the rules
defined in a makefile.

gcc ld

System executables User-provided data files Generated data files

main.c main.o program

Generated executables

print.c

display.c

print.o

display.o

Figure 3-1: A data flow diagram for the compile and link processes

The make utility implements some fairly complex logic to determine
when a rule should be run, based on whether a target exists and whether
it is older than its dependencies. Listing 3-9 shows a makefile containing
rules, some of which execute the actions in Figure 3-1.

Understanding the GNU Coding Standards 45

program: main.o print.o display.o
 ld main.o print.o display.o ... -o program

main.o: main.c
 gcc -c -g -O2 -o main.o main.c

print.o: print.c
 gcc -c -g -O2 -o print.o print.c

display.o: display.c
 gcc -c -g -O2 -o display.o display.c

Listing 3-9: Using multiple make rules to compile and link a program

The first rule in this makefile says that program depends on main.o, print.o,
and display.o. The remaining rules say that each .o file depends on the corre-
sponding .c file. Ultimately, program depends on the three source files, but the
object files are necessary as intermediate dependencies because there are two
steps to the process—compile and link—with a result in between. For each
rule, make uses an associated list of commands to build the rule’s target from
its list of dependencies.

Unix compilers are designed as higher-level tools than linkers. They have
built-in, low-level knowledge about system-specific linker requirements. In the
makefile in Listing 3-9, the ellipsis in the line at is a placeholder for a list of
system-specific, low-level objects and libraries required to build all programs
on this system. The compiler can be used to call the linker, silently passing
these system-specific objects and libraries. (It’s so effective and widely used
that it’s often difficult to discover how to manually execute the linker on a
given system.) Listing 3-10 shows how you might rewrite the makefile from
Listing 3-9 to use the compiler to compile the sources and call the linker in
a single rule.

sources = main.c print.c display.c

program: $(sources)
 gcc -g -O2 -o program $(sources)

Listing 3-10: Using a single make rule to compile sources into an executable

N O T E Using a single rule and command to process both steps is possible in this case because
the example is very basic. For larger projects, skipping from source to executable in
a single step is usually not the wisest way to manage the build process. However, in
either case, using the compiler to call the linker can ease the burden of determining the
many system objects that need to be linked into an application, and, in fact, this very
technique is used quite often. More complex examples, wherein each file is compiled
separately, use the compiler to compile each source file into an object file and then use
the compiler to call the linker to link them all together into an executable.

46 Chapter 3

In this example, I’ve added a make variable (sources) that allows us to
consolidate all product dependencies into one location. We now have a list
of source files captured in a variable definition that is referenced in two
places: in the dependency list and on the command line.

Automatic Variables

There may be other kinds of objects in a dependency list that are not in the
sources variable, including precompiled objects and libraries. These other
objects would have to be listed separately, both in the rule and on the com-
mand line. Wouldn’t it be nice if we had a shorthand notation for referenc-
ing the rule’s entire dependency list in the commands?

As it happens, various automatic variables can be used to reference
portions of the controlling rule during the execution of a command.
Unfortunately, most of these are all but useless if you care about portability
between implementations of make. The $@ variable (which references the
current target) happens to be portable and useful, but most of the other
automatic variables are too limited to be very useful.14 The following is a
complete list of portable automatic variables defined by POSIX for make:

•	 $@ refers to the full target name of the current target or the archive
filename part of a library archive target. This variable is valid in both
explicit and implicit rules.

•	 $% refers to a member of an archive and is valid only when the current
target is an archive member—that is, an object file that is a member of
a static library. This variable is valid in both explicit and implicit rules.

•	 $? refers to the list of dependencies that are newer than the current tar-
get. This variable is valid in both explicit and implicit rules.

•	 $< refers to the member of the dependency list whose existence allowed
the rule to be chosen for the target. This variable is only valid in
implicit rules.

•	 $* refers to the current target name with its suffix deleted. This variable
is guaranteed by POSIX to be valid only in implicit rules.

GNU make dramatically extends the POSIX-defined list, but since GNU
extensions are not portable, it’s unwise to use any of these except $@.

Dependency Rules

Let us now assume that print.c and display.c each have a header file of the
same name, ending in .h. Each of these source files includes its own header
file, but main.c includes both print.h and display.h. Given the makefiles of
Listings 3-9 and 3-10, what do you suppose would happen if you executed

14. This is because POSIX is not so much a specification for the way things should be done
as it is a specification for the way things are done. Essentially, the purpose of the POSIX
standard is to keep Unix implementations from deviating any further from the norm than
necessary. Unfortunately, most make implementations had wide acceptance within their own
communities long before the idea for a POSIX standard was conceived.

Understanding the GNU Coding Standards 47

make to build program, then modified one of the header files—say print.h—
and then re-executed make? Nothing would happen because make is unaware
even of the existence of these header files. As far as make is concerned, you
didn’t touch anything related to program.

In Listing 3-11, I’ve replaced the sources variable with an objects vari-
able and replaced the list of source files with a list of object files. This ver-
sion of the makefile in Listing 3-10 also eliminates redundancy by making
use of both standard and automatic variables.

objects = main.o print.o display.o

main.o: main.c print.h display.h
print.o: print.c print.h
display.o: display.c display.h

program: $(objects)
 gcc -g -O2 -o $@ $(objects)

Listing 3-11: Using automatic variables in a command

I’ve also added three dependency rules, which are rules without com-
mands that clarify the relationships between compiler output files and
dependent source and header files. Because print.h and display.h are (pre-
sumably) included by main.c, main.c must be recompiled if either of those
files changes; however, make has no way of knowing that these two header
files are included by main.c. Dependency rules allow the developer to tell
make about such backend relationships.

Implicit Rules

If you attempt to mentally follow the dependency graph that make would
build from the rules within the makefile in Listing 3-11, you’ll find what
appears to be a hole in the web. According to the last rule in the file, the
program executable depends on main.o, print.o, and display.o. This rule also
provides the command to link these objects into an executable (using the
compiler merely to call the linker this time). The object files are tied to
their corresponding C source and header files by the three dependency
rules. But where are the commands that compile the .c files into .o files?

We could add these commands to the dependency rules, but there’s
really no need because make has a built-in rule that knows how to build .o
files from .c files. There’s nothing magic about make—it only knows about
the relationships you describe to it through the rules you write. But make
does have certain built-in rules that describe the relationships between,
for example, .c files and .o files. This particular built-in rule provides com-
mands for building anything with a .o extension from a file of the same base
name with a .c extension. These built-in rules are called suffix rules or, more
generally, implicit rules, because the name of the dependency (source file) is
implied by the name of the target (object file).

To make the built-in implicit rules more widely usable, their com-
mands often consume well-known make variables. If you set those variables,

48 Chapter 3

overriding the default values, you can wield some control over the execu-
tion of a built-in rule. For instance, the command in the standard POSIX
definition of the built-in implicit rule for converting .o files to .c files is:15

$(CC) $(CPPFLAGS) $(CFLAGS) -c

Here, you can override just about every aspect of this built-in rule by
setting your own values for CC, the compiler; CPPFLAGS, options passed to the
C preprocessor; and CFLAGS, options passed to the C compiler.

You can write implicit rules yourself, if you wish. You can even override
the default implicit rules with your own versions. Implicit rules are a pow-
erful tool, and they shouldn’t be overlooked, but for the purposes of this
book, we won’t go into any more detail. You can learn more about writing
and using implicit rules within makefiles in “Using Implicit Rules” in the
GNU Make Manual.

To illustrate this implicit functionality, I created trivial C source and
header files to accompany the sample makefile from Listing 3-11. Here’s
what happened when I executed make on this makefile:

 $ make
cc -c -o main.o main.c
$

 $ make program
cc -c -o print.o print.c
cc -c -o display.o display.c
gcc -g -O2 -o program main.o print.o display.o
$

As you can see, cc was magically executed with -c and -o options to
generate main.o from main.c. This is common command line syntax used to
make a C-language compiler build objects from sources—it’s so common,
in fact, that the functionality is built into make. If you look for cc on a mod-
ern GNU/Linux system, you’ll find that it’s a soft link in /usr/bin that refers
to the system’s GNU C compiler. On other systems, it refers to the system’s
native C compiler. Calling the system C compiler cc has been a de facto stan-
dard for decades.16

The extra spaces between cc and -c in that output under represent
the spaces between the uses of the CPPFLAGS and CFLAGS variables, which are
defined as empty by default.

But why did the make utility build only main.o when we typed make at ?
Simply because the dependency rule for main.o provided the first (and thus,
the default) target for the makefile. In this case, to build program, we needed
to execute make program, as we did in . Remember that when you enter make

15. See “Catalogue of Built-In Rules” in the GNU Make Manual.

16. POSIX has standardized the program (or link) names c89 and c99 to refer to 1989 and
1999 C-language standard compatible compilers, respectively. Since these commands can
refer to the same compiler with different command line options, they’re often implemented
as binary programs or shell scripts rather than merely as soft links.

Understanding the GNU Coding Standards 49

on the command line, the make utility attempts to build the first explicitly
defined target within the file called Makefile in the current directory. If we
wanted to make program the default target, we could rearrange the rules so
the program rule would be the first one listed in the makefile.

To see the dependency rules in action, touch one of the header files
and then rebuild the program target:

$ touch display.h
$ make program
cc -c -o main.o main.c
cc -c -o display.o display.c
gcc -g -O0 -o program main.o print.o display.o
$

After display.h was updated, only display.o, main.o, and program were
rebuilt. The print.o object didn’t need to be rebuilt because print.c doesn’t
depend on display.h, according to the rules specified in the makefile.

Phony Targets

Targets are not always files. They can also be so-called phony targets, as in
the case of all and clean. These targets don’t refer to true products in the
filesystem but rather to particular outcomes or actions—when you make
these targets, the project is cleaned, all products are built, and so on.

Multiple Targets

In the same way that you can list multiple dependencies within a rule on
the right side of a colon, you can combine rules for multiple targets with the
same dependencies and commands by listing the targets on the left side of a
colon, as shown in Listing 3-12.

all clean:
 cd src && $(MAKE) $@

Listing 3-12: Using multiple targets in a rule

While it may not be immediately apparent, this example contains
two separate rules: one for each of the two targets, all and clean. Because
these two rules have the same set of dependencies (none, in this case)
and the same set of commands, we’re able to take advantage of a short-
hand notation supported by make that allows us to combine their rules into
one specification.

To help you understand this concept, consider the $@ variable in
Listing 3-12. Which target does it refer to? Well, that depends on which
rule is currently executing—the one for all or the one for clean. Since
a rule can only be executed on a single target at any given time, $@ can
only ever refer to one target, even when the controlling rule specification
contains several.

50 Chapter 3

Resources for Makefile Authors
GNU make is significantly more powerful than the original AT&T UNIX make
utility, although GNU make is completely backward compatible, as long as
you avoid GNU extensions. The GNU Make Manual17 is available online, and
O’Reilly has published an excellent book on the original AT&T UNIX make
utility18 and all of its many nuances. While you can still find this title, the
publisher has since merged its content into a new edition that also covers
GNU make extensions.19

This concludes the general discussion of makefile syntax and the make
utility, although we will look at additional makefile constructs as we encoun-
ter them throughout the rest of this chapter. With this general information
behind us, let’s return to the Jupiter project and begin adding some more
interesting functionality.

Creating a Source Distribution Archive
In order to actually get source code for Jupiter to our users, we’re going to
have to create and distribute a source archive—a tarball. We could write a
separate script to create the tarball, but since we can use phony targets to
create arbitrary sets of functionality in makefiles, let’s design a make target to
perform this task instead. Building a source archive for distribution is usu-
ally relegated to the dist target.

When designing a new make target, we need to consider whether its func-
tionality should be distributed among the makefiles of the project or han-
dled in a single location. Normally, the rule of thumb is to take advantage
of a recursive build system’s nature by allowing each directory to manage
its own portions of a process. We did just this in Listing 3-1 when we passed
control of building the jupiter program down to the src directory, where
the source code is located. However, building a compressed archive from
a directory structure isn’t really a recursive process.20 This being the case,
we’ll have to perform the entire task in one of the two makefiles.

Global processes are often handled by the makefile at the highest rele-
vant level in the project directory structure. We’ll add the dist target to our
top-level makefile, as shown in Listing 3-13.

17. See the Free Software Foundation’s GNU Make Manual at http://www.gnu.org/software
/make/manual/.

18. Andy Oram and Steve Talbott, Managing Projects with make, Second Edition (Sebastopol,
CA: O’Reilly Media, 1991), http://oreilly.com/catalog/9780937175903/.

19. Robert Mecklenburg, Managing Projects with GNU Make, Third Edition: The Power of GNU
make for Building Anything (Sebastopol, CA: O’Reilly Media, 2004), http://www.oreilly.com/
catalog/9780596006105/.

20. Well, okay, it is a recursive process, but the recursive portions of the process are tucked
away inside the tar utility.

https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
http://oreilly.com/catalog/9780937175903/
http://www.oreilly.com/catalog/9780596006105/
http://www.oreilly.com/catalog/9780596006105/

Understanding the GNU Coding Standards 51

 package = jupiter
version = 1.0
tarname = $(package)
distdir = $(tarname)-$(version)

all clean jupiter:
 cd src && $(MAKE) $@

 dist: $(distdir).tar.gz

 $(distdir).tar.gz: $(distdir)
 tar chof - $(distdir) | gzip -9 -c > $@
 rm -rf $(distdir)

 $(distdir):
 mkdir -p $(distdir)/src
 cp Makefile $(distdir)
 cp src/Makefile src/main.c $(distdir)/src

 .PHONY: all clean dist

Listing 3-13: Makefile: Adding the dist target to the top-level makefile

Besides the addition of the dist target at , I’ve also made several other
modifications. Let’s look at them one at a time. I’ve added the dist target to
the .PHONY rule at . The .PHONY rule is a special kind of built-in rule called a
dot-rule or directive. The make utility understands several dot-rules. The purpose
of .PHONY is simply to tell make that certain targets don’t generate filesystem
objects. Normally, make determines which commands to run by comparing the
timestamps of the targets to those of their dependencies in the filesystem—but
phony targets don’t have associated filesystem objects. Using .PHONY ensures
that make won’t go looking for nonexistent product files named after these tar-
gets. It also ensures that if a file or directory named dist somehow inadvertently
gets added to the directory, make will still treat the dist target as non-real.

Adding a target to the .PHONY rule has another effect. Since make won’t be
able to use timestamps to determine whether the target is up-to-date (that
is, newer than its dependencies), make has no recourse but to always execute
the commands associated with phony targets whenever these targets either
are requested on the command line or appear in a dependency chain.

I’ve separated the functionality of the dist target into three separate rules
(, , and) for the sake of readability, modularity, and maintenance. This
is a great rule of thumb to follow in any software engineering process: build
large processes from smaller ones and reuse the smaller processes where it makes sense.

The dist target at depends on the existence of the ultimate goal—
in this case, a source-level compressed archive package, jupiter-1.0.tar.gz.
I’ve used one variable to hold the version number (which makes it easier
to update the project version later) and another variable for the package
name at , which will make it easier to change the name if I ever decide to
reuse this makefile for another project. I’ve also logically split the functions
of package name and tarball name; the default tarball name is the package
name, but we do have the option of making them different.

Git tag 3.1

52 Chapter 3

The rule that builds the tarball at indicates how this should be done
with a command that uses the gzip and tar utilities to create the file. But,
notice that the rule has a dependency—the directory to be archived. The
directory name is derived from the tarball name and the package version
number; it’s stored in yet another variable called distdir.

We don’t want object files and executables from our last build attempt
to end up in the archive, so we need to build an image directory contain-
ing exactly what we want to ship—including any files required in the
build and install processes and any additional documentation or license
files. Unfortunately, this pretty much mandates the use of individual
copy (cp) commands.

Since there’s a rule in the makefile (at) that tells how this direc-
tory should be created, and since that rule’s target is a dependency of the
tarball, make runs the commands for that rule before running the commands
for the tarball rule. Recall that make processes rules to build dependencies
recursively, from the bottom up, until it can run the commands for the
requested target.21

Forcing a Rule to Run
There’s a subtle flaw in the $(distdir) target that may not be obvious right
now, but it will rear its ugly head at the worst of times. If the archive image
directory (jupiter-1.0) already exists when you execute make dist, then make
won’t try to create it. Try this:

$ mkdir jupiter-1.0
$ make dist
tar chof - jupiter-1.0 | gzip -9 -c > jupiter-1.0.tar.gz
rm -rf jupiter-1.0
$

Notice that the dist target didn’t copy any files—it just built an archive
out of the existing jupiter-1.0 directory, which was empty. Our users would
get a real surprise when they unpack this tarball! Worse still, if the image
directory from the previous attempt to archive happened to still be there,
the new tarball would contain the now-outdated sources from our last
attempt to create a distribution tarball.

The problem is that the $(distdir) target is a real target with no
dependencies, which means that make will consider it up-to-date as long
as it exists in the filesystem. We could add the $(distdir) target to the
.PHONY rule to force make to rebuild it every time we make the dist target,
but it’s not a phony target—it’s a real filesystem object. The proper way
to ensure that $(distdir) is always rebuilt is to ensure that it doesn’t exist
before make attempts to build it. One way to accomplish this is to create a
true phony target that will always execute and then add that target to the
dependency list for the $(distdir) target. A common name for this kind of
target is FORCE, and I’ve implemented this concept in Listing 3-14.

21. This process is formally called post-order recursion.

Understanding the GNU Coding Standards 53

--snip--
$(distdir).tar.gz: $(distdir)
 tar chof - $(distdir) | gzip -9 -c > $@
 rm -rf $(distdir)

 $(distdir): FORCE
 mkdir -p $(distdir)/src
 cp Makefile $(distdir)
 cp src/Makefile $(distdir)/src
 cp src/main.c $(distdir)/src

 FORCE:
 -rm $(distdir).tar.gz >/dev/null 2>&1
 rm -rf $(distdir)

.PHONY: FORCE all clean dist

Listing 3-14: Makefile: Using the FORCE target

The FORCE rule’s commands (at) are executed every time because
FORCE is a phony target. Since we made FORCE a dependency of the $(distdir)
target (at), we have the opportunity to delete any previously created files
and directories before make begins to evaluate whether it should execute the
commands for $(distdir).

Leading Control Characters
A leading dash character (-) on a command tells make not to care about the sta-
tus code of the command it precedes. Normally, when make encounters a com-
mand that returns a nonzero status code to the shell, it will stop execution and
display an error message, but if you use a leading dash, it will just ignore the
error and continue. I use a leading dash on the first rm command in the FORCE
rule because I want to delete previously created product files that may or may
not exist, and rm will return an error if I attempt to delete a nonexistent file.

In general, a better option is to use the -f flag on the rm command line,
which causes rm to ignore missing file errors. Another benefit of using -f is that
we no longer need to redirect error messages to /dev/null, as we really care
about other errors—permission errors, for example. From this point on, we’ll
remove the leading dash in front of any rm commands and ensure we use -f.

Another leading character that you may encounter is the at sign (@).
A command prefixed with an at sign tells make not to perform its normal
behavior of printing the command to the stdout device as it executes it. It
is common to use a leading at sign on echo statements. You don’t want make
to print echo statements, because then your message will be printed twice:
once by make and then again by the echo statement itself.

N O T E You may also combine these leading characters (@, -, and +) in any order. The plus (+)
character is used to force a command to execute that would otherwise not be executed
due, for example, to a -n command line option, which tells make to perform a so-called
dry run. Some commands make sense even in a dry run.

Git tag 3.2

54 Chapter 3

It’s best to use the at sign judiciously. I usually reserve it for commands
I never want to see, such as echo statements. If you like quiet build systems,
consider using the global .SILENT directive in your makefiles. Or better still,
simply do nothing, thereby allowing the user the option of adding the -s
option to their make command lines. This enables the user to choose how
much noise they want to see.

Automatically Testing a Distribution
The rule for building the archive directory is probably the most frustrating
rule in this makefile because it contains commands to copy individual files
into the distribution directory. Every time we change the file structure in
our project, we have to update this rule in our top-level makefile, or we’ll
break the dist target. But there’s nothing more we can do—we’ve made the
rule as simple as possible. Now we just have to remember to manage this
process properly.

Unfortunately, though, even worse things than breaking the dist target
could happen if you forget to update the distdir rule’s commands. It may
appear that the dist target is working, but it may not actually be copying all
of the required files into the tarball. In fact, it is far more likely that this,
rather than an error, will occur, because adding files to a project is a more
common activity than moving them around or deleting them. New files will
not be copied, but the dist rule won’t notice the difference.

There is a way to perform a sort of self-check on the dist target. We can
create another phony target, called distcheck, that does exactly what our
users will do: unpack the tarball and build the project. We can have this
rule’s commands perform this task in a temporary directory. If the build
process fails, then the distcheck target will break, telling us that we forgot
something crucial in our distribution.

Listing 3-15 shows the modifications to our top-level makefile that are
required to implement the distcheck target.

--snip--
$(distdir): FORCE
 mkdir -p $(distdir)/src
 cp Makefile $(distdir)
 cp src/Makefile src/main.c $(distdir)/src

distcheck: $(distdir).tar.gz
 gzip -cd $(distdir).tar.gz | tar xvf -
 cd $(distdir) && $(MAKE) all
 cd $(distdir) && $(MAKE) clean
 rm -rf $(distdir)
 @echo "*** Package $(distdir).tar.gz is ready for distribution."
--snip--
.PHONY: FORCE all clean dist distcheck

Listing 3-15: Makefile: Adding a distcheck target to the top-level makefile

Git tag 3.3

Understanding the GNU Coding Standards 55

The distcheck target depends on the tarball itself, so the rule that builds
the tarball is executed first. The make utility then executes the distcheck com-
mands, which unpack the tarball just built and then recursively run make on
the all and clean targets within the resulting directory. If that process suc-
ceeds, the distcheck target prints out a message indicating that your users
will likely not have a problem with this tarball.

Now all you have to do is remember to execute make distcheck before you
post your tarballs for public distribution!

Unit Testing, Anyone?
Some people insist that unit testing is evil, but the only honest rationale they
can come up with for not doing it is laziness. Proper unit testing is hard work,
but it pays off in the end. Those who do it have learned a lesson (usually in
childhood) about the value of delayed gratification.

A good build system should incorporate proper unit testing. The most
commonly used target for testing a build is the check target, so we’ll go ahead
and add it in the usual manner. The actual unit test should probably go in
src/Makefile because that’s where the jupiter executable is built, so we’ll pass
the check target down from the top-level makefile.

But what commands do we put in the check rule? Well, jupiter is a pretty
simple program—it prints the message Hello from some/path/jupiter! where
some/path depends on the location from which jupiter was executed. I’ll use
the grep utility to test that jupiter actually outputs such a string.

Listings 3-16 and 3-17 illustrate the modifications to our top-level and
src directory makefiles, respectively.

--snip--
all clean check jupiter:
 cd src && $(MAKE) $@
--snip--
.PHONY: FORCE all clean check dist distcheck

Listing 3-16: Makefile: Passing the check target to src/Makefile

--snip--
src/jupiter: src/main.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ src/main.c

check: all
 ./jupiter | grep "Hello from .*jupiter!"
 @echo "*** ALL TESTS PASSED ***"
--snip--

.PHONY: all clean check

Listing 3-17: src/Makefile: Implementing the unit test in the check target

Note that check depends on all. We can’t really test our products unless
they are up-to-date, reflecting any recent source code or build system changes

Git tag 3.4

56 Chapter 3

that may have been made. It makes sense that if the user wants to test the
products, they also want the products to exist and be up-to-date. We can
ensure they exist and are current by adding all to check’s dependency list.

There’s one more enhancement we can make to our build system: we
can add check to the list of targets executed by make in our distcheck rule,
between the commands to make all and clean. Listing 3-18 shows where this
is done in the top-level makefile.

--snip--
distcheck: $(distdir).tar.gz
 gzip -cd $(distdir).tar.gz | tar xvf -
 cd $(distdir) && $(MAKE) all
 cd $(distdir) && $(MAKE) check
 cd $(distdir) && $(MAKE) clean
 rm -rf $(distdir)
 @echo "*** Package $(distdir).tar.gz is ready for distribution."
--snip--

Listing 3-18: Makefile: Adding the check target to the $(MAKE) command

Now when we run make distcheck, it will test the entire build system
shipped with the package.

Installing Products
We’ve reached the point where our users’ experiences with Jupiter should be
fairly painless—even pleasant—as far as building the project is concerned.
Users will simply unpack the distribution tarball, change into the distribution
directory, and type make. It really can’t get any simpler than that.

But we still lack one important feature—installation. In the case of the
Jupiter project, this is fairly trivial. There’s only one program, and most
users would guess correctly that to install it, they should copy jupiter into
either their /usr/bin or /usr/local/bin directory. More complex projects,
however, could cause users real consternation over where to put user and
system binaries, libraries, header files, and documentation, including man
pages, info pages, PDF files, and the more or less obligatory README,
AUTHORS, NEWS, INSTALL, and COPYING files generally associated with
GNU projects.

We don’t really want our users to have to figure all that out, so we’ll cre-
ate an install target to manage putting things where they go once they’re
built properly. In fact, why not just make installation part of the all target?
Well, let’s not get carried away. There are actually a few good reasons for
not doing this.

First, build and installation are separate logical concepts. The second
reason is a matter of filesystem rights. Users have rights to build projects in
their own home directories, but installation often requires root-level rights
to copy files into system directories. Finally, there are several reasons why a
user may wish to build but not install a project, so it would be unwise to tie
these actions together.

Git tag 3.5

Understanding the GNU Coding Standards 57

While creating a distribution package may not be an inherently recur-
sive process, installation certainly is, so we’ll allow each subdirectory in our
project to manage installation of its own components. To do this, we need to
modify both the top-level and the src-level makefiles. Changing the top-level
makefile is easy: since there are no products to be installed in the top-level
directory, we’ll just pass the responsibility on to src/Makefile in the usual way.

The modifications for adding an install target are shown in Listings 3-19
and 3-20.

--snip--
all clean check install jupiter:
 cd src && $(MAKE) $@
--snip--

.PHONY: FORCE all clean check dist distcheck install

Listing 3-19: Makefile: Passing the install target to src/Makefile

--snip--
check: all
 ./src/jupiter | grep "Hello from .*jupiter!"
 @echo "*** All TESTS PASSED"

install:
 cp jupiter /usr/bin
 chown root:root /usr/bin/jupiter
 chmod +x /usr/bin/jupiter
--snip--

.PHONY: all clean check install

Listing 3-20: src/Makefile: Implementing the install target

In the top-level makefile shown in Listing 3-19, I’ve added install to the
list of targets passed down to src/Makefile. The installation of files is handled
by the src-level makefile shown in Listing 3-20.

Installation is a bit more complex than simply copying files. If a file is
placed in the /usr/bin directory, then root should own it so that only root can
delete or modify it. Additionally, the jupiter binary should be flagged exe-
cutable, so I’ve used the chmod command to set the mode of the file as such.
This is probably redundant, as the linker ensures that jupiter is created as
an executable file, but some types of executable products are not generated
by a linker—shell scripts, for example.

Now our users can just type the following sequence of commands and
the Jupiter project will be built, tested, and installed with the correct system
attributes and ownership on their platforms:

$ gzip -cd jupiter-1.0.tar.gz | tar xf -
$ cd jupiter-1.0
$ make all check
--snip--

Git tag 3.6

58 Chapter 3

$ sudo make install
Password: ******
--snip--
$

Installation Choices
All of this is well and good, but it could be a bit more flexible with
regard to where things are installed. Some users may be okay with having
jupiter installed into the /usr/bin directory. Others are going to ask why
it isn’t installed into the /usr/local/bin directory—after all, this is a com-
mon convention. We could change the target directory to /usr/local/bin,
but then users may ask why they don’t have the option of installing into
their home directories. This is the perfect situation for a little command
line–supported flexibility.

Another problem with our current build system is that we have to do
a lot of stuff just to install files. Most Unix systems provide a system-level
program—sometimes simply a shell script—called install that allows a
user to specify various attributes of the files being installed. The proper
use of this utility could simplify things a bit for Jupiter’s installation, so
while we’re adding location flexibility, we might as well use the install
utility, too. These modifications are shown in Listings 3-21 and 3-22.

package = jupiter
version = 1.0
tarname = $(package)
distdir = $(tarname)-$(version)

prefix=/usr/local
 export prefix

all clean check install jupiter:
 cd src && $(MAKE) $@
--snip--

Listing 3-21: Makefile: Adding a prefix variable

--snip--
install:

 install -d $(prefix)/bin
 install -m 0755 jupiter $(prefix)/bin
--snip--

Listing 3-22: src/Makefile: Using the prefix variable in the install target

Notice that I only declared and assigned the prefix variable in the
top-level makefile, but I referenced it in src/Makefile. I can do this because
I used the export modifier at in the top-level makefile—this modifier
exports the variable to the shell that make spawns when it executes itself in
the src directory. This feature of make allows us to define all of our user vari-
ables in one obvious location—at the beginning of the top-level makefile.

Git tag 3.7

Understanding the GNU Coding Standards 59

N O T E GNU make allows you to use the export keyword on the assignment line, but this syn-
tax is not portable between GNU make and other versions of make. Technically, POSIX
doesn’t support the use of export at all, but most make implementations support it.

I’ve now declared the prefix variable to be /usr/local, which is very nice
for those who want to install jupiter in /usr/local/bin but not so nice for
those who want it in /usr/bin. Fortunately, make allows you to define make
variables on the command line, in this manner:

$ sudo make prefix=/usr install
--snip--

Remember that variables defined on the command line override those
defined within the makefile.22 Thus, users who want to install jupiter into
the /usr/bin directory now have the option of specifying this on the make
command line.

With this system in place, our users may install jupiter into a bin directory
beneath any directory they choose, including a location in their home direc-
tory (for which they do not need additional rights). This is, in fact, the reason
we added the install -d $(prefix)/bin command at in Listing 3-22—this
command creates the installation directory if it doesn’t already exist. Since
we allow the user to define prefix on the make command line, we don’t actually
know where the user is going to install jupiter; therefore, we have to be pre-
pared for the possibility that the location may not yet exist. Give this a try:23

$ make all
$ make prefix=$PWD/inst install
$
$ ls -1p
inst/
Makefile
src/
$
$ ls -1p inst
bin/
$
$ ls -1p inst/bin
jupiter
$

22. Unfortunately, some make implementations do not propagate such command line variables
to recursive $(MAKE) processes. To alleviate this potential problem, variables that might be set on
the command line can be passed as var="$(var)" on sub-make command lines. My simple exam-
ples ignore this issue because it’s a corner case, but you should at least be aware of this problem.

23. In the examples throughout this book, for the sake of simplicity, and to keep from becom-
ing sidetracked on irrelevant issues, I simply assume paths don’t contain any whitespace—
files and directories with spaces in their names. You can write makefiles that handle these
conditions properly, but it involves the judicious use of quoting around various variable refer-
ences both on the command line and within the makefiles themselves. All of these problems
disappear with the use of the Autotools, as they handle all the cases where file and directory
names may contain whitespace.

60 Chapter 3

Uninstalling a Package
What if a user doesn’t like our package after they’ve installed it, and they
just want to get it off their system? This is a fairly likely scenario for the
Jupiter project, as it’s rather useless and takes up valuable space in the bin
directory. In the case of your projects, however, it’s more likely that a user
would want to do a clean install of a newer version of the project or replace
the test build they downloaded from the project website with a profession-
ally packaged version that comes with their Linux distribution. Support for
an uninstall target would be very helpful in situations like these.

Listings 3-23 and 3-24 show the addition of an uninstall target to our
two makefiles.

--snip--
all clean check install uninstall jupiter:
 cd src && $(MAKE) $@
--snip--

.PHONY: FORCE all clean check dist distcheck install uninstall

Listing 3-23: Makefile: Adding the uninstall target to the top-level makefile

--snip--
install:
 install -d $(prefix)/bin
 install -m 0755 jupiter $(prefix)/bin

uninstall:
 rm -f $(prefix)/bin/jupiter
 -rmdir $(prefix)/bin >/dev/null 2>&1
--snip--

.PHONY: all clean check install uninstall

Listing 3-24: src/Makefile: Adding the uninstall target to the src-level makefile

As with the install target, this target requires root-level rights if the user
is using a system prefix, such as /usr or /usr/local. You should be very careful
about how you write your uninstall targets; unless a directory belongs specifi-
cally to your package, you shouldn’t assume you created it. If you do, you may
end up deleting a system directory like /usr/bin!

On the other hand, we did create the directory in the install target if it
was originally missing, so we should remove it if possible. Here, we can use
the rmdir command, whose job it is to remove empty directories. Even if the
directory is a system directory such as /usr/bin, removing it is harmless if it’s
empty, but rmdir will fail if it’s not empty. Recalling that command failure
stops the make process, we’ll also prefix it with a dash character. And we don’t
really want to see such a failure, so we’ll redirect it’s output to /dev/null.

The list of things to maintain in our build system is getting out of hand.
There are now two places we need to update when we change our installa-
tion processes: the install and uninstall targets. Unfortunately, this is really

Git tag 3.8

Understanding the GNU Coding Standards 61

about the best we can hope for when writing our own makefiles, unless
we resort to fairly complex shell script commands. But hang in there—in
Chapter 6, I’ll show you how to rewrite this makefile in a much simpler way
using GNU Automake.

Testing Install and Uninstall
Now let’s add some code to our distcheck target to test the functionality of
the install and uninstall targets. After all, it’s fairly important that both of
these targets work correctly from our distribution tarballs, so we should test
them in distcheck before declaring the tarball release worthy. Listing 3-25
illustrates the necessary changes to the top-level makefile.

--snip--
distcheck: $(distdir).tar.gz
 gzip -cd $(distdir).tar.gz | tar xvf -
 cd $(distdir) && $(MAKE) all
 cd $(distdir) && $(MAKE) check
 cd $(distdir) && $(MAKE) prefix=$${PWD}/_inst install
 cd $(distdir) && $(MAKE) prefix=$${PWD}/_inst uninstall
 cd $(distdir) && $(MAKE) clean
 rm -rf $(distdir)
 @echo "*** Package $(distdir).tar.gz is ready for distribution."
--snip--

Listing 3-25: Makefile: Adding distcheck tests for the install and uninstall targets

Note that I used a double dollar sign on the $${PWD} variable references,
ensuring that make passes the variable reference to the shell with the rest of
the command line, rather than expanding it inline before executing the
command. I wanted this variable to be dereferenced by the shell rather
than by the make utility.24

What we’re doing here is testing to ensure the install and uninstall
targets don’t generate errors—but this isn’t very likely because all they do is
install files into a temporary directory within the build directory. We could
add some code immediately after the make install command that looks for
the products that are supposed to be installed, but that’s more than I’m
willing to do. One reaches a point of diminishing returns, where the code
that does the checking is just as complex as the installation code—in which
case, the check becomes pointless.

But there is something else we can do: we can write a more or less
generic test that checks to see if everything we installed was properly
removed. Since the stage directory was empty before our installation, it
had better be in a similar state after we uninstall. Listing 3-26 shows the
addition of this test.

24. Technically, I didn’t have to do this because the PWD make variable was initialized from the
environment, but it serves as a good example of this process. Additionally, there are corner
cases where the PWD make variable is not quite as accurate as the PWD shell variable. It may be left
pointing to the parent directory on a subdirectory make invocation.

Git tag 3.9

62 Chapter 3

--snip--
distcheck: $(distdir).tar.gz
 gzip -cd $(distdir).tar.gz | tar xvf -
 cd $(distdir) && $(MAKE) all
 cd $(distdir) && $(MAKE) check
 cd $(distdir) && $(MAKE) prefix=$${PWD}/_inst install
 cd $(distdir) && $(MAKE) prefix=$${PWD}/_inst uninstall

 @remaining="`find $(distdir)/_inst -type f | wc -l`"; \
 if test "$${remaining}" -ne 0; then \

 echo "*** $${remaining} file(s) remaining in stage directory!"; \
 exit 1; \
 fi
 cd $(distdir) && $(MAKE) clean
 rm -rf $(distdir)
 @echo "*** Package $(distdir).tar.gz is ready for distribution."
--snip--

Listing 3-26: Makefile: Adding a test for leftover files after uninstall finishes

The test first generates a numeric value at in a shell variable called
remaining, which represents the number of regular files found in the stage
directory we used. If this number is not zero, the test prints a message
to the console at indicating how many files were left behind by the
uninstall commands and then it exits with an error. Exiting early leaves
the stage directory intact so we can examine it to find out which files we
forgot to uninstall.

N O T E This test code represents a good use of multiple shell commands passed to a single
shell. I had to do this here so that the value of remaining would be available for use
by the if statement. Conditionals don’t work very well when the closing if is not
executed by the same shell as the opening if!

I don’t want to alarm people by printing the embedded echo statement
unless it really should be executed, so I prefixed the entire test with an at
sign (@) so that make wouldn’t print the code to stdout. Since make considers
these five lines of code a single command, the only way to suppress printing
the echo statement is to suppress printing the entire command.

Now, this test isn’t perfect—not by a long shot. This code only checks for
regular files. If your installation procedure creates any soft links, this test
won’t notice if they’re left behind. The directory structure that’s built during
installation is purposely left in place because the check code doesn’t know
whether a subdirectory within the stage directory belongs to the system or
to the project. The uninstall rule’s commands can be aware of which direc-
tories are project specific and properly remove them, but I don’t want to
add project-specific knowledge into the distcheck tests—it’s that problem of
diminishing returns again.

Git tag 3.10

Understanding the GNU Coding Standards 63

The Filesystem Hierarchy Standard
You may be wondering by now where I’m getting these directory names.
What if some Unix system out there doesn’t use /usr or /usr/local? For one
thing, this is another reason for providing the prefix variable—to allow
the user some choice in these matters. However, most Unix-like systems
nowadays follow the Filesystem Hierarchy Standard (FHS) as closely as pos-
sible. The FHS defines a number of standard places, including the following
root-level directories:

/bin /etc /home

/opt /sbin /srv

/tmp /usr /var

This list is by no means exhaustive. I’ve only mentioned the directories
that are most relevant to our study of open source project build systems.
In addition, the FHS defines several standard locations beneath these root-
level directories. For instance, the /usr directory should contain the follow-
ing subdirectories:

/usr/bin /usr/include /usr/lib

/usr/local /usr/sbin /usr/share

/usr/src

The /usr/local directory should contain a structure very similar to that
of the /usr directory. The /usr/local directory provides a location for soft-
ware installation that overrides versions of the same packages installed in
the /usr directory structure, because system software updates often over-
write software in /usr without prejudice. The /usr/local directory structure
allows a system administrator to decide which version of a package to use
on their system because /usr/local/bin may be (and usually is) added to
the PATH before /usr/bin. A fair amount of thought has gone into designing
the FHS, and the GNU Autotools take full advantage of this consensus of
understanding.

Not only does the FHS define these standard locations, but it also
explains in detail what they’re for and what types of files should be kept
there. All in all, the FHS leaves you, as project maintainer, just enough flex-
ibility and choice to keep your life interesting but not enough to make you
wonder whether you’re installing your files in the right places.25

25. Before I discovered the FHS, I relied on my personal experience to decide where files
should be installed in my projects. Mostly I was right, because I’m a careful guy, but after I
read the FHS documentation, I went back to some of my past projects with a bit of chagrin
and changed things around. I heartily recommend you become thoroughly familiar with the
FHS if you seriously intend to develop Unix software.

64 Chapter 3

Supporting Standard Targets and Variables
In addition to those I’ve already mentioned, the GNU Coding Standards lists
some important targets and variables that you should support in your proj-
ects—mainly because your users will expect support for them.

Some of the chapters in the GCS document should be taken with a
grain of salt (unless you’re actually working on a GNU-sponsored project).
For example, you probably won’t care much about the C source code for-
matting suggestions in Chapter 5 of the GCS. Your users certainly won’t
care, so you can use whatever source code formatting style you wish.

That’s not to say that all of Chapter 5 is worthless to non-GNU open
source projects. The “Portability between System Types” and “Portability
between CPUs” subsections, for instance, provide excellent information
on C source code portability. Also, the “Internationalization” subsec-
tion gives some useful tips on using GNU software to internationalize
your projects. We’ll consider internationalization in greater detail in
Chapter 11 of this book.

While Chapter 6 of the GCS discusses documentation the GNU way,
some sections of Chapter 6 describe various top-level text files commonly
found in projects, such as the AUTHORS, NEWS, INSTALL, README, and
ChangeLog files. These are all bits of information that the well-indoctrinated
open source software user expects to see in any reputable project.

The really useful information in the GCS document begins in Chapter 7,
“The Release Process.” This chapter is critical to you as a project maintainer
because it defines what your users will expect of your projects’ build systems.
Chapter 7 contains the de facto standards for the user options that packages
provide in source-level distributions.

Standard Targets
The “How Configuration Should Work” subsection of Chapter 7 of the GCS
defines the configuration process, which I cover briefly in “Configuring
Your Package” on page 77. The “Makefile Conventions” subsection of the
GCS covers all of the standard targets and many of the standard variables
that users have come to expect in open source software packages. Standard
targets defined by the GCS include the following:

all install install-html

install-dvi install-pdf install-ps

install-strip uninstall clean

distclean mostlyclean maintainer-clean

TAGS info dvi

html pdf ps

dist check installcheck

installdirs

Understanding the GNU Coding Standards 65

You don’t need to support all of these targets, but you should consider
supporting the ones that make sense for your project. For example, if you
build and install HTML pages, you should probably consider supporting
the html and install-html targets. Autotools projects support these and
more. Some targets are useful to end users, while others are useful only to
project maintainers.

Standard Variables
Variables you should support as you see fit include those listed in the fol-
lowing table. In order to provide flexibility for the end user, most of these
variables are defined in terms of a few of them and, ultimately, only one of
them: prefix. For lack of a more standard name, I call these prefix variables.
Most of these could be classified as installation directory variables that refer to
standard locations, but there are a few exceptions, such as srcdir.

These variables are meant to be fully resolved by make, so they’re
defined in terms of make variables, using parentheses rather than curly
brackets. Table 3-1 lists these prefix variables and their default values.

Table 3-1: Prefix Variables and Their Default Values

Variable Default Value

prefix /usr/local
exec_prefix $(prefix)

bindir $(exec_prefix)/bin
sbindir $(exec_prefix)/sbin
libexecdir $(exec_prefix)/libexec
datarootdir $(prefix)/share
datadir $(datarootdir)

sysconfdir $(prefix)/etc
sharedstatedir $(prefix)/com
localstatedir $(prefix)/var
includedir $(prefix)/include
oldincludedir /usr/include
docdir $(datarootdir)/doc/$(package)
infodir $(datarootdir)/info
htmldir $(docdir)

dvidir $(docdir)

pdfdir $(docdir)

psdir $(docdir)

libdir $(exec_prefix)/lib
lispdir $(datarootdir)/emacs/site-lisp
localedir $(datarootdir)/locale

(continued)

66 Chapter 3

Table 3-1 (continued)

Variable Default Value

mandir $(datarootdir)/man
manNdir $(mandir)/manN (N = 1..9)
manext .1
manNext .N (N = 1..9)
srcdir The source-tree directory corresponding to the

current directory in the build tree

Autotools-based projects support these and other useful variables
automatically, as needed; Automake provides full support for them, while
Autoconf’s support is more limited. If you write your own makefiles and
build systems, you should support as many of these as you use in your build
and installation processes.

Adding Location Variables to Jupiter
To support the variables that we’ve used so far in the Jupiter project, we need
to add the bindir variable, as well as any variables that it relies on—in this
case, the exec_prefix variable. Listings 3-27 and 3-28 show how to do this in
the top-level and src directory makefiles.

--snip--
prefix = /usr/local
exec_prefix = $(prefix)
bindir = $(exec_prefix)/bin
export prefix
export exec_prefix
export bindir
--snip--

Listing 3-27: Makefile: Adding the bindir variable

--snip--
install:
 install -d $(bindir)
 install -m 0755 jupiter $(bindir)

uninstall:
 rm -f $(bindir)/jupiter
 -rmdir $(bindir) >/dev/null 2>&1
--snip--

Listing 3-28: src/Makefile: Adding the bindir variable

Even though we only use bindir in src/Makefile, we have to export prefix,
exec_prefix, and bindir because bindir is defined in terms of exec_prefix, which
is itself defined in terms of prefix. When make runs the install commands,
it will first resolve bindir to $(exec_prefix)/bin, then to $(prefix)/bin, and
finally to /usr/local/bin. Thus, src/Makefile needs to have access to all three
variables during this process.

Git tag 3.11

Understanding the GNU Coding Standards 67

How do such recursive variable definitions make life better for the end
user? After all, the user can change the root install location from /usr/local
to /usr by simply typing the following:

$ make prefix=/usr install
--snip--

The ability to change prefix variables at multiple levels is particularly
useful to a Linux distribution packager (an employee or volunteer at a
Linux company whose job it is to professionally package your project as a
.deb or .rpm package) who needs to install packages into very specific system
locations. For example, a distro packager could use the following command
to change the installation prefix to /usr and the system configuration direc-
tory to /etc:

$ make prefix=/usr sysconfdir=/etc install
--snip--

Without the ability to change prefix variables at multiple levels,
configuration files would end up in /usr/etc because the default value
of $(sysconfdir) is $(prefix)/etc.

Getting Your Project into a Linux Distro
When a Linux distro picks up your package for distribution, your project
magically moves from the realm of tens of users to that of tens of thousands
of users—almost overnight. Some people will be using your software with-
out even knowing it. Since one great value of open source software for the
developer is free help in making your software better, this can be seen as a
good thing—a dramatic increase in community size.

By following the GCS within your build system, you remove many of
the barriers to including your project in a Linux distro. If your tarball fol-
lows all the usual conventions, distro packagers will immediately know what
to do with it. These packagers generally get to decide, based on needed
functionality and their feelings about your package, whether it should be
included in their flavor of Linux. Since they have a fair amount of power in
this process, it behooves you to please them.

Section 7 of the GCS contains a small subsection that talks about sup-
porting staged installations. It is easy to support this concept in your build
system, but if you neglect to support it, it will almost always cause problems
for packagers.

Packaging systems such as the Red Hat Package Manager (RPM) accept
one or more tarballs, a set of patch files, and a specification file. The so-
called spec file describes the process of building and packaging your project
for a particular system. In addition, it defines all of the products installed
into the target installation directory structure. The package manager
software uses this information to install your package into a temporary

68 Chapter 3

directory, from which it then pulls the specified products, storing them in a
special binary archive that the package installation program (for example,
rpm) understands.

To support staged installation, all you need is a variable named DESTDIR
that acts as a sort of super-prefix to all of your installed products. To show
you how this is done, I’ll add staged installation support to the Jupiter proj-
ect. This is so trivial that it requires only four changes to src/Makefile. The
required changes are highlighted in Listing 3-29.

--snip--
install:
 install -d $(DESTDIR)$(bindir)
 install -m 0755 jupiter $(DESTDIR)$(bindir)

uninstall:
 rm -f $(DESTDIR)$(bindir)/jupiter
 -rmdir $(DESTDIR)$(bindir) >/dev/null 2>&1
--snip--

Listing 3-29: src/Makefile: Adding staged build functionality

As you can see, I’ve added the $(DESTDIR) prefix to the $(bindir) refer-
ences in the install and uninstall targets that refer to installation paths.
You don’t need to define a default value for DESTDIR, because when it is left
undefined, it expands to an empty string, which has no effect on the paths
to which it’s prepended.

N O T E Do not add a slash after $(DESTDIR), which is usually empty. The prefix variables
ultimately resolve to something starting with a slash; adding a slash after $(DESTDIR)
is therefore redundant and, in some situations, can cause unintended side effects.

I didn’t need to add $(DESTDIR) to the uninstall rule’s rm command for
the sake of the package manager, because package managers don’t care
how your package is uninstalled. They only install your package so they can
copy the products from a stage directory. To uninstall the stage directory,
package managers simply delete it. Package manager programs such as rpm
use their own rules for removing products from a system, and these rules
are based on a package manager database rather than your uninstall target.

However, for the sake of symmetry, and to be complete, it doesn’t hurt
to add $(DESTDIR) to uninstall. Besides, we need it to be complete for the
sake of the distcheck target, which we’ll now modify to take advantage
of our staged installation functionality. This modification is shown in
Listing 3-30.

--snip--
distcheck: $(distdir).tar.gz
 gzip -cd $(distdir).tar.gz | tar xvf -
 cd $(distdir) && $(MAKE) all
 cd $(distdir) && $(MAKE) check
 cd $(distdir) && $(MAKE) DESTDIR=$${PWD}/inst install
 cd $(distdir) && $(MAKE) DESTDIR=$${PWD}/inst uninstall

Git tag 3.12

Git tag 3.13

Understanding the GNU Coding Standards 69

 @remaining="`find $(distdir)/inst -type f | wc -l`"; \
 if test "$${remaining}" -ne 0; then \
 echo "*** $${remaining} file(s) remaining in stage directory!"; \
 exit 1; \
 fi
 cd $(distdir) && $(MAKE) clean
 rm -rf $(distdir)
 @echo "*** Package $(distdir).tar.gz is ready for distribution."
--snip--

Listing 3-30: Makefile: Using DESTDIR in the distcheck target

Changing prefix to DESTDIR in the install and uninstall commands
allows us to properly test a complete installation directory hierarchy, as we’ll
see shortly.

At this point, an RPM spec file could provide the following text as the
installation commands for the Jupiter package:

%install
make prefix=/usr DESTDIR=%BUILDROOT install

Don’t worry about package manager file formats. Instead, just focus on
providing staged installation functionality through the DESTDIR variable.

You may be wondering why the prefix variable couldn’t provide this
functionality. For one thing, not every path in a system-level installation is
defined relative to the prefix variable. The system configuration directory
(sysconfdir), for instance, is often defined as /etc by packagers. You can see
in Table 3-1 that the default definition of sysconfdir is $(prefix)/etc, so the
only way sysconfdir would resolve to /etc would be if you explicitly set it to
do so on the configure or make command line. If you configured it that way,
only a variable like DESTDIR would affect the base location of sysconfdir dur-
ing staged installation. Other reasons for this will become clearer as we talk
about project configuration later on in this chapter, and then again in the
next two chapters.

Build vs. Installation Prefix Overrides
At this point, I’d like to digress slightly to explain an elusive (or at least
nonobvious) concept regarding prefix and other path variables defined in
the GCS. In the preceding examples, I used prefix overrides on the make
install command line, like this:

$ make prefix=/usr install
--snip--

The question I wish to address is: what is the difference between using
a prefix override for make all and for make install? In our small sample
makefiles, we’ve managed to avoid using prefixes in any targets not related
to installation, so it may not be clear to you at this point that a prefix is ever

70 Chapter 3

useful during the build stage. However, prefix variables can be very useful
during the build stage to substitute paths into source code at compile time,
as shown in Listing 3-31.

program: main.c
 gcc -DCFGDIR="\"$(sysconfdir)\"" -o $@ main.c

Listing 3-31: Substituting paths into source code at compile time

In this example, I’m defining a C-preprocessor variable called CFGDIR
on the compiler command line for use by main.c. Presumably, there’s some
code in main.c like that shown in Listing 3-32.

#ifndef CFGDIR
define CFGDIR "/etc"
#endif
const char *cfgdir = CFGDIR;

Listing 3-32: Substituting CFGDIR at compile time

Later in the code, you might use the C global variable cfgdir to access
the application’s configuration file.

Linux distro packagers often use different prefix overrides for build
and install command lines in RPM spec files. During the build stage, the
actual runtime directories are hardcoded into the executable using com-
mands like the ./configure command shown in Listing 3-33.

%build
%setup
./configure prefix=/usr sysconfdir=/etc
make

Listing 3-33: The portion of an RPM spec file that builds the source tree

Note that we have to explicitly specify sysconfdir along with prefix,
because, as I mentioned earlier, the system configuration directory is usu-
ally outside of the prefix directory structure. The package manager installs
these executables into a stage directory so it can then copy them out of
their installed locations when it builds the binary installation package.
The corresponding installation commands might look like those shown in
Listing 3-34.

%install
make DESTDIR=%BUILDROOT% install

Listing 3-34: The installation portion of an RPM spec file

Using DESTDIR during installation will temporarily override all installa-
tion prefix variables, so you don’t have to remember which variables you’ve
overridden during configuration. Given the configuration command shown
in Listing 3-33, using DESTDIR in the manner shown in Listing 3-34 has the
same effect as the code shown in Listing 3-35.

Understanding the GNU Coding Standards 71

%install
make prefix=%BUILDROOT%/usr sysconfdir=%BUILDROOT%/etc install

Listing 3-35: Overriding the default sysconfdir during installation

W A R N I N G The key point here is one that I touched on earlier. Never write your install target to
build all or even part of your products in your makefiles. Installation functionality
should be limited to copying files, if possible. Otherwise, your users won’t be able to
access your staged installation features if they are using prefix overrides.

Another reason for limiting installation functionality in this way is that
it allows the user to install sets of packages as a group into an isolated loca-
tion and then create links to the actual files in the proper locations. Some
people like to do this when they are testing out a package and want to keep
track of all its components.26

One final point: if you’re installing into a system directory hierarchy,
you’ll need root permissions. People often run make install like this:

$ sudo make install

If your install target depends on your build targets, and you’ve
neglected to build them beforehand, make will happily build your program
before installing it—but the local copies will all be owned by root. This
inconvenience is easily avoided by having make install fail for lack of things
to install, rather than jumping right into a build while running as root.

User Variables
The GCS defines a set of variables that are sacred to the user. These vari-
ables should be referenced by a GNU build system but never modified by a
GNU build system. These so-called user variables include those listed in
Table 3-2 for C and C++ programs.

Table 3-2: Some User Variables and Their Purposes

Variables Purpose

CC A reference to the system C compiler
CFLAGS Desired C compiler flags
CXX A reference to the system C++ compiler

(continued)

26. Some Linux distributions provide a way of installing multiple versions of common pack-
ages. Java is a great example; to support packages using multiple versions or brands of Java
(perhaps Oracle Java versus IBM Java), some Linux distributions provide a script set called
the alternatives scripts. These allow a user (running as root) to swap all of the links in the vari-
ous system directories from one grouped installation to another. Thus, both sets of files can
be installed in different auxiliary locations, but links in the expected installation locations
can be changed to refer to each group at different times with a single root-level command.

72 Chapter 3

Table 3-2 (continued)

Variables Purpose

CXXFLAGS Desired C++ compiler flags
LDFLAGS Desired linker flags
CPPFLAGS Desired C/C++ preprocessor flags
--snip--

This list is by no means comprehensive, and interestingly, there isn’t a
comprehensive list to be found in the GCS. In fact, most of these variables
come from the documentation for the make utility itself. These variables are
used in the built-in rules of the make utility—they’re somewhat hardcoded
into make, so they are effectively defined by make. You can find a fairly com-
plete list of program name and flag variables in the “Variables Used by
Implicit Rules” section of the GNU Make Manual.

Note that make assigns default values for many of these variables based on
common Unix utility names. For example, the default value of CC is cc, which
(at least on Linux systems) is a soft link to the GCC C compiler (gcc). On
other systems, cc is a soft link to the system’s own compiler. Thus, we don’t
need to set CC to gcc, which is good, because GCC may not be installed on
non-Linux platforms. There may be times when you do wish to set CC on the
make command line, such as when using an alternative compiler like clang or
when using the ccache utility to cache gcc results for faster recompilation.

For our purposes, the variables shown in Table 3-2 are sufficient, but
for a more complex makefile, you should become familiar with the larger
list outlined in the GNU Make Manual.

To use these variables in our makefiles, we’ll just replace gcc with $(CC).
We’ll do the same for CFLAGS and CPPFLAGS, although CPPFLAGS will be empty
by default. The CFLAGS variable has no default value either, but this is a good
time to add one. I like to use -g to build objects with symbols and -O0 to dis-
able optimizations for debug builds. The updates to src/Makefile are shown
in Listing 3-36.

CFLAGS = -g -O0
--snip--
jupiter: main.c
 $(CC) $(CPPFLAGS) $(CFLAGS) -o $@ main.c
--snip--

Listing 3-36: src/Makefile: Adding appropriate user variables

This works because the make utility allows such variables to be over-
ridden by options on the command line. For example, to switch compil-
ers and set some compiler command line options, a user need only type
the following:

$ make CC=ccache CFLAGS='-g -O2' CPPFLAGS=-Dtest

Git tag 3.14

Understanding the GNU Coding Standards 73

In this case, our user has decided to use the ccache utility instead of gcc,
generate debug symbols, and optimize their code using level-two optimiza-
tions. They’ve also decided to enable the test option through the use of
a C-preprocessor definition. Note that these variables are set on the make
command line; this apparently equivalent Bourne-shell syntax will not work
as expected:

$ CC=ccache CFLAGS='-g -O2' CPPFLAGS=-Dtest make

The reason is that we’re merely setting environment variables in the local
environment passed to the make utility by the shell. Remember that environ-
ment variables do not automatically override those set in the makefile. To get
the functionality we want, we could use a little GNU make–specific syntax in
our makefile, as shown in Listing 3-37.

--snip--
CFLAGS ?= -g -O0
--snip--

Listing 3-37: Using the GNU make–specific query-assign operator (?=) in a makefile

The ?= operator is a GNU make–specific operator, which will only set the
variable in the makefile if it hasn’t already been set elsewhere. This means
we can now override these particular variable settings by setting them in
the environment. But don’t forget that this will only work in GNU make. In
general, it’s better to set make variables on the make command line.

Nonrecursive Build Systems
Now that we’ve spent all this time creating the perfect build system for our
project, let’s take a look at a more perfect solution—a nonrecursive system. I
mentioned at the start of this chapter that there was a problem with recur-
sive builds that we’d discuss at a later point.

The fundamental problem with recursive build systems is that they
artificially introduce flaws into make’s directed graph—the set of rules make
uses to determine what depends on what and when something needs to be
rebuilt. For Jupiter, very little can go wrong because there’s one top-level
makefile invoking make on a single subdirectory makefile, but let’s consider
a more complex project where multiple submodules, nested arbitrarily
deeply, are interdependent upon each other in more complex ways.

With a single makefile, the one make process can “see the big picture.”
That is, it can see and understand all of the interdependencies in the
system, and it can create a DAG that properly represents all of the inter-
dependencies among all of the filesystem objects within the project. With
multiple makefiles, each child make process executed by parent make can
see only a portion of the dependency graph. Ultimately, this can cause
make to build products out of order so that a product that depends on pre-
requisites not within its own purview is built before those prerequisites
are updated.

74 Chapter 3

The preceding problem is compounded when you use parallel make by
adding -j to the make command line. The -j option tells make to examine its
DAG and find places where portions of the DAG do not depend on each
other, then execute those portions at the same time. On a multiprocessor
system, this can dramatically speed up the build process for large projects.
However, this causes problems from two different angles. First, since make
can’t see the whole picture, it can make incorrect assumptions about what
things can be done in parallel. Second, as far as the top-level make is con-
cerned, child make processes are all independent and can be run in parallel,
which we can easily see is simply not true. For an example that does not
even rely on the differences between recursive and nonrecursive build sys-
tems, consider the following command line:

$ make -j clean all

As far as make is concerned, clean and all are 100 percent independent of
each other, so make will happily run them both at the same time. Even a novice
can see the problems with this assumption. The point is, make doesn’t under-
stand the high-level relationship between clean and all. That relationship
is understood only by the author of the makefile. Similar barriers to make’s
understanding of the big picture are artificially introduced at the boundaries
between parent and child make invocations in a recursive build system.

So, how hard is it to turn Jupiter’s recursive build system into a nonre-
cursive system? We want to maintain modularity, so we still want a Makefile
in each directory that essentially manages the tasks of that directory. This is
easily accomplished by using another feature of common make—the include
directive. The include directive allows us to break up our single, parent-level
makefile into chunks of directory-specific rules and then include just those
snippets in the top-level makefile. Listing 3-38 shows what the complete
updated top-level makefile looks like.

package = jupiter
version = 1.0
tarname = $(package)
distdir = $(tarname)-$(version)

prefix = /usr/local
exec_prefix = $(prefix)
bindir = $(exec_prefix)/bin

 #export prefix
#export exec_prefix
#export bindir

 all jupiter: src/jupiter

dist: $(distdir).tar.gz

$(distdir).tar.gz: $(distdir)
 tar chof - $(distdir) | gzip -9 -c > $@
 rm -rf $(distdir)

Git tag 3.15

Understanding the GNU Coding Standards 75

$(distdir): FORCE
 mkdir -p $(distdir)/src
 cp Makefile $(distdir)
 cp src/Makefile $(distdir)/src
 cp src/main.c $(distdir)/src

distcheck: $(distdir).tar.gz
 gzip -cd $(distdir).tar.gz | tar xvf -
 cd $(distdir) && $(MAKE) all
 cd $(distdir) && $(MAKE) check
 cd $(distdir) && $(MAKE) DESTDIR=$${PWD}/_inst install
 cd $(distdir) && $(MAKE) DESTDIR=$${PWD}/_inst uninstall
 @remaining="`find $${PWD}/$(distdir)/_inst -type f | wc -l`"; \
 if test "$${remaining}" -ne 0; then \
 echo "*** $${remaining} file(s) remaining in stage directory!"; \
 exit 1; \
 fi
 cd $(distdir) && $(MAKE) clean
 rm -rf $(distdir)
 @echo "*** Package $(distdir).tar.gz is ready for distribution."

FORCE:
 -rm -f $(distdir).tar.gz >/dev/null 2>&1
 -rm -rf $(distdir) >/dev/null 2>&1

 include src/Makefile

.PHONY: FORCE all clean check dist distcheck install uninstall

Listing 3-38: Makefile: A nonrecursive version of the top-level makefile

Three changes were made here, but please note that the only really sig-
nificant change made to this makefile was the replacement of the rule at
where recursion was done with a single rule for all, clean, check, install,
uninstall, and an explicit jupiter target. Even this replacement could have
been a simple deletion if we hadn’t cared that the new default target would
have become dist, had we not added the all target at this location. I’ve also
added an explicit jupiter target that maps to src/jupiter to maintain feature
parity with the previous system.

The second change made was to include the src-level makefile at .
Finally, I also commented out the export statements at because we no
longer need to export variables to child make processes; they’re left as com-
ments simply for illustration.

Now, let’s examine what changed in the src-level makefile. The com-
plete, updated version is shown in Listing 3-39.

CFLAGS = -g -O0

src/jupiter: src/main.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ src/main.c

check: all

76 Chapter 3

 ./src/jupiter | grep "Hello from .*jupiter!"
 @echo "*** All TESTS PASSED"

install:
 install -d $(DESTDIR)$(bindir)
 install -m 0755 src/jupiter $(DESTDIR)$(bindir)

uninstall:
 rm -f $(DESTDIR)$(bindir)/jupiter
 -rmdir -f $(DESTDIR)$(bindir) >/dev/null 2>&1

clean:
 rm -f src/jupiter

Listing 3-39: src/Makefile: A nonrecursive version of the src-level makefile

First, the all target was removed. We don’t need one here now because
this makefile is not intended to be executed directly but, rather, included by
the parent makefile. Hence, we do not need a default target. Second, all ref-
erences to objects in the src directory are now referenced by paths that are
relative to the parent directory. Again, this is because make is executed only
once from the parent directory, so references to objects in the src directory
must be considered relative to where make is running—the parent directory.

We also removed the .PHONY directive at the bottom because this direc-
tive contained a proper subset of the .PHONY directive in the parent makefile,
making the directive redundant. In short, we merely converted this make-
file into a snippet that could be included in the parent makefile, removed
redundancies, and ensured that all filesystem references are now made rela-
tive to the parent directory. I hope you can see that these changes actually
constitute a simplification of what we had before. Intuitively, it seems more
complicated but it is actually simpler.

This makefile is a more accurate and faster version of our recursive
system. I say “this makefile” because there is really only one makefile here—
the included file can be pasted directly into the parent makefile at the point
of inclusion (at in Listing 3-38), just as with inclusions of header files in
C-language source files. Ultimately, after all the inclusions are resolved,
there are only one makefile and one make process that executes commands
based on the rules in that makefile.

One apparent drawback of nonrecursive build systems is that you cannot
simply enter make while sitting in the src directory and build the portion of the
project related to that directory. Instead, you have to change into the parent
directory and run make, which builds everything. But this, too, is a fallacious
concern because you’ve always had the ability to execute any portion of the
build system you wished by specifying exactly the target you desired on the
make command line. The difference is that now what gets built is actually what
should get built because make understands the entire set of dependencies for
any given target you command it to build.

As we’ll see in the coming chapters, Automake has full support for
nonrecursive build systems. I encourage you to start writing your next

Understanding the GNU Coding Standards 77

project build system in a nonrecursive fashion because it can seem like an
overwhelming task to retrofit an existing system, even though, as we’ve seen
here, it’s not really all that difficult.

Configuring Your Package
The GCS describes the configuration process in the “How Configuration
Should Work” subsection of Section 7. Up to this point, we’ve been able to
do about everything we’ve wanted to with Jupiter using only makefiles, so
you might be wondering what configuration is actually for. The opening
paragraphs of this subsection in the GCS answer our question:

Each GNU distribution should come with a shell script named
configure. This script is given arguments which describe the kind
of machine and system you want to compile the program for. The
configure script must record the configuration options so that
they affect compilation.

The description here is the specification of the interface for the
configure script in GNU packages. Many packages implement
it using GNU Autoconf (see “Introduction” in Autoconf) and/
or GNU Automake (see “Introduction” in Automake), but you
do not have to use these tools. You can implement it any way you
like; for instance, by making configure be a wrapper around a
completely different configuration system.

Another way for the configure script to operate is to make a link
from a standard name such as config.h to the proper configuration
file for the chosen system. If you use this technique, the distribu-
tion should not contain a file named config.h. This is so that people
won’t be able to build the program without configuring it first.

Another thing that configure can do is to edit the Makefile. If you
do this, the distribution should not contain a file named Makefile.
Instead, it should include a file Makefile.in which contains the
input used for editing. Once again, this is so that people won’t be
able to build the program without configuring it first.27

So then, the primary tasks of a typical configuration script are
as follows:

•	 Generate files from templates containing replacement variables.

•	 Generate a C-language header file (config.h) for inclusion by project
source code.

27. See Section 7.1, “How Configuration Should Work,” in the GNU Coding Standards docu-
ment at http://www.gnu.org/prep/standards/html_node/Configuration.html#Configuration. GNU
documentation changes quite often. This text came from the January 14, 2019 version of the
GCS document.

https://www.gnu.org/prep/standards/html_node/Configuration.html#Configuration

78 Chapter 3

•	 Set user options for a particular make environment (debug flags
and so on).

•	 Set various package options as environment variables.

•	 Test for the existence of tools, libraries, and header files.

For complex projects, configuration scripts often generate the project
makefiles from one or more templates maintained by project developers.
These templates contain configuration variables in a format that is easy to
recognize (and substitute). The configuration script replaces these vari-
ables with values determined during the configuration process—either
from command line options specified by the user or from a thorough analy-
sis of the platform environment. This analysis entails such things as check-
ing for the existence of certain system or package header files and libraries,
searching various filesystem paths for required utilities and tools, and even
running small programs designed to indicate the feature set of the shell, C
compiler, or desired libraries.

The tool of choice for variable replacement has, in the past, been the
sed stream editor. A simple sed command can replace all the configuration
variables in a makefile template in a single pass through the file. However,
Autoconf versions 2.62 and newer prefer awk to sed for this process. The awk
utility is almost as pervasive as sed these days, and it provides more function-
ality to allow for efficient replacement of many variables. For our purposes
on the Jupiter project, either of these tools would suffice.

Summary
We have now created a complete project build system by hand, with one
important exception: we haven’t designed a configure script according to the
design criteria specified in the GNU Coding Standards. We could do this, but
it would take a dozen more pages of text to build one that even comes close
to conforming to these specifications. Still, there are a few key build fea-
tures related specifically to the makefiles that the GCS indicates are desir-
able. Among these is the concept of vpath building. This is an important
feature that can be properly illustrated only by actually writing a configura-
tion script that works as specified by the GCS.

Rather than spend the time and effort to do this now, I’d like to simply
move on to a discussion of Autoconf in Chapter 4, which will allow us to
build one of these configuration scripts in as little as two or three lines of
code. With that behind us, it will be trivial to add vpath building and other
common Autotools features to the Jupiter project.

4
C O N F I G U R I N G Y O U R P R O J E C T

W I T H A U T O C O N F

The Autoconf project has had a long
history, starting in 1992 when David

McKenzie, while volunteering for the Free
Software Foundation, was looking for a way

to simplify the process of creating the complex con-
figuration scripts necessary to support the target
platforms that were being added daily at that time
to the GNU project. At the same time, he was working on his bachelor’s
degree in computer science at the University of Maryland, College Park.

After McKenzie’s initial work on Autoconf, he continued to be a strong
contributor to the project through 1996, at which point Ben Elliston took
over project maintenance. Since then, maintainers and primary con-
tributors have included Akim Demaille, Jim Meyering, Alexandre Oliva,
Tom Tromey, Lars J. Aas (inventor of the name autom4te, among others),
Mo DeJong, Steven G. Johnson, Matthew D. Langston, Paval Roskin, and
Paul Eggert (the list of contributors is much longer—see the Autoconf
AUTHORS file for more history).

Come my friends,
’Tis not too late to seek a newer world.
—Alfred, Lord Tennyson, “Ulysses”

80 Chapter 4

Today’s maintainer, Eric Blake, began making strong contributions
to Autoconf in 2012. He’s been maintainer of the project ever since while
working for Red Hat. Because Automake and Libtool are essentially add-on
components to the original Autoconf framework, it’s useful to spend some
time focusing on using Autoconf without Automake and Libtool. This will
provide a fair amount of insight into how Autoconf operates by exposing
aspects of the tool that are often hidden by Automake.

Before Automake came along, Autoconf was used alone. In fact, many
legacy open source projects never made the transition from Autoconf to the
full GNU Autotools suite. As a result, it’s not unusual to find a file called
configure.in (the original Autoconf naming convention), as well as handwrit-
ten Makefile.in templates, in older open source projects.

In this chapter, I’ll show you how to add an Autoconf build system to an
existing project. I’ll spend most of this chapter talking about the more basic
features of Autoconf, and in Chapter 5 I’ll go into much more detail about
how some of the more complex Autoconf macros work and how to properly
use them. Throughout this process, we’ll continue using the Jupiter project
as our example.

Autoconf Configuration Scripts
The input to the autoconf program is Bourne shell script sprinkled with macro
calls. The input data stream must also include the definitions of all referenced
macros—both those that Autoconf provides and those that you write yourself.

The macro language used in Autoconf is called M4. (The name means
M, plus 4 more letters, or the word Macro.1) The m4 utility is a general-purpose
macro language processor originally written by Brian Kernighan and Dennis
Ritchie in 1977.

While you may not be familiar with it, you can find some form of M4 on
every Unix and Linux variant (as well as other systems) in use today. The
ubiquitous nature of this tool is the main reason it’s used by Autoconf, as
the original design goals of Autoconf stated that it should be able to run on
all systems without the addition of complex tool chains and utility sets.2

Autoconf depends on the existence of relatively few tools: a Bourne
shell, M4, and a Perl interpreter. The configuration scripts and makefiles
it generates rely on the existence of a different set of tools, including a
Bourne shell, grep, ls, and sed or awk.3

1. As a point of interest, this naming convention is a fairly common practice in some software-
engineering domains. For example, the term internationalization is often abbreviated i18n, for
the sake of brevity (or perhaps just because programmers love acronyms).

2. In fact, whatever notoriety M4 may have today is likely due to the widespread use of Autoconf.

3. Autoconf versions 2.62 and later generate configuration scripts that require awk in addition
to sed on the end user’s system.

Configuring Your Project with Autoconf 81

N O T E Do not confuse the requirements of the Autotools with the requirements of the scripts
and makefiles they generate. The Autotools are maintainer tools, whereas the result-
ing scripts and makefiles are end user tools. We can reasonably expect a higher level
of installed functionality on development systems than we can on end user systems.

The configuration script ensures that the end user’s build environment
is configured to properly build your project. This script checks for installed
tools, utilities, libraries, and header files, as well as for specific functionality
within these resources. What distinguishes Autoconf from other project con-
figuration frameworks is that Autoconf tests also ensure that these resources
can be properly consumed by your project. You see, it’s important not only
that your users have libxyz.so and its public header files properly installed
on their systems but also that they have compatible versions of these files.
Autoconf is pathological about such tests. It ensures that the end user’s envi-
ronment is in compliance with the project requirements by compiling and
linking a small test program for each feature—a quintessential example, if
you will, that does what your project source code does on a larger scale.

Can’t I just ensure that libxyz.2.1.0.so is installed by searching library paths for
the filename? The answer to this question is debatable. There are legitimate
situations where libraries and tools get updated quietly. Sometimes, the spe-
cific functionality upon which your project relies is added in the form of a
security bug fix or enhancement to a library, in which case vendors aren’t
even required to bump up the version number. But it’s often difficult to tell
whether you’ve got version 2.1.0.r1 or version 2.1.0.r2 unless you look at the
file size or call a library function to make sure it works as expected.

Additionally, vendors often backport bug fixes and features from newer
products onto older platforms without bumping the version number. Hence,
you can’t tell even by looking at the version number whether the library sup-
ports a feature that was added after that version of the library was published.

However, the most significant reason for not relying on library ver-
sion numbers is that they do not represent specific marketing releases of
a library. As we will discuss in Chapter 8, library version numbers indicate
binary interface characteristics on a particular platform. This means that
library version numbers for the same feature set can be different from plat-
form to platform. As a result, you may not be able to tell—short of compil-
ing and linking against the library—whether or not a particular library has
the functionality your project needs.

Finally, there are several important cases where the same functionality
is provided by entirely different libraries on different systems. For example,
you may find cursor manipulation functionality in libtermcap on one system,
libncurses on another, and libcurses on yet another system. But it’s not critical
that you know about all of these side cases, because your users will tell you
when your project won’t build on their system because of such a discrepancy.

What can you do when such a bug is reported? You can use the Autoconf
AC_SEARCH_LIBS macro to test multiple libraries for the same functionality.
Simply add a library to the search list, and you’re done. Since this fix is so
easy, it’s likely the user who noticed the problem will simply send a patch to
your configure.ac file.

82 Chapter 4

Because Autoconf tests are written in shell script, you have a lot of
flexibility as to how the tests operate. You can write a test that merely
checks for the existence of a library or utility in the usual locations on
your user’s system, but this bypasses some of the most significant features
of Autoconf. Fortunately, Autoconf provides dozens of macros that conform
to Autoconf’s feature-testing philosophy. You should carefully study and use
the list of available macros, rather than write your own, because they’re spe-
cifically designed to ensure that the desired functionality is available on the
widest variety of systems and platforms.

The Shortest configure.ac File
The input file for autoconf is called configure.ac. The simplest possible
configure.ac file has just two lines, as shown in Listing 4-1.

AC_INIT([Jupiter], [1.0])
AC_OUTPUT

Listing 4-1: The simplest configure.ac file

To those new to Autoconf, these two lines appear to be a couple of func-
tion calls, perhaps in the syntax of some obscure programming language.
Don’t let their appearance throw you—these are M4 macro invocations.
The macros are defined in files distributed with the autoconf package. You
can find the definition of AC_INIT, for example, in general.m4 in Autoconf’s
installation directory (usually /usr/(local/)share/autoconf/autoconf). AC_OUTPUT is
defined in status.m4 in the same directory.

Comparing M4 to the C Preprocessor
M4 macros are similar in many ways to the C-preprocessor (CPP) macros
defined in C-language source files. The C preprocessor is also a text replace-
ment tool, which isn’t surprising: both M4 and the C preprocessor were
designed and written by Kernighan and Ritchie around the same time.

Autoconf uses square brackets around macro parameters as a quoting
mechanism. Quotes are necessary only for cases in which the context of the
macro call could cause an ambiguity that the macro processor may resolve
incorrectly (usually without telling you). We’ll discuss M4 quoting in much
more detail in Chapter 16. For now, just use square brackets around every
argument to ensure that the expected macro expansions are generated.

As with CPP macros, you can define M4 macros to accept a comma-
delimited list of arguments enclosed in parentheses. With CPP, macros
are defined using a preprocessor directive : #define name(args) expansion, while
in M4, macros are defined with a built-in macro: define(name, expansion).
Another significant difference is that in CPP, the arguments specified in

Configuring Your Project with Autoconf 83

the macro definition are required,4 while in M4, the arguments to param-
eterized macros are optional and the caller may simply omit them. If no
arguments are passed, you can also omit the parentheses. Extra arguments
passed to M4 macros are simply ignored. Finally, M4 does not allow inter-
vening whitespace between a macro name and the opening parenthesis in a
macro invocation.

The Nature of M4 Macros
If you’ve been programming in C for many years, you’ve no doubt run across
a few C-preprocessor macros from the dark regions of the lower realm. I’m
talking about those truly evil macros that expand into one or two pages of C
code. They should have been written as C functions, but their authors were
either overly worried about performance or just got carried away, and now it’s
your turn to debug and maintain them. But, as any veteran C programmer
will tell you, the slight performance gains you get by using a macro where you
should have used a function do not justify the trouble you cause maintainers
trying to debug your fancy macros. Debugging such macros can be a night-
mare because the source code generated by macros is usually inaccessible
from within a symbolic debugger.5

Writing such complex macros is viewed by M4 programmers as a sort
of macro nirvana—the more complex and functional they are, the “cooler”
they are. The two Autoconf macros in Listing 4-1 expand into a file contain-
ing almost 2,400 lines of Bourne-shell script that total more than 70KB! But
you wouldn’t guess this by looking at their definitions. They’re both fairly
short—only a few dozen lines each. The reason for this apparent disparity
is simple: they’re written in a modular fashion, with each macro expanding
several others, which in turn expand several others, and so on.

For the same reasons that programmers are taught not to abuse the C
preprocessor, the extensive use of M4 causes a fair amount of frustration for
those trying to understand Autoconf. That’s not to say Autoconf shouldn’t
use M4 this way; quite the contrary—this is the domain of M4. But there is
a school of thought that says M4 was a poor choice for Autoconf because of
the problems with macros mentioned earlier. Fortunately, being able to use
Autoconf effectively usually doesn’t require a deep understanding of the
inner workings of the macros that ship with it.6

4. I’m ignoring the newer CPP variadic macros in modern preprocessors. M4 has always
had optional arguments; all M4 macro arguments are optional without special syntax to
make optional arguments work.

5. A technique I’ve used in the past for debugging large macros involves manually generating
source code using the C preprocessor and then compiling this generated source. Symbolic
debuggers can only work with the source code you provide. By providing source with the mac-
ros fully expanded, you enable the debugger to allow you to step through the generated source.

6. There are a few exceptions to this rule. Poor documentation can sometimes lead to a mis-
understanding about the intended use of some of the published Autoconf macros. This book
highlights a few of these situations, but a degree of expertise with M4 is the only way to work
your way through most of these problems.

84 Chapter 4

Executing autoconf
Running Autoconf is simple: just execute autoconf in the same directory as
your configure.ac file. While I could do this for each example in this chapter,
I’m going to use the autoreconf program instead of the autoconf program,
because running autoreconf has exactly the same effect as running autoconf,
except that autoreconf will also do the right thing when you start adding
Automake and Libtool functionality to your build system. That is, it will
execute all of the Autotools in the right order based on the contents of your
configure.ac file.

The autoreconf program is smart enough to execute only the tools you
need, in the order you need them, with the options you want (with one
caveat that I’ll mention shortly). Therefore, running autoreconf is the rec-
ommended method for executing the Autotools tool chain.

Let’s start by adding the simple configure.ac file from Listing 4-1 to our
project directory. The top-level directory currently contains only a Makefile
and a src directory that contains its own Makefile and a main.c file. Once
you’ve added configure.ac to the top-level directory, run autoreconf:

$ autoreconf
$
$ ls -1p
autom4te.cache/
configure
configure.ac
Makefile
src/
$

First, notice that autoreconf operates silently by default. If you want
to see something happening, use the -v or --verbose option. If you want
autoreconf to execute the Autotools in verbose mode as well, then add -vv
to the command line.7

Next, notice that autoconf creates a directory called autom4te.cache. This
is the autom4te cache directory. This cache speeds up access to configure.ac
during successive executions of utilities in the Autotools tool chain.

The result of passing configure.ac through autoconf is essentially the same
file (now called configure), but with all of the macros fully expanded. You’re
welcome to take a look at configure, but don’t be too surprised if you don’t
immediately understand what you see. The configure.ac file has been trans-
formed, through M4 macro expansions, into a text file containing thou-
sands of lines of complex Bourne shell script.

7. You may also pass --verbose --verbose, but this syntax seems a bit . . . verbose to me.

Git tag 4.0

Configuring Your Project with Autoconf 85

Executing configure
As discussed in “Configuring Your Package” on page 77, the GNU Coding
Standards indicate that a handwritten configure script should generate
another script called config.status, whose job it is to generate files from
templates. Unsurprisingly, this is exactly the sort of functionality you’ll
find in an Autoconf-generated configuration script. This script has two
primary tasks:

•	 Perform requested checks

•	 Generate and then call config.status

The results of the checks performed by configure are written into
config.status in a manner that allows them to be used as replacement text
for Autoconf substitution variables in template files (Makefile.in, config.h.in,
and so on). When you execute ./configure, it tells you that it’s creating
config.status. It also creates a log file called config.log that has several
important attributes. Let’s run ./configure and then see what’s new in
our project directory:

$./configure
configure: creating ./config.status
$
$ ls -1p
autom4te.cache/
config.log
config.status
configure
configure.ac
Makefile
src/
$

We see that configure has indeed generated both config.status and
config.log. The config.log file contains the following information:

•	 The command line that was used to invoke configure (very handy!)

•	 Information about the platform on which configure was executed

•	 Information about the core tests configure executed

•	 The line number in configure at which config.status is generated and
then called

At this point in the log file, config.status takes over generating log
information and adds the following:

•	 The command line used to invoke config.status

86 Chapter 4

After config.status generates all the files from their templates, it exits,
returning control to configure, which then appends the following informa-
tion to the log:

•	 The cache variables that config.status used to perform its tasks

•	 The list of output variables that may be replaced in templates

•	 The exit code configure returned to the shell

This information is invaluable when you’re debugging a configure script
and its associated configure.ac file.

Why doesn’t configure just execute the code it writes into config.status
instead of going to all the trouble of generating a second script, only to
immediately call it? There are a few good reasons. First, the operations of
performing checks and generating files are conceptually different, and the
make utility works best when conceptually different operations are associated
with separate targets. A second reason is that you can execute config.status
separately to regenerate output files from their corresponding template
files, saving the time required to perform those lengthy checks. Finally,
config.status is written to remember the parameters originally used on the
configure command line. Thus, when make detects that it needs to update
the build system, it can call config.status to re-execute configure, using the
command line options that were originally specified.

Executing config.status
Now that you know how configure works, you might be tempted to execute
config.status yourself. This was exactly the intent of the Autoconf designers
and the authors of the GCS, who originally conceived these design goals.
However, a more important reason for separating checks from template
processing is that make rules can use config.status to regenerate makefiles
from their templates when make determines that a template is newer than its
corresponding makefile.

Rather than call configure to perform needless checks (your environ-
ment hasn’t changed—just your template files), makefile rules should
be written to indicate that output files depend on their templates. The
commands for these rules run config.status, passing the rule’s target as a
parameter. If, for example, you modify one of your Makefile.in templates,
make calls config.status to regenerate the corresponding Makefile, after
which make re-executes its own original command line—basically restart-
ing itself.8

Listing 4-2 shows the relevant portion of such a Makefile.in template,
containing the rules needed to regenerate the corresponding Makefile.

8. This is a built-in feature of GNU make. However, for the sake of portability, Automake gen-
erates makefiles that carefully reimplement this functionality as much as possible in generic
make script, rather than relying on the built-in mechanism found in GNU make. The Automake
solution isn’t quite as comprehensive as GNU make’s built-in functionality, but it’s the best we
can do, under the circumstances.

Configuring Your Project with Autoconf 87

Makefile: Makefile.in config.status
 ./config.status $@

Listing 4-2: A rule that causes make to regenerate Makefile if its template has changed

A rule with a target named Makefile is the trigger here. This rule allows
make to regenerate the source makefile from its template if the template
changes. It does this before executing either the user’s specified targets or
the default target, if no specific target was given. This functionality is built
into make—if there’s a rule whose target is Makefile, make always evaluates that
rule first.

The rule in Listing 4-2 indicates that Makefile is dependent on config
.status as well as Makefile.in, because if configure updates config.status, it may
generate Makefile differently. Perhaps different command line options were
provided so that configure can now find libraries and header files it couldn’t
find previously. In this case, Autoconf substitution variables may have differ-
ent values. Thus, Makefile should be regenerated if either Makefile.in or config
.status is updated.

Since config.status is itself a generated file, it stands to reason that you
could write such a rule to regenerate this file when needed. Expanding on
the previous example, Listing 4-3 adds the required code to rebuild config
.status if configure changes.

Makefile: Makefile.in config.status
 ./config.status $@

config.status: configure
 ./config.status --recheck

Listing 4-3: A rule to rebuild config.status when configure changes

Since config.status is a dependency of the Makefile target, make will look
for a rule whose target is config.status and run its commands if needed.

Adding Some Real Functionality
I’ve suggested before that you should call config.status in your makefiles
to generate those makefiles from templates. Listing 4-4 shows the code
in configure.ac that actually makes this happen. It’s just a single additional
macro call between the two original lines of Listing 4-1.

AC_INIT([Jupiter],[1.0])
AC_CONFIG_FILES([Makefile src/Makefile])
AC_OUTPUT

Listing 4-4: configure.ac: Using the AC_CONFIG_FILES macro

This code assumes that templates exist for Makefile and src/Makefile,
called Makefile.in and src/Makefile.in, respectively. These template files look

Git tag 4.1

88 Chapter 4

exactly like their Makefile counterparts, with one exception: any text I want
Autoconf to replace is marked as an Autoconf substitution variable, using
the @VARIABLE@ syntax.

To create these files, simply rename the existing Makefile files to Makefile
.in in both the top-level and src directories. This is a common practice when
autoconfiscating a project:

$ mv Makefile Makefile.in
$ mv src/Makefile src/Makefile.in
$

With these changes in place, we are now effectively using our new
configure.ac file in Jupiter to generate makefiles. To make it useful, let’s
add a few Autoconf substitution variables to replace the original default
values. At the top of these files, I’ve also added the Autoconf substitution
variable, @configure_input@, after a comment hash mark. Listing 4-5 shows
the comment text that is generated in Makefile.

Makefile. Generated from Makefile.in by configure.
--snip--

Listing 4-5: Makefile: The text generated from the Autoconf @configure_input@ variable

I’ve also added the makefile regeneration rules from the previous
examples to each of these templates, with slight path differences in each
file to account for their different positions relative to config.status and
configure in the build directory.

Listings 4-6 and 4-7 highlight the required changes to the final recur-
sive versions of Makefile and src/Makefile from near the end of Chapter 3.
We’ll consider writing nonrecursive versions of these files later as we cover
Automake—the process when using Autoconf with handwritten Makefile.in
templates is nearly identical to what we did in Chapter 3 with makefiles.9

@configure_input@

Package-specific substitution variables
package = @PACKAGE_NAME@
version = @PACKAGE_VERSION@
tarname = @PACKAGE_TARNAME@
distdir = $(tarname)-$(version)

Prefix-specific substitution variables
prefix = @prefix@
exec_prefix = @exec_prefix@
bindir = @bindir@

all clean check install uninstall jupiter:
 cd src && $(MAKE) $@

9. The source repository has a “nonrecursive” branch that contains nonrecursive versions of
the Autoconf Makefile.in templates. Check out the Git tag 4.8 in the jupiter repository.

Git tag 4.2

Configuring Your Project with Autoconf 89

--snip--
$(distdir): FORCE
 mkdir -p $(distdir)/src
 cp configure.ac $(distdir)
 cp configure $(distdir)
 cp Makefile.in $(distdir)
 cp src/Makefile.in src/main.c $(distdir)/src

distcheck: $(distdir).tar.gz
 gzip -cd $(distdir).tar.gz | tar xvf -
 cd $(distdir) && ./configure
 cd $(distdir) && $(MAKE) all
 cd $(distdir) && $(MAKE) check
 cd $(distdir) && $(MAKE) DESTDIR=$${PWD}/_inst install
 cd $(distdir) && $(MAKE) DESTDIR=$${PWD}/_inst uninstall
 @remaining="`find $${PWD}/$(distdir)/_inst -type f | wc -l`"; \
 if test "$${remaining}" -ne 0; then \
 echo "*** $${remaining} file(s) remaining in stage directory!"; \
 exit 1; \
 fi
 cd $(distdir) && $(MAKE) clean
 rm -rf $(distdir)
 @echo "*** Package $(distdir).tar.gz is ready for distribution."
--snip--
FORCE:
 rm -f $(distdir).tar.gz
 rm -rf $(distdir)

Makefile: Makefile.in config.status
 ./config.status $@

config.status: configure
 ./config.status --recheck

.PHONY: FORCE all clean check dist distcheck install uninstall

Listing 4-6: Makefile.in: Required modifications to Makefile from Chapter 3

@configure_input@

Package-specific substitution variables
package = @PACKAGE_NAME@
version = @PACKAGE_VERSION@
tarname = @PACKAGE_TARNAME@
distdir = $(tarname)-$(version)

Prefix-specific substitution variables
prefix = @prefix@
exec_prefix = @exec_prefix@
bindir = @bindir@

CFLAGS = -g -O0
--snip--
clean:
 rm -f jupiter

90 Chapter 4

Makefile: Makefile.in ../config.status
 cd .. && ./config.status src/$@

../config.status: ../configure
 cd .. && ./config.status --recheck

.PHONY: all clean check install uninstall

Listing 4-7: src/Makefile.in: Required modifications to src/Makefile from Chapter 3

I’ve removed the export statements from the top-level Makefile.in and
added a copy of all the make variables (originally only in the top-level
Makefile) into src/Makefile.in. Since config.status generates both of these
files, I can reap excellent benefits by substituting values for these variables
directly into both files. The primary advantage of doing this is that I can
now run make in any subdirectory without worrying about uninitialized
variables that would originally have been passed down by a higher-level
makefile.

Since Autoconf generates entire values for these make variables, you
may be tempted to clean things up a bit by removing the variables and
just substituting @prefix@ where we currently use $(prefix) throughout the
files. There are a few good reasons for keeping the make variables. First and
foremost, we’ll retain the original benefits of the make variables; our end
users can continue to substitute their own values on the make command
line. (Even though Autoconf places default values in these variables, users
may wish to override them.) Second, for variables such as $(distdir), whose
values are composed of multiple variable references, it’s simply cleaner to
build the name in one place and use it everywhere else through a single
variable.

I’ve also changed the commands in the distribution targets a bit. Rather
than distribute the makefiles, I now need to distribute the Makefile.in tem-
plates, as well as the new configure script and the configure.ac file.10

Finally, I modified the distcheck target’s commands to run the configure
script before running make.

Generating Files from Templates
Note that you can use AC_CONFIG_FILES to generate any text file from a file of
the same name with a .in extension, found in the same directory. The .in
extension is the default template-naming pattern for AC_CONFIG_FILES, but
you can override this default behavior. I’ll get into the details shortly.

Autoconf generates sed or awk expressions into the resulting configure script,
which then copies them into config.status. The config.status script uses these
expressions to perform string replacement in the input template files.

10. Distributing configure.ac is not merely an act of kindness—it could also be considered
a requirement of GNU source licenses, since configure.ac is very literally the source code
for configure.

Configuring Your Project with Autoconf 91

Both sed and awk are text-processing tools that operate on file streams.
The advantage of a stream editor (the name sed is a contraction of the phrase
stream editor) is that it replaces text patterns in a byte stream. Thus, both sed
and awk can operate on huge files because they don’t need to load the entire
input file into memory in order to process it. Autoconf builds the expression
list that config.status passes to sed or awk from a list of variables defined by
various macros, many of which I’ll cover in greater detail later in this chapter.
It’s important to understand that Autoconf substitution variables are the only
items replaced in a template file while generating output files.

At this point, with very little effort, I’ve created a basic configure.ac file. I
can now execute autoreconf, followed by ./configure and then make, in order
to build the Jupiter project. This simple, three-line configure.ac file generates
a configure script that is fully functional, according to the definition of a
proper configuration script as specified by the GCS.

The resulting configuration script runs various system checks and gen-
erates a config.status script that can replace a fair number of substitution
variables in a set of specified template files in this build system. That’s a lot
of functionality in just three lines of code.

Adding VPATH Build Functionality
At the end of Chapter 3, I mentioned that I hadn’t yet covered an important
concept—that of vpath builds. A vpath build is a way of using a make construct
(VPATH) to configure and build a project in a directory other than the source
directory. This is important if you need to perform any of the following tasks:

•	 Maintain a separate debug configuration

•	 Test different configurations side by side

•	 Keep a clean source directory for patch diffs after local modifications

•	 Build from a read-only source directory

The VPATH keyword is short for virtual search path. A VPATH statement
contains a colon-separated list of places to look for relative-path dependen-
cies when they can’t be found relative to the current directory. In other
words, when make can’t find a prerequisite file relative to the current direc-
tory, it searches for that file successively in each of the paths in the VPATH
statement.

Adding remote build functionality to an existing makefile using VPATH
is very simple. Listing 4-8 shows an example of using a VPATH statement in a
makefile.

VPATH = some/path:some/other/path:yet/another/path

program : src/main.c
 $(CC) ...

Listing 4-8: An example of using VPATH in a makefile

92 Chapter 4

In this (contrived) example, if make can’t find src/main.c in the current
directory while processing the rule, it will look for some/path/src/main.c, and
then for some/other/path/src/main.c, and finally for yet/another/path/src/main.c
before giving up with an error message about not knowing how to make src/
main.c.

With just a few simple modifications, we can completely support remote
builds in Jupiter. Listings 4-9 and 4-10 illustrate the necessary changes to
the project’s two makefiles.

--snip--
Prefix-specific substitution variables
prefix = @prefix@
exec_prefix = @exec_prefix@
bindir = @bindir@

VPATH-specific substitution variables
srcdir = @srcdir@
VPATH = @srcdir@
--snip--
$(distdir): FORCE
 mkdir -p $(distdir)/src
 cp $(srcdir)/configure.ac $(distdir)
 cp $(srcdir)/configure $(distdir)
 cp $(srcdir)/Makefile.in $(distdir)
 cp $(srcdir)/src/Makefile.in $(srcdir)/src/main.c $(distdir)/src
--snip--

Listing 4-9: Makefile.in: Adding VPATH build capabilities to the top-level makefile

--snip--
Prefix-specific substitution variables
prefix = @prefix@
exec_prefix = @exec_prefix@
bindir = @bindir@

VPATH-specific substitution variables
srcdir = @srcdir@
VPATH = @srcdir@
--snip--
jupiter: main.c
 $(CC) $(CPPFLAGS) $(CFLAGS) -o $@ $(srcdir)/main.c
--snip--

Listing 4-10: src/Makefile.in: Adding VPATH build capabilities to the lower-level makefile

That’s it. Really. When config.status generates a file, it replaces an
Autoconf substitution variable called @srcdir@ with the relative path to
the template’s source directory. The value substituted for @srcdir@ in a
given Makefile within the build directory structure is the relative path to
the directory containing the corresponding Makefile.in template in the

Git tag 4.3

Configuring Your Project with Autoconf 93

source directory structure. The concept here is that for each Makefile in
the remote build directory, VPATH provides a relative path to the directory
containing the source code for that build directory.

N O T E Do not expect VPATH to work in commands. VPATH only allows make to find dependen-
cies; therefore, you can only expect VPATH to take effect in target and dependency lists
within rules. You may use $(srcdir)/ as a prefix for file system objects in commands,
as I’ve done in Listing 4-10 in the command for the jupiter target rule.

The changes required for supporting remote builds in your build
system are summarized as follows:

•	 Set a make variable, srcdir, to the @srcdir@ substitution variable.

•	 Set the VPATH variable to @srcdir@.

•	 Prefix all file dependencies used in commands with $(srcdir)/.

N O T E Don’t use $(srcdir) in the VPATH statement itself, because some older versions of make
won’t substitute variable references within the VPATH statement.

If the source directory is the same as the build directory, the @srcdir@
substitution variable degenerates to a dot (.). That means all of these
$(srcdir)/ prefixes simply degenerate to ./, which is harmless.11

A quick example is the easiest way to show you how this works. Now that
Jupiter is fully functional with respect to remote builds, let’s give it a try.
Start in the Jupiter project directory, create a subdirectory called build, and
then change into that directory. Execute the configure script using a relative
path and then list the current directory contents:

$ mkdir build
$ cd build
$../configure
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
$
$ ls -1p
config.log
config.status
Makefile
src/
$
$ ls -1p src
Makefile
$

11. This is not strictly true for non-GNU implementations of make. GNU make is smart enough
to know that file and ./file refer to the same filesystem object. However, non-GNU implementa-
tions of make aren’t always quite so intelligent, so you should be careful to refer to a filesystem
object using the same notation for each reference in your Makefile.in templates.

94 Chapter 4

The entire build system has been constructed by configure and config
.status within the build subdirectory. Enter make to build the project from
within the build directory:

$ make
cd src && make all
make[1]: Entering directory '.../jupiter/build/src'
cc -g -O0 -o jupiter ../../src/main.c
make[1]: Leaving directory '.../jupiter/build/src'
$
$ ls -1p src
jupiter
Makefile
$

No matter where you are, if you can access the project directory using
either a relative or an absolute path, you can do a remote build from that
location. This is just one more thing that Autoconf does for you in Autoconf-
generated configuration scripts. Imagine managing proper relative paths to
source directories in your own hand-coded configuration scripts!

Let’s Take a Breather
So far, I’ve shown you a nearly complete build system that includes almost
all of the features outlined in the GCS. The features of Jupiter’s build sys-
tem are all fairly self-contained and reasonably simple to understand. The
most difficult feature to implement by hand is the configuration script. In
fact, writing a configuration script by hand is so labor intensive, compared
to the simplicity of using Autoconf, that I just skipped the hand-coded ver-
sion entirely in Chapter 3.

Although using Autoconf as I’ve used it here is quite easy, most people
don’t create their build systems in the manner I’ve shown you. Instead, they
try to copy the build system of another project and tweak it to make it work
in their own project. Later, when they start a new project, they do the same
thing again. This can cause trouble because the code they’re copying was
never meant to be used the way they’re now trying to use it.

I’ve seen projects in which the configure.ac file contained junk that had
nothing to do with the project to which it belonged. These leftover bits came
from some legacy project, but the maintainer didn’t know enough about
Autoconf to properly remove all the extraneous text. With the Autotools, it’s
generally better to start small and add what you need than to start with a copy
of configure.ac from another full-featured build system and then try to pare it
down to size or otherwise modify it to work with a new project.

I’m sure you’re feeling like there’s a lot more to learn about Autoconf,
and you’re right. We’ll spend the remainder of this chapter examining the
most important Autoconf macros and how they’re used in the context of
the Jupiter project. But first, let’s go back and see if we might be able to sim-
plify the Autoconf startup process even more by using another utility that
comes with the Autoconf package.

Configuring Your Project with Autoconf 95

An Even Quicker Start with autoscan
The easiest way to create a (mostly) complete configure.ac file is to run
the autoscan utility, which is part of the Autoconf package. This utility
examines the contents of a project directory and generates the basis for
a configure.ac file (which autoscan names configure.scan) using existing
makefiles and source files.

Let’s see how well autoscan does on the Jupiter project. First, I’ll clean
up the droppings from my earlier experiments, and then I’ll run autoscan in
the jupiter directory.

N O T E If you’re using the git repository that accompanies this book, you can simply run
git clean -df to remove all files and directories not currently under source control
by git. Don’t forget to switch back into the parent directory if you’re still sitting in the
build directory.

Note that I’m not deleting my original configure.ac file—I’ll just let autoscan
tell me how to improve it. In less than a second, I have a few new files in the
top-level directory:

$ cd ..
$ git clean -df
$ autoscan

 configure.ac: warning: missing AC_CHECK_HEADERS([stdlib.h]) wanted by:
 src/main.c:2
configure.ac: warning: missing AC_PREREQ wanted by: autoscan
configure.ac: warning: missing AC_PROG_CC wanted by: src/main.c
configure.ac: warning: missing AC_PROG_INSTALL wanted by: Makefile.in:18
$
$ ls -1p
autom4te.cache/
autoscan.log
configure.ac
configure.scan
Makefile.in
src/
$

The autoscan utility examines the project directory hierarchy and
creates two files called configure.scan and autoscan.log. The project may or
may not already be instrumented for the Autotools—it doesn’t really matter,
because autoscan is decidedly nondestructive. It will never alter any existing
files in a project.

The autoscan utility generates a warning message for each problem it
discovers in an existing configure.ac file. In this example, autoscan noticed
that configure.ac should be using the Autoconf-provided AC_CHECK_HEADERS,
AC_PREREQ, AC_PROG_CC, and AC_PROG_INSTALL macros. It made these assumptions
based on information gleaned from the existing Makefile.in templates and

96 Chapter 4

from the C-language source files, as you can see by the comments after the
warning statements beginning at . You can always see these messages (in
even greater detail) by examining the autoscan.log file.

N O T E The notices you receive from autoscan and the contents of your configure.ac file may
differ slightly from mine, depending on the version of Autoconf you have installed.
I have version 2.69 of GNU Autoconf installed on my system (the latest, as of this
writing). If your version of autoscan is older (or newer), you may see some minor
differences.

Looking at the generated configure.scan file, I note that autoscan has
added more text to this file than was in my original configure.ac file. After
looking it over to ensure that I understand everything, I see that it’s prob-
ably easiest for me to overwrite configure.ac with configure.scan and then
change the few bits of information that are specific to Jupiter:

$ mv configure.scan configure.ac
$ cat configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS])
AC_CONFIG_SRCDIR([src/main.c])
AC_CONFIG_HEADERS([config.h])

Checks for programs.
AC_PROG_CC
AC_PROG_INSTALL

Checks for libraries.

Checks for header files.
AC_CHECK_HEADERS([stdlib.h])

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.
AC_CONFIG_FILES([Makefile
 src/Makefile])
AC_OUTPUT
$

My first modification involves changing the AC_INIT macro parameters
for Jupiter, as illustrated in Listing 4-11.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
AC_INIT([Jupiter], [1.0], [jupiter-bugs@example.org])

Git tag 4.4

Configuring Your Project with Autoconf 97

AC_CONFIG_SRCDIR([src/main.c])
AC_CONFIG_HEADERS([config.h])
--snip--

Listing 4-11: configure.ac: Tweaking the AC_INIT macro generated by autoscan

The autoscan utility does a lot of the work for you. The GNU Autoconf
Manual12 states that you should modify this file to meet the needs of your
project before you use it, but there are only a few key issues to worry about
(besides those related to AC_INIT). I’ll cover each of these issues in turn, but
first, let’s take care of a few administrative details.

I’d be remiss if I didn’t mention autoupdate while discussing autoscan.
If you’ve already got a working configure.ac file, and you update to a newer
version of Autoconf, you can run autoupdate to update your existing
configure.ac file with constructs that have changed or been added since
the older version of Autoconf.

The Proverbial bootstrap.sh Script
Before autoreconf came along, maintainers passed around a short shell
script, often named autogen.sh or bootstrap.sh, which would run all of
the Autotools required for their projects in the proper order. The rec-
ommended name for this script is bootstrap.sh because Autogen is the
name of another GNU project. The bootstrap.sh script can be fairly
sophisticated, but to solve the problem of the missing install-sh script
(see “Missing Required Files in Autoconf,” next), I’ll just add a simple
temporary bootstrap.sh script to the project root directory, as shown in
Listing 4-12.

#!/bin/sh
autoreconf --install

 automake --add-missing --copy >/dev/null 2>&1

Listing 4-12: bootstrap.sh: A temporary bootstrap script that executes the required
Autotools

The Automake --add-missing option copies the required missing util-
ity scripts into the project, and the --copy option indicates that true copies
should be made (otherwise, symbolic links are created that refer to the files
where they’re installed with the Automake package).13

12. See the Free Software Foundation’s GNU Autoconf Manual at https://www.gnu.org/software/
autoconf/manual/index.html.

13. This isn’t as bad as it sounds, because when make dist generates a distribution archive, it
creates true copies in the image directory. Therefore, links work just fine, as long as you (the
maintainer) don’t move your work area to another host. Note that automake provides a --copy
option, but autoreconf provides just the opposite: a --symlink option. Thus, if you execute
automake --add-missing and you wish to actually copy the files, you should pass --copy as well.
If you execute autoreconf --install, then --copy will be assumed and passed to automake by
autoreconf.

Git tag 4.5

https://www.gnu.org/software/autoconf/manual/index.html
https://www.gnu.org/software/autoconf/manual/index.html

98 Chapter 4

N O T E We don’t need to see the warnings from executing automake, so I’ve redirected the
stderr and stdout streams to /dev/null on the automake command line at in
this script. In Chapter 6, we’ll remove bootstrap.sh and simply run autoreconf
--install, but for now, this solves our missing file problems.

MISSING R EQUIR E D F IL E S IN AU TOCONF

When I first tried to execute autoreconf on the configure.ac file in Listing 4-11, I
discovered a minor problem related to using Autoconf without Automake. When
I ran the configure script, it failed with an error: configure: error: cannot find
install-sh, install.sh, or shtool in "." "./.." "./../..".

Autoconf is all about portability and, unfortunately, the Unix install
utility is not as portable as it could be. From one platform to another, critical
bits of installation functionality are just different enough to cause problems,
so the Autotools provide a shell script called install-sh (deprecated name:
install.sh). This script acts as a wrapper around the system’s own install
utility, masking important differences between various versions of install.

autoscan noticed that I’d used the install program in my src/Makefile.in
template, so it generated an expansion of the AC_PROG_INSTALL macro.
The problem is that configure couldn’t find the install-sh wrapper script
anywhere in my project.

I reasoned that the missing file was part of the Autoconf package and it
just needed to be installed. I also knew that autoreconf accepts a command
line option to install such missing files into a project directory. The --install
(-i) option supported by autoreconf is designed to pass tool-specific options
down to each of the tools that it calls in order to install missing files. However,
when I tried that, I found that the file was still missing, because autoconf doesn’t
support an option to install missing files.

I could have manually copied install-sh from the Automake installa-
tion directory (usually /usr/(local/)share/automake-*), but looking for a more
automated solution, I tried manually executing automake --add-missing --copy.
This command generated a slew of warnings indicating that the project was
not configured for Automake. However, I could now see that install-sh had
been copied into my project root directory, and that’s all I was after. Executing
autoreconf --install didn’t run automake because configure.ac was not set up
for Automake.

Autoconf should ship with install-sh, since it provides a macro that
requires it, but then autoconf would have to provide an --add-missing com-
mand line option. Nevertheless, there is actually a quite obvious solution to this
problem. The install-sh script is not really required by any code Autoconf gen-
erates. How could it be? Autoconf doesn’t generate any makefile constructs—it
only substitutes variables into your Makefile.in templates. Thus, there’s really no
reason for Autoconf to complain about a missing install-sh script.

Configuring Your Project with Autoconf 99

Updating Makefile.in
Let’s make bootstrap.sh executable and then execute it and see what we end
up with:

$ chmod +x bootstrap.sh
$./bootstrap.sh
$ ls -1p
autom4te.cache/
bootstrap.sh

 config.h.in
configure
configure.ac

 install-sh
Makefile.in
src/
$

We know from the file list at that config.h.in has been created, so
we know that autoreconf has executed autoheader. We also see the new
install-sh script at that was created when we executed automake in
bootstrap.sh. Anything provided or generated by the Autotools should be
copied into the archive directory so that it can be shipped with release
tarballs. Therefore, we’ll add cp commands for these two files to the
$(distdir) target in the top-level Makefile.in template. Note that we don’t
need to copy the bootstrap.sh script because it’s purely a maintainer tool—
users should never need to execute it from a tarball distribution.

Listing 4-13 illustrates the required changes to the $(distdir) target in
the top-level Makefile.in template.

--snip--
$(distdir): FORCE
 mkdir -p $(distdir)/src
 cp $(srcdir)/configure.ac $(distdir)
 cp $(srcdir)/configure $(distdir)
 cp $(srcdir)/config.h.in $(distdir)
 cp $(srcdir)/install-sh $(distdir)
 cp $(srcdir)/Makefile.in $(distdir)
 cp $(srcdir)/src/Makefile.in $(distdir)/src
 cp $(srcdir)/src/main.c $(distdir)/src
--snip--

Listing 4-13: Makefile.in: Additional files needed in the distribution archive image directory

If you’re beginning to think that this could become a maintenance
problem, then you’re right. I mentioned earlier that the $(distdir) target
was painful to maintain. Luckily, the distcheck target still exists and still
works as designed. It would have caught this problem, because attempts
to build from the tarball will fail without these additional files—and the
distcheck target certainly won’t succeed if the build fails. When we discuss
Automake in Chapter 6, we will clear up much of this maintenance mess.

Git tag 4.6

100 Chapter 4

Initialization and Package Information
Now let’s turn our attention back to the contents of the configure.ac file in
Listing 4-11 (and the console example immediately preceding that list-
ing). The first section contains Autoconf initialization macros. These are
required for all projects. Let’s consider each of these macros individually,
because they’re all important.

AC_PREREQ
The AC_PREREQ macro simply defines the earliest version of Autoconf that
may be used to successfully process this configure.ac file:

AC_PREREQ(version)

The GNU Autoconf Manual indicates that AC_PREREQ is the only macro that
may be used before AC_INIT. This is because it’s good to ensure you’re using
a new enough version of Autoconf before you begin processing any other
macros, which may be version dependent.

AC_INIT
The AC_INIT macro, as its name implies, initializes the Autoconf system.
Here’s its prototype, as defined in the GNU Autoconf Manual:14

AC_INIT(package, version, [bug-report], [tarname], [url])

It accepts up to five arguments (autoscan only generates an invocation
with the first three): package, version, and, optionally, bug-report, tarname, and
url. The package argument is intended to be the name of the package. It will
end up (in a canonical form) as the first part of the name of an Automake-
generated release distribution tarball when you execute make dist.

N O T E Autoconf uses a normalized form of the package name in the tarball name, so you can
use uppercase letters in the package name, if you wish. Automake-generated tarballs
are named tarname-version.tar.gz by default, but tarname is set to a normalized form
of the package name (lowercase, with all punctuation converted to underscores). Bear
this in mind when you choose your package name and version string.

The optional bug-report argument is usually set to an email address,
but any text string is valid—the URL of a web page that accepts bug reports
for the project is a common alternative. An Autoconf substitution variable
called @PACKAGE_BUGREPORT@ is created for it, and that variable is also added to
the config.h.in template as a C-preprocessor definition. The intent here is
that you use the variable in your code to present an email address or URL
for bug reports at appropriate places—possibly when the user requests help
or version information from your application.

14. The square brackets used in the macro definition prototypes within this book (as well as
the GNU Autoconf Manual) indicate optional parameters, not Autoconf quotes.

Configuring Your Project with Autoconf 101

While the version argument can be anything you like, there are a
few commonly used OSS conventions that will make things a little easier
for you. The most widely used convention is to pass in major.minor (for
example, 1.2). However, there’s nothing that says you can’t use major.minor.
revision, and there’s nothing wrong with this approach. None of the result-
ing VERSION variables (Autoconf, shell, or make) are parsed or analyzed any-
where—they’re only used as placeholders for substituted text in various
locations.15 So if you wish, you may even add nonnumerical text into this
macro, such as 0.15.alpha1, which is occasionally useful.16

N O T E The RPM package manager, on the other hand, does care what you put in the ver-
sion string. For the sake of RPM, you may wish to limit the version string text to only
alphanumeric characters and periods—no dashes or underscores.

The optional url argument should be the URL for your project website.
It’s shown in the help text displayed by configure --help.

Autoconf generates the substitution variables @PACKAGE_NAME@, @PACKAGE
_VERSION@, @PACKAGE_TARNAME@, @PACKAGE_STRING@ (a stylized concatenation of the
package name and version information), @PACKAGE_BUGREPORT@, and @PACKAGE
_URL@ from the arguments to AC_INIT. You can use any or all of these in your
Makefile.in template files.

AC_CONFIG_SRCDIR
The AC_CONFIG_SRCDIR macro is a sanity check. Its purpose is to ensure that
the generated configure script knows that the directory on which it is being
executed is actually the project directory.

More specifically, configure needs to be able to locate itself, because it
generates code that executes itself, possibly from a remote directory. There
are myriad ways to inadvertently fool configure into finding some other
configure script. For example, the user could accidentally provide an incor-
rect --srcdir argument to configure. The $0 shell script parameter is unreli-
able, at best—it may contain the name of the shell, rather than that of the
script, or it may be that configure was found in the system search path, so no
path information was specified on the command line.

The configure script could try looking in the current or parent direc-
tories, but it still needs a way to verify that the configure script it locates is
actually itself. Thus, AC_CONFIG_SRCDIR gives configure a significant hint that
it’s looking in the right place. Here’s the prototype for AC_CONFIG_SRCDIR:

AC_CONFIG_SRCDIR(unique-file-in-source-dir)

15. As far as M4 is concerned, all data is text; thus, M4 macro arguments, including package
and version, are treated simply as strings. M4 doesn’t attempt to interpret any of this text as
numbers or other data types.

16. A future version of Autoconf will support a public macro that allows lexicographical com-
parison of version strings, and certain internal constructs in current versions already use such
functionality. Therefore, it’s good practice to form version strings that increase properly in a
lexical fashion from version to version.

102 Chapter 4

The argument can be a path (relative to the project’s configure script)
to any source file you like. You should choose one that is unique to your
project so as to minimize the possibility that configure is fooled into think-
ing some other project’s configuration file is itself. I normally try to choose
a file that sort of represents the project, such as a source file named for a
feature that defines the project. That way, in case I ever decide to reorga-
nize the source code, I’m not likely to lose it in a file rename. In this case,
however, we have only one source file, main.c, making it a little difficult to
follow this convention. Regardless, both autoconf and configure will tell you
and your users if it can’t find the file.

The Instantiating Macros
Before we dive into the details of AC_CONFIG_HEADERS, I’d like to spend a little
time on the file generation framework Autoconf provides. From a high-level
perspective, there are four major things happening in configure.ac:

•	 Initialization

•	 Check request processing

•	 File instantiation request processing

•	 Generation of the configure script

We’ve covered initialization—there’s not much to it, although there
are a few more macros you should be aware of. Check out the GNU Autoconf
Manual for more information—look up AC_COPYRIGHT, for an example. Now
let’s move on to file instantiation.

There are actually four so-called instantiating macros: AC_CONFIG_FILES,
AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS, and AC_CONFIG_LINKS. An instantiating
macro accepts a list of tags or files; configure will generate these files from
templates containing Autoconf substitution variables.

N O T E You might need to change the name of AC_CONFIG_HEADER (singular) to AC_CONFIG_HEADERS
(plural) in your version of configure.scan. The singular version is the older name
for this macro, and the older macro is less functional than the newer one.17

The four instantiating macros have an interesting common signature.
The following prototype can be used to represent each of them, with appro-
priate text replacing the XXX portion of the macro name:

AC_CONFIG_XXXS(tag..., [commands], [init-cmds])

17. This was a defect in autoscan that had not been fixed as of Autoconf version 2.61.
However, version 2.62 of autoscan correctly generates a call to the newer, more functional
AC_CONFIG_HEADERS. This note is of more historical interest than anything else, as most systems
have updated to Autoconf 2.63 or later by now.

Configuring Your Project with Autoconf 103

For each of these four macros, the tag argument has the form OUT[:INLIST],
where INLIST has the form IN0[:IN1:...:INn]. Often, you’ll see a call to one
of these macros with only a single argument, as in the three examples that
follow (note that these examples represent macro invocations, not prototypes,
so the square brackets are actually Autoconf quotes, not indications of
optional parameters):

AC_CONFIG_HEADERS([config.h])

In this example, config.h is the OUT portion of the preceding specifica-
tion. The default value for INLIST is the OUT portion with .in appended to it.
So, in other words, the preceding call is exactly equivalent to the following:

AC_CONFIG_HEADERS([config.h:config.h.in])

What this means is that config.status contains shell code that will gener-
ate config.h from config.h.in, substituting all Autoconf variables in the pro-
cess. You may also provide a list of input files in the INLIST portion. In this
case, the files in INLIST will be concatenated to form the resulting OUT file:

AC_CONFIG_HEADERS([config.h:cfg0:cfg1:cfg2])

Here, config.status will generate config.h by concatenating cfg0, cfg1,
and cfg2 (in that order), after substituting all Autoconf variables. The GNU
Autoconf Manual refers to this entire OUT[:INLIST] construct as a tag.

Why not just call it a file? Well, this parameter’s primary purpose
is to provide a sort of command line target name—much like makefile
targets. It can also be used as a filesystem name if the associated macro
generates files, as is the case with AC_CONFIG_HEADERS, AC_CONFIG_FILES, and
AC_CONFIG_LINKS.

But AC_CONFIG_COMMANDS is unique in that it doesn’t generate any files.
Instead, it runs arbitrary shell code, as specified by the user in the macro’s
arguments. Thus, rather than name this first parameter after a second-
ary function (the generation of files), the GNU Autoconf Manual refers to it
more generally, according to its primary purpose—as a command line tag
that may be specified on the ./config.status command line, in this manner:

$./config.status config.h

This command will regenerate the config.h file based on the macro call
to AC_CONFIG_HEADERS in configure.ac. It will only regenerate config.h.

Enter ./config.status --help to see the other command line options you
can use when executing ./config.status:

$./config.status --help
`config.status' instantiates files and other configuration actions
from templates according to the current configuration. Unless the files
and actions are specified as TAGs, all are instantiated by default.

104 Chapter 4

 Usage: ./config.status [OPTION]... [TAG]...

 -h, --help print this help, then exit
 -V, --version print version number and configuration settings, then exit

 --config print configuration, then exit
 -q, --quiet, --silent
 do not print progress messages
 -d, --debug don't remove temporary files
 --recheck update config.status by reconfiguring in the same
conditions

 --file=FILE[:TEMPLATE]
 instantiate the configuration file FILE
 --header=FILE[:TEMPLATE]
 instantiate the configuration header FILE

 Configuration files:
 Makefile src/Makefile

 Configuration headers:
 config.h

Report bugs to <jupiter-bugs@example.org>.
$

Notice that config.status provides custom help about a project’s config
.status file. It lists configuration files and configuration headers that
we can use as tags on the command line where the usage specifies [TAG]...
at . In this case, config.status will only instantiate the specified objects. In
the case of commands, it will execute the command set specified by the tag
passed in the associated expansion of the AC_CONFIG_COMMANDS macro.

Each of these macros may be used multiple times in a configure.ac file.
The results are cumulative, and we can use AC_CONFIG_FILES as many times
as we need to in configure.ac. It is also important to note that config.status
supports the --file= option (at). When you call config.status with tags
on the command line, the only tags you can use are those the help text lists
as available configuration files, headers, links, and commands. When you
execute config.status with the --file= option, you’re telling config.status
to generate a new file that’s not already associated with any of the calls to
the instantiating macros found in configure.ac. This new file is generated
from an associated template using configuration options and check results
determined by the last execution of configure. For example, I could execute
config.status in this manner (using a fictional template called extra.in):

$./config.status --file=extra:extra.in

N O T E The default template name is the filename with a .in suffix, so this call could have
been made without using the :extra.in portion of the option. I added it here for clarity.

Configuring Your Project with Autoconf 105

Finally, I’d like to point out a newer feature of config.status—the --config
option at , added with version 2.65 of Autoconf. Using this option displays
the explicit configuration options passed to configure on the command line.
For instance, assume that we had invoked ./configure in this manner:

$./configure --prefix=$HOME

When you use the new --config option, ./config.status displays the
following:

$./config.status --config
'--prefix=/home/jcalcote'

N O T E Older versions of Autoconf generated a config.status script that displayed this infor-
mation when using the --version option, but it was part of a larger wall of text. The
newer --config option makes it easier to find and reuse configuration options origi-
nally passed to the configure script.

Let’s return now to the instantiating macro signature at the bottom of
page 102. I’ve shown you that the tag... argument has a complex format,
but the ellipsis indicates that it also represents multiple tags, separated by
whitespace. The format you’ll see in nearly all configure.ac files is shown in
Listing 4-14.

AC_CONFIG_FILES([Makefile
 src/Makefile
 lib/Makefile
 etc/proj.cfg])

Listing 4-14: Specifying multiple tags (files) in AC_CONFIG_FILES

Each entry here is one tag specification, which, if fully specified, would
look like the call in Listing 4-15.

AC_CONFIG_FILES([Makefile:Makefile.in
 src/Makefile:src/Makefile.in
 lib/Makefile:lib/Makefile.in
 etc/proj.cfg:etc/proj.cfg.in])

Listing 4-15: Fully specifying multiple tags in AC_CONFIG_FILES

Returning to the instantiating macro prototype, there are two optional
arguments that you’ll rarely see used in these macros: commands and init-cmds.
The commands argument may be used to specify some arbitrary shell code
that should be executed by config.status just before the files associated
with the tags are generated. It is unusual for this feature to be used within
the file-generating instantiating macros. You will almost always see the
commands argument used with AC_CONFIG_COMMANDS, which generates no files by

106 Chapter 4

default, because a call to this macro is basically useless without commands
to execute!18 In this case, the tag argument becomes a way of telling config
.status to execute a specific set of shell commands.

The init-cmds argument initializes shell variables at the top of config
.status with values available in configure.ac and configure. It’s important to
remember that all calls to instantiating macros share a common namespace
along with config.status. Therefore, you should try to choose your shell vari-
able names carefully so they are less likely to conflict with each other and
with Autoconf-generated variables.

The old adage about the value of a picture versus an explanation
holds true here, so let’s try a little experiment. Create a test version of your
configure.ac file that contains only the contents of Listing 4-16. You should
do this in a separate directory, as we’re not relying on any of the other files
in the Jupiter project directory structure with this experiment.

AC_INIT([test], [1.0])
AC_CONFIG_COMMANDS([abc],
 [echo "Testing $mypkgname"],
 [mypkgname=$PACKAGE_NAME])
AC_OUTPUT

Listing 4-16: Experiment #1—a simple configure.ac file using AC_CONFIG_COMMANDS

Now execute autoreconf, ./configure, and ./config.status in various ways
to see what happens:

$ autoreconf
 $./configure

configure: creating ./config.status
config.status: executing abc commands
Testing test
$

 $./config.status
config.status: executing abc commands
Testing test
$

 $./config.status --help
'config.status' instantiates files from templates according to the current
configuration.
Usage: ./config.status [OPTIONS]... [FILE]...
--snip--
Configuration commands:
 abc

Report bugs to <bug-autoconf@gnu.org>.
$

 $./config.status abc
config.status: executing abc commands
Testing test
$

18. The truth is that we don’t often use AC_CONFIG_COMMANDS.

Configuring Your Project with Autoconf 107

As you can see at , executing ./configure caused config.status to be
executed with no command line options. There are no checks specified in
configure.ac, so manually executing ./config.status, as we did at , has nearly
the same effect. Querying config.status for help (as we did at) indicates
that abc is a valid tag; executing ./config.status with that tag (as we did
at) on the command line simply runs the associated commands.

In summary, the important points regarding the instantiating macros
are as follows:

•	 The config.status script generates all files from templates.

•	 The configure script performs all checks and then executes ./config.status.

•	 When you execute ./config.status with no command line options, it
generates files based on the last set of check results.

•	 You can call ./config.status to execute file generation or command sets
specified by any of the tags given in any of the instantiating macro calls.

•	 The config.status script may generate files not associated with any tags
specified in configure.ac, in which case it will substitute variables based
on the last set of checks performed.

Generating Header Files from Templates
As you’ve no doubt concluded by now, the AC_CONFIG_HEADERS macro allows
you to specify one or more header files that config.status should generate
from template files. The format of a configuration header template is very
specific. A short example is given in Listing 4-17.

/* Define as 1 if you have unistd.h. */
#undef HAVE_UNISTD_H

Listing 4-17: A short example of a header file template

You can place multiple statements like this in your header template,
one per line. The comments are optional, of course. Let’s try another
experiment. Create a new configure.ac file like that shown in Listing 4-18.
Again, you should do this in an isolated directory.

AC_INIT([test], [1.0])
AC_CONFIG_HEADERS([config.h])
AC_CHECK_HEADERS([unistd.h foobar.h])
AC_OUTPUT

Listing 4-18: Experiment #2—a simple configure.ac file

Create a template header file called config.h.in that contains the two
lines in Listing 4-19.

#undef HAVE_UNISTD_H
#undef HAVE_FOOBAR_H

Listing 4-19: Experiment #2 continued—a simple config.h.in file

108 Chapter 4

Now execute the following commands:

$ autoconf
$./configure
checking for gcc... gcc
--snip--

 checking for unistd.h... yes
checking for unistd.h... (cached) yes
checking foobar.h usability... no
checking foobar.h presence... no

 checking for foobar.h... no
configure: creating ./config.status

 config.status: creating config.h
$
$ cat config.h
/* config.h. Generated from config.h.in by configure. */
#define HAVE_UNISTD_H 1

 /* #undef HAVE_FOOBAR_H */
$

You can see at that config.status generated a config.h file from the
simple config.h.in template we wrote. The contents of this header file are
based on the checks executed by configure. Since the shell code generated
by AC_CHECK_HEADERS([unistd.h foobar.h]) was able to locate a unistd.h header
file () in the system include directory, the corresponding #undef statement
was converted into a #define statement. Of course, no foobar.h header was
found in the system include directory, as you can also see by the output of
./configure at ; therefore, its definition was left commented out in the tem-
plate, as shown at .

Hence, you may add the sort of code shown in Listing 4-20 to appropri-
ate C-language source files in your project.

#include "config.h"
#if HAVE_UNISTD_H
include <unistd.h>
#endif
#if HAVE_FOOBAR_H
include <foobar.h>
#endif

Listing 4-20: Using generated CPP definitions in a C-language source file

N O T E The unistd.h header file is so standard these days that it’s not really necessary to
check for it in AC_CONFIG_HEADERS, but it served here as a file that I was sure existed
on my system for this example.

Using autoheader to Generate an Include File Template
Manually maintaining a config.h.in template is more trouble than neces-
sary. The format of config.h.in is very strict—for example, you can’t have any
leading or trailing whitespace on the #undef lines, and the #undef lines you

Configuring Your Project with Autoconf 109

add must use #undef rather than #define, mainly because config.status only
knows how to either replace #undef with #define or comment out lines con-
taining #undef.19

Most of the information you need from config.h.in is available in
configure.ac. Fortunately, autoheader will generate a properly formatted
header file template for you based on the contents of configure.ac, so you
don’t often need to write config.h.in templates. Let’s return to the command
prompt for a final experiment. This one is easy—just delete your config.h.in
template from experiment #2 and then run autoheader followed by autoconf:

$ rm config.h.in
$ autoheader
$ autoconf
$./configure
checking for gcc... gcc
--snip--
checking for unistd.h... yes
checking for unistd.h... (cached) yes
checking foobar.h usability... no
checking foobar.h presence... no
checking for foobar.h... no
configure: creating ./config.status
config.status: creating config.h
$

 $ cat config.h
/* config.h. Generated from config.h.in by configure. */
/* config.h.in. Generated from configure.ac by autoheader. */
/* Define to 1 if you have the <foobar.h> header file. */
/* #undef HAVE_FOOBAR_H */
--snip--
/* Define to 1 if you have the <unistd.h> header file. */
#define HAVE_UNISTD_H 1
/* Define to the address where bug reports for this package should be sent. */
#define PACKAGE_BUGREPORT ""
/* Define to the full name of this package. */
#define PACKAGE_NAME "test"
/* Define to the full name and version of this package. */
#define PACKAGE_STRING "test 1.0"
/* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "test"
/* Define to the version of this package. */
#define PACKAGE_VERSION "1.0"
/* Define to 1 if you have the ANSI C header files. */
#define STDC_HEADERS 1
$

19. This is an example of config.status using sed or awk to perform token replacement in tem-
plate files. It looks specifically for #undef token and replaces it with #define token. In this case,
token is the name of the header file converted to uppercase, with special characters (such as
periods) replaced with underscores, and prepended with HAVE_.

110 Chapter 4

N O T E Again, I encourage you to use autoreconf, which will automatically run autoheader
if it notices an expansion of AC_CONFIG_HEADERS in configure.ac.

As you can see by the output of the cat command at , an entire set of
preprocessor definitions was derived from configure.ac by autoheader.

Listing 4-21 shows a much more realistic example of using a gener-
ated config.h file to increase the portability of your project source code. In
this example, the AC_CONFIG_HEADERS macro invocation indicates that config.h
should be generated, and the invocation of AC_CHECK_HEADERS will cause
autoheader to insert a definition into config.h.

AC_INIT([test], [1.0])
AC_CONFIG_HEADERS([config.h])
AC_CHECK_HEADERS([dlfcn.h])
AC_OUTPUT

Listing 4-21: A more realistic example of using AC_CONFIG_HEADERS

The config.h file is intended to be included in your source code in loca-
tions where you might wish to test a configured option in the code itself
using the C preprocessor. This file should be included first in source files so
it can influence the inclusion of system header files later in the source.

N O T E The config.h.in template that autoheader generates doesn’t contain an include-
guard construct, so you need to be careful that it’s not included more than once in a
source file. A good rule of thumb is to always include config.h as the very first header
in every .c source file and never include it anywhere else. Following this rule will
guarantee that it never needs an include guard.

It’s often the case that every .c file in a project needs to include config.h. In
this case, an interesting approach is to use the gcc -include option to include
it at the top of every compiled source file from the compiler command line.
This can be done within configure.ac by appending -include config.h to the
DEFS variable (which is currently only used to define HAVE_CONFIG_H—if you’re
more of a purist, you can use CFLAGS instead). Once done, you may assume
config.h is part of every translation unit.

Don’t make the mistake of including config.h in a public header file if
your project installs libraries and header files as part of your product set.
For more detailed information on this topic, refer to “Item 1: Keeping
Private Details out of Public Interfaces” on page 499.

Using the configure.ac file from Listing 4-21, the generated configure
script will create a config.h header file with appropriate definitions for deter-
mining, at compile time, whether or not the current system provides the
dlfcn interface. To complete the portability check, you can add the code
from Listing 4-22 to a source file in your project that uses dynamic loader
functionality.

#include "config.h"
 #if HAVE_DLFCN_H

Configuring Your Project with Autoconf 111

include <dlfcn.h>
#else
error Sorry, this code requires dlfcn.h.
#endif
--snip--

 #if HAVE_DLFCN_H
 handle = dlopen("/usr/lib/libwhatever.so", RTLD_NOW);
#endif
--snip--

Listing 4-22: A sample source file that checks for dynamic loader functionality

If you already had code that included dlfcn.h, autoscan would have gen-
erated a line in configure.ac to call AC_CHECK_HEADERS with an argument list
containing dlfcn.h as one of the header files to be checked. Your job as main-
tainer is to add the conditional statements at and to your source code
around the existing inclusions of the dlfcn.h header file and around calls to
the dlfcn interface functions. This is the crux of Autoconf portability support.

N O T E You don’t technically need the preprocessor conditionals around the code if you choose
to “error out” if the inclusion check fails, but doing so makes it obvious to the reader
which portions of the source code are affected by the conditional inclusion.

Your project might prefer dynamic loader functionality, but could get
along without it if necessary. It’s also possible that your project requires a
dynamic loader, in which case your build should terminate with an error
(as this code does) if the key functionality is missing. Often, this is an
acceptable stopgap until someone comes along and adds support to the
source code for a more system-specific dynamic loader service.

N O T E If you have to bail out with an error, it’s best to do so at configuration time rather
than at compile time. The general rule of thumb is to bail out as early as possible.

As mentioned earlier, HAVE_CONFIG_H is part of a string of definitions
passed on the compiler command line in the Autoconf substitution vari-
able @DEFS@. Before autoheader and AC_CONFIG_HEADERS functionality existed,
Automake added all of the compiler configuration macros to the @DEFS@
variable. You can still use this method if you don’t use AC_CONFIG_HEADERS in
configure.ac, but it’s not recommended—mainly because a large number of
definitions make for very long compiler command lines.

Back to Remote Builds for a Moment
As we wrap up this chapter, you’ll notice that we’ve come full circle. We
started out covering some preliminary information before we discussed how
to add remote builds to Jupiter. Now we’ll return to this topic for a moment,
because I haven’t yet covered how to get the C preprocessor to properly
locate a generated config.h file.

112 Chapter 4

Since this file is generated from a template, it will be at the same rela-
tive position in the build directory structure as its counterpart template
file, config.h.in, is in the source directory structure. The template is located
in the top-level source directory (unless you chose to put it elsewhere), so
the generated file will be in the top-level build directory. Well, that’s easy
enough—it’s always one level up from the generated src/Makefile.

Before we draw any conclusions then about header file locations, let’s
consider where header files might appear in a project. We might generate
them in the current build directory, as part of the build process. We might
also add internal header files to the current source directory. We know we
have a config.h file in the top-level build directory. Finally, we might also cre-
ate a top-level include directory for library interface header files our package
provides. What is the order of priority for these various include directories?

The order in which we place include directives (-Ipath options) on the com-
piler command line is the order in which they will be searched, so the order
should be based on which files are most relevant to the source file currently
being compiled. Therefore, the compiler command line should include -Ipath
directives for the current build directory (.) first, followed by the source
directory [$(srcdir)], then the top-level build directory (..), and, finally, our
project’s include directory, if it has one. We impose this ordering by adding
-Ipath options to the compiler command line, as shown in Listing 4-23.

--snip--
jupiter: main.c
 $(CC) $(CPPFLAGS) $(CFLAGS) -I. -I$(srcdir) -I.. -o $@ \
 $(srcdir)/main.c
--snip--

Listing 4-23: src/Makefile.in: Adding proper compiler include directives

Now that we know this, we need to add another rule of thumb for
remote builds to the list we created on page 93:

•	 Add preprocessor commands for the current build directory, the associ-
ated source directory, and the top-level build directory (or other build
directory if config.h.in is located elsewhere), in that order.

Summary
In this chapter, we covered just about all the major features of a fully func-
tional GNU project build system, including writing a configure.ac file, from
which Autoconf generates a fully functional configure script. We’ve also cov-
ered adding remote build functionality to makefiles with VPATH statements.

So what else is there? Plenty! In the next chapter, I’ll continue to show
you how you can use Autoconf to test system features and functionality before
your users run make. We’ll also continue enhancing the configuration script
so that when we’re done, users will have more options and understand exactly
how our package will be built on their systems.

Git tag 4.7

5
M O R E F U N W I T H A U T O C O N F :

C O N F I G U R I N G U S E R O P T I O N S

In Chapter 4, we discussed the essentials
of Autoconf—how to bootstrap a new or

existing project and how to understand some
of the basic aspects of configure.ac files. In this

chapter, we cover some of the more complex Autoconf
macros. We’ll begin by discussing how to substitute
our own variables into template files (for example,
Makefile.in) and how to define our own preprocessor definitions from within
the configuration script. Throughout this chapter, we’ll continue to develop
functionality in the Jupiter project by adding important checks and tests.
We’ll cover the all-important AC_OUTPUT macro, and we’ll conclude by discuss-
ing the application of user-defined project configuration options as specified
in the configure.ac file.

In addition to all this, I’ll present an analysis technique you can use
to decipher the inner workings of macros. Using the somewhat complex
AC_CHECK_PROG macro as an example, I’ll show you some ways to find out
what’s going on under the hood.

Hope is not the conviction that something will turn out well,
but the certainty that something makes sense,

regardless of how it turns out.
—Václav Havel, Disturbing the Peace

114 Chapter 5

Substitutions and Definitions
We’ll begin this chapter by discussing three of the most important macros
in the Autoconf suite: AC_SUBST and AC_DEFINE, along with the latter’s twin
brother, AC_DEFINE_UNQUOTED.

These macros provide the primary mechanisms for communication
between the configuration process and the build and execution processes.
Values that are substituted into generated files provide configuration infor-
mation to the build process, while values defined in preprocessor variables
provide configuration information at build time to the compiler and at run-
time to the built programs and libraries. As a result, it’s well worth becom-
ing thoroughly familiar with AC_SUBST and AC_DEFINE.

AC_SUBST
You can use AC_SUBST to extend the variable substitution functionality that’s
such an integral part of Autoconf. Every Autoconf macro that has anything
to do with substitution variables ultimately calls this macro to create the
substitution variables from existing shell variables. Sometimes the shell vari-
ables are inherited from the environment; other times, higher-level macros
set the shell variables as part of their functionality before calling AC_SUBST.
The signature of this macro is rather trivial (note that the square brackets
in this prototype represent optional arguments, not Autoconf quotes):

AC_SUBST(shell_var[, value])

N O T E If you choose to omit any trailing optional parameters when invoking M4 macros, you
may also omit the trailing commas.1 However, if you omit any arguments from the mid-
dle of the list, you must provide the commas as placeholders for the missing arguments.

The first argument, shell_var, represents a shell variable whose value
you wish to substitute into all files generated by config.status from tem-
plates. The optional second parameter is the value assigned to the variable.
If it isn’t specified, the shell variable’s current value will be used, whether
it’s inherited or set by some previous shell code.

The substitution variable will have the same name as the shell variable,
except that it will be bracketed with at signs (@) in the template files. Thus,
a shell variable named my_var would become the substitution variable refer-
ence @my_var@, and you could use it in any template file.

1. This is not strictly true. M4 can tell the difference between an omitted trailing variable
and an empty trailing variable. This information is available to the macro itself, so it may be
written to make use of this difference. Autoconf has a few such macros; the documentation
indicates this nuance if it’s used. A good example of this is AC_DEFINE, which has two versions:
one with a single argument and one with three. Using an empty second argument invokes the
three-argument form of the macro.

More Fun with Autoconf: Configuring User Options 115

Calls to AC_SUBST in configure.ac should not be made conditionally; that
is, they should not be called within conditional shell statements like if-then-
else constructs. The reason becomes clear when you carefully consider the
purpose of AC_SUBST: you’ve already hardcoded substitution variable refer-
ences into your template files, so you’d better use AC_SUBST for each variable
unconditionally, or else your output files will retain the variable references
rather than the values that should have been substituted.

AC_DEFINE
The AC_DEFINE and AC_DEFINE_UNQUOTED macros define C-preprocessor macros,
which can be simple or function-like macros. These are either defined in
the config.h.in template (if you use AC_CONFIG_HEADERS) or passed on the com-
piler command line (via the @DEFS@ substitution variable) in Makefile.in tem-
plates. Recall that if you don’t write config.h.in yourself, autoheader will write
it based on calls to these macros in your configure.ac file.

These two macro names actually represent four different Autoconf
macros. Here are their prototypes:

AC_DEFINE(variable, value[, description])
AC_DEFINE(variable)
AC_DEFINE_UNQUOTED(variable, value[, description])
AC_DEFINE_UNQUOTED(variable)

The difference between the normal and the UNQUOTED versions of these
macros is that the normal versions use, verbatim, the specified value as
the value of the preprocessor macro. The UNQUOTED versions perform shell
expansion on the value argument, and they use the result as the value of
the preprocessor macro. Thus, you should use AC_DEFINE_UNQUOTED if the
value contains shell variables that you want configure to expand. (Setting
a C-preprocessor macro in a header file to an unexpanded shell variable
makes no sense, because neither the C compiler nor the preprocessor will
know what to do with it when the source code is compiled.)

The difference between the single- and multi-argument versions lies in
the way the preprocessor macros are defined. The single-argument versions
simply guarantee that the macro is defined in the preprocessor namespace,
while the multi-argument versions ensure that the macro is defined with a
specific value.

The optional third parameter, description, tells autoheader to add a com-
ment for this macro to the config.h.in template. (If you don’t use autoheader,
it makes no sense to pass a description here—hence, its optional status.)
If you wish to define a preprocessor macro without a value and provide a
description, you should use the multi-argument versions of these macros but
leave the value argument empty. Another option is to use AH_TEMPLATE—an
autoheader-specific macro—which does the same thing as AC_DEFINE when a
description is given but no value is required.

116 Chapter 5

Checking for Compilers
The AC_PROG_CC macro ensures that the user’s system has a working C-language
compiler. Here’s the prototype for this macro:

AC_PROG_CC([compiler-search-list])

If your code requires a particular flavor or brand of C compiler, you can
pass a whitespace-separated list of program names in this argument. For
example, if you use AC_PROG_CC([cc cl gcc]), the macro expands into shell
code that searches for cc, cl, and gcc, in that order. Usually, the optional
argument is omitted, allowing the macro to find the best compiler option
available on the user’s system.

You’ll recall from “An Even Quicker Start with autoscan” on page 95
that when autoscan noticed C source files in the directory tree, it inserted a
no-argument call to this macro into Jupiter’s configure.scan file. Listing 5-1
reproduces the relevant portion of the generated configure.scan file.

--snip--
Checks for programs.
AC_PROG_CC
AC_PROG_INSTALL
--snip--

Listing 5-1: configure.scan: Checking for compilers and other programs

N O T E If the source files in Jupiter’s directory tree had been suffixed with .cc, .cxx, or .C (all
common extensions for C++ source files), autoscan would have instead inserted a call
to AC_PROG_CXX.

The AC_PROG_CC macro looks for gcc and then cc in the system search
path. If it doesn’t find either, it looks for other C compilers. When it finds
a compatible compiler, the macro sets a well-known variable, CC, to the full
path of the program, with options for portability as needed, unless the user
has already set CC in the environment or on the configure command line.

The AC_PROG_CC macro also defines the following Autoconf substitu-
tion variables, some of which you may recognize as user variables (listed in
Table 3-2 on page 71):

•	 @CC@ (full path of compiler)

•	 @CFLAGS@ (for example, -g -O2 for gcc)

•	 @CPPFLAGS@ (empty by default)

•	 @EXEEXT@ (for example, .exe)

•	 @OBJEXT@ (for example, o)2

2. The value of @OBJEXT@ does not begin with a dot (.) like the value of @EXEEXT@ does because
the latter is often empty whereas the former is always present in some form. If the value of
@EXEEXT@ did not begin with a dot, a consumer of the replacement reference would have to
supply the dot. If @EXEEXT@ resolves to an empty string, the product has a trailing dot.

More Fun with Autoconf: Configuring User Options 117

AC_PROG_CC configures these substitution variables, but unless you
use them in your Makefile.in templates, you’re just wasting time running
./configure. Conveniently, we’re already using them in our Makefile.in tem-
plates, because earlier in the Jupiter project, we added them to our com-
piler command line and then added a default value for CFLAGS that the user
could override on the make command line.

The only thing left to do is ensure that config.status substitutes values
for these variable references. Listing 5-2 shows the relevant portions of
the src directory Makefile.in template and the changes necessary to make
this happen.

--snip--
VPATH-specific substitution variables
srcdir = @srcdir@
VPATH = @srcdir@

Tool-specific substitution variables
CC = @CC@
CFLAGS = @CFLAGS@
CPPFLAGS = @CPPFLAGS@

all: jupiter

jupiter: main.c
 $(CC) $(CPPFLAGS) $(CFLAGS) -I. -I$(srcdir) -I.. -o $@ $(srcdir)/main.c
--snip--

Listing 5-2: src/Makefile.in: Using Autoconf compiler and flag substitution variables

Checking for Other Programs
Immediately following the call to AC_PROG_CC (refer to Listing 5-1) is a call
to AC_PROG_INSTALL. All of the AC_PROG_* macros set (and then substitute,
using AC_SUBST) various environment variables that point to the located
utilities. AC_PROG_INSTALL does the same thing for the install utility. To use
this check, you need to use the associated Autoconf substitution variables
in your Makefile.in templates, just as we did earlier with @CC@, @CFLAGS@, and
@CPPFLAGS@. Listing 5-3 illustrates these changes.

--snip--
Tool-specific substitution variables
CC = @CC@
CFLAGS = @CFLAGS@
CPPFLAGS = @CPPFLAGS@
INSTALL = @INSTALL@
INSTALL_DATA = @INSTALL_DATA@
INSTALL_PROGRAM = @INSTALL_PROGRAM@
INSTALL_SCRIPT = @INSTALL_SCRIPT@
--snip--
install:
 $(INSTALL) -d $(DESTDIR)$(bindir)

Git tag 5.0

Git tag 5.1

118 Chapter 5

 $(INSTALL_PROGRAM) -m 0755 jupiter $(DESTDIR)$(bindir)
--snip--

Listing 5-3: src/Makefile.in: Substituting the install utility in your Makefile.in templates

The value of @INSTALL@ is obviously the path of the located installation
program. The value of @INSTALL_DATA@ is ${INSTALL} -m 0644. Based on this,
you might think that the values of @INSTALL_PROGRAM@ and @INSTALL_SCRIPT@
would be something like ${INSTALL} -m 0755, but they’re not. These values
are set simply to ${INSTALL}.3

You might also need to test for other important utility programs,
including lex, yacc, sed, and awk. If your program requires one or more of
these tools, you can add invocations of AC_PROG_LEX, AC_PROG_YACC, AC_PROG_SED,
or AC_PROG_AWK. If it detects files in your project’s directory tree with .yy or .ll
extensions, autoscan will add invocations of AC_PROG_YACC and AC_PROG_LEX to
configure.scan.

You can check for about a dozen different programs using these more
specialized macros. If a program check fails, the resulting configure script will
fail with a message indicating that the required utility could not be found
and that the build cannot continue until it has been properly installed.

The program and compiler checks cause autoconf to substitute specially
named variables into template files. You can find the names of the variables
for each macro in the GNU Autoconf Manual. You should use these make vari-
ables in commands within your Makefile.in templates to invoke the tools they
represent. The Autoconf macros will set the values of these variables accord-
ing to the tools they find installed on the user’s system, if the user has not
already set them in the environment.

This is a key aspect of Autoconf-generated configure scripts—the user
can always override anything configure will do to the environment by export-
ing or setting an appropriate variable before executing configure.4

For example, if the user chooses to build with a specific version of bison
installed in the home directory, they could enter the following command
in order to ensure that $(YACC) refers to the correct version of bison and that
the shell code AC_PROG_YACC generates does little more than substitute the
existing value of YACC for @YACC@ in your Makefile.in templates:

$ cd jupiter
$./configure YACC="$HOME/bin/bison -y"
--snip--

3. The install program was originally designed to install executables and therefore defaults
to applying executable attributes.

4. Since users are not Autoconf experts, it’s good practice to add information about variables
that affect your project’s configuration to your project’s README or INSTALL files. Running
./configure --help displays many of these variables, but not all users are aware of configure’s
--help option.

More Fun with Autoconf: Configuring User Options 119

N O T E Passing the variable setting to configure as a parameter is functionally similar to
setting the variable for the configure process on the command line in the shell environ-
ment (for example, YACC="$HOME/bin/bison -y" ./configure). The advantage of using
the syntax given in this example is that config.status --recheck can then track the
value and properly re-execute configure from the makefile with the options that were
originally given to it. Thus, you should always use the parameter syntax, rather than
the shell environment syntax, to set variables for configure. For ways to enforce the use
of this syntax, see the documentation for AC_ARG_VAR in the Autoconf manual.

To check for the existence of a program not covered by these more spe-
cialized macros, you can use the generic AC_CHECK_PROG macro or write your
own special-purpose macro (see Chapter 16).

The key points to take away here are as follows:

•	 AC_PROG_* macros check for the existence of programs.

•	 If they find a program, a substitution variable is created.

•	 You should use these substitution variables in your Makefile.in templates
to execute associated utilities.

A Common Problem with Autoconf
We should take this opportunity to address a particular problem developers
new to the Autotools consistently encounter. Here’s the formal definition of
AC_CHECK_PROG, as you will find it in the GNU Autoconf Manual:

AC_CHECK_PROG(variable, prog-to-check-for, value-if-found,
 [value-if-not-found], [path], [reject])

Check whether program prog-to-check-for exists in path. If it is
found, set variable to value-if-found, otherwise to value-if-not-
found, if given. Always pass over reject (an absolute filename) even
if it is the first found in the search path; in that case, set variable
using the absolute filename of the prog-to-check-for found that is
not reject. If variable was already set, do nothing. Calls AC_SUBST
for variable. The result of this test can be overridden by setting the
variable variable or the cache variable ac_cv_prog_variable.5

This is pretty dense language, but after a careful reading, you can
extract the following from this description:

•	 If prog-to-check-for is found in the system search path, then variable is
set to value-if-found; otherwise, it’s set to value-if-not-found.

•	 If reject is specified (as a full path), and it’s the same as the program
found in the system search path in the previous step, then skip it and
continue to the next matching program in the system search path.

5. See Section 5.2.2, “Generic Program and File Checks,” in version 2.69 (May 1, 2012) of the
GNU Autoconf Manual (https://www.gnu.org/software/autoconf/manual/index.html).

https://www.gnu.org/software/autoconf/manual/index.html

120 Chapter 5

•	 If reject is found first in path and then another match (other than
reject) is found, set variable to the absolute path name of the second
(non-reject) match.

•	 If the user has already set variable in the environment, then variable
is left untouched (thereby allowing the user to override the check by
setting variable before running configure).

•	 AC_SUBST is called on variable to make it an Autoconf substitution variable.

Upon first reading this description, there appears to be a conflict: we
see in the first item that variable will be set to one of two specified values,
based on whether or not prog-to-check-for is found in the system search
path. But then we see in the third item that variable will be set to the full
path of some program if reject is found first and skipped.

Discovering the real functionality of AC_CHECK_PROG is as easy as reading
a little shell script. While you could refer to the definition of AC_CHECK_PROG
in Autoconf’s programs.m4 macro file, you’ll be one level removed from the
actual shell code that performs the check. Wouldn’t it be better to just look
at the shell script that AC_CHECK_PROG generates? We’ll use Jupiter’s configure.ac
file to play with this concept. Temporarily modify your configure.ac file
according to the changes highlighted in Listing 5-4.

--snip--
AC_PREREQ(2.69)
AC_INIT([Jupiter], [1.0], [jupiter-bugs@example.org])
AC_CONFIG_SRCDIR([src/main.c])
AC_CONFIG_HEADER([config.h])

Checks for programs.
AC_PROG_CC
_DEBUG_START_
AC_CHECK_PROG([bash_var], [bash], [yes], [no],, [/usr/sbin/bash])
_DEBUG_END_
AC_PROG_INSTALL
--snip--

Listing 5-4: A first attempt at using AC_CHECK_PROG

Now execute autoconf, open the resulting configure script, and search for
_DEBUG_START_.

N O T E The _DEBUG_START_ and _DEBUG_END_ strings are known as picket fences. I added these
to configure.ac for the sole purpose of helping me find the beginning and end of the
shell code generated by the AC_CHECK_PROG macro. I chose these names in particular
because you’re not likely to find them anywhere else in the generated configure script.6

6. Don’t be tempted to set these “picket fence” tokens to a value in order to keep configure
from complaining about them. If you do, configure won’t complain about them, and you might
just forget to remove them.

More Fun with Autoconf: Configuring User Options 121

Listing 5-5 shows the portion of configure this macro generates.

--snip--
_DEBUG_START_

 # Extract the first word of "bash" so it can be a program name with args.
set dummy bash; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_bash_var+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$bash_var"; then
 ac_cv_prog_bash_var="$bash_var" # Let the user override the test.
else
 ac_prog_rejected=no
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then

 if test "$as_dir/$ac_word$ac_exec_ext" = "/usr/sbin/bash"; then
 ac_prog_rejected=yes
 continue
 fi
 ac_cv_prog_bash_var="yes"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext"
>&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

 if test $ac_prog_rejected = yes; then
 # We found a bogon in the path, so make sure we never use it.
 set dummy $ac_cv_prog_bash_var
 shift
 if test $# != 0; then
 # We chose a different compiler from the bogus one.
 # However, it has the same basename, so the bogon will be chosen
 # first if we set bash_var to just the basename; use the full file name.
 shift
 ac_cv_prog_bash_var="$as_dir/$ac_word${1+' '}$@"
 fi
fi
 test -z "$ac_cv_prog_bash_var" && ac_cv_prog_bash_var="no"
fi
fi
bash_var=$ac_cv_prog_bash_var
if test -n "$bash_var"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $bash_var" >&5
$as_echo "$bash_var" >&6; }
else

122 Chapter 5

 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

_DEBUG_END_
--snip--

Listing 5-5: A portion of configure generated by AC_CHECK_PROG

The opening comment at in this shell script is a clue that AC_CHECK_PROG
has some undocumented functionality. Apparently, you may pass in argu-
ments along with the program name in the prog-to-check-for parameter.
Shortly, we’ll look at a situation in which you might want to do that.

Farther down in the script at , you can see that the reject parameter
was added into the mix in order to allow configure to search for a particular
version of a tool. From the code at , we can see that our bash_var variable
can have three different values: either empty if the requested program is
not found in the search path, the program specified if it’s found, or the full
path of the program specified if reject is found first.

Where do you use reject? Well, for instance, on Solaris systems with
proprietary Sun tools installed, the default C compiler is often the Solaris
C compiler. But some software may require the use of the GNU C compiler
instead. As maintainers, we don’t know which compiler will be found first in
a user’s search path. AC_CHECK_PROG allows us to ensure that gcc is used with a
full path if another C compiler is found first in the search path.

As I mentioned earlier, M4 macros are aware of the fact that arguments
are given, empty, or missing, and they do different things based on these
conditions. Many of the standard Autoconf macros are written to take
full advantage of empty or unspecified optional arguments and generate
entirely different shell code in each of these conditions. Autoconf macros
may also optimize the generated shell code for these different conditions.

Given what we now know, we probably should have called AC_CHECK_PROG
in this manner instead:

AC_CHECK_PROG([bash_shell],[bash -x],[bash -x],,,[/usr/sbin/bash])

You can see in this example that the manual is technically accurate. If
reject isn’t specified and bash is found in the system path, then bash_shell will
be set to bash -x. If bash is not found in the system path, then bash_shell will be
set to the empty string. If, on the other hand, reject is specified and the unde-
sired version of bash is found first in the path, then bash_shell will be set to the
full path of the next version found in the path, along with the originally speci-
fied argument (-x). The reason the macro uses the full path in this case is to
make sure that configure will avoid executing the version that was found first
in the path—reject. The rest of the configuration script can now use the bash_
shell variable to run the desired Bash shell, as long as it doesn’t test out empty.

N O T E If you’re following along in your own code, don’t forget to remove the temporary code
from Listing 5-4 from your configure.ac file.

More Fun with Autoconf: Configuring User Options 123

Checks for Libraries and Header Files
The decision of whether or not to use an external library in a project is
a tough one. On one hand, you want to reuse existing code to provide
required functionality instead of writing it yourself. Reuse is one of the
hallmarks of the open source software world. On the other hand, you don’t
want to depend on functionality that may not exist on all target platforms
or that may require significant porting in order to make the libraries you
need available where you need them.

Occasionally, library-based functionality can differ in minor ways
between platforms. Although the functionality may be essentially equiva-
lent, the libraries may have different package names or different API sig-
natures. The POSIX threads (pthread) library, for example, is similar in
functionality to many native threading libraries, but the libraries’ APIs are
usually different in minor ways, and their package and library names are
almost always different. Consider what would happen if we tried to build a
multithreaded project on a system that didn’t support pthread; in a case like
this, you might want to use the libthreads library on Solaris instead.

Autoconf library selection macros allow generated configuration scripts
to intelligently select the libraries that provide the necessary functionality,
even if those libraries are named differently between platforms. To illus-
trate the use of the Autoconf library selection macros, we’ll add some trivial
(and fairly contrived) multithreading capabilities to the Jupiter project that
will allow jupiter to print its message using a background thread. We’ll use
the pthread API as our base threading model. In order to accomplish this
with our Autoconf-based configuration script, we need to add the pthread
library to our project build system.

N O T E The proper use of multithreading requires the definition of additional substitution
variables containing appropriate flags, libraries, and definitions. The AX_PTHREAD
macro does all of this for you. You can find the documentation for AX_PTHREAD at the
Autoconf Macro Archive website.7 See “Doing Threads the Right Way” on page 384
for examples of using AX_PTHREAD.

First, let’s tackle the changes to the source code. We’ll modify main.c so
that the message is printed by a secondary thread, as shown in Listing 5-6.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

static void * print_it(void * data)
{
 printf("Hello from %s!\n", (const char *)data);
 return 0;
}

int main(int argc, char * argv[])

7. See https://www.gnu.org/software/autoconf-archive/ax_pthread.html.

Git tag 5.2

124 Chapter 5

{
 pthread_t tid;
 pthread_create(&tid, 0, print_it, argv[0]);
 pthread_join(tid, 0);
 return 0;
}

Listing 5-6: src/main.c: Adding multithreading to the Jupiter project source code

This is clearly a ridiculous use of a thread; nevertheless, it is the pro-
totypical form of thread usage. Consider a hypothetical situation in which
the background thread performs some long calculation and main is doing
other things while print_it is working. On a multiprocessor machine, using
a thread in this manner could literally double a program’s throughput.

Now all we need is a way to determine which libraries should be added
to the compiler (linker) command line. If we weren’t using Autoconf, we’d
just add the library to our linker command line in the makefile, as shown
in Listing 5-7.

program: main.c
 $(CC) ... -lpthread ...

Listing 5-7: Manually adding the pthread library to the compiler command line

Instead, we’ll use the Autoconf-provided AC_SEARCH_LIBS macro, an
enhanced version of the basic AC_CHECK_LIB macro. The AC_SEARCH_LIBS macro
allows us to test for required functionality within a list of libraries. If the func-
tionality exists in one of the specified libraries, an appropriate command line
option is added to the @LIBS@ substitution variable, which we would then use
in a Makefile.in template on the compiler (linker) command line. Here is the
formal definition of AC_SEARCH_LIBS from the GNU Autoconf Manual:

AC_SEARCH_LIBS(function, search-libs,
 [action-if-found], [action-if-not-found], [other-libraries])

Search for a library defining function if it’s not already available.
This equates to calling AC_LINK_IFELSE([AC_LANG_CALL([],
[function])]) first with no libraries, then for each library listed
in search-libs.
 Add -llibrary to LIBS for the first library found to contain
function, and run action-if-found. If function is not found, run
action-if-not-found.
 If linking with library results in unresolved symbols that
would be resolved by linking with additional libraries, give
those libraries as the other-libraries argument, separated by
spaces: for example, -lXt -lX11. Otherwise, this macro fails to
detect that function is present, because linking the test program
always fails with unresolved symbols.

More Fun with Autoconf: Configuring User Options 125

 The result of this test is cached in the ac_cv_search function
variable as none required if function is already available, as no if no
library containing function was found, otherwise as the -llibrary
option that needs to be prepended to LIBS.8

Can you see why the generated configuration script is so large? When
you pass a particular function in a call to AC_SEARCH_LIBS, linker command
line arguments are added to a substitution variable called @LIBS@. These
arguments ensure that you will link with a library that contains the func-
tion passed in. If multiple libraries are listed in the second parameter, sepa-
rated by whitespace, configure will determine which of these libraries are
available on your user’s system and use the most appropriate one.

Listing 5-8 shows how to use AC_SEARCH_LIBS in Jupiter’s configure.ac file
to find the library that contains the pthread_create function. AC_SEARCH_LIBS
won’t add anything to the @LIBS@ variable if it doesn’t find pthread_create in
the pthread library.

--snip--
Checks for libraries.
AC_SEARCH_LIBS([pthread_create], [pthread])
--snip--

Listing 5-8: configure.ac: Using AC_SEARCH_LIBS to check for the pthread library on the system

As we’ll discuss in detail in Chapter 7, naming patterns for libraries dif-
fer among systems. For example, some systems name libraries libbasename.so,
while others use libbasename.sa or libbasename.a. Cigwin-based systems
generate libraries named cigbasename.dll. AC_SEARCH_LIBS addresses this situ-
ation (quite elegantly) by using the compiler to calculate the actual name
of the library from its basename ; it does this by attempting to link a small test
program with the requested function from the test library. Only -lbasename
is passed on the compiler command line—a near-universal convention
among Unix compilers.

We’ll have to modify src/Makefile.in again in order to properly use the
now-populated @LIBS@ variable, as shown in Listing 5-9.

--snip--
Tool-specific substitution variables
CC = @CC@
LIBS = @LIBS@
CFLAGS = @CFLAGS@
CPPFLAGS = @CPPFLAGS@
--snip--
jupiter: main.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -I. -I$(srcdir) -I..\
 -o $@ $(srcdir)/main.c $(LIBS)
--snip--

Listing 5-9: src/Makefile.in: Using the @LIBS@ substitution variable

8. See Section 5.4, “Library Files,” in version 2.69 (May 1, 2012) of the GNU Autoconf Manual
(https://www.gnu.org/software/autoconf/manual/index.html).

https://www.gnu.org/software/autoconf/manual/index.html

126 Chapter 5

N O T E I added $(LIBS) after the source files on the compiler command line because the linker
cares about object file order—it searches files for required functions in the order they
are specified on the command line.

I want main.c to be the primary source of object code for jupiter, so I’ll
continue to add additional objects, including libraries, to the command
line after this file.

Is It Right or Just Good Enough?
At this point, we’ve ensured that our build system will properly use pthread
on most systems.9 If our system needs a particular library, that library’s
name will be added to the @LIBS@ variable and then subsequently used on
the compiler command line. But we’re not done yet.

This system usually works fine, but it still fails in corner cases. Because
we want to provide an excellent user experience, we’ll take Jupiter’s
build system to the next level. In doing this, we need to make a design
decision: in case configure fails to locate a pthread library on a user’s sys-
tem, should we fail the build process or build a jupiter program without
multithreading?

If we choose to fail the build, the user will notice, because the build
will stop with an error message (though it may not be a very friendly one—
either the compile or link process will fail with a cryptic error message
about a missing header file or an undefined symbol). On the other hand, if
we choose to build a single-threaded version of jupiter, we’ll need to display
some clear message that the program is being built without multithreading
functionality and explain why.

One potential problem is that some users’ systems may have a pthread
shared library installed but not the pthread.h header file—most likely
because the pthread executable (shared-library) package was installed but
the developer package wasn’t. Shared libraries are often packaged inde-
pendently of static libraries and header files, and while executables are
installed as part of a dependency chain for higher-level applications, devel-
oper packages are typically installed directly by a user.10 For this reason,

9. My choice of pthread as an example is perhaps unfortunate, because adding multithreading
to an application often requires more than simply adding a single library to the command
line. Many platforms require additional compiler options (for example, -mthreads, -pthreads,
-qthreads, and so on), libraries, and C-preprocessor definitions in order to enable multi-
threading in an application. Some platforms even require a completely different compiler
(for instance, AIX requires the use of the cc_r alias). The examples in this book happen
to work fine, even on platforms that require these switches, only because they don’t make
extensive use of the standard C library.

10. The pthread library is so important on most systems that the developer package is
often installed by default, even on basic installations of Linux or other modern Unix
operating systems.

More Fun with Autoconf: Configuring User Options 127

Autoconf provides macros to test for the existence of both libraries and
header files. We can use the AC_CHECK_HEADERS macro to ensure the existence
of a particular header file.

Autoconf checks are very thorough. They usually ensure not only
that a file exists but also that the file is the correct one, because they
allow you to specify assertions about the file that the macro then veri-
fies. The AC_CHECK_HEADERS macro doesn’t just scan the filesystem for the
requested header. Like AC_SEARCH_LIBS, the AC_CHECK_HEADERS macro builds
a short test program in the appropriate language and then compiles it
to ensure that the compiler can both find and use the file. In essence,
Autoconf macros try to test not just for the existence of specific features
but for the functionality required from those features.

The AC_CHECK_HEADERS macro is defined in the GNU Autoconf Manual
as follows:

AC_CHECK_HEADERS(header-file..., [action-if-found],
 [action-if-not-found], [includes = 'AC_INCLUDES_DEFAULT'])

For each given system header file header-file in the blank-
separated argument list that exists, define HAVE_header-file (in
all capitals). If action-if-found is given, it is additional shell code
to execute when one of the header files is found. You can give
it a value of break to break out of the loop on the first match. If
action-if-not-found is given, it is executed when one of the header
files is not found.
 includes is interpreted as in AC_CHECK_HEADER, in order to
choose the set of preprocessor directives supplied before the
header under test.11

Normally, AC_CHECK_HEADERS is called only with a list of desired header
files in the first argument. The remaining arguments are optional and are
not often used because the macro works pretty well without them.

We’ll add a check for the pthread.h header file to configure.ac using
AC_CHECK_HEADERS. As you may have noticed, configure.ac already calls AC_CHECK
_HEADERS looking for stdlib.h. AC_CHECK_HEADERS accepts a list of filenames, so
we’ll just add pthread.h to the list, using a space to separate the filenames,
as shown in Listing 5-10.

--snip--
Checks for header files.
AC_CHECK_HEADERS([stdlib.h pthread.h])
--snip--

Listing 5-10: configure.ac: Adding pthread.h to the AC_CHECK_HEADERS macro

11. See Section 5.6.3, “Generic Header Checks,” in version 2.69 (May 1, 2012) of the GNU
Autoconf Manual (https://www.gnu.org/software/autoconf/manual/index.html).

Git tag 5.3

https://www.gnu.org/software/autoconf/manual/index.html

128 Chapter 5

In order to make this package available to as many people as possible,
we’ll use the dual-mode build approach, which will allow us to provide at
least some form of the jupiter program to users without a pthread library. In
order to accomplish this, we need to add some conditional preprocessor
statements to src/main.c, as shown in Listing 5-11.

#include "config.h"

#include <stdio.h>
#include <stdlib.h>

#if HAVE_PTHREAD_H
include <pthread.h>
#endif

static void * print_it(void * data)
{
 printf("Hello from %s!\n", (const char *)data);
 return 0;
}

int main(int argc, char * argv[])
{
#if HAVE_PTHREAD_H
 pthread_t tid;
 pthread_create(&tid, 0, print_it, argv[0]);
 pthread_join(tid, 0);
#else
 print_it(argv[0]);
#endif
 return 0;
}

Listing 5-11: src/main.c: Adding conditional code, based on the existence of pthread.h

In this version of main.c, we’ve added a conditional check for the
header file. If the shell script generated by AC_CHECK_HEADERS locates the
pthread.h header file, the HAVE_PTHREAD_H macro will be defined with the
value 1 in the user’s config.h file. If the shell script doesn’t find the header
file, the original #undef statement will be left commented out in config.h.
Because we rely on these definitions, we also need to include config.h at
the top of main.c.

If you choose not to use the AC_CONFIG_HEADERS macro in configure.ac, then
@DEFS@ will contain all the definitions generated by all the macros that call
AC_DEFINE. In this example, we’ve used AC_CONFIG_HEADERS, so config.h.in will
contain most of these definitions, and @DEFS@ will only contain HAVE_CONFIG_H,
which we don’t actually use.12 The config.h.in template method significantly

12. The use of HAVE_CONFIG_H in .c source files around the inclusion of config.h is an older pat-
tern that’s discouraged today. You may see such code in existing projects, but the Autoconf
manual suggests not doing this sort of thing; building the software requires that config.h exist,
so it’s pointless to check for its existence before including it.

More Fun with Autoconf: Configuring User Options 129

shortens the compiler command line (and also makes it simple to take a
snapshot of the template and modify it by hand for non-Autotools platforms).
Listing 5-12 shows the required changes to the src/Makefile.in template.

--snip--
Tool-related substitution variables
CC = @CC@
DEFS = @DEFS@
LIBS = @LIBS@
CFLAGS = @CFLAGS@
CPPFLAGS = @CPPFLAGS@
--snip--
jupiter: main.c
 $(CC) $(CFLAGS) $(DEFS) $(CPPFLAGS) -I. -I$(srcdir) -I..\
 -o $@ $(srcdir)/main.c $(LIBS)
--snip--

Listing 5-12: src/Makefile.in: Adding the use of @DEFS@ to the src-level makefile

N O T E I’ve added $(DEFS) before $(CPPFLAGS), giving the end user the option to override any
of my policy decisions on the command line.

We now have everything we need to conditionally build the jupiter pro-
gram. If the user’s system has pthread functionality installed, the user will
automatically build a version of jupiter that uses multiple threads of execu-
tion; otherwise, they’ll have to settle for serialized execution. The only
thing left to do is to add some code to configure.ac such that if configure can’t
find the pthread library, it will display a message indicating that it will build
a program that uses serialized execution.

Now, consider the unlikely scenario of a user who has the header file
installed but doesn’t have the library. For example, if the user executes
./configure with CPPFLAGS=-I/usr/local/include but neglects to add LDFLAGS=-L/
usr/local/lib, it will seem to configure that the header is available but the
library is missing. This condition is easily remedied by simply skipping the
header file check entirely if configure can’t find the library. Listing 5-13
shows the required changes to configure.ac.

--snip--
Checks for libraries.
have_pthreads=no
AC_SEARCH_LIBS([pthread_create], [pthread], [have_pthreads=yes])

Checks for header files.
AC_CHECK_HEADERS([stdlib.h])

if test "x${have_pthreads}" = xyes; then
 AC_CHECK_HEADERS([pthread.h], [], [have_pthreads=no])
fi

if test "x${have_pthreads}" = xno; then
 AC_MSG_WARN([

Git tag 5.4

130 Chapter 5

 --
 Unable to find pthreads on this system.
 Building a single-threaded version.
 --])
fi
--snip--

Listing 5-13: configure.ac: Adding code to indicate that multithreading is not available
during configuration

Now, when we run ./bootstrap.sh and ./configure, we’ll see some addi-
tional output (highlighted here):

$./bootstrap.sh
$./configure
checking for gcc... gcc
--snip--
checking for library containing pthread_create... -lpthread
--snip--
checking pthread.h usability... yes
checking pthread.h presence... yes
checking for pthread.h... yes
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating config.h
$

If a user’s system is missing the pthread.h header file, for instance, they’d
see different output. To emulate this for testing purposes, we can use a trick
involving Autoconf cache variables. By presetting the cache variable that
represents the presence of the pthread.h header to no, we can trick configure
into not even looking for pthread.h because it assumes the search has already
been done if the cache variable is already set. Let’s try it out:

$./configure ac_cv_header_pthread_h=no
checking for gcc... gcc
--snip--
checking for library containing pthread_create... -lpthread
--snip--
checking for pthread.h... (cached) no
configure: WARNING:
 --
 Unable to find pthreads on this system.
 Building a single-threaded version.
 --
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating config.h
$

More Fun with Autoconf: Configuring User Options 131

Had we chosen to fail the build if the pthread.h header file or the pthread
libraries were not found, then the source code would have been simpler;
there would have been no need for conditional compilation. In that case,
we could change configure.ac to look like Listing 5-14.

--snip--
Checks for libraries.
have_pthreads=no
AC_SEARCH_LIBS([pthread_create], [pthread], [have_pthreads=yes])

Checks for header files.
AC_CHECK_HEADERS([stdlib.h])

if test "x${have_pthreads}" = xyes; then
 AC_CHECK_HEADERS([pthread.h], [], [have_pthreads=no])
fi

if test "x${have_pthreads}" = xno; then
 AC_MSG_ERROR([
 --
 The pthread library and header files are
 required to build jupiter. Stopping...
 Check 'config.log' for more information.
 --])
fi
--snip--

Listing 5-14: Failing the build if no pthread library is found

N O T E Autoconf macros generate shell code that checks for the existence of system features and
sets variables based on these tests. However, it’s up to you as maintainer to add shell
code to configure.ac that makes functional decisions based on the contents of the
resulting variables.

Printing Messages
In the preceding examples, we used a few Autoconf macros to display mes-
sages to the user during configuration: AC_MSG_WARN and AC_MSG_ERROR. Here
are the prototypes for the various AC_MSG_* macros provided by Autoconf:

AC_MSG_CHECKING(feature-description)
AC_MSG_RESULT(result-description)
AC_MSG_NOTICE(message)
AC_MSG_ERROR(error-description[, exit-status])
AC_MSG_FAILURE(error-description[, exit-status])
AC_MSG_WARN(problem-description)

The AC_MSG_CHECKING and AC_MSG_RESULT macros are designed to be used
together. The AC_MSG_CHECKING macro prints a line indicating that it’s check-
ing for a particular feature, but it doesn’t print a carriage return at the
end of this line. Once the feature has been found (or not found) on the
user’s machine, the AC_MSG_RESULT macro prints the result at the end of

132 Chapter 5

the line, followed by a carriage return that completes the line started by
AC_MSG_CHECKING. The result-description text should make sense in the context
of the feature-description message. For instance, the message Looking for
a C compiler... might be terminated either with the name of the compiler
found or with the text not found.

N O T E You as the configure.ac author should strive to not allow additional text to be
displayed between these two macro invocations, as it becomes difficult for the user
to follow if there is unrelated text between the two sets of output.

The AC_MSG_NOTICE and AC_MSG_WARN macros simply print a string to the
screen. The leading text for AC_MSG_WARN is configure: WARNING:, whereas that
of AC_MSG_NOTICE is simply configure:.

The AC_MSG_ERROR and AC_MSG_FAILURE macros generate an error message,
stop the configuration process, and return an error code to the shell. The
leading text for AC_MSG_ERROR is configure: error:. The AC_MSG_FAILURE macro
prints a notice indicating the directory in which the error occurred, the
user-specified message, and then the text See 'config.log' for more details.
The optional second parameter (exit-status) in these macros allows the
maintainer to specify a particular status code to be returned to the shell.
The default value is 1.

The text messages output by these macros are displayed to stdout and
sent to the config.log file, so it’s important to use these macros instead of
simply using shell echo or printf statements.

Supplying multiple lines of text in the first argument of these macros is
especially important in the case of warning messages that merely indicate
that the build is continuing with limitations. On a fast build machine in a
large configuration process, a single-line warning message could zip right
past without even being noticed by the user. This is less of a problem in
cases where configure terminates with an error, because the user will easily
discover the issue at the end of the output.13

Supporting Optional Features and Packages
We’ve discussed the different ways to handle situations when a pthread
library exists and when it doesn’t. But what if a user wants to build a
single-threaded version of jupiter when the pthread library is installed?

13. There is a very strong sentiment on the Autoconf mailing list that you should not gener-
ate multiline messages. The reasons given are many and varied, but they ultimately all boil
down to one: many larger projects already generate thousands of lines of configuration
output. Much work has gone into making Autoconf-generated configuration scripts as quiet
as possible, but they’re still not very quiet. My best advice is to use multiline messages in situ-
ations where there is simply no other way to effectively notify a user of an important issue,
such as building on a platform with unexpected limitations. Many is the time I’ve finished a
15-minute build only to find that configure notified me in the first minute that the resulting
binaries would be missing functionality that I needed.

More Fun with Autoconf: Configuring User Options 133

We certainly don’t want to add a note to Jupiter’s README file telling the
user to rename their pthread libraries! Neither do we want the user to have
to use our Autoconf cache variable trick.

Autoconf provides two macros for working with optional features and
external software packages: AC_ARG_ENABLE and AC_ARG_WITH. Their prototypes
are as follows:

AC_ARG_WITH(package, help-string, [action-if-given], [action-if-not-given])
AC_ARG_ENABLE(feature, help-string, [action-if-given], [action-if-not-given])

As with many Autoconf macros, these two are used simply to set some
environment variables:

AC_ARG_WITH ${withval} and ${with_package}

AC_ARG_ENABLE ${enableval} and ${enable_feature}

The macros can also be used in a more complex form, where the envi-
ronment variables are used by shell script in the macros’ optional argu-
ments. In either case, the resulting variable must be used in configure.ac, or
it will be pointless to perform the check.

The macros are designed to add the options --enable-feature[=yes|no]
(or --disable-feature) and --with-package[=arg] (or --without-package) to the
generated configuration script’s command line interface, along with appro-
priate help text to the output generated when the user enters ./configure
--help. If the user gives these options, the macros set the preceding environ-
ment variables within the script. (The values of these variables may be used
later in the script to set or clear various preprocessor definitions or substitu-
tion variables.)

AC_ARG_WITH controls your project’s use of optional external software
packages, while AC_ARG_ENABLE controls the inclusion or exclusion of optional
software features. The choice to use one or the other is often a matter of
perspective on the software you’re considering, and sometimes it’s simply
a matter of preference, as these macros provide somewhat overlapping sets
of functionality.

For instance, in the Jupiter project, it could be justifiably argued that
Jupiter’s use of pthread constitutes the use of an external software package,
so you’d use AC_ARG_WITH. However, it could also be said that asynchronous
processing is a software feature that might be enabled via AC_ARG_ENABLE. In
fact, both of these statements are true, and which option you use should be
dictated by a high-level architectural perspective on the feature or package
to which you’re providing optional access. The pthread library supplies
more than just thread creation functions—it also provides mutexes and
condition variables, both of which may be used by a library package that
doesn’t create threads. If a project provides a library that needs to act in
a thread-safe manner within a multithreaded process, it will probably use
mutex objects from the pthread library, but it may never create a thread.
Thus, a user may choose to disable asynchronous execution as a feature

134 Chapter 5

at configuration time, but the project will still need to link to the pthread
library in order to access the mutex functionality. In such cases, it makes
more sense to specify --enable-async-exec than --with-pthreads.

In general, you should use AC_ARG_WITH when the user needs to choose
between implementations of a feature provided by different packages or
internally within the project. For instance, if jupiter had some reason to
encrypt a file, it might be written to use either an internal encryption algo-
rithm or an external encryption library. The default configuration might
use an internal algorithm, but the package might allow the user to override
the default with the command line option --with-libcrypto. When it comes
to security, the use of a widely understood library can really help your pack-
age gain community trust.

Coding Up the Feature Option
Having decided to use AC_ARG_ENABLE, how do we enable or disable the
async-exec feature by default? The difference in how these two cases are
encoded in configure.ac is limited to the help text and the shell script passed
in the action-if-not-given argument. The help text describes the available
options and the default value, and the shell script indicates what we want
to happen if the option is not specified. (Of course, if it is specified, we
don’t need to assume anything.)

Say we decide that asynchronous execution is a risky or experimental
feature that we want to disable by default. In this situation, we could add
the code shown in Listing 5-15 to configure.ac.

--snip--
AC_ARG_ENABLE([async-exec],
 [--enable-async-exec enable async exec],
 [async_exec=${enableval}], [async_exec=no])
--snip--

Listing 5-15: Feature disabled by default

On the other hand, if we decide that asynchronous execution is funda-
mental to Jupiter, we should probably enable it by default, as in Listing 5-16.

--snip--
AC_ARG_ENABLE([async-exec],
 [--disable-async-exec disable async exec],
 [async_exec=${enableval}], [async_exec=yes])
--snip--

Listing 5-16: Feature enabled by default

Now, the question is, do we check for the library and header file regard-
less of the user’s desire for this feature, or do we only check for them if the
async-exec feature is enabled? In this case, it’s a matter of preference, because

More Fun with Autoconf: Configuring User Options 135

we’re using the pthread library only for this feature. (If we were also using it
for non-feature-specific reasons, we’d have to check for it in either case.)

In cases where we need the library even if the feature is disabled, we
would add AC_ARG_ENABLE, as in the preceding example, and an additional invo-
cation of AC_DEFINE to create a config.h definition specifically for this feature.
Since we don’t really want to enable the feature if the library or header file is
missing—even if the user specifically requested it—we’ll also add some shell
code to turn the feature off if either is missing, as shown in Listing 5-17.

--snip--
Checks for programs.
AC_PROG_CC
AC_PROG_INSTALL

Checks for header files.
AC_CHECK_HEADERS([stdlib.h])

Checks for command line options
AC_ARG_ENABLE([async-exec],
 [--disable-async-exec disable async execution feature],
 [async_exec=${enableval}], [async_exec=yes])

have_pthreads=no
AC_SEARCH_LIBS([pthread_create], [pthread], [have_pthreads=yes])

if test "x${have_pthreads}" = xyes; then
 AC_CHECK_HEADERS([pthread.h], [], [have_pthreads=no])
fi

if test "x${have_pthreads}" = xno; then
 if test "x${async_exec}" = xyes; then

 AC_MSG_WARN([
 --
 Unable to find pthreads on this system.
 Building a single-threaded version.
 --])
 fi
 async_exec=no
fi

if test "x${async_exec}" = xyes; then
 AC_DEFINE([ASYNC_EXEC], [1], [async execution enabled])
fi

Checks for libraries.

Checks for typedefs, structures, and compiler characteristics.
--snip--

Listing 5-17: configure.ac: Properly managing an optional feature during configuration

Git tag 5.5

136 Chapter 5

We’re replacing our original library check with a new check for com-
mand line arguments, which has the added benefit of checking for the
library for the default case that occurs when the user doesn’t specify a pref-
erence. As you can see, much of the existing code is the same, with some
additional script around it to account for user command line choices.

N O T E There are places in Listing 5-17 that appear to have gratuitous whitespace or arbi-
trary indentation. This is intentional, as it causes output to be formatted properly
when configure is being run. We’ll fix some of this later as we add additional macros
to our toolbox.

Notice that at , I’ve also added an additional test for a yes value in the
async_exec variable, because this text really belongs to the feature test, not
to the pthread library test. Remember, we’re trying to create a logical separa-
tion between testing for pthread functionality and testing for the require-
ments of the async-exec feature itself.

Of course, now we also have to modify src/main.c to use the new defini-
tion, as shown in Listing 5-18.

--snip--
#if HAVE_PTHREAD_H
include <pthread.h>
#endif

static void * print_it(void * data)
{
 printf("Hello from %s!\n", (const char *)data);
 return 0;
}

int main(int argc, char * argv[])
{
#if ASYNC_EXEC
 pthread_t tid;
 pthread_create(&tid, 0, print_it, argv[0]);
 pthread_join(tid, 0);
#else
 print_it(argv[0]);
#endif
 return 0;
}

Listing 5-18: src/main.c: Changing the conditional around async-exec-specific code

Notice that we’ve left the HAVE_PTHREAD_H check around the inclusion
of the header file in order to facilitate the use of pthread.h in ways besides
those required by this feature.

More Fun with Autoconf: Configuring User Options 137

In order to check for the library and header file only if the feature is
enabled, we wrap the original check code in a test of async_exec, as shown in
Listing 5-19.

--snip--
Checks for command line options.
AC_ARG_ENABLE([async-exec],
 [--disable-async-exec disable async execution feature],
 [async_exec=${enableval}], [async_exec=yes])

if test "x${async_exec}" = xyes; then
 have_pthreads=no
 AC_SEARCH_LIBS([pthread_create], [pthread], [have_pthreads=yes])

 if test "x${have_pthreads}" = xyes; then
 AC_CHECK_HEADERS([pthread.h], [], [have_pthreads=no])
 fi

 if test "x${have_pthreads}" = xno; then
 AC_MSG_WARN([

 Unable to find pthreads on this system.
 Building a single-threaded version.
 ---])
 async_exec=no
 fi
fi

if test "x${async_exec}" = xyes; then
 AC_DEFINE([ASYNC_EXEC], 1, [async execution enabled])
fi
--snip--

Listing 5-19: configure.ac: Checking for the library and header file only if a feature is
enabled

This time, we’ve moved the test for async_exec from being just around
the message statement to being around the entire set of header and library
checks, which means we won’t even look for pthread header and libraries if
the user has disabled the async_exec feature.

Formatting Help Strings
We’ll make one final change to our use of AC_ARG_ENABLE in Listing 5-17. Notice
that in the second argument, there are exactly two spaces between the open
square bracket and the start of the argument text. You’ll also notice that the
number of spaces between the argument and the description depends on the
length of the argument text, because the description text is supposed to be
presented to the user aligned with a particular column. There are four spaces
between --disable-async-exec and the description in Listings 5-16 and 5-17, but
there are five spaces after --enable-async-exec in Listing 5-15 because the word
enable is one character shorter than the word disable.

Git tag 5.6

138 Chapter 5

But what if the Autoconf project maintainers decide to change the for-
mat of the help text for configuration scripts? Or what if you modify your
option name but forget to adjust the indentation on your help text?

To solve these potential problems, we’ll turn to an Autoconf helper
macro called AS_HELP_STRING, whose prototype is as follows:

AS_HELP_STRING(left-hand-side, right-hand-side,
 [indent-column = '26'], [wrap-column = '79'])

This macro’s sole purpose is to abstract away knowledge about the
number of spaces that should be embedded in the help text at various
places. To use it, replace the second argument in AC_ARG_ENABLE with a
call to AS_HELP_STRING, as shown in Listing 5-20.

--snip--
AC_ARG_ENABLE([async-exec],
 [AS_HELP_STRING([--disable-async-exec],
 [disable asynchronous execution @<:@default: no@:>@])],
 [async_exec=${enableval}], [async_exec=yes])
--snip--

Listing 5-20: configure.ac: Using AS_HELP_STRING

N O T E For details on the funky character sequences around default: no in Listing 5-20,
see “Quadrigraphs” on page 143.

Checks for Type and Structure Definitions
Now let’s consider how we might test for system- or compiler-provided type
and structure definitions. When writing cross-platform networking software,
one quickly learns that the data sent between machines needs to be format-
ted in a way that doesn’t depend on a particular CPU or operating system
architecture. Some systems’ native integer sizes are 32 bits, while others’ are
64 bits. Some systems store integer values in memory and on disk from least-
significant byte to most-significant byte, while others do the reverse.

Let’s consider an example. When using C-language structures to format
network messages, one of the first roadblocks you’ll encounter is the lack
of basic C-language types that have the same size from one platform to
another. A CPU with a 32-bit machine word size would likely have a C com-
piler with 32-bit int and unsigned types. The sizes of the basic integer types
in the C language are implementation defined. This is by design, in order
to allow implementations to use sizes for char, short, int, and long that are
optimal for each platform.

While this language feature is great for optimizing software designed
to run on one platform, it’s not very helpful when choosing types to move
data between platforms. In order to address this problem, engineers have
tried everything from sending network data as strings (think XML and
JSON) to inventing their own sized types.

Git tag 5.7

More Fun with Autoconf: Configuring User Options 139

In an attempt to remedy this shortcoming in the language, the C99
standard provides the sized types intN_t and uintN_t, where N may be 8, 16,
32, or 64. Unfortunately, not all of today’s compilers provide these types.
(Not surprisingly, GNU C has been at the forefront for some time now,
providing C99-sized types with the inclusion of the stdint.h header file.)

To alleviate the pain to some extent, Autoconf provides macros for
determining whether C99-specific standardized types exist on a user’s
platform and then defining them if they don’t exist. For example, you can
add a call to AC_TYPE_UINT16_T to configure.ac in order to ensure that uint16_t
exists on your users’ platforms, either as a system definition in stdint.h or
the non-standard but more prolific inttypes.h, or as an Autoconf definition
in config.h.

The compiler tests for such integer-based types are typically written by
a configuration script as a bit of C code that looks like the code shown in
Listing 5-21.

int main()
{

 static int test_array[1 - 2 * !((uint16_t) -1 >> (16 - 1) == 1)];
 test_array[0] = 0;
 return 0;
}

Listing 5-21: A compiler check for a proper implementation of uint16_t

You’ll notice that the important line in Listing 5-21 is at , which
is where test_array is declared. Autoconf is relying on the fact that all C
compilers will generate an error if you attempt to define an array with
a negative size. If uint16_t isn’t exactly 16 bits of unsigned data on this
platform, the array size will be negative.

Notice, too, that the bracketed expression in the listing is a compile-
time expression.14 Whether this could have been done with simpler syntax
is anyone’s guess, but this code does the trick on all the compilers Autoconf
supports. The array is defined with a nonnegative size only if the following
three conditions are met:

•	 uint16_t is defined in one of the included header files.

•	 The size of uint16_t is exactly 16 bits.

•	 uint16_t is unsigned on this platform.

Follow the pattern shown in Listing 5-22 to use the definitions provided
by this macro. Even on systems where stdint.h or inttypes.h is not available,
Autoconf will add code to config.h that defines uint16_t if the system header
files don’t provide it, so you can use the type in your source code without
additional tests.

14. It would have to be a compile-time expression anyway, as C-language array sizes must be
statically defined.

140 Chapter 5

#include "config.h"

#if HAVE_STDINT_H
include <stdint.h>
#elif HAVE_INTTYPES_H
include <inttypes.h>
#endif
--snip--
uint16_t x;
--snip--

Listing 5-22: Source code that properly uses Autoconf’s uint16_t definitions

Autoconf offers a few dozen type checks like AC_TYPE_UINT16_T, as detailed
in Section 5.9 of the GNU Autoconf Manual. In addition, a generic type check
macro, AC_CHECK_TYPES, allows you to specify a comma-separated list of ques-
tionable types that your project needs.

N O T E This list is comma separated because some definitions (like struct fooble) may have
embedded spaces. Since they are comma delimited, you must use Autoconf’s square-
bracket quotes around this parameter if you list more than one type.

Here is the formal declaration of AC_CHECK_TYPES:

AC_CHECK_TYPES(types, [action-if-found], [action-if-not-found],
 [includes = 'AC_INCLUDES_DEFAULT'])

If you don’t specify a list of header files in the last parameter, the
default headers will be used in the compiler test by way of the macro
AC_INCLUDES_DEFAULT, which expands to the text shown in Listing 5-23.

#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
include <sys/stat.h>
#endif
#ifdef STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
ifdef HAVE_STDLIB_H
include <stdlib.h>
endif
#endif
#ifdef HAVE_STRING_H
if !defined STDC_HEADERS && defined HAVE_MEMORY_H
include <memory.h>
endif
include <string.h>

More Fun with Autoconf: Configuring User Options 141

#endif
#ifdef HAVE_STRINGS_H
include <strings.h>
#endif
#ifdef HAVE_INTTYPES_H
include <inttypes.h>
#endif
#ifdef HAVE_STDINT_H
include <stdint.h>
#endif
#ifdef HAVE_UNISTD_H
include <unistd.h>
#endif

Listing 5-23: The definition of AC_INCLUDES_DEFAULT, as of Autoconf version 2.69

If you know that your type is not defined in one of these header files,
you should specify one or more header files to be included in the test, as
shown in Listing 5-24. This listing includes the default header files first,
followed by the additional header files (which will often need some of the
defaults anyway).

AC_CHECK_TYPES([struct doodah], [], [], [
 AC_INCLUDES_DEFAULT

#include<doodah.h>
#include<doodahday.h>])

Listing 5-24: Using a nondefault set of includes in the check for struct doodah

Notice at in Listing 5-24 that I’ve wrapped the last parameter of the
macro over three lines in configure.ac, without indentation. The text of this
argument is included verbatim in the test source file, so you’ll want to be
sure that whatever you put into this argument is actually valid code in the
language you’re using.

N O T E Test-related problems are often the sorts of things that developers complain about with
regard to Autoconf. When you have problems with such syntax, check the config.log
file for the complete source code for all failed tests, including the compiler output gen-
erated during compilation of the test. This information often provides the solution to
your problem.

The AC_OUTPUT Macro
Finally, we come to the AC_OUTPUT macro, which expands, within configure,
into shell code that generates the config.status script based on the data
specified in the previous macro expansions. All other macros must be used
before AC_OUTPUT is expanded, or they will be of little value to your gener-
ated configure script. (Additional shell script may be placed in configure.ac
after AC_OUTPUT, but it will not affect the configuration or file generation per-
formed by config.status.)

142 Chapter 5

Consider adding shell echo or printf statements after AC_OUTPUT to tell the
user how the build system is configured based on the specified command
line options. You can also use these statements to tell the user about addi-
tional useful targets for make. For example, we might add code to Jupiter’s
configure.ac file after AC_OUTPUT, as shown in Listing 5-25.

--snip--
AC_OUTPUT

cat << EOF

${PACKAGE_NAME} Version ${PACKAGE_VERSION}

Prefix: '${prefix}'.
Compiler: '${CC} ${CFLAGS} ${CPPFLAGS}'

Package features:
 Async Execution: ${async_exec}

Now type 'make @<:@<target>@:>@'
 where the optional <target> is:
 all - build all binaries
 install - install everything

--
EOF

Listing 5-25: configure.ac: Adding configuration summary text to the output of configure

Adding such output to the end of configure.ac is a handy project feature,
because it tells the user, at a glance, exactly what happened during configu-
ration. Since variables such as async_exec are set to yes or no based on con-
figuration, the user can see whether the requested configuration actually
took place.

N O T E Version 2.62 (and later) of Autoconf does a much better job of deciphering the user’s
intent with respect to the use of square brackets than earlier versions do. In the past,
you might have needed to use a quadrigraph to force Autoconf to display a square
bracket, but now you can use the character itself. Most of the problems that occur
are a result of not properly quoting arguments. This enhanced functionality comes
primarily from enhancements to Autoconf library macros that might accept square
bracket characters in arguments. To ensure that square brackets are not misinter-
preted in your own configure.ac code, you should read up on M4 double quotation
in “Quoting Rules” on page 438.

Git tag 5.8

More Fun with Autoconf: Configuring User Options 143

QUA DR IGR A PHS

Those funny character sequences around the word <target> in Listing 5-25
are called quadrigraph sequences or simply quadrigraphs. They serve the
same purpose as escape sequences, but quadrigraphs are a little more reliable
than escaped characters or escape sequences because they’re never subject
to ambiguity.

The sequence @<:@ is the quadrigraph sequence for the open square bracket
character, while @:>@ is the quadrigraph for the closed square bracket character.
These quadrigraphs will always be output by autom4te as literal square bracket
characters. This happens after M4 is finished with the file, so it has no opportu-
nity to misinterpret them as Autoconf quote characters.

If you’re interested in studying quadrigraphs in more detail, check out
Section 8 of the GNU Autoconf Manual.

Summary
In this chapter, we covered some of the more advanced constructs found
in the configure.ac files for many projects. We started with the macros
required to generate substitution variables. I refer to these as “advanced”
macros because many of the higher-level Autoconf macros use AC_SUBST and
AC_DEFINE internally, making them somewhat transparent to you. However,
knowing about them helps you to understand how Autoconf works and
provides some of the background information necessary for you to learn
to write your own macros.

We covered checks for compilers and other tools, as well as checks for less
common data types and structures on your users’ systems. The examples in
this chapter were designed to help you to understand the proper use of the
Autoconf type- and structure-definition check macros, as well as others.

We also examined a technique for debugging the use of complex Autoconf
macros: using picket fences around a macro invocation in configure .ac
in order to quickly locate the associated generated text in configure. We
looked at checks for libraries and header files, and we examined some of
the details involved in the proper use of these Autoconf macros. We went
into great detail about building a robust and user-friendly configuration
process, including the addition of project-specific command line options
to Autoconf-generated configure scripts.

Finally, we discussed the proper placement of the AC_OUTPUT macro in
configure.ac, as well as the addition of some summary-generation shell code
designed to help your users understand what happened during the configu-
ration of your project on their system.

144 Chapter 5

An important Autconf concept to take away from Chapters 4 and 5 was
stated at the very start of Chapter 4: Autoconf generates shell scripts from
the shell source code you write into configure.ac. That means you have com-
plete control over what ends up in your configuration script, as long as you
understand the proper use of the macros you’re invoking. In fact, you can
do anything you want in configure.ac. Autoconf macros are there simply to
make what you choose to do more consistent and simpler for you to write.
The less you rely on Autoconf macros to perform configuration tasks, the
less consistent your users’ configuration experiences will be relative to
other open source projects they download and build.

The next chapter takes us away from Autoconf for a while, as we turn our
attention to GNU Automake, an Autotools toolchain add-on that abstracts
many of the details of creating very functional makefiles for software projects.

6
A U T O M A T I C M A K E F I L E S W I T H

A U T O M A K E

Shortly after Autoconf began its journey
to success, David MacKenzie started work-

ing on a new tool for automatically generat-
ing makefiles for a GNU project: Automake.

During early development of the GNU Coding Standards
(GCS), it became apparent to MacKenzie that because
the GCS is fairly specific about how and where a project’s
products should be built, tested, and installed, much of a GNU project
makefile was boilerplate material. Automake takes advantage of this fact
to make maintainers’ lives easier and to make the user’s experience more
consistent.

MacKenzie’s work on Automake lasted almost a year, ending around
November 1994. A year later, in November 1995, Tom Tromey (of Red Hat
and Cygnus fame) took over the Automake project and played a significant
role in its development. Although MacKenzie had written the initial version of
Automake in Bourne shell script, Tromey completely rewrote the tool in Perl
and continued to maintain and enhance Automake over the next five years.

If you understand, things are just as they are;
if you do not understand, things are just as they are.

—Zen proverb

146 Chapter 6

By the end of 2000, Alexandre Duret-Lutz had essentially taken over
maintenance of the Automake project. His role as project lead lasted until
about mid-2007, at which point Ralf Wildenhues1 took the wheel, with occa-
sional input from Akim Demaille and Jim Meyering. From 2012 to early
2017, Automake was maintained by Stefano Lattarini while he worked for
Google in Switzerland. The current maintainer is Mathieu Lirzin, a com-
puter science master’s student at the University of Bordeaux in France.

Most of the complaints I’ve seen about the Autotools are ultimately
associated with Automake. The reasons are simple: Automake provides
the highest level of abstraction over the build system and imposes a fairly
rigid structure on projects that use it. Automake’s syntax is concise—in
fact, it’s terse, almost to a fault. One Automake statement represents a lot
of functionality. But once you understand it, you can get a fairly complete,
complex, and functionally correct build system up and running in short
order—that is, in minutes, not hours or days.

In this chapter, I provide you with some insight into the inner work-
ings of Automake. With such insight, you’ll begin to feel comfortable not
only with what Automake can do for you but also with extending it in areas
where its automation falls short.

Getting Down to Business
Let’s face it—getting a makefile right is often difficult. The devil, as they
say, is in the details. Consider the following changes to the files in our proj-
ect directory structure as we continue to improve the project build system
for Jupiter. Let’s start by cleaning up our work area. You can do this using
make distclean, or if you’re building from a GitHub repository work area,
you can use a form of the git clean command:2

$ git clean -xfd
--snip--

 $ rm bootstrap.sh Makefile.in src/Makefile.in
 $ echo "SUBDIRS = src" > Makefile.am
 $ echo "bin_PROGRAMS = jupiter

> jupiter_SOURCES = main.c" > src/Makefile.am
 $ touch NEWS README AUTHORS ChangeLog

$ ls -1
AUTHORS
ChangeLog
configure.ac
Makefile.am
NEWS

1. I owe many heartfelt thanks to Ralf for kindly answering so many seemingly trivial ques-
tions while I worked on the first edition of this book.

2. In the GitHub repository (https://github.com/NSP-Autotools/jupiter/), you’ll see the README
file is a symlink to README.md. This difference is only for the sake of presentation on the
GitHub project site. The important part here is that some form of the README file must exist
for Automake.

Git tag 6.0

https://github.com/NSP-Autotools/jupiter/

Automatic Makefiles with Automake 147

README
src
$

The rm command at deletes our hand-coded Makefile.in templates and
the bootstrap.sh script we wrote to ensure that all the support scripts and files
are copied into the root of our project directory. We won’t need this script
anymore because we’re upgrading Jupiter to Automake proper. (For the sake
of brevity, I used echo statements at and to write the new Makefile.am
files; you can use a text editor if you wish.)

N O T E There is a hard carriage return at the end of the line at . The shell will continue to
accept input after the carriage return until the quotation is closed.

I used the touch command at to create new, empty versions of the
NEWS, README, AUTHORS, and ChangeLog files in the project root direc-
tory. (The INSTALL and COPYING files are added by autoreconf -i.) These
files are required by the GCS for all GNU projects. And although they’re not
required for non-GNU projects, they’ve become something of an institution
in the OSS world; users have come to expect them.3

N O T E The GCS covers the format and contents of these files. Sections 6.7 and 6.8 cover the
NEWS and ChangeLog files, respectively, and Section 7.3 covers the README,
INSTALL, and COPYING files. The AUTHORS file is a list of people (names
and optional email addresses) to whom attribution should be given.4

It can be a little painful to maintain a ChangeLog file—especially since
you’ve already done it once as you added commit messages to your reposi-
tory commits. To simplify the process, consider using a shell script to scrape
your repository log into ChangeLog before you make a new release. There are
existing scripts available on the internet; for example, gnulib (see Chapter 13)
provides the gitlog-to-changelog script, which can be used to import a git
repository’s log information into ChangeLog prior to release.

Enabling Automake in configure.ac
To enable Automake within the build system, I’ve added a single line
to configure.ac : a call to AM_INIT_AUTOMAKE between the calls to AC_INIT and
AC_CONFIG_SRCDIR, as shown in Listing 6-1.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

3. The Automake foreign option can be used in the AM_INIT_AUTOMAKE macro’s option list
argument to keep Automake from requiring the standard GNU text files. In Chapter 14,
where I show you how to convert the FLAIM project to use the Autotools, I present the use
of this option.

4. This information is taken from the July 25, 2016, version of the GNU Coding Standards at
http://www.gnu.org/prep/standards/.

https://www.gnu.org/prep/standards/

148 Chapter 6

AC_PREREQ([2.69])
AC_INIT([Jupiter], [1.0], [jupiter-bugs@example.org])
AM_INIT_AUTOMAKE
AC_CONFIG_SRCDIR([src/main.c])
--snip--

Listing 6-1: Adding Automake functionality to configure.ac

If your project has already been configured with Autoconf, this is the
only line that’s required to enable Automake in a working configure.ac file. The
AM_INIT_AUTOMAKE macro accepts an optional argument: a whitespace-separated
list of option tags, which can be passed into this macro to modify the gen-
eral behavior of Automake. For a detailed description of each option, see
Chapter 17 of the GNU Automake Manual.5 I will, however, point out a few of
the most useful options here.

gnits, gnu, foreign
These options set Automake’s strictness checks. The default is gnu. The
gnits option makes Automake even more pedantic than it already is,
and the foreign option loosens things up a bit—with foreign, you aren’t
required to have the obligatory INSTALL, README, and ChangeLog
files normally required for GNU projects.

check-news

The check-news option causes make dist to fail if the project’s current
version (from configure.ac) doesn’t show up in the first few lines of the
NEWS file.

dist-bzip2, dist-lzip, dist-xz, dist-shar, dist-zip, dist-tarZ
You can use the dist-* options to change the default distribution pack-
age type. By default, make dist builds a .tar.gz file, but developers often
want to distribute, for example, .tar.xz packages instead. These options
make the change quite easy. (Even without the dist-xz option, you can
override the current default by using make dist-xz, but using the option
is simpler if you always want to build .xz packages.)

readme-alpha

The readme-alpha option temporarily alters the behavior of the build
and distribution processes during alpha releases of a project. Using this
option causes a file named README-alpha, found in the project root
directory, to be distributed automatically. The use of this option also
alters the expected versioning scheme of the project.

5. See the Free Software Foundation’s GNU Automake Manual at http://www.gnu.org/software/
automake/manual/.

https://www.gnu.org/software/automake/manual/
https://www.gnu.org/software/automake/manual/

Automatic Makefiles with Automake 149

-W category, --warnings=category
The -W category and --warnings=category options indicate that the project
would like to use Automake with various warning categories enabled.
Multiple such options can be used with different category tags. Refer to
the GNU Automake Manual to find a list of valid categories.

parallel-tests

The parallel-tests feature allows checks to be executed in parallel in
order to take advantage of multiprocessor machines during execution
of the check target.

subdir-objects

The subdir-objects option is required when you intend to reference
sources from directories other than the current directory. Using this
option causes Automake to generate make commands that cause object
and intermediate files to be generated into the same directory as the
source file. For more information on this option, see “Nonrecursive
Automake” on page 175.

version

The version option is actually a placeholder for a version number that
represents the lowest version of Automake that is acceptable for this
project. For instance, if 1.11 is passed as an option tag, Automake will
fail while processing configure.ac if its version is earlier than 1.11. This
can be useful if you’re trying to use features that only exist in later ver-
sions of Automake.

With the new Makefile.am files in place and Automake enabled in
configure.ac, let’s run autoreconf with the -i option in order to add any
new utility files that Automake may require for our project:

$ autoreconf -i
configure.ac:11: installing './compile'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './INSTALL'
Makefile.am: installing './COPYING' using GNU General Public License v3 file
Makefile.am: Consider adding the COPYING file to the version control system
Makefile.am: for your code, to avoid questions about which license your
project uses src/Makefile.am: installing './depcomp'
$
$ ls -1p
aclocal.m4
AUTHORS
autom4te.cache/
ChangeLog
compile
config.h.in
configure

150 Chapter 6

configure.ac
COPYING
depcomp
INSTALL
install-sh
Makefile.am
Makefile.in
missing
NEWS
README
src/
$

Adding the AM_INIT_AUTOMAKE macro to configure.ac causes autoreconf -i
to now execute automake -i, which includes a few additional utility files:
aclocal.m4, install-sh, compile, missing, and depcomp. Also, Automake now
generates Makefile.in from Makefile.am.

I mentioned aclocal.m4 in Chapter 2 and install-sh in Chapter 4. The
missing script is a little utility helper script that prints a nicely formatted
message when a tool specified on its command line is not available. More
detail than this is not really required; if you’re curious, execute ./missing
--help in your project directory.

We’ll talk about the depcomp script shortly, but I’d like to mention the
purpose of the compile script here. This script is a wrapper around some
older compilers that do not understand the concurrent use of the -c and
-o command line options. When you use product-specific flags, which we’ll
discuss shortly, Automake has to generate code that may compile source
files multiple times with different flags for each file. Thus, it has to name
the object files differently for each set of flags it uses. The compile script
facilitates this process.

Automake also adds default INSTALL and COPYING text files contain-
ing boilerplate text that pertains specifically to the GNU project. You can
modify these files for your projects as you see fit. I find the default INSTALL
file text to be useful for general-purpose instructions related to Autotools-
built projects, but I like to prepend some project-specific information to the
top of this file before committing it to my repository. Automake’s -i option
won’t overwrite these text files in a project that already contains them, so
feel free to modify the default files as you see fit, once they’ve been added
by autoreconf -i.

The COPYING file contains the text of the GPL, which may or may not
apply to your project. If your project is released under GPL, just leave the
text as is. If you’re releasing under another license, such as the BSD, MIT,
or Apache Commons licenses, replace the default text with text appropriate
for that license.6

6. See the Open Source Initiative website at http://opensource.org/ for current license text for
nearly all known open source licenses.

https://opensource.org

Automatic Makefiles with Automake 151

N O T E You only need to use the -i option once in a newly checked-out work area or a newly
created project. Once the missing utility files have been added, you can drop the -i
option in future calls to autoreconf unless you add certain macros to configure.ac,
which may then cause the use of the -i option to add more missing files. We’ll see some
of this sort of thing in later chapters.

The preceding commands create an Automake-based build system that
contains everything (with the minor exception of check functionality, which
we’ll get to shortly) that we wrote into our original Makefile.in templates,
except that this system is more correct and functionally complete according
to the GCS. A glance at the resulting generated Makefile.in template shows
that Automake has done a significant amount of work for us. The resulting
top-level Makefile.in template is nearly 24KB, while the original, hand-coded
makefiles were only a few hundred bytes long.

An Automake build system supports the following important make tar-
gets (derived from an Automake-generated Makefile):

all check clean ctags

dist dist-bzip2 dist-gzip dist-lzip

dist-shar dist-tarZ dist-xz dist-zip

distcheck distclean distdir dvi

html info install install-data

install-dvi install-exec install-html install-info

install-pdf install-ps install-strip installcheck

installdirs maintainer-clean mostlyclean pdf

ps tags ininstall

As you can see, this goes far beyond what we could provide in our hand-
coded Makefile.in templates. Automake writes this base functionality into
every project that uses it.

A Hidden Benefit: Automatic Dependency Tracking
In “Dependency Rules” on page 46, we discussed make dependency rules.
These are rules we define in makefiles so that make is aware of the hidden
relationships between C-language source files and included header files.
Automake goes to a lot of trouble to ensure that you don’t have to write
such dependency rules for languages it understands, like C, C++, and
Fortran. This is an important feature for projects containing more than a
few source files.

Writing dependency rules by hand for dozens or hundreds of source
files is both tedious and error prone. In fact, it’s such a problem that com-
piler writers often provide a mechanism that enables the compiler to write
these rules automatically based on its internal knowledge of the source files
and the language. The GNU compilers, among others, support a family of
-M options (-M, -MM, -MF, -MG, and so on) on the command line. These options

152 Chapter 6

tell the compiler to generate a make dependency rule for the specified
source file. (Some of these options can be used on the normal compiler
command line, so the dependency rule can be generated when the source
file is being compiled.)

The simplest of these options is the basic -M option, which causes the
compiler to generate a dependency rule for the specified source file on
stdout and then terminate. This rule can be captured in a file, which is
then included by the makefile so that the dependency information within
this rule is incorporated into the directed graph that make builds.

But what happens on systems where the native compilers don’t provide
dependency generation options, or where they don’t work together with
the compilation process? In such cases, Automake provides a wrapper
script called depcomp that executes the compiler twice: once for dependency
information and again to compile the source file. When the compiler lacks
the options to generate any dependency information, another tool may be
used to recursively determine which header files affect a given source file.
On systems where none of these options is available, automatic dependency
generation fails.

N O T E For a more detailed description of the dependency-generating compiler options, see
“Item 10: Using Generated Source Code” on page 529. For more on Automake depen-
dency management, see the relevant sections of the GNU Automake Manual.

It’s time now to bite the bullet and give it a try. As with our build system
from the previous chapter, run autoreconf (optional since we ran autoreconf
-i earlier, but harmless), followed by ./configure and make.

$ autoreconf
$./configure
--snip--
$ make
make all-recursive
make[1]: Entering directory '/.../jupiter'
Making all in src
make[2]: Entering directory '/.../jupiter/src'
gcc -DHAVE_CONFIG_H -I. -I.. -g -O2 -MT main.o -MD -MP -MF .deps/main.Tpo -c -o main.o main.c
mv -f .deps/main.Tpo .deps/main.Po
gcc -g -O2 -o jupiter main.o -lpthread
make[2]: Leaving directory '/.../jupiter/src'
make[2]: Entering directory '/.../jupiter'
make[2]: Leaving directory '/.../jupiter'
make[1]: Leaving directory '/.../jupiter'
$

You can’t truly appreciate what Automake has done here without try-
ing a few of the other make targets we’ve become familiar with. Try out the
install, dist, and distcheck targets on your own to assure yourself that you
still have all the functionality you had before you deleted your handwritten
Makefile.in templates.

Automatic Makefiles with Automake 153

N O T E The check target exists as a do-nothing target at this point, but we need to dive into
Automake constructs in a bit more detail before we can add our test back in. When we
get to it, you’ll see that it’s even simpler than the code we originally wrote.

What’s Actually in a Makefile.am File?
In Chapter 4, we discussed how Autoconf accepts as input a shell script
sprinkled with M4 macros and then generates the same shell script with
those macros fully expanded. Likewise, Automake accepts as input a make-
file sprinkled with Automake commands. Just as Autoconf’s input files are
simply enhanced shell scripts, Automake Makefile.am files are nothing more
than standard makefiles with additional Automake-specific syntax.

One significant difference between Autoconf and Automake is that the
only text Autoconf outputs is the existing shell script in the input file and
any additional shell script resulting from the expansion of embedded M4
macros. Automake, on the other hand, assumes that all makefiles should
contain a minimal infrastructure designed to support the GCS, in addition
to any targets and variables that you specify.

To illustrate this point, create a temp directory in the root of the Jupiter
project and add an empty Makefile.am file to it. Next, add this new Makefile.am
to the project’s configure.ac file with a text editor and reference it from the
top-level Makefile.am file, like this:

$ mkdir temp
$ touch temp/Makefile.am

 $ echo "SUBDIRS = src temp" > Makefile.am
$ vi configure.ac
--snip--
AC_CONFIG_FILES([Makefile
 src/Makefile

 temp/Makefile])
--snip--
$ autoreconf
$./configure
--snip--
$ ls -1sh temp
total 24K

 12K Makefile
0 Makefile.am

 12K Makefile.in
$

I used an echo statement at to rewrite a new top-level Makefile.am file
that has SUBDIRS reference both src and temp. I used a text editor to add temp/
Makefile to the list of makefiles Autoconf will generate from templates (). As
you can see, there is a certain amount of support code generated into every

154 Chapter 6

makefile that Automake considers indispensable. Even an empty Makefile.am
file generates a 12KB Makefile.in template (), from which configure gener-
ates a similarly sized Makefile ().7

Since the make utility uses a fairly rigid set of rules for processing make-
files, Automake takes some license with your additional make code. Here are
some specifics:

•	 The make variables defined in Makefile.am files are placed at the top of
the resulting Makefile.in template, immediately following any Automake-
generated variable definitions.

•	 The make rules specified in Makefile.am files are placed at the end of
the resulting Makefile.in template, immediately after any Automake-
generated rules.

•	 Most Autoconf variables substituted by config.status are converted to
make variables and initialized to those substitution variables.

The make utility doesn’t care where rules are in relation to each other,
because it reads every rule into an internal database before processing any
of them. Variables are treated similarly, as long as they are defined before
the rules that use them. In order to avoid any variable-binding issues,
Automake places all variables at the top of the output file in the order in
which they’re defined in the input file.

Analyzing Our New Build System
Now let’s look at what we put into those two simple Makefile.am files, begin-
ning with the top-level Makefile.am file (shown in Listing 6-2).

SUBDIRS = src

Listing 6-2: Makefile.am: The top-level Makefile.am file contains only a subdirectory
reference.

This single line of text tells Automake several things about our project:

•	 One or more subdirectories contain makefiles to be processed in
addition to this file.8

•	 Directories in this space-delimited list should be processed in the
order specified.

7. It’s fairly instructive to examine the contents of this Makefile.in template to see the
Autoconf substitution variables that are passed in, as well as the framework code that
Automake generates.

8. I refer here to actual makefiles, not Makefile.am files. Automake determines the list of
Makefile.am files to process from configure.ac’s AC_CONFIG_FILES list. The SUBDIRS list merely exists
to tell make which directories to process from the current makefile, and in which order.

Automatic Makefiles with Automake 155

•	 Directories in this list should be recursively processed for all
primary targets.

•	 Directories in this list should be treated as part of the project
distribution, unless otherwise specified.

As with most Automake constructs, SUBDIRS is simply a make variable
that has special meaning for Automake. The SUBDIRS variable may be used
to process Makefile.am files within arbitrarily complex directory structures,
and the directory list may contain any relative directory references (not just
immediate subdirectories). You might say that SUBDIRS is kind of like the
glue that holds makefiles together in a project’s directory hierarchy, when
using a recursive build system.

Automake generates recursive make rules that implicitly process the cur-
rent directory after those specified in the SUBDIRS list, but it’s often necessary
to build the current directory before some or all of the other directories
in the list. You may change the default ordering by referencing the current
directory with a dot anywhere in the SUBDIRS list. For example, to build the
top-level directory before the src directory, you could change the SUBDIRS
variable in Listing 6-2 as follows:

SUBDIRS = . src

Now let’s turn to the Makefile.am file in the src directory, shown in
Listing 6-3.

bin_PROGRAMS = jupiter
jupiter_SOURCES = main.c

Listing 6-3: src/Makefile.am: The initial version of this Makefile.am file contains only
two lines

The first line is a product list variable specification, and the second line
is a product source variable specification.

Product List Variables
Products are specified in a Makefile.am file using a product list variable (PLV),
which (like SUBDIRS) is a class of make variables that have special meaning to
Automake. The following template shows the general format of a PLV:

[modifier-list]prefix_PRIMARY = product1 product2 ... productN

The PLV name in the first line of Listing 6-3 consists of two compo-
nents: the prefix (bin) and the primary (PROGRAMS), separated by an under-
score (_). The value of the variable is a whitespace-separated list of products
generated by this Makefile.am file.

156 Chapter 6

Installation Location Prefixes

The bin portion of the product list variable shown in Listing 6-3 is an
example of an installation location prefix. The GCS defines many common
installation locations, and most are listed in Table 3-1 on page 65.
However, any make variable ending in dir, whose value is a filesystem
location, is a viable installation location variable and may be used as a
prefix in an Automake PLV.

You reference an installation location variable in a PLV prefix by omit-
ting the dir portion of the variable name. For example, in Listing 6-3, the
$(bindir) make variable is referred to only as bin when it is used as an installa-
tion location prefix.

Automake also recognizes four installation location variables
starting with the special pkg prefix: pkglibdir, pkgincludedir, pkgdatadir,
and pkglibexecdir. These pkg versions of the standard libdir, includedir,
datadir, and libexecdir variables indicate that the listed products should
be installed in a subdirectory of these locations named after the package.
For example, in the Jupiter project, products listed in a PLV prefixed with
lib would be installed into $(libdir), while those listed in a PLV prefixed
with pkglib would be installed into $(libdir)/jupiter.

Since Automake derives the list of valid installation locations and pre-
fixes from all make variables ending in dir, you may provide your own PLV
prefixes that refer to custom installation locations. To install a set of XML
files into an xml directory within the system data directory, you could use
the code in Listing 6-4 in your Makefile.am file.

xmldir = $(datadir)/xml
xml_DATA = file1.xml file2.xml file3.xml ...

Listing 6-4: Specifying a custom installation directory

Installation location variables will contain default values defined either
by Automake-generated makefiles or by you in your Makefile.am files, but
your users can always override these default values on their configure or make
command lines. If you don’t want certain products to be installed during a
particular build, specify an empty value in an installation location variable
on the command line; the Automake-generated rules will ensure that prod-
ucts intended for those directories aren’t installed. For example, to install
only documentation and shared data files for a package, you could enter
make bindir='' libdir='' install.9

Prefixes Not Associated with Installation

Certain prefixes are not related to installation locations. For example,
noinst, check, and EXTRA are used (respectively) to indicate products that
are not installed, are used only for testing, or are optionally built. Here’s
a little more information about these three prefixes:

9. Technically, you don’t need the empty quotes after the equal sign; a reference to bindir= is
the same as bindir='' after shell processing.

Automatic Makefiles with Automake 157

noinst

Indicates that the listed products should be built but not installed.
For example, a static so-called convenience library might be built as an
intermediate product and then used in other stages of the build pro-
cess to build final products. The noinst prefix tells Automake that the
product should not be installed and that only a static library should be
built. (After all, it makes no sense to build a shared library that won’t
be installed.)

check

Indicates products that are to be built only for testing purposes and
will thus not need to be installed. Products listed in PLVs prefixed with
check are built only if the user enters make check.

EXTRA

Used to list programs that are conditionally built. Automake requires
that all source files be specified statically within a Makefile.am file, as
opposed to being calculated or derived during the build process, so
that it can generate a Makefile.in template that will work for any possible
command line. However, a project maintainer may elect to allow some
products to be built conditionally based on configuration options given
to the configure script. If products are listed in variables generated by
the configure script, they should also be listed in a PLV, prefixed with
EXTRA, within a Makefile.am file. This concept is illustrated in Listings 6-5
and 6-6.

AC_INIT(...)
--snip--
optional_programs=
AC_SUBST([optional_programs])
--snip--
if test "x$(build_opt_prog)" = xyes; then

 optional_programs=$(optional_programs) optprog
fi
--snip--

Listing 6-5: A conditionally built program defined in a shell variable in configure.ac

 EXTRA_PROGRAMS = optprog
 bin_PROGRAMS = myprog $(optional_programs)

Listing 6-6: Using the EXTRA prefix to conditionally define products in Makefile.am

At in Listing 6-5, optprog is appended to an Autoconf substitu-
tion variable called optional_programs. The EXTRA_PROGRAMS variable at in
Listing 6-6 lists optprog as a product that may or may not be built, based on
end-user configuration choices that determine whether $(optional_programs)
at is empty or contains optprog.

158 Chapter 6

While it may appear redundant to specify optprog in both configure.ac
and Makefile.am, Automake needs the information in EXTRA_PROGRAMS because
it cannot attempt to interpret the possible values of $(optional_programs),
as defined in configure.ac. Hence, adding optprog to EXTRA_PROGRAMS in this
example tells Automake to generate rules to build it, even if $(optional
_programs) doesn’t contain optprog during a particular build.

Primaries

Primaries are like product classes, and they represent types of products that
might be generated by a build system. A primary defines the set of steps
required to build, test, install, and execute a particular class of products.
For example, programs and libraries are built using different compiler and
linker commands, Java classes require a virtual machine to execute them,
and Python programs require an interpreter. Some product classes, such as
scripts, data, and headers, have no build, test, or execution semantics—only
installation semantics.

The list of supported primaries defines the set of product classes that
can be built automatically by an Automake build system. Automake build
systems can still build other product classes, but the maintainer must define
the make rules explicitly within the project’s Makefile.am files.

A thorough understanding the Automake primaries is the key to prop-
erly using Automake. The current complete list of supported primaries is
as follows.

PROGRAMS

When the PROGRAMS primary is used in a PLV, Automake generates make
rules that use compilers and linkers to build binary executable pro-
grams for the listed products.

LIBRARIES/LTLIBRARIES
The use of the LIBRARIES primary causes Automake to generate rules
that build static archives (libraries) using the system compiler and
librarian. The LTLIBRARIES primary does the same thing, but the gen-
erated rules also build Libtool shared libraries and execute these
tools (as well as the linker) through the libtool script. (I’ll discuss the
Libtool package in detail in Chapters 7 and 8.) Automake restricts the
installation locations for the LIBRARIES and LTLIBRARIES primaries: they
can only be installed in $(libdir) and $(pkglibdir).

LISP

The LISP primary was designed mainly to manage the build for
Emacs Lisp programs. Hence, it expects to refer to a list of .el files.
You can find details on the use of this primary in Section 10.1 of the
Automake manual.

PYTHON

Python is an interpreted language; the python interpreter converts
a Python script, line by line, into Python byte code, executing it as it’s

Automatic Makefiles with Automake 159

converted, so (like shell scripts) Python source files are executable as
written. The use of the PYTHON primary tells Automake to generate rules
that precompile Python source files (.py) into standard (.pyc) and opti-
mized (.pyo) byte-compiled versions using the py-compile utility. Because
of the normally interpreted nature of Python sources, this compilation
occurs at install time rather than at build time.

JAVA

Java is a virtual machine platform; the use of the JAVA primary tells
Automake to generate rules that convert Java source files (.java) into Java
class files (.class) using the javac compiler. While this process is correct,
it’s not complete. Java programs (of any consequence) generally contain
more than one class file and are usually packaged as .jar or .war files,
both of which may also contain several ancillary text files. The JAVA pri-
mary is useful, but only just. (I’ll discuss using—and extending—the JAVA
primary in “Building Java Sources Using the Autotools” on page 408.)

SCRIPTS

Script, in this context, refers to any interpreted text file—whether
it’s shell, Perl, Python, Tcl/Tk, JavaScript, Ruby, PHP, Icon, Rexx, or
some other. Automake allows a restricted set of installation locations
for the SCRIPTS primary, including $(bindir), $(sbindir), $(libexecdir),
and $(pkgdatadir). While Automake doesn’t generate rules to build
scripts, it also doesn’t assume that a script is a static file in the project.
Scripts are often generated by handwritten rules in Makefile.am files,
sometimes by processing an input file with the sed or awk utility. For
this reason, scripts are not distributed automatically. If you have a
static script in your project that you’d like Automake to add to your
distribution archive, you should prefix the SCRIPTS primary with the
dist modifier as discussed in “PLV and PSV Modifiers” on page 161.

DATA

Arbitrary data files can be installed using the DATA primary in a PLV.
Automake allows a restricted set of installation locations for the
DATA primary, including $(datadir), $(sysconfdir), $(sharedstatedir),
$(localstatedir), and $(pkgdatadir). Data files are not automatically
distributed, so if your project contains static data files, use the dist
modifier on the DATA primary as discussed in ““PLV and PSV Modifiers”
on page 161.

HEADERS

Header files are a form of source file. Were it not for the fact that some
header files are installed, they could simply be listed with the product
sources. Header files containing the public interface for installed library
products are installed into either the $(includedir) or a package-specific
subdirectory defined by $(pkgincludedir), so the most common PLVs for
such installed headers are the include_HEADERS and pkginclude_HEADERS

160 Chapter 6

variables. Like other source files, header files are distributed automati-
cally. If you have a generated header file, use the nodist modifier with the
HEADERS primary as discussed in “PLV and PSV Modifiers” on page 161.

MANS

Man pages are UTF-8 text files containing troff markup, which is ren-
dered by man when viewed by a user. Man pages can be installed using the
man_MANS or manN_MANS product list variables, where N represents a single-
digit section number between 0 and 9 or the letters l (for math library
topics) or n (for Tcl/Tk topics). Files in the man_MANS PLV should have
a numeric extension indicating the man section to which they belong
and, therefore, their target directory. Files in the manN_MANS PLV may be
named with either numeric extensions or a .man extension and will be
renamed to the associated numeric extensions when they’re installed by
make install. Project man pages are not distributed by default because
man pages are often generated, so you should use the dist modifier as
discussed in “PLV and PSV Modifiers” on page 161.

TEXINFOS

When it comes to Linux or Unix documentation, Texinfo10 is the GNU
project format of choice. The makeinfo utility accepts Texinfo source
files (.texinfo, .txi, or .texi) and renders info files (.info) containing
UTF-8 text annotated with Texinfo markup, which the info utility ren-
ders into formatted text for the user. The most common product list
variable for use with Texinfo sources is info_TEXINFOS. The use of this
PLV causes Automake to generate rules to build .info, .dvi, .ps, and .html
documentation files. However, only the .info files are built with make
all and installed with make install. In order to build and install the
other types of files, you must specify the dvi, ps, pdf, html, install-dvi,
install-ps, install-pdf, and install-html targets explicitly on the make
command line. Since the makeinfo utility is not installed by default in
many Linux distributions, the generated .info files are automatically
added to distribution archives so your end users won’t have to go look-
ing for makeinfo.

Product Source Variables
The second line in Listing 6-3 is an example of an Automake product source
variable (PSV). PSVs conform to the following template:

[modifier-list]product_SOURCES = file1 file2 ... fileN

Like PLVs, PSVs are composed of multiple parts: the product name
(jupiter in this case) and the SOURCES tag. The value of a PSV is a whitespace-
separated list of source files from which product is built. The value of the

10. See the Texinfo project website at http://www.gnu.org/software/texinfo/.

https://www.gnu.org/software/texinfo/

Automatic Makefiles with Automake 161

PSV in the second line of Listing 6-3 is the list of source files used to build
the jupiter program. Ultimately, Automake adds these files to various make
rule dependency lists and commands in the generated Makefile.in templates.

Only characters that are allowed in make variables (letters, numbers, the
at sign, and underscore) are allowed in the product tag of a PSV. As a result,
Automake performs a transformation on product names listed in PLVs to
render the product tags used in the associated PSVs. Automake converts
illegal characters into underscores, as shown in Listing 6-7.

 lib_LIBRARIES = libc++.a
 libc___a_SOURCES = ...

Listing 6-7: Illegal make variable characters are converted to underscores in product tags.

Here, Automake converts libc++.a in the PLV at into the PSV product
tag libc___a (that’s three underscores) to find the associated PSV at in the
Makefile.am file. You must know the transformation rules so you can write
PSVs that match your products.

PLV and PSV Modifiers
The modifier-list portions of the PLV and PSV templates defined previously
contain a set of optional modifiers. The following BNF-like rule defines the
format of the modifier-list element of these templates:

modifier-list = modifier_[modifier-list]

Modifiers change the normal behavior of the variable to which they
are prepended. The currently defined set of prefix modifiers includes dist,
nodist, nobase, and notrans.

The dist modifier indicates a set of files that should be distributed (that
is, that should be included in the distribution package that’s built when
make dist is executed). For example, assuming that some source files for a
product should be distributed and some should not, the variables shown in
Listing 6-8 might be defined in the product’s Makefile.am file.

dist_myprog_SOURCES = file1.c file2.c
nodist_myprog_SOURCES = file3.c file4.c

Listing 6-8: Using the dist and nodist modifiers in a Makefile.am file

Automake normally strips relative path information from the list of
header files in a HEADERS PLV. The nobase modifier is used to suppress the
removal of path information from installed header files that are obtained
from subdirectories by a Makefile.am file. For example, take a look at the
PLV definition in Listing 6-9.

nobase_pkginclude_HEADERS = mylib.h sys/constants.h

Listing 6-9: Using the nobase PLV modifier in a Makefile.am file

162 Chapter 6

In this line we can see that mylib.h is in the same directory as Makefile.am,
but constants.h is located in a subdirectory called sys. Normally, both files
would be installed into $(pkgincludedir) by virtue of the pkginclude installation
location prefix. However, since we’re using the nobase modifier, Automake will
retain the sys/ portion of the second file’s path for installation, and constants.h
will be installed into $(pkgincludedir)/sys. This is useful when you want the
installation (destination) directory structure to be the same as the project
(source) directory structure as files are copied during installation.

The notrans modifier may be used on man page PLVs for man pages
whose names should not be transformed during installation. (Normally,
Automake will generate rules to rename the extension on man pages from
.man to .N—where N is 0, 1, . . . , 9, l, n—as they’re installed.)

You can also use the EXTRA prefix as a modifier. When used with a product
source variable (such as jupiter_SOURCES), EXTRA specifies extra source files that
are directly associated with the jupiter product, as shown in Listing 6-10.

EXTRA_jupiter_SOURCES = possibly.c

Listing 6-10: Using the EXTRA prefix with a product SOURCES variable

Here, possibly.c may or may not be compiled, based on some condition
defined in configure.ac.

Unit Tests: Supporting make check
In Chapter 3, we added code to src/Makefile that executes the jupiter pro-
gram and checks for the proper output string when the user makes the
check target. We now have enough information to add our check target test
back into our new Automake build system. I’ve duplicated the check target
code in Listing 6-11 for reference in the following discussion.

--snip--
check: all
 ./jupiter | grep "Hello from .*jupiter!"
 @echo "*** ALL TESTS PASSED ***"
--snip--

Listing 6-11: The check target from Chapter 3

Fortunately, Automake has solid support for unit tests. To add our simple
grep test back into the new Automake-generated build system, we can add a
few lines to the bottom of src/Makefile.am, as shown in Listing 6-12.

bin_PROGRAMS = jupiter
jupiter_SOURCES = main.c

 check_SCRIPTS = greptest.sh
 TESTS = $(check_SCRIPTS)

greptest.sh:

Git tag 6.1

Automatic Makefiles with Automake 163

 echo './jupiter | grep "Hello from .*jupiter!"' > greptest.sh
 chmod +x greptest.sh

 CLEANFILES = greptest.sh

Listing 6-12: src/Makefile.am: Additional code required to support the check target

The check_SCRIPTS line at is a PLV that refers to a script generated at
build time. Since the prefix is check, we know that scripts listed in this line
will only be built when the user enters make check. However, we must supply
a make rule for building the script as well as a rule for removing the file later,
during execution of the clean target. We use the CLEANFILES variable at to
extend the list of files that Automake deletes during make clean.

The TESTS line at is the important one in Listing 6-12 because it
indicates which targets are executed when the user makes the check target.
(Since the check_SCRIPTS variable contains a complete list of these targets, I
simply referenced it here, as the make variable that it actually is.) Note that
in this particular case, check_SCRIPTS is redundant, because Automake gen-
erates rules to ensure that all the programs listed in TESTS are built before
the tests are executed. However, check_* PLVs become important when addi-
tional helper scripts or programs must be built before those listed in TESTS
are executed.

It’s not necessarily obvious here, but since we added our first test, we
need to re-execute autoreconf -i before running make check in order to add a
new utility script: test-driver. You can find places in the Automake documen-
tation that indicate clearly that you must do this, but it’s simpler to just let
the build tell you when something is missing and therefore an execution of
autoreconf (-i) is required. To give you a flavor for this process, let’s try it
without running autoreconf first:

$ make check
Making check in src
make[1]: Entering directory '/.../jupiter/src'
 cd .. && /bin/bash /.../jupiter/missing automake-1.15 --gnu src/Makefile
parallel-tests: error: required file './test-driver' not found
parallel-tests: 'automake --add-missing' can install 'test-driver'
Makefile:255: recipe for target 'Makefile.in' failed
make[1]: *** [Makefile.in] Error 1
make[1]: Leaving directory '/.../jupiter/src'
Makefile:352: recipe for target 'check-recursive' failed
make: *** [check-recursive] Error 1
$

Now let’s run autoreconf -i first:

$ autoreconf -i
parallel-tests: installing './test-driver'
$
$ make check
/bin/bash ./config.status --recheck

164 Chapter 6

running CONFIG_SHELL=/bin/bash /bin/bash ./configure --no-create
--no-recursion
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
--snip--
Making check in src
make[1]: Entering directory '/.../jupiter/src'
make greptest.sh
make[2]: Entering directory '/.../jupiter/src'
echo './jupiter | grep "Hello from .*jupiter!"' > greptest.sh
chmod +x greptest.sh
make[2]: Leaving directory '/.../jupiter/src'
make check-TESTS
make[2]: Entering directory '/.../jupiter/src'
make[3]: Entering directory '/.../jupiter/src'
PASS: greptest.sh
==
Testsuite summary for Jupiter 1.0
==
TOTAL: 1
PASS: 1
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
==
make[3]: Leaving directory '/.../jupiter/src'
make[2]: Leaving directory '/.../jupiter/src'
make[1]: Leaving directory '/.../jupiter/src'
make[1]: Entering directory '/.../jupiter'
make[1]: Leaving directory '/.../jupiter'
$

After running autoreconf -i (and noting that test-driver was installed
into our project), we can see that make check is now successful.

Note that I didn’t have to manually invoke configure after running
autoreconf -i. The build system is generally smart enough to know when it
should re-execute configure for you.

Reducing Complexity with Convenience Libraries
Jupiter is fairly trivial as open source software projects go, so in order to
highlight some more of Automake’s key features, let’s expand it a little.
We’ll first add a convenience library and then modify jupiter to consume
this library.

Automatic Makefiles with Automake 165

A convenience library is a static library that’s only used within the
containing project. Such temporary libraries are generally used when
multiple binaries in a project need to incorporate the same source code.
I’ll move the code in main.c to a library source file and call the function
in the library from jupiter’s main routine. Begin by executing the following
commands from the top-level project directory:

$ mkdir common
$ touch common/jupcommon.h
$ cp src/main.c common/print.c
$ touch common/Makefile.am
$

Now add the highlighted text from Listings 6-13 and 6-14 to the .h and
.c files, respectively, in the new common directory.

int print_routine(const char * name);

Listing 6-13: common/jupcommon.h: The initial version of this file

#include "config.h"

#include "jupcommon.h"

#include <stdio.h>
#include <stdlib.h>

#if HAVE_PTHREAD_H
include <pthread.h>
#endif

static void * print_it(void * data)
{
 printf("Hello from %s!\n", (const char *)data);
 return 0;
}

int print_routine(const char * name)
{
#if ASYNC_EXEC
 pthread_t tid;
 pthread_create(&tid, 0, print_it, (void*)name);
 pthread_join(tid, 0);
#else
 print_it(name);
#endif
 return 0;
}

Listing 6-14: common/print.c: The initial version of this file

Git tag 6.2

166 Chapter 6

As you can see, print.c is merely a copy of main.c, with a few small modi-
fications (highlighted in Listing 6-14). First, I renamed main to print_routine,
and then I added the inclusion of the jupcommon.h header file after the
inclusion of config.h. The header file provides print_routine’s prototype to
src/main.c, where it’s called from main.

Next, we modify src/main.c, as shown in Listing 6-15, and then add the
text in Listing 6-16 to common/Makefile.am.

#include "config.h"

#include "jupcommon.h"

int main(int argc, char * argv[])
{
 return print_routine(argv[0]);
}

Listing 6-15: src/main.c: Required modifications to have main call into the new library

N O T E It may seem odd to include config.h at the top of src/main.c since nothing in that
source file appears to use it. The GCS recommends following the standard practice
of including config.h at the top of all source files, before any other inclusions, in
case something in one of the other included header files makes use of definitions in
config.h. I recommend religiously following this practice.

noinst_LIBRARIES = libjupcommon.a
libjupcommon_a_SOURCES = jupcommon.h print.c

Listing 6-16: common/Makefile.am: Initial version of this file

Let’s examine this new Makefile.am file. The first line indicates which
products this file should build and install. The noinst prefix indicates that
this library is designed solely to make using the source code in the common
directory more convenient.

We’re creating a static library called libjupcommon.a, also known as
an archive. Archives are like .tar files that only contain object files (.o).
They can’t be executed or loaded into a process address space like shared
libraries, but they can be added to a linker command line like object files.
Linkers are smart enough to realize that such archives are merely groups
of object files.

N O T E Linkers add to the binary product every object file specified explicitly on the com-
mand line, but they only extract from archives those object files that are actually ref-
erenced in the code being linked. Therefore, if you link to a static library containing
97 object files, but you only call functions in two of them directly or indirectly, only
those two object files are added to your program. In contrast, linking to 97 raw object
files adds all 97 of those files to your program, regardless of whether you use any of
their functionality.

Automatic Makefiles with Automake 167

The second line in Listing 6-16 is a product source variable that con-
tains the list of source files associated with this library.11

Product Option Variables
Now we need to add some additional information to src/Makefile.am so that
the generated Makefile can find the new library and header file we added
to the common directory. Let’s add two more lines to the existing Makefile.am
file, as shown in Listing 6-17.

bin_PROGRAMS = jupiter
jupiter_SOURCES = main.c

 jupiter_CPPFLAGS = -I$(top_srcdir)/common
 jupiter_LDADD = ../common/libjupcommon.a

--snip--

Listing 6-17: src/Makefile.am: Adding compiler and linker directives to Makefile.am files

Like the jupiter_SOURCES variable, these two new variables are derived
from the program name. These product option variables (POVs) are used to
specify product-specific options to tools that are used to build products
from source code.

The jupiter_CPPFLAGS variable at adds product-specific C-preprocessor
flags to the compiler command line for all source files that are compiled for
the jupiter program. The -I$(top_srcdir)/common directive tells the C prepro-
cessor to add $(top_srcdir)/common to its list of locations in which to look for
header file references.12

The jupiter_LDADD variable at adds libraries to the jupiter program’s
linker command line. The file path ../common/libjupcommon.a merely adds
an object to the linker command line so that code in this library can
become part of the final program.

N O T E You can also use $(top_builddir)/ in place of ../ to reference the location of the
common directory in this path. Using $(top_builddir) has the added advantage of
making it simpler to move this Makefile.am file to another location without having
to modify it.

11. I chose to place both the header file and the source file in this list. I could have used a
noinst_HEADERS PLV for the header file, but it isn’t necessary because the libjupcommon_a
_SOURCES list works just as well. The appropriate time to use noinst_HEADERS is when you have a
directory that contains no source files—such as an internal include directory. Since header
files are associated with compilation only through include references within your source code,
the only effect of using noinst_HEADERS is that the listed header files are simply added to the
project’s distribution file list. (You’d get exactly the same effect by listing such header files in
the EXTRA_DIST variable.)

12. The C preprocessor will search for header files referenced with angle brackets in the
resulting include search path. It will also search for header files referenced with double quotes
within the system include search path, but it will check the current directory first. Therefore,
you should use double quotes, rather than angle brackets, to reference header files that can
be referenced relative to your project directory structure.

168 Chapter 6

Adding a library to a program_LDADD or library_LIBADD variable is only nec-
essary for libraries that are built as part of your own package. If you’re link-
ing your program with a library that’s already installed on the user’s system,
a call to AC_CHECK_LIB or AC_SEARCH_LIBS in configure.ac will cause the generated
configure script to add an appropriate reference to the linker command line
via the LIBS variable.

The set of POVs supported by Automake are derived mostly from a sub-
set of the standard user variables listed in Table 3-2 on page 71. You’ll
find a complete list of program and library option variables in the GNU
Autoconf Manual, but here are some of the important ones.

product_CPPFLAGS

Use product_CPPFLAGS to pass flags to the C or C++ preprocessor on the
compiler command line.

product_CFLAGS

Use product_CFLAGS to pass C-compiler flags on the compiler
command line.

product_CXXFLAGS

Use product_CXXFLAGS to pass C++-compiler flags on the compiler com-
mand line.

product_LDFLAGS

Use product_LDFLAGS to pass global and order-independent shared library
and program linker configuration flags and options to the linker,
including -static, -version-info, -release, and so on.

program_LDADD

Use program_LDADD to add Libtool objects (.lo) or libraries (.la) or non-
Libtool objects (.o) or archives (.a) to the linker command line when
linking a program.13

library_LIBADD

Use library_LIBADD to add non-Libtool linker objects and archives to
non-Libtool archives on the ar utility command line. The ar utility will
incorporate archives mentioned on the command line into the prod-
uct archive, so you can use this variable to gather multiple archives
together into one.

ltlibrary_LIBADD

Use ltlibrary_LIBADD to add Libtool linker objects (.lo) and Libtool static
or shared libraries (.la) to a Libtool static or shared library.

You can use the last three option variables in this list to pass lists of
order-dependent static and shared library references to the linker. You can

13. The file extensions on non-Libtool objects and archives are not standardized, so my use of
.o and .a here is to provide an example only.

Automatic Makefiles with Automake 169

also use these option variables to pass -L and -l options. The following
are acceptable formats: -Llibpath, -llibname, [relpath/]archive.a, [relpath/]
objfile.$(OBJEXT), [relpath/]ltobject.lo , and [relpath/]ltarchive.la. (Note that
the term relpath indicates a relative path within the project, which can be in
terms of either relative directory references, using dots, or $(top_builddir).)

Per-Makefile Option Variables
You’ll often see the Automake variables AM_CPPFLAGS and AM_LDFLAGS used in a
Makefile.am file. These per-makefile forms of these flags are used when the
maintainer wants to apply the same set of flags to all products specified in the
Makefile.am file.14 For example, if you need to set a group of preprocessor flags
for all products in a Makefile.am file and then add additional flags for a par-
ticular product (prog1), you could use the statements shown in Listing 6-18.

AM_CFLAGS = ... some flags ...
--snip--

 prog1_CFLAGS = $(AM_CFLAGS) ... more flags ...
--snip--

Listing 6-18: Using both per-product and per-file flags

The existence of a per-product variable overrides Automake’s use of the
per-makefile variable, so you need to reference the per-makefile variable in
the per-product variable in order to have the per-makefile variable affect that
product, as shown in Listing 6-18 at . In order to allow per-product variables
to override their per-makefile counterparts, it’s a good idea to reference the
per-makefile variable first, before adding any product-specific options.

N O T E User variables, such as CFLAGS, are reserved for the end user and should never be
set by configuration scripts or makefiles. Automake will always append them to the
appropriate utility command lines, thus allowing the user to override the options
specified in the makefile.

Building the New Library
Next, we need to edit the SUBDIRS variable in the top-level Makefile.am file in
order to include the new common directory we just added. We also need to
add the new makefile that was generated in the common directory to the list
of files generated from templates in the AC_CONFIG_FILES macro invocation in
configure.ac. These changes are shown in Listings 6-19 and 6-20.

SUBDIRS = common src

Listing 6-19: Makefile.am: Adding the common directory to the SUBDIRS variable

14. Using per-makefile flags can generate more compact makefiles, because per-product flags
cause Automake to emit per-product rules instead of more general suffix rules. When large
file sets are involved, the difference is significant.

170 Chapter 6

--snip--
AC_CONFIG_FILES([Makefile
 common/Makefile
 src/Makefile])
--snip--

Listing 6-20: configure.ac: Adding common/Makefile to the AC_CONFIG_FILES macro

This is the largest set of changes we’ve made up to this point, but we’re
reorganizing the entire application, so it seems reasonable. Let’s give our
updated build system a try. Add the -i option to the autoreconf command
line so that it will install any additional missing files that might be required
after these enhancements. After so many changes, I like to start with a
clean slate, so start with make distclean, or some form of the git clean com-
mand if you’re running from a git repository work area.

$ make distclean
--snip--
$ autoreconf -i
configure.ac:11: installing './compile'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './INSTALL'
Makefile.am: installing './COPYING' using GNU General Public License v3 file
Makefile.am: Consider adding the COPYING file to the version control
system
Makefile.am: for your code, to avoid questions about which license your
project uses

 common/Makefile.am:1: error: library used but 'RANLIB' is undefined
common/Makefile.am:1: The usual way to define 'RANLIB' is to add 'AC_PROG_
RANLIB'
common/Makefile.am:1: to 'configure.ac' and run 'autoconf' again.
common/Makefile.am: installing './depcomp'
parallel-tests: installing './test-driver'
autoreconf: automake failed with exit status: 1
$

Well, it looks like we’re not quite done yet. Since we’ve added a
new type of entity—static libraries—to our build system, automake (via
autoreconf) tells us at that we need to add a new macro, AC_PROG_RANLIB,
to the configure.ac file.15

Add this macro to configure.ac, as shown in Listing 6-21.

--snip--
Checks for programs.
AC_PROG_CC

15. There’s a lot of history behind the use of the ranlib utility on archive libraries. I won’t
get into whether it’s still useful with respect to modern development tools, but I will say that
whenever you see it used in modern makefiles, there always seems to be a preceding comment
about running ranlib “in order to add karma” to the archive, implying that the use of ranlib is
somehow unnecessary. You be the judge.

Automatic Makefiles with Automake 171

AC_PROG_INSTALL
AC_PROG_RANLIB
--snip--

Listing 6-21: configure.ac: Adding AC_PROG_RANLIB

Finally, enter autoreconf -i once more. Adding -i ensures that, if the
new functionality we added to configure.ac requires any additional files to be
installed, autoreconf will do so.

$ autoreconf -i
$

No more complaints; all is well.

What Goes into a Distribution?
Automake usually determines automatically what should go into a distribu-
tion created with make dist, because it’s very aware of every file’s role in the
build process. To this end, Automake wants to be told about every source
file used to build a product and about every file and product installed. This
means, of course, that all files must be specified at some point in one or
more PLV and PSV variables.16

The Automake EXTRA_DIST variable contains a space-delimited list of files
and directories that should be added to the distribution package when the
dist target is made. For example:

EXTRA_DIST = windows

You could use the EXTRA_DIST variable to add a source directory to the
distribution package that Automake would not automatically add—for
example, a Windows-specific directory.

N O T E In this case, windows is a directory, not a file. Automake will automatically recur-
sively add every file in this directory to the distribution package; this may include
some files that you really didn’t want there, such as hidden .svn or .CVS status
directories. See “Automake -hook and -local Rules” on page 389 for a way around
this problem.

16. This bothers some developers—and with good reason. There are cases where dozens of
installable files are generated by tools using long, apparently random, and generally unim-
portant naming conventions. Listing such generated files statically in a variable is painful,
to say the least. Regardless, the current requirement is that all files must be specified. Don’t
bother trying to find a way around it. You’ll end up hacking half the Automake source code to
get it to work. Do recognize, however, that there is good reason for this requirement: unless
every installable file is explicitly made known, the Autotools simply can’t generate configure
scripts and makefiles that will always work for the user under every possible set of arguments
they might supply.

172 Chapter 6

A WOR D A BOU T T HE U T IL I T Y SCR IP T S

The Autotools have added several files to the root of our project directory struc-
ture: compile, depcomp, install-sh, and missing. Because configure or the gener-
ated Makefiles all execute these scripts at various points during the build process,
the end user will need them; however, we can only get them from the Autotools,
and we don’t want to require the user to have the Autotools installed. For this rea-
son, these scripts are automatically added to the distribution archive.

So, do you check them in to your source code repository or not? The answer
is debatable, but generally I recommend that you don’t. Any maintainer who will
be creating a distribution archive should have the Autotools installed and should
be working from a repository work area. As a result, these maintainers will also
be running autoreconf -i (possibly in conjunction with the --force option*) to
ensure that they have the most up-to-date Autotools-provided utility scripts. If you
check them in, it will only make it more probable that they become out-of-date as
time goes by. It will also cause unnecessary churn in your repository revision his-
tory as contributors ping-pong back and forth between files generated from the
different versions of the Autotools they’re using.

I extend this sentiment to the configure script as well. Some people argue
that checking the utility and configure scripts into the project repository is ben-
eficial, because it ensures that if someone checked out a work area, they could
build the project from the work area without having the Autotools installed.
However, my personal philosophy is that developers and maintainers should be
expected to have these tools installed. Occasionally, an end user will need to
build a project from a work area, but this should be the exception rather than
the typical case, and in these exceptional cases, the user should be willing to
take on the role and requirements of a maintainer.

* Use the --force option with caution; it will also overwrite text files such as
INSTALL, which may have been modified for the project from the default text file
that ships with the Autotools.

Maintainer Mode
Occasionally, timestamps on distribution source files will be newer than
the current time setting of a user’s system clock. Regardless of the cause,
this inconsistency confuses make, causing it to think that every source file
is out-of-date and needs to be rebuilt. As a result, it will re-execute the
Autotools in an attempt to bring configure and the Makefile.in templates
up-to-date. But as maintainers, we don’t really expect our users to have
the Autotools installed—or at least not the latest versions that we’ve
installed on our systems.

This is where Automake’s maintainer mode comes in. By default, Automake
adds rules to makefiles that regenerate template files, configuration scripts,

Automatic Makefiles with Automake 173

and generated sources from maintainer source files such as Makefile.am and
configure.ac, as well as Lex and Yacc input files. However, we can use the
Automake AM_MAINTAINER_MODE macro in configure.ac to disable the default gen-
eration of these maintainer-level make rules.

For maintainers who want these rules in place to keep their build system
properly updated after build system changes, the AM_MAINTAINER_MODE macro
provides a configure script command line option (--enable-maintainer-mode),
which tells configure to generate Makefile.in templates that contain rules and
commands to execute the Autotools as necessary.

Maintainers must be aware of the use of AM_MAINTAINER_MODE in their
projects. They will need to use this command line option when running
configure in order to generate full build systems that will properly rebuild
Autotools-generated files when their sources are modified.

N O T E I also recommend mentioning the use of maintainer mode in the project INSTALL
or README files so that end users are not surprised when they modify Autotools
sources without effect.

Although Automake’s maintainer mode has its advantages, you should
know that there are various arguments against using it. Most focus on the
idea that make rules should never be purposely restricted, because doing so
generates a build system that will always fail under certain circumstances. I
will, however, state that later versions of the Autotools do a much better job
of telling you what’s happening when a required tool is missing. In fact, this
is exactly what the missing script is for. Most tool invocations are wrapped
in the missing script, which tells you fairly clearly what’s missing and how to
install it when it is missing.

Another important consideration when using this macro is that you’ve
now doubled the rows in your test matrix, as every build option has two
modes—one that assumes the Autotools are installed and one that assumes
the opposite. If you decide to use the macro to disable maintainer mode by
default for your end users, keep these points in mind.

Cutting Through the Noise
The amount of noise generated by Autotools-based build systems has been
one of the most controversial topics on the Automake mailing list. One
camp appreciates quiet builds that just display important information,
such as warnings and errors. The other side argues that valuable informa-
tion is often embedded in this so-called “noise,” so all of it is important
and should be displayed. Occasionally, a new Autotools developer will post
a question about how to reduce the amount of information displayed by
make. This almost always spawns a heated debate that lasts for several days
over a few dozen email messages. The old-timers just laugh about it and
often joke about how “someone has turned on the switch again.”

The truth of the matter is that both sides have valid points. The GNU
project is all about options, so the Automake maintainers have added the

174 Chapter 6

ability to allow you to optionally make silent rules available to your users.
Silent rules in Automake makefiles are not really silent; they’re just somewhat
less noisy than traditional Automake-generated rules.

Instead of displaying the entire compiler or linker command line, silent
rules display a short line indicating the tool and the name of the file being
processed by that tool. Output generated by make is still displayed so the user
knows which directory and target are currently being processed. Here is
Jupiter’s build output, with silent rules enabled (execute make clean first to
ensure something actually gets built):

$ make clean
--snip--
$ configure --enable-silent-rules
--snip--
$ make
make all-recursive
make[1]: Entering directory '/.../jupiter'
Making all in common
make[2]: Entering directory '/.../jupiter/common'
 CC print.o
 AR libjupcommon.a
ar: `u' modifier ignored since `D' is the default (see `U')
make[2]: Leaving directory '/.../jupiter/common'
Making all in src
make[2]: Entering directory '/.../jupiter/src'
 CC jupiter-main.o
 CCLD jupiter
make[2]: Leaving directory '/.../jupiter/src'
make[2]: Entering directory '/.../jupiter'
make[2]: Leaving directory '/.../jupiter'
make[1]: Leaving directory '/.../jupiter'
$

As you can see, the use of silent rules doesn’t make a lot of difference for
Jupiter—Jupiter’s build system spends a lot of time moving between directories
and very little time actually building things. But in projects with hundreds of
source files, you’d see long lists of CC filename.o lines, with an occasional indi-
cation that make is changing directories or the linker is building a product—
compiler warnings tend to jump out at you. For instance, the ar warning in the
output would have flown by unnoticed without silent rules.17

Silent rules are disabled by default. To enable silent rules by default in
Automake-generated Makefile.am templates, you may call the AM_SILENT_RULES
macro in configure.ac with a yes argument.

In any case, the user may always set the default verbosity for a build with
--enable-silent-rules or --disable-silent-rules on the configure command

17. You may or may not see this ar warning on your system. Some systems default to using
the u option; others do not. In any case, for a nifty trick that silences this warning on all
systems, check out this commit in the libvirt project: https://libvirt.org/git/?p=libvirt.git
;a=commitdiff;h=2db6a447. The m4_divert_text command can be used to modify text as it
passes through the M4 utility.

https://libvirt.org/git/?p=libvirt.git;a=commitdiff;h=2db6a447
https://libvirt.org/git/?p=libvirt.git;a=commitdiff;h=2db6a447

Automatic Makefiles with Automake 175

line. The build will then either be “silent” or normal based on the config-
ured default and on whether the user specifies V=0 or V=1 on the make com-
mand line.

N O T E Neither configure option is required—the actual invocation of silent rules is ulti-
mately controlled by the V variable in the generated makefile. The configure option
merely sets the default value of V.

For smaller projects, I find Automake’s silent rules to be less useful than
simply redirecting stdout to /dev/null on the make command line, in this
manner:

$ make >/dev/null
ar: `u' modifier ignored since `D' is the default (see `U')
$

As this example shows, warnings and errors are still displayed on stderr,
usually with enough information for you to determine where the problem is
located (though not in this case). Warning-free builds are truly silent in this
case. You should use this technique to clean up compiler warnings in your
source code every so often. Silent rules can help because warnings stand
out in the build output.

Nonrecursive Automake
Now that we’ve changed our handwritten Makefile.in templates over to
Automake Makefile.am files, let’s take a look at the process of converting this
recursive build system to a nonrecursive build system. In previous chapters,
we saw that using make’s include directive can be helpful in dividing make-
files into areas of responsibility relegated to the subdirectories in which
they reside. With Automake, however, it’s just simpler to put everything
in a top-level Makefile.am file because the content is so short that we can
easily comprehend the entire build system at a glance. If further division
of responsibility is required, a simple comment suffices.

The key here, as in our previous incarnations, is to reference the
content as if make were running from the top-level directory (which—
again—it is).

Listing 6-22 contains the entire contents of the top-level Makefile.am
file—the only makefile we’ll use in this conversion.

noinst_LIBRARIES = common/libjupcommon.a
common_libjupcommon_a_SOURCES = common/jupcommon.h common/print.c

bin_PROGRAMS = src/jupiter
src_jupiter_SOURCES = src/main.c
src_jupiter_CPPFLAGS = -I$(top_srcdir)/common
src_jupiter_LDADD = common/libjupcommon.a

check_SCRIPTS = src/greptest.sh

Git tag 6.3

176 Chapter 6

TESTS = $(check_SCRIPTS)

src/greptest.sh:
 echo './src/jupiter | grep "Hello from .*jupiter!"' > src/greptest.sh
 chmod +x src/greptest.sh

CLEANFILES = src/greptest.sh

Listing 6-22: Makefile.am: A nonrecursive Automake implementation for Jupiter

As you can see here, I’ve replaced the SUBDIRS variable in the top-level
Makefile.am file with the full contents of the Makefile.am files in each of the
directories referenced by this variable. I then added appropriate relative
path information to each input object and product reference so that source
files are accessed from the top-level directory, where they actually reside
in their respective subdirectories, and so that products end up where they
belong—with their source input files (or at least in their proper counter-
part directories when not building in the source tree). I’ve highlighted the
changes to each of the subdirectory Makefile.am files that I pasted into the
top-level file.

Note that common_ or src_ was prepended to the product source vari-
ables because these prefixes are literally part of the product names now.
Ultimately, these names are used to create make targets, which are defined
as much by their location as their name. Usually, the location is the current
directory, so the directory portions are silently omitted. For our nonrecur-
sive builds, products are now generated into locations other than the cur-
rent directory, so they must be stated explicitly. As with any other special
characters in the product name, the directory-separating slashes become
underscores in PSVs.

We also need to add an Automake option and remove the extra Makefile
references from configure.ac, as shown in Listing 6-23.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
AC_INIT([Jupiter], [1.0], [jupiter-bugs@example.org])
AM_INIT_AUTOMAKE([subdir-objects])
AC_CONFIG_SRCDIR([src/main.c])
AC_CONFIG_HEADERS([config.h])
--snip--
Checks for library functions.

AC_CONFIG_FILES([Makefile])
AC_OUTPUT

cat << EOF
--snip--

Listing 6-23: configure.ac: Removing extra makefile references for nonrecursive builds

Automatic Makefiles with Automake 177

The Automake subdir-objects option is necessary to tell Automake
that you intend to access source files from directories other than those in
which they reside. It’s also needed to state that you want the objects and
other intermediate products to be generated into the same directory as the
source file (or in proper out-of-tree build counterpart directories). This
option is not required just for nonrecursive builds but for any situation in
which you may need to build one or more source files outside of their own
directories. If you omit this option, the build will often still work, but you’ll
see two effects: warnings will be generated by autoreconf (or automake) indi-
cating that you should probably use the option, and object files will be left
lying in the wrong directories. The latter is only a problem if you happen to
have more than one instance of a source file with the same name in differ-
ent directories, in which case the second object file will overwrite the first,
which will most probably result in a linker error when it’s not able to find
the symbols from the now-overwritten first object.

Finally, we can simply delete the common and src directories’ Makefile.am
files:

$ rm common/Makefile.am src/Makefile.am
$

Summary
In this chapter, we’ve discussed how to instrument a project for Automake
using a project that had already been instrumented for Autoconf. (Newer
projects are typically instrumented for both Autoconf and Automake at the
same time.)

We covered the use of the SUBDIRS variable to tie Makefile.am files
together, as well as the concepts surrounding product list, product source,
and product option variables. Along with product list variables, I discussed
Automake primaries—a concept at the very heart of Automake. Finally, I
discussed the use of EXTRA_DIST to add additional files to distribution pack-
ages, the AM_MAINTAINER_MODE macro to ensure that users don’t need to have the
Autotools installed, converting to a nonrecursive Automake build system, and
the use of Automake silent rules.

Through all of this, we replaced our handwritten Makefile.in templates
with short, concise Makefile.am files that provide significantly more func-
tionality. I hope this exercise has begun to open your eyes to the benefits of
using Automake rather than handwritten makefiles.

In Chapters 7 and 8, we’ll examine adding Libtool to the Jupiter proj-
ect. In Chapter 9, we’ll finish up our introduction to the Autotools proper
by diving into the Autoconf’s portable testing framework—autotest. Then,
in Chapters 10 through 13, we’ll take a short break from the Autotools
to tackle some important sideline topics, but we’ll return in Chapters 14
and 15, where we’ll “Autotool-ize” a real-world project as we explore several
other important aspects of Automake.

7
B U I L D I N G L I B R A R I E S

W I T H L I B T O O L

After too many bad experiences build-
ing shared libraries for multiple platforms

without the help of GNU Libtool, I have
come to two conclusions. First, the person who

invented the concept of shared libraries should be
given a raise . . . and a bonus. Second, the person
who decided that shared library management inter-
faces and naming conventions should be left to the
implementation should be flogged.

The very existence of Libtool stands as a witness to the truth of this
sentiment. Libtool exists for only one reason—to provide a standardized,
abstract interface for developers who want to create and access shared
libraries in a portable manner. It abstracts both the shared-library build
process and the programming interfaces used to dynamically load and
access shared libraries at runtime.

The years teach much which the days never know.
— Ralph Waldo Emerson, “Experience”

180 Chapter 7

The Libtool package concept was designed, and initial implementa-
tion was done, by Gordon Matzigkeit in March of 1996. Before this time,
there was no standard, cross-platform mechanism for building shared
libraries. Autoconf and Automake worked great for building portable
projects across many platforms—as long as you didn’t try to build a shared
library. Once you started down this path, however, your code and build
system would become littered with conditional constructs for shared-library
management. This was a monumental effort because, as we shall see, build-
ing shared libraries is significantly different among some platforms.

Thomas Tanner began contributing in November of 1998 with his cross-
platform abstraction for shared-library dynamic loading—ltdl. Other con-
tributors since that time include Alexandre Oliva, Ossama Othman, Robert
Boehne, Scott James Remnant, Peter O’Gorman, and Ralf Wildenhues.
Currently, the Libtool package is maintained by Gary V. Vaughn (who has
also been contributing to Libtool since 1998) and Bob Friesenhahn (whose
excellent suggestions have been incorporated since 1998).

Before I get into a discussion of the proper use of Libtool, I’ll spend a
few paragraphs on the features and functionality that shared libraries pro-
vide so you understand the scope of the material I’m covering here.

The Benefits of Shared Libraries
Shared libraries provide a way to deploy reusable chunks of functionality in
a convenient package. You can load shared libraries into a process address
space either automatically at program load time, by using the operating
system loader, or manually via code in the application itself. The point at
which an application binds functionality from a shared library is very flex-
ible, and the developer determines it based on the program’s design and
the end user’s needs.

The interfaces between the program executable and the modules
defined as shared libraries must be reasonably well designed because
shared-library interfaces must be well specified. This rigorous specifica-
tion promotes good design practices. When you use shared libraries, the
system essentially forces you to be a better programmer.

Shared libraries may be (as the name implies) shared among processes.
This sharing is very literal. The code segments for a shared library can be
loaded once into physical memory pages. Those same memory pages can
then be mapped into the process address spaces of multiple programs
at once. The data pages must, of course, be unique for each process, but
global data segments are often small compared to the code segments of a
shared library. This is true efficiency.

It is easy to update shared libraries during program upgrades. Even if
the base program doesn’t change between two revisions of a software pack-
age, you can replace an old version of a shared library with a new one, as
long as the new version’s interfaces have not been changed. If interfaces
have changed, two versions of the same shared library may reside together

Building Libraries with Libtool 181

within the same directory, because the versioning schemes used by shared
libraries (and supported by Libtool) on various platforms allow multiple
versions of a library to be named differently in the filesystem but treated as
the same library by the operating system loader. Older programs will con-
tinue to use older versions of the library, while newer programs are free to
use the newer versions.

If a software package specifies a well-defined plug-in interface, then
shared libraries can be used to implement user-configurable loadable func-
tionality. This means that additional functionality can become available to
a program after it has been released, and third-party developers can even
add functionality to your program, if you publish a document describing
your plug-in interface specification (or if they’re smart enough to figure it
out on their own).

There are a few widely known examples of these types of systems.
Eclipse, for instance, is almost a pure plug-in framework. The base execut-
able supports little more than a well-defined plug-in interface. Most of
the functionality in an Eclipse application comes from library functions.
Eclipse is written in Java and uses Java class libraries and .jar files, but the
principle is the same, regardless of the language or platform.

How Shared Libraries Work
The specifics of how POSIX-compliant operating systems implement shared
libraries vary from platform to platform, but the general idea is the same.
Shared libraries provide chunks of executable code that the operating sys-
tem can load into a program’s address space and execute. The following
discussion applies to shared-library references that the linker resolves when
a program is built and the operating system loader resolves when the pro-
gram is loaded.

While the object (.o) files produced by compilers do contain executable
code, they cannot be executed by themselves from the command line. This
is because they’re incomplete, containing symbolic references or links to
external entities (functions and global data items) that must be patched
up. This patching is done by using a tool designed to manage such links
to combine the complete set of object files containing such references.

Dynamic Linking at Load Time
As a program executable image is being built, the linker (formally called a
link editor) maintains a table of symbols—function entry points and global
data addresses. Each symbol referenced within the accumulating body of
object code is added to this table as the linker finds it. As symbol defini-
tions are located, the linker resolves symbol references in the table to their
addresses in the code. At the end of the linking process, all object files (or
simply objects) containing referenced symbol definitions are linked together
and become part of the program executable image.

182 Chapter 7

Objects found in static libraries (also called archives) that contain no
referenced symbol definitions are discarded, but objects linked explicitly
are added to the binary image even if they contain no referenced symbol
definitions. If there are outstanding references in the symbol table after
all the objects have been analyzed, the linker exits with an error message.
On success, the final executable image may be loaded and executed by a
user. The image is now entirely self-contained, depending on no external
binary code.

Assuming that all undefined references are resolved during the link-
ing process, if the list of objects to be linked contains one or more shared
libraries, the linker will build the executable image from all nonshared
objects specified on the linker command line. This includes all individual
object files (.o) and all objects contained in static library archives (.a).
However, the linker will add two tables to the binary image header. The first
is the outstanding external reference table—a table of references to symbol
definitions found only in shared libraries during the linking process. The
second is the shared-library table, containing the list of shared-library names
and versions in which the outstanding undefined references were found.

When the operating system loader attempts to load the program, it
must resolve the remaining outstanding references in the external refer-
ence table to symbols imported from the shared libraries named in the
shared-library table. If the loader can’t resolve all of the references, then a
load error occurs, and the process is terminated with an operating system
error message. Note that these external symbols are not tied to a specific
shared library. As long as they’re found in any one of the searched libraries
in the shared-library table, they’re accepted.

N O T E This process differs slightly from the way a Windows operating system loader resolves
symbols in dynamic link libraries (DLLs). On Windows, the linker ties a particular
symbol to a specifically named DLL at program build time.1

Using free-floating external references has both pros and cons. On some
operating systems, unbound symbols can be satisfied by a library specified
by the user. That is, a user can entirely replace a library (or a portion of a
library) at runtime by simply preloading one that contains the same symbols.
On BSD and Linux-based systems, for example, a user can use the LD_PRELOAD
environment variable to inject a shared library into a process address space.
Since the loader loads these libraries before any other libraries, the loader
will locate symbols in the preloaded libraries when it tries to resolve external
references. The program author’s intended libraries will not even be checked
because the symbols provided by these libraries have already been resolved by
the preloaded libraries.

1. Windows is not the only system to use hard references in this manner. Modern Windows
operating systems are based on the Common Object File Format (COFF) system. COFF is also
used by other operating systems, such as IBM’s AIX. Many Unix (and all Linux) systems today
are based on the Executable and Linking Format (ELF) system, which promotes the use of soft
references. These don’t need to be fully resolved until the program is executed.

Building Libraries with Libtool 183

In the following example, the Linux df utility is executed with an
environment containing the LD_PRELOAD variable. This variable has been set
to a path referring to a library that presumably contains a heap manager
that’s compatible with the C malloc interface. This technique can be used to
debug memory problems in your programs. By preloading your own heap
manager, you can capture memory allocations in a log file—in order to
debug memory block overruns, for instance. This sort of technique is used
by such widely known debugging aids as the Valgrind package.2

Here, the LD_PRELOAD environment variable is set on the same command
line used to execute the df program. This shell code causes only the df
child process environment to contain the LD_PRELOAD variable, set to the
specified value:

$ LD_PRELOAD=$HOME/lib/libmymalloc.so /bin/df
--snip--
$

Unfortunately, free-floating symbols can also lead to problems.
For instance, two libraries can provide the same symbol name, and the
dynamic loader can inadvertently bind an executable to a symbol from
the wrong library. At best, this will cause a program crash when the wrong
arguments are passed to the mismatched function. At worst, it can present
security risks because the mismatched function might be used to capture
passwords and security credentials passed by the unsuspecting program.

C-language symbols do not include parameter information, so it’s
rather likely that symbols will clash in this manner. C++ symbols are a
bit safer, in that the entire function signature (minus the return type)
is encoded into the symbol name. However, even C++ is not immune to
hackers who purposely replace security functions with their own versions
of those functions (assuming, of course, that they have access to your run-
time shared-library search path).

Automatic Dynamic Linking at Runtime

The operating system loader can also use a very late form of binding, often
referred to as lazy binding. In this situation, the external reference table
entries in the program header are initialized so that they refer to code
within the dynamic loader itself.

When a program first calls a lazy entry, the call is routed to the loader,
which will then (potentially) load the proper shared library, determine the
actual address of the function, reset the entry point in the jump table, and,
finally, redirect the processor to the shared-library function (which is now
available). The next time this happens, the jump table entry will have already
been correctly initialized, and the program will jump directly to the called
function. This is very efficient both because the overhead for the jump after

2. For more information on the Valgrind tool suite, see the Valgrind Developers’ website at
http://valgrind.org/.

184 Chapter 7

fix-up is no more than a normal indirect function call and because the cost of
the initial load and link is amortized over many calls to the function during
the lifetime of the process.3

This lazy binding mechanism makes program startup very fast because
shared libraries whose symbols are not bound until they’re needed aren’t
even loaded until the application program first references them. But, con-
sider this—the program may never reference them. And that means they
may never be loaded, saving both time and space. A good example of this
sort of situation might be a word processor with a thesaurus feature imple-
mented in a shared library. How often do you use your thesaurus? If the
program is using automatic dynamic linking, chances are that the shared
library containing the thesaurus code will never be loaded in most word-
processing sessions.

As good as this system appears to be, there can be problems. While
using automatic runtime dynamic linking can give you faster load times,
better performance, and more efficient use of space, it can also cause your
application to terminate abruptly and without warning. In the event that
the loader can’t find the requested symbol—perhaps the required library is
missing—it has no recourse except to abort the process.

Why not ensure that all symbols exist when the program is loaded?
Because if the loader resolved all symbols at load time, it might as well pop-
ulate the jump table entries at that point, too. After all, it had to load all
the libraries to ensure that the symbols actually exist, so this would entirely
defeat the purpose of using lazy binding. Furthermore, even if the loader
did check all external references when the program was first started, there’s
nothing to stop someone from deleting one or more of these libraries
before the program uses them, while the program is still running.4 Thus,
even the pre-check is defeated.

The moral of this story is that there’s no free lunch. If you don’t want to
pay the insurance premium for longer up-front load times and more space
consumed (even if you may never really need it), then you may have to take
the hit of a missing symbol at runtime, causing a program crash.

Manual Dynamic Linking at Runtime

One possible solution to the aforementioned problem is to take personal
responsibility for some of the system loader’s work. Then, when things don’t
go right, you have a little more control over the outcome. In the case of the
thesaurus module, was it really necessary to terminate the program if the

3. The Spectre security flaw discovered in early 2018 caused the Linux community to make
changes to the kernel that make such indirect jumps slightly more expensive. These initial fixes
can be removed once processor manufacturers like Intel fix their microarchitecture designs.

4. Unix-like (POSIX) systems will retain deleted files for which outstanding file handles exist
within running processes. From the filesystem user’s perspective, the file appears to be gone,
but the file remains intact until the last file handle is closed. Thus, this argument is not conclu-
sive. As an aside, Windows operating systems simply disallow the delete operation on open files.

Building Libraries with Libtool 185

thesaurus library could not be loaded or didn’t provide the correct symbols?
Of course not—but the operating system loader can’t know that. Only the
software programmer can make such judgment calls.

When a program manages dynamic linking manually at runtime, the
linker is left out of the equation entirely, and the program doesn’t call any
exported shared-library functions directly. Rather, shared-library functions
are referenced through function pointers that the program itself populates
at runtime.

Here’s how it works: A program calls an operating system function
(dlopen) to manually load a shared library into its own process address
space. This function returns a handle, or an opaque value representing the
loaded library. The program then calls another loader function (dlsym) to
import a symbol from the library to which the handle refers. If all goes well,
the operating system returns the address of the requested function or data
item from the desired library. The program may then call the function, or
access the global data item, through this pointer.

If something goes wrong in this process—the symbol isn’t found
within the library or the library isn’t found—then it becomes the responsi-
bility of the program to define the results, perhaps by displaying an error
message indicating that the program was not configured correctly. In the
preceding example of the word processor, a simple dialog indicating that
the thesaurus is unavailable would be entirely sufficient.

This is a little nicer than the way automatic dynamic runtime linking
works; while the loader has no option but to abort, the application has a
higher-level perspective and can handle the problem much more gracefully.
The drawback, of course, is that you as the programmer have to manage
the process of loading libraries and importing symbols within your applica-
tion code. However, this process is not very difficult, as I’ll demonstrate in
the next chapter.

Using Libtool
An entire book could be written about the details of shared libraries and
how they’re implemented on various systems. The short primer you just
read should suffice for our immediate needs, so I’ll now move on to how
you can use Libtool to make a package maintainer’s life a little easier.

The Libtool project was designed to extend Automake, but you can use
it independently within hand-coded makefiles, as well. As of this writing,
the latest version of Libtool, and the one I’m using in the examples here, is
version 2.4.6.

Abstracting the Build Process
First, let’s look at how Libtool helps during the build process. Libtool pro-
vides a script (ltmain.sh) that config.status consumes in a Libtool-enabled
project. The config.status script converts configure test results and the
ltmain.sh script into a custom version of the libtool script, specifically

186 Chapter 7

tailored to your project.5 Your project’s makefiles then use this libtool script
to build the shared libraries listed in any Automake product list variables
defined with the Libtool-specific LTLIBRARIES primary. The libtool script is
really just a fancy wrapper around the compiler, linker, and other tools.
You should ship the ltmain.sh script in a distribution archive, as part of your
build system. Automake-generated rules ensure that this happens properly.

The libtool script insulates the author of the build system from the
nuances of building shared libraries on different platforms. This script
accepts a well-defined set of options, converting them to appropriate
platform- and linker-specific options on the target platform and toolset.
Thus, the maintainer doesn’t need to worry about the specifics of build-
ing shared libraries on each platform—they only need to understand the
available libtool script options. These options are well specified in the GNU
Libtool Manual,6 and I’ll cover many of them in this chapter and the next.

On systems that don’t support shared libraries at all, the libtool script
uses appropriate commands and options to build and link only static archive
libraries. Furthermore, the maintainer doesn’t have to worry about the dif-
ferences between building shared libraries and building static libraries when
using Libtool. You can emulate building your package on a static-only system
by using the --disable-shared option on the configure command line for your
Libtool-enabled project. This option causes Libtool to assume that shared
libraries cannot be built on the target system.

Abstraction at Runtime
You can also use Libtool to abstract the programming interfaces the operat-
ing system supplies for loading libraries and importing symbols. If you’ve ever
dynamically loaded a library on a Linux system, you’re familiar with the stan-
dard POSIX shared-library API, including the dlopen, dlsym, and dlclose func-
tions. A system-level shared library, usually called simply dl, provides these
functions. This translates to a binary image file named libdl.so (or something
similar on systems that use different library-naming conventions).

Unfortunately, not all Unix systems that support shared libraries provide
the libdl.so library or functions using these names. To address these differ-
ences, Libtool provides a shared library called ltdl, which exports a clean,
portable, library-management interface that is very similar to the POSIX dl
interface. The use of this library is optional, of course, but it is highly recom-
mended because it provides more than just a common API across shared-
library platforms—it also provides an abstraction for manual dynamic
linking between shared-library and non-shared-library platforms.

5. Libtool also offers the option of generating the project-specific libtool script when
configure is executed. This is done with the LT_OUTPUT macro within configure.ac. You may
wish to do this if you find you have a need to execute libtool from within configure—for
example, to test certain link-related features of your user’s environment. In this case, you
will need libtool to exist before you execute it for these checks.

6. See the Free Software Foundation’s GNU Libtool Manual, version 2.4.6 (February 15, 2015)
at https://www.gnu.org/software/libtool/manual/.

https://www.gnu.org/software/libtool/manual/

Building Libraries with Libtool 187

What?! How can that work?! On systems that don’t support shared librar-
ies, Libtool actually creates internal symbol tables within the executable
that contain all the symbols you would otherwise find within shared librar-
ies (on systems that support shared libraries). By using such symbol tables
on these platforms, the lt_dlopen and lt_dlsym functions can make your
code appear to be loading libraries and importing symbols, when in fact,
the library load function does nothing more than return a handle to the
appropriate internal symbol table, and the import function merely returns
the address of code that has been statically linked into the program itself.
On these systems, a project’s shared-library code is linked directly into the
programs that would normally load them at runtime.

Installing Libtool
If you want to make use of the latest version of Libtool while developing
your packages, you may find that you either have to download, build, and
install it manually or look for an updated libtool package from your distribu-
tion provider.

Downloading, building, and installing Libtool is really trivial, as you’ll
see here. However, you should check the GNU Libtool website7 before exe-
cuting these steps in order to ensure you’re getting the most recent pack-
age. I’ve reproduced the basic steps here from Chapter 1:

$ wget https://ftp.gnu.org/gnu/libtool/libtool-2.4.6.tar.gz
--snip--
$ tar xzf libtool-2.4.6.tar.gz
$ cd libtool-2.4.6
$./configure && make
--snip--
$ sudo make install
--snip--

Be aware that the default installation location (as with most of the
GNU packages) is /usr/local. If you wish to install Libtool into the /usr hier-
archy, you’ll need to use the --prefix=/usr option on the configure command
line. The recommended practice is to install distribution-provided packages
into the /usr hierarchy and user-built packages into the /usr/local tree, but
if you’re trying to get a hand-built version of Libtool to interoperate with
distribution-provided versions of Autoconf and Automake, you may have to
install Libtool into the /usr hierarchy. The simplest way to avoid problems
with package interdependencies is to install hand-built versions of all three
packages into /usr/local or, better still, into a directory within your home
directory, which you can then add to your PATH.

7. See https://www.gnu.org/software/libtool/.

https://www.gnu.org/software/libtool/

188 Chapter 7

Adding Shared Libraries to Jupiter
Now that I’ve presented the requisite background information, let’s take
a look at how we might add a Libtool shared library to the Jupiter project.
First, let’s consider what functionality we could add to Jupiter using a shared
library. Perhaps we want to provide our users with some library functionality
that their own applications could use. Or we might have several applications
in a package that need to share the same functionality. A shared library is a
great tool for both of these scenarios because you get to reuse code and save
memory—the cost of the memory used by shared code is amortized across
multiple applications, both internal and external to the project.

Let’s add a shared library to Jupiter that provides Jupiter’s printing
functionality. We can do this by having the new shared library call into the
libjupcommon.a static library. Remember that calling a routine in a static
library has the same effect as linking the object code for the called routine
right into the calling program. The called routine ultimately becomes an
integral part of the calling binary image (program or shared library).8

Additionally, we’ll provide a public header file from the Jupiter project
that will allow external applications to call this same functionality. This
allows other applications to display stuff in the same quaint manner that
the jupiter program does. (This would be significantly cooler if we were
doing something useful in Jupiter, but you get the idea.)

Using the LTLIBRARIES Primary
Automake has built-in support for Libtool; it’s the Automake package,
rather than the Libtool package, that provides the LTLIBRARIES primary.
Libtool doesn’t really qualify as a pure Automake extension but rather is
more of an add-on package for Automake, where Automake provides the
necessary infrastructure for this specific add-on package. You can’t access
Automake’s LTLIBRARIES primary functionality without Libtool because the
use of this primary generates make rules that call the libtool script.

Libtool ships separately, rather than as part of Automake, because you
can use Libtool quite effectively independently of Automake. If you want
to try Libtool by itself, I’ll refer you to the GNU Libtool Manual; the open-
ing chapters describe the use of the libtool script as a stand-alone product.
It’s as simple as modifying your makefile commands so that the compiler,
linker, and librarian are called through the libtool script, and then modify-
ing some of your command line parameters as required by Libtool.

8. Many of you more experienced Autotools (or simply Unix) programmers may be cringing
at my engineering choices here. For instance, linking a Libtool library against a traditional
static archive is inappropriate for several reasons, which will become clear as we continue.
During the process, we’ll see that there is a significant difference between a traditional static
archive and a Libtool convenience library (on some platforms). Please remember that Jupiter
is a learning experience and a work in progress. I promise we’ll work out the kinks by the end
of the chapter.

Building Libraries with Libtool 189

Public Include Directories
A project subdirectory named include should only contain public header
files—those that expose a public interface in your project. We’re now going
to add just such a header file to the Jupiter project, so we’ll create a direc-
tory called include in the project root directory.

If we had multiple shared libraries, we’d have a choice to make: do we
create separate include directories, one in each library source directory, or
do we add a single, top-level include directory? I usually use the following
rule of thumb to make my decision: If the libraries are designed to work
together as a group, and if consuming applications generally use the librar-
ies together, then I use a single, top-level include directory. If, on the other
hand, the libraries can be effectively used independently, and if they offer
fairly autonomous sets of functionality, then I provide individual include
directories in the libraries’ own directories.

In the end, it doesn’t really matter much because the header files for
these libraries will be installed in directory structures that are entirely dif-
ferent from the ones where they exist within your project. In fact, you should
make sure you don’t inadvertently use the same filename for public headers
in two different libraries in your project—if you do, you’ll have problems
installing these files. They generally end up all together in the $(prefix)/
include directory, although you can override this default by using either the
includedir variable or the pkginclude prefix in your Makefile.am files.

The includedir variable allows you to specify where you want your
header files to be installed by defining the exact value of Automake’s
$(includedir) variable, the usual value of which is $(prefix)/include. The
use of the pkginclude prefix indicates to Automake that you want your
header files to be in a private, package-specific directory, beneath the
directory indicated by $(includedir), called $(includedir)/$(PACKAGE).

We’ll also add another root-level directory (libjup) for Jupiter’s new
shared library, libjupiter. These changes require you to add references to
the new directories to the top-level Makefile.am file’s SUBDIRS variable and
then add corresponding Makefile references to the AC_CONFIG_FILES macro in
configure.ac. Since we’re going to make major changes to our project, we’d
better clean up the work area before we start. Then we’ll create the directo-
ries and add a new Makefile.am file to the new include directory:

$ make maintainer-clean
--snip--
$ mkdir libjup include

 $ echo "include_HEADERS = libjupiter.h" > include/Makefile.am
$

The include directory’s Makefile.am file is trivial—it contains only a single
line, in which an Automake HEADERS primary refers to the public header file
libjupiter.h. Note at that we’re using the include prefix on this primary.
You’ll recall that this prefix indicates that files specified in this primary are
destined to be installed in the $(includedir) directory (for example, /usr/
(local/)include). The HEADERS primary is similar to the DATA primary in that

Git tag 7.0

190 Chapter 7

it specifies a set of files that are to be treated simply as data to be installed
without modification or preprocessing. The only really tangible difference
is that the HEADERS primary restricts the possible installation locations to
those that make sense for header files.

The libjup/Makefile.am file is a bit more complex, containing four lines
as opposed to just one. This file is shown in Listing 7-1.

 lib_LTLIBRARIES = libjupiter.la
 libjupiter_la_SOURCES = jup_print.c
 libjupiter_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/common
 libjupiter_la_LIBADD = ../common/libjupcommon.a

Listing 7-1: libjup/Makefile.am: The initial version of this file

Let’s analyze this file, line by line. The line at is the primary specifi-
cation, and it contains the usual prefix for libraries: lib. The products this
prefix references will be installed in the $(libdir) directory. (We could have
also used the pkglib prefix to indicate that we wanted our libraries installed
into $(libdir)/jupiter.) Here, we’re using the LTLIBRARIES primary rather than
the original LIBRARIES primary. The use of LTLIBRARIES tells Automake to gen-
erate rules that use the libtool script rather than calling the compiler (and
possibly the librarian) directly to generate the products.

The line at lists the sources that are to be used for the first (and
only) product.

The line at indicates a set of C-preprocessor flags that are to be used
on the compiler command line for locating the associated shared-library
header files. These options indicate that the preprocessor should search the
top-level include and common directories for header files referenced in the
source code.

The last line (at) indicates a set of linker options for this product. In
this case, we’re specifying that the libjupcommon.a static library should be
linked into (that is, become part of) the libjupiter.so shared library.

N O T E The more experienced Autotools library developer will notice a subtle flaw in this
Makefile.am file. Here’s a hint: it’s related to linking Libtool libraries against non-
Libtool libraries. This concept presents a major stumbling block for many newcomers,
so I’ve written the initial version of this file to illustrate the error. Not to worry, how-
ever—we’ll correct the flaw later in this chapter as we work through this issue in a
logical fashion.

There is an important concept regarding the *_LIBADD variables that
you should strive to understand completely: Libraries that are consumed
within, and yet built as part of, the same project should be referenced
internally using relative paths, via either parent directory references or the
$(top_builddir) variable, within the build directory hierarchy. Libraries that
are external to a project generally don’t need to be referenced explicitly at all,
because the project’s configure script should already have added appropriate -L
and -l options for those libraries into the $(LIBS) environment variable when it
processed the code generated by the AC_CHECK_LIB or AC_SEARCH_LIBS macro.

Building Libraries with Libtool 191

Next, we’ll hook these new directories into the project’s build system.
To do so, we need to modify the top-level Makefile.am and configure.ac files.
These changes are shown in Listings 7-2 and 7-3, respectively.

SUBDIRS = common include libjup src

Listing 7-2: Makefile.am: Adding include and libjup to the SUBDIRS variable

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
AC_INIT([Jupiter],[1.0],[jupiter-bugs@example.org])
AM_INIT_AUTOMAKE

 LT_PREREQ([2.4.6])
LT_INIT([dlopen])
AC_CONFIG_SRCDIR([src/main.c])
AC_CONFIG_HEADERS([config.h])

Checks for programs.
AC_PROG_CC

 AC_PROG_INSTALL

Checks for header files.
AC_CHECK_HEADERS([stdlib.h])
--snip--
AC_CONFIG_FILES([Makefile
 common/Makefile

 include/Makefile
 libjup/Makefile
 src/Makefile])
AC_OUTPUT
--snip--

Listing 7-3: configure.ac: Adding the include and libjup directory makefiles

Three unrelated changes were required in configure.ac. The first is
the addition at of the Libtool setup macros LT_PREREQ and LT_INIT. The
LT_PREREQ macro works just like Autoconf’s AC_PREREQ macro (used a few lines
higher). It indicates the earliest version of Libtool that can correctly process
this project. You should choose the lowest reasonable values for the argu-
ments in these macros because higher values needlessly restrict you and
your co-maintainers to more recent versions of the Autotools.9 The LT_INIT
macro initializes the Libtool system for this project.

9. I don’t mean to state that you should only use older functionality provided by the Autotools
in order to cater to your users who don’t want to upgrade. Remember that those who care
what versions of the Autotools you’re using are the developers working on your project. This
is a significantly smaller audience than the users who will be building from your distribution
archives. Choose version numbers that reflect the oldest versions of the Autotools that sup-
port the functionality you use in your configure.ac file. If you use the latest features, set the
version numbers accordingly and don’t lose any sleep over it.

192 Chapter 7

The second change is just as interesting. I removed the AC_PROG_RANLIB
macro invocation after the line at . (And after all we went through to put
it there in the first place!) Because Libtool is now building all of the project
libraries, and because it understands all aspects of the library build process,
we no longer need to instruct Autoconf to make sure ranlib is available.
In fact, if you leave this macro in, you’ll get a warning when you execute
autoreconf -i.

The last change is found at in the argument to AC_CONFIG_FILES, where
we’ve added references to the two new Makefile.am files we added to the
include and libjup directories.

Customizing Libtool with LT_INIT Options
You can specify default values for enabling or disabling static and shared
libraries in the argument list passed into LT_INIT. The LT_INIT macro accepts
a single, optional argument: a whitespace-separated list of keywords. The
following are the most important keywords allowed in this list, along with
an explanation of their proper use.

dlopen

This option enables checking for dlopen support. The GNU Libtool
Manual states that this option should be used if the package makes
use of the -dlopen and -dlpreopen flags in libtool; otherwise libtool will
assume that the system does not support dl-opening. There’s only one
reason for using the -dlopen or -dlpreopen flag: you intend to dynami-
cally load and import shared-library functionality at runtime within
your project’s source code. Additionally, these two options do very little
unless you intend to use the ltdl library (rather than directly using the
dl library) to manage your runtime dynamic linking. Thus, you should
use this option only if you intend to use the ltdl library.

win32-dll

Use this option if your library is properly ported to a Windows DLL using
__declspec(dllimport) and __declspec(dllexport). If your library properly
uses these keywords to import and export symbols for Windows DLLs,
and you don’t use this option, then Libtool will only build static libraries
on Windows. We’ll cover this topic in more detail in Chapter 17.

aix-soname=aix|svr4|both

Adds the flags --with-aix-soname to configure’s command line. Prior to
version 2.4.4, Libtool always behaved as if aix-soname were set to aix. If
you build shared libraries on AIX often, you’ll understand the meaning
of this option. If you wish to learn more, read Section 5.4.1 of the GNU
Libtool Manual.

disable-fast-install

This option changes the default behavior for LT_INIT to disable optimi-
zation for fast installation on systems where it matters. The concept of
fast installation exists because uninstalled programs and libraries may

Building Libraries with Libtool 193

need to be executed from within the build tree (during make check, for
example). On some systems, installation location affects the final linked
binary image, so Libtool must either relink programs and libraries on
these systems when make install is executed or else relink programs and
libraries for make check. Libtool chooses to relink for make check by default,
allowing the original binaries to be installed quickly without relinking
during make install. The user can override this default, depending on
platform support, by specifying --enable-fast-install to configure.

shared and disable-shared
These two options change the default behavior for creating shared librar-
ies. The effects of the shared option are default behavior on all systems
where Libtool knows how to create shared libraries. The user may over-
ride the default shared library-generation behavior by specifying either
--disable-shared or --enable-shared on the configure command line.

static and disable-static
These two options change the default behavior for creating static
libraries. The effects of the static option are default behavior
on all systems where shared libraries have been disabled and on
most systems where shared libraries have been enabled. If shared
libraries are enabled, the user may override this default by specifying
--disable-static on the configure command line. Libtool will always
generate static libraries on systems without shared libraries. Hence, you
can’t (effectively) use the disable-shared and disable-static arguments
to LT_INIT or the --disable-shared and --disable-static command line
options for configure at the same time. (Note, however, that you may
use the shared and static LT_INIT options or the --enable-shared and
--enable-static command line options together.)

pic-only and no-pic
These two options change the default behavior for creating and using
PIC object code. The user may override the defaults set by these options
by specifying --without-pic or --with-pic on the configure command line.
I’ll discuss the meaning of PIC object code in “So What Is PIC, Anyway?”
on page 200.

Now that we’ve finished setting up the build system for the new library,
we can move on to discussing the source code. Listing 7-4 shows the con-
tents of the new jup_print.c source file that’s referenced in the second line
of libjup/Makefile.am. Listing 7-5 shows the contents of the new include/
libjupiter.h library header file.

#include "config.h"

#include "libjupiter.h"
#include "jupcommon.h"

int jupiter_print(const char * name)

194 Chapter 7

{
 return print_routine(name);
}

Listing 7-4: libjup/jup_print.c: The initial contents of the shared-library source file

#ifndef LIBJUPITER_H_INCLUDED
#define LIBJUPITER_H_INCLUDED

int jupiter_print(const char * name);

#endif /* LIBJUPITER_H_INCLUDED */

Listing 7-5: include/libjupiter.h: The initial contents of the shared-library public header file

This leads us to another general software-engineering principle. I’ve
heard it called by many names, but the one I tend to use the most is the
DRY principle—the acronym stands for don’t repeat yourself. C function pro-
totypes are very useful because, when used correctly, they enforce the fact
that the public’s view of a function is identical to the package maintainer’s
view. All too often I’ve seen source files that don’t include their correspond-
ing header files. It’s easy to make a small change in a function or prototype
and then not duplicate it in the other location—unless you’ve included the
public header file within the source file. When you do this consistently, the
compiler catches any inconsistencies for you.

We also need to include the static library header file (jupcommon.h)
because we call its function (print_routine) from within the public library
function. You may have also noticed that I placed config.h first, immediately
followed by the public header file—there’s a good reason for this. I’ve already
stated in Chapter 6 that config.h should always come first in every source file.
Normally, I’d say the public header file should come first, but public header
files should be written so that their functionality is never modified by config.h,
so, technically, it should not matter if the public header file comes before or
after config.h. For example, using a compiler-mode dependent type like off_t
in a public header file will cause the application binary interface (ABI) to
change not only from one platform to another (not necessarily a bad thing)
but also on the same platform from one use to another, based on the compi-
lation environment set up by consumer code (not a good thing). The fact is,
you should write your public header files in such a way that it doesn’t really
matter whether you include them before or after config.h; they should be pur-
posely designed so they do not depend on anything that can be configured
by config.h. For a more complete treatise on this topic, see “Item 1: Keeping
Private Details out of Public Interfaces” on page 499.

By placing the public header file first in the source file (after config.h),
we ensure that the use of this header file doesn’t depend on definitions
in any internal header files in the project. For instance, let’s say the public
header file has a hidden dependency on some construct (such as a type def-
inition, structure, or preprocessor definition) defined in an internal header
like jupcommon.h. If we include the public header file after jupcommon.h,

Building Libraries with Libtool 195

the dependency would be hidden when the compiler begins to process
the public header file, because the required construct is already available
in the translation unit (the source file combined with all of the included
header files).

I’d like to make one final point about the contents of Listing 7-5. The
preprocessor conditional construct is commonly called an include guard. It
is a mechanism for preventing your header files from inadvertently being
included multiple times within the same translation unit. I use include
guards routinely in all my header files, and it’s good practice to do so. A
good optimizing compiler (gcc, for instance—specifically, its preprocessor)
will recognize include guards in header files and skip the file entirely on
subsequent inclusions within the same translation unit.10

Since a public header file will be consumed by foreign source code, it’s
even more critical that you use include guards religiously in these header
files. While you can control your own code base, you have no say over the
code that one of your library consumers writes. What I’m advocating here is
that you assume you’re the best programmer you know, and everyone else is a
little below your skill level. You can do this nicely by not mentioning it to any-
one, but you should act like it’s a fact when you write your public header files.

Next, we’ll modify the Jupiter application’s main function so that it calls
into the shared library instead of the common static library. These changes
are shown in Listing 7-6.

#include "config.h"

#include "libjupiter.h"

int main(int argc, char * argv[])
{
 return jupiter_print(argv[0]);
}

Listing 7-6: src/main.c: Changing main to call the shared-library function

Here, we’ve changed the print function from print_routine, found in
the static library, to jupiter_print, as provided by the new shared library.
We’ve also changed the header file included at the top from libjupcommon.h
to libjupiter.h.

My choices of names for the public function and header file were arbi-
trary but based on a desire to provide a clean, rational, and informational
public interface. The name libjupiter.h very clearly indicates that this header
file specifies the public interface for libjupiter.so. I try to name library inter-
face functions to make it clear that they are part of an interface. How you
choose to name your public interface members—files, functions, structures,
type definitions, preprocessor definitions, global data, and so on—is up to

10. Do not make the mistake of prefixing your include guards with one or two underscores.
The problem is that symbols preceded by underscores are reserved by compiler vendors,
the standard library, and the C and C++ standards bodies for internal constructs and future
enhancements.

196 Chapter 7

you, but you should consider using a similar philosophy. Remember, the
goal is to provide a great end-user experience. Intuitive naming should be
a significant part of your strategy. For example, it is a good general practice
to choose a common prefix for your program and library symbols.11

Finally, we must also modify the src/Makefile.am file to use our new
shared library rather than the libjupcommon.a static library. These changes
are shown in Listing 7-7.

bin_PROGRAMS = jupiter
jupiter_SOURCES = main.c

 jupiter_CPPFLAGS = -I$(top_srcdir)/include
 jupiter_LDADD = ../libjup/libjupiter.la

--snip--

Listing 7-7: src/Makefile.am: Adding shared-library references to the src directory makefile

Here, we’ve changed the jupiter_CPPFLAGS statement at so that it refers
to the new top-level include directory rather than the common directory. We’ve
also changed the jupiter_LDADD statement at so that it refers to the new
Libtool shared-library object rather than the libjupcommon.a static library. All
else remains the same. The syntax for referring to a Libtool library is identi-
cal to that for referring to an older, static library—only the library extension
is different. The Libtool library extension .la stands for libtool archive.

Let’s take a step back for a moment. Do we actually need to make this
change? No, of course not. The jupiter application will continue to work just
fine the way we originally wrote it. Linking the code for the static library’s
print_routine directly into the application works just as well as calling the new
shared-library routine (which ultimately contains the same code, anyway).
In fact, there is slightly more overhead in calling a shared-library routine
because of the extra level of indirection when calling through a shared-
library jump table.

In a real project, you might actually leave it the way it was. Because both
public entry points, main and jupiter_print, call exactly the same function
(print_routine) in libjupcommon.a, their functionality is identical. Why add
even the slight overhead of a call through the public interface? Well, one
reason is that you can take advantage of shared code. By using the shared-
library function, you’re not duplicating code—either on disk or in memory.
This is the DRY principle at work.

Another reason is to exercise the interface you’re providing for users of
your shared library. You’ll catch bugs in your public interfaces more quickly
if your project code uses your shared libraries exactly the way you expect
other programs to use them.

In this situation, you might now consider simply moving the code
from the static library into the shared library, thereby removing the need
for the static library entirely. However, I’m going to beg your indulgence
with my contrived example. In a more complex project, I might very well

11. This is especially relevant on ELF systems, where it can be difficult to determine which of
your library symbols might conflict with symbols from other libraries.

Building Libraries with Libtool 197

have a need for this sort of configuration. Common code is often gathered
together into static convenience libraries, and more often than not, only
a portion of this common code is reused in shared libraries. I’m going to
leave it the way it is here for the sake of its educational value.

Reconfigure and Build
Since we’ve added Libtool—a major new component—to our project build
system, we’ll add the -i option to the autoreconf command line to ensure
that all of the proper auxiliary files are installed into the project root
directory:

$ autoreconf -i
 libtoolize: putting auxiliary files in '.'.

libtoolize: copying file './ltmain.sh'
libtoolize: Consider adding 'AC_CONFIG_MACRO_DIRS([m4])' to configure.ac,
libtoolize: and rerunning libtoolize and aclocal.
libtoolize: Consider adding '-I m4' to ACLOCAL_AMFLAGS in Makefile.am.
configure.ac:8: installing './compile'

 configure.ac:8: installing './config.guess'
configure.ac:8: installing './config.sub'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './INSTALL'
Makefile.am: installing './COPYING' using GNU General Public License v3 file
Makefile.am: Consider adding the COPYING file to the version control system
Makefile.am: for your code, to avoid questions about which license your
project uses
common/Makefile.am: installing './depcomp'
parallel-tests: installing './test-driver'
$

Because we completely removed all generated and copied files from
our project directory, most of these notifications have to do with replac-
ing files we’ve already discussed. However, there are a few noteworthy
exceptions.

First, notice the comments from libtoolize at . Most of them are
simply suggesting that we move to the new Autotools convention of adding
M4 macro files to a directory called m4 in the project root directory. We’re
going to ignore these comments for now, but in Chapters 14 and 15, we’ll
actually do this for a real project.

As you can see at , it appears that the addition of Libtool has caused
a few new files to be added to our project—namely, the config.guess and
config.sub files. Another new file was added in the section at called
ltmain.sh. The configure script uses ltmain.sh to build a project-specific
version of libtool for the Jupiter project. I’ll describe the config.guess and
config.sub scripts later.

198 Chapter 7

Let’s go ahead and execute configure and see what happens:

$./configure
--snip--
checking for ld used by gcc... /usr/bin/ld
checking if the linker (/usr/bin/ld) is GNU ld... yes
checking for BSD- or MS-compatible name lister (nm)... /usr/bin/nm -B
checking the name lister (/usr/bin/nm -B) interface... BSD nm
checking whether ln -s works... yes
checking the maximum length of command line arguments... 1572864
--snip--
checking for shl_load... no
checking for shl_load in -ldld... no
checking for dlopen... no
checking for dlopen in -ldl... yes
checking whether a program can dlopen itself... yes
checking whether a statically linked program can dlopen itself... no
checking whether stripping libraries is possible... yes
checking if libtool supports shared libraries... yes
checking whether to build shared libraries... yes
checking whether to build static libraries... yes
--snip--
configure: creating ./config.status
--snip--
$

The first thing to note is that Libtool adds significant overhead to the
configuration process. I’ve only shown a few of the output lines here that
are new since we added Libtool. All we’ve added to the configure.ac file is
the reference to the LT_INIT macro, but we’ve nearly doubled our configure
output. This should give you some idea of the number of system characteris-
tics that must be examined to create portable shared libraries. Fortunately,
Libtool does a lot of the work for you.

Now, let’s run the make command and see what sort of output we get:

$ make
--snip--
Making all in libjup
make[2]: Entering directory '/.../jupiter/libjup'

 /bin/bash ../libtool --tag=CC --mode=compile gcc -DHAVE_CONFIG_H -I. -I..
-I../include -I../common -g -O2 -MT libjupiter_la-jup_print.lo -MD -MP -MF
.deps/libjupiter_la-jup_print.Tpo -c -o libjupiter_la-jup_print.lo `test -f
'jup_print.c' || echo './'`jup_print.c

 libtool: compile: gcc -DHAVE_CONFIG_H -I. -I.. -I../include -I../common -g
-O2 -MT libjupiter_la-jup_print.lo -MD -MP -MF .deps/libjupiter_la-jup_print.
Tpo -c jup_print.c -fPIC -DPIC -o .libs/libjupiter_la-jup_print.o

 libtool: compile: gcc -DHAVE_CONFIG_H -I. -I.. -I../include -I../common -g
-O2 -MT libjupiter_la-jup_print.lo -MD -MP -MF .deps/libjupiter_la-jup_print.
Tpo -c jup_print.c -o libjupiter_la-jup_print.o >/dev/null 2>&1

 mv -f .deps/libjupiter_la-jup_print.Tpo .deps/libjupiter_la-jup_print.Plo
 /bin/bash ../libtool --tag=CC --mode=link gcc -g -O2 -o libjupiter.la

-rpath /usr/local/lib libjupiter_la-jup_print.lo ../common/libjupcommon.a
-lpthread

Building Libraries with Libtool 199

 *** Warning: Linking the shared library libjupiter.la against the
*** static library ../common/libjupcommon.a is not portable!
libtool: link: gcc -shared -fPIC -DPIC .libs/libjupiter_la-jup_print.o ../
common/libjupcommon.a -lpthread -g -O2 -Wl,-soname -Wl,libjupiter.so.0 -o
.libs/libjupiter.so.0.0.0

 /usr/bin/ld: ../common/libjupcommon.a(print.o): relocation R_X86_64_32 against
`.rodata.str1.1' can not be used when making a shared object; recompile with
-fPIC
../common/libjupcommon.a: error adding symbols: Bad value
collect2: error: ld returned 1 exit status
Makefile:389: recipe for target 'libjupiter.la' failed
make[2]: *** [libjupiter.la] Error 1
make[2]: Leaving directory '/.../jupiter/libjup'
Makefile:391: recipe for target 'all-recursive' failed
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory '/.../jupiter'
Makefile:323: recipe for target 'all' failed
make: *** [all] Error 2
--snip--
$

We seem to have some errors to fix. The first point of interest is that
libtool is being executed at with a --mode=compile option, which causes
libtool to act as a wrapper script around a somewhat modified version of
a standard gcc command line. You can see the effects of this statement in
the next two compiler command lines at and . Two compiler commands?
That’s right. It appears that libtool is running the compiler twice against
our source file.

A careful comparison of these two command lines shows that the first
command is using two additional flags, -fPIC and -DPIC. The first line also
appears to be directing the output file to a .libs subdirectory, whereas the
second line is saving it in the current directory. Finally, both the stdout and
stderr output streams are redirected to /dev/null in the second line.

N O T E Occasionally, you may run into a situation where a source file compiles fine in the
first compilation but fails in the second due to a PIC-related source code error. These
sorts of problems are rare, but they can be a real pain when they occur because make
halts the build with an error but doesn’t give you any error messages to explain the
problem! When you see this situation, simply pass the -no-suppress flag in the CFLAGS
variable on the make command line in order to tell Libtool not to redirect output from
the second compilation to /dev/null.

This double-compile feature has caused a fair amount of anxiety
on the Libtool mailing list over the years. Mostly, this is due to a lack of
understanding of what Libtool is trying to do and why it’s necessary. Using
Libtool’s various configure script command line options, you can force a
single compilation, but doing so brings a certain loss of functionality, which
I’ll explain here shortly.

The line at renames the dependency file from *.Tpo to *.Plo. You might
recall from Chapters 3 and 6 that dependency files contain make rules that

200 Chapter 7

declare dependencies between source files and referenced header files. The
C preprocessor generates these rules when you use the -MT compiler option.
However, the overarching concept to understand here is that one Libtool
command may (and often does) execute a group of shell commands.

The line at is another call to the libtool script, this time using the
--mode=link option. This option generates a call to execute the compiler
in link mode, passing all of the libraries and linker options specified in the
Makefile.am file.

At , we come to the first problem—a portability warning about link-
ing a shared library against a static library. Specifically, this warning is
about linking a Libtool shared library against a non-Libtool static library.
Notice that this is not an error. Were it not for additional errors we’ll
encounter later, the library would be built in spite of this warning.

After the portability warning, libtool attempts to link the requested
objects together into a shared library named libjupiter.so.0.0.0 . But here the
script runs into the real problem: at , a linker error indicates that some-
where from within libjupcommon.a—and more specifically, within print.o—an
x86_64 object relocation cannot be performed because the original source file
(print.c) was apparently not compiled correctly. The linker is kind enough
to tell us exactly what we need to do to fix the problem (highlighted in the
example): we need to compile the source code using a -fPIC compiler option.

Now, if you were to encounter this error and didn’t know anything
about the -fPIC option, you’d be wise to open the man page for gcc and
study it before inserting compiler and linker options willy-nilly until the
warning or error disappears (unfortunately, a common practice of inexperi-
enced programmers). Software engineers should understand the meaning
and nuances of every command line option used by the tools in their build
systems. Otherwise, they don’t really know what they have when their build
completes. It may work the way it should, but if it does, it’s by luck rather
than by design. Good engineers know their tools, and the best way to learn
is to study error messages and their fixes until the problem is well under-
stood, before moving on.

So What Is PIC, Anyway?
When operating systems create new process address spaces, they typically
load program-executable images at the same memory address. This magic
address is system specific. Compilers and linkers understand this, and they
know what the magic address is on any given system. Therefore, when they
generate internal references to function calls or global data, they can gener-
ate those references as absolute addresses. If you were somehow able to load
the executable at a different location in the process virtual address space, it
would simply not work properly because the absolute addresses within the
code would not be correct. At the very least, the program would crash when
the processor jumped to the wrong location during a function call.

Consider Figure 7-1 for a moment. Assume we have a system whose
magic executable load address is 0x10000000; this diagram depicts two
process address spaces within that system. In the process on the left, an

Building Libraries with Libtool 201

executable image is loaded correctly at address 0x10000000. At some point in
the code, a jmp instruction tells the processor to transfer control to the abso-
lute address 0x10001000, where it continues executing instructions in another
area of the program.

0x00000000

0x10000000

...
JMP
0x10001000
...

0x10001000

0x00000000

0x20000000

0x20001000

0x10000000

0x10001000 ** CRASH **

Correctly loaded
at 0x10000000

Incorrectly loaded
at 0x20000000

(Procedure A)

(Procedure A)

Executables containing
absolute references must be
loaded at the correct address. ...

JMP
0x10001000
...

Figure 7-1: Absolute addressing in executable images

In the process on the right, the program is loaded incorrectly at address
0x20000000. When that same branch instruction is encountered, the proces-
sor jumps to address 0x10001000 because that address is hardcoded into the
program image. This, of course, fails—often spectacularly by crashing, but
sometimes with more subtle and dastardly ramifications.

That’s how things work for program images. However, when a shared
library is built for certain types of hardware (AMD64 included), neither the
compiler nor the linker knows beforehand where the library will be loaded.
This is because many libraries may be loaded into a process and the order
in which they are loaded depends on how the executable is built, not the
library. Furthermore, who’s to say which library owns location A and which
one owns location B? The fact is, a library may be loaded anywhere into the
process address space where there is space for it at the time it’s loaded. Only
the operating system loader knows where it will finally reside—and even
then, it only knows just before the library is actually loaded.12

As a result, shared libraries can only be built from a special class
of object files called PIC objects. PIC is an acronym that stands for

12. In fact, there’s a trend toward operating systems intentionally randomizing the load
address for added security. It’s harder to exploit a weakness when you’re not sure where the
weakness will be loaded into the process address space.

202 Chapter 7

position-independent code, and it implies that references within the object
code are not absolute but relative. When you use the -fPIC option on the
compiler command line, the compiler will use somewhat less efficient rela-
tive addressing in branching instructions. Such position-independent code
may be loaded anywhere.

Figure 7-2 depicts the concept of relative addressing as used when
generating PIC objects. With relative addressing, addresses work correctly
regardless of where the image is loaded because they’re always encoded
relative to the current instruction pointer. In Figure 7-2, the diagrams indi-
cate a shared library loaded at the same addresses as those in Figure 7-1
(that is, 0x10000000 and 0x20000000). In both cases, the dollar sign used in the
jmp instruction represents the current instruction pointer (IP), so $ + 0xC74
tells the processor that it should jump to the instruction starting 0xC74 bytes
ahead of the current position of the instruction pointer.

0x00000000

0x10000000

...
JMP $ + 0xC74
...

0x10001000

0x00000000

0x20000000

...
JMP $ + 0xC74
...

0x20001000

Loaded at
0x10000000

Loaded at
0x20000000

(Procedure A)

(Procedure A)

Shared libraries built with
position-independent code (PIC)
can load anywhere.

Figure 7-2: Relative addressing in shared-library images

There are various nuances to generating and using position-indepen-
dent code, and you should become familiar with all of them before using
them so you can choose the option that is most appropriate for your situa-
tion. For example, the GNU C compiler also supports a -fpic option (lower-
case), which uses a slightly quicker but more limited mechanism to generate
relocatable object code.13

13. Wikipedia has a very informative page on position-independent code, although I find
its treatment of Windows DLLs to be somewhat outdated. See https://en.wikipedia.org/wiki/
Position-independent_code.

https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Position-independent_code

Building Libraries with Libtool 203

Fixing the Jupiter PIC Problem
From what we now understand, one way to fix our linker error is to add the
-fPIC option to the compiler command line for the source files that com-
prise the libjupcommon.a static library. Listing 7-8 illustrates the changes
required to the common/Makefile.am file.

noinst_LIBRARIES = libjupcommon.a
libjupcommon_a_SOURCES = jupcommon.h print.c
libjupcommon_a_CFLAGS = -fPIC

Listing 7-8: common/Makefile.am: Changes required for generation of PIC objects in a
static library

And now let’s retry the build:

$ autoreconf
$./configure
--snip--
$ make
make all-recursive
make[1]: Entering directory '/.../jupiter'
Making all in common
make[2]: Entering directory '/.../jupiter/common'
gcc -DHAVE_CONFIG_H -I. -I.. -fPIC -g -O2 -MT libjupcommon_a-print.o -MD
-MP -MF .deps/libjupcommon_a-print.Tpo -c -o libjupcommon_a-print.o `test -f
'print.c' || echo './'`print.c
--snip--
Making all in libjup
make[2]: Entering directory '/.../jupiter/libjup'
/bin/bash ../libtool --tag=CC --mode=link gcc -g -O2 -o libjupiter.
la -rpath /usr/local/lib libjupiter_la-jup_print.lo ../common/libjupcommon.a
-lpthread

 *** Warning: Linking the shared library libjupiter.la against the
*** static library ../common/libjupcommon.a is not portable!
libtool: link: gcc -shared -fPIC -DPIC .libs/libjupiter_la-jup_print.o
../common/libjupcommon.a -lpthread -g -O2 -Wl,-soname -Wl,libjupiter.so.0
-o .libs/libjupiter.so.0.0.0
libtool: link: (cd ".libs" && rm -f "libjupiter.so.0" && ln -s "libjupiter
.so.0.0.0" "libjupiter.so.0")
libtool: link: (cd ".libs" && rm -f "libjupiter.so" && ln -s "libjupiter
.so.0.0.0" "libjupiter.so")
libtool: link: ar cru .libs/libjupiter.a ../common/libjupcommon.a libjupiter
_la-jup_print.o
ar: `u' modifier ignored since `D' is the default (see `U')
libtool: link: ranlib .libs/libjupiter.a
libtool: link: (cd ".libs" && rm -f "libjupiter.la" && ln -s "../libjupiter
.la" "libjupiter.la")
make[2]: Leaving directory
--snip--
$

204 Chapter 7

We now have a shared library built properly with position-independent
code, as per system requirements. However, we still have that strange warn-
ing at about the portability of linking a Libtool library against a static
library. The problem here is not in what we’re doing but rather how we’re
doing it. You see, the concept of PIC does not apply to all hardware archi-
tectures. Some CPUs don’t support any form of absolute addressing in their
instruction sets. As a result, native compilers for these platforms don’t sup-
port a -fPIC option—it has no meaning for them. Unknown options may be
silently ignored, but in most cases, compilers stop on unknown options with
an error message.

If we tried, for example, to compile this code on an IBM RS/6000 sys-
tem using the native IBM compiler, it would hiccup when it came to the
-fPIC option on the linker command line. This is because it doesn’t make
sense to support such an option on a system where all code is generated as
position-independent code.

One way we could get around this problem would be to make the -fPIC
option conditional in Makefile.am, based on the target system and the tools
we’re using. But that’s exactly the sort of problem that Libtool was designed
to address! We’d have to account for all the different Libtool target sys-
tem types and tool sets in order to handle the entire set of conditions that
Libtool already handles. Additionally, some systems and compilers may
require different command line options to accomplish the same goal.

The way around this portability problem, then, is to let Libtool generate
the static library, as well. Libtool makes a distinction between static libraries
that are installed as part of a developer package and static libraries that are
only used internally within a project. It calls such internal static libraries
convenience libraries, and whether or not a convenience library is generated
depends on the prefix used with the LTLIBRARIES primary. If the noinst prefix
is used, then Libtool assumes we want a convenience library, because there’s
no point in generating a shared library that will never be installed. Thus,
convenience libraries are always generated as non-installed static archives,
which have no value unless they’re linked to other code within the project.

The reason for distinguishing between convenience libraries and
other forms of static libraries is that convenience libraries are always
built, whereas installed static libraries are only built if the --enable-static
option is specified on the configure command line—or, conversely, if the
--disable-static option is not specified and the default library type has been
set to static. The conversion from an older static library to a newer Libtool
convenience library is simple enough—all we have to do is add LT to the
primary name and remove the -fPIC option and the CFLAGS variable (since
there were no other options being used in that variable). Note also that
I’ve changed the library extension from .a to .la. Don’t forget to change
the prefix on the SOURCES variable to reflect the new name of the library—
libjupcommon.la. These changes are highlighted in Listings 7-9 and 7-10.

Building Libraries with Libtool 205

noinst_LTLIBRARIES = libjupcommon.la
libjupcommon_la_SOURCES = jupcommon.h print.c

Listing 7-9: common/Makefile.am: Changing from a static library to a Libtool static library

lib_LTLIBRARIES = libjupiter.la
libjupiter_la_SOURCES = jup_print.c
libjupiter_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/common
libjupiter_la_LIBADD = ../common/libjupcommon.la

Listing 7-10: libjup/Makefile.am: Changing from a static library to a Libtool static library

Now when we try to build, here’s what we get:

$ make
--snip--
Making all in libjup
make[2]: Entering directory '/.../jupiter/libjup'

 /bin/bash ../libtool --tag=CC --mode=compile gcc -DHAVE_CONFIG_H -I. -I..
-I../include -I../common -g -O2 -MT libjupiter_la-jup_print.lo -MD -MP -MF
.deps/libjupiter_la-jup_print.Tpo -c -o libjupiter_la-jup_print.lo `test -f
'jup _print.c' || echo './'`jup_print.c
libtool: compile: gcc -DHAVE_CONFIG_H -I. -I.. -I../include -I../common -g
-O2 -MT libjupiter_la-jup_print.lo -MD -MP -MF .deps/libjupiter_la-jup_print.
Tpo -c jup_print.c -fPIC -DPIC -o .libs/libjupiter_la-jup_print.o
libtool: compile: gcc -DHAVE_CONFIG_H -I. -I.. -I../include -I../common -g
-O2 -MT libjupiter_la-jup_print.lo -MD -MP -MF .deps/libjupiter_la-jup_print.
Tpo -c jup_print.c -o libjupiter_la-jup_print.o >/dev/null 2>&1
mv -f .deps/libjupiter_la-jup_print.Tpo .deps/libjupiter_la-jup_print.Plo
/bin/bash ../libtool --tag=CC --mode=link gcc -g -O2 -o libjupiter.la
-rpath /usr/local/lib libjupiter_la-jup_print.lo ../common/libjupcommon.la
-lpthread
libtool: link: gcc -shared -fPIC -DPIC .libs/libjupiter_la-jup_print.o
-Wl,--whole-archive ../common/.libs/libjupcommon.a -Wl,--no-whole-archive
-lpthread -g -O2 -Wl,-soname -Wl,libjupiter.so.0 -o .libs/libjupiter.
so.0.0.0
libtool: link: (cd ".libs" && rm -f "libjupiter.so.0" && ln -s "libjupiter.
so.0.0.0" "libjupiter.so.0")
libtool: link: (cd ".libs" && rm -f "libjupiter.so" && ln -s "libjupiter.
so.0.0.0" "libjupiter.so")
libtool: link: (cd .libs/libjupiter.lax/libjupcommon.a && ar x "/.../jupiter/
libjup/../common/.libs/libjupcommon.a")

 libtool: link: ar cru .libs/libjupiter.a libjupiter_la-jup_print.o
.libs/libjupiter.lax/libjupcommon.a/print.o
ar: `u' modifier ignored since `D' is the default (see `U')
libtool: link: ranlib .libs/libjupiter.a
libtool: link: rm -fr .libs/libjupiter.lax
libtool: link: (cd ".libs" && rm -f "libjupiter.la" && ln -s "../libjupiter.
la" "libjupiter.la")
make[2]: Leaving directory '/.../jupiter/libjup'
--snip--
$

Git tag 7.1

206 Chapter 7

You can see at that the common library is now built as a static con-
venience library because the ar utility builds libjupcommon.a. Libtool also
seems to be building files with new and different extensions—a closer look
will reveal extensions such as .la and .lo (check the line at). If you exam-
ine these files, you’ll find that they’re actually descriptive text files contain-
ing object and library metadata. Listing 7-11 shows the partial contents of
common/libjupcommon.la.

libjupcommon.la - a libtool library file
Generated by libtool (GNU libtool) 2.4.6 Debian-2.4.6-0.1
#
Please DO NOT delete this file!
It is necessary for linking the library.

The name that we can dlopen(3).
dlname=''

Names of this library.
 library_names=''

The name of the static archive.
 old_library='libjupcommon.a'

Linker flags that cannot go in dependency_libs.
inherited_linker_flags=''

Libraries that this one depends upon.
 dependency_libs=' -lpthread'

--snip--

Listing 7-11: common/libjupcommon.la: Textual metadata found in a library archive (.la) file

The various fields in these files help the linker—or rather the libtool
wrapper script—to determine certain options that the maintainer would
otherwise have to remember and manually pass to the linker on the com-
mand line. For instance, the library’s shared and static names are docu-
mented at and here, as well as any library dependencies required by
these libraries (at).

N O T E This is a convenience library, so the shared library name is empty.

In this library, we can see that libjupcommon.a depends on the pthreads
library. But, by using Libtool, we don’t have to pass a -lpthread option on
the libtool command line because libtool can detect from the contents of
this metadata file (specifically, the line at) that the linker will need this
option, and it passes the option for us.

Making these files human readable was a minor stroke of genius, as
they can tell us a lot about Libtool libraries at a glance. These files are
designed to be installed on an end user’s machine with their associated
binaries, and, in fact, the make install rules that Automake generates for
Libtool libraries do just this.

Building Libraries with Libtool 207

Most Linux distros today are leaning toward filtering out .la files from
official builds of library projects—that is, they don’t install them into the
/usr directory structure because .la files are only useful during builds where
packages are referencing Libtool libraries within a project directory struc-
ture. Since the distro provider has already pre-built everything for you and
you won’t be building those packages yourself, they just take up space (albeit,
not very much). When you link against a library (Libtool or otherwise) that’s
installed on your system in the /usr directory structure, you’re using one of
the AC_CHECK/SEARCH macros to find the library and link against the .a or .so file
directly, so the .la file isn’t used in that case either.

Summary
In this chapter, I outlined the basic rationale for shared libraries. As an
exercise, we added a shared library to Jupiter that incorporates functional-
ity from the convenience library we created earlier. We began with a more
or less intuitive approach to incorporating a static library into a Libtool
shared library, and in the process we discovered a more portable and cor-
rect way to do this using Libtool convenience libraries.

As with the other packages in the Autotools toolchain, Libtool gives
you a lot of functionality and flexibility. But as you’ve probably noticed,
with this degree of functionality and flexibility comes a price—complexity.
The size of Jupiter’s configuration script increased dramatically with the
addition of Libtool, and the time required to compile and link our project
increased accordingly.

In the next chapter, we’re going to continue our discussion of Libtool
by looking at library-versioning issues and Libtool’s solution to the portabil-
ity problems presented by manual dynamic runtime library management.

8
L I B R A R Y I N T E R F A C E V E R S I O N I N G
A N D R U N T I M E D Y N A M I C L I N K I N G

In the last chapter, I explained the con-
cepts of dynamically loadable shared librar-

ies. I also showed you how easy it is to add
Libtool shared-library functionality and flex-

ibility to your projects, whether your projects provide
shared libraries, static libraries, convenience archives,
or some mixture of these. There are still two major
Libtool topics we need to cover. The first is library versioning, and the sec-
ond involves using the Libtool ltdl library to portably build and consume
dynamically loadable modules within your projects.

When I talk about the version of a library, I’m referring specifically to
the version of the library’s public interface, but I need to clearly define the
term interface in this context. A shared-library interface refers to all aspects of
a shared library’s connections with the outside world. Besides the function
and data signatures that a library exports, these connections include files
and file formats, network connections and wire data formats, IPC channels

Occasionally he stumbled over the truth, but hastily
picked himself up and hurried on as if nothing had happened.

—Sir Winston Churchill, quoted in
The Irrepressible Churchill

210 Chapter 8

and protocols, and so on. When considering whether to assign a new ver-
sion to a shared library, you should carefully examine all aspects of the
library’s interactions with the world to determine if a change will cause
the library to act differently from a user’s perspective.

Libtool’s attempts to hide the differences among shared-library plat-
forms are so well conceived that if you’ve always used Libtool to build
shared libraries, you may not even realize that the way shared libraries are
versioned is significantly different between platforms.

System-Specific Versioning
Let’s examine how shared-library versioning works on a few different sys-
tems to put the Libtool abstraction into context.

Shared-library versioning can be done either internally or externally.
Internal versioning means that the library name does not reflect its version
in any way. Thus, internal versioning implies that some form of executable
header information provides the linker with the appropriate function calls
for the requested application binary interface (ABI). This also implies that all
function calls for all versions of the library are maintained within the same
shared-library file. Libtool supports internal versioning where mandated by
platform requirements, but it prefers to use external versioning. With exter-
nal versioning, version information is specified in the filename itself.

In addition to library-level versioning, wherein a particular version
number or string refers to the entire library interface, many Unix systems
support a form of export- or symbol-level versioning, wherein a shared
library exports multiple named or numbered versions of the same function
or global data item. While Libtool does not hinder the use of such export-
level versioning schemes on a per-system basis, it does not provide any spe-
cific portability support for them, either. Therefore, I won’t go into great
detail on this subject.

Linux and Solaris Library Versioning
Modern Linux borrows much of its library versioning system from
Oracle’s Solaris operating system, version 9.1 These systems use a form
of external library versioning in which version information is encoded
in the shared-library filename, following a specific pattern or template.
Let’s look at a partial directory listing for the /usr/lib/x86_64-linux-gnu
directory on a typical Linux system—specifically, the files associated
with a fairly typical library, libcurl:

1. Note that older Solaris systems and the original Linux shared-library system used the older,
so-called a.out scheme, in which libraries were managed quite differently. In the a.out scheme,
all binary code had to be manually mapped into memory using a mapping file that had the
same base name as the library and ended in the .sa extension. The mapping file had to be
manually edited to ensure that the program and all shared libraries were mapped into non-
overlapping regions of the process address space. This system was eventually replaced with
PIC code, wherein the loader can determine the position of code in memory at runtime.

Library Interface Versioning and Runtime Dynamic Linking 211

$ ls -lr /usr/lib/x86_64-linux-gnu/libcurl*
 -rw-r--r-- ... 947448 ... libcurl.a

lrwxrwxrwx ... 19 ... libcurl-gnutls.so.3 -> libcurl-gnutls.so.4
lrwxrwxrwx ... 23 ... libcurl-gnutls.so.4 -> libcurl-gnutls.so.4.4.0
-rw-r--r-- ... 444800 ... libcurl-gnutls.so.4.4.0
-rw-r--r-- ... 953 ... libcurl.la

 lrwxrwxrwx ... 16 ... libcurl.so -> libcurl.so.4.4.0
lrwxrwxrwx ... 12 ... libcurl.so.3 -> libcurl.so.4

 lrwxrwxrwx ... 16 ... libcurl.so.4 -> libcurl.so.4.4.0
 -rw-r--r-- ... 452992 ... libcurl.so.4.4.0

$

N O T E The content in this console directory listing is specific to my system, which is based on
a Debian distribution. If your distribution is not based on Debian, you will probably
see a somewhat different listing—perhaps even significantly different. In this case,
do not try to follow along on your system. Instead, just follow my example here as you
read the following description. The concepts, not the filenames, are the important part
of this discussion.

Library names on Linux systems conform to a standard format:
libname.so.X.Y. The X.Y portion of the format represents the version
information, where X is the major version number (always a single
number) and Y is the minor version number (which may contain multiple
dot-separated parts). The general rule is that changes in X represent
non-backward-compatible changes to the library’s ABI, while changes
in Y represent backward-compatible modifications, including isolated
additions to the library’s interface and nonintrusive bug fixes.

Often, you’ll see what appears to be a third numbered component.
The entry at , for example, represents the actual curl shared library,
libcurl.so.4.4.0. In this example, the last two numbers (4.0) really just
represent a two-part minor version number. Such additional numeric
information in the minor version number is sometimes referred to as the
library’s patch level.2

The libcurl.so.4 entry at is referred to as the library’s shared object
name (soname) 3 and is actually a soft link that points to the binary file.
The soname is the format that consuming programs and libraries refer-
ence internally—that is, the linker embeds this name in the consuming
program or library when it’s built. The soft link is created by the ldconfig
utility, which (among other things) ensures that an appropriate soname

2. According to legend, the entire minor version number can really be any alphanumeric text,
though it’s usually limited to dot-separated numbers—if only to maintain the sanity of the
user. The GNU Libtool Manual claims that the ldconfig utility will honor the patch level when
it creates the soname link, automatically selecting the highest value found. If this value can
be any alphanumeric text, then it’s difficult to see how this statement can be true; perhaps
the utility uses some heuristic (such as lexicographical value) to attempt to isolate the more
“recent” version of the library.

3. Soname is pronounced “ess-oh-name.”

212 Chapter 8

can locate the latest minor version of an installed library. The ldconfig
utility is usually executed by post-install scripts and triggers of RPM and
Debian packages. Therefore, while the soname is not created or installed
by the make install target, it is most often created by distro installation
packages and, therefore, by Linux packagers.

Notice how this versioning scheme allows multiple sonames for differ-
ent major versions and multiple binaries with different major and minor
versions to all coexist within a single directory.

Development packages for a library (ending in -dev or -devel) often
install a so-called linker name entry (at) as well. The linker name is a soft
link ending only in .so that usually points to the soname, though in some
cases (such as this one), it may refer directly to the binary shared library.
The linker name is the name by which a library is referred to on the linker
command line. The development library allows you to run programs on
your system that are linked against the latest version of a library but develop
against an older version of that library, or vice versa.

The entry at refers to the static archive form of the library, which has
a .a extension on Linux and Solaris systems. The remaining entries repre-
sent other forms of the curl library set generated for purposes specific to the
curl package.

The curl library has become an important part of modern Linux sys-
tems over the years; it’s used by many other programs installed on the
system, some of which have not been upgraded to the latest major version.
The maintainers assert that major version 4 is backward compatible with
major version 3. Therefore, sonames referring to version 3 are directed
toward version 4 of the libraries on systems where version 4 is installed. This
is not necessarily a common practice, but it happens to work in this case.

From here on out, the waters become muddied by a strange array of
external and internal shared-library versioning techniques. Each of these
less-than-intuitive systems is designed to overcome some of the fundamen-
tal problems that have been discovered in the Solaris system over the years.4
Let’s look at a few of them.

IBM AIX Library Versioning
Traditionally, IBM’s AIX used a form of internal versioning, storing all
library code within a single archive file that follows the pattern libname.a.
This file may actually contain both static and shared forms of code, as well
as 32-bit and 64-bit code. Internally, all shared-library code is stored in a
single, logical, shared-object file within the archive file, while static library
objects are stored as individual logical object files within the archive.

I say “traditionally” because more recent versions of AIX (including
all 64-bit versions) now support the concept of loading shared-library code
directly from physical .so files.

4. In my humble opinion, the solutions provided by these “enhancements” aren’t justified due
to the additional problems they cause.

Library Interface Versioning and Runtime Dynamic Linking 213

Libtool generates shared-library code on AIX using both of these
schemes. If the AIX -brtl native linker flag is specified on the command
line, Libtool generates shared libraries with .so extensions. Otherwise, it
generates combined libraries following the older, single-file scheme.5

When using the .so file scheme on AIX, Libtool generates libraries
named in the Linux/Solaris pattern in order to maintain a degree of alli-
ance with these more popular platforms. Regardless of the shared-library
extension used, however, version information is still not stored in the file-
name; it is stored internally, within the library and consuming executables.
As far as I can tell, Libtool ensures that the correct internal structures are
created to reflect the proper versioning information within the shared-
library header. It does this by passing appropriate flags to the native linker
with embedded version information derived from the Libtool version string.

Executables on most Unix systems also support the concept of an
embedded runtime library search path (called a LIBPATH on AIX), which
usually specifies a set of colon-separated filesystem paths to be searched for
shared-library dependencies. You can use Libtool’s -R command line option
to specify a library search path for both programs and libraries. Libtool will
translate this option to the appropriate GNU or native linker option on any
given system.

I say executables usually support this option because on AIX, there are
a few nuances. If all of the directories specified in the LIBPATH are real direc-
tories, everything works as expected—that is, the LIBPATH acts purely as
a library search path. However, if the first segment of the LIBPATH is not a
real filesystem entry, it acts as a so-called loader domain, which is basically
a namespace for a particular shared library. Thus, multiple shared librar-
ies of the same name can be stored within the same AIX archive (.a) file,
each assigned (by linker options) to a different loader domain. The library
that matches the loader domain specified in the LIBPATH is loaded from the
archive. This can have nasty side effects if you assign a loader domain via
the LIBPATH that later becomes (by chance) a real filesystem entry. On the
other hand, you could also specify a search directory in the LIBPATH that
happens to match a loader domain in a shared library. If that directory is
removed later, you’ll unintentionally begin to use the loader domain. As
you can imagine, strange behavior ensues. Most of these issues have been
solved by AIX developers by ensuring that loader domain strings look noth-
ing like filesystem paths.

On AIX systems, all code, whether static or shared, is compiled as
position-independent code because AIX has only ever been ported to
PowerPC and RS/6000 processors. The architectures of these processors
only allow for PIC code, so AIX compilers can’t generate non-PIC code.

5. The -brtl flag tells the native AIX linker to generate load-time resolved shared objects,
wherein external symbol references are resolved at the time the library is loaded, as opposed
to the default link-time resolved objects, wherein external symbol references are resolved at
link time. Resolving objects at load time is more similar to how objects are treated on Linux
and Solaris or, more generally, on ELF systems.

214 Chapter 8

Microsoft DLL Versioning
Consider Microsoft Windows dynamic link libraries (DLLs), which are
shared libraries in every sense of the word and provide a proper applica-
tion programming interface (API). But unfortunately, Microsoft has, in the
past, provided no integrated DLL interface versioning scheme. As a result,
Windows developers have often referred to DLL versioning issues (tongue-
in-cheek, I’m sure) as DLL hell.

As a sort of Band-Aid fix to this problem, DLLs on Windows systems
can be installed into the same directory as the program that uses them.
The Windows operating system loader will always attempt to use the local
copy before searching for a copy in the system path. This alleviates a part of
the problem because it allows you to install a specific version of the library
with the package that requires it. While this is a fair solution, it’s not really
a good solution, because one of the major benefits of shared libraries is that
they can be shared—both on disk and in memory. If every application has
its own copy of a different version of the library, then this benefit of shared
libraries is lost—both on disk and in memory.

Since the introduction of this partial solution years ago, Microsoft hasn’t
paid much attention to DLL-sharing efficiency issues. The reasons for this
include both a cavalier attitude regarding the cost of disk space and RAM
and a technical issue regarding the implementation of Windows DLLs.
Instead of generating position-independent code, Microsoft system architects
chose to link DLLs with a specific base address and then list all of the abso-
lute address references in a base table in the library image header. When a
DLL can’t be loaded at the desired base address (because of a conflict with
another DLL), the loader rebases the DLL by picking a new base address and
changing all of the absolute addresses in the code segment that are referred
to in the base table. When a DLL is rebased in this manner, it can only be
shared with processes that happen to rebase the DLL to the same address.
The odds of accidentally encountering such a scenario—especially among
applications with many DLL components—are pretty slim.

More recently, Microsoft invented the concept of the side-by-side cache
(sometimes referred to as SxS), which allows developers to associate a
unique identification value (a GUID, in fact) with a particular version of a
DLL installed in a system location. The location directory name is derived
from the DLL name and the version identifier. Applications built against
SxS-versioned libraries have metadata stored in their executable headers
indicating the specifically versioned DLLs they require. If the right version
is found (by newer OS loaders) in the SxS cache, then it is loaded. Based
on policy in the EXE header’s metadata, the loader can revert to the older
scheme of looking for a local copy and then a global copy of the DLL. This
is a vast improvement over earlier solutions, and it provides a very flexible
versioning system.

The side-by-side cache effectively moves the Windows DLL architecture
a step closer to the Unix way of managing shared libraries. Think of the SxS

Library Interface Versioning and Runtime Dynamic Linking 215

as a system installation location for libraries—much like the /usr/lib direc-
tory on Unix systems. Also similar to Unix, multiple versions of the same
DLL may be co-installed in the side-by-side cache.

Regardless of the similarities, since DLLs use the rebasing technique as
opposed to PIC code, the side-by-side cache is still a fairly benign efficiency
improvement with respect to applications that manage dozens of shared
libraries. SxS is really intended for system libraries that many applications
are likely to consume. These are generally based at different addresses
so that the odds of clashing (and thus rebasing) are decreased but not
entirely eliminated.

The entire based approach to shared libraries has the major drawback
that the program address space may become fairly fragmented as the sys-
tem loader honors randomly chosen base addresses throughout a 32-bit
address space. Fortunately, 64-bit addressing helps tremendously in this
area, so you may find the side-by-side cache to be much more effective with
respect to improving memory-use efficiency on 64-bit Windows systems,
which are the norm these days anyway.

HP-UX/AT&T SVR4 Library Versioning
Hewlett Packard’s version of Unix (since HP-UX version 10.0) adds a form
of library-level versioning that’s very similar to the versioning used in AT&T
UNIX System V Release 4. For our purposes, you can consider these two
types of systems to work nearly the same way.

The native linker looks for libraries specified by their base name with a
.sl extension. However, consuming programs and libraries contain a refer-
ence to that library’s internal name. The internal name is assigned to the
library by a linker command line option and should contain the library’s
interface version number.

The actual library is named with only the major interface version as
an extension, and a soft link is created with a .sl extension pointing to the
library. Thus, a shared library on these systems will follow this pattern:

libname.X
libname.sl -> libname.X

The only version information we have to work with is a major version
number, which should be used to indicate non-backward-compatible changes
from one version to the next. Since there’s no minor version number, as on
Linux or Solaris, we can’t keep multiple revisions of a particular interface
version around. The only option is to replace version zero of a library with
an updated version zero if bug fixes or backward-compatible enhancements
(that is to say, non-intrusive additions to the interface) are made.

However, we can still have multiple major versions of the library
co-installed, and Libtool takes full advantage of what’s available on
these systems.

216 Chapter 8

The Libtool Library Versioning Scheme
The authors of Libtool tried hard to provide a versioning scheme that could
be mapped to any of the schemes used by any Libtool platform. The Libtool
versioning scheme is designed to be flexible enough to be forward compat-
ible with reasonable future changes to existing Libtool platforms and even
to new Libtool platforms.

Nevertheless, it’s not a panacea. When Libtool has been extended for
a new type of shared-library platform, situations have occurred (and con-
tinue to occur) that require some serious and careful evaluation. No one
can be an expert on all systems, so the Libtool developers rely heavily on
outside contributions to create proper mappings from the Libtool version-
ing scheme to the schemes of new or would-be Libtool platforms.

Library Versioning Is Interface Versioning
You should consciously avoid thinking of library version numbers (either
Libtool’s or those of a particular platform) as product major, minor, and revi-
sion (also called patch or micro) values. In fact, these values have very specific
meanings to the operating system loader, and they must be updated prop-
erly for each new library version in order to keep from confusing the loader.
A confused loader could load the wrong version of a library based on incor-
rect version information assigned to the library.

Several years ago, I was working with my company’s corporate version-
ing committee to come up with a software-versioning policy for the com-
pany as a whole. The committee wanted the engineers to ensure that the
version numbers incorporated into our shared-library names were in align-
ment with the corporate software-versioning strategy. It took me the better
part of a day to convince them that a shared-library version was not related
to a product version in any way, nor should such a relationship be estab-
lished or enforced by them or by anyone else.

Here’s why: the version number on a shared library is not really a
library version but an interface version. The interface I’m referring to
here is the application binary interface presented by a library to the user,
another programmer desiring to call functions presented by the interface.
An executable program has a single, well-defined, standard entry point
(usually called main in the C language). But a shared library has multiple
entry points that are generally not standardized in a manner that is widely
understood. This makes it much more difficult to determine whether or not
a particular version of a library is interface compatible with another version
of the same library.

In Libtool’s versioning scheme, shared libraries are said to support a
range of interface versions, each identified by a unique integer value. If
any publicly visible aspect of an interface changes between public releases,
it can no longer be considered the same interface; it therefore becomes a

Library Interface Versioning and Runtime Dynamic Linking 217

new interface, identified by a new integer identifier. Each public release
of a library in which the interface has changed simply acquires the next
consecutive interface version number. Libraries that change in a backward-
compatible manner between releases are said to support both the old and
the new interface; thus, a particular release of a library may support inter-
face versions 2 through 5, for example.

Libtool library version information is specified on the libtool command
line with the -version-info option, as shown in Listing 8-1.

libname_la_LDFLAGS = -version-info 0:0:0

Listing 8-1: Setting shared-library version information in a Makefile.am file

The Libtool developers wisely chose the colon separator over the period
in an effort to keep developers from trying to directly associate Libtool ver-
sion string values with the version numbers appended to the end of shared-
library files on various platforms. The three values in the version string are
respectively called the interface current, revision, and age values.

The current value represents the current interface version number. This
is the value that changes when a new interface version must be declared
because the interface has changed in some publicly visible way since the last
public release of the library. The first interface in a library is given a ver-
sion number of zero by convention. Consider a shared library in which the
developer has added a new function to the set of functions exposed by this
library since the last public release. The interface can’t be considered the
same in this new version because there’s one additional function. Thus, its
current number must be increased from zero to one.

The age value represents the number of back versions supported by the
shared library. In mathematical terms, the library is said to support the
interface range, current − age through current. In the example I just gave, a
new function was added to the library, so the interface presented in this ver-
sion of the library is not the same as it was in the previous version. However,
the previous version is still fully supported, because the previous interface
is a proper subset of the current interface. Therefore, the age value should
also be incremented from zero to one.

The revision value merely represents a serial revision of the current
interface. That is, if no publicly visible changes are made to a library’s
interface between releases—perhaps only an internal function was opti-
mized—then the library name should change in some manner, if only to
distinguish between the two releases. But both the current and age values
would be the same, because the interface has not changed from the user’s
perspective. Therefore, the revision value is incremented to reflect the fact
that this is a new release of the same interface. In the previous example, the
revision value would be left at zero, because one or both of the other values
were incremented.

218 Chapter 8

To simplify the release process for shared libraries, the Libtool versioning
algorithm should be followed step-wise for each new version of a library that
is about to be publicly released:6

1. Start with version information 0:0:0 for each new Libtool library. (This
is done automatically if you simply omit the -version-info option from
the list of linker flags passed to the libtool script.) For existing libraries,
start with the previous public release’s Libtool version information.

2. If the library source code has changed at all since the last update, then
increment revision (c:r:a becomes c:r+1:a).

3. If any exported functions or data have been added, removed, or
changed since the last update, increment current and set revision to 0.

4. If any exported functions or data have been added since the last public
release, increment age.

5. If any exported functions or data have been removed since the last
public release, set age to 0.

Keep in mind that this is an algorithm; as such, it’s designed to be fol-
lowed step-by-step as opposed to jumping directly to the steps that appear
to apply to your case. For example, if you removed an API function from
your library since the last release, you would not simply jump to the last
step and set age to zero. Rather, you would follow all of the steps until you
reached the last step, and then set age to zero.

N O T E Remember to update the version information only immediately before a public release
of your software. More frequent updates are unnecessary and only guarantee that the
current interface number becomes larger faster.

Let’s look at an example. Assume that this is the second release of a
library and the first release used a -version-info string of 0:0:0. One new
function was added to the library interface during this development cycle,
and one existing function was deleted. The effect on the version informa-
tion string for this new release of the library would be as follows:

1. Begin with the previous version information: 0:0:0.

2. 0:0:0 becomes 0:1:0 (the library’s source was changed).

3. 0:1:0 becomes 1:0:0 (the library’s interface was modified).

4. 1:0:0 becomes 1:0:1 (one new function was added).

5. 1:0:1 becomes 1:0:0 (one old function was removed).

It should be clear by now that there is no direct correlation between
Libtool’s current, revision, and age values and Linux’s major, minor, and
optional patch-level values. Instead, mapping rules are used to transform
the values in one scheme to values in the other.

6. See the Free Software Foundation’s GNU Libtool Manual at https://www.gnu.org/software/
libtool/manual/.

https://www.gnu.org/software/libtool/manual/
https://www.gnu.org/software/libtool/manual/

Library Interface Versioning and Runtime Dynamic Linking 219

Returning to the preceding example, wherein a second release of a
library added one function and removed one function, we ended up with
a new Libtool version string of 1:0:0. The version string 1:0:0 indicates
that the library is not backward compatible with the previous version
(age is zero), so the Linux shared-library file would be named libname.
so.1.0.0. This looks suspiciously like the Libtool version string—but don’t
be fooled. This fairly common coincidence is perhaps one of the most
confusing aspects of the Libtool versioning abstraction.

Let’s modify our example just a little to say that we’ve added a new
library interface function but haven’t removed anything. Start again with
the original version information of 0:0:0 and follow the algorithm:

1. Begin with the previous version information: 0:0:0.

2. 0:0:0 becomes 0:1:0 (the library’s source was changed).

3. 0:1:0 becomes 1:0:0 (the library’s interface was modified).

4. 1:0:0 becomes 1:0:1 (one new function was added).

5. Not applicable (nothing was removed).

This time, we end up with a Libtool version string of 1:0:1, but the
resulting Linux or Solaris shared-library filename is libname.so.0.1.0.
Consider for a moment what it means, in the face of major, minor, and
patch-level values, to have a nonzero age value in the Libtool version string.
An age value of one (as in this case) means that we are effectively still sup-
porting a Linux major value of zero, because this new version of the library
is 100 percent backward compatible with the previous version. The minor
value in the shared-library filename has been incremented from zero to one
to indicate that this is, in fact, an updated version of the soname, libname
.so.0. The patch-level value remains at zero because this value indicates a
bug fix to a particular minor revision of an soname.

Once you fully understand Libtool versioning, you’ll find that even
this algorithm does not cover all possible interface modification scenarios.
Consider, for example, version information of 0:0:0 for a shared library that
you maintain. Now assume you add a new function to the interface for the
next public release. This second release properly defines version informa-
tion of 1:0:1 because the library supports both interface versions 0 and 1.
However, just before the third release of the library, you realize you didn’t
really need that new function after all, so you remove it. This is the only
publicly visible change made to the library interface in this release. The
algorithm would have set the version information string to 2:0:0. But in
fact, you’ve merely removed the second interface and are now presenting
the original interface once again. Technically, this library would be prop-
erly configured with a version information string of 0:1:0 because it pres-
ents a second release of version 0 of the shared-library interface. The moral
of this story is that you need to fully understand the way Libtool versioning
works and then decide, based on that understanding, what the proper next-
version values should be.

220 Chapter 8

I’d also like to point out that the GNU Libtool Manual makes little
effort to describe the myriad ways an interface can be different from one
version of a library to another. An interface version indicates functional
semantics as well as API syntax. If you change the way a function works
semantically but leave the function signature untouched, you’ve still
changed the function. If you change the network wire format of data sent
by a shared library, then it’s not really the same shared library from the
perspective of the consuming code. All the operating system loader really
cares about when attempting to determine which library to load is, will this
library work just as well as that one? In these cases, the answer would have
to be no, because even though the API interface is identical, the publicly
visible way the two libraries do things is not the same.

When Library Versioning Just Isn’t Enough
These types of changes to a library’s interface are so complex that project
maintainers will often simply rename the library, thereby skirting library-
versioning issues entirely. One excellent way to rename your library is to
use Libtool’s -release flag. This flag adds a separate class of library version-
ing information into the base name of the library, effectively making it an
entirely new library from the perspective of the operating system loader.
The -release flag is used in the manner shown in Listing 8-2.

libname_la_LDFLAGS = -release 2.9.0 -version-info 0:0:0

Listing 8-2: Setting shared-library release information in a Makefile.am file

In this example, I used -release and -version-info in the same set of
Libtool flags, just to show you that they can be used together. You’ll note
here that the release string is specified as a series of dot-separated values.
In this case, the final name of your Linux or Solaris shared library will be
libname-2.9.0.so.0.0.0.

Another reason developers choose to use release strings is to provide
some sort of correlation between library versions across platforms. As
demonstrated earlier, a particular Libtool version information string will
probably result in different library names across platforms because Libtool
maps version information into library names differently from platform to
platform. Release information remains stable across platforms, but you
should carefully consider how you want to use release strings and version
information in your shared libraries, because the way you choose to use
them will affect binary compatibility between releases of your libraries. The
OS loader will not consider two versions of a library compatible if they have
different release strings, regardless of the values of those strings.

Library Interface Versioning and Runtime Dynamic Linking 221

Using libltdl
Now let’s move on to a discussion of Libtool’s ltdl library. Once again, we
need to add some functionality to the Jupiter project in order to illustrate
these concepts. The goal here is to create a plug-in interface that the jupiter
program can use to modify output based on end-user policy choices.

Necessary Infrastructure
Currently, jupiter prints Hello from jupiter! (Actually, the name printed is
more likely, at this point, to be a long, ugly path containing some Libtool
directory garbage and some derivation of the name jupiter, but just pretend
it prints jupiter for now.) We’re going to add an additional parameter named
salutation to the common static library method, print_routine. This param-
eter will also be of type pointer-to-char and will contain the leading word or
phrase—the salutation—in jupiter’s greeting.

Listings 8-3 and 8-4 indicate the changes we need to make to files in
the common subdirectory.

--snip--
static void * print_it(void * data)
{
 const char ** strings = data;
 printf("%s from %s!\n", strings[0], strings[1]);
 return 0;
}

int print_routine(const char * salutation, const char * name)
{
 const char * strings[] = {salutation, name};
#if ASYNC_EXEC
 pthread_t tid;
 pthread_create(&tid, 0, print_it, strings);
 pthread_join(tid, 0);
#else
 print_it(strings);
#endif
 return 0;
}

Listing 8-3: common/print.c: Adding a salutation to the print_routine function

int print_routine(const char * salutation, const char * name);

Listing 8-4: common/jupcommon.h: Adding a salutation to the print_routine prototype

Git tag 8.0

222 Chapter 8

Listings 8-5 and 8-6 show the changes we need to make to files in the
libjup and include subdirectories.

--snip--
int jupiter_print(const char * salutation, const char * name)
{
 print_routine(salutation, name);
}

Listing 8-5: libjup/jup_print.c: Adding a salutation to the jupiter_print function

--snip--
int jupiter_print(const char * salutation, const char * name);
--snip--

Listing 8-6: include/libjupiter.h: Adding a salutation to the jupiter_print prototype

And finally, Listing 8-7 shows what we need to do to main.c in the src
directory.

--snip--
#define DEFAULT_SALUTATION "Hello"

int main(int argc, char * argv[])
{
 const char * salutation = DEFAULT_SALUTATION;
 return jupiter_print(salutation, argv[0]);
}

Listing 8-7: src/main.c: Passing a salutation to jupiter_print

To be clear, all we’ve really done here is parameterize the salutation
throughout the print routines. That way, we can indicate from main which
salutation we’d like to use. I’ve set the default salutation to Hello so that
nothing will have changed from the user’s perspective. Thus, the overall
effect of these changes is benign. Note also that these are all source code
changes—we’ve made no changes to the build system. I wanted to com-
partmentalize these changes so as to not confuse this necessary refactoring
with what we’re doing to the build system to add the new module-loading
functionality.

After making these changes, should you update the version number of
this shared library? That depends on whether you’ve already shipped this
library (that is, posted a tarball) before you made the changes. The point
of versioning is to maintain some semblance of control over your public
interface—but if you’re the only one who has ever seen it, there’s no point
in changing the version number.

Adding a Plug-In Interface
I’d like to make it possible to change the salutation displayed by simply
changing which plug-in module is loaded at runtime. All of the changes

Library Interface Versioning and Runtime Dynamic Linking 223

we’ll need to make to the code and build system to add this functionality
will be limited to the configure.ac file and to files within the src directory
and its subdirectories.

First, we need to define the actual plug-in interface. We’ll do this by
creating a new private header file in the src directory called module.h. This
file is shown in Listing 8-8.

#ifndef MODULE_H_INCLUDED
#define MODULE_H_INCLUDED

 #define GET_SALUTATION_SYM "get_salutation"

 typedef const char * get_salutation_t(void);
 const char * get_salutation(void);

#endif /* MODULE_H_INCLUDED */

Listing 8-8: src/module.h: The initial contents of this file

This header file has a number of interesting aspects. First, let’s
look at the preprocessor definition, GET_SALUTATION_SYM, at . This string
represents the name of the function you need to import from the plug-in
module. I like to define these in the header file so all the information that
needs to be reconciled exists in one place. In this case, the symbol name,
the function type definition, and the function prototype must all be in
alignment, and you can use this single definition for all three.

Another interesting item is the type definition7 at . If we don’t provide
one, the user is going to have to invent one, or else use a complex typecast
on the return value of the dlsym function. Therefore, we’ll provide it here
for consistency and convenience.

Finally, look at the function prototype at . This isn’t so much for the
caller as it is for the module itself. Modules providing this function should
include this header file so the compiler can catch potential misspellings of
the function name.

Doing It the Old-Fashioned Way
For this first attempt, let’s use the dl interface provided by the Solaris/
Linux libdl.so library. In the next section, we’ll convert this code over to
the Libtool ltdl interface for greater portability.

To do this right, we need to add checks to configure.ac to look for both
the libdl library and the dlfcn.h header file. These changes to configure.ac are
highlighted in Listing 8-9.

7. Technically, it’s bad practice to suffix application-defined types with _t because POSIX
reserves this namespace for types defined by the POSIX standard. However, it’s not very likely
that get_salutation_t is going to conflict with anything POSIX defines in a future version of
the standard (though it is possible).

Git tag 8.1

224 Chapter 8

--snip--
Checks for header files.

 AC_CHECK_HEADERS([stdlib.h dlfcn.h])
--snip--
Checks for libraries.

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.
 AC_SEARCH_LIBS([dlopen], [dl])

--snip--
cat << EOF

${PACKAGE_NAME} Version ${PACKAGE_VERSION}

Prefix: '${prefix}'.
Compiler: '${CC} ${CFLAGS} ${CPPFLAGS}'

 Libraries: '${LIBS}'
--snip--

Listing 8-9: configure.ac: Adding checks for the dl library and public header file

At , I added the dlfcn.h header file to the list of files passed to the
AC_CHECK_HEADERS macro, and then at , I added a check for the dlopen func-
tion in the dl library. Note here that the AC_SEARCH_LIBS macro searches a list
of libraries for a function, so this call goes in the “Checks for library func-
tions” section rather than the “Checks for libraries” section. To help us see
which libraries we’re actually linking against, I’ve also added a line to the
cat command at the end of the file. The Libraries: line at displays the
contents of the LIBS variable, which is modified by the AC_SEARCH_LIBS macro.

N O T E The LT_INIT macro also checks for the existence of the dlfcn.h header file, but I do it
here explicitly so it’s obvious to observers that I wish to use this header file. This is a
good rule of thumb to follow, as long as it doesn’t negatively affect performance too
much. Since Autoconf caches the results of checks, it’s not likely to do so. You can tell
this is happening when you see (cached) ... after a check in configure’s output.

Adding a module requires several changes, so we’ll make them all here,
beginning with the following command:

$ mkdir -p src/modules/hithere
$

I’ve created two new subdirectories. The first is modules, beneath src,
and the second is hithere, beneath modules. Each new module added to this
project will have its own directory beneath modules. The hithere module will
provide the salutation Hi there.

Listing 8-10 illustrates how to add a SUBDIRS variable to the src/Makefile.am
file to ensure that the build system processes the modules/hithere directory.

Library Interface Versioning and Runtime Dynamic Linking 225

 SUBDIRS = modules/hithere

bin_PROGRAMS = jupiter
 jupiter_SOURCES = main.c module.h

--snip--
greptest.sh:

 echo './jupiter | grep ".* from .*jupiter!"' > greptest.sh
--snip--

Listing 8-10: src/Makefile.am: Adding a SUBDIRS variable to this Makefile.am file

The way I’ve used SUBDIRS at presents a new concept. Until now,
Jupiter’s Makefile.am files have only referenced direct descendants of the
current directory, but this is not strictly necessary, as you can see. In fact,
for Jupiter, the modules directory will only contain additional subdirectories,
so it makes little sense to provide a modules/Makefile.am file just so you can
reference its subdirectories.

While you’re editing the file, you should add the new module.h header
file to the SOURCES variable at . If you don’t do this, jupiter will still compile
and build correctly for you as the maintainer, but the distcheck target will
fail because none of the Makefile.am files will have mentioned module.h.

We also need to change the way the greptest.sh shell script is built so
it can test for any type of salutation. A simple modification of the regular
expression at will suffice.

I created a Makefile.am file in the new hithere subdirectory that contains
instructions on how to build the hithere.c source file, and then I added the
hithere.c source file to this directory. These files are shown in Listings 8-11
and 8-12, respectively.

pkglib_LTLIBRARIES = hithere.la
hithere_la_SOURCES = hithere.c

 hithere_la_LDFLAGS = -module -avoid-version

Listing 8-11: src/modules/hithere/Makefile.am: The initial version of this file

#include "../../module.h"

const char * get_salutation(void)
{
 return "Hi there";
}

Listing 8-12: src/modules/hithere/hithere.c: The initial version of this file

The hithere.c source file includes the semi-private module.h header file
using a double-quoted relative path. Since Automake automatically adds
-I$(srcdir) to the list of include paths used, the C preprocessor will properly
sort out the relative path. The file then defines the get_salutation function,
whose prototype is in the module.h header file. This implementation simply
returns a pointer to a static string, and as long as the library is loaded, the

226 Chapter 8

caller can access the string. However, callers must be aware of the scope of
data references returned by plug-in modules; otherwise, the program may
unload a module before a caller is done using it.

The last line of hithere/Makefile.am (at in Listing 8-11) requires some
explanation. Here, we’re using a -module option on the hithere_la_LDFLAGS
variable. This is a Libtool option that tells Libtool you want to call your
library hithere, not libhithere. The GNU Libtool Manual makes the statement
that modules do not need to be prefixed with lib. And since your code will
be loading these modules manually, it should not have to be concerned with
determining and properly using a platform-specific library name prefix.

If you don’t care to use module versioning on your dynamically load-
able (dlopen-ed) modules, try using the Libtool -avoid-version option.
This option causes Libtool to generate a shared library whose name is
libname.so, rather than libname.so.0.0.0. It also suppresses generation of
the libname.so.0 and libname.so soft links that refer to the binary image.
Because I’m using both options, my module will simply be named hithere.so.

In order to get this module to build, we need to add the new hithere
module’s makefile to the AC_CONFIG_FILES macro in configure.ac, as shown in
Listing 8-13.

--snip--
AC_CONFIG_FILES([Makefile
 common/Makefile
 include/Makefile
 libjup/Makefile
 src/Makefile
 src/modules/hithere/Makefile])
--snip--

Listing 8-13: configure.ac: Adding the hithere directory makefile to AC_CONFIG_FILES

Finally, in order to use the module, we need to modify src/main.c so that
it loads the module, imports the symbol, and calls it. These changes to src/
main.c are highlighted in bold in Listing 8-14.

#include "config.h"

#include "libjupiter.h"
 #include "module.h"

 #if HAVE_DLFCN_H
include <dlfcn.h>
#endif

#define DEFAULT_SALUTATION "Hello"

int main(int argc, char * argv[])
{
 int rv;
 const char * salutation = DEFAULT_SALUTATION;

Library Interface Versioning and Runtime Dynamic Linking 227

 #if HAVE_DLFCN_H
 void * module;
 get_salutation_t * get_salutation_fp = 0;

 module = dlopen("./module.so", RTLD_NOW);
 if (module != 0)
 {
 get_salutation_fp = (get_salutation_t *)dlsym(
 module, GET_SALUTATION_SYM);
 if (get_salutation_fp != 0)
 salutation = get_salutation_fp();
 }
#endif

 rv = jupiter_print(salutation, argv[0]);

 #if HAVE_DLFCN_H
 if (module != 0)
 dlclose(module);
#endif

 return rv;
}

Listing 8-14: src/main.c: Using the new plug-in module from the main function

I’m including the new private module.h header file at , and I added a
preprocessor directive to conditionally include dlfcn.h at . Finally, I added
two sections of code, one before and one after the original call to jupiter
_print (at and , respectively). Both are conditionally compiled based on
the existence of a dynamic loader, allowing the code to build and run cor-
rectly on systems that do not provide the libdl library.

The general philosophy I use when deciding whether or not code
should be conditionally compiled is this: If configure fails because a library
or header file is missing, then I don’t need to conditionally compile the
code that uses the item configure checks for. If I check for a library or
header file in configure but allow it to continue if it’s missing, then I’d
better use conditional compilation.

There are just a few more minor points to bring up regarding the use
of dl interface functions. First, at , dlopen accepts two parameters: a file-
name or path (absolute or relative) and a flags word, which is the bitwise
composite of your choice of several flag values defined in dlfcn.h. Check the
man page for dlopen to learn more about these flag bits. If you use a path,
then dlopen honors that path verbatim, but if you use a filename, the library
search path is searched in an attempt to locate your module. By prefixing
the name with ./, we’re telling dlopen not to search the library path.

We want to be able to configure which module jupiter uses, so we’re
loading a generic name, module.so. In fact, the built module is located
several directories below the src directory in the build tree, so we need to
create a soft link in the current directory called module.so that points to
the module we want to load. This is a rather shabby form of configuration

228 Chapter 8

for Jupiter, but it works. In a real application, you would define the desired
module to load using policy defined in some sort of configuration file, but
in this example, I’m simply ignoring these details for the sake of simplicity.

N O T E I’m ignoring some error handling in Listing 8-14. In production code, you would
probably want to log or display something if the module doesn’t load or if the symbol is
not exported by the module.

The following command sequence shows our loadable module in action:

$ autoreconf -i
--snip--
$./configure && make
--snip--
$ cd src
$./jupiter
Hello from ...jupiter!
$
$ ln -s modules/hithere/.libs/hithere.so module.so
$./jupiter
Hi there from ...jupiter!
$

N O T E The symlink module.so refers to a file in a hidden .libs directory. Executables and
libraries are generated into a .libs directory within the associated source directory by
Autotools build systems.

Converting to Libtool’s ltdl Library
Libtool provides a wrapper library called ltdl that abstracts and hides some
of the portability issues surrounding the use of shared libraries across many
different platforms. Most applications ignore the ltdl library because of the
added complexity involved in using it, but there are really only a few issues
to deal with. I’ll enumerate them here and then cover them in detail later.

•	 The ltdl functions follow a naming convention based on the dl library.
The rule of thumb is that dl functions in the ltdl library have the prefix
lt_. For example, dlopen is named lt_dlopen.

•	 Unlike the dl library, the ltdl library must be initialized and terminated
at appropriate locations within a consuming application.

•	 Applications should be built using the -dlopen modulename option on the
linker command line (in the *_LDFLAGS variable). This tells Libtool to
link the code for the module into the application when building on
platforms without shared libraries or when linking statically.

•	 The LTDL_SET_PRELOADED_SYMBOLS() macro should be used at an appropri-
ate location within your program source code to ensure that module
code can be accessed on non-shared-library platforms or when building
static-only configurations.

Library Interface Versioning and Runtime Dynamic Linking 229

•	 Shared-library modules designed to be dlopen-ed using ltdl should use
the -module option (and, optionally, the -avoid-version option) on the
linker command line (in the *_LDFLAGS variable).

•	 The ltdl library provides extensive functionality beyond the dl library;
this can be intimidating, but know that all of this other functionality
is optional.

Let’s look at what we need to do to the Jupiter project build system in
order to use the ltdl library. First, we need to modify configure.ac to look for
the ltdl.h header and search for the lt_dlopen function. This means modi-
fying references to dlfcn.h and the dl library in the AC_CHECK_HEADERS and
AC_SEARCH_LIBS macros, as highlighted in Listing 8-15.

--snip--
Checks for header files.
AC_CHECK_HEADERS([stdlib.h ltdl.h])
--snip--
Checks for libraries.

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.
AC_SEARCH_LIBS([lt_dlopen], [ltdl])
--snip--

Listing 8-15: configure.ac: Switching from dl to ltdl in configure.ac

Even though we’re using Libtool, we need to check for ltdl.h and libltdl,
because ltdl is a separate library that must be installed on the end user’s sys-
tem. It should be treated the same as any other required third-party library.
By searching for these installed resources on the user’s system and failing
configuration if they’re not found, or by properly using preprocessor defini-
tions in your source code, you can provide the same sort of configuration
experience with ltdl that I’ve presented throughout this book when using
other third-party resources.

I’d like you to recognize that this is the first time we’ve seen the
requirement for the user to install an Autotools package on his system—
and this is the very reason most people avoid using ltdl. The GNU Libtool
Manual provides a detailed description of how to package the ltdl library
with your project so it is built and installed on the user’s system when your
package is built and installed.8

Interestingly, shipping the source code for the ltdl library with your pack-
age is the only way to get your program to statically link with the ltdl library.
Linking statically with ltdl has the side effect of not requiring the user to
install the ltdl library on their system, since the library becomes part of the

8. In fact, the tutorial in the GNU Libtool Manual is a great example of adding subprojects to
an Autotools build system.

Git tag 8.2

230 Chapter 8

project’s executable images. There are a few caveats, however. If your project
also uses a third-party library that dynamically links to ltdl, you’ll have a sym-
bol conflict between the shared and static versions of the ltdl libraries.9

The next major change we need to make is in the source code—it is
limited, in this case, to src/main.c and highlighted in Listing 8-16.

#include "config.h"

#include "libjupiter.h"
#include "module.h"

#if HAVE_LTDL_H
include <ltdl.h>
#endif

#define DEFAULT_SALUTATION "Hello"

int main(int argc, char * argv[])
{
 int rv;
 const char * salutation = DEFAULT_SALUTATION;

#if HAVE_LTDL_H
 int ltdl;

 lt_dlhandle module;
 get_salutation_t * get_salutation_fp = 0;

 LTDL_SET_PRELOADED_SYMBOLS();

 ltdl = lt_dlinit();
 if (ltdl == 0)
 {

 module = lt_dlopen("modules/hithere/hithere.la");
 if (module != 0)
 {
 get_salutation_fp = (get_salutation_t *)lt_dlsym(
 module, GET_SALUTATION_SYM);
 if (get_salutation_fp != 0)
 salutation = get_salutation_fp();
 }
 }
#endif

 rv = jupiter_print(salutation, argv[0]);

#if HAVE_LTDL_H
 if (ltdl == 0)
 {

9. Given how rarely ltdl is currently used, this is an unlikely scenario these days, but this could
change in the future if more packages begin to use ltdl.

Library Interface Versioning and Runtime Dynamic Linking 231

 if (module != 0)
 lt_dlclose(module);
 lt_dlexit();
 }
#endif

 return rv;
}

Listing 8-16: src/main.c: Switching from dl to ltdl in source code

These changes are very symmetrical with respect to the original code.
Mostly, items that previously referred to DL or dl now refer to LTDL or lt_dl.
For example, #if HAVE_DLFCN_H becomes #if HAVE_LTDL_H, and so forth.

One important change is that the ltdl library must be initialized at
with a call to lt_dlinit, whereas the dl library did not require initialization.
In a larger program, the overhead of calling lt_dlinit and lt_dlexit would
be amortized over a much larger code base.

Another important detail is the addition of the LTDL_SET_PRELOADED_SYMBOLS
macro invocation at . This macro configures global variables required by
the lt_dlopen and lt_dlsym functions on systems that don’t support shared
libraries or in cases where the end user has specifically requested static
libraries. It’s benign on systems that use shared libraries.

One last detail is that the return type of dlopen is void *, or a generic
pointer, whereas the return type of lt_dlopen is lt_dlhandle (see and).
This abstraction exists so ltdl can be ported to systems that use return types
that are incompatible with a generic pointer.

When a system doesn’t support shared libraries, Libtool actually links
all of the modules that might be loaded right into the program. Thus, the
jupiter program’s linker (libtool) command line must contain some form
of reference to these modules. This is done using the -dlopen modulename con-
struct, as shown in Listing 8-17.

--snip--
jupiter_LDADD = ../libjup/libjupiter.la -dlopen modules/hithere/hithere.la
--snip--

Listing 8-17: src/Makefile.am: Adding a -dlopen option to the LDADD line

If you forget this addition to src/Makefile.am, you’ll get a linker error
about an undefined symbol—something like lt__PROGRAM__LTX_preloaded
_symbols. If it doesn’t detect any modules being linked into the application,
Libtool won’t clutter your program’s global symbol space with symbols that
will never be referenced; the symbols required by the ltdl library will be
missing if the symbol table is empty.

It appears that ltdl is not quite as flexible as dl regarding the sort of
path information you can specify in lt_dlopen to reference a module. In
order to fix this problem, I hardwired the proper relative path (modules/
hithere/hithere.la) into main.c. Additionally, this example is sensitive to the
current working directory. If you run jupiter from another directory, it will

232 Chapter 8

also fail to find the module. A real program would undoubtedly use a more
robust method of configuration, such as a configuration file containing the
absolute path to the desired module name.10

Preloading Multiple Modules
If Libtool links multiple modules into a program on a system without
shared-library support, and if those modules each provide their own ver-
sion of get_salutation, then there will be a conflict of public symbols within
the program’s global symbol space. This is because all of these modules’
symbols become part of the program’s global symbol space and the linker
generally won’t allow two symbols of the same name to be added to the
executable symbol table. Which module’s get_salutation function should be
honored? Unfortunately, there’s no good heuristic to resolve this conflict.
The GNU Libtool Manual provides for this condition by defining a conven-
tion for maintaining symbol-naming uniqueness:

•	 All exported interface symbols should be prefixed with modulename_LTX
_ (for example, hithere_LTX_get_salutation).

•	 All remaining non-static symbols should be reasonably unique. The
method Libtool suggests is to prefix them with _modulename_ (as in
_jupiter_somefunction).

•	 Modules should be named differently even if they’re built in different
directories.

Although it’s not explicitly stated in the manual, the lt_dlsym function
first searches for the specified symbol as modulename_LTX_symbolname, and
then, if it can’t find a prefixed version of the symbol, it searches for exactly
symbolname. You can see that this convention is necessary, but only for cases
in which Libtool may statically link such loadable modules directly into the
application on systems that don’t support shared libraries. The price you
have to pay for Libtool’s illusion of shared libraries on systems that don’t
support them is pretty high, but it’s the going rate for getting the same
loadable module functionality on all platforms.

To fix the hithere module’s source code so that it conforms to this con-
vention, we need to make one change to hithere.c, shown in Listing 8-18.

 #define get_salutation hithere_LTX_get_salutation
 #include "../../module.h"

const char * get_salutation(void)

10. When I tried the same soft-link trick we used earlier to configure the desired module,
lt_dlopen failed to find the module. You see, while the filesystem will happily hand lt_dlopen
the properly dereferenced filesystem entry (modules/hithere/hithere.la), when lt_dlopen parses
this text file, it tries to append the relative path it finds there onto the containing directory of
the link rather than onto the hithere.la file to which the filesystem resolved that link.

Library Interface Versioning and Runtime Dynamic Linking 233

{
 return "Hi there";
}

Listing 8-18: src/modules/hithere/hithere.c: Ensuring public symbols are unique when
using ltdl

By defining the replacement for get_salutation at before the inclu-
sion of the module.h header file at , we’re also able to change the prototype
in the header file so that it matches the modified version of the function
name. Because of the way the C preprocessor works, this substitution only
affects the function prototype in module.h, not the quoted symbol string or
the type definition. At this point, you may want to go back and examine the
way module.h is written to prove to yourself that this actually works.

Checking It All Out
You can test your program and modules for both static and dynamic shared-
library systems by using the --disable-shared option on the configure command
line, like this:

$ make clean
--snip--
$ autoreconf
$./configure --disable-shared && make
--snip--
$ cd src
$ ls -1p modules/hithere/.libs

 hithere.a
hithere.la
hithere.lai
$
$./jupiter

 Hi there, from ./jupiter!
$
$ cd ..
$ make clean
--snip--
$./configure && make
$ cd src
$ ls -1p modules/hithere/.libs
hithere.a
hithere.la
hithere.lai
hithere.o
hithere.so
$
$./jupiter

 Hi there, from ...jupiter!
$

234 Chapter 8

As you can see, the output at and contains the hithere module’s
salutation in both configurations, yet the file listing at shows us that, in
the --disable-shared version, the shared library doesn’t even exist. It appears
that ltdl is doing its job.

N O T E You may have noticed the difference in the example’s output for the two executions
of jupiter. In the first case, the output shows the name of the program as exactly
./jupiter, while in the second case, it shows ...jupiter. This was my attempt at
removing the cruft in the output caused by Libtool’s redirection of the shared-library-
consuming version referring to the actual program—lt-jupiter—in the jupiter
/src/.libs directory. Libtool uses a wrapper around programs linked to built shared
libraries in order to make it simpler for uninstalled programs to find the built shared
libraries upon which they depend.

The Jupiter code base has become rather fragile, because I’ve ignored
the issue of where to find shared libraries at runtime. As I’ve already men-
tioned, you would ultimately have to fix this problem in a real program.
But given that I’ve finished my task of showing you how to properly use the
Libtool ltdl library, I’ll leave that as an exercise for you.

Summary
The decision to use shared libraries brings with it a whole truckload of
issues, and if you’re interested in maximum portability, you must deal with
each of them. The ltdl library is not a solution to every problem. It solves
some problems but brings others to the surface. Suffice it to say that using
ltdl has trade-offs, but if you don’t mind the extra maintenance effort, it’s a
good way to add maximum portability to your loadable-module project.

I hope that by spending some time going through the exercises in
this book, you’ve been able to get your head around the Autotools enough
to know how they work and what they’re doing for you. At this point, you
should be very comfortable autotool-izing your own projects—at least at the
basic level.

In the coming chapters, I’ll discuss additional tools and utilities that
are also considered part of the GNU toolbox (and one or two that are
not). I’ll also show you how to convert a real-world project from a hand-
coded build system to a much more concise, and probably more correct,
Autotools build system.

9
U N I T A N D I N T E G R A T I O N T E S T I N G

W I T H A U T O T E S T

Testing is important. All developers test
their software to one degree or another;

otherwise, they don’t know if the product
meets the design criteria. On one end of the

spectrum, the author compiles and runs the program.
If it presents the general interface they envisioned,
they call it done. On the other end, the author writes
a suite of tests that attempt to exercise as much of the code as possible
under varying conditions, validating that the outputs are correct for the
specified inputs. Straining to reach the rightmost point on this line, we find
the person who literally writes tests first and then adds and modifies code
iteratively until all the tests pass.

In this chapter, I won’t attempt to expound on the virtues of testing.
I assume every developer agrees that some level of testing is important,
whether they are a compile-run-and-ship sorta person or a bona-fide test-
driven person. I also assume every developer has some level of aversion to

. . . to learn is not to know;
there are the learners and the learned.

Memory makes the one, philosophy the other.
—Alexandre Dumas, The Count of Monte Cristo

236 Chapter 9

testing that lies somewhere along this spectrum. Therefore, our goal here
is to let someone else do as much of the work of testing as possible. In this
case, “someone else” means the Autotools.

Back in Chapter 3, we added a test to our handcoded makefiles for
Jupiter. The output of the test was completely controlled by the make script
we put into src/Makefile :

$ make check
cd src && make check
make[1]: Entering directory '/.../jupiter/src'
cc -g -O0 -o jupiter main.c
./jupiter | grep "Hello from .*jupiter!"
Hello from ./jupiter!
*** All TESTS PASSED
make[1]: Leaving directory '/.../jupiter/src'
$

When we moved on to Autoconf in Chapters 4 and 5, not much
changed. The output was still controlled by our handwritten make script.
We just moved it into src/Makefile.in.

In Chapter 6, however, we dropped our handcoded makefiles and tem-
plates in favor of Automake’s much more terse Makefile.am files. Then we
had to figure out how to shoehorn our handwritten test into automake script.
In doing so, we got a bit of an upgrade on the test output:

$ make check
--snip--
PASS: greptest.sh
==
Testsuite summary for Jupiter 1.0
==
TOTAL: 1
PASS: 1
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
==
$

If you’re running this code on your terminal with a reasonably late ver-
sion of Automake, you’ll even see colored test output.

Every test added to the TESTS variable in our src/Makefile.am template
generates a PASS: or FAIL: line, and the summary values account for all
of them. This is because Automake has a nice built-in testing framework
driven by the TESTS variable. If you need to build any of the files specified
in TESTS, you can just create a rule for it as we did for the trivial driver script
(greptest.sh) that we created. If your test program needs to be built from
sources, you can use a check_PROGRAM variable. One minor problem with

Unit and Integration Testing with Autotest 237

Automake’s testing framework is that if tests are found in multiple directo-
ries, you see multiple such displays during make check, which can be a little
annoying, especially when using make -k (continue in the face of errors),
because it may not occur to you to scroll up to see the output of earlier, pos-
sibly failed tests.

In addition to the TESTS variable, if you set the XFAIL_TESTS variable to
a subset of the tests listed in TESTS, you might also see some output in the
XFAIL: and XPASS: lines. These are tests that are expected to fail. When such
tests pass, they’re listed in the XPASS: line as an unexpected pass. When they
fail, they’re listed in the XFAIL: line as an expected failure.

A test returning a shell code of 77 increases the count in the SKIP: line,
and 99 increases the count in the ERROR: line. I’ll provide more detail about
special shell codes returned by tests later in this chapter.

As you might have guessed by now, Autoconf also includes a testing
framework, called autotest, that provides all of the infrastructure required
to allow you to simply and easily specify a test that exercises some portion of
your code. The results are displayed in a consistent and easy-to-comprehend
manner, and failed tests are easy to reproduce in an isolated fashion, com-
plete with a built-in debugging environment. Almost makes you want to
write tests, doesn’t it? The fact is, a well-designed testing framework, like
any other well-designed tool, is a joy to use.

Additionally, autotest is portable—as long as you write your portion
of the tests using portable script or code, the entire test suite will be 100
percent portable to any system on which you can run your configure script.
That’s not as hard as it sounds. Often the shell script you have to write
amounts to running a command, and the code behind the command is
written using Autotools-provided portability features and is generated using
Autotools-provided build processes.

For several years, autotest has been documented as being “experimen-
tal.” Regardless, its base functionality hasn’t changed much during those
years, and Autoconf uses it to test itself, as we saw in Chapter 1. So, it’s time
to stop worrying about whether it’s going to change and just start using it
for its intended purpose: to make testing less of a chore for software devel-
opers, who—let’s face it—really just want to write code and let someone else
worry about testing.

Being the rational creatures that we are, we can’t deny that testing is
important. What we can do is make use of good tools that allow us to focus
on our code, letting frameworks like autotest worry about ancillary issues
like result formatting, success/failure semantics, data gathering for user-
submitted bug reports, and portability. As we’ll see throughout this chapter,
this is the value that autotest provides.

In the spirit of transparency, I’ll admit it’s difficult to justify using
autotest for small test suites like Jupiter’s. The testing harness built into
Automake is more than adequate for most small project needs. Larger
projects—such as Autoconf itself, with its 500-plus unit and integration
tests, which test functionality spread out over its entire project directory
structure, and even installed components—are a different matter entirely.

238 Chapter 9

Autotest Overview
There are three phases to the files consumed and generated by autotest.
The first phase is what the GNU Autoconf Manual calls the “prep for distribu-
tion” phase. The second phase occurs when configure is executed, and the
third phase happens during execution of the test suite. Let’s take each of
these phases in turn.

The first phase, which happens during building of the distribution
archive, is essentially the process of generating the executable test program
that can be run by users on their systems. It may seem a bit strange that
this process must be done during the building of a distribution archive;
however, Autoconf is required to be installed on any system that needs to
generate this program, so the testsuite program must be built when the
distribution archive is built so that it may be included in the archive for the
user. While the dist or distcheck targets are being made, configure (and make
check, when using distcheck) is executed; make check encapsulates rules to
rebuild the test program from sources using autom4te—the Autoconf cach-
ing m4 driver. The test program is built during execution of the dist target
by virtue of having it included in the Automake EXTRA_DIST variable, which
I’ll talk about near the end of this chapter.

Figure 9-1 shows the flow of data from maintainer-written source files
to the testsuite program during make dist (or make distcheck).

...

m4

autom4te

make

Generated ExecutablesUser-Provided Data Files Autotools/System ProgramsOptional User-Provided Files

testsuitetestsuite.at

package.m4

local.at

test-1.at

test-2.at

test-N.at Makefile
(make script: .am/.in)

(m4 / shell)

(m4 / shell)

(m4 / shell) (m4 / shell)

(m4 / shell)

(m4 / shell)

(binary)

(binary)

(perl script)

(shell script)

Figure 9-1: Data flow from maintainer-written input files to the testsuite program

The file testsuite.at, found at the top of the second column of the dia-
gram, is the main test file written by a project author. This is actually the
only maintainer-written file required by autotest. Exactly like configure.ac,
this file contains shell script sprinkled with M4 macro definitions and invo-
cations. This file is passed through the M4 macro processor, with autom4te
acting as the driver for m4, to generate the testsuite program at the top
of the last column, which is pure shell script. This process occurs during
execution of autom4te, which is driven by make check reading the makefile
generated from a Makefile.in or Makefile.am file that we write. The prep-for-
distribution concept comes from the fact that the check target is executed
during make distcheck (which, of course, builds the distribution archive); the
testsuite program is added to the distribution archive during this process.

Unit and Integration Testing with Autotest 239

It’s built during make dist, which does not execute make check, because all
files listed in EXTRA_DIST must be built before they can be included in the dis-
tribution archive.

Details like this are normally hidden from us by the Autotools, but as
autotest is still considered experimental—meaning, not fully integrated
into the Autotools suite—the responsibility for some of this additional
infrastructure is relegated to us, the maintainers. We’ll cover these
details shortly.

The Autoconf manual suggests that test suite authors may put indi-
vidual sets of related tests, called test groups, into separate .at files. The
testsuite.at file, then, contains only a series of m4_include directives, including
each of these group-specific .at files. Therefore, M4 inclusion is the mecha-
nism by which the optional test-1.at through test-N.at are gathered together
into testsuite.at for processing by M4.

The package.m4 and local.at files are optional maintainer-written (or
generated) input files that are automatically included by autom4te when pro-
cessing testsuite.at, if they’re found. The former contains basic information
about the test suite that’s displayed on the console and embedded in bug
reports generated by the test suite. The latter, the manual suggests, is an
optional mechanism we may choose to use that can help us keep testsuite.at
uncluttered with global definitions, non-group-related tests, and helper
macro definitions and shell functions that may be used by the actual tests.
We’ll discuss the exact contents of these files later in the chapter.

When a configure script is instrumented for autotest, the configuration
process generates additional, autotest-related artifacts. Figure 9-2 shows
what happens graphically during the configuration process, relative to
autotest.

atlocal.in
(m4 / shell)

(executable shell script) (sourced shell script)

(sourced shell script)

Optional User-Provided Files Generated Files Optional Generated Files

config.status atconfig

atlocal

Figure 9-2: The flow of data during configure while generating test-related templates

Recall from Chapter 2 that config.status drives the file-generation
portion of the configuration process. When a configure.ac file is set up for
autotest, config.status generates atconfig—a shell script that’s designed to be
sourced by testsuite when it’s executed.1 It contains source- and build-tree

1. The concept of shell script sourcing means that one script reads the contents of another
script into its own process space, and then continues as if this data had been originally writ-
ten directly into the first. This process is very much like when the C preprocessor reads the
contents of a header file into the translation unit that the compiler ultimately processes. One
script is said to be sourced or included by another.

240 Chapter 9

variables such as at_testdir, abs_builddir, abs_srcdir, at_top_srcdir, and so
on, in order to facilitate access to files and products in the source and build
trees during test suite execution.

The test author may also choose to create a template file called atlocal.in
that allows them to pass additional Autoconf and project-specific configura-
tion variables through to the test environment, as needed. The product of
this template is atlocal—also a shell script that’s designed to be sourced by
testsuite, if it’s present. If you choose to write atlocal.in, you must add it to the
list of tags passed to an invocation of AC_CONFIG_FILES in configure.ac. We’ll see
how this is done later as we export Jupiter’s async_exec flag to our test suite.

N O T E Don’t confuse atlocal with local.at from Figure 9-1. The atlocal file in Figure 9-2,
sourced by testsuite at runtime, is used to pass configuration variables into the test
environment from configure, while the local.at file is written directly by the project
maintainer and contains additional test code processed by autom4te when testsuite
is generated.

Figure 9-3 shows the flow of data during the execution of testsuite.

(text)

(executable shell script)

(sourced shell script)

(sourced shell script) (directory structure)

Generated Files Generated Data Files

Optional Generated Directory
Structure

Optional Generated Files

testsuite

atconfig

atlocal

testsuite.log

testsuite.dir

Figure 9-3: The flow of data during execution of the testsuite script

As mentioned previously, testsuite sources atconfig and atlocal (if pres-
ent) to access source- and build-tree information and other project-related
variables, then executes the tests that were generated into it. As it does so, it
creates a testsuite.log file containing verbose information on the execution of
each test. What you see on the screen is a single line of text per test.2

The testsuite program generates a directory called testsuite.dir. A sepa-
rate subdirectory is created within this directory for each test. The test suite
does not delete test-specific subdirectories for failed tests; we can use the
contents of this directory structure to obtain details and to debug the prob-
lem. We’ll go into detail about what gets added to these directories shortly.

The testsuite program may be executed by hand, of course, but it has
to be generated first. The Autoconf manual suggests that the process of
generating the testsuite program is best tied directly into the check target so
that when make check is executed, testsuite will be generated (if it’s missing
or out-of-date with respect to its dependencies) and then executed.

2. Unless you use the -v or --verbose option on the testsuite command line.

Unit and Integration Testing with Autotest 241

Since testsuite is added to the distribution archive, end users who run
make check will merely execute the existing testsuite program, unless they’ve
touched one of the files that testsuite depends on, in which case make will
attempt to regenerate testsuite. Without Autoconf installed, this process
would fail. Fortunately, it’s not generally in the user’s best interest to touch
any of testsuite’s dependencies in the distribution archive.

Wiring Up Autotest
Since my goal here is to teach you how to use this framework, the approach
I chose to take in configuring Jupiter for autotest was to incorporate the
entire set of optional files shown in Figures 9-1 through 9-3. This allows
us to explore exactly how everything works together. While this approach
is probably unwarranted for a project the size of Jupiter, it does work cor-
rectly, and it can always be pared down. I’ll show you at the end of this
chapter just what you can delete to reduce the autotest input file set to
the bare minimum.

Before we can write tests, we need to make configure.ac aware of our
desire to use autotest. This is done by adding two macro invocations to
configure.ac, as shown in Listing 9-1.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
AC_INIT([Jupiter],[1.0],[jupiter-bugs@example.org])
AM_INIT_AUTOMAKE
LT_PREREQ([2.4.6])
LT_INIT([dlopen])
AC_CONFIG_SRCDIR([src/main.c])
AC_CONFIG_HEADERS([config.h])

AC_CONFIG_TESTDIR([tests])
AC_CONFIG_FILES([tests/Makefile
 tests/atlocal])

Checks for programs.
AC_PROG_CC
AC_PROG_INSTALL
--snip--

Listing 9-1: configure.ac: Wiring autotest into configure.ac

The first of these two macros, AC_CONFIG_TESTDIR, tells Autoconf to enable
autotest and specifies that the testing directory will be called tests. You may
use a dot here to represent the current directory if you wish, but the GNU
Autoconf Manual recommends that you use a separate directory for ease in
managing test output files and directories.

Git tag 9.0

242 Chapter 9

N O T E The addition of AC_CONFIG_TESTDIR to configure.ac is actually the only change
required to enable autotest in a project, though changes to makefiles and additional
support files are required to make it useful and more automated. Interestingly,
this important tidbit is not found anywhere in the manual, though it is implied
rather subtly.

The second line is the standard Autoconf AC_CONFIG_FILES instantiating
macro. I’m using a separate instance of it here to generate the test-related
files from templates.

Let’s look at what goes into each of these files. The first is a makefile for
the tests directory that’s generated from an Autoconf Makefile.in template,
which itself is generated from the Automake Makefile.am file that we need
to write. In this makefile, we need to get make check to generate and execute
testsuite. Listing 9-2 shows how we might write tests/Makefile.am so that
Automake and Autoconf will generate such a makefile.

 TESTSUITE = $(srcdir)/testsuite
 TESTSOURCES = $(srcdir)/local.at $(srcdir)/testsuite.at
 AUTOM4TE = $(SHELL) $(top_srcdir)/missing --run autom4te
 AUTOTEST = $(AUTOM4TE) language=autotest

 check-local: atconfig atlocal $(TESTSUITE)
 $(SHELL) '$(TESTSUITE)' $(TESTSUITEFLAGS)

 atconfig: $(top_builddir)/config.status
 cd $(top_builddir) && $(SHELL) ./config.status tests/$@

 $(srcdir)/package.m4: $(top_srcdir)/configure.ac
 $(AM_V_GEN) :;{ \
 echo '# Signature of the current package.' && \
 echo 'm4_define([AT_PACKAGE_NAME], [$(PACKAGE_NAME)])' && \
 echo 'm4_define([AT_PACKAGE_TARNAME], [$(PACKAGE_TARNAME)])' && \
 echo 'm4_define([AT_PACKAGE_VERSION], [$(PACKAGE_VERSION)])' && \
 echo 'm4_define([AT_PACKAGE_STRING], [$(PACKAGE_STRING)])' && \
 echo 'm4_define([AT_PACKAGE_BUGREPORT], [$(PACKAGE_BUGREPORT)])'; \
 echo 'm4_define([AT_PACKAGE_URL], [$(PACKAGE_URL)])'; \
 } >'$(srcdir)/package.m4'

 $(TESTSUITE): $(TESTSOURCES) $(srcdir)/package.m4
 $(AM_V_GEN) $(AUTOTEST) -I '$(srcdir)' -o $@.tmp $@.at; mv $@.tmp $@

Listing 9-2: tests/Makefile.am: Getting make check to build and run testsuite

Before we begin dissecting this file, I should mention that these contents
were taken from Section 19.4 of the GNU Autoconf Manual. I’ve tweaked them
a bit, but essentially these lines comprise a portion of the recommended way
to tie autotest into Automake. We’ll complete this file as we discuss additional
features and requirements of autotest-oriented make script.

Unit and Integration Testing with Autotest 243

N O T E This lack of more complete integration, along with the fact that Autoconf can be config-
ured to use several different test drivers (DejaGNU, for instance), is likely what keeps
autotest in experimental mode. While Libtool, for instance, has slowly migrated toward
a position of complete integration with Automake, autotest still requires some fiddling
to properly integrate into a project build system. Nevertheless, once the requirements are
understood, proper integration is pretty simple. Additionally, as we’ve seen, Automake
has its own test framework, which gives Automake maintainers little incentive to fully
support autotest.

The code in Listing 9-2 is pretty straightforward when taken a line at a
time—four variables and four rules. The variables are not strictly necessary,
but they make for shorter command lines and less duplication in rules and
commands. The TESTSUITE variable at simply keeps us from having to pre-
fix testsuite with $(srcdir)/ everywhere we use it.

N O T E The testsuite program is distributed, so it should be built in the source tree. Files
that are destined to end up in the distribution archive should be found in the source
directory structure. Additionally, the content of such built and distributed files should
be the same, regardless of differences in configuration options used by the original
archive creator, or the end user.

The TESTSOURCES variable at allows us to easily add additional tests to
the makefile. Each .at file becomes a dependency of testsuite so that when
one of them is changed, testsuite is rebuilt.

The AUTOM4TE variable at allows us to wrap execution of autom4te with
the Automake missing script, which prints a nicer error message if autom4te is
not found. This happens when an end user who doesn’t have the Autotools
installed does something that requires testsuite to be rebuilt—such as
modify testsuite.at.

N O T E We can’t use Automake’s maintainer-rules option to avoid writing these rules into
distribution archive Makefiles because we must manually write these rules.

The AUTOTEST variable at appends the --language=autotest option to
the autom4te command line. There is actually no program in the Autoconf package
called autotest. If we had to pin down the definition of such a tool, it would
be the contents of this AUTOTEST variable.

The check-local rule at ties execution of testsuite into Automake’s
check target. Automake standard targets like check have a -local counterpart
that you can use to supplement the functionality generated by Automake
for the base target. If Automake sees a rule with the target check-local in
Makefile.am, it generates a command to run $(MAKE) check-local under the
generated Makefile’s check rule. This gives you a hook into the standard
Automake targets. We’ll cover such hooks in greater detail in Chapters 14
and 15, where we’ll use them extensively in our efforts to convert a real-
world project to use an Autotools-based build system.

244 Chapter 9

The check-local target depends on atconfig, atlocal, and $(TESTSUITE).
Recall from Figure 9-3 that atlocal is a script sourced by testsuite. It’s gener-
ated directly by the invocation of AC_CONFIG_FILES that we added to configure.ac
in Listing 9-1, so we’ll cover its contents shortly. The command for this rule
executes '$(TESTSUITE)' with $(TESTSUITEFLAGS) as a command line argument.
The contents of TESTSUITEFLAGS are user defined, allowing the end user to
run make check TESTSUITEFLAGS=-v, for instance, to enable verbose output from
testsuite while making targets that invoke testsuite.

You can also use TESTSUITEFLAGS to target specific test groups by num-
ber (for instance, TESTSUITEFLAGS=2 testsuite) or, if you’ve written your tests
using the AT_KEYWORDS macro, by tag name. In addition, several command
line options are available for the generated testsuite program. You can
find complete documentation for testsuite options in Section 19.3 of the
GNU Autoconf Manual.

N O T E The single quotes around $(TESTSUITE) allow the path in TESTSUITE to contain spaces,
if needed. This technique can and should be used in all makefiles to handle whitespace
in paths. I’ve generally ignored the concept of whitespace in paths within this book in
order to reduce the noise in the listings, but you should be aware that makefiles can be
written to properly handle whitespace in all filenames and paths—those in targets and
dependencies, as well as those in the commands associated with rules.

I mentioned previously that the atconfig script, also sourced by testsuite,
is generated automatically beneath the covers by AC_CONFIG_TESTDIR. The
problem is, even though config.status understands how to build this file,
Automake doesn’t know anything about it because it’s not listed directly in
any of the instantiating macro invocations in configure.ac, so we need to add
an explicit rule to Makefile.am to create or update it. This is where the atcon-
fig rule at in Listing 9-2 comes in. The check-local rule depends on it, so
its commands will be executed if atconfig is missing or older than its depen-
dency, $(top_builddir)/config.status, when make check is executed.

The command in the rule for generating $(srcdir)/package.m4 at (note
there is only one command here) merely writes text into the target file if
the file is missing or older than configure.ac. This is an optional input file
(see Figure 9-1), the contents of which are actually required by autotest
in some form. Several M4 macros must be defined in the input data that
is processed by autotest to create a test suite, including AT_PACKAGE_NAME,
AT_PACKAGE_TARNAME, AT_PACKAGE_VERSION, AT_PACKAGE_STRING, AT_PACKAGE_BUGREPORT,
and AT_PACKAGE_URL. These variables may be defined directly in testsuite.at
(or any of the subfiles included by that file), but it makes more sense to
generate this information from values already found in configure.ac so we
don’t have to maintain two sets of the same information. This is the very
reason why package.m4 is included automatically by autom4te if it’s found
while processing testsuite.at.

But wait—why not use AC_CONFIG_FILES to have configure generate this
file? All we’re doing is generating a text file that contains configuration
variables, and that sounds like exactly what AC_CONFIG_FILES is for. The prob-
lem is, AC_CONFIG_FILES and the other instantiating macros always generate

Unit and Integration Testing with Autotest 245

files into the build tree, and package.m4 must end up in the source tree in
order to be added to the distribution archive (not because it’s part of any
build or execution process the user may instigate, but because it’s part of
the source code for testsuite). Perhaps the full integration of autotest, at
some point in the future, will result in the ability to request the instantiat-
ing macros to generate files into the source tree. Until then, this is what we
have to work with.

The fourth and final rule, $(TESTSUITE), at , generates $(srcdir)/test-
suite using the $(AUTOTEST) command. Because $(TESTSUITE) is a dependency
of check-local, it’ll get built if it’s not up-to-date. The autom4te program,
when executed in autotest mode, accepts the -I option for specifying include
paths for .at files that may be included by testsuite.at or any of its inclusions.
It also accepts the -o option for specifying the output file, testsuite.3

N O T E I’ve added $(AM_V_GEN) in front of the commands of the last two rules in Listing 9-2
to allow my custom rules to tie into the Autotools’ silent build rules system. Any
command prefixed with $(AM_V_GEN) will cause the normal command output to be
replaced with GEN target when building with silent rules enabled. See Section 21.3 of
the GNU Automake manual for more details on this and other variables that affect
build output when building with silent rules.

Taken as a whole, all of this allows us to run make check at the command
prompt to build (if needed) and execute $(srcdir)/testsuite.

N O T E There’s a bit more we need to do in this Makefile.am file to fully integrate autotest
functionality into Automake. We’ll add some additional administrative rules and
variables later in this chapter. For clarity at this point, I limited the content to just
what we need to build and run the test suite.

Well, we’ve created a new directory and added a new Makefile.am. By
now, you should be automatically thinking about how this Makefile.am file
is going to be called if we don’t link it into the top-level Makefile.am SUBDIRS
variable. You’re absolutely correct—this must be our next step. Listing 9-3
shows this modification to the top-level Makefile.am file.

SUBDIRS = common include libjup src tests

Listing 9-3: Makefile.am: Adding the tests subdirectory

N O T E I added tests last. This will almost always be the pattern for a directory such as tests.
In order to test the system, most, if not all, of the other directories must be built first.

3. It may seem strange that there are two (semicolon-separated) commands in this rule, the
first of which generates its output into a temporary file, after which the second moves that
temporary file into the final target. This is done because autom4te is generating a script in
a piecemeal fashion—the file can be seen and accessed while it’s only partially generated.
Attempts to execute such a partial script will likely fail but can sometimes cause data loss.
This generate-and-move idiom is used to remove risk of the possible data loss scenarios
because mv is an atomic filesystem operation.

246 Chapter 9

The second file in Listing 9-1 is the atlocal shell script that’s automati-
cally sourced by testsuite, if present, which may be used to pass additional
configuration variables through to testsuite’s runtime environment. We’ll
use this file in the Jupiter project to pass the async_exec flag through to
testsuite so it may know if the program it’s testing has been configured
with the async-exec feature enabled. Listing 9-4 shows how this is done in
atlocal’s template, atlocal.in.

async_exec=@async_exec@

Listing 9-4: tests/atlocal.in: A template for generating atlocal

Now, this causes a small problem for us because configure is not yet
exporting a substitution variable called async_exec. We wrote a shell script
that uses a shell variable of this name back in Chapter 5, but recall we only
used it to indicate whether we should invoke AC_DEFINE to generate the ASYNC
_EXEC preprocessor definition into config.h.in. We now need to use AC_SUBST
on this variable in order to generate an Autoconf substitution variable of
the same name. Listing 9-5 highlights the single-line addition to configure.ac
required to make this happen.

--snip--
 --
 Unable to find pthreads on this system.
 Building a single-threaded version.
 --])
 async_exec=no
 fi
fi

AC_SUBST([async_exec])
if test "x${async_exec}" = xyes; then
 AC_DEFINE([ASYNC_EXEC], 1, [async execution enabled])
fi
--snip--

Listing 9-5: configure.ac: Making autoconf generate the async_exec substitution variable

One last comment on Listing 9-1: we could have simply added these files
to the existing invocation of AC_CONFIG_FILES at the bottom of configure.ac, but
using a separate invocation here keeps test-related items together. It also
serves to illustrate the fact that AC_CONFIG_FILES may indeed be invoked mul-
tiple times within configure.ac, the results being cumulative.

We now need to create a set of source .at files that can be used by
autom4te to generate our test program. This set of files can be as simple as a
single testsuite.at file or as complex as the diagram in Figure 9-1, including
testsuite.at, a set of test-group-specific .at files, and a local.at file. These files
will contain autotest macro invocations mixed with simple or complex shell
script, as required by your testing needs. We’ll start with a single line of
autotest initialization code in a tests/local.at file, as shown in Listing 9-6.

Unit and Integration Testing with Autotest 247

AT_INIT

Listing 9-6: tests/local.at: Initialization code for testsuite can be added to a local.at file

The AT_INIT macro is required by autom4te to be found somewhere
within the translation unit presented by testsuite.at and its inclusions. This
single macro invocation expands into several hundred lines of shell script
that define the basic testing framework and all of the ancillary boilerplate
functionality associated with it.

We also need to create an empty testsuite.at file in the tests directory.
We’ll add items to it as we progress:

$ touch tests/testsuite.at

We now have the basis for generation and execution of the autotest
framework in Jupiter. Every project that uses autotest will have to be con-
figured in the manner we’ve shown so far. For smaller projects, some of
the optional pieces may be omitted, the contents of which would then be
combined directly into testsuite.at. We’ll discuss how to simplify when we’ve
completed our exploration of autotest. For now, let’s give it a try:

$ autoreconf -i
--snip--
$./configure
--snip--
config.status: creating tests/Makefile
config.status: creating tests/atlocal
--snip--
config.status: executing tests/atconfig commands

Jupiter Version 1.0
--snip--
$ make check
--snip--
Making check in tests
make[1]: Entering directory '/.../jupiter/tests'
make check-local
make[2]: Entering directory '/.../jupiter/tests'
:;{ \
 echo '# Signature of the current package.' && \
 echo 'm4_define([AT_PACKAGE_NAME], [Jupiter])' && \
 echo 'm4_define([AT_PACKAGE_TARNAME], [jupiter])' && \
 echo 'm4_define([AT_PACKAGE_VERSION], [1.0])' && \
 echo 'm4_define([AT_PACKAGE_STRING], [Jupiter 1.0])' && \
 echo 'm4_define([AT_PACKAGE_BUGREPORT], [jupiter-bugs@example.org])'; \
 echo 'm4_define([AT_PACKAGE_URL], [])'; \
} >'tests/package.m4'
/bin/bash ../missing --run autom4te --language=autotest \
 -I '.' -o testsuite.tmp testsuite.at
mv testsuite.tmp testsuite
/bin/bash './testsuite'

248 Chapter 9

Jupiter 1.0 test suite.

Test results.

0 tests were successful.
--snip--
$

We can see from the output of configure that our generated files were
created in the tests directory, as expected. It also appears that the code gen-
erated by AC_CONFIG_TESTDIR has wired in the generation of the tests/atconfig
file as a command tag, rather than as a simple template file, using AC_CONFIG
_COMMANDS internally.

We then see from the output of make check that testsuite was both built
and executed. We can’t yet incorporate testsuite into a distribution archive
from the dist or distcheck targets because we haven’t wired our autotest func-
tionality into Automake. However, when we complete our changes at the end
of this chapter, you’ll find that running make check against the contents of a
distribution archive will not build testsuite, as it will have shipped with the
archive (assuming we haven’t touched any of testsuite’s dependencies).

N O T E One interesting item of note near the top of the make check output is highlighted by
the lines starting with make[1]: and make[2]:, where make indicates it’s entering
the jupiter/tests directory twice. This happens because of the check-local hook we
added, where the check target recursively invokes $(MAKE) check-local as a command
within the same directory.

Great, it works—with make check anyway. But it doesn’t do anything
yet except print a few extra lines of text to the console. To make it do
something useful, we need to add some tests. Therefore, our first task
will be to move the original Automake-based jupiter execution test from
src/Makefile.am into our autotest test suite.

Adding a Test
Autotest tests are bundled into sets called test groups. The purpose of a
test group is to allow tests within a group to interact with each other. For
example, the first test in a group may generate some data files used by sub-
sequent tests within the same group.

Tests that interact with each other are harder to debug, and broken
tests are harder to reproduce if they require other tests to run first. Multi-
test groups are hard to avoid when striving for full coverage; the ideal is to

Unit and Integration Testing with Autotest 249

have only one test per test group as much as possible. Where you just can’t
do it, test groups exist to facilitate the required interaction. The crux of
this facility is that tests within the same test group are executed within the same tem-
porary directory, allowing initial tests to generate files that subsequent tests
can then see and access.

Our single test will not suffer from these problems—mainly because
we haven’t yet put much effort into testing Jupiter (and, if we’re honest with
ourselves, there isn’t much actual code to test). Right now, when you exe-
cute make check, you see two sets of test output on the screen:

$ make check
--snip--

 make check-TESTS
make[2]: Entering directory '/.../jupiter/src'
make[3]: Entering directory '/.../jupiter/src'
PASS: greptest.sh
==
Testsuite summary for Jupiter 1.0
==
TOTAL: 1
PASS: 1
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
--snip--

 Making check in tests
make[1]: Entering directory '/.../jupiter/tests'
make check-local
make[2]: Entering directory '/.../jupiter/tests'
/bin/bash './testsuite'

Jupiter 1.0 test suite.

Test results.

0 tests were successful.
--snip--
$

The first set of tests (beginning at) are executed in the jupiter/src
directory. This is our original grep-based test where we check jupiter’s
output against a pattern. As you can see, the basic test framework built
into Automake is not bad. We’re hoping to improve on that framework
with autotest. The second set of tests (beginning at) are executed in
the jupiter/tests directory and involve autotest.

250 Chapter 9

Defining Tests with AT_CHECK
The grep-based test we’ve been using in src/Makefile.am is a perfect example
for use in the AT_CHECK macro provided by the autotest framework. Here are
the prototypes for the AT_CHECK family of macros:

AT_CHECK(commands, [status = '0'], [stdout], [stderr], [run-if-fail], [run-if-pass])
AT_CHECK_UNQUOTED(commands, [status = '0'], [stdout], [stderr], [run-if-fail], [run-if-pass])

AT_CHECK executes commands, checks the returned status against status,
and compares the output on stdout and stderr with the contents of the
stdout and stderr macro arguments. If status is omitted, autotest assumes a
successful status code of zero. If commands returns a status code to the shell
that does not match the expected status code specified in status, the test
fails. In order to ignore the status code of commands, you should use the spe-
cial command ignore in the status parameter.

Regardless, there are a couple of status codes that even ignore will not
ignore: a status code of 77 (skip) returned by commands will cause autotest to
skip the rest of the tests in the current test group, while 99 (hard failure)
will cause autotest to fail the entire test group immediately.

Like status, the stdout and stderr parameters appear to be optional, but
looks can be deceiving. If you pass nothing in these arguments, this merely
tells Autoconf that the test’s stdout and stderr output streams are expected
to be empty. Anything else will fail the test. So how do we tell autotest we
don’t want to check the output? As with status, we can use special com-
mands in stdout or stderr, including those shown in Table 9-1:

Table 9-1: Special Commands Allowed in stdout and stderr Arguments.

Command Description

ignore Do not check this output stream, but do log it to the test group’s log file.
ignore-no-log Do not check or log this output stream.
stdout Log and capture the test’s stdout output to the file stdout.
stderr Log and capture the test’s stderr output to the file stderr.
stdout-nolog Capture the test’s stdout output to the file stdout, but do not log.
stderr-nolog Capture the test’s stderr output to the file stderr, but do not log.
expout Compare the test’s stdout output to the file expout, created earlier;

log the differences.
experr Compare the test’s stderr output to the file experr, created earlier;

log the differences.

The run-if-fail and run-if-pass arguments allow you to optionally specify
shell code that should be executed upon test failure or success, respectively.

AT_CHECK_UNQUOTED does exactly the same thing as AT_CHECK, except that it
performs shell expansion on stdout and stderr first, before making the com-
parison with the output of commands. Since AT_CHECK doesn’t do shell expansion
on stdout and stderr, it stands to reason that you need to use AT_CHECK_UNQUOTED
if you reference any shell variables in the text of these parameters.

Unit and Integration Testing with Autotest 251

Defining Test Groups with AT_SETUP and AT_CLEANUP
The AT_CHECK macro must be invoked between invocations of AT_SETUP and
AT_CLEANUP, the pair of which define a test group and, therefore, the tempo-
rary directory from which the tests in the group are executed. The proto-
types for these macros are defined as follows:

AT_SETUP(test-group-name)
AT_CLEANUP

If you’ve got any experience with the xUnit family of unit test frame-
works (JUnit, NUnit, CPPUnit, and so on), you’ve probably got a pretty
strong notion of what the setup and cleanup (or teardown) functions
should be used for. Usually a setup function runs some common code
before each test in a test set, and a cleanup or teardown function executes
some common code at the end of each test in the set.

Autotest is a bit different—there is no formal setup or teardown func-
tionality shared by tests belonging to the same group (although this sort of
functionality can be emulated with shell functions defined within the test
group in testsuite.at, or in its included subfiles). As with xUnit frameworks,
Autotest runs every test in total isolation, because every test runs within its
own subshell. The only way a test can affect a subsequent test is by sharing
the same test group and leaving filesystem droppings around for subse-
quent tests to examine and act upon.

AT_SETUP accepts only one argument, test-group-name, which is the name of
the test group that we’re starting, and this argument is required. AT_CLEANUP
accepts no arguments.

We’ll add the group setup and cleanup macro invocations, wrapping a
call to AT_CHECK, to a new file, tests/jupiter.at, as shown in Listing 9-7.

AT_SETUP([jupiter-execution])
AT_CHECK([../src/jupiter],,[Hello from ../src/.libs/lt-jupiter!])
AT_CLEANUP

Listing 9-7: tests/jupiter.at: Adding our first test group—attempt #1

Libtool adds a wrapper script in the src directory for any executables that
use Libtool shared libraries. This wrapper script allows jupiter to find the unin-
stalled Libtool libraries it’s trying to use. As mentioned in Chapter 7, it’s a con-
venience mechanism that Libtool provides so we don’t have to jump through
hoops to test programs using Libtool shared libraries before they’re installed.

The end result is that the src/jupiter script is executing the real jupiter
program from src/.libs/lt-jupiter. Because jupiter displays its own location,
based on its argv[0] contents, we need to expect it to print this path.

We then need to add an m4_include statement to our currently empty
testsuite.at file in order to include jupiter.at, as shown in Listing 9-8.

m4_include([jupiter.at])

Listing 9-8: tests/testsuite.at: Including jupiter.at in testsuite.at

Git tag 9.1

252 Chapter 9

We’ll also want to add this new source file to our tests/Makefile.am file’s
TESTSOURCES variable so it becomes a prerequisite of testsuite, as shown in
Listing 9-9.

--snip--
TESTSUITE = $(srcdir)/testsuite
TESTSOURCES = $(srcdir)/local.at $(srcdir)/testsuite.at \
 $(srcdir)/jupiter.at
AUTOM4TE = $(SHELL) $(top_srcdir)/missing --run autom4te
AUTOTEST = $(AUTOM4TE) --language=autotest
--snip--

Listing 9-9: tests/Makefile.am: Adding additional sources to TESTSOURCES

We’ll follow this practice for every test we add to our test suite. In the
end, the only thing in testsuite.at will be several invocations of m4_include,
one for each test group. Executing this code renders the following output:

$ autoreconf -i
--snip--
$./configure
--snip--
$ make check
--snip--
/bin/bash './testsuite'

Jupiter 1.0 test suite.

 1: jupiter-execution FAILED (jupiter.at:2)

Test results.

ERROR: 1 test was run,
1 failed unexpectedly.

testsuite.log was created.

Please send `tests/testsuite.log' and all information you think might help:

 To: <jupiter-bugs@example.org>
 Subject: [Jupiter 1.0] testsuite: 1 failed

You may investigate any problem if you feel able to do so, in which
case the test suite provides a good starting point. Its output may
be found below `tests/testsuite.dir'.
--snip--
$

Unit and Integration Testing with Autotest 253

N O T E Running autoreconf and configure was required only because we updated the tests/
Makefile.am file. If we’d just touched an existing .at file, which is rebuilt by the
check target in tests/Makefile, then neither autoreconf nor configure would have
been necessary.

I’ll admit here that our single test failed because I deliberately coded
the test incorrectly in order to show you what a failed test looks like.

Although not obvious from the output, there is more than one testsuite.log
file created by testsuite when tests fail. The first is a master testsuite.log file
in the tests directory, which is always created, even when all tests pass, and is
designed to be sent in bug reports to the project maintainer. There is also a
log file of the same name in a separate numbered directory within the tests/
testsuite.dir directory for failed tests. The name of each of these directories
is the number of the test group that failed. The test group number can be
seen in the output. While you only need the master testsuite.log file, since it
contains the entire contents of all of the individual tests’ testsuite.log files, this
file also contains a lot of other information about your project and the test
environment that the maintainer would want to see but just gets in the way
for our purposes here.

To see exactly how our test failed, let’s examine the contents of the
testsuite.log file left in the tests/testsuite.dir/1 directory:

$ cat tests/testsuite.dir/1/testsuite.log
-*- compilation -*-
1. jupiter.at:1: testing jupiter-execution ...
./jupiter.at:2: ../src/jupiter
--- /dev/null 2018-04-21 17:27:23.475548806 -0600
+++ /.../jupiter/tests/testsuite.dir/at-groups/1/stderr 2018-06-01 16:08:04.391926296 -0600
@@ -0,0 +1 @@
+/.../jupiter/tests/testsuite.dir/at-groups/1/test-source: line 11: ../src/jupiter:
 No such file or directory
--- - 2018-06-01 16:08:04.399436755 -0600
+++ /.../jupiter/tests/testsuite.dir/at-groups/1/stdout 2018-06-01 16:08:04.395926314 -0600
@@ -1 +1 @@
-Hello from ../src/.libs/lt-jupiter!
+
./jupiter.at:2: exit code was 127, expected 0
1. jupiter.at:1: 1. jupiter-execution (jupiter.at:1): FAILED (jupiter.at:2)
$

First note that autotest writes, as often as possible, the related source
line into the testsuite.log file. This isn’t a big win for us at this point, but if
testsuite.at or its included files were long and complicated, you can see how
this information could be very helpful.

At , we see the argument we passed to the commands parameter of
AT_CHECK, along with the number of the line at which this argument was
passed to the macro in jupiter.at.

However, now things start to get a bit muddy. The entire point of the
stdout and stderr arguments in AT_CHECK is to provide some comparison
text for what is actually sent by the commands to these output streams. In

254 Chapter 9

accordance with the general Unix philosophy of not duplicating existing
functionality, the autotest authors chose to use the diff utility to make
these comparisons. The log lines from to (inclusive) show the uni-
fied4 output of the diff utility when comparing the original file (/dev/null
since we passed no value in the stderr argument) to the modified file—
the text sent to the stderr output stream during the attempt to execute
../src/jupiter.

If you’re not familiar with unified diff output, a brief explanation is in
order. The two lines starting at indicate the objects being compared. The
original, or minus (---), line indicates the left side of the comparison, while
the modified, or plus (+++), line indicates the right side of the comparison.
Here, we’re comparing /dev/null with a temporary file called /.../jupiter/tests/
testsuite.dir/at-groups/1/stderr that was used by autotest to capture the stderr
stream during the attempt to execute ../src/jupiter.

The next line, starting and ending with @@, is a chunk marker—diff’s
way of telling us about a portion of the two files that does not match. There
can be more than one chunk in the output displayed by diff. In this case,
the entire output text is so short that only one chunk was required to show
us the differences.

The numbers in the chunk marker represent two ranges, separated by
a space. The first range starts with a minus (-) sign, indicating the range
associated with the original file, and the second range starts with a plus (+)
sign, indicating the range associated with the modified file. Here’s the line
we’re currently discussing:

@@ -0,0 +1 @@

A range is made up of two integer values separated by a comma (,) or
a single value with a default second value of 1. In this example, the range
being compared starts at zero in the original file and is zero lines long,
while the comparison range in the second file starts at line 1 and is one line
long. These ranges are 1-based, meaning line 1 is the first line in the file.
Therefore, the first range specification, -0,0, is a special range that means
there’s no content in the file.

The lines following the range specification contain the full text of these
ranges, showing us the actual differences. The original file lines are printed
first, each prefixed with a minus sign, and then the modified file lines are
printed afterward, each prefixed with a plus sign. When there is enough
content around the modified lines to do so, additional unprefixed lines
are added before and after these lines, showing some context around the
changes. In this case, the entire content of this section is:

+/.../jupiter/tests/testsuite.dir/at-groups/1/test-source: line 11: ../src/jupiter:
 No such file or directory

4. The diff utility has a couple different output styles that may be selected using command
line arguments. The -u option usually selects unified output format.

Unit and Integration Testing with Autotest 255

Since the original file was empty, as indicated by the -0,0 range in the
chunk marker, there are no lines starting with minus. All we see is the one
modified file line starting with a plus.

Well, clearly these files are not the same—we expected nothing on the
stderr stream, but we got some error text instead. The shell experienced an
error attempting to execute ../src/jupiter—it could not be found. If you try
this at the shell prompt, you’ll see the following output:

$../src/jupiter
bash: ../src/jupiter: No such file or directory
$

N O T E Obviously you should not do this from the tests directory, or any other directory that’s
a sibling to the src directory, or it’ll actually find jupiter (if it’s been built) rather
than print this error.

If you put this line into a shell script called (arbitrarily) abc.sh and exe-
cute the script on the bash command line, you’ll see output that matches the
format shown in testsuite.log:

$ bash abc.sh
abc.sh: line 2: ../src/jupiter: No such file or directory
$

We can see at in testsuite.log that the shell returned a 127 status code,
indicating an error of some sort. The value 127 is used by the shell to indi-
cate execution errors—file not found or file not executable.

To be complete, let’s also consider the lines between and for a
moment. This is the unified diff output seen when comparing the text spec-
ified in AT_CHECK’s stdout argument with what was actually written to stdout by
jupiter (actually the shell, since we know ../src/jupiter was not found). In this
case, we see that the minus text is the original comparison text we specified
and the plus text is a single newline character, as this is what the shell sent
to stdout. The chunk marker range specification, fully expanded, would be:

@@ -1,1 +1,1 @@

There was one line of text in each of the original and modified sources
to be compared, but, as we can see by the output, the text in these sources
was completely different.

So What Happened?
This first attempt assumed that the jupiter program (or, rather, the Libtool
wrapper script) is found at ../src/jupiter, relative to the tests directory. While
this assumption is true, I’ve already alluded to the fact that each test group
is executed in its own temporary directory, so it makes perfect sense that
this relative path is not going to work from another directory. Even if we

256 Chapter 9

figured out, by trial and error, how many parent directory references to use,
it would be quite fragile; if we ran testsuite from a different directory, it
would fail because it depends so intimately on running from a specific posi-
tion relative to the jupiter program.

Let’s try a different tack. We’ll make use of the variables generated by
configure into atconfig. One of them, abs_top_builddir, contains the absolute
path to the top build directory. Therefore, we should be able to successfully
reference jupiter from anywhere using ${abs_top_builddir}/src/jupiter.

But now we have another problem: jupiter prints its own path and
we’ve just decided to obtain that path using a shell variable, so we’ll also
need to change the comparison text to use this variable, as well. This
change, however, causes yet another issue—we’ll need to change AT_CHECK to
AT_CHECK_UNQUOTED if we expect that shell variable in AT_CHECK’s stdout param-
eter to be expanded before the macro makes the comparison. Let’s make
these modifications by changing jupiter.at as shown in Listing 9-10.

AT_SETUP([jupiter-execution])
AT_CHECK_UNQUOTED(["${abs_top_builddir}"/src/jupiter],,
 [Hello from ${abs_top_builddir}/src/.libs/lt-jupiter!
])
AT_CLEANUP

Listing 9-10: tests/jupiter.at: Adding our first test group—attempt #2

Here, we’ve switched to using AC_CHECK_UNQUOTED, and we’ve changed
both the jupiter program path in the first argument and the comparison
text in the third argument to use the abs_top_builddir variable we inherit
from atconfig.

N O T E The newline at the end of the stdout argument is intentional and explained shortly.

Let’s try it out:

$ make check
--snip--
/bin/bash './testsuite'

Jupiter 1.0 test suite.

 1: jupiter-execution ok

Test results.

1 test was successful.
--snip--
$

Git tag 9.2

Unit and Integration Testing with Autotest 257

Once again, I only had to run make. Even though our changes were dra-
matic, affecting even the macros we called in the test suite, remember that
the entire test suite is generated from make check. The only time we need to
execute autoreconf and configure is if we make changes to configure.ac or any
of the templates from which it generates files used by make check, or if we
make any changes to Makefile.am files.

This attempt had much better results, but what’s with that extra newline
at the end of our comparison text in Listing 9-10? Well, remember what it is
that we’re sending to stdout from jupiter. Listing 9-11 provides a reminder.

--snip--
 printf("Hello from %s!\n", (const char *)data);
--snip--

Listing 9-11: common/print.c: What jupiter sends to stdout

The comparison text is an exact duplicate of what we expect to find on
jupiter’s stdout, so we’d better be sure to include every character we write;
the trailing newline is part of that data stream.

It’s probably a good idea at this point to remove the src/Makefile.am code
that builds and runs the Automake version of the test. Change src/Makefile.am
as shown in Listing 9-12.

SUBDIRS = modules/hithere

bin_PROGRAMS = jupiter
jupiter_SOURCES = main.c module.h
jupiter_CPPFLAGS = -I$(top_srcdir)/include
jupiter_LDADD = ../libjup/libjupiter.la -dlopen modules/hithere/hithere.la

Listing 9-12: src/Makefile.am: The updated full contents of this file after removing tests

N O T E All we did here was remove the test-related lines from the bottom half of the file.

Unit Testing vs. Integration Testing
On the whole, the autotest version is not much better than what we had
when our test was being executed by Automake’s test framework in src/
Makefile.am. Adding new tests is, however, a bit simpler than what we’d
have to do in src/Makefile.am’s TESTS variable. In fact, the only way the
Automake version becomes simpler is if we actually write test programs
and build them in check primaries. We might still have to build test pro-
grams in check primaries, but calling them and validating their output is
trivial when using autotest.

If you’re thinking that it feels like autotest is more attuned to system and
integration testing than unit testing, you’re pretty close to the mark. Autotest

258 Chapter 9

is designed to test your project from the outside, but it’s not limited to such
tests. Anything you can call from the command line can be a test, from
autotest’s perspective. What autotest actually offers you is a framework for
generating uniform test output, regardless of the kind of tests you’re using.

One approach to unit testing that I’ve used for years involves writing
test programs where the main source module of my test program liter-
ally #includes the .c file I’m testing. This gives me the option of calling
static methods within the module under test and provides direct access to
internal structures defined within that module.5 This approach is pretty
C oriented, but other languages have their own ways of performing the
same sort of tricks. The idea is to create a test program that can reach into
the private parts of a module and exercise functionality in small chunks.
When you put those chunks together, you can feel confident that the indi-
vidual chunks are working as designed; if there’s a problem, it’s probably in
the way you glued them together.

Let’s add some unit testing to Jupiter by creating a test module that
tests the functions in the common/print.c module. Create a file called test
_print.c in the common directory that contains the content in Listing 9-13.

#define printf mock_printf
#include "print.c"

#include <stdarg.h>
#include <string.h>

static char printf_buf[512];

int mock_printf(const char * format, ...)
{
 int rc;
 va_list ap;
 va_start(ap, format);
 rc = vsnprintf(printf_buf, sizeof printf_buf, format, ap);
 va_end(ap);
 return rc;
}

int main(void)
{
 const char *args[] = { "Hello", "test" };
 int rc = print_it(args);
 return rc != 0 || strcmp(printf_buf, "Hello from test!\n") != 0;
}

Listing 9-13: common/test_print.c: A unit test program for the print.c module

5. I used to do this by adding a main function bracketed with #ifdef UNIT_TEST and #endif at the
bottom of the file, but I found that this approach cluttered my source file—often the test code
ended up being longer than the code I was testing—and it was more difficult to maintain a
logical separation between test code and the code under test. The #include method allows the
compiler to assure you that the code under test compiles and links without the test code.

Git tag 9.3

Unit and Integration Testing with Autotest 259

The first line uses the preprocessor to rename any calls to printf to
mock_printf. The second line then uses the preprocessor to #include print.c
directly into test_print.c. Now, any calls to printf inside of print.c will be
redefined to call mock_printf instead—including any prototypes defined in
system header files like stdio.h.6

The idea here is to verify that the print_it function actually prints Hello
from argument!\n and returns zero to the caller. We don’t need any output—
a shell return code is sufficient for this test to indicate to the user that
print_it is working as designed.

Neither do we need this module’s main routine to accept any command
line arguments. If we had several tests in here, however, it might be conve-
nient to accept some sort of argument that allows us to tell the code which
test we want to run.

All we’re really doing here is directly calling print_it with a short string
and then attempting to verify that print_it returned zero and actually passed
what we expected to printf. Note that print_it is a static function, which
should make it inaccessible to other modules, but because we’re including
print.c at the top of test_print.c, we’re effectively combining both source files
into a single translation unit.

Now, let’s write the build code for this test program. First, we need to add
some lines to common/Makefile.am so that a test_print program gets built when
we run make check. Modify common/Makefile.am as shown in Listing 9-14.

noinst_LIBRARIES = libjupcommon.la
libjupcommon_la_SOURCES = jupcommon.h print.c

check_PROGRAMS = test_print
test_print_SOURCES = test_print.c

Listing 9-14: common/Makefile.am: Adding test_print as a check_PROGRAM

When we make the check target, we’ll now get a new program, test_print,
in the common directory. Now we need to add a call to this program to our
test suite. Create a new file in tests called print.at, as shown in Listing 9-15.

AT_SETUP([print])
AT_CHECK(["${abs_top_builddir}/common/test_print"])
AT_CLEANUP

Listing 9-15: tests/print.at: Adding the print test

We also need to add an m4_include statement for this test to testsuite.at, as
in Listing 9-16.

m4_include([jupiter.at])
m4_include([print.at])

Listing 9-16: tests/testsuite.at: Adding print.at to testsuite.at

6. This can occasionally have an undesirable side effect when, for example, the system header
file uses implementation-specific tricks to prototype functions in a nonportable (and non-
standard) manner for the sake of performance, but it usually works just fine.

260 Chapter 9

And finally, we need to add this new source file to the TESTSOURCES vari-
able in tests/Makefile.am, as shown in Listing 9-17.

--snip--
TESTSUITE = $(srcdir)/testsuite
TESTSOURCES = $(srcdir)/local.at $(srcdir)/testsuite.at \
 $(srcdir)/jupiter.at $(srcdir)/print.at
AUTOM4TE = $(SHELL) $(top_srcdir)/missing --run autom4te
AUTOTEST = $(AUTOM4TE) –language=autotest
--snip--

Listing 9-17: tests/Makefile.am: Adding print.at to TESTSOURCES

Since the test_print program only uses the shell status code to indicate
an error, using it in AT_CHECK is as simple as it gets. You only need the first
argument—the name of the program itself. If test_print had more than one
test, you might accept a command line argument (within the same param-
eter) that indicates which test you want to run and then add several invoca-
tions of AC_CHECK, each running test_print with a different argument.

Notice that we’ve started a new test group—as I mentioned earlier, you
should try hard to limit your test groups to a single test unless the nature of
the tests are such that they work together on the same file-based data set.

Let’s give it a shot. Note that in order to run the new test, we really only
need to make the check target to update and execute testsuite. However,
since we added the print.at dependency to tests/Makefile.am, we should prob-
ably also run autoreconf and configure. Had we enabled maintainer mode,
the extra maintainer-mode rules would have done this for us:

$ autoreconf -i
--snip--
$./configure
--snip--
$ make check
--snip--
/bin/bash './testsuite'

Jupiter 1.0 test suite.

 1: jupiter-execution ok
 2: print ok

Test results.

All 2 tests were successful.
--snip--
$

Unit and Integration Testing with Autotest 261

Administrative Details
I mentioned while describing the contents of tests/Makefile.am back near
Listing 9-2 that we needed to add some additional infrastructure to that
file in order to complete the tie-in with Automake. Let’s take care of those
details now.

We’ve seen that make (all) and make check work just fine, building our
products and building and executing our test suite. But we’ve neglected
some of the other targets that Automake wires up for us—specifically,
installcheck, clean, and distribution-related targets like dist and distcheck.
There’s a general lesson to be considered here: whenever we add custom
rules to Makefile.am, we need to consider the impact on the standard targets
generated by Automake.

Distributing Test Files
There are several generated files that need to be distributed. These files
are not inherently known by Automake, and, therefore, Automake needs to
be told explicitly about them. This is done with the Automake-recognized
EXTRA_DIST variable, which we’ll add to the top of tests/Makefile.am, as shown
in Listing 9-18.

EXTRA_DIST = testsuite.at local.at jupiter.at print.at \
 $(TESTSUITE) atconfig package.m4

TESTSUITE = $(srcdir)/testsuite
TESTSOURCES = $(srcdir)/local.at $(srcdir)/testsuite.at \
 $(srcdir)/jupiter.at $(srcdir)/print.at
--snip--

Listing 9-18: tests/Makefile.am: Ensuring test files get distributed with EXTRA_DIST

Here, I’ve added all the test suite source files, including testsuite.at,
local.at, jupiter.at, and print.at. I’ve also added the testsuite program and any
input files we generated using a non-Automake mechanism. These include
atconfig, which is generated by code provided by the AC_CONFIG_TESTDIR macro
internally, and package.m4, which is generated by a custom rule we added ear-
lier to this Makefile.am file. It’s important to understand here that adding files
to EXTRA_DIST causes them to be built, if needed, when make dist is executed.

N O T E I would have like to have just used $(TESTSOURCES) in EXTRA_DIST, but the sources in
that variable were formatted for rules and commands. EXTRA_DIST, as interpreted by
Automake, is designed to refer to a list of files relative to the current directory within
the source tree.

As a reminder, we distribute .at files because the GNU General Public
License says we must distribute the source code for our project and these
files are the source code for testsuite, just as configure.ac is the source code

Git tag 9.4

262 Chapter 9

for configure. However, even if you’re not using the GPL, you should still
consider shipping the preferred editing format of all files in your project; it
is an open source project, after all.

Checking Installed Products
We wrote a check target; it’s probably a good idea to support the GCS
installcheck target, which Automake also supports. This is done by add-
ing the installcheck-local target to this Makefile.am file, as shown in
Listing 9-19.

--snip--
check-local: atconfig atlocal $(TESTSUITE)
 $(SHELL) '$(TESTSUITE)' $(TESTSUITEFLAGS)

installcheck-local: atconfig atlocal $(TESTSUITE)
 $(SHELL) '$(TESTSUITE)' AUTOTEST_PATH='$(DESTDIR)$(bindir)' $(TESTSUITEFLAGS)
--snip--

Listing 9-19: tests/Makefile.am: Supporting installed-product testing

The only difference between check-local and installcheck-local is the
addition of the AUTOTEST_PATH command line option to testsuite, pointing
testsuite to the copy of jupiter found in $(DESTDIR)$(bindir), where it was
installed. AUTOTEST_PATH is prepended to the shell PATH variable before invok-
ing commands in AT_CHECK_UNQUOTED; therefore, you could write test code that
assumes PATH contains the path to an installed copy of jupiter. However,
tests are designed to be executed on either installed or uninstalled pro-
grams, so it’s a good idea to continue deriving and using a full path to pro-
grams within your test commands.

Now we’ll need to make a decision. When the user types make check, they
clearly mean to test the copy of jupiter in the build tree. But when they type
make installcheck, certainly they want to check the installed version of the
program, either in the default install location or wherever the user indi-
cates by using command line make variables like DESTDIR, prefix, and bindir.

This brings up a new issue: when we run tests for uninstalled jupi-
ter, we’re relying on Libtool’s wrapper script to ensure jupiter can find
libjupiter.so. Once we start testing installed jupiter, we’ll become responsible
for showing jupiter where libjupiter.so is located. If jupiter is installed in
standard places (such as /usr/lib), the system will naturally find libjupiter.so.
Otherwise, we’ll have to set the LD_LIBRARY_PATH environment variable to
point to it.

So, how do we write our tests to work correctly in both situations? One
interesting (but broken) approach is shown in Listing 9-20.

AT_SETUP([jupiter-execution])

set -x
find_jupiter()
{

Unit and Integration Testing with Autotest 263

 jupiter="$(type -P jupiter)"
 LD_LIBRARY_PATH="$(dirname "${jupiter}")/../lib" export LD_LIBRARY_PATH
 compare="${jupiter}"
 if test "x${jupiter}" == x; then
 jupiter="${abs_top_builddir}/src/jupiter"
 compare="$(dirname “${jupiter}”)/.libs/lt-jupiter"
 fi
}

find_jupiter
AT_CHECK_UNQUOTED(["${jupiter}"],,
 [Hello from ${compare}!
])
AT_CLEANUP

Listing 9-20: tests/jupiter.at: Testing execution for both installed and uninstalled
jupiter—attempt#1

The find_jupiter shell function attempts to locate jupiter in the PATH by
using the shell’s type command. If the first result is empty, we revert to using
the uninstalled version of jupiter.

The function sets two shell variables, jupiter and compare. The jupiter
variable is the full path to jupiter. The compare variable is derived from
jupiter and contains either the value of ${jupiter} or the Libtool location
and name for uninstalled versions. We can set LD_LIBRARY_PATH in both cases
to the ../lib directory, relative to where jupiter is found because that’s prob-
ably7 where it’s installed.

The problems with this approach are numerous. First, it doesn’t handle,
very well, the situation where jupiter should be installed but isn’t found in
the specified or implied install path. In this case, the code quietly reverts
to testing the uninstalled version—likely not what you wanted. Another
issue is that find_jupiter will locate jupiter anywhere in the PATH, even if
the instance is not the one you intended to test. But there’s an even more
nefarious bug: if you execute make check, intending to test the uninstalled
version, and an installed version of jupiter happens to be somewhere in the
PATH, that’s the version that will be tested.

It’s unfortunate that AUTOTEST_PATH defaults to a non-empty value when it’s
not specified on the command line, as this would be a good way to differenti-
ate the use of make check from make installcheck. However, AUTOTEST_PATH does
default to the name of the directory specified in AC_CONFIG_TESTDIR, which also
happens to be the value of ${at_testdir}—one of the variables generated by
AC_CONFIG_TESTDIR in atconfig. We can use this fact to differentiate between make
check and make installcheck by comparing ${AUTOTEST_PATH} to ${at_testdir}.
Change tests/jupiter.at as shown in Listing 9-21.

7. It’s possible that the user installed the software such that the lib directory is not a direct sib-
ling of bin, in which case this test would fail. A better way of dealing with this issue is to figure
out where the library was installed by querying the value of ${libdir}, which would have to be
passed into the test environment through atlocal.in.

264 Chapter 9

--snip--
set -x
find_jupiter()
{
 if test "x${AUTOTEST_PATH}" == "x${at_testdir}"; then
 jupiter="${abs_top_builddir}/src/jupiter"
 compare="$(dirname "${jupiter}")/.libs/lt-jupiter"
 else
 jupiter="${AUTOTEST_PATH}/jupiter"
 LD_LIBRARY_PATH="${AUTOTEST_PATH}/../lib" export LD_LIBRARY_PATH
 compare="${jupiter}"
 fi
}
jupiter=$(find_jupiter)
--snip--

Listing 9-21: tests/jupiter.at: A better way to use AUTOTEST_PATH

Now, when make check is executed, the jupiter variable will always be set
directly to the uninstalled version in the build tree (and compare will be set
to .../.libs/lt-jupiter), but when make installcheck is entered, it will be set to
${AUTOTEST_PATH}/jupiter (and compare will be set to the same value). Additionally,
since we’re able to fully distinguish between installed and uninstalled testing,
we can set the LD_LIBRARY_PATH only for installed versions of jupiter.

If AUTOTEST_PATH has been set incorrectly, which can happen (for exam-
ple, when the user sets DESTDIR or prefix incorrectly on the make command
line), the test will fail because ${jupiter} will not be found.

If I were to add additional tests that needed to run the jupiter program,
these lines would be a perfect candidate for local.at. The problem is that
a shell script designed to run within tests must be defined and executed
between calls to AT_SETUP and AT_CLEANUP; otherwise, it’s simply omitted from
the autom4te output stream while generating testsuite. So, how exactly is
local.at useful to us? Well, you can’t write shell code directly in local.at, but
you can define M4 macros that can be invoked from within your test mod-
ules. Let’s move the find_jupiter functionality into a macro definition in
local.at, as shown in Listing 9-22.

AT_INIT

m4_define([FIND_JUPITER], [[set -x
if test "x${AUTOTEST_PATH}" == "x${at_testdir}"; then
 jupiter="${abs_top_builddir}/src/jupiter"
 compare="$(dirname ${jupiter})/.libs/lt-jupiter"
else
 LD_LIBRARY_PATH="${AUTOTEST_PATH}/../lib" export LD_LIBRARY_PATH
 jupiter="${AUTOTEST_PATH}/jupiter"
 compare="${jupiter}"
fi]])

Listing 9-22: tests/local.at: Moving find_jupiter to an M4 macro

Git tag 9.5

Unit and Integration Testing with Autotest 265

Using a shell function was, perhaps, a good idea when we started, but
it’s become a bit extraneous at this point, so I modified the code to just
set the jupiter variable directly. Notice the second (value) argument of the
call to m4_define is set verbatim to the shell script we want to have generated
when the macro is invoked.

The set -x command in the first line of the value argument enables
shell diagnostic output so you can see the contents of this macro executing,
but only if you set TESTSUITEFLAGS=-v on the make command line. This is the
default setting for the output generated into testsuite.log, so you’ll be able to
see what the code generated by the macro invocation is actually doing.

N O T E You may have noticed the code in the second argument of m4_define has two sets of
square brackets around it. This is not strictly necessary in this example because there
are no special characters in the embedded code snippet. However, if there had been,
double quoting would have allowed the special characters—embedded square brack-
ets, or even a previously defined M4 macro name—to be generated exactly as is, with-
out interference from the m4 utility.

Now change tests/jupiter.at as shown in Listing 9-23.

AT_SETUP([jupiter-execution])
FIND_JUPITER
AT_CHECK_UNQUOTED(["${jupiter}"],,
 [Hello from ${compare}!
])
AT_CLEANUP

Listing 9-23: tests/jupiter.at: Calling the FIND_JUPITER macro

With this change in place, all tests that needed to run the jupiter pro-
gram may do so merely by invoking the FIND_JUPITER macro and then execut-
ing ${jupiter} within the commands argument. As you can see, the options
available to you are endless—they’re limited only by your mastery of the
shell. Because each test is run in a separate subshell, you can feel free to set
any environment variables you want without affecting subsequent tests.

Let’s try it out. Note we haven’t changed anything except for .at files, so
we need only run make to see the effects of our changes. First, we’ll install into
a local directory using DESTDIR so that we can see how make installcheck works:

$ make install DESTDIR=$PWD/inst
--snip--
$ make check TESTSUITEFLAGS=-v
--snip--
Making check in tests
make[1]: Entering directory '/.../jupiter/tests'
make check-local
make[2]: Entering directory
 '/home/jcalcote/dev/book/autotools2e/book/sandbox/tests'
/bin/bash './testsuite' -v

Jupiter 1.0 test suite.

266 Chapter 9

1. jupiter.at:1: testing jupiter-execution ...
++ test xtests == xtests

 ++ jupiter=/.../jupiter/src/jupiter
+++ dirname /.../jupiter/src/jupiter
++ compare=/.../jupiter/src/.libs/lt-jupiter
++ set +x
./jupiter.at:3: "${jupiter}"
1. jupiter.at:1: ok
--snip--
$ make installcheck DESTDIR=$PWD/inst TESTSUITEFLAGS=-v
--snip--
Making installcheck in tests
make[1]: Entering directory '/.../jupiter/tests'
/bin/bash './testsuite' AUTOTEST_PATH='/.../jupiter/inst/usr/local/bin' -v

Jupiter 1.0 test suite.

1. jupiter.at:1: testing jupiter-execution ...
++ test x/.../jupiter/inst/usr/local/bin == xtests
++ LD_LIBRARY_PATH=/.../jupiter/inst/usr/local/bin/../lib
++ export LD_LIBRARY_PATH

 ++ jupiter=/.../jupiter/inst/usr/local/bin/jupiter
++ compare=/.../jupiter/inst/usr/local/bin/jupiter
++ set +x
./jupiter.at:3: "${jupiter}"
1. jupiter.at:1: ok
--snip--
$

Here, the execution of make check TESTSUITEFLAGS=-v shows us at
that jupiter is being picked up from the build tree and compare is set
to the path of the Libtool binary, while make installcheck DESTDIR=$PWD/
inst TESTSUITEFLAGS=-v indicates at that jupiter being picked up from
the installation path we specified and compare is set to the same location.
LD_LIBRARY_PATH is also being set in this code path.

Cleaning Up
The testsuite program has a --clean command line option that cleans up
the tests directory of all test droppings. To wire that into the clean target, we
add a clean-local rule, as shown in Listing 9-24.

installcheck-local: atconfig atlocal $(TESTSUITE)
 $(SHELL) '$(TESTSUITE)' AUTOTEST_PATH='$(bindir)' $(TESTSUITEFLAGS)

clean-local:
 test ! -f '$(TESTSUITE)' || $(SHELL) '$(TESTSUITE)' --clean
 rm -rf atconfig

atconfig: $(top_builddir)/config.status
 cd $(top_builddir) && $(SHELL) ./config.status tests/$@

Listing 9-24: tests/Makefile.am: Adding support for make clean in tests

Git tag 9.6

Unit and Integration Testing with Autotest 267

If testsuite exists, it’s asked to clean up after itself. I’ve also added a
command to remove the generated atconfig script, as make distcheck fails if
this file is not removed during execution of the clean target while check-
ing the distribution directory from which the package is built, and atconfig
is not generated by Automake or by any Autoconf code that Automake
monitors. At this point, you could try out make dist or make distcheck to see
whether it now works as it should.

N O T E You might think the clean-local target is optional, but it’s required so that make
distcheck won’t fail when building a distribution archive due to extra files being left
around after distcheck runs make clean.

Note also that we don’t need to, nor should we, attempt to clean up
files generated into the source tree, such as package.m4 and testsuite itself.
Why not? Much like configure, autotest products like testsuite sit somewhere
between source files we write by hand and product files found in the build
tree. They’re built from sources, but stored in the source tree and ulti-
mately distributed in the archive.

Niceties
One more thing I like to do is add a call to AT_COLOR_TESTS to my local.at file,
right after the invocation of AT_INIT. Users can always specify colored test
output using a command line argument to testsuite (--color), but using
this macro allows you to enable colored test output by default. Change your
local.at file as shown in Listing 9-25.

AT_INIT
AT_COLOR_TESTS

m4_define([FIND_JUPITER], [set -x
if test "x${AUTOTEST_PATH}" == "x${at_testdir}"; then
--snip--

Listing 9-25: tests/local.at: Making colored test output the default

You should notice that the ok text after each successful test, as well
as the summary line All 2 tests were successful., is now green. If you
had experienced any failed tests, those tests would have shown FAILED
(testsuite.at:N) in red after the failed tests, with summary lines in red
as follows:

ERROR: All 2 tests were run,
1 failed unexpectedly.

Git tag 9.7

268 Chapter 9

A Minimal Approach
I mentioned at the outset that we’d take a look at cutting this system down
to the bare necessities for smaller projects. Here’s what we can do without:

tests/local.at Copy the contents of this file to the top of testsuite.at and
delete the file.

tests/atlocal.in Assuming you don’t need to pass any configuration
variables into your testing environment, remove the reference to the
product file, atlocal, from the call to AC_CONFIG_FILES in configure.ac and
delete this template file.

tests/*.at (subtest files included by testsuite.at) Copy the content
of these files serially into testsuite.at and delete the files; remove the
m4_include macro invocations that were originally used to include
these files.

Edit tests/Makefile.am and remove all references to the preceding files
(templates and generated products) from the EXTRA_DIST and TESTSOURCES
variables, as well as from the check-local and installcheck-local rules.

I would not remove the package.m4 rule, although you may do so if
you wish by copying the m4_define macro invocations generated into this
file directly to the top of testsuite.at. Since make generates this file using
variables defined by Autoconf, a generated instance of package.m4 already
contains the values that replace the variable references in the command in
tests/Makefile.am. In my opinion, the value of not having to edit this informa-
tion in two places far outweighs the overhead of maintaining the file gen-
eration rule.

Summary
We’ve covered the basics of autotest, but there are a dozen more or less
useful AT_* macros you can use in your testsuite.at file. Section 19.2 of the
GNU Autoconf Manual documents them in detail. I’ve shown you how to
wire autotest into the Automake infrastructure. If you’ve chosen to use
autotest without Automake, there will be some differences between the
Automake’s tests/Makefile.am and Autoconf’s tests/Makefile.in, as you can
no longer rely on Automake to do some things for you. However, if you’re
writing your own Makefile.in templates, these modifications will quickly
become obvious to you.

I’ve also shown you a technique for creating unit tests in C that allows
you full access to the private implementation details of a source module.
I’ve attained nearly 100 percent code coverage using this technique in past
projects, but I’ll warn you of one caveat now: writing unit tests at this level
makes it much more difficult to change the functionality of your applica-
tion. Fixing a bug is not so bad, but making design changes will generally
require you to disable or entirely rewrite the unit tests associated with the
code affected by your changes. It’s a good idea to be pretty sure of your
design before committing yourself to this level of unit testing. It has been

Unit and Integration Testing with Autotest 269

said that one of the primary values of writing unit tests is that you can set
them and forget them—that is, you can write the tests once, wire them into
your build system, and no longer pay attention to whether the code under
test is working. Well, this is mostly true, but if you ever have to modify a
well-tested feature in your project, unless you comment your test code well,
you’ll find yourself wondering what you were thinking when you wrote that
test code.

Nevertheless, I sleep better at night knowing that code I just commit-
ted to my company repository is fully tested. I’ve also been more confident
in discussions with colleagues regarding bugs surrounding my well-tested
code. Autotest has helped reduce the effort involved in these projects.

With the end of this chapter, we’ve also come to the end of the Jupiter
project—and it’s a good thing, because I’ve taken the Hello, world! concept
much further than anyone has a right to. From here on out, we’ll be focus-
ing on more isolated topics and real-world examples.

10
F I N D I N G B U I L D D E P E N D E N C I E S

W I T H P K G - C O N F I G

Let’s say your project depends on a library
called stpl—some third-party library. How

can your build system determine where
libstpl.so is installed on an end user’s system?

Where are stpl’s header files to be found? Do you sim-
ply assume /usr/lib and /usr/include? This is effectively
what Autoconf does if you don’t tell it to look elsewhere, and for many pack-
ages perhaps that’s fine—it’s a common convention to install libraries and
headers into these directories.

But what if they aren’t installed in these locations? Or perhaps they were
built locally and installed into the /usr/local tree. What compiler and linker
options should be used when using stpl in your project? These are a few issues
that have plagued developers from the beginning, and the Autotools don’t
really do much to manage this problem. Autoconf expects any libraries you
use to be installed into “standard places,” meaning into directories where the
preprocessor and linker automatically look for header files and libraries. If

A common mistake that people make when trying
to design something completely foolproof is to
underestimate the ingenuity of complete fools.

—Douglas Adams, The Hitchhiker’s
Guide to the Galaxy

272 Chapter 10

a user has the library but it’s installed in a different location, the Autotools
expect end users to know how to interpret the configuration failure. As it
happens, there are several good reasons why many libraries are not installed
in these standard places.

Additionally, Autoconf can’t easily find libraries that are not installed
at all. For example, you may have just built a library package and you want
another package to pick up headers and libraries from the first package’s
build directory structure. This is possible with Autoconf, but it involves
the end user setting variables like CPPFLAGS and LDFLAGS on the configure
command line. The project maintainer can make things a little easier by
providing user-specified configuration options with the AC_ARG_ENABLE and
AC_ARG_WITH macros for libraries they anticipate might not be easy to find in
standard places, but if your project uses a lot of third-party libraries, it’s just
guesswork trying to determine which of these will be particularly problem-
atic for users. And then, users are not often programmers; we cannot rely
on them to have enough background to know what to use for option values,
even if we do supply command line options for problematic dependencies.
Throughout this chapter, I’ll refer to these as build dependency issues.

There is a tool that provides a solution for these types of problems in
a more elegant fashion using a very common tactic in software design—
by providing another layer of indirection. And it’s not part of the GNU
Autotools. Regardless, its use has become so prolific over the past 20 years
that it would be an oversight to exclude a description of pkg-config in any
book that discusses Linux build systems. Pkg-config is as useful as it is today
because a lot of projects have begun to use it—especially library projects,
and most especially library projects that install into nonstandard locations.

In this chapter, we’ll look at pkg-config’s components and functionality
and how to use it in your projects. For your own library projects, we’ll also
discuss how to update the pkg-config database as your package is installed
onto users’ (or as I like to call them, potential contributors’) systems.

Before we get started, allow me to state up front that this chapter makes a
lot of references to filesystem objects that may or may not exist on your flavor
of Linux, or perhaps exist in a different form or location. It’s the nature of
what we’re doing here—we’re discussing packages with libraries and header
files that probably exist in different locations on different Linux flavors. I’ll
try to point out such potential differences as we come to them so you’ll not be
too surprised when things don’t line up exactly on our two systems.

A pkg-config Overview
Pkg-config is an open source software utility maintained by the freedesktop.org
project. The pkg-config website is a part of the freedesktop.org project web-
site. The pkg-config project is the result of an effort to turn the gnome-config
script—a part of the gnome build system—into a more general-purpose tool,
and it seems to have caught on. Some inspiration for pkg-config also came
from the gtk-config program.

Finding Build Dependencies with pkg-config 273

A NOT E A BOU T PKG- CONF IG CLONE S

The freedesktop.org pkg-config project has been around for a long time and
has garnered a somewhat loyal following. As a direct result, other projects now
exist that offer functionality that is similar—often identical—to the pkg-config
project. One that comes to mind is the pkgconf project (which Red Hat’s
Fedora Linux seems to prefer when you ask the yum package manager to install
pkg-config for you).

Do not confuse these two. The pkgconf project is a modern clone of the
original pkg-config project that comes with claims of higher efficiency—and as
far as I’m concerned, it may very well live up to these claims. Regardless, this
chapter is about pkg-config. If you’ve found a project that provides functionality
similar to pkg-config and you like it, then by all means use it. My goal here is
to teach you about pkg-config. If this material helps you understand how to use
pkgconf, or another pkg-config clone, then you’re getting from this book exactly
what I hoped to convey.

That said, however, I cannot cover all of the nuanced differences among
the different pkg-config clones. If you want to follow along with my examples
and your flavor of Linux won’t install the original pkg-config package for you,
you can always navigate in your browser to https://www.freedesktop.org/wiki
/Software/pkg-config and download and install version 0.29.2 of the original
pkg-config project.

Pkg-config is used simply by invoking the pkg-config command line utility
with options that display the desired data. When you’re looking for libraries
and header files, the “desired data” includes package version information as
well as compiler and linker options wherein library and header file locations
are specified. For instance, to obtain C-preprocessor flags required to access
a library’s header files, one need only specify the --cflags option on the
pkg-config command line, and compiler options appropriate for the package
are displayed to stdout. This display can be captured and appended to com-
piler command lines in your configuration scripts and makefiles as needed.

Perhaps you’re wondering why we even need a tool like pkg-config when
Autoconf provides the AC_CHECK_LIB and AC_SEARCH_LIBS macros. In the first
place, as I mentioned previously, the Autoconf macros are designed to only
look in “standard locations” for libraries. You can trick the macros into
looking in other places by preloading search paths into CPPFLAGS (using -I
options) and LDFLAGS (using -L options). However, pkg-config is designed
to help you find libraries that may be installed in places only your users’
pkg-config installations know about; the best thing about pkg-config is that
it knows how to find libraries and headers on end users’ systems that these
users don’t even know about. Pkg-config can also tell your build system
about additional dependencies required when your users are trying to stati-
cally link to your libraries. Therefore, it effectively hides such details from
users, and that’s the sort of user experience we’re looking for.

274 Chapter 10

There are, however, some caveats to using pkg-config with the Autotools.
In the first edition of this book, I suggested that the PKG_CHECK_MODULES add-
on M4 macro that’s shipped with pkg-config was a good approach to using it
with Autoconf. I’ve since amended my thoughts on this issue as I’ve discov-
ered over the years that the use of this macro can cause more problems than
it solves under some rather common conditions. Additionally, pkg-config is so
simple to use directly in shell script that it makes little sense to wrap it with
less-than-transparent M4 macros. We’ll discuss this topic in much more detail
in this chapter, but I wanted to set the stage for the pattern of use you’ll see in
the examples that follow.

Diving In
Let’s start by looking at the output of the --help option for the pkg-config
command:

$ pkg-config --help
Usage:
 pkg-config [OPTION...]
--snip--
Application Options:
--snip--
 --modversion output version for package
--snip--
 --libs output all linker flags
 --static output linker flags for static linking
--snip--
 --libs-only-l output -l flags
 --libs-only-other output other libs (e.g. -pthread)
 --libs-only-L output -L flags
 --cflags output all pre-processor and compiler flags
 --cflags-only-I output -I flags
 --cflags-only-other output cflags not covered by the cflags-only-I option
 --variable=NAME get the value of variable named NAME
 --define-variable=NAME=VALUE set variable NAME to VALUE
 --exists return 0 if the module(s) exist
 --print-variables output list of variables defined by the module
 --uninstalled return 0 if the uninstalled version of one or more
 module(s) or their dependencies will be used
 --atleast-version=VERSION return 0 if the module is at least version VERSION
 --exact-version=VERSION return 0 if the module is at exactly version VERSION
 --max-version=VERSION return 0 if the module is at no newer than version
 VERSION
 --list-all list all known packages
 --debug show verbose debug information
 --print-errors show verbose information about missing or conflicting
 packages (default unless --exists or
 --atleast/exact/max-version given on the command line)
--snip--
$

Finding Build Dependencies with pkg-config 275

I’ve only shown what I consider the most useful options here. There
are another dozen or so, but these are the ones we’ll use all the time in our
configure.ac files. (I’ve taken the liberty of wrapping long description lines as
pkg-config seems to think everyone has a 300-column monitor.)

Let’s start by listing all of the modules pkg-config is aware of on the sys-
tem. Here’s a sampling of the ones on my system:

$ pkg-config --list-all
--snip--
systemd systemd - systemd System and Service Manager
fontutil FontUtil - Font utilities dirs
usbutils usbutils - USB device database
bash-completion bash-completion - programmable completion for the bash shell
libcurl libcurl - Library to transfer files with ftp, http, etc.
--snip--
notify-python notify-python - Python bindings for libnotify
nemo-python Nemo-Python - Nemo-Python Components
libcrypto OpenSSL-libcrypto - OpenSSL cryptography library
libgdiplus libgdiplus - GDI+ implementation
shared-mime-info shared-mime-info - Freedesktop common MIME database
libssl OpenSSL-libssl - Secure Sockets Layer and cryptography libraries
xbitmaps X bitmaps - Bitmaps that are shared between X applications
--snip--
xkbcomp xkbcomp - XKB keymap compiler
dbus-python dbus-python - Python bindings for D-Bus
$

Pkg-config becomes aware of a package by having the package installa-
tion process update the pkg-config database, which is nothing more than a
well-known directory that pkg-config examines to resolve queries. The data-
base entries are simply plaintext files ending in a .pc extension. Therefore,
making pkg-config aware of your library project during installation is noth-
ing more difficult than generating and installing a text file, and Autoconf
can help us generate this file, as we’ll see later.

The pkg-config utility looks in several directories to find these files. We
can discover what directories it looks in, and the order of the search, by call-
ing it with the --debug option and piping the output (sent to stderr) through
grep in this manner:

$ pkg-config --debug |& grep directory
Cannot open directory #1 '/usr/local/lib/x86_64-linux-gnu/pkgconfig' in package search path: No
such file or directory
Cannot open directory #2 '/usr/local/lib/pkgconfig' in package search path: No such file or
directory
Cannot open directory #3 '/usr/local/share/pkgconfig' in package search path: No such file or
directory
Scanning directory #4 '/usr/lib/x86_64-linux-gnu/pkgconfig'
Scanning directory #5 '/usr/lib/pkgconfig'
Scanning directory #6 '/usr/share/pkgconfig'
$

276 Chapter 10

The first three directories that pkg-config tried to look in on my system
did not exist. These are all in the /usr/local tree. I haven’t built and installed
many packages on this system; as a result, I haven’t installed any .pc files
into the /usr/local tree.

From the output, it’s clear that .pc files must be installed into one of
these six directories: /usr(/local)/lib/x86_64-linux-gnu/pkgconfig, /usr(/local)
/lib/pkgconfig, or /usr(/local)/share/pkgconfig. When you think about it, you’ll
recognize these paths as what amounts to pkg-config’s ${libdir}/pkgconfig
and ${datadir}/pkgconfig directories if, that is, pkg-config didn’t need to
choose between /usr and /usr/local during its installation. In the early days,
these were indeed just pkg-config’s library and data installation paths,
but it didn’t take long for the project developers to realize that where pkg-
config was installed was not really germane to where pkg-config should
search on users’ systems for .pc files—they could be found in many loca-
tions, depending not on where pkg-config was installed but on where the
users had installed packages on their systems—all over the place.

But what about packages installed into custom locations or packages
not yet installed? Pkg-config has solutions for these cases as well. The
PKG_CONFIG_PATH environment variable can prepend user-specified paths
to the default search path pkg-config uses to search for its data files. We’ll
discover how to use this functionality as we cover more details about using
the pkg-config command in configure.ac.

Writing pkg-config Metadata Files
As stated earlier, pkg-config’s .pc files are simply short text files that describe
critical aspects of the build-and-link process to consumer build processes
that use components of these dependent packages.

Let’s take a look at a sample .pc file on my system—the one for the libssl
library, a part of the OpenSSL package. First we’ll need to find it:

$ pkg-config --variable pcfiledir libssl
/usr/lib/x86_64-linux-gnu/pkgconfig
$

The --variable option allows you to query the value of a variable, and
pcfiledir is a pkg-config-defined variable that exists for every .pc file. I cover
the complete list of predefined variables later in this chapter. The pcfiledir
variable shows you the current location of the file as discovered by pkg-config.
The nice thing about this variable is that it can also be used within your .pc
file to provide a sort of relocation mechanism. If your library and include file
paths are all relative to ${pcfiledir} within your .pc file, you can move it any-
where you like (as long as you move the libraries and header files it locates
to the same relative locations).

Finding Build Dependencies with pkg-config 277

I’ve provided the full contents of my libssl.pc file in Listing 10-1.

 prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/lib/x86_64-linux-gnu
includedir=${prefix}/include

 Name: OpenSSL-libssl
Description: Secure Sockets Layer and cryptography libraries
Version: 1.0.2g
Requires.private: libcrypto
Libs: -L${libdir} -lssl
Libs.private: -ldl
Cflags: -I${includedir}

Listing 10-1: libssl.pc: A sample .pc file

A .pc file contains two types of entities: variable definitions (starting
at), which may reference other variables using Bourne shell–like syntax,
and key-value tags (starting at), which define the types of data that
pkg-config can return about an installed package. These files can contain
as little or as much of the pkg-config specification as is required by the
package. Besides these entities, .pc files may also contain comments—any
text preceded by a hash (#) mark. While these types of entities may be
intermixed, it’s common convention to put variable definitions at the top,
followed by the key-value pairs.

Variables look and act like shell variables; definitions are formatted as a
variable name, followed by an equal (=) sign, followed by a value. You do not
need to quote the value portion, even if it contains whitespace.

Pkg-config makes some predefined variables available for use within
the .pc file and (as we’ve already seen) from the command line. Table 10-1
shows these variables.

Table 10-1: Pre-Defined Variables Recognized by pkg-config

Variable Description

pc_path The default search path used by pkg-config to find the .pc file
pcfiledir The installed location of the .pc file
pc_sysrootdir The system root directory set by the user, or / by default
pc_top_builddir The location of the user’s top build directory when executing

pkg-config

After you’ve looked at enough .pc files, you may begin to wonder if vari-
ables like prefix, exec_prefix, includedir, libdir, and datadir have any special
meaning to pkg-config. They don’t; it’s just nice to define these paths rela-
tive to each other to reduce duplication.

Key-value pairs are formatted as a well-known keyword, followed by a
colon (:) character, followed by some text that makes up the value portion.
Values may reference variables; referencing an undefined variable merely
expands to nothing. Quotes are not needed in these values either.

278 Chapter 10

The keys of key-value pairs are well-known and documented, although
putting unknown keys in the file has no effect on pkg-config’s ability to use
the rest of the data in the file. The keys shown in Table 10-2 are well-known:

Table 10-2: Well-Known Keys in Key-Value Pairs Recognized by pkg-config

Key Description

Name A human-readable name for the library or package.
Description A brief human-readable description of the package.
URL A URL associated with the package—perhaps the package

download site.
Version A version string for the package.
Requires A list of packages required by this package; specific versions may

be specified.
Requires.private A list of private packages required by this package.
Conflicts An optional field describing packages that this package conflicts with.
Cflags Compiler flags that should be used with this package.
Libs Linker flags that should be used with this package.
Libs.private Linker flags for private libraries required by this package.

Informational Fields
To get the pkg-config --exists command to return zero to the shell, you
need to specify Name, Description, and Version, at the very least. To be com-
plete, consider also providing a URL if your project has one.

If you’re not sure why a particular pkg-config command is not working
as expected, use the --print-errors option. Where pkg-config would normally
silently return a shell code, --print-errors will display a reason for a nonzero
shell code:

$ cat test.pc
prefix=/usr
libdir=${prefix}/lib dir

Name: test
#Description: a test pc file
Version: 1.0.0
$
$ pkg-config --exists --print-errors test.pc
Package 'test' has no Description: field
$ echo $?
1
$

N O T E The --validate option will also provide this information for both installed and
uninstalled .pc files.

Finding Build Dependencies with pkg-config 279

One obvious oversight is the lack of options for displaying the name and
description information belonging to a package. The description is displayed
when using the --list-all option; however, even the package name that shows
up in that listing is actually the base name of the .pc file, not the value of the
Name field from within the file. In spite of this, as mentioned previously, these
three fields—Name, Description, and Version—are required; otherwise, as far as
pkg-config is concerned, the package does not exist.

Functional Fields
The category of the Version field crosses over from informational to func-
tional, as there are some pkg-config command line options that can make
use of the value of this field to provide data about the package to configu-
ration scripts. The Requires, Requires.private, Cflags, Libs, and Libs.private
fields also provide machine-readable information to configuration scripts
and makefiles. Cflags, Libs, and Libs.private directly provide command line
options for the C compiler and linker. The options to be added to these
tools’ command lines are accessed by using various of the pkg-config com-
mand line options.

While pkg-config is conceptually simple, some of the details are a bit
elusive if you haven’t played with it long enough to glean a proper under-
standing. Let’s cover each of these fields in more detail.

The informational fields are designed to be read by people. The pack-
age version, for instance, can be displayed using the --modversion option:

$ pkg-config --modversion libssl
1.0.2g
$

N O T E Do not confuse the --version option with the --modversion option. If you do, you’ll
quietly get pkg-config’s version, regardless of what module you specify after --version.

However, the Version field can also be used to indicate to configuration
scripts if a package’s version meets requirements:

$ pkg-config --atleast-version 1.0.2 libssl && echo "libssl is good enough"
libssl is good enough
$ pkg-config --exists "libssl >= 2.0" || echo "nope - too old :("
nope - too old :(
$

N O T E Library version checks go against Autoconf’s general philosophy of checking for required
functionality, rather than checking for a specific version of a library, because some
distro providers backport functionality to older versions of libraries so they can use that
functionality without upgrading the library on a target version of their distro (mostly
for convenience, as newer versions of libraries sometimes come with newer dependency
requirements that can propagate for several levels). These examples are provided merely
to show you what’s possible with the functionality provided by pkg-config.

280 Chapter 10

Of the functional fields, some are more obvious than others. We’ll
cover each of them, starting with the more trivial ones. The Cflags field is
probably the simplest to comprehend. It merely provides include path addi-
tions and other options to the C preprocessor and compiler. All options for
both of these tools are combined into this one field, but pkg-config provides
command line options for returning portions of the field value:

$ pkg-config --cflags xorg-wacom
-I/usr/include/xorg
$ pkg-config --cflags-only-other xorg-wacom
$

N O T E The important thing to notice here is that the Cflags field contains compiler command
line options, not portions of compiler command line options. For example, to define an
include path for your library, ensure the value in Cflags contains both the -I flag and
the path, just as you would on the compiler command line.

The other options that affect the output of the Cflags field are
--cflags-only-I and --cflags-only-other. As you can see, pkg-config is
aware of the difference between -I options and other options; if you
specify --cflags-only-I, you’ll only see the -I options in the .pc file.

The Libs field provides a place to set -L, -l, and any other options des-
tined for the linker. For instance, if your package provides the stpl library,
libstpl.so, you would add the -L/installed/lib/path and -lstpl options to
the Libs field. Pkg-config’s --libs option returns the entire value, and, as
with Cflags, there are separate options (--libs-only-l, --libs-only-L, and
--libs-only-other) that separate and return subsets of the Libs options.

Somewhat harder to grasp is the use of the Libs.private field. This
field is documented as being for libraries “required by this package but
not exposed to applications.” In reality, however, while these are libraries
required to build the library published by the package, they’re also librar-
ies required by the consumer of the package if they’re linking statically
to the package’s library.1 In fact, the use of pkg-config’s --static command
line option, in conjunction with the --libs (or variations thereof) option,
will display a combination of the Libs and Libs.private field options. This is
because linking to a static library requires, at link time, all of the symbols
required by all of the code pulled in from the static library to which you are
directly linking.

This is an important concept, and understanding how it works is the
key to properly writing .pc files for your projects. Think about it from the
end user’s perspective: they want to compile some project, and they want it
to be linked statically with your library (we must also assume your project
builds and installs a static version of your library, of course). In order to do

1. Which, in my opinion, would have been a better way of documenting the feature in pkg-config’s
man page because to the user (or even to the maintainer using a third-party library), it doesn’t
matter that some other library is required to the build a dependency of your project. All that
matters to you, the consumer, is what’s required for your project to use that library.

Finding Build Dependencies with pkg-config 281

this, what options and libraries will be required on the compiler and linker
command lines, in addition to those already required when linking to your dynamic
library, in order to successfully perform this task? The answer to this ques-
tion will tell you what should go into the Libs.private field in the .pc file for
your project.

Now that those topics are behind us, we can properly discuss the
Requires and Requires.private fields. The values in these fields are other pkg-
config package names, with optional version specifications. If your pack-
age requires a particular version of another package that’s also managed
by pkg-config, you need only specify that package in the Requires field if its
Cflags and Libs field values are required by your users’ build processes in
order to consume your package’s shared library, or in the Requires.private
field if its Cflags and Libs.private field values are required in order to con-
sume your package’s static library.

With this understanding of Requires and Requires.private, we can now see
that additional options required by pkg-config packages that you’d normally
put into your Cflags and Libs or Libs.private fields are not needed in those
fields because you can simply reference the package by name (and version or
version range) in Requires or Requires.private. Pkg-config will recursively find
and combine options from all the packages’ fields as needed.

If the package required by your package is not managed by pkg-config,
you must add the options you’d normally find in such .pc files into your own
Cflags, Libs, and Libs.private fields.

The version specification used in the Requires and Requires.private fields
matches that of the RPM version specification. You may use >, >=, =, <=, or <.
Sadly, these fields only allow one instance of a given library, which means
you can’t apply both upper and lower bounds on the versions of required
packages. Listing 10-2 provides a contrived example of using version ranges.

--snip--
Name: music
Description: A library for managing music files
Version: 1.0.0
Requires: chooser >= 1.0.1, player < 3.0
--snip--

Listing 10-2: Specifying version and version ranges in Requires

The Requires field indicates that two libraries are required here: chooser
and player. The version of chooser must be 1.0.1 or higher, and the version of
player must be less than 3.0.2

Finally, the Conflicts field merely allows you as the author of a package
to define packages that conflict with your package, and the format of the

2. It’s actually rare to see a situation where a library requires a version of another library less
than a given value, as this scenario implies that player changed its interface at 3.0 and the
author of music chose not to upgrade to that new interface.

282 Chapter 10

field is identical to that of Requires and Requires.private. For this field you
may provide the same package more than once in order to define specific
ranges of versions that conflict with your package.

When you’ve completed writing your .pc file, you can validate it using
the --validate option:

$ pkg-config --validate test.pc
$

N O T E You can use any pkg-config options that provide field information on either an
installed .pc file, by using just the base name of the file, or on an uninstalled .pc
file, by specifying the full name of the file, as is done in this example.

If you have any errors that pkg-config can detect, they’ll be displayed. If
you see nothing, then you know that pkg-config can at least parse your file
properly and that a few basic checks pass.

Generating .pc Files with Autoconf
Now that you understand the basic structure of a .pc file, let’s consider how
we might use configuration data generated by our configuration scripts to
generate a .pc file. Consider the types of information provided by pkg-config.
Much of it is path information, and configuration scripts are designed to
manage all these paths, including install locations for built products.

For example, the user may specify an installation prefix on the configure
command line. This prefix determines where the package’s include files and
libraries will end up on their system when they install the package. The .pc
file had better know these locations, and it would be nice of us to provide a
build system that automatically updates this file to reflect the prefix path the
user specified on their configure command line.

Generating pc Files from pc.in Templates
To accomplish this, we won’t write .pc files. Instead, we’ll write .pc.in tem-
plate files for Autoconf and set the value of the prefix variable to @prefix@
in these templates. That way, configure will replace this reference with the
actual configured prefix when it converts the .pc.in template into the install-
able .pc file.

We can also set the value of the Version field to @PACKAGE_VERSION@, which
is defined by the value you pass to the Autoconf AC_INIT macro in configure.ac.
To facilitate an experiment, create a configure.ac file in an empty directory,
as shown in Listing 10-3.

AC_INIT([test],[3.1])
AC_OUTPUT([test.pc])

Listing 10-3: configure.ac: Generating test.pc from test.pc.in

Finding Build Dependencies with pkg-config 283

Now create a test.pc.in file in the same directory, like the one shown in
Listing 10-4.

 prefix=@prefix@
libdir=${prefix}/lib/test
includedir=${prefix}/include/test

Name: test
Description: A test .pc file

 Version: @PACKAGE_VERSION@

CFlags: -I${includedir} -std=c11
Libs: -L${libdir} -ltest

Listing 10-4: test.pc.in: A .pc template file

Here we’ve specified the prefix and Version field values at and as
Autoconf substitution variable references.

Generate the file and check the result:

$ autoreconf -i
$./configure --prefix=$HOME/test
configure: creating ./config.status
config.status: creating test.pc
$
$ cat test.pc

 prefix=/home/jcalcote/test
libdir=${prefix}/lib/test
includedir=${prefix}/include/test

Name: test
Description: A test .pc file

 Version: 3.1

CFlags: -I${includedir} -std=c11
Libs: -L${libdir} -ltest
$
$ pkg-config --cflags test.pc
-std=c11 -I/home/jcalcote/test/include/test
$

As you can see at and in the console output, the Autoconf variable
references were replaced in the generated test.pc file with the values of those
Autoconf variables.

Generating .pc Files with make
Generating .pc files from templates using Autoconf has the disadvantage
of inhibiting the user’s ability to change their prefix choices when they run
make. This minor issue can be overcome by writing Makefile.am rules to gen-
erate the .pc files. Change the configure.ac file from the previous experiment,
as shown in Listing 10-5.

284 Chapter 10

AC_INIT([test],[3.1])
AM_INIT_AUTOMAKE([foreign])
AC_OUTPUT([Makefile])

Listing 10-5: configure.ac: Changes required to Listing 10-3 to generate test.pc using make

Now add a Makefile.am file, as shown in Listing 10-6.

EXTRA_DIST = test.pc
%.pc : %.pc.in
 sed -e 's|[@]prefix@|$(prefix)|g'\
 -e 's|[@]PACKAGE_VERSION@|$(PACKAGE_VERSION)|' $< >$@

Listing 10-6: Makefile.am: Adding make rules to generate test.pc

The key functionality in Listing 10-6 is encapsulated in the pattern rule
that converts .pc.in files into .pc files using a simple sed command. The only
odd bit in this sed command is the use of square brackets around the leading
at (@) sign on the variables to be replaced. Those brackets are treated by sed
as extraneous regular expression syntax, but the effect they have on Autoconf
is to inhibit it from interpreting the sequence as the opening character of a
replacement variable. We don’t want Autoconf replacing this variable. Rather,
we want sed to look for the sequence in test.pc.in. Another solution is to come
up with your own format for variables to be replaced, but do note that this
syntax is fairly common in the Autotools community for this very purpose.

N O T E Pattern rules are specific to GNU make and are therefore not portable. There has been
some chatter recently on the Automake mailing list of relaxing the restriction requiring
the generation of portable make syntax and simply requiring GNU make because GNU
make has been ported so widely these days.

For this example, I’ve added test.pc to the Automake EXTRA_DIST variable
so it will be built when make dist or distclean is executed, but you can add
test.pc as a prerequisite to any target in your Makefile.am files to make it avail-
able to that stage of the build if required. Let’s try it out:

$ autoreconf -i
configure.ac:2: installing './install-sh'
configure.ac:2: installing './missing'
$
$./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking whether make supports nested variables... yes
checking that generated files are newer than configure... done
configure: creating ./config.status
config.status: creating Makefile
$
$ make prefix=/usr dist

Finding Build Dependencies with pkg-config 285

make dist-gzip am__post_remove_distdir='@:'
make[1]: Entering directory '/home/jcalcote/dev/book/autotools2e/book/test'
sed -e 's|[@]prefix@|/usr|g'\
 -e 's|[@]PACKAGE_VERSION@|3.1|' test.pc.in >test.pc
--snip--
$
$ cat test.pc
prefix=/usr
--snip--

Note that I added prefix=/usr to the make command line; thus, test.pc was
generated with that value in the prefix variable.

Uninstalled .pc Files
I mentioned at the outset of this chapter that pkg-config had the ability to
handle resolving references to uninstalled libraries and header files also. By
uninstalled, I mean products that have been built but not installed; they’re
still sitting in another project’s build output directory. Let’s now consider
how this is done.

To use it, a user would set PKG_CONFIG_PATH to point to a directory con-
taining a -uninstalled variant of a required package’s .pc file. By “-uninstalled
variant,” I mean that a .pc file named test.pc would have a -uninstalled vari-
ant named test-uninstalled.pc. The -uninstalled variant is not installed in
a pkg-config database directory but, rather, is still sitting in the project
source directory for the third-party dependency that the user has built.
Here’s an example:

$./configure PKG_CONFIG_PATH=$HOME/required/pkg
--snip--
$

N O T E I’m following the Autoconf recommended procedure here of passing environment vari-
ables as parameters to configure. Setting the variable in the environment or setting
it on the same command line before configure works also, but is not recommended
because configure is less aware of variables set in these other ways.

Assuming $HOME/required/pkg was where the required package was
unpacked and built, and assuming the same directory held the (possi-
bly generated) .pc files for that package and that there was a -uninstalled
variant in that directory, that file would be accessed by executions of the
pkg-config utility that reference the required package’s name from within
our configure script.

Obviously, you would not want to install the -uninstalled variant of any of
your .pc files—they’re designed to be used only in this fashion, from within
a build directory. Perhaps not quite as obvious is the fact that the -uninstalled
variants of your .pc files don’t contain all the same options as their installed
counterparts. The difference, simply stated, is in the path options. The
-uninstalled variants should contain absolute paths relative to the source

286 Chapter 10

location of your header files and the build location of your libraries so that
when the options are passed to consumers’ tools, they’ll be able to find the
products (header files and libraries) in those paths.

Let’s try it out. Edit the configure.ac file you created from Listing 10-3 to
be like that shown in Listing 10-7.

AC_INIT([test],[3.1])
AC_OUTPUT([test.pc test-uninstalled.pc])

Listing 10-7: configure.ac: Generating the -uninstalled variant of test.pc

Absolute paths can be derived by using appropriate Autoconf substitu-
tion variables, like @abs_top_srcdir@ and @abs_top_builddir@, in the manner
shown in Listing 10-8.

 libdir=@abs_top_builddir@/lib/test
 includedir=@abs_top_srcdir@/include/test

Name: test
Description: A test .pc file

 Version: @PACKAGE_VERSION@

CFlags: -I${includedir} -std=c11
Libs: -L${libdir} -ltest

Listing 10-8: test-uninstalled.pc: A -uninstalled variant of test.pc.in

This is the -uninstalled variant of the .pc file from Listing 10-4. I’ve
removed the prefix variable, as it no longer makes sense in this context.
I’ve replaced the ${prefix} references with @abs_top_builddir@ in the libdir
pkg-config variable at and @abs_top_srcdir@ in the includedir pkg-config
variable at . Let’s try it out:

$ autoreconf
$./configure
configure: creating ./config.status
config.status: creating test.pc
config.status: creating test-uninstalled.pc
$ pkg-config --cflags test.pc
-std=c11 -I/home/jcalcote/dev/book/autotools2e/book/temp/include/test
$

You may be asking yourself at this point why this is supposed to be so
much easier than just setting CFLAGS (or CPPFLAGS) and LDFLAGS on the configure
command line. Well, for one thing, it’s easier to remember PKG_CONFIG_PATH
than all of the potentially required individual tool variables. Another rea-
son is the options are encapsulated where they’re best understood—within
.pc files written by the required package’s author. Finally, if these options
change, you’ll have to change your use of individual variables accordingly,
but the PKG_CONFIG_PATH will remain the same. The extra level of indirection
afforded by pkg-config hides all the details from both you and your power
users and contributors.

Finding Build Dependencies with pkg-config 287

Using pkg-config in configure.ac
We’ve seen the way .pc files are put together. Now let’s take a look at how to
consume this functionality in configure.ac. As mentioned in the previous sec-
tion, the --cflags option provides access to the Cflags fields your compiler
needs in order to compile this package. Let’s try this out with the libssl.pc
file we saw previously. I’ve reproduced the relevant portion of Listing 10-1
here in Listing 10-9.

prefix=/usr
--snip--
includedir=${prefix}/include
--snip--
Cflags: -I${includedir}

Listing 10-9: libssl.pc: Relevant portion of this .pc file

When we use the --cflags option against this .pc file, we now under-
stand that we should see a -I compiler command line option.

$ pkg-config --cflags libssl

$

And . . . nothing is printed. Huh, did we do something wrong? The
libssl.pc file shows us that if we mentally expand the variables, we should see
something like -I/usr/include, right? Actually, pkg-config is doing exactly
what it should do—it’s printing the additional command line options necessary
to find the libssl header files. We don’t need to tell the compiler about the
/usr/include directory, as this is a standard location and pkg-config knows
this and omits such options automatically.3

Let’s try a .pc file whose Cflags value includes something other than
standard include locations. Note here that I’m using pkg-config itself to find
the location of its database directory for the xorg-wacom.pc file because it’s
different on different Linux distributions:

$ cat $(pkg-config --variable pcfiledir xorg-wacom)/xorg-wacom.pc
sdkdir=/usr/include/xorg

Name: xorg-wacom
Description: X.Org Wacom Tablet driver.
Version: 0.32.0
Cflags: -I${sdkdir}
$
$ pkg-config --cflags xorg-wacom
-I/usr/include/xorg
$

3. You can override this default functionality by setting the PKG_CONFIG_ALLOW_SYSTEM_CFLAGS
environment variable to any value. The PKG_CONFIG_ALL_SYSTEM_LIBS variable works the same way
for linker options. Nevertheless, the use of these environment variables is rarely necessary.

288 Chapter 10

Since /usr/include/xorg is not a standard include path, a -I option for
that path is displayed.4 All of this means that you can be complete in docu-
menting your package’s requirements in your .pc files without worrying
about cluttering consumer compiler and linker command lines with point-
less redundant definitions.

So, how do we use this output? Nothing more difficult than a little shell
script, as shown in Listing 10-10.

--snip--
LIBSSL_CFLAGS=$(pkg-config --cflags libssl)
--snip--

Listing 10-10: Using pkg-config to populate CFLAGS in configure.ac

The dollar-parens notation captures the output of this pkg-config com-
mand in the LIBSSL_CFLAGS environment variable.

N O T E You may, of course, use backticks rather than the dollar-parens notation I used in
Listing 10-10 to accomplish the same goal. The backtick format is older and slightly
more portable, but it has the drawback of not being easily nestable. For example, you
cannot do something like $(pkg-config --cflags $(cat libssl-pc-file.txt)) with
backticks without a lot of escape magic.

The linker options are accessed in a similar manner:

$ pkg-config --libs libssl
-lssl
$

Referring back to the libssl.pc file in Listing 10-1, we can indeed see
that the Libs line contained -lssl. Also, as we just discovered, the -L option,
referring a standard linker location, /usr/lib/x86_64-linux-gnu, was automat-
ically omitted. We can add this to our configure.ac file in the manner shown
in Listing 10-11.

--snip--
LIBSSL_LIBS=$(pkg-config --libs libssl)
--snip--

Listing 10-11: Using pkg-config to populate LIBS in configure.ac

Let’s tie it all together by populating all required variables for compil-
ing libssl header files and linking with libssl. Listing 10-12 shows how this
might be done.

4. It’s exactly because xorg project consumers were having so much trouble finding X librar-
ies and headers that pkg-config was originally created. Most of the X libraries and headers
are installed into nonstandard locations.

Finding Build Dependencies with pkg-config 289

--snip--
if pkg-config --atleast-version=1.0.2 libssl; then
 LIBSSL_CFLAGS=$(pkg-config --cflags libssl)
 LIBSSL_LIBS=$(pkg-config --libs libssl)
else
 m4_fatal([Requires libssl v1.0.2 or higher])
fi
--snip--
CFLAGS="${CFLAGS} ${LIBSSL_CFLAGS}"
LIBS="${LIBS} ${LIBSSL_LIBS}"
--snip--

Listing 10-12: Using pkg-config to access libssl in configure.ac

Could it be any simpler or any more readable? I doubt it. Let’s look at
one more example—that of linking statically to libssl, which also requires
(privately) libcrytpo:

$ cat $(pkg-config --variable pcfiledir libssl)/libssl.pc
prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/lib/x86_64-linux-gnu
includedir=${prefix}/include

Name: OpenSSL-libssl
Description: Secure Sockets Layer and cryptography libraries
Version: 1.0.2g

 Requires.private: libcrypto
Libs: -L${libdir} -lssl

 Libs.private: -ldl
Cflags: -I${includedir}
$
$ cat $(pkg-config --variable pcfiledir libcrypto)/libcrypto.pc
prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/lib/x86_64-linux-gnu
includedir=${prefix}/include

Name: OpenSSL-libcrypto
Description: OpenSSL cryptography library
Version: 1.0.2g
Requires:
Libs: -L${libdir} -lcrypto

 Libs.private: -ldl
Cflags: -I${includedir}
$
$ pkg-config --static --libs libssl

 -lssl -ldl -lcrypto -ldl
$

290 Chapter 10

As you can see in this console example at , libssl privately requires the
pkg-config-managed libcrypto package, meaning that linking to the libssl
shared library does not require the addition of -lcrypto on the linker com-
mand line, but linking to it statically does require this additional library
option. We can also see at that libssl privately requires a library that’s not
maintained by pkg-config, libdl.so.

N O T E You may find the contents of your libssl.pc and libcrypto.pc files are somewhat
different from mine, depending on your Linux distribution and the version of openssl
you have installed. Don’t worry about the differences—things will work fine on your
system with your .pc files. The important part of this example is to understand the
concepts I’m explaining.

Moving down to the libcrypto.pc file, we see at that libcrypto also
privately requires libdl.so.

The noteworthy item at is that pkg-config is “smart enough” to
understand the linker’s library ordering requirements and set -ldl on
the output line after both -lssl and -lcrypto.5 We humans have a hard
enough time doing this stuff manually at times. It’s nice when a tool comes
along that just manages everything the way it should without making us
worry about how it’s done. Ultimately, the point I’m trying to make is that
pkg-config puts control of the options squarely in the hands of the person
most likely to understand how all these options should be specified and
ordered—the maintainer of our dependencies.

pkg-config Autoconf Macros
As I mentioned at the outset of this chapter, pkg-config also ships a set of
Autoconf extension macros in a file called pkg.m4 that’s installed into the
/usr(/local)/share/aclocal directory, which is where autoconf looks for .m4
files containing the Autoconf standard macros that you can use in your
configure.ac files.

Why didn’t I use these in my examples? Well, there are a couple of
reasons why I tend to avoid these macros, one obvious and the other more
subtle—nefarious even. The obvious reason is how easy it is to use the
pkg-config utility directly in shell script in configure.ac. Why would you try
to wrap that in an M4 macro?

As for the second reason, recall from previous discussions that the
input to autoconf is a data stream containing the contents of your configure.ac
file, along with all of the macro definitions required to allow M4 to expand
all macro invocations into shell script. These macro definitions become
part of the input stream because autoconf reads all of the .m4 files in the

5. In reality, pkg-config merely outputs both sets of private libraries, as specified in libssl.pc and
libcrytpo.pc, without trying to sort them or reduce them. This is exactly what the linker needs,
but it tends to make pkg-config look a bit smarter than it really is. The actual intelligence here
is that pkg-config doesn’t reorder -l (and -L) options but, rather, allows the package maintainer
to specify them in the order required by the linker and then honors that ordering.

Finding Build Dependencies with pkg-config 291

/usr(/local)/share/aclocal directory first, before reading your configure.ac file.
In other words, there is no indication to autoconf that a required .m4 file is
missing. It simply expects all macro definitions required by configure.ac to
be found in the .m4 files in the installation paths’ aclocal directory. As a
result, autoconf cannot tell you if a macro definition in the input stream is
not present. It simply fails to realize that PKG_CHECK_MODULES is a macro and,
therefore, does not expand it to valid shell script. All of this happens when
you run autoconf (or autoreconf). When you then try to run configure, it fails
with messages that are so far removed from the actual problem that you
couldn’t possibly know just from reading them what they mean.

A picture is worth a thousand words, so let’s try a quick experiment.
Create a configure.ac file in an empty directory, as shown in Listing 10-13.

AC_INIT([test],[1.0])
AN_UNDEFINED_MACRO()

Listing 10-13: A configure.ac file with an unknown macro expansion

Now execute autoconf, followed by ./configure:

$ autoconf
$./configure
./configure: line 1675: syntax error: unexpected end of file
$

Notice how you get no error while autoconf is converting configure.ac
into configure. This makes complete sense because m4, being a text-based
macro processor, doesn’t try to interpret anything in the data stream except
for known macros. Everything else is passed directly though to the output
stream, as if it were actual shell script.

When we ran configure, we got a cryptic error about unexpected end-
of-file (at line 1675. . . from a two-line configure.ac file). What’s really hap-
pening here is that you unintentionally started defining a shell function
called AN_UNDEFINED_MACRO but didn’t supply a body in curly braces for the
function. The shell thought this was not cool and told you about it in its
usual succinct manner.

Had we left the parentheses off of AN_UNDEFINED_MACRO, the shell would
have been a bit more informational:

$ cat configure.ac
AC_INIT([test],[1.0])
AN_UNDEFINED_MACRO
$./configure
./configure: line 1674: AN_UNDEFINED_MACRO: command not found
$

292 Chapter 10

At least this time, the shell told us the name of the problematic item,
giving us the opportunity to go looking for it in configure.ac and perhaps
figure out what’s wrong.6

The point is, this is exactly what happens when you think you’re using a
pkg-config macro but pkg.m4 was not found by autoconf while it was looking
through the usual macro directories. Not very enlightening. In my humble
opinion, you’re much better off just skipping the hundreds of lines of non-
transparent macro code and using pkg-config directly in your configure.ac file.

The reasons why autoconf might not find your installed pkg.m4 file are
enlightening, however. One common reason is that you installed the pkg-config
package (or it was automatically installed when the OS was installed) from
your distro’s package repository, using yum or apt. But you downloaded, built,
and installed Autoconf from the GNU website because your distro’s version
of Autoconf is four revisions behind and you need the latest. Where did pkg-
config’s installation process install pkg.m4? (Hint: /usr/share/aclocal.) Where
is autoconf getting its macro files from? (Hint: /usr/local/share/aclocal.) You
can, of course, easily remedy this problem by copying /usr/share/aclocal/pkg.
m4 into /usr/local/share/aclocal, and once you’ve hit this problem one or two
times, you’ll never be caught by it again. But your power users and contribu-
tors will have to go through the same process—or you could just tell them all
to buy this book and read Chapter 10.

Summary
In this chapter, we’ve discussed the benefits of using Autoconf with pkg-config,
how to generate .pc files from Autoconf templates, how to use pkg-config
from configure.ac files, and various nuances of pkg-config features.

You can read somewhat more about the proper use of the pkg-config
package on the official pkg-config website at https://www.freedesktop.org/
wiki/Software/pkg-config. Dan Nicholson has written a concise and easy-to-
follow tutorial on using pkg-config on his personal page at freedesktop.org
(http://people.freedesktop.org/~dbn/pkg-config-guide.html). This page can also be
accessed via links on the pkg-config website.

The pkg-config man page has a bit more information about the proper
use of pkg-config, but, honestly, there isn’t much more out there, other than
blog entries written by enterprising individuals. Thankfully, there really
isn’t very much more to figure out about pkg-config. It’s well written and
well documented (as far as software goes), with a few minor exceptions,
which I’ve tried to cover here.

6. The Autoconf project maintainers recognized this potential source of errors long ago
and added code to Autoconf that at least tells you if you’re attempting to invoke a misspelled
Autoconf macro. The standard prefixes, AC_, AH_, and so on, are watched for by Autoconf. If it
sees one it doesn’t recognize, it will tell you about it when you execute autoconf (or autoreconf).
You can take advantage of this mechanism by adding a line like m4_pattern_forbid([^PKG_])
to your configure.ac files if you choose to use the pkg-config macros. This construct tells
Autoconf that anything in the input stream that starts with PKG_ is supposed to be a macro
and should therefore generate an error if it’s not a macro. You may recognize the argument
as a regular expression.

https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://people.freedesktop.org/~dbn/pkg-config-guide.html

11
I N T E R N A T I O N A L I Z A T I O N

When it comes to making software available
in other languages, native English speak-

ers are a little arrogant—but who can blame
us? We’ve been taught almost from childhood,

through every experience we’ve had in this industry,
that English is the only important language—so much
so that we don’t even think about it anymore. All computer science–oriented
research and academic discussions in communities of any consequence are in
English. Even our programming languages have English keywords.

Some might counter that this is because most programming languages
are invented by English speakers. Not even close! Take for instance Niklaus
Wirth of Switzerland, a native German speaker, who invented or had a hand
in the invention of several important programming languages, including
Euler, Pascal, and Modula. Not popular enough for you? Bjarne Stroustrup,
Danish by birth, invented C++. Guido van Rossum, born and raised in the
Netherlands, invented Python. Rasmus Lerdorf, who was born in Denmark
and later moved to Canada, wrote PHP. Ruby was written by Yukihiro
Matsumoto in Japan.

Like all great travelers
I have seen more than I remember,

and remember more than I have seen.
—Benjamin Disraeli, Vivian Grey

294 Chapter 11

My point is, it never occurs to developers—even non-native English
speakers—to invent programming languages that use, for example,
German keywords. Why not? Probably because no one would use them if
they did—not even Germans. New programming languages are often con-
ceived in academic or corporate research environments, and the industry
journals, forums, and standardization organizations that facilitate the
discussion of the pros and cons of these inventions are written or managed
almost exclusively in English—for pragmatic reasons, of course. No one is
really saying that English is the best language. Rather, we need a common
medium in which to publish, and English, being one of the most widely spo-
ken languages on Earth, just sort of fell into that role.

What we miss because of this English-only attitude is that there are
entire communities of non-English-speaking software users out there
who struggle to understand applications written entirely in English. It’s as
uncomfortable for them to use these applications as it is for English-only
speakers to look at a web page in Chinese or Russian.

Larger companies often provide language packs to allow these com-
munities to use software offerings in their native languages. Some of these
commercial native-language offerings are extensive, providing support
even for the more difficult Arabic and Asian languages.1 However, most
smaller commercial and open source software package authors don’t even
try because, they say, it’s too expensive, too difficult, or just not important
enough to their communities or markets. The first of these arguments may
have some merit in the corporate world. Let’s talk about our options for
solving these problems and, hence, for expanding our communities.

Obligatory Disclaimer
Before I dive into this topic, I’ll state up front that multivolume works could
(and should) be written on software internationalization and localization.
The topic is simply huge. I will not even come close to covering everything
in a couple of chapters. My goal here is to give an introduction to a topic
that may seem daunting from the outside. If you’re already familiar with
these concepts, you’ll probably be disgusted by the amount of material I
don’t cover. Please understand that these chapters are not for you, although
you may find some ideas of value in them. Rather, these chapters are for the
beginner with little experience in this area.

In this chapter, I’ll cover what’s in the C standard and what works with
the UTF-8 codeset, and I’ll go a bit beyond. I’ll also cover major portions
of the GNU gettext library because integration of gettext into Autotools
projects is, in fact, the point of this chapter, but I won’t cover third-party

1. I’m not trying to imply that Arabic and Asian languages are more difficult to learn or
understand—only that GUI layouts, conceived in English, or perhaps other European lan-
guages, are usually not designed with right-to-left or vertical presentations in mind. This is
why it’s important to consider these topics up front, rather than (as is more common) at the
very end, just before publishing your software. At least make a conscious decision about what
languages you’ll support.

Internationalization 295

libraries and solutions, though I do mention them where appropriate.
Neither will I cover wide-character string manipulation and multibyte-
to-wide-character (and vice versa) transformations; there are plenty of
resources out there that cover these topics in detail.

I just stated that I’ll cover major portions of gettext, meaning that there
are parts I’ll leave out because they’re used only under special conditions.
Once you have the basics down, you can easily pick up the rest, as needed,
from the manual.

Speaking of the manual, like many software manuals, the gettext manual
is more a reference than a tutorial for beginners. You may have tried to read
the gettext manual, intending to become familiar with internationalization
and localization though this channel, and walked away thinking, “Either
this is a terrible manual or I’m just way out of my depth here.” I know I did at
one point. If so, you’d be somewhat correct on both counts. First, it’s pretty
apparent that the manual was written by non-English speakers. Is that such a
surprise? We’ve already decided that native English speakers don’t really care
that much, in general, about this topic. Some of the idioms used in the man-
ual are simply not familiar to English speakers, and some of the phraseology
is clearly foreign. But, provenance aside, the manual is also not organized
in a manner helpful to someone trying to become familiar with the topic.
As I was doing research for this chapter, I found several online tutorials that
would be much more helpful than the manual for programmers just trying
to figure out where to start.

So, let’s begin by first covering some definitions.

Internationalization (I18n)
Internationalization, sometimes referred to as i18n in the literature because
it’s easier to write,2 is the process of preparing a software package to be pub-
lished in other languages or for other cultures. This preparation includes
writing (or refactoring) the software in such a way as to be easily configured
to display human-readable text in other languages, or according to other
cultural customs and standards. The text I’m referring to here includes
strings, numbers, dates and times, currency values, postal addresses, salu-
tations and greetings, paper sizes, measurements, and any other aspect of
human communications you can think of that may be done differently in
different languages and cultures.

Internationalization is specifically not about converting embedded text
from one language to another. Rather, it’s about preparing your software so
that static and generated text can easily be displayed in a target language
or in formats that conform to target cultural norms. People of British cul-
ture, for instance, expect to see dates, decimal numbers, and local currency

2. Internationalization and localization are often abbreviated i18n and l10n in literature, respec-
tively, because they’re such long words. The abbreviations are derived from the first and last
letters of the words, with the number of intervening letters in between.

296 Chapter 11

displayed differently than do Americans, even though both speak English
natively. So internationalization encompasses not only language support
but also general culture support.

To be clear, this preparation is not about building a version of your soft-
ware specifically for Spanish speakers, for example. That topic is reserved
for Chapter 12, where I’ll discuss the concept of localization. Rather, inter-
nationalization is about designing or modifying your software such that it
can be easily used by Spanish speakers. This means first locating and tag-
ging the strings in your software that should be translated and finding the
places in your code where times and dates, currency, numbers, and other
locale-specific content is formatted for display. Then you need to make
those bits of static text and text-generation code configurable based on a
global or specified locale. Of course, it also means configuring your software
to be aware of the current system locale and switch into it automatically.

There are two areas of software internationalization that are different
enough that we should discuss them separately:

•	 Dynamic, runtime-generated text messages

•	 Static text messages that are hardcoded into your application

Let’s cover generated messages first, since we often get some help in this
area from programming language standard libraries. Most such libraries
provide some form of support for locale management, and C is no exception.
C++ provides the same sort of functionality in an object-oriented manner.3
Once you understand what’s available in C, the C++ version is pretty easy to
pick up on your own, so we’ll cover the functionality provided by the C stan-
dard library here.

I’ll also introduce you to the extended interfaces provided by the POSIX
2008 and X/Open standards because, as we’ll see, the functionality provided
by the standard C library, while usable, is a bit weak, and the POSIX and
X/Open standard functionality is pretty widely available. Finally, GNU exten-
sions to the C standard can make your application shine in other cultures, as
long as you’re willing to break away from the standards a bit.

Instrumenting Source Code for Dynamic Messages
The standard C library offers the setlocale and localeconv functions exposed
by the locale.h header file, as shown in the synopsis in Listing 11-1.

#include <locale.h>

char *setlocale(int category, const char *locale);
struct lconv *localeconv(void);

Listing 11-1: A synopsis of the standard C library setlocale and localeconv functions

3. The C++ standardization process seems always to be a step ahead of that of the C language,
so C++ internationalization and localization features are a little more advanced. I’m not talking
about accessing the features in an object-oriented manner but rather about how the actual locale
category information available to the software is usually a little broader in C++ than it is in C.

Internationalization 297

The task of setlocale is to tell the standard C library which locale to use
for a given class of library functionality. This function accepts a category—an
enumeration value representing a segment of locale-specific functionality in
the library that should be changed from the current locale to a new target
locale. The available standard category enumeration values are as follows.

LC_ALL

LC_ALL represents all categories. Changing the value of this category sets
all of the available categories to the specified locale. This is the most
common and recommended value to use, unless you have a very specific
reason for not setting all categories to the same locale.

LC_COLLATE

Changing LC_COLLATE affects the way collation functions like strcoll and
strxfrm work. Different languages and cultures collate and sort based on
different character- or glyph-ordering rules. Setting the collation locale
changes the rules used by the library’s text collation functions.

LC_CTYPE

Changing LC_CTYPE affects the way the character attribute functions
defined in ctype.h operate (except for isdigit and isxdigit). It also
affects the multibyte and wide-character versions of these functions.

LC_MONETARY

Changing LC_MONETARY affects the monetary-formatting information
returned by localeconv (which we’ll discuss later in this section), as well
as the resulting strings returned by the X/Open standard and POSIX
extension strfmon.

LC_NUMERIC

Changing LC_NUMERIC affects the decimal point character in format-
ted input and output operations performed by functions like printf
and scanf and the values related to decimal formatting returned by
localeconv, as well as the resulting strings returned by the X/Open
standard and POSIX extension strfmon.

LC_TIME

Changing LC_TIME affects the way time and date strings are formatted
by strftime.

The return value of setlocale is a string representing the previous locale,
or set of locales if all categories are not set the same. If you’re only interested
in determining the current locale, you can pass NULL in the locale parameter
and setlocale will not change anything. If you have set any of the individual
categories independently to different locale values, the returned string’s for-
mat, when passing LC_ALL, is implementation defined and therefore not quite
as useful as it might otherwise be. Nevertheless, most implementations will
allow you to pass this string back into setlocale, using LC_ALL, to reset cate-
gory-specific locales to those of a previously retrieved state.

298 Chapter 11

Once the desired locale has been set up, localeconv may be called to
return a pointer to a structure containing some of the attributes of the current
locale. Why not all of them? Because the designers of this API—otherwise
intelligent people—were on pain medication or something when they created
it. Seriously, the GNU C Library manual has something to say about it:

Together with the setlocale function the ISO C people invented
the localeconv function. It is a masterpiece of poor design. It is
expensive to use, not extensible, and not generally usable as it
provides access to only LC_MONETARY and LC_NUMERIC related infor-
mation. Nevertheless, if it is applicable to a given situation it
should be used since it is very portable.4

In addition to these criticisms, I’ll add that it’s not thread safe; the con-
tents of the structure are subject to modification (by another thread calling
setlocale) while you’re accessing it. Nevertheless, the rules are clear about
how it can get modified—only by calls to setlocale with a non-NULL locale
parameter value—so it is usable, but it’s neither elegant nor complete. As
the preceding excerpt indicates, you should try to use localeconv if you don’t
need additional information for your application, because it’s part of the C
standard and is, therefore, extremely portable.

To be completely fair, the fields in the structure returned by localeconv
are those that presumably require some direct programmer intervention to
use correctly, given the functionality provided by the C standard library. For
example, the printf family of functions provides no special format specifiers
for locale-specific number and currency values, so information related to the
LC_NUMERIC and LC_MONETARY categories must be made available to the developer
in some fashion in order to make proper use of these categories in a program
designed to print numbers and currency amounts in locale-specific formats.
It also means, of course, that without third-party libraries or extensions to the
C standard, you’ll be writing some tedious text-formatting functions that vary
their output based on the rules returned by localeconv.

On the other hand, the LC_COLLATE, LC_TIME, and LC_CTYPE categories all
directly affect various existing standard library functionality, making it pre-
sumably unnecessary for the program author to have direct access to the
locale attributes used by these library functions.5

Setting and Using Locales

The C and C++ standards require that all implementations of the standard
library be initialized in every process with the default “C” locale so that

4. Taken from The GNU C Library manual, last updated February 1, 2018, for glibc 2.27.
See https://www.gnu.org/software/libc/manual/html_node/The-Lame-Way-to-Locale-Data
.html#The-Lame-Way-to-Locale-Data.

5. When you think about it, you’ll realize that the locale attributes missing from struct lconv
must be maintained by an implementation of the library somewhere or else the library func-
tions that need to act differently based on these attributes could not be implemented to
do so. The GNU C library implementation actually exposes these fields in struct lconv as
internal-only fields, named with a leading underscore.

https://www.gnu.org/software/libc/manual/html_node/The-Lame-Way-to-Locale-Data.html#The-Lame-Way-to-Locale-Data

Internationalization 299

all programs not explicitly selecting a locale will act in a predictable and
consistent manner. Therefore, the first thing you must do to international-
ize your software is to change the locale. The easiest and most consistent
way to change the locale within your application is to call setlocale with a
category value of LC_ALL somewhere near the start of the program. But what
string should we pass as a locale argument? Well, that’s the beauty of this
function—you don’t need to pass any specific locale string at all. Passing
an empty string disables the default locale, allowing the library to select the
environment locale that’s in effect on the host. This allows your users to deter-
mine how your program will display times and dates, decimal numbers, and
currency values and how collation and character set management will work.

Listing 11-2 shows the code for a program that configures the standard
C library to use the host environment locale and then displays the standard
locale attributes available from localeconv to the console.

N O T E The example programs in this chapter can be found in the online GitHub repository
named NSP-Autotools/gettext, found at https://github.com/NSP-Autotools
/gettext/. The small utility programs presented in this chapter are found in the
small-utils directory in that repository, and a makefile is provided that will build
them all by default. Use a command like make lc, for instance, to build just the lc
program presented in Listing 11-2.

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <limits.h>
#include <locale.h>

static void print_grouping(const char *prefix, const char *grouping)
{
 const char *cg;
 printf("%s", prefix);
 for (cg = grouping; *cg && *cg != CHAR_MAX; cg++)
 printf("%c %d", cg == grouping ? ':' : ',', *cg);
 printf("%s\n", *cg == 0 ? " (repeated)" : "");
}

static void print_monetary(bool p_cs_precedes, bool p_sep_by_space,
 bool n_cs_precedes, bool n_sep_by_space,
 int p_sign_posn, int n_sign_posn)
{
 static const char * const sp_str[] =
 {
 "surround symbol and quantity with parentheses",
 "before quantity and symbol",
 "after quantity and symbol",
 "right before symbol",
 "right after symbol"
 };

Git tag 11.0

https://github.com/NSP-Autotools/gettext/
https://github.com/NSP-Autotools/gettext/

300 Chapter 11

 printf(" Symbol comes %s a positive (or zero) amount\n",
 p_cs_precedes ? "BEFORE" : "AFTER");
 printf(" Symbol %s separated from a positive (or zero) amount by a space\n",
 p_sep_by_space ? "IS" : "is NOT");
 printf(" Symbol comes %s a negative amount\n",
 n_cs_precedes ? "BEFORE" : "AFTER");
 printf(" Symbol %s separated from a negative amount by a space\n",
 n_sep_by_space ? "IS" : "is NOT");
 printf(" Positive (or zero) amount sign position: %s\n",
 sp_str[p_sign_posn == CHAR_MAX? 4: p_sign_posn]);
 printf(" Negative amount sign position: %s\n",
 sp_str[n_sign_posn == CHAR_MAX? 4: n_sign_posn]);
}

int main(void)
{
 struct lconv *lc;
 char *isym;

 setlocale(LC_ALL, ""); // enable environment locale
 lc = localeconv(); // obtain locale attributes

 printf("Numeric:\n");
 printf(" Decimal point: [%s]\n", lc->decimal_point);
 printf(" Thousands separator: [%s]\n", lc->thousands_sep);

 print_grouping(" Grouping", lc->grouping);

 printf("\nMonetary:\n");
 printf(" Decimal point: [%s]\n", lc->mon_decimal_point);
 printf(" Thousands separator: [%s]\n", lc->mon_thousands_sep);

 print_grouping(" Grouping", lc->mon_grouping);

 printf(" Positive amount sign: [%s]\n", lc->positive_sign);
 printf(" Negative amount sign: [%s]\n", lc->negative_sign);
 printf(" Local:\n");
 printf(" Symbol: [%s]\n", lc->currency_symbol);
 printf(" Fractional digits: %d\n", (int)lc->frac_digits);

 print_monetary(lc->p_cs_precedes, lc->p_sep_by_space,
 lc->n_cs_precedes, lc->n_sep_by_space,
 lc->p_sign_posn, lc->n_sign_posn);

 printf(" International:\n");
 isym = lc->int_curr_symbol;
 printf(" Symbol (ISO 4217): [%3.3s], separator: [%s]\n",
 isym, strlen(isym) > 3 ? isym + 3 : "");
 printf(" Fractional digits: %d\n", (int)lc->int_frac_digits);

#ifdef __USE_ISOC99
 print_monetary(lc->int_p_cs_precedes, lc->int_p_sep_by_space,
 lc->int_n_cs_precedes, lc->int_n_sep_by_space,
 lc->int_p_sign_posn, lc->int_n_sign_posn);

Internationalization 301

#endif

 return 0;
}

Listing 11-2: lc.c: A program to display all locale attributes retrieved from localeconv

The struct lconv structure contains both char * and char fields. The
char * fields mostly refer to strings whose values are determined according
to the current locale. Some of the char fields are intended to be taken as
Boolean values, while the rest are designed to be read as small integer val-
ues. The code shown in Listing 11-2 should indicate pretty clearly which are
Boolean and which are small integers. The documentation for your com-
piler’s standard library should also make it clear.

The only weird ones are the grouping and mon_grouping fields, which indi-
cate how digits in numbers and currency values (respectively) should be
grouped, with groups separated by the corresponding thousands separator
string. The grouping and mon_grouping fields are char * fields designed to be
read not as strings but as arrays of small integers. They’re terminated with
either a zero or the value CHAR_MAX (defined in limits.h). If they’re terminated
with zero, the final grouping value is repeated forever; otherwise, the final
grouping includes the remaining digits in the value.

Finally, note the call to the internal print_monetary routine that’s wrapped
in a check for __USE_ISOC99 (near the bottom of the listing). The interna-
tional forms of these currency attributes were added with the C99 standard.
Everyone should be up to C99 by now, so this is not generally an issue. I
added the conditional compilation check because, for this utility program,
it’s possible and appropriate. For an application trying to use these fields, you
should probably just insist that C99 be required to build the application.

Building and executing this program from a US English Linux system
generates the following console output:

$ gcc lc.c -o lc
$./lc
Numeric:
 Decimal point: [.]
 Thousands separator: [,]
 Grouping: 3, 3 (repeated)

Monetary:
 Decimal point: [.]
 Thousands separator: [,]
 Grouping: 3, 3 (repeated)
 Positive amount sign: []
 Negative amount sign: [-]
 Local:
 Symbol: [$]
 Fractional digits: 2
 Symbol comes BEFORE a positive (or zero) amount
 Symbol is NOT separated from a positive (or zero) amount by a space
 Symbol comes BEFORE a negative amount

302 Chapter 11

 Symbol is NOT separated from a negative amount by a space
 Positive (or zero) amount sign position: before quantity and symbol
 Negative amount sign position: before quantity and symbol
 International:
 Symbol (ISO 4217): [USD], separator: []
 Fractional digits: 2
 Symbol comes BEFORE a positive (or zero) amount
 Symbol IS separated from a positive amount by a space
 Symbol comes BEFORE a negative amount
 Symbol IS separated from a negative amount by a space
 Positive (or zero) amount sign position: before quantity and symbol
 Negative amount sign position: before quantity and symbol
$

To change the environment locale, set the LC_ALL environment variable
to the name of the locale you want to use. The values you can use are the
locales that are generated and installed on your system.

N O T E You can also set individual locale categories using environment variables with the
same names as the category names. For example, to change the locale to Spanish
(in Spain), but only for the LC_TIME category, you could set the LC_TIME environment
variable to es_ES.utf8. This works for all the standard categories defined earlier.6

To find out which locales are available, run the locale utility with the
-a option, in this manner:

$ locale -a
C
C.UTF-8
en_AG
en_AG.utf8
en_AU.utf8
en_BW.utf8
en_CA.utf8
en_DK.utf8
en_GB.utf8
en_HK.utf8
en_US.utf8
en_ZA.utf8
en_ZM
en_ZM.utf8
en_ZW.utf8
ja_JP.utf8
POSIX
sv_SE.utf8
$

6. Well, it mostly works. For instance, you should not mix LC_CTYPE from a single-byte locale such
as ISO-8859-15 with LC_COLLATE from another local that uses, say, UTF-8. Essentially, you should
ensure that the same character encoding is used in all of the category changes you make.

Internationalization 303

N O T E My example console listings are performed on a Debian-based system. If you’re using
a Fedora-based distribution, for example, you should expect to see different results, as
Fedora has significantly different default functionality with respect to installed lan-
guage packs and how the locale utility works. I’ll discuss Red Hat specifics later on
in the chapter where it really matters.

Normally, a US English installation of Linux will have several locales
configured that begin with the string en. I’ve generated Swedish (sv_SE.utf8)
and Japanese (ja_JP.utf8) locales on my Debian-based system, as well, in
order to show examples of output when the environment is configured for
non-English languages and cultures.

N O T E I also use the French (fr_FR.utf8) locale later in the chapter. You may wish to pre-
build or preinstall all of these locales using whatever mechanism is provided by
your distribution to make it easier to follow along with my examples on your system.
Of course, if you are not a native English speaker, you’re probably already using a
different locale by default. In this case, you might also want to build or install the
en_US.utf8 locale—though, not surprisingly, this locale generally comes preinstalled
even on systems not built or sold in the United States.

You may have noticed the C, C.UTF-8, and POSIX locales in the preceding
list. The C locale, as already mentioned, is the default locale for programs
that do not set the locale explicitly. The POSIX locale is currently defined as
an alias for the C locale.

Generating and Installing Locales

The process of generating and installing a locale is pretty specific to a dis-
tribution, but there are a few common implementations. On a Debian- or
Ubuntu-based system, for instance, you can look at the /usr/share/i18n/
SUPPORTED file to see which locales can be generated and installed from
sources on your system:

$ cat /usr/share/i18n/SUPPORTED
aa_DJ.UTF-8 UTF-8
aa_DJ ISO-8859-1
aa_ER UTF-8
--snip--
zh_TW BIG5
zu_ZA.UTF-8 UTF-8
zu_ZA ISO-8859-1
$

There are 480 locale names in this file on my Linux Mint system.
The general format of a locale name, as defined by the X/Open standard,
is as follows:

language[_territory][.codeset][@modifier]

304 Chapter 11

There are up to four parts of a locale name. The first part, language, is
required. The remaining parts, territory, codeset, and modifier, are optional.
For example, the locale name for US English using the UTF-8 character set
is en_US.utf8. The language is represented in the form of a two-letter ISO 639
language code.7 For instance, en refers to the English language, which could
be American, Canadian, British, or some other dialect of English.

The territory portion indicates the location of the language and takes
the form of a two-letter ISO 3166 country code.8 For example, US is for the
United States, CA is for Canada, and GB is for Great Britain.

The portion after the dot (.) indicates the codeset or character encod-
ing, formatted as a standard ISO character-encoding name like UTF-8 or
ISO-8859-1.9 The most common character encoding is UTF-8 (represented
in the locale name as utf8) since it can represent all characters in the world.
It doesn’t represent all of them efficiently, however; some languages don’t
use utf8 because they require several bytes per character in this encoding.

The modifier portion is not often used.10 One possible use is to generate
a locale that differs only in case sensitivity, or in some other attribute that
is not a normal locale attribute. For instance, when setting LC_MESSAGES=en@
boldquot, you get an English message set that differs from the normal English
message set only in that quoted text is bolded. Another historically common
case is where the en_IE@euro locale is distinguished only by a difference in the
currency symbol used. Suffice it to say that the differences applied by using a
locale with a particular modifier are designed for very special use cases.

To generate and install a particular locale on a Debian- or Ubuntu-
based system, you can add a file to the /var/lib/locales/supported.d directory
containing the line from SUPPORTED representing the locale you want to
add. The name of the file added to the supported.d directory is not particu-
larly important, although I advise not using filenames that are too far from
something reasonably similar to what you find already in this directory
structure. It’s only important that a file exists in that directory and that it
contains the exact contents of the desired line from SUPPORTED.

For instance, to add sv_SE.utf8, I’d find the line in SUPPORTED that
represents this language, add a file to supported.d containing this line, and
then run the locale-gen program, in this manner:

$ cat /usr/share/i18n/SUPPORTED | grep sv_SE
sv_SE.UTF-8 UTF-8

7. See https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes for a complete table of ISO 639
language codes.

8. See https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes for a complete list of ISO 3166
country codes.

9. See https://en.wikipedia.org/wiki/Character_encoding for a comprehensive list of widely used
character encodings.

10. Very few even know what it’s used for. For instance, I found a description in the Oracle
International Language Environment Guide at https://docs.oracle.com/cd/E23824_01/html/E26033
/glmbx.html that defines modifier as “the name of the characteristics that differentiate the
locale from the locale without the modifier.” That seems like an excellent example of a
recursive definition.

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes
https://en.wikipedia.org/wiki/Character_encoding
https://docs.oracle.com/cd/E23824_01/html/E26033/glmbx.html
https://docs.oracle.com/cd/E23824_01/html/E26033/glmbx.html

Internationalization 305

sv_SE ISO-8859-1
sv_SE.ISO-8859-15 ISO-8859-15
$
$ echo "sv_SE.UTF-8 UTF-8" | sudo tee -a /var/lib/locales/supported.d/sv
[sudo] password for jcalcote: *****
sv_SE.UTF-8 UTF-8
$ sudo locale-gen
Generating locales (this might take a while)...
 en_AG.UTF-8... done
--snip--
 en_ZW.UTF-8... done
 ja_JP.UTF-8... done
 sv_SE.UTF-8... done
Generation complete.
$
$ locale -a
C
C.UTF-8
en_AG
--snip--
ja_JP.utf8
POSIX
sv_SE.utf8
$

Each line in SUPPORTED contains a locale database entry name,
followed by a codeset name. For Swedish, the entry we’re interested in is
sv_SE.UTF-8, with the UTF-8 codeset. I chose to add a file called sv to /var/lib
/locales/supported.d. You may add as many lines as you want to the file; each
line will be processed as a separate locale. Because the files in /var/lib/locale
are owned by root, you’ll need to have root-level permissions to create or
write to them. I used a common trick involving the tee and echo commands
to add the line I wanted to supported.d/sv as root.11 You could also just use a
text editor started with sudo, of course.

To generate a locale on a Red Hat– or CentOS-based system, you can
use the localedef utility in this manner:

$ localedef --list-archive
aa_DJ
aa_DJ.iso88591
aa_DJ.utf8
--snip--
sv_SE.utf8
--snip--
zu_ZA
zu_ZA.iso88591
zu_ZA.utf8
$
$ sudo localedef -i sv_SE -f UTF-8 sv_SE.UTF-8
$

11. This trick is needed because directly using sudo echo >>/var/lib/locale/supported.d/sv will
attempt to apply the redirection before sudo.

306 Chapter 11

$ locale -a | grep sv_SE.utf8
sv_SE.utf8
$

The -i option on the localedef command line signifies the input file,
which is taken from the output of the localedef --list-archive command.
The -f option indicates the codeset to use.

N O T E I’ve found that recent Red Hat (and therefore CentOS) systems generally come prein-
stalled with many locales. You may find, upon using locale -a, that you do not need
to generate any locales. Anything that shows up in locale -a is immediately usable
as a locale in the LANG and LC_* environment variables. Fedora systems, on the other
hand, require the installation of language-specific langpacks, even if the locale shows
up in the list displayed by locale -a. Swedish, for instance, requires the installation
of glibc-langpack-sv. Additionally, the language sources do not seem to be installed
on Fedora. Therefore, the localedef command will not work on that platform, but
installation of the langpack will provide a precompiled version of the locale.

Now that we have a Swedish locale available to us, let’s see what’s dis-
played when we execute the lc program built from the code in Listing 11-2
when using that locale:

$ LC_ALL=sv_SE.utf8 ./lc
Numeric:
 Decimal point: [,]
 Thousands separator: []
 Grouping: 3, 3 (repeated)

Monetary:
 Decimal point: [,]
 Thousands separator: []
 Grouping: 3, 3 (repeated)
 Positive amount sign: []
 Negative amount sign: [-]
 Local:
 Symbol: [kr]
 Fractional digits: 2
 Symbol comes AFTER a positive (or zero) amount
 Symbol IS separated from positive (or zero) amount by a space
 Symbol comes AFTER a negative value
 Symbol IS separated from negative value by a space
 Positive (or zero) amount sign position: before quantity and symbol
 Negative amount sign position: before quantity and symbol
 International:
 Symbol (ISO 4217): [SEK], separator: []
 Fractional digits: 2
 Symbol comes AFTER a positive value
 Symbol IS separated from positive value by a space
 Symbol comes AFTER a negative value
 Symbol IS separated from negative value by a space
 Positive (or zero) amount sign position: before quantity and symbol
 Negative amount sign position: before quantity and symbol
$

Internationalization 307

Unfortunately, as I mentioned earlier, localeconv only returns infor-
mation on the numeric (LC_NUMERIC) and monetary (LC_MONETARY) catego-
ries, which isn’t quite as bad as it sounds because the remaining ones are
handled nearly automatically for you by the library. Regardless, there are
other options for accessing the complete set of locale attributes, which we’ll
discuss later in this chapter.

Formatting Time and Date for Display

The standard C library quietly handles time and date behind the scenes,
depending on which format specifiers you use in the format string passed
to strftime. Here’s the prototype for strftime:

#include <time.h>

size_t strftime(char *s, size_t max, const char *format, const struct tm *tm);

Briefly, the strftime function places up to max bytes in the buffer pointed
to by s. The content is determined by the text and format specifiers in format.
Only a single time value format can be specified in format, and its value is
obtained from tm. Since this is a standard library function, you can refer to
any standard C library manual for details on the way format specifiers work in
this function.

Listing 11-3 provides the source code for a small program that prints
the current time and date in a general format supported in some form by
all languages and territories.12

#include <stdio.h>
#include <locale.h>
#include <time.h>

int main(void)
{
 time_t t = time(0);
 char buf[128];

 setlocale(LC_ALL, ""); // enable environmental locale

 strftime(buf, sizeof buf, "%c", gmtime(&t));
 printf("Calendar time: %s\n", buf);
 return 0;
}

Listing 11-3: td.c: A small program to print the calendar date and time in the
environment locale

12. It’s possible for gmtime to return NULL, though highly unlikely in this example because of
how we obtained the value passed to it. Regardless, a robust program would check for errors
before assuming it returned a proper structure for strftime to use.

308 Chapter 11

Building and executing this program displays something like the
following output on the console; your times and dates will very likely
not match mine:

$ gcc td.c -o td
$ LC_ALL=C ./td
Calendar time: Tue Jul 2 03:57:56 2019
$./td
Calendar time: Tue 02 Jul 2019 03:57:58 AM GMT
$ LC_ALL=sv_SE.utf8 ./td
Calendar time: tis 2 jul 2019 03:57:59
$

I set LC_ALL=C on the first execution to show how you can execute your
localized programs using the default C locale. This can be a handy debug-
ging aid for testing your internationalized software.

N O T E The C locale is not the “American” locale. Rather, it’s referred to as the minimal
locale. If you execute the lc program with LC_ALL=C, you’ll find that many of the
options are blank. The standard library expects and handles such blank options
in an appropriate manner.

Compare the English and Swedish outputs. The day and month names
are in the locale language. For July, the month name happens to be the
same in English and Swedish. However, notice the case difference in both
day names and month names. In English, the names are capitalized, while
in Swedish, they are not. Another difference is the 12-hour AM/PM time
format in English and the 24-hour time format in Swedish. Swedish and C
omit the leading zero on the day, whereas the US locale does not. Finally,
the US time is followed by the Greenwich mean time zone name, GMT. There
is only one time zone in Sweden—Central European Time, CET—and this
fact is reflected in the simplicity of Sweden’s standard general time and
date format.

All of these differences are defined by the environment locale, but a
quick glance at the code in Listing 11-3 shows that I’m merely using the %c
format specifier in the call to strftime in all cases. The effective locale is
causing this format specifier to output general time and date information
in a format specific to the locale.

Not all of the format specifiers accepted by strftime are as helpful,
however. For example, while using a format string like "%X %D" may seem
like a good approach, it will not yield correct results in all locales. The %X
specifier formats the time in a locale-specific manner, but %D formats the
date in a very US-English way. Additionally, full time-date strings are for-
matted in different locales with the time and date portions in different
orders. Later in the chapter, I’ll show you how to work around these issues
with nl_langinfo.

Internationalization 309

Collation and Character Classes

Now let’s consider the less obvious categories—those whose information is
not returned in struct lconv: LC_COLLATE and LC_CTYPE.

LC_COLLATE affects the way the functions strcoll and strxfrm work. It’s
more difficult for an English speaker to comprehend these functions’ inner
workings because, in the English language, locale-specific comparisons of
characters just happen to collate in the same order as their lexicographical
orderings in the ASCII table.

N O T E The original American Standard Code for Information Interchange (ASCII)
was invented in 1963 by the American Standards Association (ASA). At first, it
included only US English capital letters and numbers. In 1967, it was amended to
include control characters and lowercase US English letters. Since the standard lim-
ited code length to 7 bits, it included only 128 characters, using the codes 0 through
127. This 7-bit limitation was imposed because the eighth bit in each byte was com-
monly used for error correction during data transmission. In 1981, IBM incorporated
the ASCII code into the lower half of an 8-bit, 256-character code it named code
page 437 and incorporated this code into the firmware of its IBM PC line of personal
computers. In this chapter, when I mention the ASCII table, I’m actually referring to
code page 437. Technically, ASCII is still limited to 128 characters.

This is not the case in many other languages. For instance, in English
and Spanish, the accented vowels sort properly immediately after their
unaccented counterparts, while in Japanese, neither vowels nor accented
vowels exist in the alphabet, so they sort according to their ordinal values
in the ASCII table. Since all the accented vowels are in the upper half of
the ASCII table and all non-accented vowels are in the lower half, it should
be clear that the sort order of a list of Spanish words will be different when
using an English or Spanish language locale than it will for any locales
based on languages that don’t have Latin characters in their alphabet.

Listing 11-4 contains a short program that uses the C qsort function to
sort a list of Spanish words using different comparison routines.

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <string.h>

#define ECOUNT(x) (sizeof(x)/sizeof(*(x)))

int lex_count = 0;
int loc_count = 0;

static int compare_lex(const void *a, const void *b)
{
 lex_count++;
 return strcmp(*(const char **)a, *(const char **)b);
}

310 Chapter 11

static int compare_loc(const void *a, const void *b)
{
 loc_count++;
 return strcoll(*(const char **)a, *(const char **)b);
}

static void print_list(const char * const *list, size_t sz)
{
 for (int i = 0; i < sz; i++)
 printf("%s%s", i ? ", " : "", list[i]);
 printf("\n");
}

int main()
{
 const char *words[] = {"rana", "rastrillo", "radio", "rápido", "ráfaga"};

 setlocale(LC_ALL, ""); // enable environment locale

 printf("Unsorted : ");
 print_list(words, ECOUNT(words));

 qsort(words, ECOUNT(words), sizeof *words, &compare_lex);

 printf("Lex (strcmp) : ");
 print_list(words, ECOUNT(words));

 qsort(words, ECOUNT(words), sizeof *words, &compare_loc);

 printf("Locale (strcoll): ");
 print_list(words, ECOUNT(words));

 return 0;
}

Listing 11-4: sc.c: A short program that illustrates sort order differences between locales

First, the unsorted words list is printed to the console; then, the pointers
in the words list are sorted with qsort using the compare_lex function, which
uses strcmp to determine the collation order of the letters in each pair of
words compared. The strcmp function doesn’t know anything about locales.
It simply uses the order of the words’ letters in the ASCII table. Then the
sorted list is printed to the console.

Next, qsort is called once again on words—this time using compare_loc,
which uses strcoll to determine the sort order of the word pairs. The
strcoll function uses the current locale to determine the relative order
of the letters in the words being compared. The re-sorted list is then
printed to the console.

Internationalization 311

Building and executing this program with different locales displays the
following output:

$ gcc sc.c -o sc
$./sc
Unsorted : rana, rastrillo, radio, rápido, ráfaga,
Lex (strcmp) : radio, rana, rastrillo, ráfaga, rápido,
Locale (strcoll): radio, ráfaga, rana, rápido, rastrillo,
$ LC_ALL=es_ES.utf8 ./sc
Unsorted : rana, rastrillo, radio, rápido, ráfaga,
Lex (strcmp) : radio, rana, rastrillo, ráfaga, rápido,
Locale (strcoll): radio, ráfaga, rana, rápido, rastrillo,
$ LC_ALL=ja_JP.utf8 ./sc
Unsorted : rana, rastrillo, radio, rápido, ráfaga,
Lex (strcmp) : radio, rana, rastrillo, ráfaga, rápido,
Locale (strcoll): radio, rana, rastrillo, ráfaga, rápido,
$

English and Spanish sort accented vowels the same way. The C locale,
represented by the results obtained using strcmp, always sorts strictly accord-
ing to the ASCII table. Japanese, however, sorts differently than the Latin
languages because Japanese makes no assumptions about how characters
(accented or otherwise) not found in its alphabet should be ordered.

Internally, strcoll uses an algorithm to transform the characters in the
comparison strings into numeric values that order naturally in the current
locale; then it compares these byte arrays using the strcmp function. The
algorithm used by strcoll can be pretty heavyweight because, for each set
of two strings it compares, it transforms the locale-specific multibyte char-
acter sequences of these string pairs into sequences of bytes that can be
compared lexicographically, by codeset ordinal values, and then internally
compares those byte sequences using strcmp.

If you know you’re going to be comparing the same string or set of
strings, it can be much more efficient to use the strxfrm function first, which
exposes the transformation algorithm that strcoll uses internally. You can
then simply use strcmp against these transformed strings to obtain the same
collation you’d get from strcoll against untransformed strings.

Listing 11-5 illustrates this process by converting the contents of
Listing 11-4 to use strxfrm on the words in the words array, writing the
transformed words into a two-dimensional array large enough to hold
the transformed strings.

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <string.h>

#define ECOUNT(x) (sizeof(x)/sizeof(*(x)))

 typedef struct element
{
 const char *input;

312 Chapter 11

 const char *xfrmd;
} element;

static int compare(const void *a, const void *b)
{
 const element *e1 = a;
 const element *e2 = b;

 return strcmp(e1->xfrmd, e2->xfrmd);
}

static void print_list(const element *list, size_t sz)
{
 for (int i = 0; i < sz; i++)

 printf("%s, ", list[i].input);
 printf("\n");
}

int main()
{
 element words[] =
 {
 {"rana"}, {"rastrillo"}, {"radio"}, {"rápido"}, {"ráfaga"}
 };

 setlocale(LC_ALL, ""); // enable environment locale

 // point each xfrmd field at corresponding input field
 for (int i = 0; i < ECOUNT(words); i++)

 words[i].xfrmd = words[i].input;

 printf("Unsorted : ");
 print_list(words, ECOUNT(words));

 qsort(words, ECOUNT(words), sizeof *words, &compare);

 printf("Lex (strcmp) : ");
 print_list(words, ECOUNT(words));

 for (int i = 0; i < ECOUNT(words); i++)
 {
 char buf[128];
 strxfrm(buf, words[i].input, sizeof buf);

 words[i].xfrmd = strdup(buf);
 }

 qsort(words, ECOUNT(words), sizeof *words, &compare);

 printf("Locale (strxfrm/cmp): ");
 print_list(words, ECOUNT(words));

 return 0;
}

Listing 11-5: sx.c: The sc program, rewritten to use strxfrm

Internationalization 313

There are several items of note here. The strxfrm function returns a zero-
terminated byte buffer that looks and acts like an ordinary C string. There
are no internal null characters; it can be acted upon by other string functions
in the standard C library, but it’s not necessarily intelligible from a human-
readability standpoint. Because of this weird characteristic, the transform
buffer contents can only be used for comparison purposes during sorting.
The original input value must be used for display. Therefore, we need to keep
track of, and sort as pairs, the input buffer and the transform buffer for each
word in our list. The element structure at manages this for us.

Since we no longer need to use strcoll, I’ve removed the compare_loc
function and renamed compare_lex to compare, and I’ve changed the code to
compare the xfrmd fields of the element structures passed in (at). Note,
however, that the print_list function still prints the input field of the ele-
ments (at). This works because the words array has been converted to an
array of pairs, where each element of the array contains both the original
and the transformed words.

In order to make this code work with the original flow of main in sc.c,
immediately after setting the locale, sx.c iterates over words (at), setting
each element’s xfrmd pointer to the same value as its input pointer. This
allows us to see what happens when using strcmp on untransformed strings
during the first call to qsort.

At , after printing the results of that first sort operation, the pro-
gram iterates over words again, this time calling strxfrm on each input
string and pointing the corresponding xfrmd field at a strdup copy of the
transform buffer, buf.13

Building and executing the code in Listing 11-5 should show us the
same output we got when we ran the code from Listing 11-4:

$ gcc sx.c -o sx
$./sx
Unsorted : rana, rastrillo, radio, rápido, ráfaga,
Lex (strcmp) : radio, rana, rastrillo, ráfaga, rápido,
Locale (strxfrm/cmp): radio, ráfaga, rana, rápido, rastrillo,
$ LC_ALL=es_ES.utf8 ./sx
Unsorted : rana, rastrillo, radio, rápido, ráfaga,
Lex (strcmp) : radio, rana, rastrillo, ráfaga, rápido,
Locale (strxfrm/cmp): radio, ráfaga, rana, rápido, rastrillo,
$ LC_ALL=ja_JP.utf8 ./sx
Unsorted : rana, rastrillo, radio, rápido, ráfaga,
Lex (strcmp) : radio, rana, rastrillo, ráfaga, rápido,
Locale (strxfrm/cmp): radio, rana, rastrillo, ráfaga, rápido,
$

It’s a bit more complicated—the value of this version is not immediately
apparent when sorting five words, but the time savings over transforming
the strings within strcoll is significant when sorting hundreds of strings,
even with the overhead of allocating and freeing the transform buffers.

13. Please forgive me for not freeing the allocated buffers—I didn’t want to confuse the
important code with cleanup details.

314 Chapter 11

N O T E This sample takes shortcuts in order to highlight the important points of strxfrm. A real
program would check the result of strxfrm, which returns the number of bytes required
by the transformation (minus the terminating null character). If the value is larger than
the buffer size specified, the program should reallocate and call strxfrm again. There is
no reasonable way to predetermine the required buffer size for any given locale and code-
set. I made my buffer large enough to handle just about any possibility, so I skipped this
check for the sake of code readability, but this is not a recommended practice.

Now let’s turn our attention to the LC_CTYPE locale category. Changing
this locale category affects the way most of the character classification func-
tions in ctype.h work, including isalnum, isalpha, isctrl, isgraph, islower, isprint,
ispunct, isspace, and isupper (but specifically not isdigit or isxdigit). It also
affects the way toupper and tolower work—sort of. The fact is, the functions
in ctype.h are broken in many ways with respect to internationalization. The
problem is they rely on algorithmic mechanisms to convert character case,
which work fine as long as you stick with the ASCII table. As soon as you leave
this familiar playing field, however, all bets are off. Sometimes they work,
and sometimes they don’t. The most consistent way to make them work is to
use wide characters, because the wide-character versions of these functions
are newer in the C and C++ standards and the UTF-16 and UTF-32 codesets
allow for similar algorithmic conversion for an expanded set of characters.
However, even when wide characters are used, there are still cases where
the algorithmic approach fails to convert properly, as some languages have
digraphs that come in three forms: lowercase, uppercase, and title case.
There’s just no algorithmic way to deal properly with these types of situations.

The source code in Listing 11-6 shows one way to properly convert a
Spanish word from uppercase to lowercase.

#include <stdio.h>
#include <locale.h>
#include <wctype.h>
#include <wchar.h>

int main()
{
 const wchar_t *orig = L"BAÑO";
 wchar_t xfrm[64];

 setlocale(LC_ALL, ""); // enable environment locale

 int i = 0;
 while (i < wcslen(orig))
 {
 xfrm[i] = towlower(orig[i]);
 i++;
 }

Internationalization 315

 xfrm[i] = 0;
 printf("orig: %ls, xfrm: %ls\n", orig, xfrm);

 return 0;
}

Listing 11-6: ct.c: Converting a Spanish word using wide characters

The output is as follows:

$ gcc ct.c -o ct
$./ct
orig: BAÑO, xfrm: baño
$

This program doesn’t work if you change to char buffers and use UTF-8.
It barely works using wide characters. If you set LC_ALL=C, it prints only orig:
because, had we checked the return value of printf in Listing 11-6 (as we
should do—especially when dealing with character set conversions like
this), we’d have seen it return a -1, which is what it returns when it fails to
convert a wide-character string to a multibyte string using %ls.

Rather than cover all the nuances of what does and doesn’t work in the
LC_CTYPE category, I’ll just say that if you have to do a lot of this sort of con-
version and character classification, I’d highly recommend using a third-
party library like IBM’s International Components for Unicode (ICU)14 or GNU
libunistring15 (both of which, to put it succinctly, just do the right thing in
all cases). ICU is a large library, and there’s a bit of a learning curve, but it’s
worth the effort if you need it. GNU libunistring is a little easier to get your
head around, but it still presents a lot of new functionality. There are also
wrapper libraries like Boost::locale,16 if you’re using C++, that make accessing
ICU a bit simpler, although Boost::locale, itself, is pretty complex.

X/Open and POSIX Standard Extensions

It’s a shame there is not a standard C library function to format numeric
and currency amounts by locale in the same manner that strftime formats
time and date by locale. There is, however, an extension provided by the
X/Open and POSIX standards and implemented in the GNU C library—
the strfmon function, whose prototype is as follows:

#include <monetary.h>

ssize_t strfmon(char *s, size_t max, const char *format, ...);

14. See http://site.icu-project.org/home/.

15. See https://www.gnu.org/software/libunistring/.

16. See https://www.boost.org/doc/libs/1_67_0/libs/locale/doc/html/index.html.

http://site.icu-project.org/home/
https://www.gnu.org/software/libunistring/
https://www.boost.org/doc/libs/1_67_0/libs/locale/doc/html/index.html

316 Chapter 11

It works very much like strftime, placing the formatted value string in
the max-sized buffer pointed to by s. The format string works like the format
strings in the printf family of functions and like that of strftime. The format
specifiers are specific to this function but, like those of the other functions,
begin with percent sign (%) and end with a format character. Several sup-
ported modifier characters may be used between the percent and the for-
mat character. The two valid format characters are i for international and
n for local.

This function is designed to format currency amounts and follows all
the localeconv-provided LC_CURRENCY rules, but it can also be used to for-
mat decimal numbers according to localeconv-provided LC_NUMERIC rules.
Listing 11-7 provides example code for formatting a currency value in local
and international formats without any special modifiers and for formatting
a decimal number. Unlike strftime, strfmon can format multiple values.

#include <stdio.h>
#include <locale.h>
#include <monetary.h>

int main()
{
 double amount = 12654.376;
 char buf[256];

 setlocale(LC_ALL, ""); // enable environment locale

 strfmon(buf, sizeof buf, "Local: %n, Int'l: %i, Decimal: %!6.2n",
 amount, amount, amount);
 printf("%s\n", buf);
 return 0;
}

Listing 11-7: amount.c: An example of calling strfmon to format currency and decimal
values

Let’s build and execute this program to see what’s displayed when using
different locales:

$ gcc amount.c -o amount
$ LC_ALL=C ./amount
Local: 12654.38, Int'l: 12654.38, Decimal: 12654.38
$./amount
Local: $12,654.38, Int'l: USD 12,654.38, Decimal: 12,654.38
$ LC_ALL=sv_SE.utf8 ./amount
Local: 12 654,38 kr, Int'l: 12 654,38 SEK, Decimal: 12 654,38
$ LC_ALL=ja_JP.utf8 ./amount
Local: ¥12,654, Int'l: JPY 12,654, Decimal: 12,654.38
$

All the characteristics displayed by the lc program in Listing 11-2 for
monetary and numeric categories are taken into account by strfmon in
the same manner the standard strftime function does for time and date

Internationalization 317

characteristics. For instance, in both English and Japanese, the currency
symbols are displayed before the values, while the Swedish currency sym-
bols, kr and SEK, follow the value. The decimal separator is a comma in
Sweden (and many other European locales), and Japanese yen values do
not display a fractional part.

The exclamation mark (!) modifier in the decimal format specifier is
used to suppress display of the currency symbol. By explicitly specifying a
format precision, we can override the default Japanese locale characteristic
that indicates that monetary values should not have a fractional part. The
strfmon function was obviously designed for formatting currency values but,
as we can see here, it can just as well be used to format plain old numeric
decimal and integer values.

Overcoming localeconv’s Shortcomings

The X/Open and POSIX standards also provide a better and more func-
tional version of localeconv called nl_langinfo. Here is the prototype for
this function:

#include <langinfo.h>

char *nl_langinfo(nl_item item);

The advantages of this interface over the standard library interface are
numerous. First, it’s more efficient, only acquiring and returning the field
you request on an as-needed basis, rather than filling and returning the
entire locale attribute structure for each request. The nl_langinfo function
is used to acquire a single attribute, specified by item, of the global environ-
ment locale.

If your application is required to manage multiple locales simulta-
neously, check out the POSIX interface for managing multiple discrete
locales within the same application. I won’t cover them in detail here
because they manage the same set of locale categories as the interfaces
I’ve already shown you. Instead, see the POSIX 2008 standard for infor-
mation on the newlocale, duplocale, uselocale, and freelocale functions,
in connection with the nl_langinfo_l function, which accepts a second
argument of type locale_t returned by newlocale. I will mention that the
uselocale function can be used to set the locale of the current thread.
All of the functions I’ve mentioned so far are implemented by the
GNU C library.

The GNU C library also provides support for additional classes of locale
information, including LC_MESSAGES, LC_PAPER, LC_NAME, LC_ADDRESS, LC_TELEPHONE,
LC_MEASUREMENT, and LC_IDENTIFICATION. The LC_MESSAGES category has been
standardized by POSIX and is the basis for gettext, which I’ll discuss shortly.
The others are not standardized in C or POSIX, but they’ve been incorpo-
rated for many years into so many aspects of Linux, including Linux ports
of the X Window System, that it’s hard to conceive of them being replaced
or removed in the foreseeable future. Hence, I recommend their use if you
do not intend to port your software outside of GNU tools.

318 Chapter 11

These additional categories are not accessible though localeconv and the
struct lconv structure. Rather, you’ll need to use nl_langinfo to access the
values in the locale that are associated with these categories.

Listing 11-8 is the same program found in Listing 11-2, except that this
version uses nl_langinfo to display the locale information available through
that interface. It’s intentionally organized to display the content that’s com-
mon to both interfaces in exactly the same format.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <limits.h>
#include <stdint.h>
#include <locale.h>
#include <langinfo.h>

static void print_grouping(const char *prefix, const char *grouping)
{
 const char *cg;
 printf("%s", prefix);
 for (cg = grouping; *cg && *cg != CHAR_MAX; cg++)
 printf("%c %d", cg == grouping ? ':' : ',', *cg);
 printf("%s\n", *cg == 0 ? " (repeated)" : "");
}

static void print_monetary(bool p_cs_precedes, bool p_sep_by_space,
 bool n_cs_precedes, bool n_sep_by_space,
 int p_sign_posn, int n_sign_posn)
{
 static const char * const sp_str[] =
 {
 "surround symbol and quantity with parentheses",
 "before quantity and symbol",
 "after quantity and symbol",
 "right before symbol",
 "right after symbol"
 };

 printf(" Symbol comes %s a positive (or zero) amount\n",
 p_cs_precedes ? "BEFORE" : "AFTER");
 printf(" Symbol %s separated from a positive (or zero) amount by a space\n",
 p_sep_by_space ? "IS" : "is NOT");
 printf(" Symbol comes %s a negative amount\n",
 n_cs_precedes ? "BEFORE" : "AFTER");
 printf(" Symbol %s separated from a negative amount by a space\n",
 n_sep_by_space ? "IS" : "is NOT");
 printf(" Positive (or zero) amount sign position: %s\n",
 sp_str[p_sign_posn == CHAR_MAX? 4: p_sign_posn]);
 printf(" Negative amount sign position: %s\n",
 sp_str[n_sign_posn == CHAR_MAX? 4: n_sign_posn]);
}

Internationalization 319

#ifdef OUTER_LIMITS

#define ECOUNT(x) (sizeof(x)/sizeof(*(x)))

static const char *_get_measurement_system(int system_id)
{
 static const char * const measurement_systems[] = { "Metric", "English" };
 int idx = system_id - 1;
 return idx < ECOUNT(measurement_systems)
 ? measurement_systems[idx] : "unknown";
}

#endif

int main(void)
{
 char *isym;

 setlocale(LC_ALL, "");

 printf("Numeric\n");
 printf(" Decimal: [%s]\n", nl_langinfo(DECIMAL_POINT));
 printf(" Thousands separator: [%s]\n", nl_langinfo(THOUSANDS_SEP));

 print_grouping(" Grouping", nl_langinfo(GROUPING));

 printf("\nMonetary\n");
 printf(" Decimal point: [%s]\n", nl_langinfo(MON_DECIMAL_POINT));
 printf(" Thousands separator: [%s]\n", nl_langinfo(MON_THOUSANDS_SEP));
 printf(" Grouping");

 print_grouping(" Grouping", nl_langinfo(MON_GROUPING));

 printf(" Positive amount sign: [%s]\n", nl_langinfo(POSITIVE_SIGN));
 printf(" Negative amount sign: [%s]\n", nl_langinfo(NEGATIVE_SIGN));
 printf(" Local:\n");
 printf(" Symbol: [%s]\n", nl_langinfo(CURRENCY_SYMBOL));
 printf(" Fractional digits: %d\n", *nl_langinfo(FRAC_DIGITS));

 print_monetary(*nl_langinfo(P_CS_PRECEDES), *nl_langinfo(P_SEP_BY_SPACE),
 *nl_langinfo(N_CS_PRECEDES), *nl_langinfo(N_SEP_BY_SPACE),
 *nl_langinfo(P_SIGN_POSN), *nl_langinfo(N_SIGN_POSN));

 printf(" International:\n");
 isym = nl_langinfo(INT_CURR_SYMBOL);
 printf(" Symbol (ISO 4217): [%3.3s], separator: [%s]\n",
 isym, strlen(isym) > 3 ? isym + 3 : "");
 printf(" Fractional digits: %d\n", *nl_langinfo(INT_FRAC_DIGITS));

 print_monetary(*nl_langinfo(INT_P_CS_PRECEDES), *nl_langinfo(INT_P_SEP_BY_SPACE),
 *nl_langinfo(INT_N_CS_PRECEDES), *nl_langinfo(INT_N_SEP_BY_SPACE),
 *nl_langinfo(INT_P_SIGN_POSN), *nl_langinfo(INT_N_SIGN_POSN));

320 Chapter 11

 printf("\nTime\n");
 printf(" AM: [%s]\n", nl_langinfo(AM_STR));
 printf(" PM: [%s]\n", nl_langinfo(PM_STR));
 printf(" Date & time format: [%s]\n", nl_langinfo(D_T_FMT));
 printf(" Date format: [%s]\n", nl_langinfo(D_FMT));
 printf(" Time format: [%s]\n", nl_langinfo(T_FMT));
 printf(" Time format (AM/PM): [%s]\n", nl_langinfo(T_FMT_AMPM));
 printf(" Era: [%s]\n", nl_langinfo(ERA));
 printf(" Year (era): [%s]\n", nl_langinfo(ERA_YEAR));
 printf(" Date & time format (era): [%s]\n", nl_langinfo(ERA_D_T_FMT));
 printf(" Date format (era): [%s]\n", nl_langinfo(ERA_D_FMT));
 printf(" Time format (era): [%s]\n", nl_langinfo(ERA_T_FMT));
 printf(" Alt digits: [%s]\n", nl_langinfo(ALT_DIGITS));

 printf(" Days (abbr)");
 for (int i = 0; i < 7; i++)
 printf("%c %s", i == 0 ? ':' : ',', nl_langinfo(ABDAY_1 + i));
 printf("\n");

 printf(" Days (full)");
 for (int i = 0; i < 7; i++)
 printf("%c %s", i == 0 ? ':' : ',', nl_langinfo(DAY_1 + i));
 printf("\n");

 printf(" Months (abbr)");
 for (int i = 0; i < 12; i++)
 printf("%c %s", i == 0 ? ':' : ',', nl_langinfo(ABMON_1 + i));
 printf("\n");

 printf(" Months (full)");
 for (int i = 0; i < 12; i++)
 printf("%c %s", i == 0 ? ':' : ',', nl_langinfo(MON_1 + i));
 printf("\n");

 printf("\nMessages\n");
 printf(" Codeset: %s\n", nl_langinfo(CODESET));

#ifdef OUTER_LIMITS

 printf("\nQueries\n");
 printf(" YES expression: %s\n", nl_langinfo(YESEXPR));
 printf(" NO expression: %s\n", nl_langinfo(NOEXPR));

 printf("\nPaper\n");
 printf(" Height: %dmm\n", (int)(intptr_t)nl_langinfo(_NL_PAPER_HEIGHT));
 printf(" Width: %dmm\n", (int)(intptr_t)nl_langinfo(_NL_PAPER_WIDTH));
 printf(" Codeset: %s\n", nl_langinfo(_NL_PAPER_CODESET));

 printf("\nName\n");
 printf(" Format: %s\n", nl_langinfo(_NL_NAME_NAME_FMT));
 printf(" Gen: %s\n", nl_langinfo(_NL_NAME_NAME_GEN));
 printf(" Mr: %s\n", nl_langinfo(_NL_NAME_NAME_MR));
 printf(" Mrs: %s\n", nl_langinfo(_NL_NAME_NAME_MRS));
 printf(" Miss: %s\n", nl_langinfo(_NL_NAME_NAME_MISS));
 printf(" Ms: %s\n", nl_langinfo(_NL_NAME_NAME_MS));

Internationalization 321

 printf("\nAddress\n");
 printf(" Country name: %s\n", nl_langinfo(_NL_ADDRESS_COUNTRY_NAME));
 printf(" Country post: %s\n", nl_langinfo(_NL_ADDRESS_COUNTRY_POST));
 printf(" Country abbr2: %s\n", nl_langinfo(_NL_ADDRESS_COUNTRY_AB2));
 printf(" Country abbr3: %s\n", nl_langinfo(_NL_ADDRESS_COUNTRY_AB3));
 printf(" Country num: %d\n",
 (int)(intptr_t)nl_langinfo(_NL_ADDRESS_COUNTRY_NUM));
 printf(" Country ISBN: %s\n", nl_langinfo(_NL_ADDRESS_COUNTRY_ISBN));
 printf(" Language name: %s\n", nl_langinfo(_NL_ADDRESS_LANG_NAME));
 printf(" Language abbr: %s\n", nl_langinfo(_NL_ADDRESS_LANG_AB));
 printf(" Language term: %s\n", nl_langinfo(_NL_ADDRESS_LANG_TERM));
 printf(" Language lib: %s\n", nl_langinfo(_NL_ADDRESS_LANG_LIB));
 printf(" Codeset: %s\n", nl_langinfo(_NL_ADDRESS_CODESET));

 printf("\nTelephone\n");
 printf(" Int'l format: %s\n", nl_langinfo(_NL_TELEPHONE_TEL_INT_FMT));
 printf(" Domestic format: %s\n", nl_langinfo(_NL_TELEPHONE_TEL_DOM_FMT));
 printf(" Int'l select: %s\n", nl_langinfo(_NL_TELEPHONE_INT_SELECT));
 printf(" Int'l prefix: %s\n", nl_langinfo(_NL_TELEPHONE_INT_PREFIX));
 printf(" Codeset: %s\n", nl_langinfo(_NL_TELEPHONE_CODESET));

 printf("\nMeasurement\n");
 printf(" System: %s\n",_get_measurement_system(
 (int)*nl_langinfo(_NL_MEASUREMENT_MEASUREMENT)));
 printf(" Codeset: %s\n", nl_langinfo(_NL_MEASUREMENT_CODESET));

 printf("\nIdentification\n");
 printf(" Title: %s\n", nl_langinfo(_NL_IDENTIFICATION_TITLE));
 printf(" Source: %s\n", nl_langinfo(_NL_IDENTIFICATION_SOURCE));
 printf(" Address: %s\n", nl_langinfo(_NL_IDENTIFICATION_ADDRESS));
 printf(" Contact: %s\n", nl_langinfo(_NL_IDENTIFICATION_CONTACT));
 printf(" Email: %s\n", nl_langinfo(_NL_IDENTIFICATION_EMAIL));
 printf(" Telephone: %s\n", nl_langinfo(_NL_IDENTIFICATION_TEL));
 printf(" Language: %s\n", nl_langinfo(_NL_IDENTIFICATION_LANGUAGE));
 printf(" Territory: %s\n", nl_langinfo(_NL_IDENTIFICATION_TERRITORY));
 printf(" Audience: %s\n", nl_langinfo(_NL_IDENTIFICATION_AUDIENCE));
 printf(" Application: %s\n", nl_langinfo(_NL_IDENTIFICATION_APPLICATION));
 printf(" Abbr: %s\n", nl_langinfo(_NL_IDENTIFICATION_ABBREVIATION));
 printf(" Revision: %s\n", nl_langinfo(_NL_IDENTIFICATION_REVISION));
 printf(" Date: %s\n", nl_langinfo(_NL_IDENTIFICATION_DATE));
 printf(" Category: %s\n", nl_langinfo(_NL_IDENTIFICATION_CATEGORY));
 printf(" Codeset: %s\n", nl_langinfo(_NL_IDENTIFICATION_CODESET));

#endif // OUTER_LIMITS

 return 0;
}

Listing 11-8: nl.c: Using nl_langinfo to display available locale information

To build this code, you need to add a couple of definitions to the com-
mand line: _GNU_SOURCE and OUTER_LIMITS. The first definition belongs to
the GNU C library and allows nl.c to access the extended international

322 Chapter 11

monetary fields that were not part of the C standard until C99. The second
is my own invention that allows you to build the program without the
extended categories provided by the GNU C library:

$ gcc -D_GNU_SOURCE -DOUTER_LIMITS nl.c -o nl
$./nl
Numeric
 Decimal: [.]
 Thousands separator: [,]
 Grouping: 3, 3 (repeated)

Monetary
 Decimal point: [.]
 Thousands separator: [,]
 Grouping Grouping: 3, 3 (repeated)
 Positive amount sign: []
 Negative amount sign: [-]
 Local:
 Symbol: [$]
 Fractional digits: 2
 Symbol comes BEFORE a positive (or zero) amount
 Symbol is NOT separated from a positive (or zero) amount by a space
 Symbol comes BEFORE a negative amount
 Symbol is NOT separated from a negative amount by a space
 Positive (or zero) amount sign position: before quantity and symbol
 Negative amount sign position: before quantity and symbol
 International:
 Symbol (ISO 4217): [USD], separator: []
 Fractional digits: 2
 Symbol comes BEFORE a positive (or zero) amount
 Symbol IS separated from a positive (or zero) amount by a space
 Symbol comes BEFORE a negative amount
 Symbol IS separated from a negative amount by a space
 Positive (or zero) amount sign position: before quantity and symbol
 Negative amount sign position: before quantity and symbol

Time
 AM: [AM]
 PM: [PM]
 Date & time format: [%a %d %b %Y %r %Z]
 Date format: [%m/%d/%Y]
 Time format: [%r]
 Time format (AM/PM): [%I:%M:%S %p]
 Era: []
 Year (era): []
 Date & time format (era): []
 Date format (era): []
 Time format (era): []
 Alt digits: []
 Days (abbr): Sun, Mon, Tue, Wed, Thu, Fri, Sat
 Days (full): Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
 Months (abbr): Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
 Months (full): January, February, March, April, May, June, July, August,
September, October, November, December

Internationalization 323

Messages
 Codeset: UTF-8

Queries
 YES expression: ^[yY].*
 NO expression: ^[nN].*

Paper
 Height: 279mm
 Width: 216mm
 Codeset: UTF-8

Name
 Format: %d%t%g%t%m%t%f
 Gen:
 Mr: Mr.
 Mrs: Mrs.
 Miss: Miss.
 Ms: Ms.

Address
 Country name: USA
 Country post: USA
 Country abbr2: US
 Country abbr3: USA
 Country num: 840
 Country ISBN: 0
 Language name: English
 Language abbr: en
 Language term: eng
 Language lib: eng
 Codeset: UTF-8

Telephone
 Int'l format: +%c (%a) %l
 Domestic format: (%a) %l
 Int'l select: 11
 Int'l prefix: 1
 Codeset: UTF-8

Measurement
 System: English
 Codeset: UTF-8

Identification
 Title: English locale for the USA
 Source: Free Software Foundation, Inc.
 Address: http://www.gnu.org/software/libc/
 Contact:
 Email: bug-glibc-locales@gnu.org
 Telephone:
 Language: English
 Territory: USA
 Audience:
 Application:

324 Chapter 11

 Abbr:
 Revision: 1.0
 Date: 2000-06-24
 Category: en_US:2000
 Codeset: UTF-8
$

The highlighted section of the preceding output shows the portion of
nl’s output that goes beyond the lc program from Listing 11-2. The addi-
tional locale categories are defined as follows.

LC_MESSAGES

This category provides one additional item value, CODESET, which defines
the codeset used by this locale. This item is categorized under “Messages”
because it’s intended to be helpful when translating static text messages
in application code. The value can also be used as an environment vari-
able on Linux systems in order to help select the static message catalog to
be used.

LC_PAPER

The paper category provides two items, _NL_PAPER_HEIGHT and _NL_PAPER
_WIDTH, which return paper dimensional values in millimeters for the
most commonly used printer paper in the locale. This can be very
helpful when formatting print output or when auto-selecting paper
sizes—letter and A04, for example. Be aware that the pointer values
returned from these item enumeration values should be treated like
native-word-sized integer values, rather than as actual pointers. See
the nl.c code in Listing 11-8 for details.

LC_NAME

The name category provides information on formatting salutations
such as Mr., Mrs., Miss, and Ms. in the locale. The items in this category
allow your software to automatically select how to state such salutations
in the current language and territory.

LC_ADDRESS

The address category provides items that return geographical informa-
tion for the locale, such as country name, postal code, and two- and
three-letter country name abbreviations. It also returns the language
name and library used by the locale.

LC_TELEPHONE

The telephone category provides format-specifier strings usable within
the printf family of functions to display telephone numbers in a style
that’s common in the current locale.

Internationalization 325

LC_MEASUREMENT

The measurement category provides a single item for returning the
system of measurement used in the current locale. The _NL_MEASUREMENT
_MEASUREMENT item returns a string whose first character is a short integer
value: 0 for Metric or 1 for English.

LC_IDENTIFICATION

The identification category is actually locale metadata. That is, the
fields of this category return information about the territory, author,
and process used to create the current locale (for example, the locale
author’s name, email address, phone number, and so on). It also returns
versioning information about the locale. Be aware that the pointer value
returned from _NL_ADDRESS_COUNTRY_NUM should be treated like a native-
word-sized integer value rather than a pointer. See the nl.c code in
Listing 11-8 for details.

You can access the same information using the -k option with the
locale command line program that comes preinstalled on your Linux
distro, as follows:

$ locale -k LC_PAPER
height=279
width=216
paper-codeset="UTF-8"
$

You can query the GNU C library nl_langinfo function for individual
time- and date-formatting attributes such as AM and PM strings, various
more granular format-specifier strings, and full and abbreviated days of
the week and months of the year in the current locale.

The GNU C library nl_langinfo implementation even returns regu-
lar expressions intended to be used for matching query responses. The
regular expressions returned from the YESEXPR and NOEXPR item enumera-
tion values can be used to match yes or no answers to questions prompted
by software.

Instrumenting Source Code for Static Messages
Instrumenting access to locale-specific static text messages in your source
code is also part of the process of internationalizing software, so we’ll cover
instrumentation of static text display messages here. Then we’ll move on to
how to generate and consume language packs in Chapter 12, where I’ll dis-
cuss localization.

It should be clear by now that something needs to be done with the
static portion of the “greeting, from progname!” text we printed from Jupiter
(for example). I’m not going to take Jupiter any further, but it does provide
a concise example of something that needs to change in our programs when
the locale changes. The process of instrumenting source code for translat-
ing static display messages involves scanning your source code for all string

326 Chapter 11

literals that can be displayed to a user during the execution of a program and
then doing something that makes it possible for the program to use a version
of that string that specifically targets the current locale.

There are a few open source (and several third-party commercial)
libraries that can be used to accomplish this task, but we’re going to focus
on the GNU gettext library. The gettext library is very simple from a software
perspective. In its simplest form, there’s one function for tagging a message
to be translated and two functions for selecting the message catalog to be
used for display. The tagging function is named gettext, and its prototype
is shown in Listing 11-9.

#include <libintl.h>

char *gettext(const char *msgid);

Listing 11-9: The prototype for the gettext function

This function accepts a message identifier in the msgid parameter and
returns the display message to the user. The message identifier can be any
string but is usually the display message itself, in US-ASCII. The reason
for this is that if the message catalog cannot be found, gettext returns the
msgid value itself, which will then be used by the program in the same way
the translated message would have been used, had it been found. Thus, the
gettext function cannot fail in a manner that will cause the program to not
work in some reasonable fashion under any conceivable set of conditions.

This convention makes it very simple to both instrument existing pro-
grams and write new programs that use locale-based message catalogs.
You simply need to find all of the static text messages within the program
source files and wrap them in calls to gettext.

Occasionally, it’s necessary to provide the translator with more contex-
tual information than just the string. For a common example, when provid-
ing message IDs for menu items such as the Open submenu option in the File
menu, the programmer may have communicated to the translator that the
programmer has provided the entire menu hierarchy in a format such as
|File|Open. When the translator sees this, they know that only the portion
following the last vertical bar symbol should be translated. But if there is no
translation for the current locale, the message ID will be the full string. In
this case, the programmer must write the code to check for a leading verti-
cal bar. If it’s found, only the portion following the last vertical bar should
actually be displayed.

The code in Listing 11-10 shows a very short (and somehow familiar)
example program that uses gettext.

#include <stdio.h>
#include <libintl.h>

#define _(x) gettext(x)

int main()

Internationalization 327

{
 printf(_("Hello, world!\n"));
 return 0;
}

Listing 11-10: gt.c: A short program that illustrates the use of the gettext library

The printf function sends the return value of gettext to stdout. The
gettext function is exported by the GNU C library, so no additional libraries
are required to use it. When using gettext without GNU C, just link the intl
library (shared object or static archive).

We could call gettext directly in printf, but the underscore (_) macro
is a common idiom used when internationalizing software for two reasons:
First, it decreases the visual impact of instrumenting an existing code base
for gettext. Second, it allows us a single point of replacement if we choose
to wrap gettext with additional functionality or if we decide to use a more
functional variant of gettext (for example, dgettext and dcgettext). I haven’t
discussed these variants here, but you can find out more about them in the
GNU C Library manual.17

Message Catalog Selection

Selection of the message catalog is done in two phases: the programmer
phase and the user phase. The programmer phase is handled by the func-
tions textdomain and bindtextdomain. The prototypes for these functions (also
exported by the GNU C library) are shown in Listing 11-11.

#include <libintl.h>

char *textdomain(const char *domainname);
char *bindtextdomain(const char *domainname, const char *dirname);

Listing 11-11: The prototypes for textdomain and bindtextdomain

The textdomain function allows the software author to determine the mes-
sage catalog domain that is in use at any given point within the program. The
domain represents a given message catalog containing some portion of the
messages in a program. All strings extracted from the source code belonging
to a specific domain end up in the message catalog for that domain.

A package may have several domains. The typical boundary between
domains, and therefore between message catalogs, is an executable module—
either a program or a library. For example, the curl package installs the
command line curl program and the libcurl.so shared library. The curl
library is designed to be used by both the curl program and by other third-
party programs and libraries. If the curl package were internationalized, the
package author might decide to use the curl domain for the curl program
and the libcurl domain for the library so that third-party applications that
use libcurl aren’t required to have the curl message catalog installed.

17. See https://www.gnu.org/software/libc/manual/html_node/Translation-with-gettext
.html#Translation-with-gettext.

https://www.gnu.org/software/libc/manual/html_node/Translation-with-gettext.html#Translation-with-gettext

328 Chapter 11

The example used by the GNU C Library manual18 is one where libc itself
uses libc as the domain name, but programs using libc would use their own
domain. Simply put, the domainname parameter in these functions directly
corresponds to a message catalog filename.

The dirname parameter in bindtextdomain is used to specify a base directory
in which to search for the well-defined message catalog directory structure,
which I’ll discuss shortly. Normally, the value passed in this parameter is the
absolute path in the Automake datadir variable, suffixed with /locale. Recall
that datadir contains, by default, $(prefix)/share and prefix contains /usr/local,
so the full path used here would be /usr/local/share/locale. For distribution-
provided packages, prefix is more often simply /usr, so the full path would
then become /usr/share/locale. It’s therefore up to the maintainer to ensure
that datadir is available within the software (using techniques discussed in
Chapter 3) and referenced in the argument passed to this parameter.

Listing 11-12 shows how to add the code necessary to select the proper
message catalog based on the current locale. Of course, we must first make the
program aware of the current locale in the usual manner by calling setlocale.

#include <stdio.h>
#include <locale.h>
#include <libintl.h>

#ifndef LOCALE_DIR
define LOCALE_DIR "/usr/local/share/locale"
#endif

#ifdef TEST_L10N
include <stdlib.h>
undef LOCALE_DIR
define LOCALE_DIR getenv("PWD")
#endif

#define _(x) gettext(x)

int main()
{
 const char *localedir = LOCALE_DIR;

 setlocale(LC_ALL, "");
 bindtextdomain("gt", localedir);
 textdomain("gt");

 printf(_("Hello, world!\n"));

 return 0;
}

Listing 11-12: gt.c: Enhancements to enable the current locale and select the message catalog

18. See https://www.gnu.org/software/libc/manual/html_node/Locating-gettext-catalog
.html#Locating-gettext-catalog.

https://www.gnu.org/software/libc/manual/html_node/Locating-gettext-catalog.html#Locating-gettext-catalog

Internationalization 329

I’m using gt as the domain name here because that’s the name of the
program. If this program were part of a package wherein all the components
used the same domain, then the package name might be a better choice.

The directory name passed into bindtextdomain’s second parameter is
derived from a future config.h inclusion. We’ll add that later when we incor-
porate this program into an Autotools build system. If we define TEST_L10N
on the compiler command line, the directory name resolves to the value of
the PWD environment variable, allowing us to test our program in any loca-
tion containing the locale directory structure. (We’ll replace this hack later
with a more Autotool-ish mechanism in Chapter 12.)

That’s really all there is to instrumenting your code for message catalog
lookup. In the next section, I’ll discuss how to generate and build message
catalogs, which is part of the process of localizing a software package. I’ll
also talk about the internal workings of the gettext library, which allows the
user to select (during the user phase) the message catalog that should be
used by their choice of environment variable settings.

Summary
In this chapter, my goal was to give you enough background that you could
easily continue learning about internationalizing your software projects.
I’ve covered the C standard library functionality that’s designed to help
you internationalize your software.

In the next chapter, we’ll continue our exploration of this topic by
diving into localization. We’ll also discover how to tie all of this into the
Autotools so that language packs get built and installed with make com-
mands generated by Automake.

12
L O C A L I Z A T I O N

Once you’ve accomplished the significant
work involved in internationalizing your

software, you can begin to consider building
message catalogs for other languages and cul-

tures. Building a language-specific message catalog is
known as localization. You are localizing your software
for a target locale. We will spend this chapter discussing the way GNU proj-
ects approach these topics, including how to hook message catalog manage-
ment into an Autotools build system.

Getting Started
Message catalogs must be located where applications can find them. It
could have been decided that applications should just store their language-
specific message catalogs in a location selected by each project, but Linux
(and Unix, in general) has long practiced the subtle art of quietly guiding
application developers by convention. Not only do such conventions keep

When I’m working on a problem, I never think about beauty.
I think only how to solve the problem. But when I have finished,

if the solution is not beautiful, I know it is wrong.
—R. Buckminster Fuller

332 Chapter 12

developers from having to make the same decisions over and over, but they
also maximize the potential for reuse wherever possible. To these ends, the
established convention for message catalogs is to place them in a common
directory under the system data directory—what the GNU Coding Standards
refers to as the datadir—most often defined as $(prefix)/share.1 A special
directory, $(datadir)/locale, houses all application message catalogs in a for-
mat that provides some nice features for the user.

Language Selection
I mentioned in Chapter 11 that application selection of the current lan-
guage, and hence the message catalog used by the application, is done in
two phases. I’ve discussed the programmer phase already. Now let’s turn
to the user phase, which allows the user some choice over which message
catalog is selected. As with the selection of locale, the selection of the mes-
sage catalog can be directed through the use of environment variables. The
following environment variables are used to select the message catalog an
application will use:

•	 LANGUAGE

•	 LC_ALL

•	 LC_xxx

•	 LANG

Up to this point, we’ve only focused on the LC_ALL variable, but, in actual-
ity, the application’s global locale is selected by first examining LC_ALL, then
a category-specific variable (LC_TIME, for example), and finally LANG, in that
order. In other words, if LC_ALL is not set or is set to the empty string, setlocale
will look for LC_xxx variables (specifically, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, and LC_TIME) and use their values to determine which
locales are used for the associated areas of library functionality. Finally, if
none of those are set, LANG is examined. If LANG is not set, you get an imple-
mentation-defined default, which is not always the same as the C locale.

On top of these variables used by setlocale, the gettext functions look at
LANGUAGE first, which, if set, will override all the others for message catalog
selection. Additionally, the value set in the LANGUAGE variable has some impact
on the selection criteria. Before we get into value formats, let’s take a look
at the directory structure beneath $(datadir)/locale. If you look at this direc-
tory on your own system, you’d see something like this:

$ ls -1p /usr/share/locale
aa/
ab/
ace/
ach/
af/

1. See https://www.gnu.org/prep/standards/html_node/Directory-Variables.html.

https://www.gnu.org/prep/standards/html_node/Directory-Variables.html

Localization 333

all_languages
--snip--
locale.alias
--snip--
sr@ijekavian/
sr@ijekavianlatin/
sr@latin/
sr@Latn/
--snip--
zh_CN/
zh_HK/
zh_TW/
zu/
$

The format of these directory names should look somewhat famil-
iar—it’s the same format used by locale names defined in “Generating and
Installing Locales” on page 303. Under each locale directory containing
message catalogs (it’s rather sparse—application localization is not as prev-
alent as you might imagine), you’ll find a directory named LC_MESSAGES,
containing one or more message object (.mo) files, which are compiled mes-
sage catalogs. Here’s Spanish in Spain, for instance:

$ tree --charset=ASCII /usr/share/locale/es_ES/LC_MESSAGES
/usr/share/locale/es_ES/LC_MESSAGES
`-- libmateweather.mo

0 directories, 1 file
$

If you examine the region-independent Spanish locale directory, /usr/
share/locale/es, you’ll see a lot more message catalogs. Most programs don’t
bother differentiating regional locales when translating:

$ tree --charset=ASCII /usr/share/locale/es/LC_MESSAGES
/usr/share/locale/es/LC_MESSAGES/
|-- apt.mo
|-- apturl.mo
|-- bash.mo
|-- blueberry.mo
|-- brasero.mo
--snip--
|-- xreader.mo
|-- xviewer.mo
|-- xviewer-plugins.mo
|-- yelp.mo
`-- zvbi.mo
$

As I mentioned earlier, the base name of a message object file is
the domain of the owning application. When you call textdomain and

334 Chapter 12

bindtextdomain, the domain you specify selects a message object file by name.
In this directory listing, blueberry is the message catalog domain of the appli-
cation that uses the blueberry.mo message catalog.

Building Message Catalogs
The gettext library provides a set of utilities that help you build message
catalogs from source code that’s been internationalized for message cata-
log selection. Figure 11-1 depicts the flow of data through the gettext utili-
ties, from source code to binary message object.

xgettext

System executables

User-provided data files

Generated data files

Generated binary files

source.c

msginit msgfmt

msgmerge

initial

update

po/domain.pot

po/language.po po/language.mo

Figure 12-1: The flow of data from source file to message object file

The xgettext utility extracts messages from programming language
source files and builds a portable object template (.pot) file. This is done each
time the message strings in source files are changed or updated in some
way. Perhaps existing messages are modified or removed or new messages
are added. In any case, the .pot file must be updated. The .pot file is usually
named after the message catalog domain used by the package or program.

Assuming we created a message catalog in a project for a French locale,
this process generates files in the current directory, but we’re going to fol-
low a common convention by generating all of our message artifacts into a
directory off the project root called po:

project/
 po/
 fr.mo
 fr.po
 project.pot

The internal layout of the po directory in my examples is arbitrary—
you can tell the gettext tools how to name output files, and you can put
them anywhere you like. I chose this structure because it’s what we’re
going to use when we integrate gettext with an Autotools project later in
this chapter.

Localization 335

Let’s generate a .pot file for the source code of the gt program in
Listing 11-12 on page 328:

$ mkdir po
$ cd po
$ xgettext -k_ -c -s -o gt.pot ../gt.c
$ cat gt.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2018-07-12 17:22-0600\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: ../gt.c:25
#, c-format
msgid "Hello, world!\n"
msgstr ""
$

The xgettext utility is designed to build .pot files from the source files of
many different programming languages, so it accepts --language or -L com-
mand line options as hints. However, it will also guess the language, based
on the file extension, if no such option is given.

Because xgettext is designed to parse many different types of source
file, it can sometimes require help locating the messages we want it to
extract. It assumes text to be extracted is somehow associated with the
gettext function in the C language. For other language source files, it
looks for appropriate variations of this function name. Unfortunately, we
threw a monkey wrench into the works when we replaced gettext with the
underscore (_) macro name. This is where the --keyword (-k) option can be
used to tell xgettext where to look for message text to be extracted. Our
use of -k_ causes xgettext to look for _ instead of gettext. Without this
option, xgettext won’t find any messages to extract and, therefore, won’t
generate a .pot file.2

2. It’s also very quiet about the entire process, so it can look like something just refused to
work until you understand that it can’t find any occurrences of static text to be extracted that
are near calls to gettext.

336 Chapter 12

I’m also telling it to add comments (-c) and to sort the output messages
(-s) as they’re added to the .pot file. If you don’t tell it otherwise (with the
-o option), it’ll create a file called messages.po. Files not associated with a
command line option are considered input files by xgettext.

At this point, though not strictly required, and depending on the work-
flow you choose to use, you may want to hand-edit gt.pot to update place-
holder values that xgettext adds. For example, you may want to replace the
PACKAGE and VERSION placeholder strings in the Project-Id-Version field and
perhaps add an email address to the Report-Msgid-Bugs-To field. These can be
added during generation by using the --package-name, --package-version, and
--msgid-bugs-address command line options. There are a few others; you can
look them up in the manual.

From this template, we can now generate portable object (.po) files for
different locales. The msginit utility is used to create an initial version of a
locale-specific .po file, while msgmerge is used to update an existing .po file
that was previously generated with msginit.

Let’s create a French fr.po file from our template, gt.pot:

$ msginit --no-translator --locale=fr
Created fr.po.
$ cat fr.po
French translations for PACKAGE package.
Copyright (C) 2019 THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
Automatically generated, 2019.
#
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2019-07-02 23:19-0600\n"
"PO-Revision-Date: 2019-07-02 23:19-0600\n"
"Last-Translator: Automatically generated\n"
"Language-Team: none\n"
"Language: fr\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=ASCII\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n > 1);\n"

#: ../gt.c:21
#, c-format
msgid "Hello, world!\n"
msgstr ""
$

If you don’t specify any input or output files, it looks in the current
directory for a .pot file and derives the output filename from the locale you
specify with the --locale (-l) option. I’ve also added the --no-translator

Localization 337

option to suppress an interactive aspect of this utility. If you leave it off,
msginit attempts to find your email address on the local host and use it. If
it gets confused, it stops and asks you which address to use.

In addition to the specified or implied .pot file, it also examines make-
files and other build files within the near vicinity of the source files you
specify to see what the project might be called. The project name, PROJECT,
that you see in this output is the default it uses when it can’t find a project
name, but it may surprise you how thorough msginit can be when searching
for a project name.

Now, there’s nothing very French about this .po file yet—would that it
were so simple! No, you still have to translate the strings from English to
French manually. So what’s different about this .po file from its source tem-
plate file? Essentially, everything related to a locale-specific implementation
in the template has been filled in, including the title and copyright year
in the comments at the top as well as the PO-Revision-Date, Last-Translator,
Language-Team, Language, and Plural-Forms fields.

The next step in the process is to actually translate the file. Normally,
I’d go find a native French speaker with a good grasp of English and ask
them to fill in the blanks for me. Since there’s little chance of misusing an
internet translator with gt’s one simple message, I’ll just look it up myself
and set the msgstr field at the bottom of the file to "Bonjour le monde!\n".

Once translated, the .po file is passed through the msgfmt utility to create
the locale-specific message object (.mo) file. Let’s do this for fr.po:

$ msgfmt -o fr.mo fr.po
$ ls -1p
fr.mo
fr.po
gt.pot
$

There are lots of options you can use with msgfmt. For our example, the
default functionality is quite sufficient. Still, I specified the output file (with
-o) because the default output file is messages.mo and I wanted to be clear
that this is the French language message file.

To test our French message catalog, we could copy fr.mo over to
/usr/local/share/locale/fr/LC_MESSAGES/gt.mo as root and then execute
gt with the LANGUAGE variable set to fr, but a simpler way is to use that hack
I added to gt that lets us build a version that treats the current directory
as the localedir.

N O T E I named the output file fr.mo, but the installed message file must be named after
the project’s or program’s message domain—gt in this case—so during installation
fr.mo should be renamed to gt.mo. It’s installed into a language-specific subdirectory
of localedir, so the French nature of the .mo file is maintained after installation by
virtue of its location in the filesystem.

338 Chapter 12

First, let’s install our fr.mo file locally and then rebuild gt so that it looks
in the current directory rather than the system data directory. Then we’ll
run gt with English and French locales, as follows:

$ cd ..
$ mkdir -p fr/LC_MESSAGES
$ cp po/fr.mo fr/LC_MESSAGES/gt.mo
$ gcc -DTEST_L10N gt.c -o gt
$./gt
Hello, world!
$ LANGUAGE=french ./gt
Bonjour le monde!
$

This console example should raise a few concerns: Why did I use
LANGUAGE rather than LC_ALL? How was I able to use french instead of fr as
the value of LANGUAGE without causing gt heartache while searching for the
French version of gt.mo?

To answer the first question, I cannot use the LC_* or LANG variables here,
because I don’t have any French locales installed on my system and these
variables merely set the locale, leaving textdomain and bindtextdomain to deter-
mine the locale based on queries to the structure returned by localeconv (or,
rather, a more extensive internal form of that structure) in the C library.
Because I don’t have any French locales installed, setlocale will not be able
to set a locale based on the values of the LANG or LC_* variables, so it will simply
leave the current global locale set to the system default—English, on my host.
Therefore, the language used will continue to be English.

The answer to the second question brings us back to an as yet unproven
statement I made in “Language Selection” on page 332, where I said that the
value the user sets in the LANGUAGE variable has some impact on the selection
criteria used by textdomain and bindtextdomain. The gettext library allows the
user to select fallback message catalogs when a requested locale is not avail-
able on the system. This is done by being less specific in the LANGUAGE variable
(which is specifically used by textdomain and bindtextdomain) than in the other
variables, which are examined by setlocale. The value format supported by
LANGUAGE can exactly duplicate the strict format required in LC_* and LANG, but
it also supports locale names with missing components and language aliases.

First, let’s consider what I mean by missing components. Recall the
components of a locale name:

language[_territory][.codeset][@modifier]

The bindtextdomain function attempts to find message catalogs in the
specified locale directories that match this entire format, as specified
either in the LANGUAGE variable or in the current locale string, as provided
by localeconv. But then it backs off by dropping first the codeset, then a
normalized form of the codeset,3 then the territory, and finally the modifier.

3. See https://www.gnu.org/software/libc/manual/html_node/Using-gettextized-software.html#Using
-gettextized-software.

https://www.gnu.org/software/libc/manual/html_node/Using-gettextized-software.html#Using%20-gettextized-software

Localization 339

If all components are dropped, we’re left with just the language portion of
the locale name (or whatever other random text was specified in LANGUAGE).
If a match still cannot be found, bindtextdomain then looks at the /usr/share/
locale/locale.alias file for an alias matching the value in LANGUAGE (french is an
alias on my system for fr _FR.ISO-8859-1). This algorithm allows users to be
rather vague about which message catalog they want to use and still obtain
one that’s reasonably close to their native language, if an exact match for
the current locale is not available.

Integrating gettext with the Autotools
Up to this point in this chapter, I’ve been building little utilities and pro-
grams like gt by just using gcc from the command line. Now it’s time to turn
gt into an Autotools project so we can add Native Language Support (NLS)
functionality in the manner the GNU project recommends. It’s really best
to go this route, because it allows translators out there—people who love
to do this sort of thing, and who like your program—to more easily add a
message catalog for their language.

The information in this section was mostly taken from Section 13, “The
Maintainer’s View,” of the GNU gettext Utilities Manual.4 The gettext manual is
a little out-of-date with respect to the Autotools and even the gettext package
itself, but it’s otherwise well organized and very detailed on the topics of
internationalization and localization. In fact, it’s so complete that it’s hard
to get your head around it until you have some of the basics behind you. My
goal in this chapter is to give you the background you need to dig into the
gettext manual without fear. In fact, this chapter only lightly brushes over
many topics that the manual covers in great detail.

Let’s move gt.c into a project src directory and create configure.ac,
Makefile.am, and the other GNU-mandated text files. Assuming you’re in
the directory where our original gt.c file was created, do the following:

$ mkdir -p gettext/src
$ mv gt.c gettext/src
$ cd gettext
$ autoscan
$ mv configure.scan configure.ac
$ touch NEWS README AUTHORS ChangeLog
$

The Makefile.am file should look like the one shown in Listing 12-1.

bin_PROGRAMS = src/gt
src_gt_SOURCES = src/gt.c
src_gt_CPPFLAGS = -DLOCALE_DIR=\"$(datadir)/locale\"

Listing 12-1: Makefile.am: The initial contents of this Automake input file

4. See https://www.gnu.org/software/gettext/manual/gettext.html#Maintainers.

Git tag 12.0

https://www.gnu.org/software/gettext/manual/gettext.html#Maintainers

340 Chapter 12

I’ve added target-specific CPPFLAGS to allow me to pass the LOCALE_DIR on
the compiler command line. We should also edit our src/gt.c file and add the
config.h header file to it so we’ll have access to the LOCALE_DIR variable we’re
defining in there. Listing 12-2 shows the changes we need to make. You can
also remove the TEST_L10N hack; we will no longer need this because we can
test Autotools-built gt using a local installation.

#include "config.h"

#include <stdio.h>
#include <locale.h>
#include <libintl.h>

#ifndef LOCALE_DIR
define LOCALE_DIR "/usr/local/share/locale"
#endif

#define _(x) gettext(x)
--snip--

Listing 12-2: src/gt.c: Changes required to configure the LOCALE_DIR

Now edit the new configure.ac file and make the changes shown in
Listing 12-3.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
AC_INIT([gt], [1.0], [gt-bugs@example.org])
AM_INIT_AUTOMAKE([subdir-objects])
AC_CONFIG_SRCDIR([src/gt.c])
AC_CONFIG_HEADERS([config.h])
AC_CONFIG_MACRO_DIRS([m4])

Checks for programs.
AC_PROG_CC

Checks for libraries.

Checks for header files.
AC_CHECK_HEADERS([locale.h])

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.
AC_CHECK_FUNCS([setlocale])

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

Listing 12-3: configure.ac: Changes necessary to the autoscan-generated .scan file

Localization 341

Note that some header file references were removed in the AC_CHECK
_HEADERS line in Listing 12-3.

At this point, you should be able to execute autoreconf -i, followed by
configure and make to build gt:

$ mkdir m4
$ autoreconf -i
configure.ac:12: installing './compile'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './INSTALL'
Makefile.am: installing './COPYING' using GNU General Public License v3 file
Makefile.am: Consider adding the COPYING file to the version control
system
Makefile.am: for your code, to avoid questions about which license your
project uses
Makefile.am: installing './depcomp'
$./configure && make
--snip--
configure: creating ./config.status
config.status: creating Makefile
config.status: creating config.h
config.status: config.h is unchanged
config.status: executing depfiles commands
make all-am
make[1]: Entering directory '/.../gettext'
depbase=`echo src/gt.o | sed 's|[^/]*$|.deps/&|;s|\.o$||'`;\
gcc -DHAVE_CONFIG_H -I. -g -O2 -MT src/gt.o -MD -MP -MF $depbase.Tpo -c -o
src/gt.o src/gt.c &&\
mv -f $depbase.Tpo $depbase.Po
gcc -g -O2 -o src/gt src/gt.o
make[1]: Leaving directory '/.../gettext'
$

N O T E I created the m4 directory before running autoreconf because autoreconf complains
about m4 not being present when it finds AC_CONFIG_MACRO_DIRS in configure.ac.
It still works, but warns you that the directory is missing. Creating it in advance
just reduces noise.

The first step in enhancing an existing Autotools project for NLS sup-
port with gettext is to add a bunch of gettext-specific files to your project. It’s
actually kind of tedious, so the gettext people have created a little utility
called gettextize that works pretty well. When you run gettextize, it does a
small amount of analysis, dumps a bunch of files into your project’s po direc-
tory (it creates one if it’s not there yet), and then displays a six- or seven-step
procedure on your console. To ensure you don’t ignore this output, it waits
until you press enter to terminate the program, obtaining from you in
the process a promise that you’ll read and perform those steps. Sadly, the
instructions are a little out-of-date—not all of them are actually necessary,
and some of them don’t apply if you’re using the full Autotools suite. Like
many programs that integrate with the Autotools, gettext was written to be

342 Chapter 12

usable by packages that use Autoconf alone and by programs that use the
full Autotools suite. I’ll explain which ones are important as we go.

Let’s start by running gettextize on our gt project directory:

$ gettextize
 Creating po/ subdirectory

Copying file ABOUT-NLS
Copying file config.rpath
Not copying intl/ directory.
Copying file po/Makefile.in.in
Copying file po/Makevars.template
Copying file po/Rules-quot
Copying file po/boldquot.sed
Copying file po/en@boldquot.header
Copying file po/en@quot.header
Copying file po/insert-header.sin
Copying file po/quot.sed
Copying file po/remove-potcdate.sin
Creating initial po/POTFILES.in
Creating po/ChangeLog
Copying file m4/gettext.m4
Copying file m4/iconv.m4
Copying file m4/lib-ld.m4
Copying file m4/lib-link.m4
Copying file m4/lib-prefix.m4
Copying file m4/nls.m4
Copying file m4/po.m4
Copying file m4/progtest.m4

 Updating Makefile.am (backup is in Makefile.am~)
Updating configure.ac (backup is in configure.ac~)
Adding an entry to ChangeLog (backup is in ChangeLog~)

 Please use AM_GNU_GETTEXT([external]) in order to cause autoconfiguration
to look for an external libintl.

 Please create po/Makevars from the template in po/Makevars.template.
You can then remove po/Makevars.template.

 Please fill po/POTFILES.in as described in the documentation.

 Please run 'aclocal' to regenerate the aclocal.m4 file.
You need aclocal from GNU automake 1.9 (or newer) to do this.
Then run 'autoconf' to regenerate the configure file.

 You will also need config.guess and config.sub, which you can get from the
CVS of the 'config' project at http://savannah.gnu.org/. The commands to fetch
them are
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/
config.guess'
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/
config.sub'

 You might also want to copy the convenience header file gettext.h
from the /usr/share/gettext directory into your package.

Git tag 12.1

Localization 343

It is a wrapper around <libintl.h> that implements the configure --disable-nls
option.

Press Return to acknowledge the previous 6 paragraphs.
[ENTER]
$

The first thing gettextize does is create a po subdirectory (at) in
the root of our project directory, if needed. This will be where all the
NLS-related files are kept and managed by an NLS-specific makefile,
which gettextize also provides, as you can see from the third Copying file
message found in the first few lines of the output.

After copying files from your system’s gettext installation folder to the
po directory, it then updates the root-level Makefile.am file and configure.ac
(at). Listings 12-4 and 12-5 show the changes it makes to these files.

bin_PROGRAMS = src/gt
src_gt_SOURCES = src/gt.c src/gettext.h
src_gt_CPPFLAGS = -DLOCALE_DIR=\"$(localedir)\"

SUBDIRS = po

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = config.rpath

Listing 12-4: Makefile.am: Changes to this file made by gettextize

A SUBDIRS variable is added (or updated, if one exists) to the top-level
Makefile.am file so that po/Makefile will be processed by make, and AC_LOCAL
_AMFLAGS is added to support the m4 directory, which gettextize would have
added had we not done so first. Finally, gettextize adds an EXTRA_DIST vari-
able to ensure that config.rpath gets distributed.

N O T E Adding AC_LOCAL_AMFLAGS = -I m4 is no longer necessary with later versions of
Automake, because it provides the AC_CONFIG_MACRO_DIRS macro, which handles
this include directive for aclocal transparently.

I manually changed $(datadir)/locale to the Autoconf-provided
$(localedir) in the src_gt_CPPFLAGS line.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
--snip--
Checks for library functions.
AC_CHECK_FUNCS([setlocale])

AC_CONFIG_FILES([Makefile po/Makefile.in])

AC_OUTPUT

Listing 12-5: configure.ac: Changes to this file made by gettextize

344 Chapter 12

The only change made to configure.ac by gettextize is to add the
po/Makefile.in file to the AC_CONFIG_FILES file list. An astute reader would notice
the .in on the end of this reference and perhaps believe that gettextize had
made a mistake. Looking back at the list of files copied by the utility shows us,
however, that the file copied into the po directory really is called Makefile.in.in.
Autoconf processes the file first, and then gettext utilities process it again later
to remove the second .in extension.

Referring back to the output of gettextize, we see at that gettextize is
asking us to add a macro invocation, AM_GNU_GETTEXT([external]), to configure.ac.
This may perhaps seem strange, given that it just finished editing configure.ac
for us. The displayed text isn’t clear on this point, but the fact is, an entire
copy of the gettext runtime used to be added to projects on demand. This line
is simply telling us that if we do not intend to use such an internal version
of the gettext library, we should indicate so by using the external option in
a call to this macro so that configure will know to look outside the project
for the gettext utilities and libraries. As it happens, using an internal version
of the gettext library is no longer generally promoted—mainly because gettext
is now integrated into libc (at least on Linux systems), so everyone has ready
access to an external version of gettext. If you’re using another type of system
with GNU tools, you should install the gettext package so you can use that
external version.

I noticed also when I added this macro that autoreconf complained that
I was using AM_GNU_GETTEXT but not AM_GETTEXT_VERSION, which indicates to the
build system the lowest allowable version of gettext that may be used with
this project. I added this macro as well, with a version value corresponding
to the output of gettext --version on my system. I might have used a lower
version value to allow my project to build on other, perhaps older systems,
but I’d have had to do a bit of research to ensure that all the options I used
were valid back to the version I chose to use.

Listing 12-6 shows this addition to configure.ac.

--snip--
Checks for programs.
AC_PROG_CC
AM_GNU_GETTEXT_VERSION([0.19.7])
AM_GNU_GETTEXT([external])

Checks for libraries.
--snip--

Listing 12-6: configure.ac: Adding AM_GNU_GETTEXT

The next step, at , indicates that we should copy po/Makevars.template
to po/Makevars and edit it to ensure the values are correct. I say “copy” rather
than “move” because removing the template will just cause it to be replaced
the next time you run autoreconf -i anyway, so there’s no point in being
pedantic about it.

Listing 12-7 shows a pared-down version of this file—I’ve removed the
comments so we can more easily see the functional content, but the com-
ments are extensive and really quite useful, so please do examine the full file.

Localization 345

DOMAIN = $(PACKAGE)
subdir = po
top_builddir = ..
XGETTEXT_OPTIONS = --keyword=_ --keyword=N_
COPYRIGHT_HOLDER = John Calcote
PACKAGE_GNU = no
MSGID_BUGS_ADDRESS = gt-bugs@example.org
EXTRA_LOCALE_CATEGORIES =
USE_MSGCTXT = no
MSGMERGE_OPTIONS =
MSGINIT_OPTIONS =
PO_DEPENDS_ON_POT = no
DIST_DEPENDS_ON_UPDATE_PO = yes

Listing 12-7: po/Makevars.template: A list of variables that control the NLS build

I’ve highlighted the changes I made to gt’s version of this file. As you
can see, the defaults are mostly just fine. I changed the copyright holder
from the default, Free Software Foundation. I’ve also indicated that gt is not
a GNU package—the default here was blank, which tells gettext to attempt
to figure it out at runtime.

I’ve specified a value for MSGID_BUGS_ADDRESS, which is a value in the gener-
ated .pot file. The value generate by the po directory’s makefile will be the
email address (or web link) you specify here. Finally, I’ve set PO_DEPENDS_ON_POT
to no because otherwise, anytime the gt.pot file changes in insignificant ways,
the locale-specific .po files all get regenerated, and I’d rather just generate the
.po files in my project when a distribution is created. This is an arbitrary deci-
sion based on personal preference; you can choose to leave it at its default
value of yes, if you want.

At , we see a request to add some text to po/POTFILES.in. This is a
result of Automake’s requirement that all source files be specified in make-
files. We’re being asked to add all of the source files that must be processed
by xgettext to extract messages. Files may be added one per line, and com-
ments starting with a hash (#) mark may be used in this file if desired.
Listing 12-8 highlights what I’ve added to gt’s version of po/POTFILES.in.

List of source files that contain translatable strings.
src/gt.c

Listing 12-8: po/POTFILES.in: Changes made to the generated version of this file

The files listed in po/POTFILES.in should be relative to the project
directory root.

The steps listed at and are no longer necessary with late versions
of the Autotools. The configure script will automatically run aclocal and
rebuild itself for you when you execute it, if necessary. The config.sub and
config.guess files are now automatically installed by autoreconf based on the
use of the gettext macros. Unfortunately, autoreconf installs the versions of
these files that ship with Autoconf; they’re likely out-of-date, so the advice
to find and install the latest versions is still valid. If you need to, you can

346 Chapter 12

pull the latest versions of these files from the GNU Savannah config repository
using the supplied wget commands. You’ll know if you need to if gettext has
problems figuring out your platform using the ones installed by autoreconf. Be
sure to run autoreconf -i at least once more after these steps are completed.

The request to copy and consume gettext.h at is optional but helpful,
in my opinion, because it enables a configure script option added by gettext
Autoconf macros that allows the user to disable NLS processing while build-
ing from a distribution archive. I copied /usr/share/gettext/gettext.h into gt’s
src directory and added it to the list of source files for the gt program in
Makefile.am, as shown in Listing 12-9.

bin_PROGRAMS = src/gt
src_gt_SOURCES = src/gt.c src/gettext.h
--snip--

Listing 12-9: Makefile.am: Adding src/gettext.h to src_gt_SOURCES

Let’s try building after all these changes:

$ autoreconf -i
Copying file ABOUT-NLS
Copying file config.rpath
Creating directory m4
Copying file m4/codeset.m4
Copying file m4/extern-inline.m4
Copying file m4/fcntl-o.m4
--snip--
Copying file po/insert-header.sin
Copying file po/quot.sed
Copying file po/remove-potcdate.sin
configure.ac:12: installing './compile'
configure.ac:13: installing './config.guess'
configure.ac:13: installing './config.sub'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './depcomp'
$
$./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
--snip--
checking for locale.h... yes
checking for setlocale... yes
checking that generated files are newer than configure... done
configure: creating ./config.status
config.status: creating Makefile
config.status: creating po/Makefile.in
config.status: creating config.h
config.status: executing depfiles commands
config.status: executing po-directories commands
config.status: creating po/POTFILES
config.status: creating po/Makefile

Localization 347

$
$ make
make all-recursive
make[1]: Entering directory '/.../gettext'
Making all in po
make[2]: Entering directory '/.../gettext/po'
make gt.pot-update
make[3]: Entering directory '/.../gettext/po'
--snip--
case `/usr/bin/xgettext --version | sed 1q | sed -e ‘s,^[^0-9]*,,'` in \
 ‘’ | 0.[0-9] | 0.[0-9].* | 0.1[0-5] | 0.1[0-5].* | 0.16 | 0.16.[0-1]*) \
 /usr/bin/xgettext --default-domain=gt --directory=.. \
 --add-comments=TRANSLATORS: --keyword=_ --keyword=N_ \
 --files-from=./POTFILES.in \
 --copyright-holder='John Calcote' \
 --msgid-bugs-address="$msgid_bugs_address" \
 ;; \
 *) \
 /usr/bin/xgettext --default-domain=gt --directory=.. \
 --add-comments=TRANSLATORS: --keyword=_ --keyword=N_ \
 --files-from=./POTFILES.in \
 --copyright-holder='John Calcote' \
 --package-name="${package_prefix}gt" \
 --package-version='1.0' \
 --msgid-bugs-address="$msgid_bugs_address" \
 ;; \
esac
--snip--
make[3]: Leaving directory '/.../gettext/po'
test ! -f ./gt.pot || \
 test -z "" || make
touch stamp-po
make[2]: Leaving directory '/.../gettext/po'
make[2]: Entering directory '/.../gettext'
gcc -DHAVE_CONFIG_H -I. -DLOCALE_DIR=\"/usr/local/share/locale\" -g -O2
-MT src/src_gt-gt.o -MD -MP -MF src/.deps/src_gt-gt.Tpo -c -o src/src_gt-gt.o
`test -f 'src/gt.c' || echo './'`src/gt.c
mv -f src/.deps/src_gt-gt.Tpo src/.deps/src_gt-gt.Po
gcc -g -O2 -o src/gt src/src_gt-gt.o
make[2]: Leaving directory '/.../gettext'
make[1]: Leaving directory '/.../gettext'
$

N O T E Some corner-case conditions may cause files written by autoreconf to be considered
“modified locally,” which would generate errors without the -f or --force flag. I rec-
ommend you try it first using only -i. If you get errors about files like ABOUT-NLS
being modified locally, then re-execute it with the -f flag also. Just be aware that -f
will overwrite some files you may have intentionally modified.

As you can see from this output, xgettext is run against our source
code—specifically, the files we mentioned in po/POTFILES.in—whenever we
build, if any of the files are missing at build time. If a file is found, it won’t be
rebuilt automatically, but there is a manual make target I’ll mention shortly.

348 Chapter 12

What Should Be Committed?
We’ve added a lot of new files to the gt project. In “A Word About the Utility
Scripts” on page 172, I gave you my philosophy on what should be com-
mitted to a source repository, which is that people who check out your proj-
ect from its repository should be willing to take on the role of maintainer
or developer, rather than user. Users build from distribution archives,
but maintainers and developers use a different set of tools. Therefore,
people who check out source from repositories should be willing to use the
Autotools.

It’s now time to consider which of these new files you should commit
to gt’s repository. Following my philosophy, I would only commit those files
that are actually assets of the project. Anything that can be easily regener-
ated or recopied from other sources during the Autotools bootstrap process
(autoreconf -i) should be left out.

The gettextize utility runs a program called autopoint, which acts for
NLS-enabled projects as autoreconf -i does for Autotools projects, copy-
ing files into the project directory structure as needed. The AM_GETTEXT_*
macros we added to configure.ac earlier ensure that the appropriate .m4
files are added to the m4 directory, the appropriate NLS files are added
to the po directory, and (if you were using an internal version of the gettext
library) the gettext source and build files are added to the intl directory.
In fact, autopoint is a sort of contraction of the phrase auto-po-intl-m4.5
More recent versions of autoreconf are aware of autopoint and will execute
it for you if they notice you have an NLS-enabled project, but only if you
provide the -i option to autoreconf, because autopoint only installs missing
files and file installation is a function of the -i option.

Because autopoint installs all required non-asset files in your po direc-
tory, the only thing you need to commit in that directory are the files
you modified, including POTFILES.in, Makevars, ChangeLog,6 and, of
course, your .po files. You don’t need to commit your .pot file because
the po/Makefile will regenerate that from your source code if it’s missing.
You don’t need to commit your .mo files, as those get generated directly
from .po files at install time. You don’t need the ABOUT-NLS file unless
you’ve modified it. You don’t need anything in the m4 directory except
macro files you wrote and added yourself. You will need to commit the
src/gettext.h file since you manually copied that file from your system gettext
install directory.7

5. I had to install the autopoint package on my system separately. It doesn’t come with gettext,
and it must be installed in order to use gettextize. On my Debian-based system, I used the
command sudo apt install autopoint.

6. There are tools now that will scrape a git log for ChangeLog data. If you already do this in
your projects, then don’t bother committing your ChangeLog either; there’s no point in writ-
ing that information twice.

7. This is true unless you want to provide a bootstrap.sh script that copies that file over and
runs autoreconf -i. However, you don’t necessarily know where it will be located on someone
else’s system, so I’d recommend not doing this.

Localization 349

This leaves us with the following files in gt’s directory structure:

$ tree --charset=ascii
.
|-- AUTHORS
|-- ChangeLog
|-- configure.ac
|-- COPYING
|-- INSTALL
|-- Makefile.am
|-- NEWS
|-- po
| |-- ChangeLog
| |-- Makevars
| `-- POTFILES.in
|-- README
`-- src
 |-- gettext.h
 `-- gt.c

2 directories, 13 files
$

Adding a Language
Let’s add our French language .po file:

$ cd po
$ msginit --locale fr_FR.utf8
--snip--
$ echo "
fr" >>LINGUAS
$

While we do run msginit, we don’t need to specify input and output
files. Rather, msginit automatically discovers and uses all .pot files in the cur-
rent directory as input files, and it automatically names the output .po file
after the language specified. The only option we need to use is the --locale
option to specify the target locale for which a .po file should be generated.

N O T E I didn’t use the --no-translator option this time because when I run msginit, I’m
acting in the role of the translator for the target language. That is to say, the person
who runs msginit for a given locale or language should be the translator for that
language. Therefore, that person should also be willing to provide contact informa-
tion for the translation, which they can input at the interactive prompt for their email
address when they run msginit in this manner.

We also need to add all supported languages to a file named LINGUAS
in the po directory (and this new file should also be committed). This tells
the build system which languages to support. We may actually have more
languages in the po directory than we currently support. The languages

Git tag 12.2

350 Chapter 12

in the LINGUAS file are those for which .mo files will be generated and
installed when we run make install. The format of LINGUAS is fairly loose;
you only need some sort of whitespace between languages. You may also use
hash-preceded comments, if you want.

You’ll find a file named fr.po in the po directory now. Of course, it still
has to be translated by someone who speaks both languages fairly well. The
contents should look something like that of Listing 12-10 after translation.
I’ve updated mine, filling in all the blanks, so to speak.

French translations for gt package.
Copyright (C) 2019 John Calcote
This file is distributed under the same license as the gt package.
John Calcote <john.calcote@gmail.com>, 2019.
#
msgid ""
msgstr ""
"Project-Id-Version: gt 1.0\n"
"Report-Msgid-Bugs-To: gt-bugs@example.org\n"
"POT-Creation-Date: 2019-07-02 01:17-0600\n"
"PO-Revision-Date: 2019-07-02 01:35-0600\n"
"Last-Translator: John Calcote <john.calcote@gmail.com>\n"
"Language-Team: French\n"
"Language: fr\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n > 1);\n"

#: src/gt.c:21
#, c-format
msgid "Hello, world!\n"
msgstr "Bonjour le monde!\n"

Listing 12-10: po/fr.po: The translated French portable object file

Installing Language Files
Installation of language files is no harder than running make with the usual
Automake-provided install target:

$ sudo make install
--snip--
Making install in po
--snip--
$

You may also use a DESTDIR variable on the make command line to test
your installation in a local staging directory in order to see what gets
installed. Of course you don’t need sudo when you do this, as long as you
have write privileges in your DESTDIR location.

Localization 351

Testing is not quite as simple as executing your program from the
src directory after building, but neither is it that difficult. The problem is
the entire Linux NLS system is designed to work with installed language
files. You’ll need to install into a local prefix directory, such as $PWD/root,
for instance:

$./configure --prefix=$PWD/root
--snip--
$ make
--snip--
$ make install
--snip--
$ cd root/bin
$./gt
Hello, world!
$ LANGUAGE=french ./gt
Bonjour le monde!
$

Why does this work? Because we’re passing the locale directory, based
on prefix, into gt.c in the makefile on the gcc command line. Therefore, the
prefix you use tells gt where the NLS files will be installed.

N O T E Don’t try this with the DESTDIR variable. The prefix will still be set to /usr/local, but
the install target will put everything into $(DESTDIR)/$(prefix). The locale directory
is based only on prefix, which tricks built software into thinking it’s being installed
into $(prefix), while allowing packagers to stage the installation locally.

Manual make Targets
The gettext makefile provides a couple of targets that can be used manually
from the po directory (in fact, they’ll only work from the po directory). If
you want to manually update one of your .pot files, you can run make domain
.update-pot, where domain is the name of the NLS domain you specified when
you called textdomain and bindtextdomain in your source code.

If you want to update the translated language files using msgmerge, which
will merge new messages from the .pot files into the locale-specific .po files,
you can run make update-po. This will update all of the .po files whose locales
are specified in LINGUAS.

Note that .mo files are not created at build time but only at installation
time. The reason for this is that they’re useless before they’re installed. If
you really need to have the .mo files without installing your package, you
can install into a local prefix or into a DESTDIR staging directory, in the man-
ner outlined earlier.

352 Chapter 12

Summary
In this chapter, I barely grazed the surface of the topic of adding NLS
support to projects.

What did I skip? Well, for instance, there are dozens of options in the
gettext tools that help localizers build language files for programs that cause
the software to display messages sensibly.

For another example, in a typical printf statement in C, you might
provide a format string in English such as "There are %d files in the '%s'
directory." In this example, %d and %s are placeholders for a count and a
directory name, of course, but in German, the translated string would
become something like "Im verzeichnis '%s' befinden sich %d dateien." Even
a non-German-speaking programmer can see what’s wrong here—the
order of the format specifiers has changed. One solution, of course, is to
use printf’s newer positional format specifiers.

There are dozens of other issues you will want to consider; the GNU
gettext Utilities Manual is a great place to start.

Nothing was ever created by two men. There are no good collaborations,
whether in art, in music, in poetry, in mathematics, in philosophy.

Once the miracle of creation has taken place, the group can build and
extend it, but the group never invents anything.

—John Steinbeck, East of Eden

13
M A X I M U M P O R T A B I L I T Y

W I T H G N U L I B

You know those cool scripting languages
you’ve been using for the last 10 years or

so—Python, PHP, Perl, JavaScript, Ruby,
and so on? One of the coolest features of these

languages, and even some compiled languages like
Java, is the ability to access community-provided
library functionality through the use of tools like pip
and maven, from repositories like PEAR, RubyGems,
CPAN, and Maven Central.

Don’t you wish you could do that sort of thing with C and C++? You can
have that experience in C with the GNU Portability Library (Gnulib)1, with
its companion command line tool gnulib-tool. Gnulib is a library of source
code designed to be widely portable, even to platforms like Windows, using

1. See https://www.gnu.org/software/gnulib/.

https://www.gnu.org/software/gnulib/

354 Chapter 13

both native- and Cygwin-based compilation (though Gnulib is tested on
Cygwin a little more than it is with native Windows builds).

There are literally hundreds of portable utility functions in Gnulib
that are designed with one goal in mind—portability to many different plat-
forms. This chapter is about how to get started with Gnulib and how to use
it to your best advantage.

License Caveat
Before I continue, I should mention that much of the Gnulib source code
is licensed under GPLv3+ or LGPLv3+. Some of the Gnulib source code
is, however, licensed under LGPLv2+, which may make that functionality
a bit more palatable. The Gnulib functions that can reasonably be used in
libraries are licensed under either LGPLv2+ or LGPLv3+; all else is licensed
either under GPLv3+ or under a sort of hybrid mix of “LGPLv3+ and GPLv2”
(which is ultimately more compatible with GPLv2 than LGPLv2). If this
bothers you, then you may want to skip this chapter, but before discarding
Gnulib entirely, consider checking the license on the functionality you wish
to use to see if your project can accommodate it.

Since Gnulib is distributed in source format, and designed to be incor-
porated into applications and libraries in that format, the use of Gnulib
implies the incorporation of GPL and LGPL source code directly into your
source base. At the very least, this means you’ll need to license portions of
your code using GPL and LGPL licenses. This may explain why Gnulib is
not extremely popular, except with maintainers of other GNU packages.

If, on the other hand, you’re writing an open source program already
licensed under the GPL, or an open source library already using the LGPL,
then your project is a perfect fit for Gnulib. Read on.

Getting Started
As mentioned, Gnulib is distributed in source format. While you can always
go to the Savannah git repository and browse and download individual files
online, it’s much simpler to just clone the Gnulib repository to a work area
on your local host. The Gnulib repository provides the gnulib-tool utility
in the repository’s root directory, which you can use to copy desired source
modules, with companion Autoconf macros and build scripts, directly into
your projects.

The gnulib-tool utility runs as is right from the root of the repository.
To make it easy to access, create a soft link somewhere in your PATH to this
program; then you can run gnulib-tool from your project directory to add
Gnulib modules to your Autotools-based project:

$ git clone https://git.savannah.gnu.org/git/gnulib.git
--snip--
$ ln -s $PWD/gnulib/gnulib-tool $HOME/bin/gnulib-tool
$

Maximum Portability with Gnulib 355

That’s all you need to make Gnulib usable in the most effective manner
on your system.

N O T E The upstream Gnulib project doesn’t do releases but rather simply incorporates
changes and bug fixes directly into the master branch. The programming examples
in this chapter were written to use Gnulib source code from commit f876e0946c730
fbd7848cf185fc0dcc712e13e69 in the Savannah Gnulib git repository. If you’re hav-
ing trouble getting the code in this chapter to build correctly, it could be because some-
thing has changed in the Gnulib source since this book was written. Try backing off
to this commit of Gnulib.

Adding Gnulib Modules to a Project
To help you understand how to use Gnulib, let’s create a project that does
something useful. We’ll write a program that converts data to and from
base64 strings, which are widely used today, and Gnulib has a portable
library of base64 conversion functionality. We’ll start by creating a small
program containing only a main function that will act as a driver for the
Gnulib base64 conversion functionality we’ll add later.

N O T E The source code for this project is in the NSP-Autotools GitHub repository called b64
at https://github.com/NSP-Autotools/b64/.

$ mkdir -p b64/src
$ cd b64
$

Edit src/b64.c and add the contents shown in Listing 13-1.

#include "config.h"
#include <stdio.h>

int main(void)
{
 printf("b64 - convert data to and from base64 strings.\n");
 return 0;
}

Listing 13-1: src/b64.c: The initial contents of the driver program main source file

Now let’s run autoscan to provide a base configure.ac file, rename the new
configure.scan file to configure.ac, and then create a Makefile.am file for our
project. Note that I’m creating a nonrecursive Automake project here, add-
ing the single source file, src/b64.c, directly to the top-level Makefile.am file.

Git tag: 13.0

https://github.com/NSP-Autotools/b64/

356 Chapter 13

Since we’re not creating a “foreign” project, we also need to add the stan-
dard GNU text files (but you may certainly add foreign to the AM_INIT_AUTOMAKE
macro argument list in configure.ac to avoid having to do this if you wish):

$ autoscan
$ mv configure.scan configure.ac
$ echo "bin_PROGRAMS = src/b64
src_b64_SOURCES = src/b64.c" >Makefile.am
$ touch NEWS README AUTHORS ChangeLog
$

Edit the new configure.ac file and make the changes shown in Listing 13-2.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
AC_INIT([b64], [1.0], [b 64-bugs@example.org])
AM_INIT_AUTOMAKE([subdir-objects])
AC_CONFIG_SRCDIR([src/b64.c])
AC_CONFIG_HEADERS([config.h])
AC_CONFIG_MACRO_DIRS([m4])
--snip--
AC_CONFIG_FILES([Makefile])

AC_OUTPUT

Listing 13-2: configure.ac: Required changes to autoscan-generated configure.ac

I’ve added the subdir-objects option to the AM_INIT_AUTOMAKE macro as
part of creating a nonrecursive Automake build system. I’ve also added the
AC_CONFIG_MACRO_DIRS macro to keep things clean.2

At this point, we should be able to run autoreconf -i, followed by
configure and make, to build the project:

$ autoreconf -i
aclocal: warning: couldn't open directory 'm4': No such file or directory
configure.ac:12: installing './compile'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './INSTALL'
Makefile.am: installing './COPYING' using GNU General Public License v3 file
Makefile.am: Consider adding the COPYING file to the version control
system
Makefile.am: for your code, to avoid questions about which license your
project uses
Makefile.am: installing './depcomp'
$
$./configure && make
checking for a BSD-compatible install... /usr/bin/install -c

2. I’m setting you up a bit here because Gnulib works better if your project uses a dedicated
macro directory.

Maximum Portability with Gnulib 357

checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
--snip--
config.status: creating Makefile
config.status: creating config.h
config.status: executing depfiles commands
make all-am
make[1]: Entering directory '/.../b64'
depbase=`echo src/b64.o | sed 's|[^/]*$|.deps/&|;s|\.o$||'`;\
gcc -DHAVE_CONFIG_H -I. -g -O2 -MT src/b64.o -MD -MP -MF $depbase.Tpo -c
-o src/b64.o src/b64.c &&\
mv -f $depbase.Tpo $depbase.Po
gcc -g -O2 -o src/b64 src/b64.o
make[1]: Leaving directory '/.../b64'
$
$ src/b64
$ b64 - convert data to and from base64 strings.
$

We’re now ready to start adding Gnulib functionality to this project.
The first thing we need to do is use gnulib-tool to import the base64
module into our project. Assuming you’ve correctly cloned the Gnulib
git project and added a soft link to gnulib-tool to a directory in your
PATH ($HOME/bin, perhaps, if that directory is in your PATH), execute the
following command from the root of the b64 project directory structure:

$ gnulib-tool --import base64
Module list with included dependencies (indented):
 absolute-header
 base64
 extensions
 extern-inline
 include_next
 memchr
 snippet/arg-nonnull
 snippet/c++defs
 snippet/warn-on-use
 stdbool
 stddef
 string
File list:
 lib/arg-nonnull.h
 lib/base64.c
 lib/base64.h
 --snip--
 m4/string_h.m4
 m4/warn-on-use.m4
 m4/wchar_t.m4
Creating directory ./lib
Creating directory ./m4
Copying file lib/arg-nonnull.h
Copying file lib/base64.c
Copying file lib/base64.h
--snip--

Git tag 13.1

358 Chapter 13

Copying file m4/string_h.m4
Copying file m4/warn-on-use.m4
Copying file m4/wchar_t.m4
Creating lib/Makefile.am
Creating m4/gnulib-cache.m4
Creating m4/gnulib-comp.m4
Creating ./lib/.gitignore
Creating ./m4/.gitignore
Finished.

You may need to add #include directives for the following .h files.
 #include "base64.h"

Don't forget to
 - add "lib/Makefile" to AC_CONFIG_FILES in ./configure.ac,
 - mention "lib" in SUBDIRS in Makefile.am,
 - mention "-I m4" in ACLOCAL_AMFLAGS in Makefile.am,
 - mention "m4/gnulib-cache.m4" in EXTRA_DIST in Makefile.am,
 - invoke gl_EARLY in ./configure.ac, right after AC_PROG_CC,
 - invoke gl_INIT in ./configure.ac.
$

The lists elided in this console example can get quite long when using
a module that has many dependencies on other Gnulib modules. The
base64 module only directly depends on the stdbool and memchr modules;
however, the dependency list shows additional transitive dependencies. You
can see the direct dependencies of a module before committing yourself to
it by examining its dependency list on the MODULES page at gnu.org3 or by
reading the modules/base64 file in your clone of the Gnulib repository.

Some of the transitive dependencies required by the base64 module
include modules designed to make base64 much more portable to a wide
variety of platforms. The string module, for example, provides a wrapper
around your system’s string.h header file that provides additional commonly
available string functionality or fixes bugs on some platforms.

You can see from the output that a couple of directories were created—
m4 and lib—and then some supporting M4 macro files were added to the m4
directory and some source and build files were added to the lib directory.

N O T E If you’re working in a git repository, gnulib-tool adds .gitignore files to the m4 and
lib directories so files that can be regenerated or recopied don’t get checked in automat-
ically when you run a command like git add -A. Instead, you’ll see that the only files
added are lib/.gitignore, m4/.gitignore, and m4/gnulib-cache.m4. All other
files can be regenerated (or recopied) after you’ve finished configuring your project
with the desired Gnulib modules.

Finally, near the end of the output, gnulib-tool provides you with some
concise instructions on how to use the base64 module you added. First, as

3. The base64 module page is found at https://www.gnu.org/software/gnulib/MODULES
.html#module=base64.

https://www.gnu.org/software/gnulib/MODULES.html#module=base64
https://www.gnu.org/software/gnulib/MODULES.html#module=base64

Maximum Portability with Gnulib 359

per these instructions, we need to add lib/Makefile to our AC_CONFIG_FILES
list in configure.ac. Later in the same list, we find additional instructions
for more general modifications to configure.ac. Listing 13-3 shows all of the
changes we should make to configure.ac, according to these instructions.

--snip--
Checks for programs.
AC_PROG_CC
gl_EARLY

Checks for libraries.

Checks for header files.

Initialize Gnulib.
gl_INIT

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.

AC_CONFIG_FILES([Makefile lib/Makefile])

AC_OUTPUT

Listing 13-3: configure.ac: Changes required by Gnulib

Some of the instructions also indicate changes required to the top-level
Makefile.am file in our project. Listing 13-4 highlights these changes.

ACLOCAL_AMFLAGS = -I m4
EXTRA_DIST = m4/gnulib-cache.m4
SUBDIRS = lib

bin_PROGRAMS = src/b64
src_b64_SOURCES = src/b64.c

Listing 13-4: Makefile.am: Changes required by Gnulib

Your project should continue to build after making these changes. We’ll
have to run autoreconf -i to include additional files that are now required
by the Gnulib macros we added to configure.ac.

When we imported the base64 module, the output from gnulib-tool
indicated that we may need to add an include directive for base64.h. At the
moment, we don’t need such a directive because our code doesn’t actu-
ally use any of base64’s functionality. We’re about to change that, but each
module has its own set of include directives, so the steps I’m about to show
you are related specifically to the base64 module. Other modules will have
similar steps, but they’ll be specific to the modules you choose to use. The
documentation for each module tells you how to access the public interface
for the module—that is, which header files to include.

360 Chapter 13

While the documentation is not particularly clear on this point, you
don’t actually have to link any module-specific libraries into your project
because the lib/Makefile.am file builds all imported modules’ source files
and adds the resulting objects to a static library called libgnu.a. This is a
customized version of the Gnulib library, containing only the modules you
pulled into your project. Since Gnulib is a source code library, there are no
binary files (outside of the one built in the lib directory) required by proj-
ects consuming Gnulib functionality. Therefore, the procedure for linking
to Gnulib functionality is the same for all Gnulib modules.

Let’s add some of base64’s functionality to our project to see what’s
involved in actually using this module. Make the changes highlighted in
Listing 13-5 to your src/b64.c file.

#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <errno.h>
#include <unistd.h>

#include "base64.h"

#define BUF_GROW 1024

static void exit_with_help(int status)
{
 printf("b64 – convert data TO and FROM base64 (default: TO).\n");
 printf("Usage: b64 [options]\n");
 printf("Options:\n");
 printf(" -d base64-decode stdin to stdout.\n");
 printf(" -h print this help screen and exit.\n");
 exit(status);
}

static char *read_input(FILE *f, size_t *psize)
{
 int c;
 size_t insize, sz = 0;
 char *bp = NULL, *cp = NULL, *ep = NULL;

 while ((c = fgetc(f)) != EOF)
 {
 if (cp >= ep)
 {
 size_t nsz = sz == 0 ? BUF_GROW : sz * 2;
 char *np = realloc(bp, nsz);
 if (np == NULL)
 {
 perror("readin realloc");
 exit(1);
 }

Git tag 13.2

Maximum Portability with Gnulib 361

 cp = np + (cp - bp);
 bp = np;
 ep = np + nsz;
 sz = nsz;
 }
 *cp++ = (char) c;
 }
 *psize = cp - bp;
 return bp;
}

static int encode(FILE *f)
{
 size_t insize;
 char *outbuf, *inbuf = read_input(f, &insize);
 size_t outsize = base64_encode_alloc(inbuf, insize, &outbuf);
 if (outbuf == NULL)
 {
 if (outsize == 0 && insize != 0)
 {
 fprintf(stderr, "encode: input too long\n");
 return 1;
 }
 fprintf(stderr, "encode: allocation failure\n");
 }
 fwrite(outbuf, outsize, 1, stdout);
 free(inbuf);
 free(outbuf);
 return 0;
}

static int decode(FILE *f)
{
 size_t outsize, insize;
 char *outbuf, *inbuf = read_input(f, &insize);
 bool ok = base64_decode_alloc(inbuf, insize, &outbuf, &outsize);
 if (!ok)
 {
 fprintf(stderr, "decode: input not base64\n");
 return 1;
 }
 if (outbuf == NULL)
 {
 fprintf(stderr, "decode: allocation failure\n");
 return 1;
 }
 fwrite(outbuf, outsize, 1, stdout);
 free(inbuf);
 free(outbuf);
 return 0;
}

int main(int argc, char *argv[])
{

362 Chapter 13

 int c;
 bool tob64 = true;

 while ((c = getopt(argc, argv, "dh")) != -1)
 {
 switch (c)
 {
 case 'd':
 tob64 = false;
 break;
 case 'h':
 default: exit_with_help(c == 'h' ? 0 : 1);
 }
 }
 return tob64 ? encode(stdin) : decode(stdin);
}

Listing 13-5: src/b64.c: Changes required to incorporate base64 functionality

I’ve provided the entire file in Listing 13-5 because there are only a few
lines of the original code remaining. This program was designed to act as a
Unix filter, reading input data from stdin and writing output data to stdout.
To read from and write to files, just use command line redirection.

I should mention a few noteworthy points about this program. First,
it uses a buffer growth algorithm in the read_input function. Much of
this code can be replaced with a call to another Gnulib module func-
tion, x2nrealloc. The online documentation is sparse about the use of this
method, or even the fact that it exists—perhaps because the xalloc inter-
face has been around in various forms for many years. You can find the
xalloc.h header file in the Gnulib source under the lib directory. There are
long comments in there containing example usages of many of the func-
tions, including the x2nrealloc function.

Another advantage of using xalloc functionality for all your allocation
needs is that its allocation functions automatically check for NULL return val-
ues and abort your program with an appropriate error message on memory
allocation failures. If you desire more control over the abort process, you
can add a function to your code called xalloc_die (no arguments, no return
value) that will be called by xalloc functions if it exists. You can use this
hook to perform any cleanup needed before your program exits. Why not
let you decide whether or not to exit? You’re out of memory—what are you
really going to do? Such out-of-memory conditions don’t happen often in
today’s world of multi-terabyte-sized address spaces, but they still have to be
checked for. The xalloc functions make doing so a little less painful.

Finally, unlike many filters, this program will likely crash if you feed
it a file containing a gigabyte of data because it buffers the entire input in
an allocated memory block, which it resizes as it reads data from stdin. The
reason for this is that the default use of the base64 module is not designed
to handle streaming data. It requires the entire buffer up front. There is,
however, a base64_encode_alloc_ctx method that allows you to encode small
chunks of your input text in an iterative fashion. I’ll leave it as an exercise

Maximum Portability with Gnulib 363

for you, the reader, to change this program to make use of this form of the
base64 module.

To make this code build correctly, you’ll need to change Makefile.am as
shown in Listing 13-6.

ACLOCAL_AMFLAGS = -I m4
EXTRA_DIST = m4/gnulib-cache.m4
SUBDIRS = lib

bin_PROGRAMS = src/b64
src_b64_SOURCES = src/b64.c
src_b64_CPPFLAGS = -I$(top_builddir)/lib -I$(top_srcdir)/lib
src_b64_LDADD = lib/libgnu.a

Listing 13-6: Makefile.am: Changes required to use the base64 module in source

The src_b64_CPPFLAGS directive adds directories to the compiler’s include
search path so it can find any header files added with selected Gnulib mod-
ules. The src_b64_LDADD directive appends lib/libgnu.a to the linker command
line. Both of these directives should be familiar at this point.

Let’s build and run the b64 program. As I mentioned previously, you’ll
want to run autoreconf -i first, to pick up any changes required by Gnulib
additions to the project.

$ autoreconf -i
--snip--
$./configure && make
--snip--
$ echo hi | src/b64
aGkK$ echo -n aGkK | src/b64 -d
hi
$

I used echo to pipe some text into the b64 filter, which outputs the
base64 equivalent of that text: “aGkK”. Note there’s no line-feed character
at the end of the output. The b64 filter outputs only the base64 text version
of the input data. I then used echo -n to pipe the base64 text back into the
filter, using the -d flag to decode to the original input data. The output is
the original text, including a terminating line-feed character. By default,
echo appends a line-feed character to the end of any text you hand it; there-
fore, the original encoded text includes a terminating line-feed character.
The -n option tells echo to suppress the line-feed character. If you don’t use
-n, the decode will fail with an error indicating the input data is not valid
base64 text because echo added a line-feed character to it, which is not
part of the base64 text.4

One thing that’s not clear from the Gnulib documentation is that, in
keeping with the general philosophy of never committing files or data that

4. You can also use printf from the bash command line instead of echo for more direct control
over terminating line-feed characters.

364 Chapter 13

can be easily regenerated, Gnulib’s .gitignore files keep imported module
source code from being committed to your repository. There are a couple
of reasons for this. First, Gnulib source code already lives in a repository—
that of Gnulib itself. There’s no point in proliferating copies of the Gnulib
source code around the internet by storing it in every repository that
consumes it.

Another reason for not storing it in your project repository is that bug
fixes are always being supplied by users and maintainers. Each time you
update your Gnulib work area and build your project, you could be getting
a better version of the modules you’re using.

Let’s say you’re finished for the day and you want to leave your work
area in a nice clean state. You type git clean -xfd and wipe out everything
not staged or already committed. The next day you come back and type
autoreconf -i, followed by configure && make, but you find that your project
won’t build; there are files missing from the m4 and lib directories that
seemed pretty important the day before. In fact, you discover, only the m4/
gnulib-cache.m4 file remains as a subtle reminder to you that your project
ever had anything to do with Gnulib.

As it happens, that gnulib-cache.m4 file is all you really need. It tells
gnulib-tool which modules you’ve imported. To get it all back again, exe-
cute gnulib-tool with the --update option. This causes gnulib-tool to recopy
current versions of all the relevant Gnulib files back into your project.

N O T E The use of the --update option with gnulib-tool will not update your Gnulib work
area from its remote repository. Rather, it only updates your project’s use of Gnulib
modules with the files that currently exist in your Gnulib work area. If you really
want to use a particular past version of a set of Gnulib modules, you can check out a
revision of the Gnulib repository from the past and then run gnulib-tool --update to
pull in the current set of files from your Gnulib work area.

The --update option can also be used to copy updated versions of files
after you’ve updated your Gnulib work area with git.

To help you remember to use gnulib-tool --update in projects that use
Gnulib, the Gnulib manual suggests that you create a bootstrap.sh script
(and flag it executable) containing at least the lines shown in Listing 13-7.

#!/bin/sh
gnulib-tool --update
autoreconf -i

Listing 13-7: bootstrap.sh: A project bootstrap script for b64

It would be really nice if autoreconf was smart enough to notice that
you’ve used Gnulib modules and just call gnulib-tool --update for you. I
suspect that’s on the feature list for a future release of Autoconf. For the
present, however, you’ll need to remember to run this command to pull in
Gnulib files when you clone your project repository into a new work area
or after you’ve asked git to make your current work area pristine.

Git tag 13.3

Maximum Portability with Gnulib 365

Summary
In this chapter, I discussed how to add Gnulib modules to your Autotools-
based projects. I believe I’ve given you enough of a taste of Gnulib to pique
your interest in this resource. The Gnulib manual is well written and easy
to grasp (though a bit shy of full documentation) once you have a handle
on the basics.

The next step is for you to go to the Gnulib modules page and browse
the functionality available to you. The header files and source code for the
modules are also available for viewing from that page and in the modules
and lib directories of the repository. Feel free to check them out.

The maintainers can always use help with documentation. Once you’ve
used a module and become comfortable with it, see if its documentation
could use some updating and consider becoming a contributor. You can
use the Gnulib mailing list5 as a resource, both for questions you may
have about the use of Gnulib and for patches for the documentation
and source code.6

5. The mailing lists for Gnulib can be found at https://savannah.gnu.org/mail/?group=gnulib.

6. As is commonly done with most open source projects, you should post a comment regard-
ing enhancements you’d like to make in order to get community feedback and sign-off before
you submit a code patch.

https://savannah.gnu.org/mail/?group=gnulib

Uncle Abner said . . . a person that started in to carry
a cat home by the tail was gitting knowledge

that was always going to be useful to him.
—Mark Twain, Tom Sawyer Abroad

14
F L A I M : A N A U T O T O O L S E X A M P L E

So far in this book, I’ve taken you on a
whirlwind tour of the main features of

Autoconf, Automake, and Libtool, as well
as other tools that work well with the Autotools.

I’ve done my best to explain them in a manner that
is not only simple to digest but also easy to retain—
especially if you’ve had the time and inclination to follow along with my
examples on your own. I’ve always believed that no form of learning comes
anywhere close to the learning that happens while doing.

In this chapter and the next, we’ll continue learning about the Auto
tools by studying the process I used to convert an existing, realworld, open
source project from a complex handcoded makefile to a complete GNU
Autotools build system. The examples I provide in these chapters illustrate
the decisions I had to make during the conversion process as well as some
concrete uses of Autotools features, including a few that I haven’t yet pre
sented in previous chapters. These two chapters will round out our study
of the Autotools by presenting real solutions to real problems.

368 Chapter 14

The project I chose to convert is called FLAIM, which stands for FLexible
Adaptable Information Management.

What Is FLAIM?
FLAIM is a highly scalable databasemanagement library written in C++
and built on its own thin portability layer called the FLAIM toolkit. Some
readers may recognize FLAIM as the database used by both Novell1 eDirec
tory and the Novell GroupWise server. FLAIM originated at WordPerfect
in the late 1980s, and it became part of Novell’s software portfolio during
the Novell/WordPerfect merger in 1994. Novell eDirectory used a spinoff
of a thenlate version of FLAIM to manage directory information bases that
contain over a billion objects, and GroupWise used a much earlier spinoff
to manage various serverside databases.

Novell made the FLAIM source code available as an open source
project licensed under the GNU Lesser General Public License (LGPL)
version 22 in 2006. The FLAIM project is currently hosted by SourceForge
.net, and it is the result of 25 years of development and hardening in
various WordPerfect and Novell products and projects.3

Why FLAIM?
While FLAIM is far from a mainstream OSS project, it has several quali
ties that make it a perfect example for showing how to convert a project to
use the Autotools. For one, FLAIM is currently built using a handcoded
GNU makefile that contains over 2,000 lines of complex make script. The
FLAIM makefile contains a number of GNU Make–specific constructs, and
thus you can only process this makefile using GNU Make. Individual (but
nearly identical) makefiles are used to build the flaim, xflaim, and flaimsql
database libraries, and the FLAIM toolkit (ftk), as well as several utility and
sample programs on Linux, various flavors of Unix, Windows, and NetWare.

The existing FLAIM build system targets several different flavors of Unix,
including AIX, Solaris, and HPUX, as well as Apple’s macOS. It also targets
multiple compilers on these systems. These features make FLAIM ideal for
this sample conversion project because I can show you how to handle differ
ences in operating systems and toolsets in the new configure.ac files.

The existing build system also contains rules for many of the standard
Automake targets, such as distribution tarballs. Additionally, it provides
rules for building binary installation packages, as well as RPMs for sys
tems that can build and install RPM packages. It even provides targets for

1. Novell was acquired by MicroFocus in 2010.

2. See the website for the GNU Lesser General Public License, version 2.1, at
https://www.gnu.org/licenses/lgpl-2.1.html.

3. You can read more about the history and development of FLAIM at
http://sourceforge.net/projects/flaim/.

https://sourceforge.net/projects/flaim/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

FLAIM: An Autotools Example 369

building Doxygen4 description files, which it then uses to build source doc
umentation. I’ll spend a few paragraphs showing you how you can add these
types of targets to the infrastructure provided by Automake.

The FLAIM toolkit is a portability library that thirdparty projects can
incorporate and consume independently. We can use the toolkit to demon
strate Autoconf’s ability to manage separate subprojects as optional subdirec
tories within a project. If the user already has the FLAIM toolkit installed on
their build machine, they can use the installed version or, optionally, override
it with a local copy. On the other hand, if the toolkit is not installed, then the
local, subdirectorybased copy will be used by default.

The FLAIM project also provides code to build both Java and C# lan
guage bindings, so I’ll delve into those esoteric realms a bit. I won’t go into
great detail on building either Java or C# applications, but I will cover how
to write Makefile.am files that generate both Java and C# programs and
languagebinding libraries.

The FLAIM project makes good use of unit tests. These are built as
individual programs that run without command line options, so I can easily
show you how to add realworld unit tests to the new FLAIM Autotools build
system using Automake’s trivial test framework.

The FLAIM project and its original build system employ a reason
ably modular directory layout, making it rather simple to convert to an
Autotools modular build system. A simple pass of the diff utility over the
directory tree should suffice.

Logistics
When the first edition of this book was published in 2010, FLAIM had
just been released as an open source project on SourceForge.net using
Subversion to manage its source code repository. Since that time, the
FLAIM project has become, more or less, inactive. No one I’m aware of
is actively using the code base. As I am the only remaining maintainer of
the source code, I’ve made a GitHub repository for FLAIM specifically for
Chapters 14 and 15 of this second edition of this book. You can find this
repository at the NSPAutotools area on GitHub under the FLAIM project.5
I’ve updated the information in this chapter to be relevant to FLAIM’s stor
age in a git repository.

The source code repository for this chapter follows a somewhat differ
ent style than that for preceding chapters. The original Autotools build
system changes I made to the FLAIM SourceForge.net project are buried
beneath, and intermixed with, several dozen unrelated changes. Rather
than spend hours separating out these changes in an effort to provide you
with proper before and after snapshots of the FLAIM code base, I simply

4. See http://www.doxygen.nl/.

5. See https://github.com/NSP-Autotools/FLAIM/.

https://github.com/NSP-Autotools/FLAIM/
http://www.doxygen.nl

370 Chapter 14

chose to commit the final FLAIM code, with its Autotools build system, to
the GitHub project.6

Do not be discouraged about FLAIM’s current activity status—it contin
ues to provide a wide variety of opportunities to learn about Autotools build
system techniques in realworld projects.

An Initial Look
Let me start by saying that converting FLAIM from GNU makefiles to an
Autotools build system is not a trivial project. It took me a couple of weeks,
and much of that time was spent determining exactly what to build and
how to do it—in other words, analyzing the legacy build system. Another
significant portion of my time was spent converting aspects that lay on the
outer fringes of Autotools functionality. For example, I spent much more
time converting build system rules for building C# language bindings than
I did converting rules for building the core C++ libraries.

The first step in this conversion project is to analyze FLAIM’s existing
directory structure and build system. What components are actually built,
and which components depend on which others? Can individual compo
nents be built, distributed, and consumed independently? These types of
componentlevel relationships are important because they’ll often deter
mine how you’ll lay out your project directory structure.

The FLAIM project is actually several small projects under one umbrella
project within its repository. There are three separate and distinct database
products: flaim, xflaim, and flaimsql. The flaim subproject is the original
FLAIM database library used by eDirectory and GroupWise. The xflaim
project is a hierarchical XML database developed for internal projects at
Novell; it is optimized for pathoriented, nodebased access. The flaimsql
project is an SQL layer on top of the FLAIM database. It was written as a
separate library in order to optimize the lowerlevel FLAIM API for SQL
access. This project was an experiment that, frankly, isn’t quite finished
(but it does compile).

The point is that all three of these database libraries are separate and
unrelated to each other, with no interlibrary dependencies. Since they may
easily be used independently of one another, they can actually be shipped
as individual distributions. You could consider each an open source project
in its own right. This, then, will become one of my primary goals: to allow
the FLAIM open source project to be easily broken up into smaller open
source projects that can be managed independently of one another.

6. If you’re interested in digging into the conversion process details, refer to the FLAIM
Subversion repository commit history from r1056 through r1112. The most significant
Autotoolsrelated changes start at the earliest commits in this range, but minor Autotools
related build system modifications are made throughout the entire range. See https://
sourceforge.net/p/flaim/code/1112/log/?path=. The actual code committed to the GitHub
repository is version r1112, with some modifications for this edition of this book.

https://sourceforge.net/p/flaim/code/1112/log/?path=
https://sourceforge.net/p/flaim/code/1112/log/?path=

FLAIM: An Autotools Example 371

The FLAIM toolkit is also an independent project. While it’s tailored
specifically for the FLAIM database libraries, providing just the system ser
vice abstractions required for a DBMS, it depends on nothing but itself, and
thus it may easily be used as the basis for portability within other projects
without dragging along any unnecessary database baggage.7

The original FLAIM project was laid out in its repository as follows:

$ tree -d --charset=ascii FLAIM
FLAIM
|-- flaim
| |-- debian
| |-- docs
| |-- sample
| |-- src
| `-- util
|-- ftk
| |-- debian
| |-- src
| `-- util
|-- sql
| `-- src
--snip--
`-- xflaim
 |-- csharp
 --snip--
 |-- java
 --snip--
 |-- sample
 --snip--
 |-- src
 `-- util
--snip--

The complete tree is fairly broad and somewhat deep in places, including
significant utilities, tests, and other such binaries that are built by the legacy
build system. At some point during the trek down into this hierarchy, I simply
had to stop and consider whether it was worth converting that additional
utility or layer. (If I hadn’t done that, this chapter would be twice as long and
half as useful.) To this end, I’ve decided to convert the following elements:

•	 The database libraries

•	 The unit and library interface tests

•	 The utilities and other such highlevel programs found in various util
directories

•	 The Java and C# language bindings found in the xflaim library

I’ll also convert the C# unit tests, but I won’t go into the Java unit
tests, because I’m already converting the Java language bindings using

7. As you might guess, the FLAIM toolkit’s file I/O abstraction is highly optimized.

372 Chapter 14

Automake’s JAVA primary. Since Automake provides no help for C#, I have
to provide everything myself anyway, so I’ll convert the entire C# code base.
This will provide an example of writing the code for an entirely unsup
ported Automake product class.

Getting Started
As stated earlier, my first true design decision was how to organize the
original FLAIM project into subprojects. As it turns out, the existing direc
tory layout is almost perfect. I’ve created a master configure.ac file in the top
level flaim directory, which is just under the repository root directory. This
topmost configure.ac file acts as a sort of Autoconf control file for each of the
four lowerlevel projects: ftk, flaim, flaimsql, and xflaim.

I’ve managed the database library dependencies on the FLAIM tool
kit by treating the toolkit as a pure external dependency defined by the
make variables FTKINC and FTKLIB. I’ve conditionally defined these variables
to point to one of a few different sources, including installed libraries and
even locations given in userspecified configuration script options.

Adding the configure.ac Files
In the following directory layout, I’ve used an annotation column to indi
cate the placement of individual configure.ac files. Each of these files repre
sents a project that may be packaged and distributed independently.

$ tree -d --charset=ascii FLAIM
FLAIM configure.ac (flaim-projects)
|-- flaim configure.ac (flaim)
| |-- debian
| |-- docs
| |-- sample
| |-- src
| `-- util
|-- ftk configure.ac (ftk)
| |-- debian
| |-- src
| `-- util
|-- sql configure.ac (flaimsql)
| `-- src
--snip--
`-- xflaim configure.ac (xflaim)
 |-- csharp
 --snip--
 |-- java
 --snip--
 |-- sample
 --snip--
 |-- src
 `-- util
--snip--

FLAIM: An Autotools Example 373

My next task was to create these configure.ac files. The toplevel file
was trivial, so I created it by hand. The projectspecific files were more
complex, so I allowed the autoscan utility to do the bulk of the work for
me. Listing 141 shows the toplevel configure.ac file.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
 AC_INIT([flaim-projects], [1.0])
 AM_INIT_AUTOMAKE([-Wall -Werror foreign])
 AM_PROG_AR
 LT_PREREQ([2.4])

LT_INIT([dlopen])

 AC_CONFIG_MACRO_DIRS([m4])
 AC_CONFIG_SUBDIRS([ftk flaim sql xflaim])

AC_CONFIG_FILES([Makefile])
AC_OUTPUT

Listing 14-1: configure.ac: The umbrella project’s Autoconf input file

This configure.ac file is short and simple because it doesn’t do much;
nevertheless, there are some new and important concepts here. I invented
the name flaim-projects and the version number 1.0 at . These are not
likely to change unless really dramatic changes take place in the project
directory structure or the maintainers decide to ship a complete bundle
of the subprojects.

N O T E For your own projects, consider using the optional third argument to the AC_INIT
macro. You can add an email or web address here to indicate to users where they can
submit a bug report. The contents of this argument show up in configure output.

The most important aspect of an umbrella project like this is the
AC_CONFIG_SUBDIRS macro at , which I have yet to cover in this book. The
argument is a whitespaceseparated list of the subprojects to be built, where
each is a complete GCS compliant project in its own right. Here’s the proto
type for this macro:

AC_CONFIG_SUBDIRS(dir1[dir2 ... dirN])

It allows the maintainer to set up a hierarchy of projects in much the
same way that Automake SUBDIRS configures the directory hierarchy for
Automake within a single project.

Because the four subprojects contain all the actual build functionality,
this configure.ac file acts merely as a control file, passing all specified config
uration options to each of the subprojects in the order they’re given in the
macro’s argument. The FLAIM toolkit project must be built first since the
other projects depend on it.

374 Chapter 14

Automake in the Umbrella Project

Automake usually requires the existence of several text files in the toplevel
project directory, including the AUTHORS, COPYING, INSTALL, NEWS,
README, and ChangeLog files. It would be nice not to have to deal with
these files in the umbrella project. One way to accomplish this is to simply
not use Automake in the umbrella project. I’d either have to write my own
Makefile.in template for this directory or use Automake just once to gener
ate a Makefile.in template that I could then check into the repository as part
of the project, along with the install-sh and missing scripts added by automake
--add-missing (or autoreconf -i). Once these files were in place, I could
remove AM_INIT_AUTOMAKE from the master configure.ac file.

Another option would be to keep Automake and simply use the foreign
option in AM_INIT_AUTOMAKE (which I did at) in the macro’s optional param
eter. This parameter contains a string of whitespaceseparated options
that tell Automake how to act in lieu of specific Automake command line
options. When automake parses the configure.ac file, it notes these options and
enables them as if they’d been passed on the command line. The foreign
option tells Automake that the project will not entirely follow GNU stan
dards, and thus Automake will not require the usual GNU project text files.

I chose the latter of the two methods because I might want to alter
the list of subordinate projects at some point and I don’t want to have to
tweak a generated Makefile.in template by hand. I’ve also passed the -Wall
and -Werror options in this list, which indicate that Automake should
enable all Automakespecific warnings and report them as errors. These
options have nothing to do with the user’s compilation environment—
only Automake processing.

Why Add the Libtool Macros?

Why include those expensive Libtool macros at ? Well, even though I
don’t do anything with Libtool in the umbrella project, the lowerlevel
projects expect a containing project to provide all the necessary scripts,
and the LT_INIT macro provides the ltmain.sh script. If you don’t initialize
Libtool in the umbrella project, tools like autoreconf, which actually looks in
the parent directory to determine if the current project is itself a subproject,
will fail when they can’t find scripts that the current project’s configure.ac
file requires.

For instance, autoreconf expects to find a file called ../ltmain.sh within
the ftk project’s toplevel directory. Note the reference to the parent direc
tory here: autoreconf noticed, by examining the parent directory, that ftk
was actually a subproject of a larger project. Rather than install all the
auxiliary scripts multiple times, the Autotools generate code that looks for
scripts in the project’s parent directory. This is done in an effort to reduce
the number of copies of these scripts that are installed into multiproject

FLAIM: An Autotools Example 375

packages.8 If I don’t use LT_INIT in the umbrella project, I can’t successfully
run autoreconf in the subprojects, because the ltmain.sh script won’t be in
the project’s parent directory.

Adding a Macro Subdirectory

The AC_CONFIG_MACRO_DIRS macro at indicates the name of a subdirectory in
which the aclocal utility can find all projectspecific M4 macro files. Here’s
the prototype:

AC_CONFIG_MACRO_DIRS(macro-dir)

The .m4 macro files in this directory are ultimately referenced with an
m4_include statement in the aclocalgenerated aclocal.m4 file, which autoconf
reads. This macro replaces the original acinclude.m4 file with a directory
containing individual macros or smaller sets of macros, each defined in its
own .m4 file.9

I’ve indicated by the parameter to AC_CONFIG_MACRO_DIRS that all of the
local macro files to be added to aclocal.m4 are in a subdirectory called m4.
As a bonus, when autoreconf -i is executed, and then when it executes the
required Autotools with their respective add-missing options, these tools
will note the use of this macro in configure.ac and add any required system
macro files that are missing to the m4 directory.

The reason I chose to use AC_CONFIG_MACRO_DIRS here is that Libtool will
not add its additional macro files to the project if you haven’t enabled the
macro directory option in this manner. Instead, it will complain that you
should add these files to acinclude.m4 yourself.10

Since this is a fairly complex project and I wanted the Autotools to
do this job for me, I decided to use this macrodirectory feature. Future
releases of the Autotools will likely require this form because it’s considered
the more modern way of adding macro files to aclocal.m4, as opposed to
using a single usergenerated acinclude.m4 file.

One final thought on this macro: if you look for it in the Autoconf man
ual, you won’t find it—at least not yet, because it’s not an Autoconf macro but

8. I don’t think it’s worth breaking hierarchical modularity in this manner, and to this
degree, just to manage this strange childtoparent relationship; libtoolize could have eas
ily created and consumed these files within each project, and the space the files consume
is hardly worth the effort that the Autotools go through to ensure there is only one copy of
them in a distribution archive.

9. This entire system of combining M4 macro files into a single aclocal.m4 file is a BandAid
for a system that was not originally designed for more than one macro file. In my opinion, it
could use a major overhaul by doing away with aclocal entirely and having Autoconf simply
read the macro files in the specified (or defaulted) macro directory, along with other macro
files found in system locations.

10. I found that my project didn’t require any of the macros in the Libtool system macro files,
but Libtool complained anyway.

376 Chapter 14

an Automake macro. It’s prefixed with AC_ because it was always intended that
a future release of Autoconf would take on this macro. It’s more functional
than its singular predecessor, which is documented in the Autoconf manual,
but the functionality was not needed until Automake came along. In fact, I
have it on pretty good authority (the prerelease Autoconf ChangeLog) that
ownership will change hands when Autoconf 2.70 is published.

The one item that we haven’t yet covered here is the AM_PROG_AR macro
at . This is a newer Automake macro. The first edition of this book didn’t
use it. When I updated the Autotools, suddenly autoreconf complained
that I needed it, so I added it and the complaint went away. The Autoconf
manual says simply that you need it if you want to use an archiver (ar) that
has an unusual interface (such as Microsoft lib). The fact is, the real com
plainer here was Libtool, which seems to have a habit of complaining about
not including features of the other Autotools that it thinks you should be
using. I added it to silence the warning.

The Top-Level Makefile.am File
The only other point to be covered regarding the umbrella project is the
toplevel Makefile.am file, shown in Listing 142.

 ACLOCAL_AMFLAGS = -I m4

 EXTRA_DIST = README.W32 tools win32

 SUBDIRS = ftk flaim sql xflaim

 rpms srcrpm:
 for dir in $(SUBDIRS); do \
 (cd $$dir && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1; \
 done

.PHONY: rpms srcrpm

Listing 14-2: Makefile.am: The umbrella project Automake input file

According to the Automake documentation, the ACLOCAL_AMFLAGS variable
at should be defined in the toplevel Makefile.am file of any project that
uses AC_CONFIG_MACRO_DIR (singular) in its configure.ac file. The flags specified
on this line tell aclocal where it should look for macro files when it’s exe
cuted by rules defined in Makefile.am. The format of this option is similar to
that of a Ccompiler command line include (-I) directive; you can specify
other aclocal command line options as well.

This variable used to be required when using a macro subdirec
tory with the older AC_CONFIG_MACRO_DIR, but with the advent of the newer
AC_CONFIG_MACRO_DIRS, you no longer need this variable, as it generates code
that allows Automake to understand which options it should pass to aclocal.
Unfortunately, Libtool just can’t help but pipe up during autoreconf when it
sees you using a macro directory without this variable in your Makefile.am
files. I’m hoping this noise will go away when Autoconf takes ownership of
the newer macro (with a subsequent release of Libtool, of course).

FLAIM: An Autotools Example 377

The Autotools use this variable in two unrelated places. The first is
in a make rule generated to update the aclocal.m4 file from all of its vari
ous input sources. This rule and its supporting variable definitions are
shown in Listing 143, which is a code snippet copied from an Autotools
generated makefile.

ACLOCAL_M4 = $(top_srcdir)/aclocal.m4
ACLOCAL=${SHELL} .../flaim-ch8-10/missing --run aclocal-1.10
ACLOCAL_AMFLAGS = -I m4
$(ACLOCAL_M4): $(am__aclocal_m4_deps)
 cd $(srcdir) && $(ACLOCAL) $(ACLOCAL_AMFLAGS)

Listing 14-3: The make rule and the variables used to update aclocal.m4 from its
various dependencies

The ACLOCAL_AMFLAGS definition is also used during execution of
autoreconf, which scans the toplevel Makefile.am file for this definition
and passes the value text directly to aclocal on the command line. Be
aware that autoreconf does no variable expansion on this string, so if you
add shell or make variable references to the text, they won’t be expanded
when autoreconf executes aclocal.

Returning to Listing 142, I’ve used the EXTRA_DIST variable at to
ensure that a few additional toplevel files get distributed—these files and
directories are specific to the Windows build system. This isn’t critical to
the umbrella project, since I don’t intend to create distributions at this
level, but I like to be complete.

The SUBDIRS variable at duplicates the information in the configure.ac
file’s AC_CONFIG_SUBDIRS macro. I tried creating a shell substitution variable
and exporting it with AC_SUBST, but it didn’t work—when I ran autoreconf,
I got an error indicating that I should use literals in the AC_CONFIG_SUBDIRS
macro argument.

The rpms and srcrpm targets at allow the end user to build RPM pack
ages for RPMbased Linux systems. The shell commands in this rule simply
pass the userspecified targets and variables down to each of the lowerlevel
projects in succession, just as we did with our handcoded makefiles and
Makefile.in templates in Chapters 3, 4, and 5.

When passing control to lowerlevel makefiles in the manner shown
in the commands for these RPM targets, you should strive to follow this
pattern. Passing the expansion of AM_MAKEFLAGS allows lowerlevel makefiles
access to the same make flags defined in the current or parent makefile.
However, you can add more functionality to such recursive make code. To see
how Automake passes control down to lowerlevel makefiles for its own tar
gets, open an Automakegenerated Makefile.in template and search for the
text “$(am__recursive_targets):”. The code beneath this target shows exactly
how Automake does it. While it looks complex at first glance, the code per
forms only two additional tasks. First, it ensures that continueaftererror
functionality (make -k) works properly. Second, it ensures that the current
directory (.) is handled properly if found in the SUBDIRS variable.

378 Chapter 14

This brings me to my final point about this code: if you choose to write
your own recursive targets in this manner (and we’ll see other examples of
this later when we discuss conversion of the flaim build system), you should
either avoid using a dot in the SUBDIRS variable or enhance the shell code to
handle this special case. If you don’t, your users will likely find themselves
in an endless recursion loop when they attempt to make one of these tar
gets. For a more extensive treatise on this topic, see “Item 2: Implementing
Recursive Extension Targets” on page 505.

The FLAIM Subprojects
I used autoscan to generate a starting point for the ftk project. The auto-
scan utility is a bit finicky about where it will look for information. If your
project doesn’t contain a makefile named exactly Makefile, or if your project
already contains an Autoconf Makefile.in template, autoscan will not add any
information about required libraries to the configure.scan output file. It has
no way of determining this information except to look into your old build
system, and it won’t do this unless conditions are just right.

Given the complexity of the ftk project’s legacy makefile, I was quite
impressed with autoscan’s ability to parse it for library information.
Listing 144 shows a portion of the resulting configure.scan file.

--snip--
AC_PREREQ([2.69])
AC_INIT(FULL-PACKAGE-NAME, VERSION, BUG-REPORT-ADDRESS)
AC_CONFIG_SRCDIR([src/ftktext.cpp])
AC_CONFIG_HEADERS([config.h])

Checks for programs.
AC_PROG_CXX
AC_PROG_CC
AC_PROG_INSTALL

Checks for libraries.
FIXME: Replace `main' with a function in `-lc':
AC_CHECK_LIB([c], [main])
FIXME: Replace `main' with a function in...
AC_CHECK_LIB([crypto], [main])
--snip--
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

Listing 14-4: A portion of the output from autoscan when run over the ftk project
directory structure

FLAIM: An Autotools Example 379

The FLAIM Toolkit configure.ac File
After this configure.scan file was modified and renamed, the resulting
configure.ac file contained many new constructs, which I’ll discuss in the
next few sections. In order to facilitate the discussion, I split this file into
two parts, the first half of which is shown in Listing 145.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])

 AC_INIT([FLAIMTK],[1.2],[flaim-users@lists.sourceforge.net])
 AM_INIT_AUTOMAKE([-Wall -Werror])

AM_PROG_AR
LT_PREREQ([2.4])
LT_INIT([dlopen])

 AC_LANG([C++])

 AC_CONFIG_MACRO_DIRS([m4])
 AC_CONFIG_SRCDIR([src/flaimtk.h])

AC_CONFIG_HEADERS([config.h])

Checks for programs.
AC_PROG_CXX
AC_PROG_INSTALL

Checks for optional programs.
 FLM_PROG_TRY_DOXYGEN

Configure options: --enable-debug[=no].
 AC_ARG_ENABLE([debug],

 [AS_HELP_STRING([--enable-debug],
 [enable debug code (default is no)])],
 [debug="$withval"], [debug=no])

Configure option: --enable-openssl[=no].
AC_ARG_ENABLE([openssl],
 [AS_HELP_STRING([--enable-openssl],
 [enable the use of openssl (default is no)])],
 [openssl="$withval"], [openssl=no])

Create Automake conditional based on the DOXYGEN variable
 AM_CONDITIONAL([HAVE_DOXYGEN], [test -n "$DOXYGEN"])

#AM_COND_IF([HAVE_DOXYGEN], [AC_CONFIG_FILES([docs/doxyfile])])
 AS_IF([test -n "$DOXYGEN"], [AC_CONFIG_FILES([docs/doxyfile])])

--snip--

Listing 14-5: ftk/configure.ac: The first half of the ftk project’s configure.ac file

380 Chapter 14

At , you will see that I substituted real values for the placeholders
autoscan left in the AC_INIT macro. I added calls to AM_INIT_AUTOMAKE, LT_PREREQ,
and LT_INIT at , and I added a call to AC_CONFIG_MACRO_DIRS at . (For now,
just ignore the AM_PROG_AR macro—I’ll explain it later in this chapter.)

N O T E I didn’t use the foreign keyword in AM_INIT_AUTOMAKE this time. Since it’s a real
open source project, the FLAIM developers will (or at least, should) want these files.
I used the touch command to create empty versions of the GNU project text files,11
except for COPYING and INSTALL, which autoreconf adds.

A new construct at is the AC_LANG macro, which indicates the program
ming language (and thus, the compiler) that Autoconf should use when
generating compilation tests in configure. I’ve passed C++ as the parameter
so Autoconf will compile these tests using the C++ compiler via the CXX vari
able, rather than the default C compiler via the CC variable. I then deleted
the AC_PROG_CC macro call, since the source code for this project is written
entirely in C++.

I changed the AC_CONFIG_SRCDIR file argument at to one that made
more sense to me than the one randomly chosen by autoscan.

The FLM_PROG_TRY_DOXYGEN macro at is a custom macro that I wrote.
Here’s the prototype:

FLM_PROG_TRY_DOXYGEN([quiet])

I’ll cover the details of how this macro works in Chapter 16. For now,
just know that it manages a precious variable called DOXYGEN. If the vari
able is already set, this macro does nothing; if the variable is not set, it
scans the system search path for a doxygen program, setting the variable to
the program name if it finds one. I’ll explain Autoconf precious variables
when we get to the xflaim project.

At , I added a couple of configuration options to configure’s com
mand line parser with AC_ARG_ENABLE. I’ll discuss the details of these calls
more completely as we come to other new constructs that use the variables
these macros define.

Automake Configuration Features

Automake provides the AM_CONDITIONAL macro I used at ; it has the follow
ing prototype:

AM_CONDITIONAL(variable, condition)

11. Of course, it’s silly to distribute empty GNU text files. The thought here is that the project
maintainer will fill these files with appropriate information about building, installing, and
using the project. If you never intend to populate these files with quality instructions, then
you’re better off simply using the foreign option to disable them entirely.

FLAIM: An Autotools Example 381

The variable argument is an Automake conditional name that you can
use in your Makefile.am files to test the associated condition. The condition
argument is a shell condition—a bit of shell script that could be used as the
condition in a shell if-then statement. In fact, this is exactly how the macro
uses the condition argument internally, so it must be formatted as a proper
if-then statement condition expression:

if condition; then...

The AM_CONDITIONAL macro always defines two Autoconf substitution vari
ables named variable_TRUE and variable_FALSE. If condition is true, variable_TRUE
is empty and variable_FALSE is defined as a hash mark (#), which indicates the
beginning of a comment in a makefile. If condition is false, the definitions of
these two substitution variables are reversed; that is, variable_FALSE is empty,
and variable_TRUE becomes the hash mark. Automake uses these variables to
conditionally comment out portions of your makefile script that are defined
within Automake conditional statements.

This instance of AM_CONDITIONAL defines the conditional name HAVE_DOXYGEN,
which you can use in the project’s Makefile.am files to do something condi
tionally, based on whether or not doxygen can be executed successfully (via
the DOXYGEN variable). Any lines of make script found within a test for truth
in Makefile.am are prefixed with @variable_TRUE@ in the Automakegenerated
Makefile.in template. Conversely, any lines found within an Automake con
ditional test for falseness are prefixed with @variable_FALSE@. When config.
status generates Makefile from Makefile.in, these lines are either commented
out (prefixed with hash marks) or not, depending on the truth or falseness
of the condition.

There’s just one caveat with using AM_CONDITIONAL: you cannot call it
conditionally (for instance, within a shell if-then-else statement) in the
configure.ac file. You can’t define substitution variables conditionally—you
can define their contents differently based on the specified condition, but
the variables themselves are either defined or not at the time Autoconf
creates the configure script. Since Automakegenerated template files are
created long before the user executes configure, Automake must be able to
rely on the existence of these variables, regardless of how they’re defined.

Within the configure script, you may want to perform other Autoconf
operations based on the value of Automake conditionals. This is where the
(commented) Automakeprovided AM_COND_IF macro at comes into play.12
Its prototype is as follows:

AM_COND_IF(conditional-variable, [if-true], [if-false])

12. The AM_COND_IF macro was introduced in Automake 1.11, but there was a merge error in
the 1.10.2 branch of Automake that caused information about AM_COND_IF to be inadvertently
added to the documentation for version 1.10.2. If you have a version of Automake older than
1.11, you will not be able to use this macro, even though the 1.10.2 documentation shows that
it is available. The code shown in the ftk project’s configure.ac file is a reasonable workaround.

382 Chapter 14

If conditional-variable is defined as true by a previous call to AM_CONDITIONAL,
the if-true shell script (including any Autoconf macro calls) is executed.
Otherwise, the if-false shell script is executed.

Now let’s suppose, for example, that you want to conditionally build
a portion of your project directory structure—say, the xflaim/docs/doxygen
directory—based on the Automake conditional HAVE_DOXYGEN. Perhaps you
are appending the subdirectory in question onto the SUBDIRS variable within
an Automake conditional statement in your Makefile.am file (I’m actu
ally doing this, as you’ll see in “The FLAIM Toolkit Makefile.am File” on
page 388). Since make won’t be building this portion of the project direc
tory structure if the condition is false, there’s certainly little reason to have
config.status process the doxyfile.in template within that directory during
configuration. Therefore, you might use the code shown in Listing 146 in
your configure.ac file.

--snip--
AM_CONDITIONAL([HAVE_DOXYGEN], [test -n "$DOXYGEN"])
AM_COND_IF([HAVE_DOXYGEN], [AC_CONFIG_FILES([docs/doxyfile])])
#AS_IF([test -n "$DOXYGEN"], [AC_CONFIG_FILES([docs/doxyfile])])
--snip--

Listing 14-6: ftk/configure.ac: Using AM_COND_IF to conditionally configure a template

With this code in place, configure simply will not process the doxyfile.in tem
plate at all within the docs directory if doxygen isn’t installed on the user’s system.

N O T E The docs/Makefile.in template should not be included here because the dist target
must be able to process all directories in the project—whether or not they’re condi-
tionally built—during execution of build targets such as all and clean. Thus, you
should never conditionally process Makefile.in templates within configure.ac.
However, you can certainly process other types of templates conditionally.

The line following the line at is an alternative method of accomplish
ing the same thing using M4sh—a macro library built into Autoconf that’s
designed to make it easier to write portable Bourne shell script. Here is
the prototype:

AS_IF(test1, [run-if-true], ..., [run-if-false])

The optional, elided parameters between the second and last ones shown
are pairs of testN and run-if-true arguments. Ultimately, this macro works
much like an if-then-elif... shell statement with a userspecified number
of elif conditions.

Listing 147 shows the second half of ftk’s configure.ac file.

--snip--
Configure for large files, even in 32-bit environments

 AC_SYS_LARGEFILE

FLAIM: An Autotools Example 383

Check for pthreads
 AX_PTHREAD(

 [AC_DEFINE([HAVE_PTHREAD], [1],
 [Define if you have POSIX threads libraries and header files.])
 LIBS="$PTHREAD_LIBS $LIBS"
 CFLAGS="$CFLAGS $PTHREAD_CFLAGS"
 CXXFLAGS="$CXXFLAGS $PTHREAD_CXXFLAGS"])

 # Checks for libraries.
AC_SEARCH_LIBS([initscr], [ncurses])
AC_CHECK_HEADER([curses.h],,[echo "*** Error: curses.h not found - install
curses devel package."; exit 1])
AC_CHECK_LIB([rt], [aio_suspend])
AS_IF([test "x$openssl" = xyes],

 [AC_DEFINE([FLM_OPENSSL], [1], [Define to use openssl])
 AC_CHECK_LIB([ssl], [SSL_new])
 AC_CHECK_LIB([crypto], [CRYPTO_add])
 AC_CHECK_LIB([dl], [dlopen])
 AC_CHECK_LIB([z], [gzopen])])

 # Checks for header files.
AC_HEADER_RESOLV
AC_CHECK_HEADERS([arpa/inet.h fcntl.h limits.h malloc.h netdb.h netinet/in.h
stddef.h stdlib.h string.h strings.h sys/mount.h sys/param.h sys/socket.h sys/
statfs.h sys/statvfs.h sys/time.h sys/vfs.h unistd.h utime.h])

Checks for typedefs, structures, and compiler characteristics.
AC_CHECK_HEADER_STDBOOL
AC_C_INLINE
AC_TYPE_INT32_T
AC_TYPE_MODE_T
AC_TYPE_PID_T
AC_TYPE_SIZE_T
AC_CHECK_MEMBERS([struct stat.st_blksize])
AC_TYPE_UINT16_T
AC_TYPE_UINT32_T
AC_TYPE_UINT8_T

Checks for library functions.
AC_FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK
AC_FUNC_MALLOC
AC_FUNC_MKTIME
AC_CHECK_FUNCS([atexit fdatasync ftruncate getcwd gethostbyaddr gethostbyname
gethostname gethrtime gettimeofday inet_ntoa localtime_r memmove memset mkdir
pstat_getdynamic realpath rmdir select socket strchr strrchr strstr])

Configure DEBUG source code, if requested.
 AS_IF([test "x$debug" = xyes],

 [AC_DEFINE([FLM_DEBUG], [1], [Define to enable FLAIM debug features])])

 --snip--

 AC_CONFIG_FILES([Makefile
 docs/Makefile
 obs/Makefile

384 Chapter 14

 obs/flaimtk.spec
 src/Makefile
 util/Makefile
 src/libflaimtk.pc])

AC_OUTPUT

Fix broken libtool
sed 's/link_all_deplibs=no/link_all_deplibs=yes/' libtool >libtool.tmp && \
 mv libtool.tmp libtool

 cat <<EOF

 FLAIM toolkit ($PACKAGE_NAME) version $PACKAGE_VERSION
 Prefix.........: $prefix
 Debug Build....: $debug
 Using OpenSSL..: $openssl
 C++ Compiler...: $CXX $CXXFLAGS $CPPFLAGS
 Linker.........: $LD $LDFLAGS $LIBS
 Doxygen........: ${DOXYGEN:-NONE}

EOF

Listing 14-7: ftk/configure.ac: The second half of the ftk project’s configure.ac file

At , I’ve called the AC_SYS_LARGEFILE macro. If the user has a 32bit sys
tem, this macro ensures that appropriate Cpreprocessor definitions (and
possibly compiler options) that force the use of 64bit file addressing (also
called large files) are added to the config.h.in template. With these variables
in place, Clibrary largeaddressaware file I/O functions become available
to the project source code. FLAIM, as a database system, cares very much
about this feature.

In the last few years, 32bit generalpurpose computer systems have
become less popular as companies like Intel and Microsoft have made
media statements concerning future versions of their products that will no
longer support 32bit address spaces. However, market pressures caused
by the millions of existing 32bit systems have cause them to back off a bit
on the rhetoric and return to a more pragmatic perspective. Nevertheless,
32bit PCs are on their way out the door in the nottoodistant future. Even
so, Linux will continue to run on 32bit systems because many embedded
systems still get significant benefits from using smaller, lesspowerhungry
32bit microprocessors.

Doing Threads the Right Way

There is another new construct, AX_PTHREAD, at . In the Jupiter project, I
simply linked the jupiter program with the pthreads library via the -lpthread
linker flag. But frankly, this is the wrong way to use pthreads.

In the presence of multiple threads of execution, you must configure
many of the standard Clibrary functions to act in a threadsafe manner. You
can do this by ensuring that one or more preprocessor definitions are visible
to all of the standard library header files as they’re being compiled into the

FLAIM: An Autotools Example 385

program. These Cpreprocessor definitions must be defined on the compiler
command line, and they’re not standardized between compiler vendors.

Some vendors provide entirely different standard libraries for building
singlethreaded versus multithreaded programs, because adding thread
safety to a library reduces performance to a degree. Compiler vendors
believe (correctly) that they’re doing you a favor by giving you different
versions of the standard library for these purposes. In this scenario, it’s
necessary to tell the linker to use the correct runtime libraries.

Unfortunately, every vendor does multithreading in its own way, from
compiler options to library names to preprocessor definitions. But there is a
reasonable solution to the problem: the GNU Autoconf Archive13 provides
a macro called AX_PTHREAD that checks out a user’s compiler and provides the
correct flags and options for a wide variety of platforms.

This macro is very simple to use:

AX_PTHREAD(action-if-found[, action-if-not-found])

It sets several environment variables, including PTHREAD_CFLAGS, PTHREAD
_CXXFLAGS, and PTHREAD_LIBS. It’s up to the caller to use these variables prop
erly by adding shell code to the action-if-found argument. If all of your proj
ect’s code is multithreaded, things are simpler: you need only append these
variables to, or consume them from within, the standard CFLAGS, CXXFLAGS,
and LIBS variables. The FLAIM project code base is completely multi
threaded, so I chose to do this.

If you examine the contents of the ax_pthread.m4 file in the ftk/m4
directory, you might expect to find a large case statement that sets options
for every compiler and platform combination known to man—but that’s
not the Autoconf way.

Instead, the macro incorporates a long list of known pthreads com
piler options, and the generated configure script uses the host compiler to
compile a small pthreads program with each one of these options in turn.
The flags that are recognized by the compiler, and that therefore properly
build the test program, are added to the PTHREAD_CFLAGS and PTHREAD_CXXFLAGS
variables. This way, AX_PTHREAD stands a good chance of continuing to work
properly, even in the face of significant changes to compiler options in the
future—and this is the Autoconf way.

Getting Just the Right Libraries

I deleted the FIXME comments (see configure.scan in Listing 144 on
page 378) above each of the AC_CHECK_LIB macro calls at in Listing 147.
I started to replace the main placeholders in these macros with actual
library function names, but then I began to wonder if all of those libraries
were really necessary. I wasn’t as concerned about autoscan’s abilities as I was
about the veracity of the original makefile. In handcoded build systems, I’ve

13. See https://www.gnu.org/software/autoconf-archive/.

https://www.gnu.org/software/autoconf-archive/

386 Chapter 14

occasionally noticed that the author will cut and paste sets of library names
from one makefile to another until the program builds without missing
symbols.14

Instead of blindly continuing this trend, I chose to simply comment out
all of the calls to AC_CHECK_LIB to see how far I could get in the build, adding
them back in one at a time as required to resolve missing symbols. Unless
your project consumes literally hundreds of libraries, this will only take a
few extra minutes. I like to link only the libraries that are necessary for my
project; it speeds up the link process and, when done religiously, provides a
good form of projectlevel documentation.

The configure.scan file contained 14 such calls to AC_CHECK_LIB. As it
turned out, the FLAIM toolkit on my 64bit Linux system only required
three of them—pthread, ncurses, and rt—so I deleted the remaining entries
and swapped out the placeholder parameters for real functions in the
ncurses and rt libraries. In retrospect, it appears that my gambit paid off
rather handsomely, because I dropped from 14 libraries to 2. The third
library was the POSIX Thread (pthreads) library, which is added via the
AX_PTHREAD macro I discussed in the previous section.

I also converted the ncurses AC_CHECK_LIB call to AC_SEARCH_LIBS because
I suspect that future FLAIM platforms may use different library names for
curses functionality. I’d like to prepare the build system to have additional
libraries searched on these platforms. The ncurses library is an optional
library on most platforms, so I added the AC_CHECK_HEADER macro to check for
curses.h, display a message in the action-if-not-found (third) argument that
the user should install the curses-development package, and exit the configu
ration process with an error. The rule is to find problems early, during con
figuration, rather than during compilation.

Maintainer-Defined Command Line Options

The next four libraries are checked within an Autoconf conditional state
ment at . This statement is based on the end user’s use of the --enable
-openssl command line argument, which AC_ARG_ENABLE provides (see in
Listing 145 on page 379).

I use AS_IF here instead of a shell if-then statement because, if any of
the macros called within the conditional statement require additional
macros to be expanded in order to operate correctly, AS_IF will ensure that
these dependencies are expanded first, outside of the conditional state
ment. As well as being part of the M4sh library, the AS_IF macro is part
of the Autoconf autodependency framework (also discussed in detail in
“Autoconf and M4” on page 439).

In this case, the openssl variable is defined to either yes or no based on
the default value given to AC_ARG_ENABLE and on the end user’s command
line choices.

14. For some reason, this activity is especially prevalent when libraries are being built,
although programs are not immune to it.

FLAIM: An Autotools Example 387

The AC_DEFINE macro, called in the first argument of AS_IF, ensures that
the Cpreprocessor variable FLM_OPENSSL is defined in the config.h header
file. The AC_CHECK_LIB macros then ensure that -lssl, -lcrypto, -ldl, and -lz
strings are added to the LIBS variable, but only if the openssl variable is set to
yes. We don’t want to insist that the user have those libraries installed unless
they have asked for features that need them.

You can get as sophisticated as you want when dealing with maintainer
defined command line options such as --enable-openssl. But be careful:
some levels of automation can surprise your users. For instance, automati
cally enabling the option because your checks found that the OpenSSL
libraries were installed and accessible can be a bit disconcerting.

I left all the header file and library function checks at , as specified by
autoscan, because a simple text scan through the source code for header files
and function names is probably pretty accurate.

Notice, however, that autoscan did not put all of the header files
used by ftk source code into the AC_CHECK_HEADERS argument. The autoscan
utility’s algorithm is simple but effective: it adds all header files included
conditionally by your source code. This approach assumes that any header
file you include conditionally might be included differently on different
platforms due to portability issues. While this approach is usually correct,
it’s not always correct, so you should look at each of the headers added,
find the conditional inclusion in your source code, and make a more
intelligent assessment of whether or not it should be added to AC_CHECK
_HEADERS in configure.ac.

A good example in this project is the conditional inclusion of stdlib.h.
As it happens, stdlib.h is included for Windows builds, and it’s also included
for Unix builds. It is not, however, included for NetWare builds. Regardless,
it doesn’t really need to be checked for in AC_CHECK_HEADERS for two reasons.
First, it’s widely standardized across platforms, and second, this build
system is specifically designed for Unix systems.15 The point is, you should
carefully examine what autoscan does for you to determine if it should be
done in your project.

At , we see the conditional (AS_IF) use of AC_DEFINE based on the
contents of the debug variable. This is another environment variable that’s
conditionally defined based on the results of a command line parameter
given to configure. The --enable-debug option sets the debug variable to yes,
which ultimately enables the FLM_DEBUG Cpreprocessor definition within
config.h. Both FLM_OPENSSL and FLM_DEBUG were already used within the FLAIM
project source code. Using AC_DEFINE in this manner allows the end user
to determine which features are compiled into the libraries.

I left a fairly large chunk of code out of the listing at that deals with
compiler and tool optimizations, which I’ll present in the next chapter. This
code is identical in all of the projects’ configure.ac files.

Finally, I added references to the makefiles in the docs, obs, src, and util
directories, as well as the obs/flaimtk.spec and src/libflaimtk.pc files at to the
AC_CONFIG_FILES macro call, and then I added my usual cat statement at

15. I left it in my call to AC_CHECK_HEADERS so I could discuss it here.

388 Chapter 14

near the bottom for some visual verification of my configuration status. For
now, just ignore the sed command right above the cat statement. I’ll cover
that in “Transitive Dependencies” on page 401.

The FLAIM Toolkit Makefile.am File
If we ignore the commands for Doxygen and RPMspecific targets (for now),
the ftk/Makefile.am file is fairly trivial. Listing 148 shows the entire file.

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = GNUMakefile README.W32 debian netware win32

 if HAVE_DOXYGEN
 DOXYDIR = docs
endif

SUBDIRS = src util obs $(DOXYDIR)

 doc_DATA = AUTHORS ChangeLog COPYING INSTALL NEWS README

RPM = rpm

 rpms srcrpm: dist
 (cd obs && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1
 rpmarch=`$(RPM) --showrc | \
 grep "^build arch" | sed 's/\(.*: \)\(.*\)/\2/'`; \
 test -z "obs/$$rpmarch" || \
 (mv obs/$$rpmarch/* . && rm -rf obs/$$rpmarch)
 rm -rf obs/$(distdir)

 #dist-hook:
rm -rf `find $(distdir) -name .svn`

.PHONY: srcrpm rpms

Listing 14-8: ftk/Makefile.am: The entire contents of the FLAIM toolkit’s top-level makefile

In this file you’ll find the usual ACLOCAL_AMFLAGS, EXTRA_DIST, and SUBDIRS
variable definitions, but you can also see the use of an Automake condi
tional at . The if statement allows me to append another directory (docs)
to the SUBDIRS list, but only if the doxygen program is available (according
to configure). I used a separate variable here (DOXYDIR), but the Automake
conditional could just as well have surrounded a statement that directly
appends the directory name (doc) to the SUBDIRS variable using the
Automake += operator.

N O T E Don’t confuse Automake conditionals with GNU Make conditionals, which use the
keywords ifeq, ifneq, ifdef, and ifndef. If you try to use an Automake conditional
in Makefile.am without a corresponding AM_CONDITIONAL statement in configure.ac,
Automake will complain about it. When this construct is used properly, Automake
converts it to something that make understands before make sees it.

FLAIM: An Autotools Example 389

Another new construct (at least in a toplevel Makefile.am file) is the use
of the doc_DATA variable at . The FLAIM toolkit provides some extra docu
mentation files in its toplevel directory that I’d like to have installed. By
using the doc prefix on the DATA primary, I’m telling Automake that I’d like
these files to be installed as data files in the $(docdir) directory, which ulti
mately resolves to the $(prefix)/share/doc directory, by default.

Files mentioned in DATA variables that don’t already have special mean
ing to Automake are not automatically distributed (that is, they’re not
added to distribution tarballs), so you have to manually distribute them
by adding them to the files listed in the EXTRA_DIST variable.

N O T E I did not have to list the standard GNU project text files in EXTRA_DIST because they’re
always distributed automatically. However, I did have to mention theses files in the
doc_DATA variable, because Automake makes no assumptions about which files you
want to install.

I’ll defer a discussion of the RPM targets at to the next chapter.

Automake -hook and -local Rules

Automake recognizes two types of integrated extensions, which I call -local
targets and -hook targets. Automake recognizes and honors -local extensions
for the following standard targets:

all

check

clean

distclean

dvi

html

info

install-data

install-dvi

install-exec

install-html

install-info

install-pdf

install-ps

installcheck

installdirs

maintainer-clean

mostlyclean

pdf

ps

uninstall

Appending -local to any of these in your Makefile.am files will cause the
associated commands to be executed before the standard target. Automake
does this by generating the rule for the standard target so that the -local ver
sion is one of its dependencies (if it exists).16 In “Cleaning Your Room” on
page 404, I’ll show an example of this concept using a clean-local target.

The -hook targets are a bit different in that they are executed after the
corresponding standard target is executed.17 Automake does this by adding
another command to the end of the standard target command list. This
command merely executes $(MAKE) on the containing makefile, with the

16. Automake -local targets can be somewhat problematic when using parallel make (make
-j), because parallel make cannot guarantee that dependencies are processed in the order
in which they’re listed: they may be executed in parallel. This is arguably a design flaw in
Automake, but it’s far too late to fix it at this point.

17. There are exceptions to this rule. In fact, the dist-hook target is actually executed after the
distdir target, rather than after the dist target. Basically, the hook rules are executed where
they make the most sense.

390 Chapter 14

-hook target as the command line target. Thus, the -hook target is executed
at the end of the standard target commands in a recursive fashion.

The following standard Automake targets support -hook versions:

dist

distcheck

install-data

install-exec

uninstall

Automake automatically adds all existing -local and -hook targets to the
.PHONY rule within the generated makefile.

In the first edition of this book, I used the dist-hook target at in
Makefile.am (now commented out) to adjust the distribution directory after
it’s built but before make builds a distribution archive from its contents. The
rm command removed extraneous files and directories that became part of
the distribution directory as a result of my adding entire directories to the
EXTRA_DIST variable. When you add directory names to EXTRA_DIST (debian,
netware, and win32, in this case), everything in those directories is added
to the distribution—even hidden repository control files and directories.18

Listing 149 is a portion of the generated Makefile that shows how
Automake incorporates dist-hook into the final makefile. The relevant por
tions are highlighted.

--snip--
distdir: $(DISTFILES)
 ... # copy files into distdir
 $(MAKE) $(AM_MAKEFLAGS) top_distdir="$(top_distdir)" \
 distdir="$(distdir)" dist-hook
 ... # change attributes of files in distdir
--snip--
dist dist-all: distdir
 tardir=$(distdir) && $(am__tar) | GZIP=$(GZIP_ENV) gzip -c \
 >$(distdir).tar.gz
 $(am__remove_distdir)
--snip--
.PHONY: ... dist-hook ...
--snip--
dist-hook:
 rm -rf `find $(distdir) -name .svn`
--snip--

Listing 14-9: The results of defining the dist-hook target in ftk/Makefile.am

N O T E Don’t be afraid to dig into the generated makefiles to see exactly what Automake is
doing with your code. While there is a fair amount of ugly shell code in the make com-
mands, most of it is safe to ignore. You’re usually more interested in the make rules
that Automake is generating, and it’s easy to separate these out.

18. The source code accompanying the first edition of this book was stored in a Subversion
repository. This edition’s source code is hosted by GitHub, which, of course, uses git. Since
git does not have repository control files and directories scattered throughout the user source
directory structure, this hook was no longer necessary for this project. However, I felt the
information was important enough to leave this section in the chapter.

FLAIM: An Autotools Example 391

Designing the ftk/src/Makefile.am File
I now need to create Makefile.am files in the src and utils directories for the
FLAIM toolkit project. I want to ensure that all of the original functionality
is preserved from the old build system as I’m creating these files. Basically,
this includes:

•	 Properly building the ftk shared and static libraries

•	 Properly specifying installation locations for all installed files

•	 Setting the ftk sharedlibrary version information correctly

•	 Ensuring that all remaining unused files are distributed

•	 Ensuring that platformspecific compiler options are used

The template shown in Listing 1410 should cover most of these points,
so I’ll be using it for all of the FLAIM library projects, with appropriate
additions and subtractions, based on the needs of each individual library.

EXTRA_DIST = ...

lib_LTLIBRARIES = ...
include_HEADERS = ...

xxxxx_la_SOURCES = ...
xxxxx_la_LDFLAGS = -version-info x:y:z

Listing 14-10: A framework for the src and utils directory Makefile.am files

The original GNUMakefile told me that the library was named libftk.so.
This is a bad name for a library on Linux, because most of the threeletter
library names are already taken. Thus, I made an executive decision and
renamed the ftk library to flaimtk.

Listing 1411 shows most of the final ftk/src/Makefile.am file.

 EXTRA_DIST = ftknlm.h

 lib_LTLIBRARIES = libflaimtk.la
 include_HEADERS = flaimtk.h

 pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libflaimtk.pc

 libflaimtk_la_SOURCES = \
ftkarg.cpp \
ftkbtree.cpp \
ftkcmem.cpp \
ftkcoll.cpp \
--snip--
ftksys.h \
ftkunix.cpp \
ftkwin.cpp \

392 Chapter 14

ftkxml.cpp

 libflaimtk_la_LDFLAGS = -version-info 0:0:0

Listing 14-11: ftk/src/Makefile.am: The entire file contents, minus a few dozen source files

I added the Libtool library name, libflaimtk.la, to the lib_LTLIBRARIES list
at and changed the xxxxx portions of the remaining macros in Listing 1410
to libflaimtk. I could have entered all the source files by hand, but I noticed
while reading the original makefile that it used the GNU make function
macro $(wildcard src/*.cpp) to build the file list from the contents of the
src directory. This tells me that all of the .cpp files within the src directory
are required (or at least consumed) by the library. To get the file list into
Makefile.am, I used a simple shell command to concatenate it to the end of
the Makefile.am file (assuming I’m in the ftk/src directory):

$ printf '%s \\\n' *.cpp >> Makefile.am

This left me with a singlecolumn, backslashterminated, alphabetized
list of all of the .cpp files in the ftk/src directory at the bottom of ftk/src/
Makefile.am.

N O T E Do not forget the single quotes around the printf argument, which are necessary to
keep the first pair of backslashes from being interpreted by the shell as escape char-
acters during generation of the list. Regardless of quoting, printf understands and
interprets the \n character properly.

I moved the list up to just below the libflaimtk_la_SOURCES line at ,
added a backslash character after the equal sign, and removed the one
after the last file. Another formatting technique is to simply wrap the line
with a backslash and a carriage return approximately every 70 characters,
but I prefer to put each file on a separate line, especially early in the con
version process, so I can easily extract files from or add files to the lists
as needed. Leaving the files on separate lines also gets you the benefit of
having source lists be easier to compare when reviewing differences in pull
request reviews and other diffstyle output.

I had to manually examine each header file in the src directory in order
to determine its use in the project. There were only four header files, and,
as it turns out, the only one the FLAIM toolkit does not use on Unix and
Linux platforms is ftknlm.h, which is specific to the NetWare build. I added
this file to the EXTRA_DIST list at so it would be distributed; just because the
build doesn’t use it doesn’t mean that users won’t want or need it.19

The (newly renamed) flaimtk.h file is the only public header file, so
I moved it into the include_HEADERS list at . The other two files are used

19. I could have simply added this header file to the libflaimtk_la_SOURCES variable, because
header files added to SOURCES variables are merely added to the distribution. But doing so
would have hidden from observers the fact that this header file is not used in the Unix build
in any way.

FLAIM: An Autotools Example 393

internally in the library build, so I left them in the libflaimtk_la_SOURCES list.
Had this been my own project, I would have moved flaimtk.h into an include
directory off the project root directory, but remember that one of my goals
here was to limit changes to the directory structure and the source code.
Moving this header file is a philosophical decision that I decided to leave to
the maintainers.20

Finally, I noticed in the original makefile that the last release of the ftk
library published an interface version of 4.0. However, since I changed the
name of the library from libftk to libflaimtk, I reset this value to 0.0 because
it’s a different library. I replaced x:y:z with 0:0:0 in the -version-info option
at within the libflaimtk_la_LDFLAGS variable.

N O T E A version string of 0:0:0 is the default, so I could have removed the argument entirely
and achieved the same result. However, including it gives new developers some insight
into how to change the interface version in the future.

I added the pkgconfigdir and pkgconfig_DATA variables at in order to
provide support for installing pkgconfig metadata files for this project. For
more on the pkgconfig system, see Chapter 10.

Moving On to the ftk/util Directory
Properly designing Makefile.am for the util directory requires examining
the original makefile again for more products. A quick glance at the ftk/
util directory showed that there was only one source file: ftktest.cpp. This
appeared to be some sort of testing program for the ftk library, but I know
that the FLAIM developers use it all the time in various ways besides simply
for testing a build. So I had a design decision to make here: should I build
this as a normal program or as a check program?

Check programs are only built when make check is executed, and they’re
never installed. If I want ftktest built as a regular program, but not
installed, I have to use the noinst prefix rather than the usual bin prefix in
the program list variable.

In either case, I probably want to add ftktest to the list of tests that
are executed during make check, so the two questions here are (1) whether I
want to automatically run ftktest during make check and (2) whether I want
to install the ftktest program. Given that the FLAIM toolkit is a mature
product, I opted to build ftktest during make check and leave it uninstalled.

Listing 1412 shows my final ftk/util/Makefile.am file.

FTK_INCLUDE = -I$(top_srcdir)/src
FTK_LTLIB = ../src/libflaimtk.la

check_PROGRAMS = ftktest

20. As mentioned earlier, I’m the only effective maintainer at this point, but this was not
always the case, and it’s still a valid rule of thumb to follow when suggesting changes to other
peoples’ code in the form of git pull requests or mailing list patches.

394 Chapter 14

ftktest_SOURCES = ftktest.cpp
ftktest_CPPFLAGS = $(FTK_INCLUDE)
ftktest_LDADD = $(FTK_LTLIB)

TESTS = ftktest

Listing 14-12: ftk/util/Makefile.am: The final contents of this file

I hope that by now you can see the relationship between TESTS and
check_PROGRAMS. To be blunt, there really is no relationship between the files
listed in check_PROGRAMS and those listed in TESTS. The check target simply
ensures that check_PROGRAMS are built before the TESTS programs and scripts
are executed. TESTS can refer to anything that can be executed without com
mand line parameters. This separation of duties makes for a very clean and
flexible system.

And that’s it for the FLAIM toolkit library and utilities. I don’t know
about you, but I’d much rather maintain this small set of short files than
a single 2,200line makefile!

Designing the XFLAIM Build System
Now that I’ve finished with the FLAIM toolkit, I’ll move on to the xflaim
project. I’m choosing to start with xflaim, rather than flaim, because it
supplies the most build features that can be converted to the Autotools,
including the Java and C# language bindings (which I won’t actually dis
cuss in detail until the next chapter). After xflaim, covering the remaining
database projects would be redundant, because the processes are identical,
if not a little simpler. However, you can find the other build system files in
this book’s GitHub repositories.

I generated the configure.ac file using autoscan once again. It’s important
to use autoscan in each of the individual projects, because the source code
for each project is different and will thus cause different macros to be writ
ten into each configure.scan file.21 I then used the same techniques I used on
the FLAIM toolkit to create xflaim’s configure.ac file.

The XFLAIM configure.ac File
After handmodifying the generated configure.scan file and renaming it
configure.ac, I found it to be similar in many ways to the toolkit’s configure.ac
file. It’s fairly long, so I’ll show you only the most significant differences in
Listing 1413.

--snip--
 # Checks for optional programs.

FLM_PROG_TRY_CSC
FLM_PROG_TRY_CSVM

21. During review of this chapter for the second edition of this book, I also used autoupdate to
update my older configure.ac files to the latest Autotools best practices.

FLAIM: An Autotools Example 395

FLM_PROG_TRY_JNI
FLM_PROG_TRY_JAVADOC
FLM_PROG_TRY_DOXYGEN

 # Configure variables: FTKLIB and FTKINC.
AC_ARG_VAR([FTKLIB], [The PATH wherein libflaimtk.la can be found.])
AC_ARG_VAR([FTKINC], [The PATH wherein flaimtk.h can be found.])
--snip--

 # Ensure that both or neither is specified.
if (test -n "$FTKLIB" && test -z "$FTKINC") || \
 (test -n "$FTKINC" && test -z "$FTKLIB"); then
 AC_MSG_ERROR([Specify both FTK library and include paths, or neither.])
fi

Not specified? Check for FTK in standard places.
if test -z "$FTKLIB"; then

 # Check for FLAIM toolkit as a sub-project.
 if test -d "$srcdir/ftk"; then
 AC_CONFIG_SUBDIRS([ftk])
 FTKINC='$(top_srcdir)/ftk/src'
 FTKLIB='$(top_builddir)/ftk/src'
 else

 # Check for FLAIM toolkit as a superproject.
 if test -d "$srcdir/../ftk"; then
 FTKINC='$(top_srcdir)/../ftk/src'
 FTKLIB='$(top_builddir)/../ftk/src'
 fi
 fi
fi

 # Still empty? Check for *installed* FLAIM toolkit.
if test -z "$FTKLIB"; then
 AC_CHECK_LIB([flaimtk], [ftkFastChecksum],
 [AC_CHECK_HEADERS([flaimtk.h])
 LIBS="-lflaimtk $LIBS"],
 [AC_MSG_ERROR([No FLAIM toolkit found. Terminating.])])
fi

 # AC_SUBST command line variables from FTKLIB and FTKINC.
if test -n "$FTKLIB"; then
 AC_SUBST([FTK_LTLIB], ["$FTKLIB/libflaimtk.la"])
 AC_SUBST([FTK_INCLUDE], ["-I$FTKINC"])
fi

 # Automake conditionals
AM_CONDITIONAL([HAVE_JAVA], [test "x$flm_prog_have_jni" = xyes])
AM_CONDITIONAL([HAVE_CSHARP], [test -n "$CSC"])
AM_CONDITIONAL([HAVE_DOXYGEN], [test -n "$DOXYGEN"])
#AM_COND_IF([HAVE_DOXYGEN], [AC_CONFIG_FILES([docs/doxygen/doxyfile])])
AS_IF([test -n "$DOXYGEN"], [AC_CONFIG_FILES([docs/doxygen/doxyfile])])
--snip--
AC_OUTPUT

396 Chapter 14

Fix broken libtool
sed 's/link_all_deplibs=no/link_all_deplibs=yes/' libtool >libtool.tmp && \
 mv libtool.tmp libtool

cat <<EOF

 ($PACKAGE_NAME) version $PACKAGE_VERSION
 Prefix.........: $prefix
 Debug Build....: $debug
 C++ Compiler...: $CXX $CXXFLAGS $CPPFLAGS
 Linker.........: $LD $LDFLAGS $LIBS
 FTK Library....: ${FTKLIB:-INSTALLED}
 FTK Include....: ${FTKINC:-INSTALLED}
 CSharp Compiler: ${CSC:-NONE} $CSCFLAGS
 CSharp VM......: ${CSVM:-NONE}
 Java Compiler..: ${JAVAC:-NONE} $JAVACFLAGS
 JavaH Utility..: ${JAVAH:-NONE} $JAVAHFLAGS
 Jar Utility....: ${JAR:-NONE} $JARFLAGS
 Javadoc Utility: ${JAVADOC:-NONE}
 Doxygen........: ${DOXYGEN:-NONE}

EOF

Listing 14-13: xflaim/configure.ac: The most significant portions of this Autoconf input file

First, notice that I’ve invented a few more FLM_PROG_TRY_* macros at .
Here I’m checking for the existence of the following programs: a C#
compiler, a C# virtual machine, a Java compiler, a JNI header and stub
generator, a Javadoc generation tool, a Java archive tool, and Doxygen.
I’ve written separate macro files for each of these checks and added them
to my xflaim/m4 directory.

As with the FLM_PROG_TRY_DOXYGEN macro used in the toolkit, each of these
macros attempts to locate the associated program, but these macros don’t
fail the configuration process if they can’t find the program. I want to be
able to use these programs if they’re available, but I don’t want to require
the user to have them in order to build the base libraries.

You’ll find a new macro, AC_ARG_VAR, at . Like the AC_ARG_ENABLE and
AC_ARG_WITH macros, AC_ARG_VAR allows the project maintainer to extend the
command line interface of the configure script. This macro is different, how
ever, in that it adds a public variable, rather than a command line option, to
the list of public variables that configure cares about. In this case, I’m add
ing two public variables, FTKINC and FTKLIB. These will show up in configure’s
help text under the section “Some influential environment variables.” The
GNU Autoconf Manual calls these variables precious. All of my FLM_PROG_TRY_*
macros use the AC_ARG_VAR macro internally to make the associated variables
both public and precious.22

22. These variables are also automatically substituted into the Makefile.in templates that
Automake generates. However, I don’t really need this substitution functionality, because
I’m going to build other variables out of these ones and I’ll want the derived variables,
instead of the public variables, to be substituted.

FLAIM: An Autotools Example 397

N O T E The lines of code from through are found in the GitHub repository under
xflaim/m4/flm_ftk_search.m4. By the end of Chapter 15, all discrepancies are
resolved between the listings in this chapter and the files in the GitHub repository.

The large chunk of code beginning at actually uses these variables
to set other variables used in the build system. The user can set the public
variables in the environment, or they can specify them on configure’s com
mand line in this manner:

$./configure FTKINC="$HOME/dev/ftk/include" ...

First, I’ll check to see that either both or neither of the FTKINC and FTKLIB
variables is specified. If only one of them is given, I have to fail with an
error. The user isn’t allowed to tell me where to find only half the toolkit;
I need both the header file and the library.23 If neither of these variables is
specified, I search for them at by looking for a subdirectory of the xflaim
project directory called ftk. If I find one, I’ll configure that directory as a
subproject to be processed by Autoconf, using the AC_CONFIG_SUBDIRS macro.24
I’ll also set both of these variables to point to the appropriate relative loca
tions within the ftk subproject.

If I don’t find ftk as a subdirectory, I’ll look for it in the parent directory
at . If I find it there, I’ll set the variables appropriately. This time, I don’t
need to configure the located ftk directory as a subproject, because I’m
assuming that the xflaim project is itself a subproject of the umbrella proj
ect. If I don’t find ftk as either a subproject or a sibling project, I’ll use the
standard AC_CHECK_LIB and AC_CHECK_HEADERS macros at to see if the user’s
host has the toolkit library installed. In that case, I need only add -lflaimtk
to the LIBS variable. Also in that case, the header file will be in the stan
dard location: usually /usr(/local)/include. The default functionality of the
optional third argument to AC_CHECK_LIB would automatically add the library
reference to the LIBS variable, but since I’ve overridden this default func
tionality, I have to manually add the toolkit library reference to LIBS.

If I don’t find the library, I give up with an error message indicating
that xflaim can’t be built without the FLAIM toolkit. However, after making
it through all these checks, if the FTKLIB variable is no longer empty, I use
AC_SUBST at to publish the FTK_INCLUDE and FTK_LTLIB variables, which con
tain derivations of FTKINC and FTKLIB appropriate for use as command line
options to the preprocessor and the linker.

N O T E Chapter 16 converts the large chunk of code between and into a custom M4
macro called FLM_FTK_SEARCH.

23. It is, of course, possible to allow the user to specify only FTKINC or FTKLIB if you’re willing
to check for a relative installation path of the other component. For instance, if the user
specified FTKINC=/path/to/include/ftk, you could write shell code that tries to find libflaimtk.so
in $FTKINC/../../lib. It’s a bit more shell code, but it may be worth your time to make it easier
on the end user.

24. You can use this macro conditionally and multiple times within the same configure.ac file.

398 Chapter 14

The remaining code at calls AM_CONDITIONAL for Java, C#, and Doxygen
in a manner similar to the way I handled Doxygen in the ftk project. These
macros are configured to generate warning messages indicating that the
Java or C# portions of the xflaim project will not be built if those tools can’t
be found, but I allow the build to continue in any case.

Creating the xflaim/src/Makefile.am File
I’m skipping the xflaim/Makefile.am file, because it’s nearly identical to
ftk/Makefile.am. Instead, we’ll move on to xflaim/src/Makefile.am, which I
wrote by following the same design principles used with the ftk/src version.
It looks very similar to its ftk counterpart, with one exception: according
to the original build system makefile, the Java native interface (JNI) and
C# native language–binding sources are compiled and linked right into
the xflaim shared library.

This is not an uncommon practice, and it’s quite useful because it
alleviates the need for extra library objects built specifically for these
languages. Essentially, the xflaim shared library exports native interfaces
for these languages, which are then consumed by their corresponding
native wrappers. 25

I’m going to ignore these language bindings for now, but later, when
I’m finished with the entire xflaim project, I’ll turn my attention back
to properly hooking them into the library. With this exception then, the
Makefile.am file shown in Listing 1414 looks almost identical to its ftk
counterpart.

if HAVE_JAVA
 JAVADIR = java
 JNI_LIBADD = java/libxfjni.la
endif

if HAVE_CSHARP
 CSDIR = cs
 CSI_LIBADD = cs/libxfcsi.la
endif

SUBDIRS = $(JAVADIR) $(CSDIR)

pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libxflaim.pc

lib_LTLIBRARIES = libxflaim.la
include_HEADERS = xflaim.h

libxflaim_la_SOURCES = \

25. There are a few platformspecific problems to be aware of when you’re building JNI librar
ies into native libraries in this manner. Apple’s macOS version 10.4 and older seem to require
that JNI libraries be named with a .jnilib extension; if they aren’t, the JVM won’t load these
files, so the xflaim Java bindings won’t work correctly on these systems. These are very old
releases of macOS however.

FLAIM: An Autotools Example 399

 btreeinfo.cpp \
 f_btpool.cpp \
 f_btpool.h \
 --snip--
 rfl.h \
 scache.cpp \
 translog.cpp

libxflaim_la_CPPFLAGS = $(FTK_INCLUDE)
libxflaim_la_LIBADD = $(JNI_LIBADD) $(CSI_LIBADD) $(FTK_LTLIB)
libxflaim_la_LDFLAGS = -version-info 3:2:0

Listing 14-14: xflaim/src/Makefile.am: The xflaim project src directory Automake input file

I’ve conditionally defined the contents of the SUBDIRS variable here
based on variables defined by corresponding Automake conditional state
ments in configure.ac. When make all is executed, the SUBDIRS variable con
ditionally recurses into the java and cs subdirectories. But when make dist
is executed, a hidden DIST_SUBDIRS variable (which is created by Automake
from all of the possible contents of the SUBDIRS variable) references all directo
ries appended, either conditionally or unconditionally, to SUBDIRS.26

N O T E The library interface version information was extracted from the original makefile.

Turning to the xflaim/util Directory
The util directory for xflaim is a bit more complex. According to the origi
nal makefile, it generates several utility programs as well as a convenience
library that is consumed by these utilities.

It was somewhat more difficult to find out which source files belong
to which utilities and which were not used at all. Several of the files in the
xflaim/util directory are not used by any of the utilities. Do we distribute
these extra source files? I chose to do so, because they were already being
distributed by the original build system and adding them to the EXTRA_DIST
list makes it obvious to later observers that they aren’t used.

Listing 1415 shows a portion of the xflaim/util/Makefile.am file; the
parts that are missing are redundant.

EXTRA_DIST = dbdiff.cpp dbdiff.h domedit.cpp diffbackups.cpp xmlfiles

XFLAIM_INCLUDE = -I$(top_srcdir)/src
XFLAIM_LDADD = ../src/libxflaim.la

 AM_CPPFLAGS = $(XFLAIM_INCLUDE) $(FTK_INCLUDE)
LDADD = libutil.la $(XFLAIM_LDADD)

26. When you think about it, I believe you’ll agree that this is some pretty tricky code.
Automake has to unravel the values of the make variables used in SUBDIRS, which are defined
within Automake conditional statements.

400 Chapter 14

Utility Convenience Library

noinst_LTLIBRARIES = libutil.la

libutil_la_SOURCES = \
 flm_dlst.cpp \
 flm_dlst.h \
 flm_lutl.cpp \
 flm_lutl.h \
 sharutil.cpp \
 sharutil.h

Utility Programs

bin_PROGRAMS = xflmcheckdb xflmrebuild xflmview xflmdbshell

xflmcheckdb_SOURCES = checkdb.cpp
xflmrebuild_SOURCES = rebuild.cpp

xflmview_SOURCES = \
 viewblk.cpp \
 view.cpp \
 --snip--
 viewmenu.cpp \
 viewsrch.cpp

xflmdbshell_SOURCES = \
 domedit.h \
 fdomedt.cpp \
 fshell.cpp \
 fshell.h \
 xshell.cpp

Check Programs

check_PROGRAMS = \
 ut_basictest \
 ut_binarytest \
 --snip--
 ut_xpathtest \
 ut_xpathtest2

 check_DATA = copy-xml-files.stamp
check_HEADERS = flmunittest.h

ut_basictest_SOURCES = flmunittest.cpp basictestsrv.cpp
 --snip--

ut_xpathtest2_SOURCES = flmunittest.cpp xpathtest2srv.cpp

Unit Tests

TESTS = \
 ut_basictest \

FLAIM: An Autotools Example 401

--snip--
 ut_xpathtest2

Miscellaneous rules required by Check Programs

 copy-xml-files.stamp:
 cp $(srcdir)/xmlfiles/*.xml .
 echo Timestamp > $@

 clean-local:
 rm -rf ix2.*
 rm -rf bld.*
 rm -rf tst.bak
 rm -f *.xml
 rm -f copy-xml-files.stamp

Listing 14-15: xflaim/util/Makefile.am: The xflaim project’s util directory Automake input file

In this example, you can see by the elided sections that I left out several
long lists of files and products. This makefile builds 22 unit tests, but because
they’re all identical, except for naming differences and the source files from
which they’re built, I only left the descriptions for two of them (at).

I’ve defined the fileglobal AM_CPPFLAGS and LDADD variables at in order
to associate the XFLAIM and FTK include and library files with each of the
projects listed in this Makefile.am file. This way, I don’t have to explicitly
append this information to each product.

Transitive Dependencies

Notice, however, that the AM_CPPFLAGS variable uses both the XFLAIM_INCLUDE
and FTK_INCLUDE variables—the xflaim utilities clearly require information
from both sets of header files. So why doesn’t the LDADD variable reference
the ftk library? This is because Libtool manages transitive dependencies
for you and does so in a very portable manner, because some systems don’t
have a native mechanism for managing transitive dependencies. Because
I reference libxflaim.la through XFLAIM_LDADD, and because libxflaim.la lists
libflaimtk.la as a dependency, Libtool is able to provide the transitive
reference for me on the utility programs’ linker command lines.

For a clearer picture of this, examine the contents of libxflaim.la (in
your build directory under xflaim/src—you will have to build the project
first; run autoreconf -i; ./configure && make). You’ll find a few lines near the
middle of the file that look very much like the contents of Listing 1416.

--snip--
Libraries that this one depends upon.
dependency_libs=' .../flaim/build/ftk/src/libflaimtk.la -lrt -lncurses'
--snip--

Listing 14-16: The portion of xflaim/src/libxflaim.la that shows dependency libraries

402 Chapter 14

The path information for libflaimtk.la is listed here so we don’t have to
specify it in the LDADD statement for the xflaim utilities.27

Like Libtool, the GNU linker and the Linux loader can manage tran
sitive dependencies (TDs). This is done by having ld incorporate these
indirect dependencies into the ELF binaries it generates when appropri
ate linker command line options are used. Libtool’s mechanism relies
on a recursive search of a hierarchy of .la files, whereas Linux’s native
mechanism simply recursively searches the library hierarchy at build time
and embeds all required library references directly into the built program
or library. The loader then sees and uses these references at load time.
A nice aspect of using such native TD management is that, if a library
is updated in a newer version of a package, the loader will immediately
begin to reference the updated secondary symbols from the new library’s
updated reference list, and projects built against that library will immedi
ately begin using the new version’s transitive dependencies.

Recently, some distro vendors have decided it’s worth taking advantage
of this feature on their platforms. The problem is, Libtool’s TD manage
ment reduces the perceived advantages of using ld’s (and the system load
er’s) internal TD management—it gets in the way, so to speak. To solve this
issue, these vendors have decided to release a modified version of Libtool
on their platforms, wherein its TD management feature is effectively dis
abled. The result is that you must now specify all direct and indirect librar
ies on the linker (libtool) command line or modify your build system to use
the nonportable native TD management linker options.

Since native TD management is not supported on all platforms, and
Libtool’s text file–based approach is completely portable, we often rely
heavily on Libtool to do the right thing when indirect dependencies are
required while linking our programs and libraries on systems that don’t
have a native TD management system. When you use a “distrocrippled”
Libtool package to build projects designed to take advantage of Libtool’s
TD management features, your build simply fails at the link stage with
“missing DSO” (dynamic shared object) messages.28

The sed command in configure.ac searches for the text link_all_deplibs=no
in the libtool script and replaces it with link_all_deplibs=yes. It’s in there
twice, and the sed command will replace both occurrences. AC_OUTPUT exe
cutes config.status, which generates the libtool script in the project directory,
so the sed command must follow AC_OUTPUT to be effective.

27. When libxflaim.la is installed into /usr/<local/>lib next to libxflaim.so.*, Libtool modifies the
installed version of this file so it references the installed versions of the libraries rather than
the libraries in the build directory structure. This allows builds against installed versions of
your libraries to also take advantage of this feature.

28. When I wrote the first edition of this book, I relied on Libtool’s ability to automatically
link transitive dependencies in the makefiles for the flaim and xflaim utils directory. These
utilities link against libflaim and, therefore, transitively against libflaimtk. When I tried to
build the FLAIM source code with late versions of the Autotools on a different platform,
I found suddenly that I could no longer link some of these utilities. There’s quite a bit of
traffic on the libtool mailing list about this controversial issue.

FLAIM: An Autotools Example 403

N O T E It doesn’t hurt to use this sed command, even on systems that do not exhibit the
problem—sed simply won’t find anything to replace in your libtool script. Be aware,
however, that if your package is picked up for distribution by a Linux vendor that
uses internal TD management, they’ll probably ship your package with these sorts
of commands “patched out.”

Of course, another option is to forgo the use of automatic transitive
dependency management entirely by simply specifying all of the link depen
dencies you know you’ll need on the linker’s command line for every pro
gram or library you build. Pkgconfig actually does this for you anyway, so
if you can rely on pkgconfig for all your library management needs, then
your projects are simply not affected by this issue. This can be done manu
ally in the flaim, xflaim, and flaimsql projects by adding $(FTK_LTLIB) to the
LDADD variables as, for example, at in Listing 1415.

Feel free to try this by commenting out the sed commands in configure.ac
and then rebuilding the project. Assuming you’re building on a platform
where Libtool has been modified, your build will fail at the point where the
flaim and xflaim projects try to link their utilities only against the libflaim.la
and libxflaim.la. To make it work again, update your LDADD variables as I men
tioned earlier.

Stamp Targets

In creating this makefile, I ran across another minor problem that I hadn’t
anticipated. At least one of the unit tests seemed to require that some XML
data files be present in the directory from which the test is executed. The
test failed, and when I dug into it, I noticed that it failed while trying to
open these files. Looking around a bit lead me to the xflaim/util/xmldata
directory, which contained several dozen XML files.

I needed to copy those files into the build hierarchy’s xflaim/util direc
tory before I could run the unit tests. I know that products prefixed with
check are built before TESTS are executed, so it occurred to me that I might
list these files at in a check_DATA PLV. The check_DATA variable refers to a
file called copy-xml-files.stamp, which is a special type of file target called a
stamp target. Its purpose is to replace a group of unspecified files, or a non
filebased operation, with one single, representative file. This stamp file is
used to indicate to the build system that all the XML data files have been
copied into the util directory. Automake often uses stamp files in its own
generated rules.

The rule for generating the stamp file at also copies the XML data
files into the test execution directory. The echo statement simply creates a file
named copy-xml-files.stamp that contains a single word: Timestamp. The file may
contain anything (or nothing at all). The important point here is that the
file exists and has a time and date associated with it. The make utility uses this
information to determine whether the copy operation needs to be executed.
In this case, since copy-xml-files.stamp has no dependencies, its mere existence
indicates to make that the operation has already been done. Delete the stamp
file to get make to perform the copy operation on the next build.

404 Chapter 14

This is a sort of hybrid between a true filebased rule and a phony
target. Phony targets are always executed—they aren’t real files, so make
has no way of determining whether the associated operation should be
performed based on file attributes. The timestamps of filebased rules
can be checked against their dependency lists to determine whether they
should be reexecuted. Stamp rules like this are executed only if the stamp
file is missing, because there are no dependencies against which the target’s
time and date should be compared.29

Cleaning Your Room

All files placed in the build directory should be cleaned up when the user
enters make clean at the command prompt. Since I placed XML data files
into the build directory, I also need to clean them up. Files listed in DATA
variables are not cleaned up automatically, because DATA files are not neces
sarily generated. Sometimes the DATA primary is used to list static project
files that need to be installed. I “created” a bunch of XML files and a stamp
file, so I needed to remove these during make clean. To this end, I added the
clean-local target at , along with its associated rm commands.

N O T E Be careful when deleting files copied from the source tree into the corresponding loca-
tion in the build tree—you may inadvertently delete source files when building from
within the source tree. You can compare $(srcdir) to “.” within make commands to
see if the user is building in the source tree.

There is another way to ensure that files created using your own make
rules get cleaned up during execution of the clean target. You can define
the CLEANFILES variable to contain a whitespaceseparated list of files (or
wildcard specifications) to be removed. I used a clean-local target in this
case, because the CLEANFILES variable has one caveat: it won’t remove direc
tories, only files. Each of the rm commands that removes a wildcard file
specification refers to at least one directory. I’ll show you a proper use of
CLEANFILES in Chapter 15.

Regardless of how well your unit tests clean up after themselves, you
still might want to write clean rules that attempt to clean up intermediary
test files. That way, your makefiles will clean up droppings from interrupted

29. Stamp files have the inherent problem of not properly specifying the true relation
ship between targets and their dependencies—a critical requirement of a proper update.
Regardless, a stamp file is sometimes the only reasonable way to accomplish a task within a
makefile. One special case is to properly handle rules that generate multiple output or prod
uct files. GNU make has special pattern rule syntax for dealing with situations where multiple
output files are generated by a single rule, but Automake tries hard not to depend on GNU
make extensions. The use of stamp files in this case represents a workaround for a missing
feature of POSIX make. Automake also uses stamp files when not doing so would cause a very
large file set to become part of a target’s dependency list. Since there are inherent nega
tive side effects associated with stamp files, Automake reserves their use for these sorts of
special cases.

FLAIM: An Autotools Example 405

tests and debug runs.30 Remember that the user may be building in the
source directory. Try to make your wildcards as specific as possible so you
don’t inadvertently remove source files.

I use the Automakesupported clean-local target here as a way to extend
the clean target. The clean-local target is executed as a dependency of (and
thus executed before) the clean target, if it exists. Listing 1417 shows the
corresponding code from the Automakegenerated Makefile.in template,
so you can see how this infrastructure is wired up. The interesting bits are
highlighted.

--snip--
clean: clean-am

 clean-am: clean-binPROGRAMS clean-checkPROGRAMS \
 clean-generic clean-libtool clean-local \
 clean-noinstLTLIBRARIES mostlyclean-am
--snip--

 .PHONY: ... clean-local...
--snip--
clean-local:
 rm -rf ix2.*
 rm -rf bld.*
 rm -rf tst.bak
 rm -f *.xml
 rm -f copy-xml-files.stamp
--snip--

Listing 14-17: xflaim/util/Makefile.in: The clean rules generated by Automake from
xflaim/util/Makefile.am

Automake noted that I had a target named clean-local in Makefile.am, so
it added clean-local to the dependency list for clean-am at and then added
it to the .PHONY variable at . Had I not written a clean-local target, these
references would have been missing from the generated Makefile.

Summary
Well, those are the basics. If you’ve followed along and understood what we
did in this chapter, then you should be able to convert nearly any project to
use an Autotoolsbased build system. For more details on the topics covered
here, I refer you to the Autotools manuals. Often just knowing the name of
a concept so you can easily find it in the manual or in an online search is
worth a great deal.

In Chapter 15, I’ll cover the stranger aspects of converting this project,
including the details of building Java and C# code, adding compilerspecific
optimization flags and command line options, and even building RPM
packages using userdefined make targets in your Makefile.am files.

30. You might also provide a debug option or an environment variable that causes your tests
to leave these droppings behind so they can be examined during debugging.

What we do in college is to get over our little-mindedness.
Education—to get it you have to hang around till you catch on.

—Robert Lee Frost 1

15
F L A I M P A R T I I :

P U S H I N G T H E E N V E L O P E

1It’s a well-understood principle that no
matter how many books you read, or how

many lectures you attend, or how many
queries you present on mailing lists, you’ll

still be left with unanswered questions. It’s estimated
that half of the world’s population has access to the
internet today.2 There are thousands of terabytes of information avail-
able from your desktop. Nevertheless, it seems every project has one or
two issues that are just different enough from all others that even internet
searches are fraught with futility.

To reduce the potential frustration of learning the Autotools, this chap-
ter continues with the FLAIM build system conversion project by tackling
some of the less common features of FLAIM’s build system requirements.

1. Jay Parini, Robert Frost: A Life, p 185 (noted in his journals), citation from endnote 12.

2. See world internet usage statistics news and world population stats at
https://www.internetworldstats.com/stats.htm.

https://www.internetworldstats.com/stats.htm

408 Chapter 15

My hope is that by presenting solutions to some of these less common prob-
lems, you’ll become familiar with the underlying framework provided by
the Autotools. Such familiarity provides the insight needed to bend the
Autotools to your own unique requirements.

The xflaim library provides Java and C# language bindings. Automake
provides rudimentary support for building Java sources but currently pro-
vides no built-in support for building C# sources. In this chapter, I’ll show
you how to use Automake’s built-in Java support to build the Java language
bindings in xflaim, and then I’ll show you how to write your own make rules
for the C# language bindings.

We’ll round out this chapter, and finish up the FLAIM conversion pro-
ject, with discussions of using native compiler options, building generated
documentation, and adding your own top-level recursive make targets.

Building Java Sources Using the Autotools
The GNU Automake Manual presents information on building Java sources
in two different ways. The first is the traditional and widely understood
method of compiling Java source code into Java byte code, which can then
be executed within the Java virtual machine (JVM). The second way is the
lesser-known method of compiling Java source code directly into native
machine code using the GNU Compiler for Java (gcj) frontend to the GNU
compiler tool suite. The object files containing this machine code can then
be linked together into native executable programs using the standard
GNU linker. Probably due to lack of interest, and to the JVM’s having been
vastly improved over the years, the GCJ project is no longer being main-
tained. It’s therefore likely that all support for this mechanism will soon
be entirely dropped from the Autotools.

In this chapter, I’ll focus on the former—building Java class files from
Java source files using the Automake built-in JAVA primary. We’ll also explore
the necessary extensions required to build and install .jar files.

Autotools Java Support
Autoconf has little, if any, built-in support for Java. For example, it provides
no macros that locate Java tools in the end user’s environment.3 Automake’s
built-in support for building Java classes is minimal, but getting it to work
is not really that difficult if you’re willing to dig in a bit. The biggest stum-
bling block is conceptual more than functional. You have to work a little
to align your understanding of the Java build process with that of the
Automake designers.

Automake provides a built-in primary (JAVA) for building Java sources,
but it does not provide any preconfigured installation location prefixes for

3. The GNU Autoconf Archive (https://www.gnu.org/software/autoconf-archive/) has plenty of
user-contributed macros that can help your configuration process set you up to build Java
applications from Automake scripts.

https://www.gnu.org/software/autoconf-archive/

FLAIM Part II: Pushing the Envelope 409

installing Java classes. However, the usual place to install Java classes and
.jar files is in the $(datadir)/java directory, so creating a proper prefix is as
simple as using the Automake prefix extension mechanism of defining a
variable suffixed with dir, as shown in Listing 15-1.

--snip--
javadir = $(datadir)/java
java_JAVA = file_a.java file_b.java ...
--snip--

Listing 15-1: Defining a Java installation directory in a Makefile.am file

Now, you don’t often want to install Java sources, which is what you will
accomplish when you define your JAVA primary in this manner. Rather, you
want the .class files to be installed, or more likely a .jar file containing all of
your .class files. It’s generally more useful, therefore, to define the JAVA pri-
mary with the noinst prefix. Additionally, files in a JAVA primary list are not
distributed by default, so you may even want to use the dist super-prefix, as
shown in Listing 15-2.

dist_noinst_JAVA = file_a.java file_b.java...

Listing 15-2: Defining a list of non-installed Java files that are distributed

When you define a list of Java source files in a variable containing the
JAVA primary, Automake generates a make rule that builds that list of files all
in one command, using the syntax shown in Listing 15-3.4

--snip--
JAVAROOT = .
JAVAC = javac
CLASSPATH_ENV = CLASSPATH=$(JAVAROOT):$(srcdir)/$(JAVAROOT):\
 $${CLASSPATH:+":$$CLASSPATH"}
--snip--
all: all-am
--snip--
all-am: Makefile classnoinst.stamp $(DATA) all-local
--snip--
classnoinst.stamp: $(am__java_sources)
 @list1='$?'; list2=; if test -n "$$list1"; then \
 for p in $$list1; do \
 if test -f $$p; then d=; else d="$(srcdir)/"; fi; \
 list2="$$list2 $$d$$p"; \
 done; \

4. It’s difficult to design a set of make rules to build individual .class files from corresponding
.java files. The reasons for this include the fact that the name of a particular .class file can’t
be determined without parsing the corresponding source file. Additionally, due to inner and
anonymous class definitions, multiple .class files, whose names are based on class names, can
be generated from a single Java source file. Fortunately, it’s orders of magnitude faster to
compile an entire set of Java source files on one command line than to compile Java sources
individually, based on individual source file timestamps.

410 Chapter 15

 u echo '$(CLASSPATH_ENV) $(JAVAC) -d $(JAVAROOT) \
 $(AM_JAVACFLAGS) $(JAVACFLAGS) '"$$list2"; \
 $(CLASSPATH_ENV) $(JAVAC) -d $(JAVAROOT) \
 $(AM_JAVACFLAGS) $(JAVACFLAGS) $$list2; \
 else :; fi

 v echo timestamp > $@
--snip--

Listing 15-3: This long shell command was taken from a Makefile generated by Automake.

Most of the code you see in these commands exists solely to prepend
the $(srcdir) prefix onto each file in the user-specified list of Java sources in
order to properly support VPATH builds. This code uses a shell for statement
to split the list into individual files, prepend the $(srcdir), and then reas-
semble the list.5

The part that actually does the work of building the Java sources is
found in two lines (four wrapped lines, actually)6 near the bottom at u.

Automake generates a stamp file at v because the single $(JAVAC) com-
mand generates several .class files from the .java files. Rather than choosing
one of these files at random, Automake generates and uses a stamp file as
the target of the rule, which causes make to ignore the relationships between
individual .class files and their corresponding .java files. That is, if you
delete a .class file, the rules in the makefile will not cause it to be rebuilt.
The only way to cause the re-execution of the $(JAVAC) command is to either
modify one or more of the .java files, thereby causing their timestamps to
become newer than that of the stamp file, or delete the stamp file entirely.

The variables used in the build environment and on the command line
include JAVAROOT, JAVAC, JAVACFLAGS, AM_JAVACFLAGS, and CLASSPATH_ENV. Each vari-
able may be specified in the Makefile.am file.7 If a variable is not specified,
the defaults shown in Listing 15-3 are used instead.

All .java files specified in a JAVA primary variable are compiled using a
single command line, which may pose a problem on systems with limited
command line lengths. If you encounter such a problem, you can either
break up your Java project into multiple Java source directories or develop
your own make rules for building Java classes. (When I discuss building C#
code in “Building the C# Sources” on page 418, I demonstrate how to
write such custom rules.)

5. It’s interesting to note that this file list–munging process could have been done in a half
line of GNU Make–specific code, but Automake is designed to generate makefiles that can
be executed by many older make programs.

6. I added additional wrapping to this example from the text I originally obtained from the
generated Makefile to better format it for the listing. The original Makefile text had only one
long wrapped line.

7. Technically, JAVAC, JAVACFLAGS, and CLASSPATH_ENV are reserved for the user to specify on the
configure command line, but these variables often don’t have reasonable defaults. The way
to play nicely in such situations is to specify them in such a way as to allow the user to over-
ride any defaults you define within your build system files. You can do this, for instance, by
checking for a value in the variables before setting them to a default or by using GNU Make–
specific syntax to set them if not already in the environment.

FLAIM Part II: Pushing the Envelope 411

The CLASSPATH_ENV variable sets the Java CLASSPATH environment variable
so that it contains $(JAVAROOT), $(srcdir)/$(JAVAROOT), and then any class path
that may have been configured in the environment by the end user.

The JAVAROOT variable is used to specify the location of the project’s Java
root directory within the project’s build tree, where the Java compiler will
expect to find the start of generated package directory hierarchies belong-
ing to your project.

The JAVAC variable contains javac by default, with the assumption that
javac can be found in the system path. The AM_JAVACFLAGS variable may be set
in Makefile.am, though the non-Automake version of this variable (JAVACFLAGS)
is considered a user variable and thus shouldn’t be set in makefiles.

This is all fine as far as it goes, but it doesn’t go nearly far enough. In
this relatively simple Java project, we still need to generate Java native inter-
face (JNI) header files using the javah utility as well as a .jar file from the
.class files built from the Java sources. Unfortunately, Automake-provided
Java support doesn’t even begin to handle these tasks, so we’ll have to do
the rest with handcoded make rules. We’ll begin with Autoconf macros to
ensure that we have a good Java build environment.

Using ac-archive Macros
The GNU Autoconf Archive supplies community-contributed Autoconf
macros that come close to what we need in order to ensure that we have a
good Java development environment. In this particular case, I downloaded
the latest source package and just hand-installed the .m4 files that I needed
into the xflaim/m4 directory.8

Then I modified the files (including their names) to work the way my
FLM_PROG_TRY_DOXYGEN macro works. I wanted to locate any existing Java tools,
but I also wanted be able to continue without them if necessary. Though it
has gotten much better in the last 10 years, given the politics surrounding the
existence of Java tools in Linux distributions, this is probably a wise approach.

I created the following macros within corresponding Java-related .m4 files:

•	 FLM_PROG_TRY_JAVAC is defined in flm_prog_try_javac.m4.

•	 FLM_PROG_TRY_JAVAH is defined in flm_prog_try_javah.m4.

•	 FLM_PROG_TRY_JAVADOC is defined in flm_prog_try_javadoc.m4.

•	 FLM_PROG_TRY_JAR is defined in flm_prog_try_jar.m4.

•	 FLM_PROG_TRY_JNI is defined in flm_prog_try_jni.m4.

With a bit more effort, I was also able to create the C# macros I needed
to accomplish the same tasks for the C# language bindings:

•	 FLM_PROG_TRY_CSC is defined in flm_prog_try_csc.m4.

•	 FLM_PROG_TRY_CSVM is defined in flm_prog_try_csvm.m4.

8. The original Autoconf Archive macros I used were ax_jni_include_dir, ax_prog_jar,
ax_prog_javac, ax_prog_javah, and ax_prog_javadoc. What I ultimately ended up with was a
mix of code from these original macros.

412 Chapter 15

Listing 15-4 shows the portion of the xflaim configure.ac file that invokes
these Java and C# macros.

--snip--
Checks for optional programs.
FLM_PROG_TRY_CSC
FLM_PROG_TRY_CSVM
FLM_PROG_TRY_JNI
FLM_PROG_TRY_JAVADOC
--snip--
Automake conditionals.
AM_CONDITIONAL([HAVE_JAVA], [test "x$flm_prog_have_jni" = xyes])
AM_CONDITIONAL([HAVE_CSHARP], [test -n "$CSC"])
--snip--

Listing 15-4: xflaim/configure.ac: The portion of this file that searches for Java and C# tools

These macros set the CSC, CSVM, JAVAC, JAVAH, JAVADOC, and JAR variables to
the location of their respective C# and Java tools and then substitute them
into the xflaim project’s Makefile.in templates using AC_SUBST. If any of these
variables are already set in the user’s environment when the configure script
is executed, their values are left untouched, thus allowing the user to over-
ride the values that would have been set by the macros.

I discuss the internal operation of these macros in Chapter 16.

Canonical System Information
The only non-obvious bit of information you need to know about using
macros from the GNU Autoconf Archive is that many of them rely on the
built-in Autoconf macro, AC_CANONICAL_HOST. Autoconf provides a way to
automatically expand any macros used internally by a macro definition
right before the definition so that required macros are made available
immediately. However, if AC_CANONICAL_HOST is not used before certain mac-
ros (including LT_INIT), autoreconf will generate about a dozen warning
messages.

To eliminate these warnings, I added AC_CANONICAL_TARGET to my xflaim-
level configure.ac file, immediately after the call to AC_INIT. The AC_CANONICAL
_SYSTEM macro, and the macros that it calls (AC_CANONICAL_BUILD, AC_CANONICAL_HOST,
and AC_CANONICAL_TARGET), are designed to ensure that the $build, $host, and
$target environment variables are defined by configure to contain appropri-
ate values describing the user’s build, host, and target systems, respectively.
Because I’m not doing any cross-compiling in this build system, I only
needed to invoke AC_CANONICAL_TARGET.

These variables contain canonical values for the build, host, and target
CPU, vendor, and operating system. Values like these are very useful to
extension macros. If a macro can assume these variables are set properly,
then it saves quite a bit of code duplication in the macro definition.

FLAIM Part II: Pushing the Envelope 413

The values of these variables are calculated using the helper scripts config
.guess and config.sub, which are distributed with Autoconf.9 The config.guess
script uses a combination of uname commands to ferret out information about
the build system, then uses that information to derive a set of canonical
values for CPU, vendor, and operating system. The config.sub script is used
to reformat build, host, and target information specified by the user on the
configure command line into a canonical value. The host and target values
default to that of the build, unless you override them with command line
options to configure. Such an override might be used when cross-compiling.
(See “Item 6: Cross-Compiling” on page 517 for a more detailed explana-
tion of cross-compiling within the Autotools framework.)

The xflaim/java Directory Structure
The original xflaim source layout had the Java JNI and C# native sources
located in directory structures outside of xflaim/src. The JNI sources were
in xflaim/java/jni, and the C# native sources were in xflaim/csharp/xflaim.
While Automake can generate rules for accessing files outside the current
directory hierarchy, it seems silly to put these files so far away from the only
library they can really belong to. Therefore, in this case, I broke my own
rule about not rearranging files and moved the contents of these two direc-
tories beneath xflaim/src. I named the JNI directory xflaim/src/java and the
C# native sources directory xflaim/src/cs. The following diagram illustrates
this new directory hierarchy:

flaim
 xflaim
 src
 cs
 wrapper
 java
 wrapper
 xflaim

As you can see, I also added a wrapper directory beneath the java direc-
tory, in which I rooted the xflaim wrapper package hierarchy. Since the
Java xflaim wrapper classes are part of the Java xflaim package, they must
be located in a directory called xflaim. Nevertheless, the build happens in
the wrapper directory. There are no build files found in the wrapper/xflaim
directory or any directories below that point.

9. Although these files are distributed with Autoconf, they are constantly being updated—
far more often than Autoconf releases occur. It’s worth adding the latest of these files to
your projects directly by downloading them from the GNU config project at http://savannah
.gnu.org/projects/config/. You can access them directly from the Savannah git repository at
http://git.savannah.gnu.org/cgit/config.git/tree/.

http://savannah.gnu.org/projects/config/
http://savannah.gnu.org/projects/config/
http://git.savannah.gnu.org/cgit/config.git/tree/

414 Chapter 15

N O T E No matter how deep your package hierarchy is, you will still build the Java classes in
the wrapper directory, which is the JAVAROOT directory for this project. Autotools Java
projects consider the JAVAROOT directory the build directory for the java package.

The xflaim/src/Makefile.am File
At this point, the configure.ac file is doing about all it can to ensure that I
have a good Java build environment, in which case my build system will
be able to generate my JNI wrapper classes and header files and build my
C++ JNI sources. If my end user’s system doesn’t provide these tools, they
simply won’t be able to build or link the JNI language bindings to the
xflaim library on that host.

Have a look at the xflaim/src/Makefile.am file shown in Listing 15-5 and
examine the portions that are relevant to building the Java and C# lan-
guage bindings.

if HAVE_JAVA
 JAVADIR = java
 JNI_LIBADD = java/libxfjni.la
endif

if HAVE_CSHARP
 CSDIR = cs
 CSI_LIBADD = cs/libxfcsi.la
endif

SUBDIRS = $(JAVADIR) $(CSDIR)
--snip--
libxflaim_la_LIBADD = $(JNI_LIBADD) $(CSI_LIBADD) $(FTK_LTLIB)
--snip--

Listing 15-5: xflaim/src/Makefile.am: The portion of this makefile that builds Java
and C# sources

I’ve already explained the use of the conditionals to ensure that the
java and cs directories are only built if the proper conditions are met. You
can now see how this fits into the build system I’ve created so far.

Notice that I’m conditionally defining two new library variables. If I
can build the Java language bindings, the java subdirectory will be built,
and the JNI_LIBADD variable will refer to the library that is built in the java
directory. If I can build the C# language bindings, the cs subdirectory will
be built, and the CSI_LIBADD variable will refer to the library that is built
in the cs directory. In either case, if the required tools are not found by
configure, the corresponding variable will remain undefined. When an
undefined make variable is referenced, it expands to nothing, so there’s
no harm in using it in libxflaim_la_LIBADD.

FLAIM Part II: Pushing the Envelope 415

Building the JNI C++ Sources
Now turn your attention to the xflaim/src/java/Makefile.am file shown in
Listing 15-6.

SUBDIRS = wrapper

XFLAIM_INCLUDE = -I$(srcdir)/..

noinst_LTLIBRARIES = libxfjni.la

libxfjni_la_SOURCES = \
 jbackup.cpp \
 jdatavector.cpp \
 jdb.cpp \
 jdbsystem.cpp \
 jdomnode.cpp \
 jistream.cpp \
 jniftk.cpp \
 jniftk.h \
 jnirestore.cpp \
 jnirestore.h \
 jnistatus.cpp \
 jnistatus.h \
 jostream.cpp \
 jquery.cpp

libxfjni_la_CPPFLAGS = $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

Listing 15-6: xflaim/src/java/Makefile.am: This makefile builds the JNI sources.

Again, I want the wrapper directory to be built first (the dot at the end
of the SUBDIRS list is implied), before the xflaim library, because the wrapper
directory will build the class files and JNI header files required by the JNI
convenience library sources. Building this directory is not conditional. If
I’ve made it this far into the build hierarchy, I know I have all the Java tools
I need. This Makefile.am file simply builds a convenience library containing
my JNI C++ interface functions.

Because of the way Libtool builds both shared and static libraries
from the same sources, this convenience library will become part of both
the xflaim shared and static libraries. The original build system makefile
accounted for this by linking the JNI and C# native interface objects only
into the shared library (where they make sense).

N O T E The fact that these libraries are added to both the shared and static xflaim libraries
is not really a problem. Objects in a static library remain unused in applications or
libraries linking to the static library, as long as functions and data in those objects
remain unreferenced, though this is a bit of a wart on my new build system.

416 Chapter 15

The Java Wrapper Classes and JNI Headers
Finally, xflaim/src/java/wrapper/Makefile.am takes us to the heart of the mat-
ter. I’ve tried many different configurations for building Java JNI wrappers,
and this one always comes out on top. Listing 15-7 shows the wrapper direc-
tory’s Automake input file.

JAVAROOT = .

u jarfile = $(PACKAGE)jni-$(VERSION).jar
v jardir = $(datadir)/java

pkgpath = xflaim
jhdrout = ..

$(jarfile): $(dist_noinst_JAVA)
 $(JAR) cvf $(JARFLAGS) $@ $(pkgpath)/*.class

 jar_DATA = $(jarfile)

java-headers.stamp: $(classdist_noinst.stamp)
 @list=`echo $(dist_noinst_JAVA) | sed -e 's|\.java||g' -e 's|/|.|g'`;\
 echo "$(JAVAH) -cp . -jni -d $(jhdrout) $(JAVAHFLAGS) $$list"; \
 $(JAVAH) -cp . -jni -d $(jhdrout) $(JAVAHFLAGS) $$list

 @echo "JNI headers generated" > java-headers.stamp

 all-local: java-headers.stamp

 CLEANFILES = $(jarfile) $(pkgpath)/*.class java-headers.stamp\
 $(jhdrout)/xflaim_*.h

dist_noinst_JAVA = \
 $(pkgpath)/BackupClient.java \
 $(pkgpath)/Backup.java \
 --snip--
 $(pkgpath)/XFlaimException.java \
 $(pkgpath)/XPathAxis.java

Listing 15-7: xflaim/src/java/wrapper/Makefile.am: The wrapper directory’s
Makefile.am file

At the top of the file, I’ve set the JAVAROOT variable to dot (.), because
I want Automake to be able to tell the Java compiler that this is where the
package hierarchy begins. The default value for JAVAROOT is $(top_builddir),
which would incorrectly have the wrapper class belong to the xflaim.src.java
.wrapper.xflaim package.

I create a variable at u called jarfile, which derives its value from $(PACKAGE
_TARNAME) and $(PACKAGE_VERSION). (Recall from Chapter 3 that this is also how
the distdir variable is derived, from which the name of the tarball comes.)
A make rule indicates how the .jar file should be built. Here, I’m using the
JAR variable, whose value was calculated by the FLM_PROG_TRY_JNI macro in
the configure script.

I define a new installation variable at v called jardir where .jar files
are to be installed, and I use that variable as the prefix for a DATA primary

FLAIM Part II: Pushing the Envelope 417

at . Automake considers files that fit the Automake where_HOW scheme
(with a defined wheredir) as either architecture-independent data files or
platform-specific executables. Installation location variables (those ending
in dir) that begin with bin, sbin, libexec, sysconf, localstate, lib, or pkglib or
that contain the string “exec” are considered platform-specific executables
and are installed during execution of the install-exec target. Automake
considers files installed in any other locations data files. These are installed
during execution of the install-data target. The well-known installation
locations such as bindir, sbindir, and so on are already taken, but if you want
to install custom architecture-dependent executable files, just ensure that
your custom installation location variable contains the string “exec,” as in
myspecialexecdir.

I use another stamp file at in the rule that builds the JNI header files
from the .class files for the same reasons that Automake uses a stamp file in
the rule that it uses to build .class files from .java source files.

This is the most complex part of this makefile, so I’ll break it into
smaller pieces.

The rule states that the stamp file depends on the source files listed in
the dist_noinst_JAVA variable. The command is a bit of complex shell script
that strips the .java extensions from the file list and converts all the slash
characters into periods. The reason for this is that the javah utility wants
a list of class names, not a list of filenames. The $(JAVAH) command then
accepts this entire list as input in order to generate a corresponding list of
JNI header files. The last line, of course, generates the stamp file.

Finally at , I hook my java-headers.stamp target into the all target by
adding it as a dependency to the all-local target. When the all target (the
default for all Automake-generated makefiles) is executed in this makefile,
java-headers.stamp will be built, along with the JNI headers.

N O T E It’s a good idea to add custom rule targets as dependencies to the Automake-provided
hook and local targets, rather than directly associating commands with these hook
and local targets. By doing this, the commands for individual tasks on those targets
remain isolated and thus easier to maintain.

I add the .jar file, all of the .class files, the java-headers.stamp file, and
all of the generated JNI header files to the CLEANFILES variable at so that
Automake will clean them up when make clean is executed. Again, I can use
the CLEANFILES variable here because I’m not trying to delete any directories.

The final step in writing any such custom code is to ensure that the
distcheck target still works, because when we generate our own products, we
have to ensure that the clean target properly removes them all.

Finally, I should mention that the rule to build the .jar file, near the top
of Listing 15-7, relies on a wildcard to pick up all the .class files in the xflaim
directory. The Autotools purposely avoid such wildcards for many reasons,
including the very valid reason that you may inadvertently pick up files that
were built by a previous build that are no longer relevant to your project
after changes eliminate those sources from the project. For Java, the only
way to specify the exact .class files that should go into the .jar file is to parse

418 Chapter 15

all the .java files and derive a list of .class files that would be built from those
sources. I made a judgment call here and decided that using a wildcard was
worth the possible problems doing so may cause. I also used wildcards in
the CLEANFILES variable near the bottom of Listing 15-7. Of course, the same
potential problems exist here—you could remove a file that is present but
no longer associated with the build.

A Caveat About Using the JAVA Primary
The one important caveat to using the JAVA primary is that you may define
only one JAVA primary variable per Makefile.am file. The reason for this
is that multiple classes may be generated from a single .java file, and the
only way to know which classes came from which .java file would be for
Automake to parse the .java files (which is ridiculous, and arguably the
primary reason why build tools like Apache Ant and Maven were developed).
Rather than do this, Automake allows only one JAVA primary per file, so all
.class files generated within a given build directory are installed in the loca-
tion specified by the single JAVA primary variable prefix.10

N O T E The system I’ve designed will work fine for this case, but it’s a good thing I don’t need
to install my JNI header files, because I have no way of knowing what they’re called
from within my Makefile.am file!

You should by now be able to see the problems that the Autotools have
with Java. In fact, these problems are not so much related to the design
issues in the Autotools as they are to design issues within the Java language
itself, as you’ll see in the next section.

Building the C# Sources
Returning to the xflaim/src/cs directory brings us to a discussion of building
sources for a language for which Automake has no support: C#. Listing 15-8
shows the Makefile.am file that I wrote for the cs directory.

SUBDIRS = wrapper

XFLAIM_INCLUDE = -I$(srcdir)/..

noinst_LTLIBRARIES = libxfcsi.la

libxfcsi_la_SOURCES = \
 Backup.cpp \

10. It seems that I’ve broken this rule by assuming in my java-headers.stamp rule that the
source for class information is the list of files specified in the dist_noinst_JAVA variable. In
reality, I should probably be looking in the current build directory for all .class files found
after the rules for the JAVA primary are executed. However, this goes against the general
Autotools philosophy of only building or using prespecified sources for a build step. Since
I’ve already broken this rule a couple of times, we’ll live with what we have for the present.

FLAIM Part II: Pushing the Envelope 419

 DataVector.cpp \
 Db.cpp \
 DbInfo.cpp \
 DbSystem.cpp \
 DbSystemStats.cpp \
 DOMNode.cpp \
 IStream.cpp \
 OStream.cpp \
 Query.cpp

libxfcsi_la_CPPFLAGS = $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

Listing 15-8: xflaim/src/cs/Makefile.am: The contents of the cs directory’s Automake input
file

Not surprisingly, this looks almost identical to the Makefile.am file found
in the xflaim/src/java directory because I’m building a simple convenience
library from C++ source files found in this directory, just as I did in the java
directory. As in the Java version, this makefile first builds a subdirectory
called wrapper.

Listing 15-9 shows the full contents of the wrapper/Makefile.am file.

EXTRA_DIST = xflaim cstest sample xflaim.ndoc

xfcs_sources = \
 xflaim/BackupClient.cs \
 xflaim/Backup.cs \
 --snip--
 xflaim/RestoreClient.cs \
 xflaim/RestoreStatus.cs

cstest_sources = \
 cstest/BackupDbTest.cs \
 cstest/CacheTests.cs \
 --snip--
 cstest/StreamTests.cs \
 cstest/VectorTests.cs

TESTS = cstest_script

AM_CSCFLAGS = -d:mono -nologo -warn:4 -warnaserror+ -optimize+
#AM_CSCFLAGS += -debug+ -debug:full -define:FLM_DEBUG

u all-local: xflaim_csharp.dll

clean-local:
 rm -f xflaim_csharp.dll xflaim_csharp.xml cstest_script\
 cstest.exe libxflaim.so
 rm -f Output_Stream
 rm -rf abc backup test.*

install-exec-local:
 test -z "$(libdir)" || $(MKDIR_P) "$(DESTDIR)$(libdir)"
 $(INSTALL_PROGRAM) xflaim_csharp.dll "$(DESTDIR)$(libdir)"

420 Chapter 15

install-data-local:
 test -z "$(docdir)" || $(MKDIR_P) "$(DESTDIR)$(docdir)"
 $(INSTALL_DATA) xflaim_csharp.xml "$(DESTDIR)$(docdir)"

uninstall-local:
 rm -f "$(DESTDIR)$(libdir)/xflaim_csharp.dll"
 rm -f "$(DESTDIR)$(docdir)/xflaim_csharp.xml"

v xflaim_csharp.dll: $(xfcs_sources)
 @list1='$(xfcs_sources)'; list2=; if test -n "$$list1"; then \
 for p in $$list1; do \
 if test -f $$p; then d=; else d="$(srcdir)/"; fi; \
 list2="$$list2 $$d$$p"; \
 done; \
 echo '$(CSC) -target:library $(AM_CSCFLAGS) $(CSCFLAGS) -out:$@\
 -doc:$(@:.dll=.xml) '"$$list2";\
 $(CSC) -target:library $(AM_CSCFLAGS) $(CSCFLAGS) \
 -out:$@ -doc:$(@:.dll=.xml) $$list2; \
 else :; fi

check_SCRIPTS = cstest.exe cstest_script

 cstest.exe: xflaim_csharp.dll $(cstest_sources)
 @list1='$(cstest_sources)'; list2=; if test -n "$$list1"; then \
 for p in $$list1; do \
 if test -f $$p; then d=; else d="$(srcdir)/"; fi; \
 list2="$$list2 $$d$$p"; \
 done; \
 echo '$(CSC) $(AM_CSCFLAGS) $(CSCFLAGS) -out:$@ '"$$list2"'\
 -reference:xflaim_csharp.dll'; \
 $(CSC) $(AM_CSCFLAGS) $(CSCFLAGS) -out:$@ $$list2 \
 -reference:xflaim_csharp.dll; \
 else :; fi

 cstest_script: cstest.exe
 echo "#!/bin/sh" > cstest_script
 echo "$(top_builddir)/libtool --mode=execute \

 -dlopen=../../libxflaim.la $(CSVM) cstest.exe" >> cstest_script
 chmod 0755 cstest_script

Listing 15-9: xflaim/src/cs/wrapper/Makefile.am: The full contents of the C# makefile

The default target for Makefile.am is all, the same as that of a normal
non-Automake makefile. Again, I’ve hooked my code into the all target
by implementing the all-local target, which depends on a file named
xflaim_csharp.dll.11

11. This executable filename may be a bit confusing to those who are new to C#. In essence,
Microsoft, the creator of C#, designed the C# virtual machine to execute Microsoft native
(or almost native) binaries. In porting the C# virtual machine to Unix, the Mono team (the
Linux C# compiler project) decided against breaking Microsoft’s naming conventions so
that Microsoft-generated portable C# programs could be executed by the Mono C# virtual
machine implementation. Nevertheless, C# still suffers from problems that need to be man-
aged occasionally by name-mapping configuration files.

FLAIM Part II: Pushing the Envelope 421

The C# sources are built by the commands under the xflaim_csharp.dll
target at v, and the xflaim_csharp.dll binary depends on the list of C# source
files specified in the xfcs_sources variable. The commands in this rule are
copied from the Automake-generated java/wrapper/Makefile and are slightly
modified to build C# binaries from C# source files (as highlighted in the
listing). This isn’t intended to be a lesson in building C# sources; the point
here is that the default target is automatically built by creating a depen-
dency between the all-local target and your own targets at u.

This Makefile.am file also builds a set of unit tests in C# that assess the
C# language bindings. The target of this rule is cstest.exe (), which ulti-
mately becomes a C# executable. The rule states that cstest.exe depends on
xflaim_csharp.dll and the source files. I’ve again copied the commands from
the rule for building xflaim_csharp.dll (as highlighted) and modified them
for building the C# programs.

Ultimately, upon building the check target, the Automake-generated
makefile will attempt to execute the scripts or executables listed in the TESTS
variable. The idea here is to ensure that all necessary components are built
before these files are executed. I’ve tied into the check target by defining
check-local and making it depend on my test code targets.

The cstest_script at is a shell script built solely to execute the cstest.exe
binary within the C# virtual machine. The C# virtual machine is found in
the CSVM variable, which was defined in configure by the code generated by the
FLM_PROG_TRY_CSVM macro.

The cstest_script depends only on the cstest.exe program. However,
the xflaim library either must be present in the current directory or must
be in the system library search path. We gain maximum portability here by
using Libtool’s execute mode to add the xflaim library to the system library
search path before executing the C# virtual machine at .

Manual Installation
Since in this example I’m doing everything myself, I have to write my own
installation rules. Listing 15-10 reproduces only the installation rules in the
Makefile.am file from Listing 15-9.

--snip--
install-exec-local:
 test -z "$(libdir)" || $(MKDIR_P) "$(DESTDIR)$(libdir)"
 $(INSTALL_PROGRAM) xflaim_csharp.dll "$(DESTDIR)$(libdir)"

install-data-local:
 test -z "$(docdir)" || $(MKDIR_P) "$(DESTDIR)$(docdir)"
 $(INSTALL_DATA) xflaim_csharp.xml "$(DESTDIR)$(docdir)"

uninstall-local:
 rm -f "$(DESTDIR)$(libdir)/xflaim_csharp.dll"
 rm -f "$(DESTDIR)$(docdir)/xflaim_csharp.xml"
--snip--

Listing 15-10: xflaim/src/cs/wrapper/Makefile.am: The installation rules of this makefile

422 Chapter 15

According to the rules defined in the GNU Coding Standards, the instal-
lation targets do not depend on the binaries they install, so if the binaries
haven’t been built yet, I may have to exit from root to my user account to
build the binaries with make all first.

Automake distinguishes between installing programs and installing
data. However, there’s only one uninstall target. The rationale seems to
be that you might want to do an install-exec operation per system in your
network, but only one shared install-data operation. Uninstalling a product
requires no such separation, because uninstalling data multiple times is
typically harmless.

Cleaning Up Again
As usual, things must be cleaned up properly in order to make distribu-
tion checks happy. The clean-local target handles this nicely, as shown in
Listing 15-11.

--snip--
clean-local:
 rm -f xflaim_csharp.dll xflaim_csharp.xml cstest_script \
 cstest.exe libxflaim.so
 rm -f Output_Stream
 rm -rf abc backup test.*
--snip--

Listing 15-11: xflaim/src/cs/wrapper/Makefile.am: The clean rules defined in this makefile

Configuring Compiler Options
The original GNU Make build system provided a number of command line
build options. By specifying a list of auxiliary targets on the make command
line, the user could indicate that they wanted a debug or release build,
force a 32-bit build on a 64-bit system, generate generic SPARC code on a
Solaris system, and so on. This was a turnkey approach to build systems that
is quite common in commercial code.

In open source projects, and particularly in Autotools-based build sys-
tems, the more common practice is to omit much of this rigid framework,
allowing the user to set their own options in the standard user variables: CC,
CPP, CXX, CFLAGS, CXXFLAGS, CPPFLAGS, and so on.12

12. The strange thing is that commercial software is developed by industry experts, whereas
open source software is often built and consumed by hobbyists. And yet the experts are the
ones using the menu-driven rigid-options framework, while the hobbyists have the flexibility
to manually configure their compiler options the way they want. I suppose the most reason-
able explanation for this is that commercial software relies on carefully crafted builds that
must be able to be duplicated—usually by people who didn’t write the original build system.
Open source hobbyists would rather not give up the flexibility afforded by a more policy-
driven approach.

FLAIM Part II: Pushing the Envelope 423

Probably the most compelling argument for the Autotools approach
to option management is that it’s policy driven and the rigid frameworks
used by commercial software vendors can easily be implemented in terms
of the much more flexible policy-driven Autotools framework. For example,
a config.site file might be used to provide site-wide options for all Autotools-
based builds done at a particular site. A simple script can be used to con-
figure various environment-based options before calling configure, or these
options may even be passed to configure or make directly within such a script.
The Autotools policy-driven approach offers the flexibility to be as configu-
rable as a developer might want or as tight as required by management.

Ultimately, we’d like to have FLAIM project options conform to
the Autotools policy-driven approach; however, I didn’t want to lose the
research effort involved in determining the hardcoded native compiler
options specified in the original makefile. To this end, I’ve added back in
some of the options to the configure.ac file that were supported by the origi-
nal build system, but I’ve left others out. Listing 15-12 shows the end result
of these efforts. This code enables various native compiler options, optimi-
zations, and debugging features on demand, based on the contents of some
of the user variables.

--snip--
Configure supported platforms' compiler and linker flags

u case $host in
 sparc-*-solaris*)
 LDFLAGS="$LDFLAGS -R /usr/lib/lwp"
 case $CXX in
 g++) ;;
 *)
 if "x$debug" = xno; then
 CXXFLAGS="$CXXFLAGS -xO3"
 fi
 SUN_STUDIO=`$CXX -V | grep "Sun C++"`
 if "x$SUN_STUDIO" = "xSun C++"; then
 CXXFLAGS="$CXXFLAGS -errwarn=%all -errtags\
 -erroff=hidef,inllargeuse,doubunder"
 fi ;;
 esac ;;

 -apple-darwin)
 AC_DEFINE([OSX], [1], [Define if building on Apple OSX.]) ;;

 --aix*)
 case $CXX in
 g++) ;;
 *) CXXFLAGS="$CXXFLAGS -qstrict" ;;
 esac ;;

 --hpux*)
 case $CXX in
 g++) ;;
 *)
 # Disable "Placement operator delete

424 Chapter 15

 # invocation is not yet implemented" warning
 CXXFLAGS="$CXXFLAGS +W930" ;;
 esac ;;
esac
--snip--

Listing 15-12: xflaim/configure.ac: The portion of this file that enables compiler-
specific options

Remember that this code depends on the earlier use of the AC_CANONICAL
_SYSTEM (or AC_CANONICAL_TARGET) macro, which sets build, host, and target envi-
ronment variables to canonical string values that indicate CPU, vendor, and
operating system.

In Listing 15-12, I used the host variable in the case statement at u to
determine the type of system for which I was building. This case statement
determines if the user is building on Solaris, Apple Darwin, AIX, or HP-UX
by looking for substrings in host that are common to all variations of these
platforms. The config.guess and config.sub files are your friends here. If you
need to write code like this for your project, examine these files to find
common traits for the processes and systems for which you’d like to set vari-
ous compiler and linker options.

N O T E In each of these cases (except for the definition of the OSX preprocessor variable on
Apple Darwin systems), I’m really only setting flags for native compilers. The GNU
compiler tools seem to be able to handle any code without the need for additional com-
piler options. It’s worth reiterating here that the Autotools feature-present approach
to setting options once again wins. Maintenance is reduced dramatically when you
don’t have to support large case statements for an ever-growing list of supported
hosts and tool sets.

Hooking Doxygen into the Build Process
I want to generate documentation as part of my build process, if possible.
That is, if the user has doxygen installed, the build system will use it to build
Doxygen documentation as part of the make all process.

The original build system has both static and generated documenta-
tion. The static documentation should always be installed, but the Doxygen
documentation can only be built if the doxygen program is available on the
host. Thus, I always build the docs directory, but I use the AM_CONDITIONAL
macro to conditionally build the docs/doxygen directory.

Doxygen uses a configuration file (often called doxyfile) to configure
literally hundreds of Doxygen options. This configuration file contains
some information that is known to the configuration script. This sounds
like the perfect opportunity to use an Autoconf-generated file. To this end,
I’ve written an Autoconf template file called doxyfile.in that contains most of
what a normal Doxygen input file would contain, as well as a few Autoconf

FLAIM Part II: Pushing the Envelope 425

substitution variable references. The relevant lines in this file are shown in
Listing 15-13.

--snip--
PROJECT_NAME = @PACKAGE_NAME@
--snip--
PROJECT_NUMBER = @PACKAGE_VERSION@
--snip--
STRIP_FROM_PATH = @top_srcdir@
--snip--
INPUT = @top_srcdir@/src/xflaim.h
--snip--

Listing 15-13: xflaim/docs/doxygen/doxyfile.in: The lines in this file that contain
Autoconf variables

There are many other lines in this file, but they are all identical to
the output file, so I’ve omitted them for the sake of space and clarity. The
key here is that config.status will replace these substitution variables with
their values as defined in configure.ac and by Autoconf itself. If these values
change in configure.ac, the generated file will be rewritten with the new val-
ues. I’ve added a conditional reference for xflaim/docs/doxygen/doxyfile to the
AC_CONFIG_FILES list in xflaim’s configure.ac file. That’s all it takes.

Listing 15-14 shows the xflaim/docs/doxygen/Makefile.am file.

u docpkg = $(PACKAGE_TARNAME)-doxy-$(PACKAGE_VERSION).tar.gz

v doc_DATA = $(docpkg)

 $(docpkg): doxygen.stamp
 tar chof - html | gzip -9 -c >$@

doxygen.stamp: doxyfile
 $(DOXYGEN) $(DOXYFLAGS) $<
 echo Timestamp > $@

 install-data-hook:
 cd $(DESTDIR)$(docdir) && tar xf $(docpkg)

uninstall-data-hook:
 cd $(DESTDIR)$(docdir) && rm -rf html

 CLEANFILES = doxywarn.txt doxygen.stamp $(docpkg)

clean-local:
 rm -rf html

Listing 15-14: xflaim/docs/doxygen/Makefile.am: The full contents of this makefile

Here, I create a package name at u for the tarball that will contain the
Doxygen documentation files. This is basically the same as the distribution
tarball for the xflaim project, except that it contains the text -doxy after the
package name.

426 Chapter 15

I define a doc_DATA variable at v that contains the name of the Doxygen
tarball. This file will be installed in the $(docdir) directory, which by default
is $(datarootdir)/doc/$(PACKAGE_TARNAME), and $(datarootdir) is configured by
Automake as $(prefix)/share, by default.

N O T E The DATA primary brings with it significant Automake functionality—installation
is managed automatically. While I must build the Doxygen documentation package,
the DATA primary automatically hooks the all target for me so that my package is built
when the user executes make or make all.

I use another stamp file at because Doxygen generates literally hun-
dreds of .html files from the source files in my project. Rather than attempt
to figure out a rational way to assign dependencies, I’ve chosen to generate
one stamp file and then use that to determine whether the documentation
is out-of-date.13

I also decided that it would be nice to unpack the documentation
archive into the package doc directory. Left up to Automake, the tarball
would make it into the proper directory at installation time, but that’s as
far as it would go. I needed to be able to hook the installation process to
do this, and this is the perfect use for an Automake -hook target. I use the
install-data-hook target at because the -hook targets allow you to perform
extra user-defined shell commands after the operation that’s being hooked
has completed. Likewise, I use uninstall-hook to remove the html directory
created when the .tar file was extracted during installation. (There is no dis-
tinction between uninstalling platform-specific and platform-independent
files, so there is only one hook for uninstalling files.)

To clean my generated files, I use a combination of the CLEANFILES vari-
able at and a clean-local rule just to demonstrate that it can be done.

Adding Nonstandard Targets
Adding a new nonstandard target is a little different than hooking an exist-
ing target. In the first place, you don’t need to use AM_CONDITIONAL and other
Autoconf tests to see if you have the tools you need. Instead, you can do all
conditional testing from the Makefile.am file because you control the entire
command set associated with the target, although this isn’t recommended
practice. (It’s always preferable to ensure that the build environment is con-
figured correctly from the configure script.) In cases where make targets can
only be expected to work under certain conditions, or on certain platforms,
it’s a good idea to provide checks within the target to ensure that the opera-
tion requested can actually be performed.

13. In fact, the only source file in this project that currently contains Doxygen markup is
the xflaim.h header file, but that could easily change, and it certainly won’t hold true for all
projects. Additionally, Doxygen generates hundreds of .html files, and this entire set of files
represents the target of a rule to build the documentation. The stamp file stands in for these
files as the target of the rule.

FLAIM Part II: Pushing the Envelope 427

To start with, I create a directory within each project root directory called
obs to contain the Makefile.am file for building RPM package files. (OBS is an
acronym for openSUSE Build Service, an online package-building service.)14

Building RPM package files is done using a configuration file, called a
spec file, which is very much like the doxyfile used to configure Doxygen for
a specific project. As with the doxyfile, the RPM spec file references informa-
tion that configure knows about the package. So, I wrote an xflaim.spec.in
file, adding substitution variables where appropriate, and then added
another file reference to the AC_CONFIG_FILES macro. This allows configure
to substitute information about the project into the spec file. Listing 15-15
shows the relevant portion of the xflaim.spec.in file in bold.

Name: @PACKAGE_TARNAME@
BuildRequires: gcc-c++ libstdc++-devel flaimtk-devel gcc-java gjdoc fastjar
mono-core doxygen
Requires: libstdc++ flaimtk mono-core java >= 1.4.2
Summary: XFLAIM is an XML database library.
URL: http://sourceforge.net/projects/flaim/
Version: @PACKAGE_VERSION@
Release: 1
License: GPL
Vendor: Novell, Inc.
Group: Development/Libraries/C and C++
Source: %{name}-%{version}.tar.gz
BuildRoot: %{_tmppath}/%{name}-%{version}-build
--snip--

Listing 15-15: x flaim/obs/xflaim.spec.in: The portion of this file that illustrates using
Autoconf variables

Notice the use of the variables @PACKAGE_TARNAME@ and @PACKAGE_VERSION@
in this listing. Although the tar name is not likely to change much over the
life of this project, the version will change often. Without the Autoconf sub-
stitution mechanism, I’d have to remember to update this version number
whenever I updated the version in the configure.ac file. Listing 15-16 shows the
xflaim/obs/Makefile.am file, which actually does the work of building the RPMs.

rpmspec = $(PACKAGE_TARNAME).spec

rpmmacros =\
 --define="_rpmdir $${PWD}"\
 --define="_srcrpmdir $${PWD}"\
 --define="_sourcedir $${PWD}/.."\
 --define="_specdir $${PWD}"\
 --define="_builddir $${PWD}"

14. See http://build.opensuse.org/. This is a service that I fell in love with almost as soon as it
came out. I’ve had some experience building distro packages, and I can tell you, it’s far less
painful with the OBS than it is using more traditional techniques. Furthermore, packages
built with the OBS can be published automatically on the OBS website (http://software
.opensuse.org/search/) for public consumption immediately after they’re built.

https://build.opensuse.org
https://software.opensuse.org/search/
https://software.opensuse.org/search/

428 Chapter 15

RPMBUILD = rpmbuild
RPMFLAGS = --nodeps --buildroot="$${PWD}/_rpm"

u rpmcheck:
 if ! ($(RPMBUILD) --version) >/dev/null 2>&1; then \
 echo "*** This make target requires an rpm-based Linux
distribution."; \
 (exit 1); exit 1; \
 fi

srcrpm: rpmcheck $(rpmspec)
 $(RPMBUILD) $(RPMFLAGS) -bs $(rpmmacros) $(rpmspec)

rpms: rpmcheck $(rpmspec)
 $(RPMBUILD) $(RPMFLAGS) -ba $(rpmmacros) $(rpmspec)

.PHONY: rpmcheck srcrpm rpms

Listing 15-16: xflaim/obs/Makefile.am: The complete contents of this makefile

Building RPM packages is rather simple, as you can see. The targets pro-
vided by this makefile include srcrpm and rpms. The rpmcheck target at u is used
internally to verify that RPMs can be built in the end user’s environment.

In order to find out which targets in a lower-level Makefile.am file are
supported by a top-level build, look at the top-level Makefile.am file. As
Listing 15-17 shows, if the target is not passed down, that target must be
intended for internal use only, within the lower-level directory.

--snip--
RPM = rpm

rpms srcrpm: dist
 u (cd obs && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1

 rpmarch=`$(RPM) --showrc | grep "^build arch" | \
 sed 's/\(.*: \)\(.*\)/\2/'`; \
 test -z "obs/$$rpmarch" || \
 (mv obs/$$rpmarch/* . && rm -rf /obs/$$rpmarch)
 rm -rf obs/$(distdir)
--snip--
.PHONY: srcrpm rpms

Listing 15-17: xflaim/Makefile.am: If the target is not passed down, it’s an internal target.

As you can see from the command at u in Listing 15-17, when a user
targets rpms or srcrpm from the top-level build directory, the commands are
recursively passed down to obs/Makefile. The remaining commands simply
remove droppings left behind by the RPM build process that are simpler to
remove at this level. (Try building an RPM package sometime, and you’ll
see what I mean!)

Notice, too, that both of these top-level makefile targets depend on the
dist target because the RPM build process requires the distribution tarball.
Adding the tarball as a dependency of the rpms target simply ensures that
the distribution tarball is there when the rpmbuild utility needs it.

FLAIM Part II: Pushing the Envelope 429

Summary
While using the Autotools, you have many details to manage—most of
which, as they say in the open source software world, can wait for the next
release! Even as I committed this code to the FLAIM project repository, I
noticed details that could be improved. The takeaway lesson here is that a
build system is never really finished. It should be incrementally improved
over time, as you find time in your schedule to work on it. And it can be
rewarding to do so.

I’ve shown you a number of new features that have not been covered in
earlier chapters, and there are many more features that I cannot begin to
cover in this book. Study the Autotools manuals to become truly proficient.
At this point, it should be pretty simple for you to pick up that additional
information yourself.

By the time you’ve sorted out a complicated idea
into little steps that even a stupid machine can deal with,

you’ve learned something about it yourself.
—Douglas Adams, Dirk Gently’s Holistic Detective Agency

16
U S I N G T H E M 4 M A C R O

P R O C E S S O R W I T H A U T O C O N F

The M4 macro processor is simple to use,
yet hard to comprehend. The simplicity

comes from the fact that it does just one
thing very well. I’ll wager that you or I could

write the base functionality of M4 in a C program in
just a few hours. At the same time, two aspects of M4
make it rather difficult to understand immediately.

First, the exceptions introduced by special cases that M4 deals with when it
processes input text make it hard to grasp all of its rules immediately, though
this complexity is easily mastered with time, patience, and practice. Second,
the stack-based, pre-order recursive nature of M4’s text-processing model is
difficult for the human mind to comprehend. Humans tend to process infor-
mation breadth first, comprehending complete levels of a problem or data
set, one level at a time, whereas M4 processes text in a depth-first fashion.

This chapter covers what I consider the bare minimum you need to
know to write Autoconf input files. I can’t do justice to M4 in a single chap-
ter of this book, so I’ll cover just the highlights. For more detail, read the

432 Chapter 16

GNU M4 Manual.1 If you’ve already had some experience with M4, try the
examples in that manual and then try solving a few text problems of your
own using M4. A small amount of such experimentation will vastly improve
your understanding of M4.

M4 Text Processing
Like many other classic Unix tools, M4 is written as a standard input/output
(stdio) filter. That is, it accepts input from standard input (stdin), processes
it, and then sends it to standard output (stdout). Input text is read in as a
stream of bytes and converted to tokens before processing. Tokens consist of
comments, names, quoted strings, and single characters that are not part
of a comment, name, or quoted string.

The default quote characters are the backtick (`) and the single quote (').2
Use the backtick to start a quoted string and the single quote character to
terminate one:

`A quoted string'

M4 comments are similar to quoted strings in that each one is processed
as a single token. Each comment is delimited by a hash mark (#) and a new-
line (\n) character. Thus, all text following an unquoted hash mark, up to and
including the next newline character, is considered part of a comment.

Comments are not stripped from the output as they are in other com-
puter language preprocessors, such as the C-language preprocessor. Rather,
they are simply passed through without further processing.

The following example contains five tokens: a name token, a space
character token, another name token, a second space character token, and
finally, a single comment token:

Two names # followed by a comment

A name is any sequence of letters, digits, and underscore characters that
does not begin with a digit. Thus, the first line of the following example
contains two digit character tokens, followed by a name token, whereas the
second line contains only a single name token:

88North20th_street
_88North20th_street

1. See the Free Software Foundation’s GNU M4 - GNU Macro Processor at https://www.gnu.org
/software/m4/manual/.

2. Why? Seems rather strange to use such different characters for quotes, but the fact is M4
requires two separate and distinct characters for the open and close quotes in order to per-
form correctly. When M4 was first written, these two characters looked rather symmetrical
with respect to each other; the modern fonts we use today tend to make the choice look silly.

https://www.gnu.org/software/m4/manual/
https://www.gnu.org/software/m4/manual/

Using the M4 Macro Processor with Autoconf 433

Note that whitespace characters (horizontal and vertical tabs, form
feeds, carriage returns, spaces, and newlines) are specifically not part of
a name, so whitespace characters may (and often do) act as name or other
token delimiters. However, such whitespace delimiters are not discarded
by M4, as they often are by a computer language compiler’s parser. They’re
simply passed through from the input stream directly to the output stream
without further modification.

Defining Macros
M4 provides a variety of built-in macros, many of which are critical to the
proper use of this tool. For instance, it would be very difficult to get any
useful functionality out of M4 if it didn’t provide a way of defining macros.
M4’s macro-definition macro is called define.

The define macro is simple to describe:

define(macro[, expansion])

The define macro expects at least one parameter, even if it’s empty. If
you supply only one parameter, then instances of the macro name that are
found in the input text are simply deleted from the output text:

$ m4
define(`macro')

Hello macro world!
u Hello world!

<ctrl-d>$

Note in the output text at u that there are two spaces between Hello
and world! All tokens except names that map to defined macros are passed
from the input stream to the output stream without modification, with one
exception: whenever any quoted text outside of comments is read from the
input stream, one level of quotes is removed.

Another subtle aspect of the define macro is that its expansion is the
empty string. Thus, the output of the preceding definition is simply the
trailing carriage return after the definition in the input string.

Names, of course, are candidates for macro expansion. If a name token
is found in the symbol table, it is replaced with the macro expansion, as
shown in the following example:

$ m4
u define(`macro', `expansion')
v

macro ``quoted' macro text'
w expansion `quoted' macro text

<ctrl-d>$

The second output line at w shows us that the first token (the name
macro) is expanded and the outer level of quotes around ``quoted' macro

434 Chapter 16

text' are removed by M4. The blank line at v following the macro defini-
tion comes from the newline character I entered into the input stream
when I pressed the enter key after the macro definition at u. Since this
newline character is not part of the macro definition, M4 simply passes it
through to the output stream. This can be a problem when defining mac-
ros in input text because you could end up with a slew of blank lines in the
output text, one for each macro defined in the input text. Fortunately, there
are ways around this problem. For example, I could simply not enter that
newline character, as shown here:

$ m4
define(`macro', `expansion')macro
expansion
<ctrl-d>$

That solves the problem, but it doesn’t take a genius to see that this can
lead to some readability issues. If you have to define your macros in this
manner so that they don’t affect your output text, you’ll have a few run-on
sentences in your input text!

As a solution for this problem, M4 provides another built-in macro
called dnl,3 which causes all input text up to and including the next newline
character to be discarded. It’s common to find dnl used in configure.ac, but it’s
even more common to find it used in .m4 macro definition files consumed by
Autoconf while processing configure.ac files.

Here’s an example of the proper use of dnl:

$ m4
define(`macro', `expansion')dnl
macro
expansion
<ctrl-d>$

There are a few dozen built-in M4 macros, all of which provide func-
tionality that can’t be obtained in any other way within M4. Some redefine
fundamental behavior in M4.

For example, the changequote macro is used to change the default quote
characters from backtick and single quote to whatever you want. Autoconf
uses a line like this near the top of the input stream to change the M4
quotes to the left and right square bracket characters, like so:

changequote(`[',`]')dnl

Why would the Autoconf designers do this? Well, it’s quite common
in shell code to find unbalanced pairs of single quote characters. In shell
code, both backtick and single quote are common in expressions that use
the same character to both start and end an expression. This is confusing
to M4, which requires open and close quote characters to be distinct from

3. The dnl macro name is actually an acronym that stands for “discard to next line.”

Using the M4 Macro Processor with Autoconf 435

each other in order to properly process its input stream. You’ll recall from
Chapter 4 that the input text to Autoconf is shell script, which means that
there’s a good chance Autoconf will run into an unbalanced pair of M4
quotes in every input file it reads. This can lead to errors that are very diffi-
cult to track down, because they have more to do with M4 than they do with
Autoconf. It’s far less likely that the input shell script will contain an unbal-
anced pair of square bracket characters.

Macros with Arguments
Macros may also be defined to accept arguments, which may be referenced
in the expansion text with $1, $2, $3, and so on. The number of arguments
passed can be found in the variable $#, and $@ can be used to pass all argu-
ments of one macro call onto another. When using arguments in a macro
call, there can be no intervening whitespace between the macro name and
the opening parenthesis. Here’s an example of a macro that’s defined and
then called in various ways:

$ m4
define(`with2args', `The $# arguments are $1 and $2.')dnl

u with2args
The 0 arguments are and .
with2args()
The 1 arguments are and .

v with2args(`arg1')
The 1 arguments are arg1 and .
with2args(`arg1', `arg2')
The 2 arguments are arg1 and arg2.
with2args(`arg1', `arg2', `arg3')
The 3 arguments are arg1 and arg2.

w with2args (`arg1', `arg2')
The 0 arguments are and . (arg1, arg2)
<ctrl-d>$

In this example, the first call at u is a macro call without argu-
ments. The second call is a macro call with one empty argument. Such
calls treat the parameters as if empty arguments were actually passed.4
In both cases, the macro expands to “The N arguments are and .” (note
the double space between the last two words and the space between the
last word and the period), but the “N” is 0 in the first call and 1 in the
second. Therefore, the empty set of parentheses in the second call carries
an empty single argument. The next three calls, beginning at v, pass one,
two, and three arguments, respectively. As you can see by the resulting
outputs of these three calls, parameters in the expansion text that refer-
ence missing arguments are treated as empty, while arguments passed
without corresponding references are simply ignored.

4. Actually, in the call without parentheses, as you can see, $# is zero, while in the call with
empty parentheses, $# is one. However, in both cases, both referenced parameters ($1 and $2)
contain the empty string.

436 Chapter 16

The last call, at w, is a bit different. Notice that it contains a space
between the macro name and the opening parenthesis. The initial output
of this call is similar to that of the first call, but following that initial output,
we find what appears to be a minor variation on the originally intended
argument list (the quotes are missing). This is a macro call without argu-
ments. Since it’s not actually part of the macro call, M4 treats the argument
list simply as text on the input stream. Thus, it’s copied directly to the out-
put stream, minus one level of quotes.

When passing arguments in macro calls, be aware of whitespace
around arguments. The rules are simple: unquoted leading whitespace
is removed from arguments, and trailing whitespace is always preserved,
whether quoted or not. Of course, whitespace here refers to carriage returns
and newline characters, as well as spaces and tabs. Here’s an example of
calling a macro with variations in leading and trailing whitespace:

$ m4
define(`with3args', `The three arguments are $1, $2, and $3.')dnl

u with3args(arg1,
 arg2,
 arg3)
The three arguments are arg1, arg2, and arg3.

v with3args(arg1
 ,arg2
 ,arg3
)
The three arguments are arg1
 , arg2
 , and arg3
 .
<ctrl-d>$

In this example, I purposely omitted the quotes around the macro
arguments in the calls at u and v in order to reduce confusion. The call
at u has only leading whitespace in the form of newlines and tab charac-
ters, while the call at v has only trailing whitespace. I’ll cover quoting rules
shortly, at which point you’ll see clearly how quoting affects whitespace in
macro arguments.

The Recursive Nature of M4
Now we consider the recursive nature of the M4 input stream. Whenever
a name token is expanded by a macro definition, the expansion text is
pushed back onto the input stream for complete reprocessing. This recur-
sive reprocessing continues to occur as long as there are macro calls found
in the input stream that generate text.

Using the M4 Macro Processor with Autoconf 437

Here’s an example:

$ m4
define(`macro', `expansion')dnl
macro ``quoted' text'
expansion `quoted' text
<ctrl-d>$

Here, I define a macro called macro and then present this macro name
on the input stream, followed by additional text, some of which is quoted
and some of which is double quoted.

The process used by M4 to parse this example is shown in Figure 16-1.

Symbol TableTokenizermacro<sp>``quoted' text'

m, a, c, r, o = name(macro) macro = expansion

e,x,p,a,n,s,i,o,n = name(expansion) expansion (no mapping)

Tokenizer Symbol Tableexpansion<sp>``quoted' text' expansion

Tokenizer<sp>``quoted' text' <sp>

<sp> = character(<sp>)

``quoted' text' = string(`quoted' text)

Tokenizer `quoted' text

macro ``quoted' text' m4 expansion `quoted' text

``quoted' text'

Figure 16-1: The procedure used by M4 to process an input text stream

In the bottom line of the figure, M4 is generating a stream of output text
(expansion `quoted' text) from a stream of input text (macro ``quoted' text').

The diagram above this line shows how M4 actually generates the
output text from the input text. When the first token (macro) is read in the
top line, M4 finds a matching symbol in the symbol table, pushes it onto
the input stream on the second line, and then restarts the input stream.
Thus, the very next token read is another name token (expansion). Since this
name is not found in the symbol table, the text is sent directly to the output
stream. The third line sends the next token from the input stream (a space
character) directly to the output stream. Finally, in the fourth line, one
level of quotes is removed from the quoted text (``quoted' text'), and the
result (`quoted' text) is sent to the output stream.

438 Chapter 16

Infinite Recursion
As you might guess, there are some potentially nasty side effects of this
process. For example, you can accidentally define a macro that is infinitely
recursive. The expansion of such a macro would lead to a massive amount
of unwanted output, followed by a stack overflow. This is easy to do:

$ m4
define(`macro', `This is a macro')dnl
macro
This is a This is a This is a This is a This is a This is a... <ctrl-c>
$

This happens because the macro name expands into text containing
the macro’s own name, which is then pushed back onto the input stream for
reprocessing. Consider the following scenario: What would have been the result
if I’d left the quotes off of the expansion text in the macro definition? What would have
happened if I’d added another set of quotes around the expansion text? To help you
discover the answers to these questions, let’s turn next to M4 quoting rules.

Quoting Rules
Proper quoting is critical. You have probably encountered situations where
your invocations of Autoconf macros didn’t work as you expected. The
problem is often a case of under-quoting, which means you omitted a
required level of quotes around some text.

You see, each time text passes through M4, a layer of quotes is stripped
off. Quoted strings are not names and are therefore not subject to macro
expansion, but if a quoted string passes through M4 twice, the second time
through, it’s no longer quoted. As a result, individual words within that
string are no longer part of a string but instead are parsed as name tokens,
which are subject to macro expansion. To illustrate this, enter the following
text at a shell prompt:

$ m4
define(`def', `DEF')dnl

u define(`abc', `def')dnl
abc
DEF

v define(`abc', ``def'')dnl
abc
def

w define(`abc', ```def''')dnl
abc
`def'
<ctrl-d>$

In this example, the first time abc is defined (at u), it’s quoted once. As
M4 processes the macro definition, it removes a layer of quotes. Thus, the
expansion text is stored in the symbol table without quotes, but it’s pushed

Using the M4 Macro Processor with Autoconf 439

back onto the input stream and therefore is transformed into DEF due to the
first macro definition.

As you can see, the second definition of abc (at v) is double quoted, so
when the definition is processed and the outer layer of quotes is stripped
off, we would expect the expansion text in the symbol table to contain at
least one set of quotes, and it does. Then why don’t we see quotes around
the output text? Remember that when macros are expanded, the expansion
text is pushed onto the front of the input stream and reparsed using the
usual rules. Thus, while the text of the second definition is stored quoted in
the symbol table, as it’s reprocessed upon use, the second layer of quotes is
removed between the input and output streams.

The difference between u and v in this example is that the expansion
text of v is treated as quoted text by M4, rather than as a potential macro
name. The quotes are removed during definition, but the enclosed text is
not considered for further expansion because it’s still quoted.

In the third definition of abc (at w), we finally see the result we were
perhaps hoping to obtain: a quoted version of the output text. The expan-
sion text is entered into the symbol table double quoted, because the outer-
most set of quotes is stripped off during processing of the definition. Then,
when the macro is used, the expansion text is reprocessed and the second
set of quotes is stripped off, leaving one set in the final output text.

If you keep these rules in mind as you work with macros within Autoconf
(including both definitions and calls), you’ll find it easier to understand why
things may not work the way you think they should. The GNU M4 Manual pro-
vides a simple rule of thumb for using quotes in macro calls: for each layer of
nested parentheses in a macro call, use one layer of quotes.

Autoconf and M4
The autoconf program is a rather simple shell script. About 80 percent of the
shell code in the script exists simply to ensure that the shell is functional
enough to perform the required tasks. The remaining 20 percent parses
command line options. The last line of the script executes the autom4te pro-
gram, a Perl script that acts as a wrapper around the m4 utility. Ultimately,
autom4te calls m4 like this:

/usr/bin/m4 --nesting-limit=1024 --gnu --include=/usr/share/autoconf \
--debug=aflq --fatal-warning --debugfile=autom4te.cache/traces.0t \
--trace=AC_CANONICAL_BUILD ... --trace=sinclude \
--reload-state=/usr/share/autoconf/autoconf.m4f aclocal.m4 configure.ac

As you can see, the three files that M4 is processing are /usr/share
/autoconf/autoconf.m4f, aclocal.m4, and configure.ac, in that order.

N O T E The .m4f extension on the master Autoconf macro file signifies a frozen M4 input
file—a sort of precompiled version of the original .m4 file. When a frozen macro file
is processed, it must be specified after a --reload-state option, in order to make M4

440 Chapter 16

aware that it’s not a normal input file. State is built cumulatively within M4 over all
input files, so any macros defined by aclocal.m4, for instance, are available during
the processing of configure.ac.

The ellipsis between the two --trace options in the command line above
is a placeholder for more than 100 such --trace options. It’s a good thing
the shell can handle long command lines!

The master Autoconf macro file, autoconf.m4, merely includes (using
the m4_include macro) the other dozen or so Autoconf macro files, in the cor-
rect order, and then does a small amount of housekeeping before leaving
M4 ready to process user input (via configure.ac). The aclocal.m4 file is our
project’s macro file, built originally by the aclocal utility or handwritten for
projects that don’t use Automake. By the time configure.ac is processed, the
M4 environment has been configured with hundreds of Autoconf macro
definitions, which may be called as needed by configure.ac. This environment
includes not only the recognized AC_* macros but also a few lower layers of
Autoconf-provided macros that you may use to write your own macros.

One such lower layer is m4sugar,5 which provides a nice clean namespace
in which to define all of the Autoconf macros, as well as several improvements
and additions to the existing M4 macros.

Autoconf modifies the M4 environment in a few ways. First, as men-
tioned earlier, it changes the default quote characters from the backtick
and single quote characters to the open and close square bracket charac-
ters. In addition, it configures M4 built-in macros such that most are pre-
fixed with m4_, thereby creating a unique namespace for M4 macros. Thus,
the M4 define macro becomes m4_define, and so on.6

Autoconf provides its own version of m4_define called AC_DEFUN. You
should use AC_DEFUN instead of m4_define because it ensures that certain
environmental constraints important to Autoconf are in place when
your macro is called. The AC_DEFUN macro supports a prerequisite frame-
work, so you can specify which macros are required to have been called
before your macro may be called. This framework is accessed by using the
AC_REQUIRE macro to indicate your macro’s requirements at the beginning
of your macro definition, like so:

Test for option A

AC_DEFUN([TEST_A],
[AC_REQUIRE([TEST_B])dnl
test "$A" = "yes" && options="$options A"])

The rules for writing Autoconf macros using AC_DEFUN and the prereq-
uisite framework are outlined in Chapter 9 of the GNU Autoconf Manual.
Before you write your own macros, read Chapters 8 and 9 of that manual.

5. This is a hybrid palindromic acronym: Readability And Greater Understanding Stands 4 M4Sugar.

6. A notable exception is dnl. This macro is thankfully not renamed to m4_dnl.

Using the M4 Macro Processor with Autoconf 441

Writing Autoconf Macros
Why would we want to write Autoconf macros in the first place? One rea-
son is that a project’s configure.ac file might contain several instances of
similar sets of code and we need the configure script to perform the same
set of high-level operations on multiple directories or file sets. By convert-
ing the process into a macro, we reduce the number of lines of code in the
configure.ac file, thereby reducing the number of possible points of failure.
Another reason might be that an easily encapsulated bit of configure.ac code
could be useful in other projects, or even to other people.

N O T E The GNU Autoconf Archive provides many sets of related macros to solve common
Autoconf problems. Anyone may contribute to the archive by emailing their macros to
the project maintainer. There are frequent tarball releases available for free from the
project website.7

Simple Text Replacement
The simplest type of macro is one that replaces text verbatim, with no
substitutions. An excellent example of this is found in the FLAIM project,
where the flaim, xflaim, and sql projects’ configure scripts attempt to locate
the ftk (FLAIM toolkit) project library and header file. Since I already
discussed the operation of this code in Chapter 14, I’ll only cover it briefly
here as it relates to writing Autoconf macros, but I provide the relevant
bit of configure.ac code in Listing 16-1 for convenience.8

--snip--
Configure FTKLIB, FTKINC, FTK_LTLIB and FTK_INCLUDE
AC_ARG_VAR([FTKLIB], [The PATH wherein libflaimtk.la can be found.])
AC_ARG_VAR([FTKINC], [The PATH wherein flaimtk.h can be found.])

Ensure that both or neither FTK paths were specified.
if { test -n "$FTKLIB" && test -z "$FTKINC"; } || \
 { test -z "$FTKLIB" && test -n "$FTKINC"; }; then
 AC_MSG_ERROR([Specify both FTKINC and FTKLIB, or neither.])
fi

Not specified? Check for FTK in standard places.
if test -z "$FTKLIB"; then
 # Check for FLAIM toolkit as a sub-project.
 if test -d "$srcdir/ftk"; then
 AC_CONFIG_SUBDIRS([ftk])
 FTKINC='$(top_srcdir)/ftk/src'
 FTKLIB='$(top_builddir)/ftk/src'
 else
 # Check for FLAIM toolkit as a superproject.

7. See the GNU Autoconf Archive at https://www.gnu.org/software/autoconf-archive/.

8. Note that the FLAIM git repository for Chapters 14 and 15 includes changes made by this
chapter as well. So in this chapter, when I refer to a snippet of configure.ac from those chap-
ters, I mean it literally—from a code listing in the book, rather than from the repository.

https://www.gnu.org/software/autoconf-archive/

442 Chapter 16

 if test -d "$srcdir/../ftk"; then
 FTKINC='$(top_srcdir)/../ftk/src'
 FTKLIB='$(top_builddir)/../ftk/src'
 fi
 fi
fi

Still empty? Check for *installed* FLAIM toolkit.
if test -z "$FTKLIB"; then
 AC_CHECK_LIB([flaimtk], [ftkFastChecksum],
 [AC_CHECK_HEADERS([flaimtk.h])
 LIBS="-lflaimtk $LIBS"],
 [AC_MSG_ERROR([No FLAIM toolkit found. Terminating.])])
fi

AC_SUBST command line variables from FTKLIB and FTKINC.
if test -n "$FTKLIB"; then
 AC_SUBST([FTK_LTLIB], ["$FTKLIB/libflaimtk.la"])
 AC_SUBST([FTK_INCLUDE], ["-I$FTKINC"])
fi
--snip--

Listing 16-1: xflaim/configure.ac: The ftk search code from the xflaim project

This code is identical in flaim, xflaim, and sql, though it may be modi-
fied in the future for one reason or another, so keeping it embedded in all
three configure.ac files is redundant and error prone.

Even if we were to convert this code to a macro, we’d still have to put a
copy of the macro file into each of the projects’ m4 directories. However, we
could later edit only one of these macro files and copy it from the authorita-
tive location into the other projects’ m4 directories, or even use symlinks in
git rather than copies to ensure there is truly only a single copy of the .m4
file. This would be a better solution than having all of the code embedded
in all three configure.ac files.

By converting this code to a macro, we can keep it in one place where
portions of it cannot be confused for code that is not related to the process
of locating the FLAIM toolkit library and header file. This happens quite
often during later maintenance of a project’s configure.ac file, as additional
code designed for other purposes is dropped between chunks of code
belonging to sequences like this.

Let’s try converting this code into a macro. Our first attempt might look
like Listing 16-2. (I’ve omitted a large chunk in the middle that is identical
to the original code, for the sake of brevity.)

AC_DEFUN([FLM_FTK_SEARCH],
[AC_ARG_VAR([FTKLIB], [The PATH wherein libflaimtk.la can be found.])
AC_ARG_VAR([FTKINC], [The PATH wherein flaimtk.h can be found.])
--snip--
AC_SUBST command line variables from FTKLIB and FTKINC.
if test -n "$FTKLIB"; then
 AC_SUBST([FTK_LTLIB], ["$FTKLIB/libflaimtk.la"])

Using the M4 Macro Processor with Autoconf 443

 AC_SUBST([FTK_INCLUDE], ["-I$FTKINC"])
fi])

Listing 16-2: xflaim/m4/flm_ftk_search.m4: A first attempt at encapsulating ftk search code

In this pass, I’ve simply cut and pasted the entire configure.ac code
sequence verbatim into the macro-body argument of a call to AC_DEFUN. The
AC_DEFUN macro is defined by Autoconf and provides some additional func-
tionality over the m4_define macro provided by M4. This additional function-
ality is strictly related to the prerequisite framework provided by Autoconf.

N O T E Be aware that AC_DEFUN must be used (rather than m4_define) in order for the macro
definition to be found by aclocal in your external macro definition files. You must
use AC_DEFUN if your macro definitions are in external files, but for simple macros
defined within configure.ac itself, you can use m4_define.

Notice the use of M4 quoting around both the macro name (FLM_FTK
_SEARCH) and the entire macro body. To illustrate the problems with not
using these quotes in this example, consider how M4 would process the
macro definition without the quotes. If the macro name were left unquoted,
not much damage would be done, unless the macro happened to already be
defined. If the macro were already defined, M4 would treat the macro name
as a call with no parameters, and the existing definition would replace the
macro name as M4 was reading the macro definition. (In this case, because
of the unique name of the macro, there’s not much chance that it’s already
defined, so I could have left the macro name unquoted with little effect, but
it’s good to be consistent.)

On the other hand, the macro body contains a fair amount of text and
even Autoconf macro calls. Had we left the body unquoted, these macro
calls would be expanded during the reading of the definition rather than
during the later use of the macro, as we had intended.

Because the quotes are present, M4 stores the macro body as provided,
with no additional processing during the reading of the definition other
than to remove the outermost layer of quotes. Later, when the macro is
called, the body text is inserted into the input stream in place of the macro
call, with one layer of quotes removed, and only then are the embedded
macros expanded.

This macro requires no arguments because the same text is used identi-
cally in all three configure.ac files. The effect on configure.ac is to replace the
entire chunk of code with the name of the macro, as shown in Listing 16-3.

--snip--
Add jni.h include directories to include search path
AX_JNI_INCLUDE_DIR
for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS; do
 CPPFLAGS="$CPPFLAGS -I$JNI_INCLUDE_DIR"
done

u # Configure FTKLIB, FTKINC, FTK_LTLIB, and FTK_INCLUDE
FLM_FTK_SEARCH

444 Chapter 16

Check for Java compiler.
--snip--

Listing 16-3: xflaim/configure.ac: Replacing the ftk search code with the new macro call

When writing a macro from existing code, consider the inputs to the
existing chunk of code and the outputs provided by the code. Inputs will
become possible macro arguments, and outputs will become documented
effects. In Listing 16-3, we have no inputs and thus no arguments, but what
are the documentable effects of this code?

The comment at u over the macro call in Listing 16-3 alludes to these
effects. The FTKLIB and FTKINC variables are defined, and the FTK_LTLIB and
FTK_INCLUDE variables are defined and substituted using AC_SUBST.

Documenting Your Macros
A proper macro definition provides a header comment that documents
possible arguments, results, and potential side effects of the macro, as
shown in Listing 16-4.

FLM_FTK_SEARCH

Define AC_ARG_VAR (user variables), FTKLIB, and FTKINC,
allowing the user to specify the location of the flaim toolkit
library and header file. If not specified, check for these files:
#
1. As a sub-project.
2. As a super-project (sibling to the current project).
3. As installed components on the system.
#
If found, AC_SUBST FTK_LTLIB and FTK_INCLUDE variables with
values derived from FTKLIB and FTKINC user variables.
FTKLIB and FTKINC are file locations, whereas FTK_LTLIB and
FTK_INCLUDE are linker and preprocessor command line options.
#
Author: John Calcote <john.calcote@gmail.com>
Modified: 2009-08-30
License: AllPermissive
#
AC_DEFUN([FLM_FTK_SEARCH],
--snip--

Listing 16-4: xflaim/m4/flm_ftk_search.m4: Adding a documentation header to the
macro definition

This header comment documents both the effects of this macro and
the way it operates, giving the user a clear picture of the sort of function-
ality they’ll get when they call it. The GNU Autoconf Manual indicates that
such macro definition header comments are stripped from the final out-
put; if you search the configure script for some text in the comment header,
you’ll see that it’s missing.

Regarding coding style, the GNU Autoconf Manual suggests that
it is good macro definition style to place the macro body’s closing

Using the M4 Macro Processor with Autoconf 445

square-bracket quote and the closing parenthesis alone on the last line of
the macro definition, along with a comment containing only the name of
the macro being defined, as shown in Listing 16-5.

--snip--
AC_SUBST([FTK_INCLUDE], ["-I$FTKINC"])

u fi[]dnl
])# FLM_FTK_SEARCH

Listing 16-5: xflaim/m4/flm_ftk_search.m4: Suggested macro body closing style

The GNU Autoconf Manual also suggests that, if you don’t like the extra
carriage return that the use of this format adds to the generated configure
script, you can append the text []dnl to the last line of the macro body,
as shown at u in Listing 16-5. The use of dnl causes the trailing carriage
return to be ignored, and the open and close square brackets are simply
empty Autoconf quotes that are stripped out during processing of later
macro calls. The quotes (square brackets) are used to separate fi and dnl
so they’re recognized by M4 as two separate words.

N O T E The GNU Autoconf Manual defines a very complete naming convention for macros
and their containing files. I’ve chosen simply to prefix all macro names and their con-
taining files that are strictly related to the project with a project-specific prefix—in this
case, FLM_ (flm_).

M4 Conditionals
Now that you know how to write basic M4 macros, we’ll consider what it
means to allow M4 to decide which text should be used to replace your
macro call, based on arguments passed in the call.

Calling a Macro with and Without Arguments

Take a look at Listing 16-6, which is my first attempt at writing the FLM_PROG
_TRY_DOXYGEN macro that was first used in Chapter 14. This macro was designed
with an optional argument, which isn’t apparent from its use in Chapter 14
because the FLAIM code called the macro without arguments. Let’s exam-
ine the definition of this macro. In the process, we’ll discover what it means
to call it with and without arguments.

FLM_PROG_TRY_DOXYGEN([quiet])

FLM_PROG_TRY_DOXYGEN tests for an existing doxygen source
documentation program. It sets or uses the environment
variable DOXYGEN.
#
If no arguments are given to this macro, and no doxygen
program can be found, it prints a warning message to STDOUT
and to the config.log file. If the quiet argument is passed,
then only the normal "check" line is displayed. Any other-token
argument is considered by autoconf to be an error at expansion

446 Chapter 16

time.
#
Makes the DOXYGEN variable precious to Autoconf. You can
use the DOXYGEN variable in your Makefile.in files with
@DOXYGEN@.
#
Author: John Calcote <john.calcote@gmail.com>
Modified: 2009-08-30
License: AllPermissive
#
AC_DEFUN([FLM_PROG_TRY_DOXYGEN],

u [AC_ARG_VAR([DOXYGEN], [Doxygen source doc generation program])dnl
v AC_CHECK_PROGS([DOXYGEN], [doxygen])
w m4_ifval([$1],,
x [if test -z "$DOXYGEN"; then

 AC_MSG_WARN([doxygen not found - continuing without Doxygen support])
fi])
])# FLM_PROG_TRY_DOXYGEN

Listing 16-6: ftk/m4/flm_prog_try_doxygen.m4: A first attempt at FLM_PROG_TRY_DOXYGEN

First, we see a call to the AC_ARG_VAR macro at u, which is used to make
the DOXYGEN variable precious to Autoconf. Making a variable precious causes
Autoconf to display it within the configure script’s help text as an influential
environment variable. The AC_ARG_VAR macro also makes the specified vari-
able an Autoconf substitution variable. At v, we come to the heart of this
macro—the call to AC_CHECK_PROGS. This macro checks for a doxygen program
in the system search path, but it only looks for the program (passed in the
second argument) if the variable (passed in the first argument) is empty.
If this variable is not empty, AC_CHECK_PROGS assumes that the end user has
already specified the proper program in the variable in the user’s environ-
ment, and it does nothing. In this case, the DOXYGEN variable is populated
with doxygen if the doxygen program is found in the system search path. In
either case, a reference to the DOXYGEN variable is substituted into template
files by Autoconf. (Since we just called AC_ARG_VAR on DOXYGEN, this step is
redundant but harmless.)

The call to m4_ifval at w brings us to the point of this section. This is a
conditional macro defined in Autoconf’s m4sugar layer—a layer of simple
macros designed to make writing higher-level Autoconf macros easier. M4
conditional macros are designed to generate one block of text if a condi-
tion is true and another if the condition is false. The purpose of m4_ifval
is to generate text based on whether its first argument is empty. If its first
argument is not empty, the macro generates the text in its second argu-
ment. If its first argument is empty, the macro generates the text in its
third argument.

The FLM_PROG_TRY_DOXYGEN macro works with or without an argument.
If no arguments are passed, FLM_PROG_TRY_DOXYGEN will print a warning mes-
sage that the build is continuing without Doxygen support if the doxygen
program is not in the system search path. On the other hand, if the quiet
option is passed to FLM_PROG_TRY_DOXYGEN, no message will be printed if the
doxygen program is not found.

Using the M4 Macro Processor with Autoconf 447

In Listing 16-6, m4_ifval generates no text (the second argument is
empty) if the first argument contains text. The first argument is $1, which
refers to the contents of the first argument passed to FLM_PROG_TRY_DOXGEN.
If no arguments are given to our macro, $1 will be empty, and m4_ifval will
generate the text in its third argument shown at x. On the other hand, if
we pass quiet (or any text, for that matter) to FLM_PROG_TRY_DOXYGEN, $1 will
contain quiet, and m4_ifval will generate nothing.

The shell code in the third argument (at x) checks to see if the
DOXYGEN variable is still empty after the call to AC_CHECK_PROGS. If it is, it calls
AC_MSG_WARN to display a configuration warning.

Adding Precision

Autoconf provides a macro called m4_if, a renamed version of the M4 built-
in ifelse macro. The m4_if macro is similar in nature to m4sugar’s m4_ifval.
Listing 16-7 shows how we might use ifelse in place of m4_ifval, if we didn’t
have m4sugar macros to work with.

--snip--
ifelse ([$1],,
[if test -z "$DOXYGEN"; then
AC_MSG_WARN([Doxygen program not found - continuing without Doxygen])
fi])
--snip--

Listing 16-7: Using ifelse instead of m4_ifval

The macros appear to be identical in function, but this appearance
is only circumstantial; the parameters are used differently. In this case,
if the first argument ($1) is the same as the second argument (the empty
string), the contents of the third argument ([if test -z ...]) are generated.
Otherwise, the contents of the fourth (nonexistent) argument are gener-
ated because omitted arguments are treated as if the empty string had been
passed. Therefore, the following two macro invocations are identical:

m4_ifval([$1],[a],[b]])
ifelse([$1],[],[b],[a])

FLM_PROG_TRY_DOXYGEN treats any text in its argument as if quiet was passed.
In order to facilitate future enhancements to this macro, we should limit
the allowed text in this argument to something that makes sense; otherwise,
users could abuse this parameter and we’d be stuck supporting whatever
they pass for the sake of backward compatibility. The m4_if macro can help
us out here. This macro is quite powerful because it accepts an unlimited
number of arguments. Here are its basic prototypes:

m4_if(comment)
m4_if(string-1, string-2, equal[, not-equal])
m4_if(string-1, string-2, equal-1, string-3, string-4, equal-2,
 ...[, not-equal])

448 Chapter 16

If only one parameter is passed to m4_if, that parameter is treated as a
comment because there’s not much that m4_if can do with one argument.
If three or four arguments are passed, the description I gave for ifelse in
Listing 16-7 is also accurate for m4_if. However, if five or more arguments
are passed, the fourth and fifth become the comparison strings for a sec-
ond else-if clause. The last argument in an arbitrarily long set of triples is
generated if the last two comparison strings are different.

We can use m4_if to ensure that quiet is the only acceptable option in
the list of options accepted by FLM_PROG_TRY_DOXYGEN. Listing 16-8 shows one
possible implementation.

--snip--
m4_if([$1],,
[if test -z "$DOXYGEN"; then
 AC_MSG_WARN([doxygen not found - continuing without Doxygen support])
fi], [$1], [quiet],, [m4_fatal([Invalid option in FLM_PROG_TRY_DOXYGEN])])
--snip--

Listing 16-8: Restricting the argument options allowed by FLM_PROG_TRY_DOXYGEN

In this case, we want a message to be printed if doxygen is missing in
all cases except when the quiet option is given as the first argument passed
into our macro. In Listing 16-8, I’ve given FLM_PROG_TRY_DOXYGEN the abil-
ity to detect cases when something other than quiet or the empty string
is passed in this parameter and to do something specific in response.
Listing 16-9 shows the resulting pseudocode generated by the expansion
of FLM_PROG_TRY_DOXYGEN.

if $1 == '' then
 Generate WARNING if no doxygen program is found
else if $1 == 'quiet' then
 Don't generate any messages
else
 Generate a fatal "bad parameter" error at autoconf (autoreconf) time
end

Listing 16-9: Pseudocode for Listing 16-8’s use of the m4_if macro

Let’s examine exactly what’s going on in Listing 16-8. If arguments
one ([$1]) and two ([]) are the same, a warning message is generated
when doxygen is not found. If arguments four ([$1]) and five ([quiet]) are
the same, nothing is generated; otherwise, arguments four and five are
different, and a fatal error (via m4_fatal) is generated by Autoconf when
it’s executed against the calling configure.ac file. It’s very simple, once you
see how it works and once you get the bugs worked out—which brings us
nicely to our next topic.

Using the M4 Macro Processor with Autoconf 449

Diagnosing Problems
One of the most significant stumbling blocks that people run into at this
point is not so much a lack of understanding of how these macros work but
a lack of attention to detail. There are several places where things can go
wrong when writing even a simple macro like this. For example, you might
have any of the following problems:

•	 Space between a macro name and the opening parenthesis

•	 Unbalanced brackets or parentheses

•	 The wrong number of parameters

•	 A misspelled macro name

•	 Incorrectly quoted arguments to a macro

•	 A missing comma in a macro’s parameter list

M4 is rather unforgiving of such mistakes. Worse, its error messages
can be even more cryptic than those of make.9 If you get strange errors and
you think your macro should be working, your best diagnostic method is
to scan the definition very carefully looking for the preceding conditions.
These mistakes are easy to make, and in the end most problems come down
to some combination of them.

Another very useful debugging tool is the m4_traceon and m4_traceoff
macro pair. The macro signatures are as follows:

m4_traceon([name, ...])
m4_traceoff([name, ...])

All arguments are optional. When given, the arguments should be a
comma-separated list of macro names you’d like M4 to print to the output
stream as these names are encountered in the input stream. If you omit the
arguments, M4 will print the name of every macro it expands.

A typical trace session in M4 looks something like this:

$ m4
define(`abc', `def')dnl
define(`def', `ghi')dnl
traceon(`abc', `def')dnl
abc

u m4trace: -1- abc
m4trace: -1- def

9. The reason for such cryptic messages in both make and M4 is that it’s very difficult for these
programs to determine the proper context for an error, if the parsing context is drastically
different with and without the error. In make, for example, a missing tab character on a com-
mand is problematic simply because commands are only commands by virtue of the tab char-
acter. Without it, the line looks to make like some other type of construct—perhaps a rule or a
macro definition. The same is true of M4. When a comma is missing, for instance, M4 has so
little context to go on that it appears as if two intended parameters are simply one parameter.
M4 doesn’t even complain—it simply processes the errant call as if there were one less param-
eter than intended (but it has no way of knowing the caller’s intention).

450 Chapter 16

ghi
traceoff(`abc', `def')dnl

v m4trace: -1- traceoff
<ctrl-d>$

The number between dashes in the output lines at u and v indicates
the nesting level, which is usually 1. The value of the trace facility is that
you can easily see when the traced macros are expanded within the context
of the output text generated. The M4 tracing facility can also be enabled
from the command line with the -t or --trace option:

$ m4 --trace=abc

Or more appropriately for this discussion:

$ autoconf --trace=FLM_PROG_TRY_DOXYGEN

The latter has the added benefit of allowing you to specify a format
for the trace output. For more insight into the use of the format portion of
the option, try entering autom4te --help at the command prompt. For more
information on the use of the M4 trace options, refer to Chapter 7 (specifi-
cally, Section 7.2) of the GNU M4 Manual.

N O T E The Autotools rely heavily on tracing for more than just debugging. Various of
the Autotools and their supporting utilities use traces on configure.ac to gather
information used in other stages of the configuration process. (Recall the 100+ trace
options on the m4 command line.) For more information on tracing within Autoconf,
refer to Section 3.4 of the GNU Autoconf Manual, titled “Using autoconf to
Create configure.”

Summary
Using M4 is deceptively complex. On the surface it appears simple, but as you
get deeper into it, you find ways of using it that almost defy comprehension.
Nonetheless, the complexities are not insurmountable. As you become pro-
ficient with M4, you’ll find that your way of thinking about certain problems
changes. It’s worth gaining some M4 proficiency for that reason alone. It’s
like adding a new tool to your software-engineering toolbox.

A powerful M4 concept I did not cover, but that you should be aware of,
is iteration. Normally, we think of iteration in terms of loops, but M4 has no
actual looping constructs. Rather, iteration is managed through recursion.
For details, refer to the manual’s discussion of the forloop and foreach macros.

Because the very foundation of Autoconf is M4, becoming proficient with
M4 will give you more insight into Autoconf than you might think. The more
about M4 you know, the more about Autoconf you’ll understand at a glance.

“Well, Steve, I think there’s more than one way of looking at it. I think
it’s more like we both had this rich neighbor named Xerox and I broke
into his house to steal the TV set and found out that you had already

stolen it.” —Bill Gates, quoted in Steve Jobs by Walter Isaacson

17
U S I N G T H E A U T O T O O L S

W I T H W I N D O W S

Autoconf generates configure scripts con-
taining hundreds of lines of Bourne shell

code. If that statement doesn’t make you
wonder how we could ever use the Autotools

with Windows, you should probably re-read it until it
does. In fact, the only way Autoconf can be used is
with an actual Bourne shell and a subset of Unix tools like grep, awk, and sed.
So before we can even get started, we need to ensure that we have a proper
execution environment.

When I started working on the first edition of this book, there were few
options that provided the required environment for building Windows soft-
ware with the Autotools. During the last 10 years, that story has changed.
Today, an entire gamut of options is available to developers, depending on
whether your goal is to build Windows applications on Linux or Windows.

In the last decade, Windows has been viewed by the GNU community
as a more important target than it has in the past. Significant efforts have
been made recently to ensure that GNU source code at least considers

452 Chapter 17

Windows as a target environment. This attitude shift has provided impor-
tant source-level support for making Cygwin and its sibling environments
manage clean ports of GNU packages to Windows.

Environment Options
Since our goal is to build native Windows software using GNU tools, includ-
ing specifically the Autotools, we’re naturally going to have to consider sys-
tems that provide various levels of POSIX environment functionality.

At one end of the spectrum, we have actual Linux installations, which
may take any one of several forms, including bare-metal dedicated machine
installations and virtual machines running on KVM, Xen, or VMware ESX
servers or on a Windows machine running Microsoft HyperV, VMware
Workstation, or Oracle’s VirtualBox. There are also Mac options for running
virtual machines, and macOS itself provides a reasonably POSIX-compliant
environment. We could also use Windows Subsystem for Linux (WSL).

A full Linux installation obviously provides the most POSIX-compliant
environment for building software using GNU tools. To actually generate
Windows software on a Linux system, we have to configure a cross-compile.
That is, we have to build software that’s not designed to run on the
build system.

At the other end of that spectrum, we have various POSIX environment
emulators running within Windows applications. The “application” in these
cases is almost always a Bash shell running in some sort of shell host process
or terminal, but these environments are more or less compatible with a true
Linux build environment. The flavors we have to pick from today include
Cygwin, MinGW, and MSys2.

A final option—and one we won’t spend much time on—is that of
cross-compiling Windows software on other types of systems, including
mainframes and supercomputers. If you want to see a Windows program
compile fast, you should watch it happen on a Cray XC50 with an SSD or
RAM disk. Since GNU software can run on pretty much any Unix system
that has a Bourne shell, we can cross-compile software on it for any plat-
form, including Windows. After you’ve cross-compiled on Linux, moving
the process to a different POSIX-compliant platform is relatively simple.

Tool Chain Options
Once we’ve chosen an environment, we’ll then need to select a tool chain
in which to build our native software for Windows. Generally speaking,
the environment you choose limits your tool chain options. For example,
if you select a full Linux installation, your only tool chain option is to install
a cross-compiler for Windows—probably mingw-w64. Don’t knock it until
you’ve tried it—this is a really good option because it does a pretty reason-
able job of building Windows software.

The biggest problem you’ll find here is the inconvenience of having
to copy your software over to a Windows system in order to test it. In fact,

Using the Autotools with Windows 453

running tests as part of your build is pretty much a nonstarter, as you
can’t execute your products on your build machine.1 I’ve seen such cross-
compilation testing done by having a remote copy and execution stage as
part of the build system’s test phase, but doing this tends to make your build
brittle because it requires additional environment configuration that’s not
part of a normal package build process.

Getting Started
I’ll present a full cross-section of options for building Windows software
using GNU tools. We’ll start by using a Windows cross-compiler tool chain
on native Linux and then check out Windows Subsystem for Linux, and
finally move on to the remaining Windows-based options, presented in
the order they were created. We’ll first check out Cygwin on a Windows 10
system. Next, we’ll try MinGW and finally finish up with MSys2. By the
time you reach the end of this chapter, you should be very comfortable
with these processes.

For Windows-based systems, I’ll presume you’re running a reasonably
recent copy of Windows 10. I installed Windows 10 Build 1803 (released
April 30, 2018) in a virtual machine under Oracle’s VirtualBox on my
Linux Mint system. You can take this path, or you can use a “bare metal”
(nonvirtual) installation of Windows 10. The manner in which you choose
to run Windows and, to a lesser extent, the exact version you choose to run
are really not significant issues here.

N O T E The majority of this book centers on the use of free and open source software (FOSS).
Microsoft Windows is, of course, not free software. You should pay for any copy of
Windows—or any other non-free software—you choose to use.2

I’ve also installed Git for Windows3 on my Windows system and cloned
the b64 project from Chapter 13 and Gnulib from the Savannah Git server.
We won’t be making any significant changes to the b64 project source code,
except to make it work in a given environment where necessary.

When you install Git for Windows, you’ll have the option of downloading
a 32- or 64-bit version in one of two varieties—as an installer or as a portable
package. The installer style installs Git on your Windows system in the usual
fashion and may be uninstalled from the Windows installed-programs panel.

1. You might also consider using Wine, a Windows execution environment on Linux. Wine is,
in many respects, a counterpart to the Linux emulation environments I spend the better part
of this chapter discussing. Since Wine is purely a reverse-engineering effort, it has its own set
of problems in the form of Win32 API emulation bugs, so attempting to test Windows soft-
ware under Wine can be more problematic than simply copying the program over to a real
Windows system. Still, it’s worth considering. For details, see https://www.winehq.org/.

2. Of course, there’s nothing wrong with taking full advantage of free trial periods offered by
software vendors.

3. See https://git-scm.com/download/win.

https://www.winehq.org
https://git-scm.com/download/win

454 Chapter 17

The portable style requires no installation and can be executed directly from
its expanded archive. Select an installer or a portable package option for your
Windows system.

If you chose to use an installer, during the installation process you’ll
be asked how you want Git to treat your source file line endings. I generally
avoid the first option, which is to “check out” using Windows-style line end-
ings but “commit” using Unix-style line endings. You might want to use this
option if you’re planning to use Notepad as your editor (not advisable). I
generally select the option to check out and commit as is. Git has no busi-
ness modifying your source files as they pass through it. Just configure your
editor to recognize and manage line endings the way you like.

Cross-Compiling for Windows on Linux
Since we’re already running Linux, let’s start our investigation of the
options right here at home.

Installing a Windows Cross Tool Chain
The first thing we’ll need to do is install a Windows cross-compiler tool
chain (often referred to simply as a “cross tool chain” or as “cross tools”) on
our Linux system. The most widely available one is mingw-w64 for Linux,
which can build native Windows programs and libraries that look very
much like they were generated by Microsoft tools.

On my Linux Mint system, I searched the internet for Linux Mint
mingw-w64; the top result was my goal. You can generally use your system’s
package manager to find and install this package because mingw-w64 is
pretty popular. On CentOS and other Red Hat–based systems, try yum search
mingw-w64. For Debian-based systems like Ubuntu and Mint, try apt-cache
search mingw-w64.

Be aware when you run these package searches that you may get back
a long result list composed of a few dozen real packages and one or two
meta packages. It’s better to select one of the meta packages so you get all
of the required real packages in one shot. I highly recommend you search
the internet for your distro name and mingw-w64 in order to get some back-
ground on which package you should install using your package manager.
A little research up front can save you a lot of headache later.

For example, on my Debian-based system, I got these results from an
apt-cache search:

$ apt-cache search mingw-w64
--snip--
g++-mingw-w64 - GNU C++ compiler for MinGW-w64
g++-mingw-w64-i686 - GNU C++ compiler for MinGW-w64 targeting Win32
g++-mingw-w64-x86-64 - GNU C++ compiler for MinGW-w64 targeting Win64
gcc-mingw-w64 - GNU C compiler for MinGW-w64
gcc-mingw-w64-base - GNU Compiler Collection for MinGW-w64 (base package)
gcc-mingw-w64-i686 - GNU C compiler for MinGW-w64 targeting Win32
gcc-mingw-w64-x86-64 - GNU C compiler for MinGW-w64 targeting Win64

Using the Autotools with Windows 455

--snip--
mingw-w64 - Development environment targeting 32- and 64-bit Windows
mingw-w64-common - Common files for Mingw-w64
mingw-w64-i686-dev - Development files for MinGW-w64 targeting Win32
mingw-w64-tools - Development tools for 32- and 64-bit Windows
mingw-w64-x86-64-dev - Development files for MinGW-w64 targeting Win64
--snip--
$

The actual results list contained dozens of entries, but according to a
quick internet search, I found the only package I really needed to install
was mingw-w64 (highlighted); a meta-package referencing actual packages
that install the GCC C and C++ compilers for generating 32- and 64-bit
Windows software; and a binutils package containing the librarian, linker,
and other common development tools. Some package management systems
divide this set of packages differently, allowing you the option of installing
gcc and g++ separately or of installing 32-bit and 64-bit code generators sepa-
rately. Installing this package on my system displays the following output:

$ sudo apt-get install mingw-w64
[sudo] password for jcalcote:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 binutils-mingw-w64-i686 binutils-mingw-w64-x86-64 g++-mingw-w64 g++-
mingw-w64-i686 g++-mingw-w64-x86-64 gcc-mingw-w64 gcc-mingw-w64-base
gcc-mingw-w64-i686 gcc-mingw-w64-x86-64
 mingw-w64-common mingw-w64-i686-dev mingw-w64-x86-64-dev
Suggested packages:
 gcc-7-locales wine wine64
The following NEW packages will be installed:
 binutils-mingw-w64-i686 binutils-mingw-w64-x86-64 g++-mingw-w64 g++-
mingw-w64-i686 g++-mingw-w64-x86-64 gcc-mingw-w64 gcc-mingw-w64-base
gcc-mingw-w64-i686 gcc-mingw-w64-x86-64
 mingw-w64 mingw-w64-common mingw-w64-i686-dev mingw-w64-x86-64-dev
0 upgraded, 13 newly installed, 0 to remove and 31 not upgraded.
Need to get 127 MB of archives.
After this operation, 744 MB of additional disk space will be used.
Do you want to continue? [Y/n] Y
--snip--
$

Testing the Build
Once you’ve found and installed the proper cross tool chain, you’re ready
to start building Windows software. I’ve chosen something simple, but not
trivial—the b64 project from Chapter 13. It uses Gnulib, so it has a conve-
nience library. Gnulib aims for portability, so we can assess how good it is
with Windows portability, at least for the few modules b64 uses.

To build for another platform, you need to configure the project for
cross-compilation. For a full explanation of cross-compiling using the

456 Chapter 17

Autotools, see Item 6 in Chapter 18. For now, just be aware that the configu-
ration options you’ll need are --build and --host. The first option describes
the system on which you’ll be building the software, and the second option
describes the system on which the generated software will be executed.
In order to discover our build platform, we can run the config.guess script
installed into the root of our project by automake (via autoreconf). To do this,
we’ll need to bootstrap the project for a regular build so that config.guess
gets installed.4 Let’s do that within the b64 directory itself:

$ cd b64
$./bootstrap.sh
Module list with included dependencies (indented):
 absolute-header
 base64
 extensions
 extern-inline
--snip--
configure.ac:12: installing './compile'
configure.ac:20: installing './config.guess'
configure.ac:20: installing './config.sub'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './depcomp'
$
$./config.guess
x86_64-pc-linux-gnu
$

Running config.guess is how configure determines the default value
to use for the --build option, so it will always be correct. Determining the
value we should use for the --host option is just a bit more difficult. We
need to find the prefix on our cross tool chain, because the --host option
value is what configure uses to find the correct tool chain and to set up our
CC and LD variables.

This can be done in a few different ways. You can use your system’s
package manager to determine what files were installed when you installed
the mingw-w64 meta package, or you can look in your /usr/bin directory
to see what the compiler is named—this usually works, and actually does
work for this tool chain, but sometimes cross tool chains are installed into
a completely different directory, so I’ll use my package manager. Your pack-
age manager has similar options, but you can follow along directly with my
usage if you happen to be on a Debian-based system:

$ dpkg -l | grep mingw
ii binutils-mingw-w64-i686 ...
ii binutils-mingw-w64-x86-64 ...
--snip--
ii gcc-mingw-w64-i686 ...
ii gcc-mingw-w64-x86-64 ... GNU C compiler for MinGW-w64 targeting Win64

4. You can also run config.guess from its installed location at /usr/share/automake-1.15.

Using the Autotools with Windows 457

ii mingw-w64 ... Development environment targeting 32- and 64-bit Windows
--snip--
$ dpkg -L gcc-mingw-w64-x86-64
--snip--
/usr/lib/gcc/x86_64-w64-mingw32
/usr/lib/gcc/x86_64-w64-mingw32/5.3-win32
/usr/lib/gcc/x86_64-w64-mingw32/5.3-win32/libgcc_s_seh-1.dll
/usr/lib/gcc/x86_64-w64-mingw32/5.3-win32/libgcov.a
--snip--
$

The first command lists all of the installed packages on my system and
filters the list through grep, searching for anything associated with mingw.
The equivalent rpm command on Red Hat–based systems would be rpm -qa |
grep mingw. The package I’m looking for will be related to the GCC C com-
piler and x86_64 development. It will likely look very similar, if not exactly
the same, on your system.

The second command lists the files installed by that package. Here,
I’m looking for the compiler, standard C library, headers, and other target-
specific files. The equivalent rpm command would be rpm -ql mingw64-gcc.5
The tag I’m searching for is x86_64-w64-mingw32. It should look similar in
structure (but not content) to the value printed previously by our execu-
tion of ./config.guess. This is the value that should be used with the --host
option on the configure command line. It’s used by configure as a prefix for
gcc, and a careful examination of your package manager output will show
that there was indeed a program called x86_64-w64-mingw32-gcc installed into
your /usr/bin directory.

Now let’s use the information we’ve gathered to build b64 for Windows.
From within the b64 directory, create a subdirectory called w64 (or what-
ever you like) and change into it; this will be the build directory we’ll use
to build a 64-bit Windows version of b64. Run ../configure with options to
target Windows, as follows (assuming we’re still in the b64 directory):6

$ mkdir w64
$ cd w64
$../configure --build=x86_64-pc-linux-gnu --host=x86_64-w64-mingw32
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for x86_64-w64-mingw32-strip... x86_64-w64-mingw32-strip
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes

5. If you’re not using Fedora, you may have a different package name. Use the one you find in
your package search.

6. You don’t actually need to be in the b64 directory. Your remote build directory can be
anywhere on your filesystem, as long as you can provide a proper relative path back to b64’s
configure script. For instance, you can run from a sibling directory to b64, in which case you’d
execute configure as ../b64/configure rather than ../configure, as we’re doing here. The only
exception is if your relative path back to b64 contains spaces. Autoconf-generated configure
scripts don’t really like spaces in this context.

458 Chapter 17

checking whether make supports nested variables... yes
checking for x86_64-w64-mingw32-gcc... x86_64-w64-mingw32-gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.exe
checking for suffix of executables... .exe
checking whether we are cross compiling... yes
checking for suffix of object files... o
--snip--
configure: creating ./config.status
config.status: creating Makefile
config.status: creating lib/Makefile
config.status: creating config.h
config.status: executing depfiles commands
$

I’ve highlighted some of the important output lines from configure
when cross-compiling. If you make a mistake entering the --host value on
the command line, you’ll see output similar to the following:

$../configure --build=x86_64-pc-linux-gnu --host=x86_64-w64-oops
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for x86_64-w64-oops-strip... no
checking for strip... strip
configure: WARNING: using cross tools not prefixed with host triplet
--snip--
$

The warning is telling you that it could not find a strip program called
x86_64-w64-oops-strip (not surprising). Most cross tool chains come with
a properly prefixed version of strip because this is one of the tools in the
binutils package, so this is a reasonable test. If configure can’t find a prefixed
version of the tools, it falls back to using the base names of the tools, which
may be perfectly fine if your cross tools are named by their base names but
simply stored in a different directory (which you’ve presumably added to
your PATH).

Now that we’ve configured the build for cross-compilation, everything
else works exactly the same as a regular Linux build. Try running make:

$ make
make all-recursive
make[1]: Entering directory '/.../b64/w64'
Making all in lib
make[2]: Entering directory '/.../b64/w64/lib'
--snip--
make all-recursive
make[3]: Entering directory '/.../b64/w64/lib'
make[4]: Entering directory '/.../b64/w64/lib'
depbase=`echo base64.o | sed 's|[^/]*$|.deps/&|;s|\.o$||'`;\
x86_64-w64-mingw32-gcc -DHAVE_CONFIG_H -I. -I../../lib -I.. -g -O2 -MT
base64.o -MD -MP -MF $depbase.Tpo -c -o base64.o ../../lib/base64.c &&\
mv -f $depbase.Tpo $depbase.Po

Using the Autotools with Windows 459

rm -f libgnu.a
x86_64-w64-mingw32-ar cr libgnu.a base64.o
x86_64-w64-mingw32-ranlib libgnu.a
make[4]: Leaving directory '/.../b64/w64/lib'
make[3]: Leaving directory '/.../b64/w64/lib'
make[2]: Leaving directory '/.../b64/w64/lib'
make[2]: Entering directory '/.../b64/w64'
x86_64-w64-mingw32-gcc -DHAVE_CONFIG_H -I. -I.. -I./lib -I../lib -g -O2 -MT
src/src_b64-b64.o -MD -MP -MF src/.deps/src_b64-b64.Tpo -c -o src/src_b64-
b64.o `test -f 'src/b64.c' || echo '../'`src/b64.c
mv -f src/.deps/src_b64-b64.Tpo src/.deps/src_b64-b64.Po
x86_64-w64-mingw32-gcc -g -O2 -o src/b64.exe src/src_b64-b64.o lib/libgnu.a
make[2]: Leaving directory '/.../b64/w64'
make[1]: Leaving directory '/.../b64/w64'
$
$ ls -1p src
b64.exe
src_b64-b64.o
$

I’ve highlighted the lines that indicate we’re using the mingw-w64 cross
tool chain to build b64. A listing of the src directory shows our Windows
executable, b64.exe.

To be complete, let’s copy this program over to a Windows system and
give it a try. As mentioned previously, I have Windows 10 installed in a
virtual machine on my Linux system so I can simply run it in place from
a Windows-mapped drive (Z:, in my case):

Z:\...\b64\w64\src>dir /B
src_b64-b64.o
b64.exe
Z:\...\b64\w64\src>type ..\..\bootstrap.sh | b64.exe
IyEvYmluL3NoCmdudWxpYi10b29sIC0tdXBkYXRlCmF1dG9yZWNvbmYgLWkK
Z:\...\b64\w64\src>set /p="IyEvYmluL3NoCmdudWxpYi10b29sIC0tdXBkYXRlCmF1dG9yZWN
vbmYgLWkK" <nul | b64.exe -d
#!/bin/sh
gnulib-tool --update
autoreconf -i

Z:\...\b64\w64\src>

N O T E Don’t be concerned about the set /p command—it’s just a tricky way of echoing text
to the Windows console without a trailing newline, since cmd.exe’s echo statement has
no option to suppress the trailing newline.

I’m not going to try to tell you that you’ll never experience problems
building Windows software this way. You will, but they’ll be porting issues
related primarily to a few POSIX system calls made directly by your project’s
source code. I will, however, say that whatever problems you do run into will
be a proper subset of those you’d experience if you tried to use Microsoft
tools to build this package. In addition to any source-code-porting issues

460 Chapter 17

you might find (they’ll still be there, even with Microsoft tools), you’d also
have to work the kinks out of hand-configured Visual Studio solution and
project files or Microsoft nmake files. For some projects, it’s worth the extra
effort to be able to access the additional fine-grained tuning available when
using Microsoft tools. For others, such tuning is not that important; build-
ing these projects for Windows on a Linux system works very well.

Windows Subsystem for Linux
Before we leave the Linux world behind, let’s examine the Windows
Subsystem for Linux (WSL) as an option for building Windows software
using GNU tools.

You can obtain a flavor of Linux for WSL by downloading the version
you want to use from the Windows Store. Before doing this, however, you
must enable the optional Windows Subsystem for Linux feature. You can
do this either from the Windows Features panel (type windows features
into the Cortana search bar and select the top result) or from a PowerShell
command prompt opened as Administrator.

From the Windows Features panel, scroll down until you find the entry
for Windows Subsystem for Linux, check the associated checkbox, and
click OK. Alternatively, from a PowerShell prompt (as Administrator), enter
the following command and follow the prompts:

PS C:\Windows\system32> Enable-WindowsOptionalFeature -Online -FeatureName
 Microsoft-Windows-Subsystem-Linux

Installing the Windows Subsystem for Linux will require a system restart.
Now open the Windows Store and search for “Windows Subsystem for

Linux,” select the “Run Linux on Windows” search result, and select the
Linux flavor you want to install. On my system, installing the Ubuntu 18.04
flavor downloaded about 215MB and installed an “Ubuntu 18.04” icon in
my Start menu.

Upon first execution, the terminal window displayed text indicating
that the system was being installed:

Installing, this may take a few minutes...
Please create a default UNIX user account. The username does not need to match
your Windows username.
For more information visit: https://aka.ms/wslusers
Enter new UNIX username: jcalcote
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Installation successful!
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

$

Using the Autotools with Windows 461

Use the mount command to see how Microsoft integrates the Windows
and Linux filesystems:

$ mount
rootfs on / type lxfs (rw,noatime)
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,noatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,noatime)
none on /dev type tmpfs (rw,noatime,mode=755)
devpts on /dev/pts type devpts (rw,nosuid,noexec,noatime,gid=5,mode=620)
none on /run type tmpfs (rw,nosuid,noexec,noatime,mode=755)
none on /run/lock type tmpfs (rw,nosuid,nodev,noexec,noatime)
none on /run/shm type tmpfs (rw,nosuid,nodev,noatime)
none on /run/user type tmpfs (rw,nosuid,nodev,noexec,noatime,mode=755)
binfmt_misc on /proc/sys/fs/binfmt_misc type binfmt_misc (rw,noatime)
C: on /mnt/c type drvfs (rw,noatime,uid=1000,gid=1000)
$

The key item of interest (highlighted) here is the fact that your
Windows C: drive is mounted under /mnt/c on this Linux installation.

On the other side of the coin, the Linux root filesystem is installed
into your Windows filesystem in the hidden user-specific AppData directory.
For example, I found my Ubuntu 18.04 installation’s root filesystem at
C:\Users\your-username\AppData\Local\Packages\CanonicalGroupLimited
.UbuntuonWindows_79rhkp1fndgsc\LocalState\rootfs.7

If you selected a Debian-based distribution, start by updating your sys-
tem software repository cache with sudo apt-get update. Then you can install
development tools like GCC and the Autotools in the usual manner for the
distro you selected:

$ sudo apt-get install gcc make autoconf automake libtool libtool-bin

If you’re at all familiar with Ubuntu and apt, you’ll see there’s no sig-
nificant difference between the output of the preceding command on WSL
Ubuntu 18.04 and a native installation of Ubuntu 18.04. That’s because
you’re really running Ubuntu 18.04 on Windows here.

As with a regular installation of Ubuntu 18.04, if you create a bin direc-
tory in your home directory and then open a new Ubuntu 18.04 terminal
window, you’ll find your personal bin directory at the beginning of your
PATH. Do this now so you can create a symlink, ~/bin/gnulib-tools, that refers
to the gnulib-tool in your Windows clone of Gnulib, as we did when we built
b64 on Linux:

$ ln -s /mnt/c/Users/.../gnulib/gnulib-tool ~/bin/gnulib-tool

7. Clearly, Microsoft did not intend for users to play around with this content from a Windows
command or PowerShell prompt, or from a Explorer window.

462 Chapter 17

Change into the /mnt/c/Users/.../b64 directory and run ./bootstrap.sh,
followed by ./configure && make to build b64:

$ cd /mnt/c/Users/.../b64
$./bootstrap.sh
--snip--
$./configure && make
--snip--
$ cd src
$./b64 <../../../b64/bootstrap.sh
IyEvYmluL3NoCmdudWxpYi10b29sIC0tdXBkYXRlCmF1dG9yZWNvbmYgLWkK$
$ printf "IyEvYmluL3NoCmdudWxpYi10b29sIC0tdXBkYXRlCmF1dG9yZWNvbmYgLWkK" | ./
b64 -d
#!/bin/sh
gnulib-tool --update
autoreconf -i
$

Wonderful! Except that this is a Linux program, not a Windows
program:

$ objdump -i b64
BFD header file version (GNU Binutils for Ubuntu) 2.30
elf64-x86-64
 (header little endian, data little endian)
 i386
elf32-i386
 (header little endian, data little endian)
 i386
--snip--
$

Attempting to run this program from a Windows command prompt will
result in the Windows equivalent of a blank stare. You see, what you really
have here with WSL is an inexpensive form of virtual machine guest with
some built-in filesystem integration. That’s not to say it’s not useful. It’s very
handy to have Linux closely integrated with Windows for many purposes.

So what can we do? Our only option is to do the same thing we did
on our native Linux installation earlier—install mingw-w64 and cross-
compile. The process is identical, so I won’t reiterate the details. Refer to
that discussion in “Cross-Compiling for Windows on Linux” on page 454
for instructions.

Cygwin
The Cygwin project was established in 1995 by Cygnus Solutions as an effort
to create tool chains using GNU software for the various embedded environ-
ments for which the company was hired to provide development tools.

Cygwin’s general philosophy is that GNU packages should be able to
be compiled for Windows without any modifications to the source code at

Using the Autotools with Windows 463

all. Time is money to a support company, and any time not spent modifying
source code is money in the bank. They wanted their engineers to use GNU
tools in these environments, not spend their time porting them.

So how do they do this? Well, most GNU packages are written in C and
use the C standard library for accessing most of the system functionality
they require. The C standard library—being standardized—is portable by
definition. Additionally, GNU projects strive for portability—at least among
Unix flavors. Nevertheless, there is a subset of POSIX system functionality
of which many GNU packages avail themselves, including POSIX threads
(pthreads) and system calls like fork, exec, and mmap. While recent C and C++
standards now include a threading API, those other system calls are very
specific to Unix and Linux. In fact, they have no direct counterparts on
Windows that align well enough to use without some adapter code between
the caller and the Windows API.

For a simple example, when you get right down to the bare metal, the
two kernels work fundamentally differently with respect to how processes
are created. Windows uses the Win32 CreateProcess function to create a new
process and load a program into it in a single step. Unix, on the other hand,
uses the fork and exec system calls to respectively clone an existing process
and replace the contents of the clone with another program.

It’s actually fairly easy to replace the fork-exec pair with a call to
CreateProcess. The true difficulties arise when fork is used independently
of exec, and this does happen occasionally.8 There is simply no way to make
CreateProcess do only half its job.9 Many GNU programs don’t use fork with-
out exec, but some important ones do. Mapping these calls to the Windows
API is difficult at best, and it’s often impossible without significant struc-
tural changes to the source code.

Cygnus therefore elected to create a shim library of POSIX system call
functionality. This library is called cygwin1.dll, and programs built using
Cygwin are linked to this library and therefore depend on it at runtime.
More to the point, every standard library call and most system calls pass
though cygwin1.dll so that porting to a new platform without existing tools
is an easy process.

You can detect if a Windows program was built for the Cygwin platform
by simply looking for cygwin1.dll in its dependency list.10 But the Cygwin
platform is not the only target that Cygwin supports. The mingw-w64 tool

8. It has been a common paradigm for many years in Unix server software to fork a parent
server process to handle a client request, without using exec to load a different program into
the child’s address space. The fork process is very fast, creating a copy-on-write clone of the
parent in a new address space. This gives the parent and child desired address-space isolation
and equal footing with the kernel scheduler, without the overhead of loading and initializing
a new program from disk.

9. Even if “half its job” involved cloning an existing process—which it does not.

10. The official Microsoft tool for examining such details is the dumpbin.exe utility program
that ships with Visual Studio. Use dumpbin /dependents some.dll.

464 Chapter 17

chains have been ported to Cygwin and may be used as cross-compilers in
Cygwin to build native Windows software, just as we did on Linux.

In 1999, Red Hat purchased Cygnus Solutions, and Cygwin has been
maintained by various Red Hat employees and outside volunteers since
then. Because of this maturity, Cygwin’s package repository is very large,
and its Windows POSIX environment is one of the most complete imple-
mentations available. Cygwin is one of the most-used systems for porting
GNU and other software to Windows.

Installing Cygwin
To install Cygwin, download the installer from Cygwin’s website at
https://www.cygwin.com. The installer is called setup-x86_64.exe. Cygwin’s
installer does not use the Windows installation database; you can remove
Cygwin merely by deleting its installation directory.

A unique and useful aspect of the Cygwin installer is that it caches
its downloaded packages at a location of your choice on your filesystem.
This cache can then be used as a standalone installation source for
later installations.

Running the installer presents a setup wizard, the opening page of
which is shown in Figure 17-1.

Figure 17-1: The initial copyright screen of the Cygwin64 setup program

Click Next to move to the second page of the setup wizard, shown in
Figure 17-2.

You’re asked here to select how you want to obtain packages. Your
options include the internet or a local installation directory. You may also
elect to download files from the internet but not install them, which is use-
ful for building a local installation source for installing multiple systems
from the same cache of downloaded files. Select Install from Internet and
click Next to continue to the next page, shown in Figure 17-3.

https://www.cygwin.com

Using the Autotools with Windows 465

Figure 17-2: The installation type screen of the Cygwin64 setup program

Figure 17-3: The installation location screen of the Cygwin64 setup program

Here, you’re asked where you want to install Cygwin. The default
location is C:\cygwin64, and it’s recommended that you just stick with this
default location, though Cygwin does a better job than some of the other
installers of managing the required system changes if you do choose to
install in a nondefault location.

If you’re a Windows power user, you’re very likely feeling that gut-
wrenching desire right now to change the default location to something
more reasonable on Windows. I admonish you not to do this. The problem
is that you’re trying to view Cygwin as an application and, while it techni-
cally is one, it can also be viewed as being somewhat akin to a full Linux

466 Chapter 17

virtual machine installation. It provides a foreign (to Windows) develop-
ment environment, which puts it squarely in the camp of a sibling operat-
ing system to Windows. From this perspective, it’s perhaps a bit easier to
understand why the Cygwin64 directory deserves a special place next to the
Windows directory on your hard drive.

Click Next to move to the next page, shown in Figure 17-4.

Figure 17-4: The local package directory screen of the Cygwin64 setup program

You’re now asked to select a local package directory. This is the direc-
tory where downloaded package files are stored. Choose a reasonable loca-
tion on your Windows system—such as your Downloads directory. A cygwin
directory will be created at this location and will contain a subdirectory
for each internet source from which you download packages. Click Next to
move to the next screen, shown in Figure 17-5.

Figure 17-5: The proxy settings screen of the Cygwin64 setup program

Using the Autotools with Windows 467

You may now select or modify your proxy settings. Usually, you can just
use the default system proxy settings. Those who use a proxy in their work
or home environments will be used to configuring this for internet applica-
tions and will know what to do with the options here. Click Next to move to
the next screen, shown in Figure 17-6.

Figure 17-6: The package download source screen of the Cygwin64 setup program

Select a package download source. As with a Linux distribution, there
are multiple sites you can use as a package source for Cygwin. Select one
that’s geographically close to you for the fastest installation and then click
Next to begin downloading the package catalog, shown in Figure 17-7.

Figure 17-7: The package catalog download screen of the Cygwin64 setup program

468 Chapter 17

Downloading and parsing the package catalog from the selected source
site takes only a few seconds, and then the package manager main screen is
displayed, as shown in Figure 17-8.

Figure 17-8: The package manager screen of the Cygwin64 setup program

I’ve expanded the All root element and the Devel category to show
you the first few packages in this category, sorted alphabetically. Select the
following additional packages in the Devel category by clicking the down
arrow on the right end of the New column and choosing the highest version
number available in the list for each package (with a few exceptions):

•	 autoconf2.5 (2.69-3)

•	 automake (10-1)

•	 automake1.15 (1.15.1-1)

•	 binutils (2.29-1)

•	 gcc-core (7.4.0-1)

•	 gcc-g++ (7.4.0-1 - optional)

•	 libtool (2.4.6-6)

•	 make (4.2.1-2)

N O T E As you scroll though the list of packages, you’ll note that some have been preselected
for you. Do not deselect any of the default packages.

Each entry in this list has a base package name followed by a package
version in parentheses. The versioning system is similar to that of a stan-
dard Linux distribution. The upstream source package version is suffixed
with a dash, followed by a packager’s version. For example, the autoconf2.5
package has a source package version of 2.69 and a packager’s version of 3.
The packager’s version is specific to the distribution—in this case, Cygwin.

Using the Autotools with Windows 469

Cygwin uses a rolling release mechanism, meaning that Cygwin pack-
ages are updated somewhat independently as newer source package versions
become available and as the Cygwin maintainers consume them. The ver-
sions I’ve listed here were current at the time of this writing. Your most recent
version numbers may be newer. Select the most recent rather than the ones
I’ve listed. Feel free to use the search box at the top of the dialog to quickly
find the packages in the list. Once you’ve selected these additional packages,
click Next to continue to the next page, shown in Figure 17-9.

Figure 17-9: The download confirmation screen of the Cygwin64 setup program

After reviewing the list here to ensure you’ve selected the desired set,
click Next to start the download process, shown in Figure 17-10.

Figure 17-10: The package download progress screen of the Cygwin64 setup program

470 Chapter 17

Since you elected to install only a few packages, this should not take
long. Once the process completes, click Next to continue to the next screen,
shown in Figure 17-11.

Figure 17-11: The icon selection screen of the Cygwin64 setup program

Select where you’d like icons to be created on your Windows system.
You have two checkbox options here: Desktop and Start Menu. If you
elect not to add any icons, you can still run the Cygwin terminal program
by executing C:\cygwin64\cygwin.bat from an Explorer window or from a
command or PowerShell prompt.

Click Finish to close the package manager. When you want to modify
your Cygwin environment by adding or removing packages, or updating your
existing packages to newer versions, just run setup-x86_64.exe again.11 You’ll
need to go through all the same initial screens, but the package manager
will remember your previous options and all the packages you currently have
installed, allowing you to modify the existing configuration as you desire.

Opening the Cygwin Terminal
The first execution of the Cygwin terminal indicates that skeleton .bashrc,
.bash_profile, .inputrc, and .profile files are copied into your /home/username
directory within the Cygwin filesystem.

The best way to understand the Cygwin filesystem is to execute the
mount command within the terminal to display how Cygwin maps your
Windows filesystem resources into its own filesystem:

$ mount
C:/cygwin64/bin on /usr/bin type ntfs (binary,auto)

11. You can subscribe to the relatively low-volume cygwin-announce mailing list to receive
emails announcing when new packages come out. See https://www.cygwin.com/lists.html.

https://www.cygwin.com/lists.html

Using the Autotools with Windows 471

C:/cygwin64/lib on /usr/lib type ntfs (binary,auto)
C:/cygwin64 on / type ntfs (binary,auto)
C: on /cygdrive/c type ntfs (binary,posix=0,user,noumount,auto)
Z: on /cygdrive/z type vboxsharedfolderfs (binary,posix=0,user,noumount,auto)
$

Cygwin auto-mounts C:\cygwin64, C:\cygwin64\bin, and C:\cygwin64\
lib to /, /usr/bin, and /usr/lib, respectively. It also auto-mounts all of your
Windows drive roots to directories named by the drive letter under the
/cygdrive directory. I have my Windows operating system installed on
the C:\ drive, and I have the Z:\ drive mapped to my Linux host though
VirtualBox’s shared folder system. Therefore, I have full access to both my
Windows filesystem and my Linux host filesystem from within Cygwin’s
POSIX environment.12 I also have access to Cygwin’s entire filesystem from
Windows, via the C:\Cygwin64 directory.

Testing the Build
Because Cygwin provides access to your Windows environment within its
own POSIX environment, you can simply run a previously installed stand-
alone copy of Git for Windows directly from the Cygwin shell prompt. An
even better option, but one that only works inside of the Cygwin terminal,
is to install Cygwin’s version of git from its package manager. Why is this
option better? Because Cygwin’s git package understands Cygwin’s filesys-
tem conventions better than the Windows version does. For instance, the
Windows version will sometimes create files with the wrong permissions
when viewed from a POSIX environment.

Unlike MinGW and Msys2, Cygwin can manage symlinks correctly
within the Cygwin filesystem. Recall from Chapter 13, and earlier in this
chapter, that we need to create a symlink to the gnulib-tool utility some-
where in our PATH so that b64’s bootstrap.sh script is able to find Gnulib.
Let’s do that now in the Cygwin terminal. Fill in the elided section of the
following command with the proper path to your clone of Gnulib:

$ ln -s /cygdrive/c/.../gnulib/gnulib-tool /usr/bin/gnulib-tool

This command creates a symbolic link in Cygwin’s /usr/bin directory,
referring to the gnulib-tool program in the root of the Gnulib work area
you cloned.

By default, Cygwin creates symlinks as text files flagged with the
Windows System (S) attribute, making them invisible to normal Windows
directory listing commands and within Windows File Explorer. If you exam-
ine the contents of a Cygwin symlink file, you’ll find it contains a magic

12. A warning for those who are thinking of building on that VirtualBox shared folder:
I’ve found it’s fine for copying single files back and forth, but when you start doing a lot of
I/O across these virtual machine shared folder channels, you get anomalous behavior; for
example, files get half written, scripts quit in the middle, and so on. Since Windows’ NFS
client is terrible, it’s better to set up Samba on your Linux system and just use the standard
Windows network client to access your Linux filesystem.

472 Chapter 17

cookie, !<symlink>, followed by the path to the target filesystem entry in
UTF-16 format (beginning with the little-endian byte order mark, 0xFFFE).

You can configure Cygwin to create true Windows symbolic
links by exporting a CYGWIN environment variable containing the text
winsymlinks:nativestrict. However, if you do this, you must then run your
Cygwin terminal as Administrator, because creating Windows native sym-
bolic links requires administrative rights by default. Recent versions of
Windows 10 allow native symlinks to be created without elevated privileges
if you’re willing to switch your system into so-called “developer mode.”

All that said, Cygwin’s own system of managing symlinks works really
well, as long as the tools interpreting the links are built for the Cygwin plat-
form. In fact, to see the contents of a Cygwin symlink file, you have to use
a non-Cygwin tool because Cygwin tools will simply follow the symlink file,
rather than open the file, even from a Windows command prompt!

Now, let’s build b64 for Windows. We’ll start by changing directories
within the Cygwin terminal to the b64 work area you cloned on your
Windows system and running the bootstrap.sh script to pull in our Gnulib
dependencies and to run autoreconf -i:

$ cd /cygdrive/c/.../b64
$./bootstrap.sh
Module list with included dependencies (indented):
 absolute-header
 base64
--snip--
configure.ac:12: installing './compile'
configure.ac:20: installing './config.guess'
configure.ac:20: installing './config.sub'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './depcomp'
$

And now we can simply run configure and make. We’ll do this from
within a subdirectory structure so we can reuse this work area for other
build types later. Note there’s no need to specify --build or --host options
here to set up a cross-compile. We’re running “native” Cygwin tools,
which automatically build Cygwin programs designed to run on the
host platform:

$ mkdir -p cw-builds/cygwin
$ cd cw-builds/cygwin
$../../configure
--snip--
checking for C compiler default output file name... a.exe
checking for suffix of executables... .exe
--snip--
checking build system type... x86_64-unknown-cygwin

Using the Autotools with Windows 473

checking host system type... x86_64-unknown-cygwin
--snip--
configure: creating ./config.status
config.status: creating Makefile
config.status: creating lib/Makefile
config.status: creating config.h
config.status: executing depfiles commands
$
$ make
make all-recursive
make[1]: Entering directory '/cygdrive/c/.../cw-builds/cygwin'
--snip--
make[2]: Entering directory '/cygdrive/c/.../cw-builds/cygwin'
gcc -DHAVE_CONFIG_H -I. -I../../b64 -I./lib -I../../b64/lib -g -O2 -MT src/
src_b64-b64.o -MD -MP -MF src/.deps/src_b64-b64.Tpo -c -o src/src_b64-b64.o
`test -f 'src/b64.c' || echo '../../b64/'`src/b64.c
mv -f src/.deps/src_b64-b64.Tpo src/.deps/src_b64-b64.Po
gcc -g -O2 -o src/b64.exe src/src_b64-b64.o lib/libgnu.a
make[2]: Leaving directory '/cygdrive/c/.../cw-builds/cygwin'
make[1]: Leaving directory '/cygdrive/c/.../cw-builds/cygwin'
$

Finally, we’ll test our new b64.exe program to see if it works on Windows.
While the Cygwin terminal may look like Linux, it’s really just a Linux-like
way of accessing Windows, so you can execute Windows programs from the
Cygwin terminal. This is nice because it allows us to use the Bash version of
echo with its -n option to suppress the default linefeed during our testing:

$ cd src
$./b64.exe <../../bootstrap.sh
IyEvYmluL3NoCmdudWxpYi10b29sIC0tdXBkYXRlCmF1dG9yZWNvbmYgLWkK
$
$ echo -n "IyEvYmluL3NoCmdudWxpYi10b29sIC0tdXBkYXRlCmF1dG9yZWNvbmYgLWkK" |\
 ./b64 -d
#!/bin/sh
gnulib-tool --update
autoreconf -i
$

N O T E I did not use the .exe extension on the command to reverse the base64 encoding oper-
ation in this console listing. I wanted to show that, like Windows, Cygwin does not
require the use of the extension on executable files.

If you run a dependency checker like Visual Studio’s dumpbin.exe or
Cygwin’s cygcheck utility, you’ll find that this version of b64.exe depends
heavily on cygwin1.dll, which must be shipped with your program. By
default, Cygwin builds “Cygwin” software—software designed to run on
the Cygwin platform, and an important part of the Cygwin platform is
cygwin1.dll on Windows.

474 Chapter 17

Building True Native Windows Software
You may also install the mingw-w64 tool chain and compile using the
same techniques we used in “Cross-Compiling for Windows on Linux” on
page 454. The mingw-w64 tool chain is available in the Cygwin package
manager and is a Cygwin port of the same tool chain we installed earlier
on Linux.

Let’s do that now. Run the setup-x86_64.exe program again and skip
through all the leading dialogs until you come to the package manager
window. After initial installation, the default view shown by the package
manager window is a list of pending updates of packages you’ve already
installed. Depending on how long it has been since your initial installation,
this list may even be empty. Select the Full option from the View drop-
down box to return to the complete list of packages. Locate and select
(under the Devel category) the following packages for installation. You may
see newer version options than I’ve listed here; select the latest available to
you. You can enter a prefix (mingw64-) in the Search box to narrow down
the result list to a subset of packages containing those you want.

•	 mingw64-i686-gcc-core (7.4.0-1)

•	 mingw64-i686-gcc-g++ (7.4.0-1)

•	 mingw64-x86_64-gcc-core (7.4.0-1)

•	 mingw64-x86_64-gcc-g++ (7.4.0-1)

The first two of these packages are for generating 32-bit Windows soft-
ware, and the last two are for generating 64-bit Windows software. Click
Next to continue and install these additional packages.

N O T E You may notice on the summary screen that other packages you did not explicitly select
are also getting installed. That’s because these four are meta-packages, as described
previously. If it has been a while since you initially installed Cygwin, you may also
see updates for packages you previously installed.

Create other subdirectories under b64/cw-builds for 32- and 64-bit
mingw-w64 builds:

$ pwd
/cygdrive/c/.../cw-builds
$ mkdir mingw32 mingw64
$ cd mingw32
$

Let’s start by building the 32-bit Windows program in the mingw32
directory using the i686 variation of the mingw-w64 cross tool set:

$ cd mingw32
$../../configure --build=x86_64-unknown-cygwin --host=i686-w64-mingw32
--snip--
checking for C compiler default output file name... a.exe
checking for suffix of executables... .exe

Using the Autotools with Windows 475

--snip--
checking build system type... x86_64-unknown-cygwin
checking host system type... i686-w64-mingw32
--snip--
$
$ make
make all-recursive
--snip--
i686-w64-mingw32-gcc -DHAVE_CONFIG_H -I. -I../../b64 -I./lib -I../../lib -g
-O2 -MT src/src_b64-b64.o -MD -MP -MF src/.deps/src_b64-b64.Tpo -c -o src/
src_b64-b64.o `test -f 'src/b64.c' || echo '../../'`src/b64.c
mv -f src/.deps/src_b64-b64.Tpo src/.deps/src_b64-b64.Po
i686-w64-mingw32-gcc -g -O2 -o src/b64.exe src/src_b64-b64.o lib/libgnu.a
make[2]: Leaving directory '/cygdrive/c/.../cw-builds/mingw32'
make[1]: Leaving directory '/cygdrive/c/.../cw-builds/mingw32'
$

Though it may seem odd, you must use the --build and --host options
on the configure command line here to cross-compile for Windows. The
reason is the mingw-w64 tool chain is not the default tool chain on Cygwin.
All you’re really doing is telling configure where to find the nondefault tools
you want to use. From a certain point of view, it actually is a cross-compile
because you’re building non-Cygwin software on the Cygwin platform.

Do the same for the 64-bit build:

$ cd ../mingw64
$../../configure --build=x86_64-unknown-cygwin --host=x86_64-w64-mingw32
--snip--
checking for C compiler default output file name... a.exe
checking for suffix of executables... .exe
--snip--
checking build system type... x86_64-unknown-cygwin
checking host system type... x86_64-w64-mingw32
--snip--
$
$ make
make all-recursive
--snip--
x86_64-w64-mingw32-gcc -DHAVE_CONFIG_H -I. -I../.. -I./lib -I../../lib -g
-O2 -MT src/src_b64-b64.o -MD -MP -MF src/.deps/src_b64-b64.Tpo -c -o src/
src_b64-b64.o `test -f 'src/b64.c' || echo '../../'`src/b64.c
mv -f src/.deps/src_b64-b64.Tpo src/.deps/src_b64-b64.Po
x86_64-w64-mingw32-gcc -g -O2 -o src/b64.exe src/src_b64-b64.o lib/libgnu.
amake[2]: Leaving directory '/cygdrive/c/.../cw-builds/mingw64'
make[1]: Leaving directory '/cygdrive/c/.../cw-builds/mingw64'
$

N O T E It may seem strange that the 64-bit version of the gcc is called x86_64-w64-mingw32-gcc.
What’s with that 32 on the end of the cross-tool prefix? The reason is that mingw was
originally a 32-bit Windows compiler, named specifically mingw32. The mingw32
project was eventually renamed to MinGW, but tools and package names are harder
to change once they’re in widespread use.

476 Chapter 17

Analyzing the Software
To really understand the differences between these builds, you’ll need to
obtain a tool for looking inside the b64.exe files we generated using each
of these three tool sets. You can run the dumpbin.exe utility that comes with
Visual Studio or Cygwin’s cygcheck tool, if you like. I found a very nice tool
called Dependencies on GitHub by user lucasg.13

First, let’s look at the cygcheck output for all three versions of the
program. We’ll start in the cw-builds directory to give us easy access to
all of them:

$ pwd
/cygdrive/c/Users/.../cw-builds
$

u $ cygcheck cygwin/src/b64.exe
C:\Users\...\cw-builds\cygwin\src\b64.exe
 C:\cygwin64\bin\cygwin1.dll
 C:\Windows\system32\KERNEL32.dll
 C:\Windows\system32\ntdll.dll
 C:\Windows\system32\KERNELBASE.dll
$

v $ cygcheck mingw32/src/b64.exe
C:\Users\...\cw-builds\mingw32\src\b64.exe
$

w $ cygcheck mingw64/src/b64.exe
C:\Users\...\cw-builds\mingw64\src\b64.exe
 C:\Windows\system32\KERNEL32.dll
 C:\Windows\system32\ntdll.dll
 C:\Windows\system32\KERNELBASE.dll
 C:\Windows\system32\msvcrt.dll
$

The concept being conveyed by the hierarchies here is that a library
is a direct dependency of the library or program directly above it and an
indirect dependency of ancestors farther up the chain. The Cygwin version
at u shows a dependency hierarchy with cygwin1.dll near the top, just under
b64.exe, and with all other libraries as direct or indirect dependencies of that
library. This implies that every system or library call made by b64.exe is being
made directly to cygwin1.dll, which then calls the other libraries on its behalf.

The 64-bit mingw64 version at w displays a similar hierarchy, except
that the b64.exe program depends directly on kernel32.dll and msvcrt.dll.
This is a native Windows program, by all accounts.

My version of the cygcheck utility has some problems with 32-bit native
Windows software. You can see this at v, where the tool shows us only the

13. See https://github.com/lucasg/Dependencies/releases/. The README.md displayed on the
project home page states that the Visual C++ Redistributable package must be installed on
your Windows system to properly run the software. The author provides a link to that package
at the top of the project description. Install the latest from the Microsoft site referenced by
the link. The package provides a command line version and a GUI version of the tool, but I
found the command line version was not quite as robust as the GUI version.

https://github.com/lucasg/Dependencies/releases/

Using the Autotools with Windows 477

program, b64.exe, with no library dependencies. To see the true details
of this version, let’s switch to the Dependencies program I mentioned
earlier. I’ve loaded all three versions of the program into one instance of
Dependencies in Figure 17-12.

Figure 17-12: Modules and exports for b64.exe built as a 32-bit mingw-w64 program

Here, you can see that the 32-bit mingw-w64 version really does have
library dependencies similar to those of the 64-bit mingw-w64 version. The
32-bit version uses C:\Windows\SysWOW64\msvcrt.dll, and the 64-bit version
uses C:\Windows\system32\msvcrt.dll. The same is true of kernel32.dll.

There are additional subtle differences between the Cygwin version and
the mingw-w64 versions. For a simple example, the Cygwin version imports
getopt from cygwin1.dll. You’ll perhaps recall that we used the POSIX getopt
function to parse command line options in b64. You won’t find getopt in
msvcrt.dll, however, so where does it come from? The mingw-w64 tool chain
provides a static archive of such POSIX functionality that ends up becom-
ing a part of b64.exe.

MinGW: Minimalist GNU for Windows
In 1998, Colin Peters authored the initial release of what was then called
mingw32. Later the numbers were dropped in order to avoid the implication
that MinGW could only generate 32-bit software.14

MinGW initially offered only a Cygwin port of GCC. Sometime later,
Jan-Jaap Van der Heijden created a native Windows port of GCC and added

14. It’s somewhat ironic that 15 years later, MinGW is still only generating 32-bit software.

478 Chapter 17

a binutils package and GNU make. MinGW has been a very popular alternative
to Cygwin ever since, mainly because of its primary goal of creating software
that closely resembles software generated by Microsoft tools. For reasonably
portable C code, no libraries other than Windows system and Visual Studio
runtime libraries (msvcrt.dll) are required. Remember that mingw-w64 was
not available until 2013, so MinGW was the only available open source option
for generating native Windows code for more than 10 years.

This concept is central to the philosophy espoused by the MinGW
project. The goal of MinGW is to use only the standard C library as an
abstraction layer and to modify source code where necessary to make
other key packages available under MinGW.

There is a significant portion of GNU software, however, that
makes use of the pthreads library. To accommodate this major set of GNU
packages, MinGW gave in to pragmatism by providing a library called
pthreads-win32.dll. This library shows up so often in the dependency list
for software today that many people don’t associate it with MinGW at all.
Indeed, some portable software compiled using Microsoft’s tools has even
used pthreads-win32.dll independently, as a portable threading library, rely-
ing on POSIX threads in both POSIX and Windows environments.15

There is one major drawback to using MinGW, which is lately becom-
ing more of an issue: MinGW still only generates 32-bit native Windows
applications. Microsoft and Intel have recently announced jointly that some
near-future version of Windows would only support 64-bit hardware. While
32-bit software will generally run on 64-bit systems, this may change with
time. MinGW’s package repository does not provide a port of its GCC com-
piler that generates 64-bit Windows object code, but there are third parties
that make mingw-w64 available on the MinGW platform if you’re willing to
move away from MinGW’s package manager. However, this sort of activity is
discouraged because adding third-party packages to the environment can
cause dependency problems the package manager can’t resolve.

The MinGW community has survived on its name for many years, and
the project has only recently started taking monetary donations to help
with maintenance. Perhaps the additional financial support will spur the
community into moving forward with these important upgrades.

Installing MinGW
In spite of MinGW generating only 32-bit Windows programs and libraries,
it’s worth looking at here because using it is so simple and effective for
software that’s already portable. Once you’ve begun to understand how
MinGW and Msys work, moving to the other Windows-based POSIX
platforms is a trivial task because all of them are based on some form
of an Msys-like environment.

15. This is less of an issue today because the C11 and C++11 standards added direct support
for threads. Prior to this, POSIX threads were used in C and C++ programs on POSIX sys-
tems like Linux, and Win32 native threads were used on Windows. With this improvement in
these languages’ standard libraries, even pthreads-win32.dll can be dispensed with for GNU
software that’s updated to use these newer standards directly.

Using the Autotools with Windows 479

We’ll start by installing MinGW, which could not be simpler. Navigate in
your favorite browser to http://www.mingw.org. Click the Downloads tab in the
top menu bar. This link takes you to the osdn.net16 download page for the
MinGW project. Scroll down a bit (being careful to avoid the ridiculous large
green-button advertisement links intended to look like legitimate download
buttons). Under the gray bar labeled “Operating System: Windows,” click
the small blue button with the embedded Windows 10–like logo. Save the
mingw-get-setup.exe program to a location on your hard drive.

Running this program presents you with a very simple dialog-based
installer for the MinGW Installation Manager Setup Tool, as shown in
Figure 17-13.

Figure 17-13: The initial dialog presented by the MinGW Installation Manager Setup Tool

This program actually installs the MinGW Installation Manager, a tool
that, much like the Cygwin package manager, allows fine-grained control
over the MinGW components that get installed or updated. Before the
installation manager, the only option for updating MinGW was either to
uninstall an existing full installation and then reinstall a new version from
scratch, or try to upgrade, which was a hit-and-miss proposition at best.

In spite of the apparent out-of-date copyright range, the setup program
and the installation manager itself were last refreshed (as of this writing) in
September of 2017. The installation manager keeps a package catalog up-
to-date, so you always have access to the very latest MinGW packages. For
instance, a package containing GCC 8.2.0 was uploaded in August of 2018.
By the time you read this, it will likely have been updated with an even
newer version.

16. The original SourceForge.JP site.

http://www.mingw.org

480 Chapter 17

Go ahead and click Install. You’re presented with an options page,
shown in Figure 17-14.

Figure 17-14: The options page presented by the MinGW Installation Manager Setup Tool

As with Cygwin, MinGW wants to be installed in a path off the root of
the system drive, and also as with Cygwin, you need to consider MinGW a
virtualized operating system. As such, it has need of a special place on your
Windows filesystem.

Additionally, like Cygwin, you’ll find MinGW is not installed using the
Windows installation database and, hence, does not show up in the Windows
installed programs panel. You can, in fact, completely remove MinGW from
your Windows system by merely deleting the C:\MinGW directory.

N O T E If you do decide to install into a different location, you’ll need to carefully read
the initial installation instructions on the MinGW website, because you’ll need
to make additional changes to files in the C:\MinGW\msys\1.0\etc directory
after installation.

Leave all options as they are and click Continue. The next screen you’ll
see is the download progress page, showing you that the latest installation
manager program is being downloaded into the C:\MinGW\libexec\mingw-get
directory. Figure 17-15 shows the state of this dialog once the catalog has
been updated from the download source and the latest version of the instal-
lation manager has been downloaded and installed.

Using the Autotools with Windows 481

Figure 17-15: The download progress page for the MinGW Installation Manager
Setup Tool

Click Continue to open the installation manager, shown in Figure 17-16.

Figure 17-16: The installation manager main screen with package context menu

The packages you see in the Basic Setup panel (shown by default) are
actually meta-packages, or packages referring to large groups of actual
packages. To see real packages, you can select the All Packages option on
the left and then scroll through the list displayed on the right. When you’re
ready to continue, return to the Basic Setup panel.

482 Chapter 17

Selecting the mingw-developer-toolkit-bin meta-package will also
automatically select the msys-base-bin meta-package. These two, plus the
mingw32-base-bin meta-package, are all you need to compile C programs
into 32-bit native Windows programs. Select these three packages, as
shown in Figure 17-16, and then click the Apply Changes option from
the Installation menu, as shown in Figure 17-17.

Figure 17-17: Applying selected changes in the installation manager

You’re presented with a confirmation dialog titled “Schedule of
Pending Actions,” which allows you to apply the scheduled changes, defer
these changes in order to return to the main window and modify the current
list, or simply discard all changes. Select Apply, as shown in Figure 17-18.

Figure 17-18: The installation manager’s schedule of pending actions dialog

Using the Autotools with Windows 483

Finally, you’re presented with the Download Package dialog, shown in
Figure 17-19, in which each of the 112 packages you selected for download
is displayed with a progress bar.

Figure 17-19: The installation manager’s Download Package dialog

N O T E Since the MinGW download site will have undoubtedly been updated after this
writing, you may see a different number of packages to be installed in the bottom
pane of the dialog shown in Figure 17-18.

This may take a while, depending on your internet connection, so go
grab a snack.

N O T E If you get any package download errors, just click OK to dismiss the error dialog, wait
for the successful download and installation of the remaining packages to complete, and
then click Apply Changes from the Installation menu again to retry downloading and
installing the failed packages. Only the failed packages will be redownloaded.

Once all packages have been downloaded, they’ll be installed into a stan-
dard Unix-like directory structure within the C:\MinGW\msys\1.0 directory.
Figure 17-20 shows the installation manager’s Applying Scheduled Changes
dialog, after it has installed each of the previously downloaded packages.

Figure 17-20: The installation manager’s Applying Scheduled Changes dialog

484 Chapter 17

You may now close the installation manager program. There is one
final step in preparing your installation of MinGW—creating a conve-
nient desktop icon for the MinGW terminal, which is a somewhat outdated
version of the Bash shell ported to Windows and running in a Windows
Console Host (conhost.exe) process. MinGW installs a Windows batch file
at C:\MinGW\msys\1.0\msys.bat. Execute this batch file to start the MinGW
terminal that provides your POSIX build environment. I like to create a
shortcut to this file on my desktop and change the icon for it to point to
the msys.ico file found in the same directory.

Double-click the msys.bat file and start up the MinGW terminal. You’ll
find pwd shows that you’re left in the /home/username directory, where username
is your Windows system user name.

As with Cygwin, the best way to understand the filesystem is to use mount
to view the mount points in the MinGW filesystem:

$ mount
C:\Users\...\AppData\Local\Temp on /tmp type user (binmode,noumount)
C:\MinGW\msys\1.0 on /usr type user (binmode,noumount)
C:\MinGW\msys\1.0 on / type user (binmode,noumount)
C:\MinGW on /mingw type user (binmode)
c: on /c type user (binmode,noumount)
d: on /d type user (binmode,noumount)
z: on /z type user (binmode,noumount)
$

This output looks similar to its Cygwin counterpart, but there are a few
differences. First, MinGW mounts your Windows user temporary directory
as /tmp. Second, both /usr and / represent the same Windows directory,
C:\MinGW\msys\1.0. Finally, C:\MinGW itself is mounted under /mingw.

Windows drives are managed a bit differently also. Windows drive
letters show up in the MinGW filesystem as they do in Cygwin, but they’re
listed directly under the root, rather than as a separate top-level directory.
Another subtle difference here is that my D: drive is listed. It’s a virtual
optical drive, with no media mounted. MinGW chooses to show it even
without media, while Cygwin only shows it with media.

If you cat the contents of the /etc/fstab file, you can see that most of
the preceding is hardcoded. The only mount point that’s actually soft-
configured is the /mingw path:17

$ cat /etc/fstab
/etc/fstab -- mount table configuration for MSYS.
Please refer to /etc/fstab.sample for explanatory annotation.

MSYS-Portable needs this "magic" comment:
MSYSROOT=C:/MinGW/msys/1.0

17. If you had decided to install MinGW into a non-default location, you would have needed
to change the Win32_Path in this file to reflect the actual installation location; otherwise, the
/mingw directory would fail to mount.

Using the Autotools with Windows 485

Win32_Path Mount_Point
#------------------------------------- -----------
C:/MinGW /mingw
$

Testing the Build
We’re now ready to try building the b64 project. First, we should clean up
the b64 directory in order to demonstrate bootstrap.sh in this environment,
so change into the b64 directory from your MinGW terminal and use git to
remove all artifacts. Then make a build directory structure for testing MinGW:

$ cd /c/Users/.../Documents/dev/b64
$ git clean -xfd
--snip--
$ mkdir -p mgw-builds/mingw
$

At this point, rather than lead you down a sure path to failure, I’ll state
up front that you’ll immediately run into problems with symbolic links. While
Cygwin has no trouble properly creating and using symlinks in its environ-
ment, the same is not true of MinGW. If you attempt to create a symlink from
/usr/bin/gnulib-tool to the .../gnulib/gnulib-tool program, you’ll find the ln
-s command seems to work, but when you try to run bootstrap.sh, it fails to
find Gnulib. A closer examination shows that the symlink you thought you
created was actually just a copy. Well, a copy won’t work, because gnulib-tool
uses its real location in the filesystem as the base of the Gnulib repository
and a copy of gnulib-tool in another location cannot do this.

To fix this problem, we’ll have to adjust b64’s bootstrap.sh program to
use a relative path to the actual gnulib-tool. I cloned gnulib right next to
b64, so I merely have to change bootstrap.sh so that it refers to ../gnulib/
gnulib-tool, rather than relying on its being accessible from the system PATH.
Use any editor to make changes similar to those highlighted in Listing 17-1
on your system.

#!/bin/sh
../gnulib/gnulib-tool --update
autoreconf -i

Listing 17-1: b64/bootstrap.sh: Changes required to allow MinGW to find Gnulib

N O T E After making these changes to bootstrap.sh, you should expect to see different output
when you run b64.exe against it.

That will fix our Gnulib issues, but there’s another problem lurking
here. While MinGW may have the very latest GCC tool chain, it doesn’t stay
as current with the Autotools. We’ve been working with Autoconf 2.69 and
Automake 1.15.1, but as of this writing, MinGW only provides Autoconf 2.68

486 Chapter 17

and Automake 1.11.1. Perhaps by the time you read this, these tools will have
been updated, and you will not have to make the changes to configure.ac
shown in Listing 17-2. Check your Autoconf and Automake versions before
making these changes.

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.68])
AC_INIT([b64], [1.0], [b64-bugs@example.com])
AM_INIT_AUTOMAKE([subdir-objects])
AC_CONFIG_SRCDIR([src/b64.c])
AC_CONFIG_HEADERS([config.h])
AC_CONFIG_MACRO_DIR([m4])

Checks for programs.
AC_PROG_CC
AM_PROG_CC_C_O
--snip--
AC_OUTPUT

Listing 17-2: b64/configure.ac: Changes required to work with Autoconf 2.68

The highlighted lines show the changes that need to be made. First,
we need to reduce the lowest supported version in AC_PREREQ to allow
Autoconf 2.68 to process this configure.ac file. Then we need to change
the Automake macro, AC_CONFIG_MACRO_DIRS (plural), to its Autoconf coun-
terpart, AC_CONFIG_MACRO_DIR. It works the same, except that the one that
comes with Automake 1.15.1 makes it possible for us to forego the use of
AC_LOCAL_AMFLAGS = -I m4 in our Makefile.am file. Luckily, I had already added
that line into Makefile.am and just left it there, so this change is easy. Finally,
Automake 1.15.1 consolidated the functionality of AM_PROG_CC_C_O into the
AM_INIT_AUTOMAKE macro when the subdir-objects option is given. Moving
back to Automake 1.11.1 requires us to change to the old format where we
have to explicitly mention AM_PROG_CC_C_O and it must come after AC_PROG_CC.

After these changes, we can finally run bootstrap.sh to generate our
configure script:

$./bootstrap.sh
Module list with included dependencies (indented):
 absolute-header
 base64
--snip--
configure.ac:13: installing `./compile'
configure.ac:21: installing `./config.guess'
configure.ac:21: installing `./config.sub'
configure.ac:6: installing `./install-sh'
configure.ac:6: installing `./missing'
lib/Makefile.am: installing `./depcomp'
$

Using the Autotools with Windows 487

Now change into the mgw-builds/mingw directory created earlier and
run configure with a relative path back to b64:

$ cd mgw-builds/mingw
$../../configure
--snip--
checking for C compiler default output file name... a.exe
checking for suffix of executables... .exe
checking whether we are cross compiling... no
--snip--
checking build system type... i686-pc-mingw32
checking host system type... i686-pc-mingw32
--snip--
configure: creating ./config.status
config.status: creating Makefile
config.status: creating lib/Makefile
config.status: creating config.h
config.status: executing depfiles commands

$ make
--snip--
make[2]: Entering directory `/c/Users/.../mgw-builds/mingw'
gcc -DHAVE_CONFIG_H -I. -I../.. -I./lib -I../../lib -g -O2 -MT src/src_b64-
b64.o -MD -MP -MF src/.deps/src_b64-b64.Tpo -c -o src/src_b64-b64.o `test -f
'src/b64.c' || echo '../../'`src/b64.c
mv -f src/.deps/src_b64-b64.Tpo src/.deps/src_b64-b64.Po
gcc -g -O2 -o src/b64.exe src/src_b64-b64.o lib/libgnu.a
make[2]: Leaving directory `/c/Users/.../mgw-builds/mingw'
make[1]: Leaving directory `/c/Users/.../mgw-builds/mingw'
$

Opening b64.exe in DependenciesGUI.exe shows us it’s a 32-bit Windows
program that depends only on SysWOW64\kernel32.dll and SysWOW64\MSVCRT.dll.

Msys2
Msys2 was developed by a company called OneVision Software in 2013 using
“clean room” techniques in order to loosen up the open source licensing
requirements imposed by Cygwin and to provide a more modern alterna-
tive to the old out-of-date Msys environments used by Cygwin and MinGW.

MSys2 uses a OneVision 64-bit port of the MinGW tool chain called
mingw-w64. However, like Cygwin, Msys2 provides its own library of POSIX
system-level functionality called msys-2.0.dll. Msys2 provides a C standard
library implemented in terms of this library. You can detect if a Windows
program was built for the Msys2 platform in the same manner as previously
described for the Cygwin platform.

Because Msys2 is more or less a feature-for-feature replacement of
Cygwin, and since so many people are already used to the way Cygwin
works, Msys2 has had a difficult time gaining traction, though it is used
by some key players, including Git for Windows. Msys2 is advertised as an

488 Chapter 17

upgrade to Cygwin, but Msys2 merely provides different implementations of
the same portability mechanisms used by Cygwin.

The one distinguishing characteristic that sets Msys2 apart from
Cygwin is the fact that Msys2’s open source license is much more lenient
than that of Cygwin. While Cygwin uses GPL-based licensing, Msys2 uses
only a standard 3-clause BSD license, making it a viable option for building
proprietary Windows software using Linux tools.

The most significant offering in OneVision’s system is the 64-bit port of
the MinGW compiler—not that it runs on 64-bit platforms (which it does),
but that it generates 64-bit Windows code. It’s safe to say that the world of
cross-compiled Windows code was expanded dramatically when this com-
piler was released. It has since been ported to many different platforms.

Msys2 does tie into the Windows installation database, so you may unin-
stall Msys2 from the Windows installed-programs panel.

What’s Msys?
The term “Msys” has been misused for many purposes over the years. Some
think it means “Unix on Windows” or, at the very least, the sense of such.
All it really provides is potential. Msys, at its most basic, provides a Unix-
compatible terminal program, a Bourne-like shell (usually Bash), and a base
set of utilities. Some implementations have more and some have fewer utili-
ties. Whatever implementation you’re using, be it Cygwin, MinGW, or Msys2,
the Msys component of these packages is there for you to build upon by
installing additional packages to build up the environment the way you like.

When OneVision created Msys2, the company’s vision was to start
out small, allowing the user to build up the environment exactly the way
they wanted. Msys2’s version of Msys has very few packages preinstalled,
while Cygwin has many. Msys2 and Cygwin base their terminal window on
mintty.exe,18 while MinGW bases its terminal on conhost.exe (Windows con-
sole host process), and you can tell this is so because the look and feel of
the Cygwin and Msys2 terminals are very similar to each other, but signifi-
cantly different from that of MinGW.

Installing Msys2
The installation procedure for Msys2 is pretty simple. Navigate in your web
browser to the Msys2 home page at http://www.msys2.org and click the button
at the top of the page for either the 32-bit (msys2-i686-yyyymmdd.exe) or the
64-bit (msys2-x86_64-yyyymmdd.exe) version of the Msys2 installer.19 When the
download completes, run the installer and you’re presented with a dialog-
based installation wizard. The welcome page is shown in Figure 17-21.

18. See https://mintty.github.io. You can actually swap out the terminal in MinGW for one based
on mintty. See the mintty site for details.

19. I downloaded the 20180531 version of the 64-bit Msys2 installer for the examples in this
chapter.

https://mintty.github.io
http://www.msys2.org

Using the Autotools with Windows 489

Figure 17-21: The welcome page of the Msys2 install utility

Click Next to move to the next page, shown in Figure 17-22.

Figure 17-22: The installation folder page of the Msys2 install utility

Select an installation location. Like Cygwin and MinGW, Msys2 wants
to be installed at the root of the system drive. I recommend sticking with
the default location for the same reasons I gave for the other two systems.
Click Next to move to the next page, shown in Figure 17-23.

490 Chapter 17

Figure 17-23: The shortcuts page of the Msys2 install utility

You can select the Windows Start Menu folder in which you’d like the
installer to create its shortcuts. The default is sufficient. Click Next to move
to the next page and begin installation, shown in Figure 17-24.

Figure 17-24: The installation progress page (showing details) of the Msys2 install utility

When installation has completed, click Next to move to the final page,
shown in Figure 17-25.

Using the Autotools with Windows 491

Figure 17-25: The final page of the Msys2 install utility

You’re given the option here of starting Msys2 upon completion. Click
Finish to exit the installer. Allow the installer to execute Msys2 as it exits
or go to the Windows 10 Start Menu, locate the MSYS2 64bit folder, and
click the MSYS2 MSYS entry. Both options start the Msys2 terminal window
in the same manner by executing the C:\msys64\msys2_shell.cmd script with a
command line option of -msys.

Unlike the other systems’ installers, the Msys2 installer doesn’t down-
load packages from the internet. Rather, much like a Linux distribution
release, Msys2 installs a small base set of packages that get further out-of-
date as time goes by until, eventually, a new installer is made available by
the Msys2 maintainers. Therefore, the first thing you need to do is update
these installed base packages.

Msys2 uses a Windows port of the Arch Linux package manager,
Pacman, to provide access to repositories of packages ported to Msys2.
The basic installation provides relatively few packages, and it needs to be
updated with Pacman before additional packages can be installed.

With the terminal window open, we’ll update the Msys2 system using
the command pacman -Syu. Pacman commands are uppercase, and options
to those commands are lowercase. The -S command is the remote reposi-
tory “sync” command. The -u option of this command updates existing
packages from the remote repository. The -y option updates the catalog
from the repository before checking for updates. To get help on the com-
mands, run pacman -h. To get help on the available options for a command,
add -h to the command line along with the command. For example, to get
help on available options for the -S command, run pacman -Sh.

Go ahead and update the system now, downloading the latest catalog first:

$ pacman -Syu
:: Synchronizing package databases...
 mingw32 530.8 KiB 495K/s 00:01
 mingw32.sig 119.0 B 116K/s 00:00

492 Chapter 17

 mingw64 532.0 KiB 489K/s 00:01
 mingw64.sig 119.0 B 116K/s 00:00
 msys 178.2 KiB 655K/s 00:00
 msys.sig 119.0 B 0.00B/s 00:00
:: Starting core system upgrade...
warning: terminate other MSYS2 programs before proceeding
resolving dependencies...
looking for conflicting packages...

Packages (6) bash-4.4.023-1 filesystem-2018.12-1 mintty-1~2.9.5-1
 msys2-runtime-2.11.2-1 pacman-5.1.2-1 pacman-mirrors-20180604-2

Total Download Size: 19.04 MiB
Total Installed Size: 68.24 MiB
Net Upgrade Size: 11.96 MiB

:: Proceed with installation? [Y/n] Y

Press y (or just enter to accept the default) at the prompt to continue
updating the Msys2 system. You’ll note the small number of packages
being updated. The base Msys2 system provides almost nothing. The core
system comes with Bash, a Unix-like filesystem emulator that sits on top of
the Windows filesystem, mintty, the Msys2 Msys runtime, and the Pacman
package manager, so it’s not really a problem that the Msys2 installer
installs out-of-date packages that need to be updated upon first use.

Pacman will download and install several packages, including Pacman:

:: Retrieving packages...
 msys2-runtime-2.11.2-1-x86_64 2.5 MiB 1012K/s 00:03
 bash-4.4.023-1-x86_64 1931.4 KiB 1003K/s 00:02
 filesystem-2018.12-1-x86_64 46.3 KiB 242K/s 00:00
 mintty-1~2.9.5-1-x86_64 296.7 KiB 1648K/s 00:00
 pacman-mirrors-20180604-2-any 17.1 KiB 2.09M/s 00:00
 pacman-5.1.2-1-x86_64 14.3 MiB 1010K/s 00:14
(6/6) checking keys in keyring
(6/6) checking package integrity
(6/6) loading package files
(6/6) checking for file conflicts
(6/6) checking available disk space
warning: could not get file information for opt/
:: Processing package changes...
(1/6) upgrading msys2-runtime
(2/6) upgrading bash
(3/6) upgrading filesystem
(4/6) upgrading mintty
(5/6) upgrading pacman-mirrors
(6/6) upgrading pacman
warning: terminate MSYS2 without returning to shell and check for updates again
warning: for example close your terminal window instead of calling exit

Using the Autotools with Windows 493

When you reach this point, Pacman itself needs to be updated, but it
cannot update itself while it’s running—an artifact of the way Windows
manages running executable images. It displays a message indicating that
you should close the terminal window by clicking the X in the upper-right
corner and then restart Msys2 from the Windows Start Menu and continue
the installation process.

N O T E If you get a pop-up box warning you of running processes, just click OK to close the
window anyway.

Run pacman -Su again (no need to update the catalog again) to continue
the update process and press enter when prompted again. This time, many
more packages are updated. Press y (or just enter) to continue and then
wait for the update process to complete.

Before we continue installing additional packages, let’s take a look at
the filesystem by running the mount command:

$ mount
C:/msys64 on / type ntfs (binary,noacl,auto)
C:/msys64/usr/bin on /bin type ntfs (binary,noacl,auto)
C: on /c type ntfs (binary,noacl,posix=0,user,noumount,auto)
Z: on /z type vboxsharedfolderfs (binary,noacl,posix=0,user,noumount,auto)
$

You’ll notice that the Msys2 base installation directory, C:\msys64, is
mounted at / and that C:\msys64\usr\bin is mounted at /bin. As with the
other systems, Windows drives are mounted as their drive letter. Msys2
mounts them off the root like MinGW. (Cygwin can be configured to do
the same.) Like Cygwin, Msys2 doesn’t mount optical drives without media,
so you don’t see my D: drive mounted here as /d, but if I inserted a virtual
disc and then executed mount, it would show up in the list.

Installing Tools
At this point, Msys2 is completely up-to-date and ready for you to add tools.
But what tools should we add? I’d venture to guess this is the point where
most uncommitted Msys2 explorers bail out. There is fairly complete docu-
mentation on the Msys2 wiki site, but you really need to read at least the
introductory material in order to understand Msys2 the way you should.

While Cygwin and MinGW make it pretty obvious which path you
should take at each turn, Msys2 simply offers options. You can build POSIX-
only software for the Msys2 environment, or you can build native 32- or
64-bit Windows applications. Msys2 doesn’t attempt to persuade you to go
one way or the other by preinstalling software for a particular goal.

Msys2 provides three different terminal window shortcuts, each config-
ured (using different command line options) to build software for one of
the three targets Msys2 supports: Msys2 native applications, 32-bit Windows

494 Chapter 17

applications, or 64-bit Windows applications. This is not really any different
from cross-compiling; it just targets a specific tool chain with a custom envi-
ronment instead of using options on the configure command line.

Obviously, our goal here is not to build Msys2 software. Rather, we
want to build Windows software, and Msys2 fully supports this goal. To find
out what needs to be installed to meet our goals, read the Msys2 wiki page
titled “Creating Packages.”20 According to this page, the following are the
important Pacman groups:

base-devel Required by all targets

msys2-devel For building Msys2 native POSIX packages

mingw-w64-i686-toolchain For building native 32-bit Windows
software

mingw-w64-x86_64-toolchain For building native 64-bit Windows
software

For our purposes, the first and last of these packages will suffice. It’s
not necessarily obvious, but you don’t get gcc and the binutils package unless
you install the msys2-devel meta package. Like Cygwin, Msys2 sees its own
platform, which generates applications that fully depend on msys2.0.dll, as
owning the native Msys2 tool chain.

There is no GUI package installer in Msys2, so let’s begin by exploring
a few Pacman commands. Like most package management systems, the
packages available to Pacman are grouped into logical sets. The -Sg option
shows you a list of package groups:

$ pacman -Sg
kf5
mingw-w64-i686-toolchain
mingw-w64-i686
mingw-w64-i686-gimp-plugins
kde-applications
kdebase
mingw-w64-i686-qt4
mingw-w64-i686-qt
mingw-w64-i686-qt5
--snip--
$

To find out what packages are in a group, just add the group name to
the end of the previous command line:

$ pacman -Sg mingw-w64-i686-toolchain
mingw-w64-i686-toolchain mingw-w64-i686-binutils
mingw-w64-i686-toolchain mingw-w64-i686-crt-git
mingw-w64-i686-toolchain mingw-w64-i686-gcc
mingw-w64-i686-toolchain mingw-w64-i686-gcc-ada

20. See https://github.com/msys2/msys2/wiki/Creating-packages/.

https://github.com/msys2/msys2/wiki/Creating-packages

Using the Autotools with Windows 495

mingw-w64-i686-toolchain mingw-w64-i686-gcc-fortran
mingw-w64-i686-toolchain mingw-w64-i686-gcc-libgfortran
mingw-w64-i686-toolchain mingw-w64-i686-gcc-libs
mingw-w64-i686-toolchain mingw-w64-i686-gcc-objc
mingw-w64-i686-toolchain mingw-w64-i686-gdb
--snip--
$

When you use pacman -S to install a package and give it a group name,
it shows you a list of group members and asks which of these members to
install. If you simply press enter, it installs all of them. The --needed option
ensures that only packages that are not already installed are downloaded.
Without it, you’ll download and install packages in your target groups that
are already installed:

$ pacman -S --needed base-devel mingw-w64-i686-toolchain \
 mingw-w64-x86_64-toolchain
:: There are 56 members in group base-devel:
:: Repository msys
 1) asciidoc 2) autoconf 3) autoconf2.13 4) autogen ...
--snip--
Enter a selection (default=all):
warning: file-5.35-1 is up to date -- skipping
warning: flex-2.6.4-1 is up to date -- skipping
--snip--
:: There are 17 members in group mingw-w64-x86_64-toolchain:
:: Repository mingw64
 1) mingw-w64-x86_64-binutils 2) mingw-w64-x86_64-crt-git ...
--snip--
Enter a selection (default=all):
--snip--
Total Download Size: 185.24 MiB
Total Installed Size: 1071.62 MiB

:: Proceed with installation? [Y/n] Y

Press y to download and then install the packages you requested.
This could take a while, so I guess it’s time for another snack.

Testing the Build
Once these packages have been installed, your Msys2 environment is
ready to use. Let’s change into the b64 directory again, clean up, and
create another build directory for Msys2 build testing.

If you’ve been working through this chapter and just came out of
testing MinGW, your bootstrap.sh and configure.ac files have probably been
modified. These changes will work fine in this environment. However, if you
do decide to revert, only revert the configure.ac changes. The bootstrap.sh
file should remain as is with the relative-path reference to gnulib-tool. If
you skipped the section on MinGW, you’ll need to modify bootstrap.sh by
adding a relative path to the Gnulib repository work area to the execution

496 Chapter 17

of gnulib-tool. Msys2 has the same problem as MinGW in that it creates
copies of the target, rather than working symlinks, so creating a symlink
in /usr/bin for gnulib-tool will not work here:21

$ cd /c/Users/.../Documents/dev/b64
$ git clean -xfd
$ mkdir -p ms2-builds/mw32 ms2-builds/mw64
$./bootstrap.sh
Module list with included dependencies (indented):
 absolute-header
 base64
--snip--
configure.ac:12: installing './compile'
configure.ac:21: installing './config.guess'
configure.ac:21: installing './config.sub'
configure.ac:6: installing './install-sh'
configure.ac:6: installing './missing'
Makefile.am: installing './depcomp'
$

Before we can build b64, we need to change terminals. You may have
noticed that Msys2 configured three shortcuts in the MSYS2 64bit folder
it created in the Windows Start Menu. Up to this point, we’ve been using
the MSYS2 MSYS shortcut to start an Msys2 terminal. This was fine as
long as we were just installing packages or if we were going to target the
Msys2 platform.

We’re building 64-bit native Windows software, so open a MinGW 64-bit
terminal now. Then, from within that terminal window, change into the
b64/ms2-builds/mw64 directory and build b64:

$ cd /c/Users/.../Documents/dev/b64/ms2-builds/mw64
$../../configure
configure: loading site script /mingw64/etc/config.site
--snip--
checking for C compiler default output file name... a.exe
checking for suffix of executables... .exe
checking whether we are cross compiling... no
--snip--
checking build system type... x86_64-w64-mingw32
checking host system type... x86_64-w64-mingw32
--snip--
configure: creating ./config.status
config.status: creating Makefile
config.status: creating lib/Makefile
config.status: creating config.h

21. There are several conversations on the Msys2 mailing lists about this issue. There is a
solution that allows Msys2 to create true Windows symlinks. Uncomment the line referring
to winsymlinks in the C:\msys2\msys2.ini file (and also the mingw32.ini and mingw64.ini files
in the same directory) and then execute the Msys2 terminal as a Windows Administrator to
make it work properly.

Using the Autotools with Windows 497

config.status: executing depfiles commands
$
$ make
make all-recursive
make[1]: Entering directory '/c/Users/.../ms2-builds/mw64'
--snip--
make[2]: Entering directory '/c/Users/.../ms2-builds/mw64'
gcc -DHAVE_CONFIG_H -I. -I../../b64 -I./lib -I../../lib -g -O2 -MT src/
b64-b64.o -MD -MP -MF src/.deps/b64-b64.Tpo -c -o src/b64-b64.o `test -f 'src/
b64.c' || echo '../../'`src/b64.c
mv -f src/.deps/b64-b64.Tpo src/.deps/b64-b64.Po
gcc -g -O2 -o src/b64.exe src/b64-b64.o lib/libgnu.a
make[2]: Leaving directory '/c/Users/.../ms2-builds/mw64'
make[1]: Leaving directory '/c/Users/.../ms2-builds/mw64'
$

The difference between these terminal windows is defined by the
values of various environment variables starting with MSYS. These variables
are used to configure the site configuration file referenced in the first
line of configure’s output. See the Msys2 wiki for lots of details on how to
configure environments this way.

Running the b64.exe program through DependenciesGUI.exe, we can see
that it’s a true native 64-bit Windows program, dependent only on Windows
system and Visual Studio runtime libraries.

Summary
After the whirlwind tour we just took, you should now have no trouble
building Windows software using GNU tools. Personally, I find the Cygwin
and Msys2 environments to be the most useful for many purposes.

Msys2 is a bit more modern and fresh, but they both serve as good
general-purpose platforms for the GNU tools. Msys2 also has the distinct
advantage of building pure Windows software wherever possible, while
Cygwin (unless using the mingw-w64 cross tools) builds apps that, although
they do run on Windows, rely heavily on the Cygwin system library. That’s
not necessarily a showstopper for me. If there are other factors and Cygwin
comes out on top, then I don’t mind the extra library, but the purist in me
leans toward a desire for no unnecessary third-party libraries.

Cygwin has the advantage of maturity. It’s not so far behind Msys2
that it’s unusable, but it’s been around long enough that it has some nice
features, like integrating a working symbolic link mechanism into all of its
utilities so it can properly emulate POSIX symlinks. It also has many more
packages available for installation within the environment.

MinGW is a bit out-of-date, and it really needs to support 64-bit
Windows builds, but it’s clean and small. With its new package manager,
it stacks up pretty well against the other two. All it really needs to move into
the big leagues is to embrace the newer 64-bit code generator in the mingw-
w64 package. It might also be nice to upgrade to mintty from the conhost-
based console it uses.

Experience is a hard teacher because she gives the test first,
the lesson afterwards. —Vernon Sanders Law1

18
A C A T A L O G O F T I P S A N D

R E U S A B L E S O L U T I O N S F O R
C R E A T I N G G R E A T P R O J E C T S

1This chapter began as a catalog of reusable
solutions—canned macros, if you will. But

as I finished the chapters preceding this one,
it became clear to me that I needed to broaden

my definition of a canned solution. Instead of just cata-
loging interesting macros, this chapter
lists several unrelated but important tips for creating great projects. Some
of these are related to the GNU Autotools, but others are merely good pro-
gramming practice with respect to open source and free software projects.

Item 1: Keeping Private Details out of Public Interfaces
At times, I’ve come across poorly designed library interfaces where a project’s
config.h file is required by the project’s public header files. This presents a
problem when more than one such library is required by a consumer. Which

1. Nathan, David H. (2000). The McFarland Baseball Quotations Dictionary. McFarland & Company.

500 Chapter 18

config.h file should be included? Both have the same name, and chances are
that both provide similar or identically named definitions.

When you carefully consider the purpose of config.h, you see that it
makes little sense to expose it in a library’s public interface (by including it
in any of the library’s public header files), because its purpose is to provide
platform-specific definitions to a particular build of the library. On the
other hand, the public interface of a portable library is, by definition,
platform independent.

Interface design is a fairly general topic in computer science. This item
focuses a bit more specifically on how to avoid including config.h in your
public interfaces and, by extension, ensuring that you never install config.h.

When designing a library for consumption by other projects, you’re
responsible for not polluting your consumers’ symbol spaces with useless
garbage from your header files. I once worked on a project that consumed
a library interface from another team. This team provided both a Windows
and a Unix version of their library, with the header file being portable
between the two platforms. Unfortunately, they didn’t understand the
definition of a clean interface. At some point in their public header files,
they had a bit of code that looked like Listing 18-1.

#ifdef _WIN32
include <windows.h>
#else
typedef void * HANDLE;
#endif

Listing 18-1: A poorly designed public header file that exposes platform-specific header files

Ouch! Did they really need to include windows.h just for the definition
of HANDLE? No, and they probably should have used a different name for the
handle object in their public interface because HANDLE is too generic and
could easily conflict with a dozen other library interfaces. Something like
XYZ_HANDLE or something more specific to the XYZ library would have been
a better choice.

To properly design a library, first design the public interface to expose
as little of the library’s internals as is reasonable. Now, you’ll have to deter-
mine the definition of reasonable, but it will probably involve a compromise
between abstraction and performance.

When designing an API, start with the functionality you want to expose
from your library; design functions that will maximize ease of use. If you find
yourself trying to decide between a simpler implementation and a simpler
user experience, always err on the side of ease of use for your consumers.
They’ll thank you by actually using your library. Of course, if the interface is
already defined by a software standard, then much of your work is done for
you. Often this is not the case, and you will have to make these decisions.

Next, try to abstract away internal details. Unfortunately, the C lan-
guage doesn’t make this easy to do because you often need to pass structure
references in public APIs containing internal details of your implemen-
tation that consumers don’t need to see. (C++ is actually worse in this

A Catalog of Tips and Reusable Solutions for Creating Great Projects 501

area: C++ classes define public interfaces and private implementation
details in the same class definition.)

Solutions in C
In C, a common solution for this problem is to define a public alias for
a private structure in terms of a generic (void) pointer. Many developers
don’t care for this approach because it reduces type safety in the interface,
but the loss of type safety is significantly offset by the increase in interface
abstraction, as shown in Listings 18-2 and 18-3.

#include <abc_pub.h>

include <config.h>

typedef struct
{
 /* private details */
} abc_impl;

int abc_func(abc * p)
{
 abc_impl * ip = (abc_impl *)p;
 /* use 'p' through 'ip' */
}

Listing 18-2: An example of a private C-language source file

typedef void abc;
int abc_func(abc * p);

Listing 18-3: abc_pub.h: A public header file describing a public interface (API)

Notice that the abstraction conveniently alleviates the need to include
a bunch of really private definitions in the library’s public interface.2

But there’s a way that makes even better use of language syntax. In C,
there’s a little-known, and even less used, concept called a forward declaration
that allows you to name the type in a public header file without actually defin-
ing it there. Listing 18-4 provides an example of a library’s public header file
that uses a forward declaration for the type used in the function declaration.

struct abc;
--snip--
int abc_func(struct abc * p);

Listing 18-4: Using a forward declaration in a public header file

2. The C language does not require a cast from a void pointer to any other pointer type, which is
why you can assign the result of malloc to any pointer type without a cast. In Listing 18-2, I used
an explicit cast to emphasize what I was doing, but it’s actually redundant.

502 Chapter 18

Of course, this use of struct abc assumes that some other function in
your public interface returns pointers to objects of that type that you can
then pass into abc_func. If your user is responsible for filling out the struc-
ture before passing its address, then this mechanism will obviously not work
for you. Rather, its use here is for the sole purpose of hiding the internals
of struct abc.

Solutions in C++
Forward declarations can also be used in C++, but not in the same man-
ner. In C++, forward declarations are used more to minimize compile-time
header file interdependencies than to hide implementation details in public
interfaces. We can use other techniques, however, to hide implementation
details from users.

In C++, hiding implementation details with interface abstraction can
be done in a few different ways, which include using virtual interfaces and
the PIMPL (Private IMPLementation) pattern.

The PIMPL Pattern

In the PIMPL pattern, implementation details are hidden behind a pointer
to a private implementation class stored as private data within the public
interface class, as shown in Listings 18-5 and 18-6.

#include <abc_pub.h>

include <config.h>

class abc_impl
{
 /* private details */
};

int abc::func(void)
{
 /* use 'pimpl' pointer */
}

Listing 18-5: A private C++-language source file showing the proper use of the
PIMPL pattern

u class abc_impl;

class abc {
 v abc_impl * pimpl;

public:
 int func(void);
};

Listing 18-6: abc_pub.h: The public header file exposes few private details via the
PIMPL pattern.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 503

As mentioned previously, the C++ language also allows the use of a
forward declaration (like the one at u) for any types used only through
references or pointers (as at v) but never actually dereferenced in the pub-
lic interface. Thus, the definition of the implementation class need not be
exposed in the public interface because the compiler will happily compile
the public interface header file without the definition of the private imple-
mentation class.

The performance tradeoff here generally involves the dynamic alloca-
tion of an instance of the private implementation class and then the access
of class data indirectly through this pointer, rather than directly in the pub-
lic structure. Notice that all internal details are now conveniently hidden
and thus not required by the public interface.

C++ Virtual Interfaces

Another approach when using C++ is to define a public interface class,
whose methods are declared pure virtual, with the interface implemented
internally by the library. To access an object of this class, consumers call a
public factory function, which returns a pointer to the implementation class
in terms of the interface definition. Listings 18-7 and 18-8 illustrate the
concept of C++ virtual interfaces.

#include <abc_pub.h>

include <config.h>

class abc_impl : public abc {
 virtual int func(void) {
 int rv;
 // implementation goes here
 return rv;
 }
};

Listing 18-7: A private C++ language source file implementing a pure virtual interface

#define xyz_interface class

xyz_interface abc {
public:
 virtual int func(void) = 0;
};

u abc * abc_instantiate(/* abc_impl ctor params */);

Listing 18-8: abc_pub.h: A public C++ language header file, providing only the
interface definition

504 Chapter 18

Here, I use the C++ preprocessor to define a new keyword, xyz_interface.
By definition, xyz_interface is synonymous with class, so the terms may be
used interchangeably. The idea here is that an interface doesn’t expose
any implementation details to the consumer. The public factory function
abc_instantiate at u returns a pointer to a new object of type abc_impl, except
in terms of abc. Thus, nothing internal needs to be shown to the caller in the
public header file.

It may seem like the virtual interface class method is more efficient
than the PIMPL method, but the fact is that most compilers implement
virtual function calls as tables of function pointers referred to by a hidden
vptr address within the implementation class. As a result, you still end
up calling all of your public methods indirectly through a pointer. The
technique you choose to help hide your implementation details is more a
matter of personal preference than performance.3

When I design a library, I first design a minimal, but complete, func-
tional interface with as much of my internal implementation abstracted
away as is reasonable. I try to use only standard library basic types, if pos-
sible, in my function prototypes and then include only the C or C++ stan-
dard header files required by the use of those types and definitions. This
technique is the fastest way I’ve found to create a highly portable and main-
tainable interface.

If you still can’t see the value in the advice offered by this item, then let
me give you one more scenario to ponder. Consider what happens when a
Linux distro packager decides to create a devel package for your library—
that is, a package containing static libraries and header files, designed to
be installed into the /usr/lib and /usr/include directories on a target sys-
tem. Every header file required by your library must be installed into the
/usr/include directory. If your library’s public interface requires the inclu-
sion of your config.h file, then by extension your config.h file must be installed
into the /usr/include directory. Now consider what happens when multiple
such libraries need to be installed. Which copy of config.h will win? Only
one config.h file can exist in /usr/include.

I’ve seen message threads on the Autotools mailing lists defending the
need to publish config.h in a public interface and providing techniques for
naming config.h in a package-specific manner. These techniques often involve
some form of post-processing of this file to rename its macros so they don’t
conflict with config.h definitions installed by other packages. While this can
be done, and while there are a few good reasons for doing so (usually involv-
ing a widely used legacy code base that can’t be modified without breaking a
lot of existing code), these situations should be considered the exception, not

3. The recently discovered Spectre microarchitecture flaw makes it possible that using PIMPL
can be more efficient than using virtual interface classes. The reason is that indirection
though function pointers (virtual methods) is harder for a processor to speculate correctly
compared to indirection though data pointers. Thus, Spectre mitigations that prevent timing
channels and data leaks though indirect function pointers may penalize virtual interfaces
more severely.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 505

the rule, because a well-designed project should not need to expose platform-
and project-specific definitions in its public interface.

If your project simply can’t live without config.h in its public interface,
explore the nuances of the AC_CONFIG_HEADERS macro. Like all of the instan-
tiating macros, this macro accepts a list of input files. The autoheader utility
only writes the first input file in the list, so you can hand-create a second
input file that contains definitions that you feel must be included in your
public interface. Remember to name your public input file so as to reduce
conflict with other packages’ public interfaces.

N O T E Also, explore the AX_PREFIX_CONFIG_H macro, found in the Autoconf Macro Archive
(see “Item 8: Using the Autoconf Archive Project” on page 528, which will add a
custom prefix to all items found in config.h.

Item 2: Implementing Recursive Extension Targets
An extension target is a make target that you write to accomplish some build
goal that Automake doesn’t automatically support. A recursive extension
target is one that traverses your project directory structure, visiting every
Makefile.am file in your Autotools build system and giving each one the
opportunity to do some work when the extension target is made.

When you add a new top-level target to your build system, you have to
either tie it into an existing Automake target or add your own make code
to the desired target that traverses the subdirectory structure provided by
Automake in your build system.

The SUBDIRS variable is used to recursively traverse all subdirectories of
the current directory, passing requested build commands into the makefiles
in these directories. This works great for targets that must be built based on
configuration options, because after configuration, the SUBDIRS variable con-
tains only those directories destined to be built.

However, if you need to execute your new recursive target in all subdi-
rectories, regardless of any conditional configuration that might exclude a
subdirectory specified in SUBDIRS, use the DIST_SUBDIRS variable instead.

There are various ways to traverse the build hierarchy, including some
really simple one-liners provided by GNU make-specific syntax. But the most
portable way is to use the technique that Automake itself uses, as shown in
Listing 18-9.

my-recursive-target:
 u $(preorder_commands)

 for dir in $(SUBDIRS); do \
 ($(am__cd) $$dir && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1; \
 done

 v $(postorder_commands)

.PHONY: my-recursive-target

Listing 18-9: A makefile with a recursive target (WARNING: no support for "." in SUBDIRS)

506 Chapter 18

At some point in the hierarchy, you’ll need to do something useful
besides calling down to lower levels. The preorder_commands macro at u can
be used to do things that must be done before recursing into lower-level
directories. The postorder_commands macro at v can likewise be used to do
additional things once you return from the lower-level directories. Simply
define either or both of these macros in any makefiles that need to do some
pre-order or post-order processing for my-recursive-target.

For example, if you want to build some generated documentation, you
might have a special target called doxygen. Even if you happen to be okay
with building your documentation in the top-level directory, there may be
times when you need to distribute the generation of your documentation to
various directories within your project hierarchy. You might use code simi-
lar to that shown in Listing 18-10 in each Makefile.am file in your project.

uncomment if doxyfile exists in this directory
u # postorder_commands = $(DOXYGEN) $(DOXYFLAGS) doxyfile

doxygen:
 $(preorder_commands)

 v for dir in $(SUBDIRS); do \
 w ($(am__cd) $$dir && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1; \

 done
 $(postorder_commands)

.PHONY: doxygen

Listing 18-10: Implementing postorder_commands for a doxygen directory

For directories where doxyfile doesn’t exist, you can comment out (or
better yet, simply omit) the postorder_commands macro definition at u. In this
case, the doxygen target will be harmlessly propagated to the next lower level
in the build tree by the three lines of shell code at v.

The exit statement at the end of w ensures that the build terminates
when a lower-level makefile fails on the recursive target, propagating the
shell error code (1) back up to each parent makefile until the top-level shell
is reached. This is important; without it, the build may continue after a fail-
ure until a different error is encountered.

N O T E I chose not to use the somewhat less portable -C make command line option to change
directories before running the sub-make operation. I also use an Automake macro
called am__cd to change directories. This macro is defined to take the contents of the
CDPATH environment variable into account to reduce extraneous output noise during
a built. You can replace it with cd (or chdir). Examine an Automake-generated make-
file to see how Automake defines this macro.

If you choose to implement a completely recursive global target in
this manner, you must include Listing 18-10 in every Makefile.am file in
your project, even if that makefile has nothing to do with the generation

A Catalog of Tips and Reusable Solutions for Creating Great Projects 507

of documentation. If you don’t, make will fail on that makefile because no
doxygen target exists within it. The commands may do nothing, but the
target must exist.

If you want to do something simpler, such as pass a target down to a
single subdirectory beneath the top-level directory (such as a doc directory
just below the top), life becomes easier. Just implement the code shown in
Listings 18-11 and 18-12.

doxygen:
 u $(am__cd) doc && $(MAKE) $(AM_MAKEFLAGS) $@

.PHONY: doxygen

Listing 18-11: A top-level makefile that propagates a target to a single subdirectory

doxygen:
 $(DOXYGEN) $(DOXYFLAGS) doxyfile

.PHONY: doxygen

Listing 18-12: doc/Makefile.am: The code to handle the new target

The shell statement at u in the top-level makefile in Listing 18-11
simply passes the target (doxygen) down to the desired directory (doc).

N O T E The variables DOXYGEN and DOXYFLAGS are assumed to exist by virtue of some macro or
shell code executed within the configure script.

Automake recursive targets are more sophisticated in that they also
support make’s -k command line option to continue building after errors.
Additionally, Automake’s recursive target implementation supports the
use of the dot (.) in the SUBDIRS variable, which represents the current
directory. You may also support these features, but if you do, your boiler-
plate recursive make shell code will be messier. For the sake of complete-
ness, Listing 18-13 shows an implementation that supports these features.
Compare this listing to Listing 18-9. The highlighted shell code shows the
differences between these listings.

my-recursive-target:
 $(preorder_commands)
 @failcom='exit 1'; \
 for f in x $$MAKEFLAGS; do \
 case $$f in \
 = | --[!k]*);; \

 u *k*) failcom='fail=yes';; \
 esac; \
 done; \
 for dir in $(SUBDIRS); do \

508 Chapter 18

 v if test "$$dir" != .; then \
 ($(am__cd) $$dir && $(MAKE) $(AM_MAKEFLAGS) $@) || eval \
 $$failcom; \
 fi; \
 done
 $(postorder_commands)

.PHONY: my-recursive-target

Listing 18-13: Adding make -k and a check for the current directory

At u, the case statement checks for a -k option in the MAKEFLAGS envi-
ronment variable and, on finding it, sets the failcom shell variable to some
innocuous shell code. If it’s not found, then failcom is left at its default
value, exit 1, which is then inserted where an exit should occur on error.
The if statement within the for loop at v simply skips the recursive call
for the dot entry in SUBDIRS. As with the previous examples, for the current
directory, the functionality of the recursive target is found entirely within
the $(preorder_commands) and $(postorder_commands) macro expansions.

I’ve tried to show you in this item that you can do as much or as little
as you like with your own recursive targets. Most of the implementation is
simply shell code in the command.

Item 3: Using a Repository Revision Number in a
Package Version

Version control is an important part of every project. Not only does it pro-
tect intellectual property, but it also allows the developer to back up and
start again after a long series of mistakes. One advantage of version control
systems like Git and Subversion is that the system assigns a unique revision
number to every change to a project’s repository. This means that any dis-
tribution of the project’s source code can be logically tied to a particular
repository revision number. This item presents a technique you can use
to automatically insert a repository revision number into your package’s
Autoconf version string.

Arguments to Autoconf’s AC_INIT macro must be static text. That is,
they can’t be shell variables, and Autoconf will flag attempts to use shell
variables in these arguments as errors. This is all well and good until you
want to calculate any portion of your package’s version number during the
configuration process.

I once tried to use a shell variable in AC_INIT’s VERSION argument so that
I could substitute my Subversion revision number into the VERSION argument
when configure was executed. I spent a couple of days trying to figure out
how to trick Autoconf into letting me use a shell variable as a revision field
in my package’s version number. Eventually, I discovered the trick shown in
Listing 18-14, which I implemented in my configure.ac file and in my top-
level Makefile.am file.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 509

u SVNREV=`LC_ALL=C svnversion $srcdir 2>/dev/null`
v if ! svnversion || case $SVNREV in Unver*) true;; *) false;; esac;
 w then SVNREV=`cat $srcdir/SVNREV`
 x else echo $SVNREV>$srcdir/SVNREV

fi
y AC_SUBST(SVNREV)

Listing 18-14: configure.ac: Implementing a dynamic revision number as part of the
package version

Here, the shell variable SVNREV is set at u to the output of the svnversion
command, as executed on the project top-level directory. The output is a
raw Subversion revision number—that is, if the code is executed in a true
Subversion work area, which isn’t always the case.

When a user executes this configure script from a distribution archive,
Subversion may not even be installed on his workstation. Even if it is, the
top-level project directory comes from the archive, not a Subversion reposi-
tory. To handle these situations, the line at v checks to see if svnversion can
be executed or if the output from the first line starts with the first few let-
ters of the phrase Unversioned directory, the result of executing the svnversion
utility on a non-work-area directory.

If either of these cases is true, the SVNREV variable is populated at w from
the contents of a file called SVNREV. The project should be configured to
ship the SVNREV file with a distribution archive containing the configuration
code in Listing 18-14. This must be done because if svnversion generates a
true Subversion repository revision number, that value is immediately written
to the SVNREV file by the else clause of this if statement at x.

Finally, the call to AC_SUBST at y substitutes the SVNREV variable into
template files, including the project makefiles.

In the top-level Makefile.am file, I ensure that the SVNREV file becomes
part of the distribution archive by adding it to the EXTRA_DIST list. Thus,
when a distribution archive is created and published by the maintainer,
it contains an SVNREV file with the source tree revision number used to
generate the archive from this source code. The value in the SVNREV file is
also used when an archive is generated from the source code in this tarball
(via make dist). This is accurate because the original archive was actually
generated from this particular revision of the Subversion repository.

Generally, it’s not particularly important that a project’s distribution
archive be able to generate a proper distribution archive, but an Automake-
generated archive can do so without this modification, so it should also be
able to do so with it. Listing 18-15 highlights the relevant changes to the
top-level Makefile.am file.

EXTRA_DIST = SVNREV
distdir = $(PACKAGE)-$(VERSION).$(SVNREV)

Listing 18-15: Makefile.am: A top-level makefile configured for SVN revision numbers

510 Chapter 18

In Listing 18-15, the distdir variable controls the name of the distribu-
tion directory and the archive filename generated by Automake. Setting
this variable in the top-level Makefile.am file affects the generation of the
distribution archive, because that Makefile.am file is where this functionality
is located in the final generated Makefile.

N O T E Note the similarity of the SVNREV filename and the SVNREV make variable
[$(SVNREV)] in Listing 18-15. Although they appear to be the same, the text added
to the EXTRA_DIST line refers to the SVNREV file in the top-level project directory,
while the text added to the distdir variable refers to a make variable.

For most purposes, setting distdir in the top-level Makefile.am file
should be sufficient. However, if you need distdir to be formatted correctly
in another Makefile.am file in your project, just set it in that file as well.

The technique presented in this item does not automatically reconfigure
the project to generate a new SVNREV file when you commit new changes
(and so change the Subversion revision used in your build). I could have
added this functionality with a few well-placed make rules, but that would
have forced the build to check for commits with each new build.4

Listing 18-16 shows code similar to that in Listing 18-14, except this
code works for Git, rather than Subversion.

GITREV=`git -C $srcdir rev-parse --short HEAD`
if [-z "$GITREV"];
 then GITREV=`cat $srcdir/GITREV`
 else echo $GITREV>$srcdir/GITREV
fi
AC_SUBST(GITREV)

Listing 18-16: configure.ac: Implementing a Git dynamic revision number

This version seems a little more intuitive to me because the git utility
makes better use of the proper output channels for error conditions—the
output of the command is sent to stderr if the current working directory
is not a Git repository.

Of course, you should also modify the code from Listing 18-15 to
reference the GITREV file instead of the SVNREV file.

Another great option, if you’re already using Gnulib, is to use the
version-gen module in that library. This module provides many nice
features related to incorporating a version number into your build.

Item 4: Ensuring Your Distribution Packages Are Clean
Have you ever downloaded and unpacked an open source package and then
tried to run ./configure && make, only to have it fail halfway through one of
these steps? As you dug into the problem, perhaps you discovered missing

4. My work habits are such that I tend to regenerate a build tree from scratch before releasing
a new distribution package, so this issue doesn’t really affect me that much.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 511

files in the archive. How sad to have this happen in an Autotools project,
when the Autotools make it so easy to ensure that this simply doesn’t happen.

To ensure that your distribution archives are always clean and com-
plete, run the distcheck target on a newly created archive. Don’t be satis-
fied with what you believe about your package. Allow Automake to run the
distribution unit tests. I call these tests unit tests because they provide the
same testing functionality for a distribution package that regular unit tests
provide for your source code.

You’d never make a code change and ship a package without running
your unit tests, would you? (If so, then you can safely skip this section.)
Likewise, don’t ship your archives without running the build system unit
tests—run make distcheck on your project before posting your new archives.
If the distcheck target fails, find out why and fix it. The payoff is worth
the effort.

Item 5: Hacking Autoconf Macros
Occasionally you need a macro that Autoconf doesn’t quite provide. That’s
when it pays to know how to copy and modify existing Autoconf macros.5

For example, here’s a solution to a common Autoconf mailing list issue.
A user wants to use AC_CHECK_LIB to capture a desired library in the LIBS vari-
able. The catch is that this library exports functions with C++, rather than
C linkage. AC_CHECK_LIB is not very accommodating when it comes to C++,
primarily because AC_CHECK_LIB makes certain assumptions about symbols
exported with C linkage that just don’t apply to C++ symbols.

For example, the widely known (and standardized) rules of C linkage
state that an exported C-linkage symbol (also known as the cdecl calling
convention on Intel systems) is case sensitive and decorated with a leading
underscore,6 whereas a symbol exported with C++ linkage is mangled using
nonstandard, vendor-defined rules. The decorations are based on the sig-
nature of the function—specifically, the number and types of parameters
as well as the classes and/or namespaces to which the function belongs. But
the exact scheme is not defined by the C++ standard.

Now, stop and consider under what circumstances you’re likely to have
symbols exported from a library using C++ linkage. There are two ways
to export C++ symbols from a library. The first is to (either purposely or
accidentally) export global functions without using the extern "C" linkage
specification on your function prototypes. The second is to export entire
classes—including public and protected methods and class data.

If you’ve accidentally forgotten to use extern "C" on your global func-
tions, well, then, stop it. If you’re doing it on purpose, then I wonder why?
The only reason I can think of is that you want to export more than one

5. This technique is also an excellent way to learn your way around Autoconf-provided macros.

6. The cdecl keyword or attribute does not decorate the symbol with a leading underscore on
some systems.

512 Chapter 18

overload of a given function name. This seems a rather trivial reason to
keep your C developers from being able to use your library.

If you’re exporting classes, now that’s another story. In this case,
you’re catering specifically to C++ users, which presents a real issue with
AC_CHECK_LIB.

Autoconf provides a framework around the definition of AC_CHECK_LIB
that allows for differences between C and C++. If you use the AC_LANG([C++])
macro before you call AC_CHECK_LIB, you’ll generate a version of the test pro-
gram that’s specific to C++. But don’t get your hopes up; the current imple-
mentation of the C++ version is simply a copy of the C version. I expect that
a generic C++ implementation would be difficult at best to design.

But all is not lost. While a generic implementation would be difficult, as
the project maintainer, you can easily write a project-specific version of the
test code using AC_CHECK_LIB’s test code.

First we need to find the definition of the AC_CHECK_LIB macro. A grep of
the Autoconf macro directory (usually /usr/(local/)share/autoconf/autoconf)
should quickly locate the definition of AC_CHECK_LIB in the file called libs.m4.
Because most macro definitions start with a comment header containing a
hash mark and then the name of the macro and a single space, the follow-
ing should work:

$ cd /usr/share/autoconf/autoconf
$ grep "^# AC_CHECK_LIB" *.m4
libs.m4:# AC_CHECK_LIB(LIBRARY, FUNCTION,
$

The definition of AC_CHECK_LIB is shown in Listing 18-17.7

AC_CHECK_LIB(LIBRARY, FUNCTION,
[ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND],
[OTHER-LIBRARIES])
--snip--
freedom.
AC_DEFUN([AC_CHECK_LIB],
[m4_ifval([$3], , [AH_CHECK_LIB([$1])])dnl
AS_LITERAL_IF([$1], [AS_VAR_PUSHDEF([ac_Lib], [ac_cv_lib_$1_$2])],
 [AS_VAR_PUSHDEF([ac_Lib], [ac_cv_lib_$1''_$2])])dnl
AC_CACHE_CHECK([for $2 in -l$1], [ac_Lib],
 [ac_check_lib_save_LIBS=$LIBS
 LIBS="-l$1 $5 $LIBS"

 u AC_LINK_IFELSE([AC_LANG_CALL([], [$2])],
 [AS_VAR_SET([ac_Lib], [yes])],
 [AS_VAR_SET([ac_Lib], [no])])
 LIBS=$ac_check_lib_save_LIBS])
 AS_VAR_IF([ac_Lib], [yes],
 [m4_default([$3], [AC_DEFINE_UNQUOTED(AS_TR_CPP(HAVE_LIB$1))
 LIBS="-l$1 $LIBS"
])],

7. This version of AC_CHECK_LIB is from Autoconf version 2.63. Portions of the macro were
rewritten in version 2.64, but this version is a bit easier to understand and analyze.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 513

 [$4])dnl
AS_VAR_POPDEF([ac_Lib])dnl
])# AC_CHECK_LIB

Listing 18-17: The definition of AC_CHECK_LIB, as found in libs.m4

This apparent quagmire is easily sorted out with a little analysis. The
macro appears to accept up to five arguments (as shown in the comment
header), the first two of which are required. The highlighted portion is the
macro definition—the part we’ll copy into our configure.ac file and modify
to work with our C++ exports.

Recall from Chapter 16 that the placeholders for M4 macro definition
parameters are similar to those of shell scripts: a dollar sign followed by a
number. The first parameter is represented by $1, the second by $2, and so
on. We need to determine which parameters are important to us and which
ones to discard. We know that most calls to AC_CHECK_LIB pass only the first
two arguments. The third and fourth parameters are optional and exist
only so that you can change the macro’s default behavior, depending on
whether it locates the desired function in the specified library. The fifth
parameter allows you to provide a list of additional linker command line
arguments (usually additional library and library directory references) that
are required to properly link the desired library so the test program will
not fail for extraneous reasons.

Say we have a C++ library that exports a class’s public data and
methods. Our library is named fancy, our class is Fancy, and the method
we’re interested in is called execute—specifically the execute method that
accepts two integer arguments. Thus, its signature would be

Fancy::execute(int, int)

When exported with C linkage, such a function would be presented
to the linker merely as _execute (or simply as execute, without the leading
underscore, on some platforms), but when it’s exported with C++ linkage,
all bets are off because of vendor-specific name mangling.

The only way to get the linker to find this symbol is to declare it in
compiled source code with exactly this signature, but we don’t supply
enough information to AC_CHECK_LIB to properly declare the function
signature in the test code. Here’s the declaration required to tell the
compiler how to properly mangle this method’s name:

class Fancy { public: void execute(int,int); };

Assuming that we’re looking for a function with C linkage called
execute, the AC_CHECK_LIB macro generates a small test program like the
one shown in Listing 18-18. I’ve highlighted our function name so you
can easily see where the macro inserts it into the generated test code.

/* confdefs.h. */
#define PACKAGE_NAME ""

514 Chapter 18

#define PACKAGE_TARNAME ""
#define PACKAGE_VERSION ""
#define PACKAGE_STRING ""
#define PACKAGE_BUGREPORT ""
/* end confdefs.h. */

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif

char execute ();
int
main ()
{
return execute ();
 ;
 return 0;
}

Listing 18-18: An Autoconf-generated check for the global C-language execute function

Except for these two uses of the specified function name, the entire test
program is identical for every call to AC_CHECK_LIB. This macro creates a com-
mon prototype for all functions so that all functions are treated the same
way. Clearly, however, not all functions accept no parameters and return a
character, as defined in this code. AC_CHECK_LIB effectively lies to the com-
piler about the true nature of the function. The test only cares whether the
test program can successfully be linked; it will never attempt to execute it
(an operation that would fail spectacularly in most cases).

For C++ symbols, we need to generate a different test program—one
that makes no assumptions about the signature of our exported symbol.

Looking back at u in Listing 18-17, it appears as if the AC_LANG_CALL macro
has something to do with the generation of the test code in Listing 18-18
because the output of AC_LANG_CALL is generated directly into the first argu-
ment of a call to AC_LINK_IFELSE; its first argument is source code to be tested
with the linker. As it turns out, this macro, too, is a higher-level wrapper
around another macro, AC_LANG_PROGRAM. Listing 18-19 shows the definitions
of both macros.8

AC_LANG_CALL(C)(PROLOGUE, FUNCTION)

Avoid conflicting decl of main.
m4_define([AC_LANG_CALL(C)],

u [AC_LANG_PROGRAM([$1

8. I’m showing you the AC_LANG_CALL(C) macro here—the C-specific version that the polymorphic
wrapper, AC_LANG_CALL, actually calls. The (C) on the end is actually part of the macro name, and
some special trickery must be used to actually call this macro, as it cannot be called directly. To
see how this works, look at the definition of the AC_LANG_CALL wrapper macro.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 515

m4_if([$2], [main], ,
[/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif

v char $2 ();])], [return $2 ();])])

AC_LANG_PROGRAM(C)([PROLOGUE], [BODY])

m4_define([AC_LANG_PROGRAM(C)],

w [$1
m4_ifdef([_AC_LANG_PROGRAM_C_F77_HOOKS], [_AC_LANG_PROGRAM_C_F77_HOOKS])[]dnl
m4_ifdef([_AC_LANG_PROGRAM_C_FC_HOOKS], [_AC_LANG_PROGRAM_C_FC_HOOKS])[]dnl
int
main ()
{
dnl Do *not* indent the following line: there may be CPP directives.
dnl Don't move the `;' right after for the same reason.

x $2
 ;
 return 0;
}])

Listing 18-19: The definitions of AC_LANG_CALL and AC_LANG_PROGRAM

At u, AC_LANG_CALL(C) generates a call to AC_LANG_PROGRAM, passing the
PROLOGUE argument in the first parameter. At w, this prologue (in the form
of $1) is immediately sent to the output stream. If the second argument
passed to AC_LANG_CALL(C) (FUNCTION) is not main, a C-style function prototype
is generated for the function. At v, the text return $2 (); is passed as the
BODY argument to AC_LANG_PROGRAM, which uses this text at x to generate a
call to the function. (Remember that this code will only be linked, never
executed.)

For C++, we need to be able to define more of the test program
so that it makes no assumptions about the prototype of our exported
symbol, and AC_LANG_CALL is too specific to C, so we’ll use the lower-level
macro, AC_LANG_PROGRAM, instead. Listing 18-20 shows how we might rework
AC_CHECK_LIB to handle the function Fancy::execute(int, int) from a library
called fancy. I’ve highlighted the places where I’ve modified the original
macro definition of Listing 18-17 on page 512.

AC_PREREQ([2.59])
AC_INIT([test], [1.0])

AC_LANG([C++])

--- A modified version of AC_CHECK_LIB
m4_ifval([], , [AH_CHECK_LIB([fancy])])dnl

u AS_VAR_PUSHDEF([ac_Lib], [ac_cv_lib_fancy_execute])dnl
v AC_CACHE_CHECK([whether -lfancy exports Fancy::execute(int,int)], [ac_Lib],

[ac_check_lib_save_LIBS=$LIBS

516 Chapter 18

LIBS="-lfancy $LIBS"
w AC_LINK_IFELSE([AC_LANG_PROGRAM(

[[class Fancy {
 public: void execute(int i, int j);
};]],
[[MyClass test;
 test.execute(1, 1);]])],
 [AS_VAR_SET([ac_Lib], [yes])],
 [AS_VAR_SET([ac_Lib], [no])])
LIBS=$ac_check_lib_save_LIBS])
AS_VAR_IF([ac_Lib], [yes],
 [AC_DEFINE_UNQUOTED(AS_TR_CPP(HAVE_LIBFANCY))
 LIBS="-lfancy $LIBS"
],
[])dnl
AS_VAR_POPDEF([ac_Lib])dnl
--- End of modified version of AC_CHECK_LIB

AC_OUTPUT

Listing 18-20: Hacking a modified version of AC_CHECK_LIB into configure.ac

In Listing 18-20, I’ve replaced the parameter placeholders with library
and function names at u and v and added the prologue and body of the
program to be generated by AC_LANG_PROGRAM at w. I’ve also removed some
extraneous text that specifically had to do with the optional parameters of
AC_CHECK_LIB that I don’t care about in my version.

This code is much longer and more difficult to understand than a
simple call to AC_CHECK_LIB, so it just begs to be turned into a macro. I’ll leave
that to you as an exercise. Having read Chapter 16, you should be able to
do this without too much difficulty. Note also that there is much room for
optimization in this macro. As you become more proficient with M4, you’ll
undoubtedly find ways you can reduced the size and complexity of this
reworked macro, while maintaining the desired functionality.

Providing Library-Specific Autoconf Macros
This item is about hacking Autoconf macros when you need special features
not provided by the standard macros, but the example I used was specifically
about looking for a particular function in a library. This is a special case of a
more general issue: finding libraries that provide desired functionality.

If you’re a library developer, consider providing downloadable Autoconf
macros that test for the existence of your libraries, and perhaps version-specific
functionality within them. By doing so, you make it easier for your users to
ensure that their users have proper access to your libraries.

Such macros don’t have to be general purpose in nature, because they’re
tailored to a specific library. Library-specific macros are much easier to write
and can be more thorough in testing for the functionality of your library. As
the author, you’re more likely to understand all the nuances of various ver-
sions of your library, so your macros can be spot-on with respect to determin-
ing library characteristics that your users may need to differentiate.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 517

Item 6: Cross-Compiling
Cross-compilation occurs when the build system (the system on which the
binaries are built) and the host system (the system on which those binaries
are meant to be executed) are not of the same types. For example, we’re
cross-compiling when we build Motorola 68000 binaries for an embedded
system on a typical Intel x86 platform running GNU/Linux, or when we
build Sparc binaries on a DEC Alpha system running Solaris. A far more
common scenario is using your Linux system to build software designed
to run on an embedded microcontroller.

The situation becomes even more complex if the software you’re build-
ing, such as a compiler or linker, can generate software. In this case, the
target system represents the system for which your compiler or linker will
ultimately generate code. When such a build system involves three differ-
ent architectures, it’s often referred to as a Canadian cross.9 In this case,
a compiler or linker is built on architecture A to run on architecture B
and generate code for architecture C. Another type of three-system build,
called a cross-to-native build, involves building an architecture-A compiler
on architecture A to run on architecture B. In this case, three architectures
are involved, but the host and target architectures are the same. Once you
master the concepts of dual-system cross-compilation, moving on to using
a three-system cross-compile mode is fairly simple.

Autoconf generates configuration scripts that attempt to guess the build
system type and then assume that the host system type is the same. Unless
told otherwise with command line options, configure assumes that non-cross-
compilation mode is in effect. When executed without command line options
that specify the build or host system types, an Autoconf-generated configura-
tion script can usually accurately determine system type and characteristics.

N O T E Section 14, “Manual Configuration,” of the GNU Autoconf Manual discusses
how to put Autoconf into cross-compilation mode. Unfortunately, the information
that you’ll need in order to write proper configure.ac files for cross-compilation is
spread throughout that manual in bits and pieces. Each macro with nuances specific
to cross-compilation has a paragraph describing the effects of cross-compilation mode
on that macro. Search the manual for “cross-comp” to find all the references.

System types are defined in the GNU Autoconf Manual in terms of a three-
part canonical naming scheme involving CPU, vendor, and operating system,
in the form cpu-vendor-os. But the os portion can itself be a pair containing
a kernel and system type (kernel-system). If you know a canonical name for a
system, you can specify it in each of three parameters to configure, as follows:

•	 --build=build-type

•	 --host=host-type

•	 --target=target-type

9. The name comes from the fact that during early discussions of cross-compilation issues on
the internet, Canada had three political parties.

518 Chapter 18

These configure command line options, with correct canonical system
type names, allow you to define the build, host, and target system types.
(Defining the host system type to be the same as your build system type is
redundant, because this is the default case for configure.)

One of the most challenging (and least documented) aspects of
using these options is determining a proper canonical system name to use
in these command line options. Nowhere in the GNU Autoconf Manual will
you find a statement that tells you how to contrive a proper canonical name
because canonical names are not unique for each system type. For instance,
in most valid cross-compilation configurations, the vendor portion of the
canonical name is simply ignored and can thus be set to anything.

When you use the AC_CANONICAL_SYSTEM macro early in your configure.ac
file, you’ll find two new Autoconf helper scripts added to your project
directory (by automake --add-missing, which is also executed by autoreconf
--install). Specifically, these helper scripts are config.guess and config.sub.
The job of config.guess is to determine, through heuristics, the canonical
system name for your user’s system—the build system. You can execute this
program yourself to determine an appropriate canonical name for your
own build system. For instance, on my 64-bit Intel GNU/Linux system,
I get the following output from config.guess:

$ /usr/share/automake-1.15/config.guess
x86_64-pc-linux-gnu
$

As you can see here, config.guess requires no command line options,
although there are a few available. (Use the --help option to see them.)
Its job is to guess your system type, mostly based on the output of the uname
utility. This guess is used as a default system type that can be overridden by
a user on the configure command line. When cross-compiling, you can use
this value in your --build command line option.10

The task of the config.sub program is to accept an input string as a sort
of alias for a system type that you’re looking for and then to convert it to a
proper Autoconf canonical name. But what is a valid alias? For a few clues,
search for “Decode aliases” within config.sub. You’ll likely find a comment
above a bit of code whose job it is to decode aliases for certain CPU-COMPANY
combinations. Here are a few examples executed from my system; you
should find the same results on your system:

$ /usr/share/automake-1.15/config.sub i386
i386-pc-none
$ /usr/share/automake-1.15/config.sub i386-linux
i386-pc-linux-gnu

10. For normal two-system cross-compilation mode, you shouldn’t have to specify the build
system type, only the host system type. However, for historical and backward-compatibility
reasons, always use the --build option when you use --host. Specify the build system type as
your actual build system type (such as i686-pc-linux-gnu on an Intel x86 GNU/Linux system).
This requirement will be relaxed in a future version of Autoconf.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 519

$ /usr/share/automake-1.15/config.sub m68k
m68k-unknown-none
$ /usr/share/automake-1.15/config.sub m68k-sun
m68k-sun-sunos4.1.1
$ /usr/share/automake-1.15/config.sub alpha
alpha-unknown-none
$ /usr/share/automake-1.15/config.sub alpha-dec
alpha-dec-ultrix4.2
$ /usr/share/automake-1.15/config.sub sparc
sparc-sun-sunos4.1.1
$ /usr/share/automake-1.15/config.sub sparc-sun
sparc-sun-sunos4.1.1
$ /usr/share/automake-1.15/config.sub mips
mips-unknown-elf
$

As you can see, a lone CPU name is usually not quite enough informa-
tion for config.sub to properly determine a useful canonical name for a
desired host system.

Notice, too, that there are a few generic keywords that can sometimes
provide enough information for cross-compilation, without actually provid-
ing true vendor or operating system names. For instance, unknown can be
substituted for the vendor name in general, and none is occasionally appro-
priate for the operating system name. Clearly elf is a valid system name as
well, and it can be enough in some circumstances for configure to determine
which tool chain to use. However, by simply appending a proper vendor
name to the CPU, you can allow config.sub can take a pretty good stab at
coming up with the most likely operating system for that pair and then gen-
erate a useful canonical system type name.

Ultimately, the best way to determine a proper canonical system type
name is to examine config.sub for something close to what you think you
should be using for a CPU and a vendor name and then simply ask it. While
this may seem like a shot in the dark, chances are good that if you’ve gotten
to the point of writing a build system for a program that should be cross-
compiled, you’re probably already very familiar with the names of your host
CPU, vendor, and operating system.

When cross-compiling, you’ll most likely use tools other than the ones
you normally use on your system or, at the very least, additional command
line options on your normal tools. Such tools are usually installed in sets
as packages. Another clue to a proper host system canonical name is the
prefix of these tools’ names. There’s nothing magic in the way Autoconf
handles cross-compilation. The host system canonical name is used directly
to locate the proper tools by name in the system path. Thus, the host system
canonical name you use will have to match the prefix on your tools.

Now let’s examine a common scenario: building 32-bit code on a
64-bit machine of the same CPU architecture. Technically, this is a form
of cross-compilation, and it’s often a much simpler scenario than cross-
compiling code for an entirely different machine architecture. Many GNU/
Linux systems support both 32- and 64-bit execution. On these systems,
you can often use your build system’s tool chain to perform this task with

520 Chapter 18

special command line options. For example, to build C source code for
a 32-bit Intel system on a 64-bit Intel system, you would simply use the
following configure command line (I’ve highlighted the lines related to
cross-compilation):11

$./configure CPPFLAGS=-m32 LDFLAGS=-m32
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes

u checking build system type... x86_64-pc-linux-gnu
v checking host system type... x86_64-pc-linux-gnu

checking for style of include used by make... GNU
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes

w checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
--snip--

Notice at w that, as far as configure is concerned, we are not cross-
compiling because we haven’t given configure any command line options
instructing it to use a different tool chain than it would normally use. As
you can see at u and v, both the build and host system types are what
you’d expect for a 64-bit GNU/Linux system. Additionally, because my
system is a dual-mode system, it can execute test programs compiled with
these flags. They’ll run on the 64-bit CPU in 32-bit mode just fine.

N O T E Many systems require that you install the 32-bit tools before gcc will even recognize
the -m32 flag. For example, Fedora systems require the installation of the glibc-devel
.i686 package, and my Linux Mint (Ubuntu-based) system required me to install the
gcc-multilib package.

To be even more certain of a proper build on Linux systems, you can
also use the linux32 utility to change the personality of your 64-bit system to
that of a 32-bit system, like this:

$ linux32 ./configure CPPFLAGS=-m32 LDFLAGS=-m32
--snip--
checking whether we are cross compiling... no

11. Why not use CFLAGS? Using CPPFLAGS (C-PreProcessor FLAGS) has two positive effects: it
properly renders C-preprocessor tests that rely on bit size, and it allows C++ compilers (which
would normally honor CXXFLAGS over CFLAGS) to correctly define the proper bit size as well.
Another popular option is to specify CC="gcc -m32", thereby changing the compiler type to
that of a 32-bit compiler. I've added -m32 to both CPPFLAGS and LDFLAGS so the linker will also be
notified of the architecture change. If you add -m32 to the CC variable, you don’t need to do
this because the linker is called via the compiler.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 521

--snip--
checking build system type... i686-pc-linux-gnu
checking host system type... i686-pc-linux-gnu
--snip--

We use linux32 here because some subscripts executed by configure may
inspect uname -m to determine the build machine’s architecture. The linux32
utility ensures that these scripts properly see a 32-bit Linux system. You can
test this yourself by running uname under linux32:

$ uname -m
x86_64
$ linux32 uname -m
i686
$

To get this sort of cross-compile to work on a Linux dual-mode system,
you usually need to install one or more 32-bit development packages, as
noted previously. If your project uses other system-level services, such as a
graphical desktop, you will need the 32-bit versions of these libraries, as well.

Now let’s do it the more conventional (dare I say, canonical?) way.
Rather than add -m32 to the CPPFLAGS and LDFLAGS variables, we’ll set the
build and host system types manually on the configure command line
and see what happens. Again, I’ve highlighted the output lines related to
cross-compilation:

$./configure --build=x86_64-pc-linux-gnu --host=i686-pc-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes

u checking for i686-pc-linux-gnu-strip... no
checking for strip... strip

v configure: WARNING: using cross tools not prefixed with host triplet
checking build system type... x86_64-pc-linux-gnu
checking host system type... i686-pc-linux-gnu
checking for style of include used by make... GNU

w checking for i686-pc-linux-gnu-gcc... no
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... yes
checking for suffix of executables...
checking for suffix of object files... o
--snip--

Several key lines in this example indicate that, as far as configure is con-
cerned, we’re cross-compiling. The cross-compilation build environment is
x86_64-pc-linux-gnu, while the host is i686-pc-linux-gnu.

522 Chapter 18

But notice the highlighted WARNING text at v. My system doesn’t have a
tool chain that’s dedicated to building 32-bit Intel binaries. Such a tool chain
includes all of the same tools required to build the 64-bit versions of my prod-
ucts, but the 32-bit versions are prefixed with the canonical system name of
the host system. If you don’t have a properly prefixed tool chain installed and
available in the system path, configure will default to using the build system
tools—those without a prefix. This can work fine if your build system’s tools
can cross-compile to the host system with proper command line options and
if you’ve also specified those options in CPPFLAGS and LDFLAGS.

Normally, you’d have to install a tool chain designed to build the cor-
rect type of binaries. In this example, a version of such tools could easily be
provided by creating soft links and simple shell scripts that pass additional
required flags. According to the configure script output at u and w, I need
to provide i686-pc-linux-gnu- prefixed versions of strip and gcc.

Generally, such foreign tool chains are installed into an auxiliary
directory, which means you’d have to add that directory to your system
PATH variable in order to allow configure to find them. For this example,
I’ll just create them in ~/bin.12 Once again I’ve highlighted the output
text related to cross-compilation:

$ ln -s /usr/bin/strip ~/bin/i686-pc-linux-gnu-strip
$ echo '#!/bin/sh
> gcc -m32 "$@"' > ~/bin/i686-pc-linux-gnu-gcc
$ chmod +x ~/bin/i686-pc-linux-gnu-gcc
$./configure --build=x86_64-pc-linux-gnu --host=i686-pc-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking for i686-pc-linux-gnu-strip... i686-pc-linux-gnu-strip
checking build system type... x86_64-pc-linux-gnu
checking host system type... i686-pc-linux-gnu
checking for style of include used by make... GNU
checking for i686-pc-linux-gnu-gcc... i686-pc-linux-gnu-gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... yes
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether i686-pc-linux-gnu-gcc accepts -g... yes
--snip--
$ make
--snip--

u libtool: compile: i686-pc-linux-gnu-gcc -DHAVE_CONFIG_H -I. -I.. -g -O2
 -MT print.lo -MD -MP -MF .deps/print.Tpo -c print.c -fPIC -DPIC -o
--snip--
$

12. If you try this, be sure your $HOME/bin directory is in your search path.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 523

This time, configure was able to find the proper tools. Notice that the
compiler command at u no longer contains the -m32 flag. It’s there, but it’s
hidden inside the i686-pc-linux-gnu-gcc script. As far as the Autotools are
concerned, i686-pc-linux-gnu-gcc already knows how to build 32-bit binaries
on a 64-bit system.

Cross-compilation is not for the average end user. As open source soft-
ware developers, we use packages like the Autotools to ensure that our end
users don’t have to be experts in software development in order to build
and install our packages. But cross-compilation requires a certain level of
system configuration that is beyond the scope of what the Autotools gener-
ally expect of end users. Additionally, cross-compilation is used most often
within specialized fields, such as tool chain or embedded systems develop-
ment. End users in these areas usually are experts in software development.

There are a few places where cross-compilation can, and possibly
should, be made available to the average end user. However, I strongly
encourage you to be explicit and detailed in the instructions you provide
your users in your README and INSTALL documents.

Item 7: Emulating Autoconf Text Replacement Techniques
Say your project builds a daemon that is configured at startup with values
in a configuration text file. How does the daemon know where to find this
file on startup? One way is to simply assume it’s located in /etc, but a well-
written program will allow the user to configure this location when build-
ing the software. The system configuration directory has a variable location
whose value can be specified on the configure, make all, or make install com-
mand line, as shown in the following examples:

$./configure --sysconfdir=/etc
--snip--
$ make all sysconfdir=/usr/mypkg/etc
--snip--
$ sudo make install sysconfdir=/usr/local/mypkg/etc
--snip--

All of these examples take advantage of command line functionality
provided by Autotools build systems, so they must all be carefully taken into
account when creating project and project build source files. Let’s look at
some examples that will explain how to do this.

Now, some conditions simply can’t work. For instance, you can’t pass
a system configuration directory path into C source code from within the
makefile when you build your program and then expect it to run correctly
if you change where the configuration files are installed on the make install
command line. Most end users won’t pass anything on the command line,
but you should still ensure that they can set prefix directories from the
configure and make command lines.

524 Chapter 18

This item is focused on placing command line prefix variable override
information into the proper locations in your code and installed data files
as late as possible in the build process.

Autoconf replaces text in AC_SUBST variables with the values of those vari-
ables as defined in configure at configuration time, but it doesn’t replace the
text with raw values. In an Autotools project, if you execute configure with a
specific datadir, you get the following:

$./configure --datadir=/usr/share
--snip--
$ grep "datadir =" Makefile
pkgdatadir = $(datadir)/b64

u datadir = /usr/share
$

You can see at u that the value of the shell variable datadir in configure
is substituted exactly according to the command line instructions in the
make variable datadir in Makefile. What’s not obvious here is that the default
value of datadir, both in the configure script and in the makefile after substi-
tution, is relative to other variables within the build system. By not overrid-
ing datadir on the configure command line, we see that the default value in
the makefile contains unexpanded shell variable references:

$./configure
--snip--
$ cat Makefile
--snip--
datadir = ${datarootdir}
datarootdir = ${prefix}/share
--snip--
prefix = /usr/local
--snip--
$

In Chapter 3 (see Listing 3-36), we saw that we could pass command
line options to the preprocessor that would allow us to consume these sorts
of path values within our source code. Listing 18-21 demonstrates this by
passing a C-preprocessor definition in the CPPFLAGS variable for a hypotheti-
cal program called myprog.13

myprog_CPPFLAGS = -DSYSCONFDIR="\"@sysconfdir@\""

Listing 18-21: Pushing prefix variables into C source code in Makefile.am or Makefile.in

13. The escaped double quotes in this example are passed as part of the definition to the
preprocessor and ultimately into the source code. The unescaped double quotes are stripped
off by the shell as it passes the option on the compiler command line. The unescaped double
quotes allow the value of the definition to contain spaces, which are not protected by the
escaped double quotes because the shell doesn’t recognize them as quotes.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 525

A C source file might then contain the code shown in Listing 18-22.

--snip--
#ifndef SYSCONFDIR
define SYSCONFDIR "/etc"
#endif
--snip--
const char * sysconfdir = SYSCONFDIR;
--snip--

Listing 18-22: Using the preprocessor-defined variables in C source code

Automake does nothing special with the line in Listing 18-21 between
Makefile.am and Makefile.in, but the configure script converts the Makefile.in
line into the Makefile line shown in Listing 18-23.

myprog_CPPFLAGS = -DSYSCONFDIR="\"${prefix}/etc\""

Listing 18-23: The resulting Makefile line after configure substitutes @sysconfdir@

When make passes this option on the compiler command line, it derefer-
ences the variables to produce the following output command line (shown
only in part here):

libtool: compile: gcc ... -DSYSCONFDIR=\"/usr/local/etc\" ...

There are a couple of problems with this approach. First, between
configure and make, you lose the resolution of the sysconfdir variable because
configure substitutes ${prefix}/etc, rather than ${sysconfdir}, for @sysconfdir@.
The problem is that you can no longer set the value of sysconfdir on the make
command line. To solve this problem, use the ${sysconfdir} make variable
directly in your CPPFLAGS variable, as shown in Listing 18-24, rather than the
Autoconf @sysconfdir@ substitution variable.

myprog_CPPFLAGS = -DSYSCONFDIR="\"${sysconfdir}\""

Listing 18-24: Using the make variable in CPPFLAGS instead of the Autoconf substitution variable

You can use this approach to specify a value for sysconfdir on both the
configure and make command lines. Setting the variable on the configure com-
mand line defines a default value in Makefile.in (and subsequently in the gen-
erated Makefile), which can then be overridden on the make command line.

The problem with using different values on the make all and make
install command lines is a bit more subtle. Consider what happens if you
do the following:

$ make sysconfdir=/usr/local/myprog/etc
--snip--
$ sudo make install sysconfdir=/etc
--snip--
$

526 Chapter 18

Here, you’re basically lying to the compiler when you tell it that your
configuration file will be installed in /usr/local/myprog/etc during the build.
The compiler will happily generate the code in Listing 18-22 so that it refers
to this path; the second command line will then install your configuration
file into /etc, and your program will contain a hardcoded path to the wrong
location. Unfortunately, there’s little that you can do to correct this, because
you’ve allowed your users to define these variables anywhere and because the
GNU Coding Standards state the make install shouldn’t recompile anything.

N O T E There are cases where different installation paths are given to the build and install
processes on purpose. Recall the discussion of DESTDIR in “Getting Your Project into
a Linux Distro” on page 67, wherein RPM packages are built and installed in a
staging directory so that built products can be packaged in an RPM to be installed
into the correct location later.

Regardless of the potential pitfalls, being able to specify installation
locations on the make command line is a powerful technique, but one that
only works in makefiles because it relies heavily on make variable substitution
within compiler command lines in your makefiles.

What if you want to replace a value in an installed data file that isn’t
processed by make on a shell command line? You could convert your data file
into an Autoconf template and then simply reference the Autoconf substitu-
tion variable within that file.

In fact, we did just that in the doxyfile.in templates that we created for the
FLAIM project in Chapter 15. However, this only worked in Doxygen input
files because the class of variables used in those templates is always defined
with complete absolute or relative paths by configure. That is, the values of
@srcdir@ and @top_srcdir@ contain no additional shell variables. These vari-
ables are not installation directory (prefix) variables, which, with the excep-
tion of prefix itself, are always defined relative to other prefix variables.

You can, however, emulate the Autoconf substitution variable process
within a makefile, allowing substitution variables to be used in installed
data files. Listing 18-25 shows a template in which you might want to replace
variables with path information normally found in the standard prefix vari-
ables during a build.

Configuration file for myprog
logdir = @localstatedir@/log
--snip--

Listing 18-25: A sample config file template for myprog, to be installed in $(sysconfdir)

This template is for a program configuration file, which might normally
be installed in the system configuration directory. We want the location of
the program’s log file, specified in this configuration file, to be determined
at install time by the value of @localstatedir@. Unfortunately, configure would
replace this variable with a string containing at least ${prefix}, which is not
useful in a program configuration file. Listing 18-26 shows a Makefile.am file

A Catalog of Tips and Reusable Solutions for Creating Great Projects 527

with additional make script to generate myprog.cfg by performing substitution
on variables in myprog.cfg.in.

EXTRA_DIST = myprog.cfg.in
u sysconf_DATA = myprog.cfg

v edit = sed -e 's|@localstatedir[@]|$(localstatedir)|g'
w myprog.cfg: myprog.cfg.in Makefile

 $(edit) $(srcdir)/$@.in > $@.tmp
 mv $@.tmp $@

CLEANFILES = myprog.cfg

Listing 18-26: Substituting make variables into data files using sed in a makefile

In this Makefile.am file, I’ve defined a custom make target at w to build
the myprog.cfg data file. I’ve also defined a make variable called edit at v,
which resolves to a partial sed command that replaces all instances of
@localstatedir@ in the template file ($(srcdir)/myprog.cfg.in) with the value
of the $(localstatedir) variable. Because make recursively processes variable
replacements until all variable references are resolved, using make in this
manner will ensure that you never leave any variable references in your
final output. In the command where this variable is used, sed’s output is
redirected to the output file (myprog.cfg).14

The only nonobvious code in this example is the use of the square
brackets around the trailing at sign (@) in the sed expression, which repre-
sent regular expression syntax indicating that any of the enclosed charac-
ters should be matched. Because there is only one enclosed character, this
would seem to be a pointless complication, but the purpose of these brack-
ets is to keep configure from replacing @localstatedir@ in the edit variable
when it performs Autoconf variable substitution on this makefile. We want
make to use this variable, not configure.

I assign myprog.cfg to the sysconf_DATA variable at u to tie execution of
this new rule into the framework provided by Automake. Automake will
install this file into the system configuration directory after building it,
if necessary.

The files in DATA primaries are added as dependencies to the all target
via the internal all-am target. If myprog.cfg doesn’t exist, make will look for a
rule to build it. Since I have such a rule, make will simply execute that rule
when I build the all target.

I’ve added the template file name myprog.cfg.in to the EXTRA_DIST vari-
able at the top of Listing 18-26 because neither Autoconf nor Automake is
aware of this file. In addition, I’ve added the generated file myprog.cfg to the
CLEANFILES variable at the bottom of the listing because, as far as Automake
is concerned, myprog.cfg is a distributed data file that should not be auto-
matically deleted by make clean.

14. It’s actually redirected to a temporary file called myprog.cfg.tmp, which is renamed atomi-
cally using mv in the next command to myprog.cfg. This is done so that parallel make (make -j)
won’t see the output file in a half-baked state.

528 Chapter 18

N O T E This example demonstrates a good reason for Automake to not automatically distrib-
ute files listed in DATA primaries. Sometimes such files are built in this manner. If
built data files were automatically distributed, the distcheck target would fail because
myprog.cfg was not available for distribution before building.

In this example, I tied the building of myprog.cfg into the install process
by adding it to the sysconf_DATA variable, and then I placed a dependency
between mydata.cfg.in and mydata.cfg15 to ensure that the installed file is
built when make all is executed. You could also tie into a standard or custom
build or installation target using appropriate -hook or custom targets.

No discussion of this topic would be complete without a mention of
the Gnulib configmake module. If you’re already using Gnulib and need to
do something like what I’ve been talking about in this item, consider using
configmake, which creates a configmake.h header file that can be included by
your source files to provide access to all of the standard directory variables
as C preprocessor macros. It’s only useful for C code, so you’d still need the
techniques I’ve shown you here for non-C-source code use cases (such as
installed configuration files that need to reference prefix variable paths).

Item 8: Using the Autoconf Archive Project
In “Item 5: Hacking Autoconf Macros” on page 511, I demonstrated a
technique for hacking Autoconf macros to provide functionality that’s close
to, but not exactly the same as, that of the original macro. When you need a
macro that Autoconf doesn’t provide, you can either write it yourself or look
for one that someone else has written. This item is about the second option,
and a perfect place to begin your search is the Autoconf Archive project.

As of this writing, the Autoconf Archive source project is hosted by
GNU Savannah.16 The original ac-archive project was the result of a merger
between two older projects: one by Guido Draheim (at http://ac-archive
.sourceforge.net/) and the other by Peter Simon (at http://auto-archive.cryp.to).
The first of these sites is still online today, although it displays a huge
red warning box indicating that you should submit updates to the GNU
Autoconf Macro Archive at Savannah; the second has been taken down.
There is some long history and not a few flame wars on email lists between
these two projects. Ultimately, each project incorporated most of the con-
tents of the other, but Peter Simon’s is the one that was migrated into the
Savannah repository, and the current home page is found at https://www
.gnu.org/software/autoconf-archive/.17

15. Note the dependency on Makefile as well. If Makefile changes, the sed expression or com-
mand line may have changed, in which case myprog.cfg should be regenerated. As of this writ-
ing, make has no inherent functionality to tie particular commands within the makefile to a
given target, so if the makefile changes in anyway, we must assume that it affects myprog.cfg.

16. See http://git.savannah.nongnu.org/cgit/autoconf-archive.git. GitHub supplies a mirror at
https://github.com/autoconf-archive/autoconf-archive.

17. It appears that Guido has given up, because the last updates to his SourceForge project
were made in August 2007.

http://ac-archive.sourceforge.net/
http://ac-archive.sourceforge.net/
https://www.gnu.org/software/autoconf-archive/
https://www.gnu.org/software/autoconf-archive/
http://git.savannah.nongnu.org/cgit/autoconf-archive.git
https://github.com/autoconf-archive/autoconf-archive

A Catalog of Tips and Reusable Solutions for Creating Great Projects 529

The value in the archive is that private macros become public and pub-
lic macros are incrementally improved by many users.

As of this writing, the macro archive contains over 500 macros not dis-
tributed with Autoconf, including the AX_PTHREAD macro discussed in “Doing
Threads the Right Way” on page 384. The latest release of the archive can
be checked out from the project’s Savannah git site. The site indexes macros
by category, author, and open source license, allowing you to choose macros
based on specific criteria. You can also search for a macro by name or by
entering any text that might be found in the macro’s header comments.

If you find yourself in need of a macro that Autoconf doesn’t appear
to provide, check out the Autoconf Archive.

Item 9: Using Incremental Installation Techniques
Some people have requested that make install be made smart enough
to install only files that are not already installed or that are newer than
installed versions of the same files.

This feature is available by default to users by passing the -C command
line option to install-sh. It can be enabled directly by end users by using the
following syntax on the make command line during execution of make install:

$ make install "INSTALL=/path/to/install-sh -C"

If you think your users will benefit from this option, consider adding
some information about its proper use to the INSTALL file that ships with
your project. Don’t you just love features you don’t have to implement?

Item 10: Using Generated Source Code
Automake requires that all source files used within a project be statically
defined within the project’s Makefile.am files, but sometimes the contents of
source files need to be generated at build time.

There are two ways to deal with generated sources (more specifically,
generated header files) in your projects. The first involves the use of an
Automake-provided crutch for developers not interested in the finer points
of make. The second involves writing proper dependency rules to allow make
to understand the relationships between your source files and your prod-
ucts. I’ll cover the crutch first, and then we’ll get into the details of proper
dependency management in Makefile.am files.

Using the BUILT_SOURCES Variable
When you have a header file that’s generated as part of your build process,
you can tell Automake to generate rules that will always create this file first,
before attempting to build your products. To do this, add the header file to
the Automake BUILT_SOURCES variable, as shown in Listing 18-27.

530 Chapter 18

bin_PROGRAMS = program
program_SOURCES = program.c program.h
nodist_program_SOURCES = generated.h
BUILT_SOURCES = generated.h
CLEANFILES = generated.h
generated.h: Makefile
 echo "#define generated 1" > $@

Listing 18-27: Using BUILT_SOURCES to deal with generated source files

The nodist_program_SOURCES variable ensures that Automake will not gen-
erate rules that try to distribute this file; we want it to be built when the end
user runs make, not shipped in the distribution package.

Without a user-provided clue, Automake-generated makefiles have
no way of knowing that the rule for generated.h should be executed before
program.c is compiled. I call BUILT_SOURCES a “crutch” because it simply forces
the rules used to generate the listed files to execute first, and only when the
user makes the all or check target. The rules created using BUILT_SOURCES
aren’t even executed if you attempt to make the program target directly. With
that said, let’s look at what’s going on under the covers.

Dependency Management
There are two distinct classes of source files in a C or C++ project: those
explicitly defined as dependencies within your makefile and those refer-
enced only indirectly through, for instance, preprocessor inclusion.

You can hardcode all of these dependencies directly into your make-
files. For instance, if program.c includes program.h, and if program.h includes
console.h and print.h, then program.o actually depends on all of these files,
not just program.c. And yet, a normal handcoded makefile explicitly defines
only the relationships between the .c files and the program. For a truly
accurate build, make needs to be told about all of these relationships using
a rule like the one shown in Listing 18-28.

program: program.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ program.o

u program.o: program.c program.h console.h print.h
 $(CC) -c $(CPPFLAGS) $(CFLAGS) -o $@ program.c

Listing 18-28: Rules describing the complete relationship between files

The relationship between program.o and program.c is often defined by an
implicit rule, so the rule at u in Listing 18-28 is often broken into two sepa-
rate rules, as shown in Listing 18-29.

program: program.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ program.o

u %.o: %.c

A Catalog of Tips and Reusable Solutions for Creating Great Projects 531

 $(CC) -c $(CPPFLAGS) $(CFLAGS) -o $@ $<

v program.o: program.h console.h print.h

Listing 18-29: An implicit rule for C source files, defined as a GNU make pattern rule

In Listing 18-29, the GNU make-specific pattern rule at u tells make that
the associated command can generate a file ending in .o from a file of the
same base name ending in .c.18 Thus, whenever make needs to find a rule
to generate a file ending in .o that’s listed as a dependency in one of your
rules, it searches for a .c file with the same base name. If it finds one, it
applies this rule to rebuild the .o file from the corresponding .c file if the
timestamp on the .c file is newer than that of the existing .o file or if the
.o file is missing.

There is a documented set of implicit pattern rules built into make, so
you don’t generally have to write such rules. Still, you must somehow tell
make about the indirect19 dependencies between the .o file and any included
.h files. These dependencies cannot simply be implied with a built-in rule
because there are no implicit relationships between these files that are
based on file naming conventions, such as the relationship between .c and
.o files. The relationships are manually coded into the source and header
files as inclusions.

As I mentioned in Chapter 3, writing such rules is tedious and
error prone, because during development (and even maintenance, to a
lesser degree), the myriad relationships between source and header files
can change all the time and the rules must be updated carefully with each
change to keep the build accurate. The C preprocessor is much better
suited to automatically writing and maintaining these rules for you.

A Two-Pass System

There are two ways to use the preprocessor to manage dependencies. The
first is to create a two-pass system, wherein the first pass just builds the
dependencies and the second pass compiles the source code based on those
dependencies. This is done by defining rules that use certain preprocessor
commands to generate make dependency rules, as shown in Listing 18-30.20

18. Simple GNU make pattern rules like this can also be implemented in standard Unix make
using double suffix rules. For instance, the line %.o: %.c could be replaced with .c.o:.

19. I use the term indirect here to mean that the .o file depends on the .h file through the .c file.
That is, the .o file is built from the .h file by virtue of the fact that it’s included by the .c file.
Technically, the .o file’s dependency on the .h file is just as direct as that of the .c file, because
when the compiler picks up where the preprocessor leaves off, there are no .h files—only
a single file composed of the .c file and all included header files—a translation unit, in
the vernacular.

20. Microsoft has apparently never felt the need to support the make utility to the same degree that
Unix compiler vendors have, instead relying heavily on its IDEs to create properly defined depen-
dency graphs for project builds. Thus, while the preprocessor option used here is generally por-
table among Unix compilers, Microsoft compilers simply have no support for this sort of feature.

532 Chapter 18

program: program.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ program.o

%.o: %.c
 $(CC) $(CPPFLAGS) -c $(CFLAGS) -o $@ $<

u %.d: %.c
 $(CC) -M $(CPPFLAGS) $< >$@

v sinclude program.d

Listing 18-30: Building automatic dependencies directly

In Listing 18-30, the pattern rule at u specifies the same sort of
relationship between .d and .c files as the one shown at u in Listing 18-29
does for .o and .c files. The sinclude statement here at v tells make to include
another makefile, and GNU make is smart enough not only to ensure that all
makefiles are included before the primary dependency graph is analyzed
but also to look for rules to build them.21 Running make on this makefile
produces the following output:

$ make
cc -M program.c >program.d
cc -c -o program.o program.c
cc -o program program.o
$
$ cat program.d
program.o: program.c /usr/include/stdio.h /usr/include/features.h \
/usr/include/sys/cdefs.h /usr/include/bits/wordsize.h \

u --snip--
/usr/include/bits/pthreadtypes.h /usr/include/alloca.h program.h \
console.h print.h
$
$ touch console.h && make
cc -c -o program.o program.c
cc -o program program.o
$

As you can see here, the rule to generate program.d is executed first, as
make attempts to include that file. The elided section at u refers to the many
system header files traversed while recursively scanning the included set of
headers. The file contains a dependency rule similar22 to the one we wrote

21. Only GNU make is smart enough to silently include dependency files with sinclude. Other
brands of make provide only include, which will fail if any of the included makefiles are miss-
ing. GNU make is also the only version smart enough to re-execute itself when it notices the
build system has been updated.

22. The GNU toolset supports several non-portable extensions to the classic -M option. For
example, the -MM option has the wonderful effect of not bothering to add system header files
to generated dependency lists. So, the long list of system headers omitted in the example
need not be present at all if portability is not a concern. The -MD and -MMD options used in the
examples are not portable either.

A Catalog of Tips and Reusable Solutions for Creating Great Projects 533

at v in Listing 18-29. (The reference to program.c is missing in our hand-
coded rule’s dependency list because it’s redundant, though harmless.) You
can also see from the console example that touching one of these included
files now properly causes the program.c source file to be rebuilt.

The problems with the mechanism outlined in Listing 18-30 include
the fact that the entire source tree must be traversed twice: once to check
for and possibly generate the dependency files and then again to compile
any modified source files.

Another problem is that if one header includes another, and the second
header is modified, the object file will be updated but not the dependency
file included by make. The next time the second-level header is modified, nei-
ther the object nor the dependency file will be updated. Deleted header files
also cause problems: the build system doesn’t recognize that the deleted file
was purposely removed, so it complains that files referenced in the existing
dependencies are missing.

Doing It in One Pass

A more efficient way to handle automatic dependencies is to generate the
dependency files as a side effect of compilation. Listing 18-31 shows how
this can be done by using the non-portable -MMD GNU extension compiler
option (highlighted in the listing).

program: program.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ program.o

%.o: %.c
u $(CC) -MMD $(CPPFLAGS) -c $(CFLAGS) -o $@ $<

v sinclude program.d

Listing 18-31: Generating dependencies as a side effect of compilation

Here, I’ve removed the second pattern rule (originally shown at u in
Listing 18-30) and added a -MMD option to the compiler command line at u
in Listing 18-31. This option tells the preprocessor to generate a .d file of
the same base name as the .c file that it’s currently compiling. When make is
executed on a clean work area, the sinclude statement at v silently fails to
include the missing program.d file, but it doesn’t matter because all of the
object files will be built the first time anyway. During subsequent incremen-
tal builds, the previously built program.d is included, and its dependency
rules take effect during those builds.

Built Sources Done Right
The one-pass method just described is roughly the one that Automake uses
to manage automatic dependencies, when possible. The problems with this
approach are most often manifested when working with generated sources,
including both .c files and .h files. For instance, let’s expand the example
shown in Listing 18-31 a bit to contain a generated header file called

534 Chapter 18

generated.h, included by program.h. Listing 18-32 shows a first attempt at this
modification. Additions to Listing 18-31 are highlighted in this listing.

program: program.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ program.o

%.o: %.c
 $(CC) -MMD $(CPPFLAGS) -c $(CFLAGS) -o $@ $<

generated.h: Makefile
 echo "#define generated" >$@

sinclude program.d

Listing 18-32: A makefile that works with a generated header file dependency

In this case, when we execute make, we find that the lack of an initial
dependency file works against us:

$ make
cc -MMD -c -o program.o program.c
In file included from program.c:4:
program.h:3:23: error: generated.h: No such file or directory
make: *** [program.o] Error 1
$

Because there is no initial secondary dependency information, make
doesn’t know it needs to run the commands for the generated.h rule yet,
because generated.h only depends on Makefile, which hasn’t changed. To
fix this problem in a Makefile.am file, we could just list generated.h in the
BUILT_SOURCES variable, as we did in Listing 18-27 on page 530. This would
add generated.h as the first dependency of the all and check targets, thereby
forcing them to be built first in the likely event the user happens to enter
make, make all, or make check.23

The proper way to handle this problem is very simple, and it works
every time in both makefiles and Makefile.am files: write a dependency rule
between program.o and generated.h, as shown in the updated makefile in
Listing 18-33. The highlighted line contains the additional rule.

program: program.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ program.o

%.o: %.c
 $(CC) -MMD $(CPPFLAGS) -c $(CFLAGS) -o $@ $<

program.o: generated.h

23. Note that you can’t rely on dependency order for build order with parallel make (make -j).

A Catalog of Tips and Reusable Solutions for Creating Great Projects 535

generated.h: Makefile
 echo "#define generated" >$@

sinclude program.d

Listing 18-33: Adding a hardcoded dependency rule for a generated header file

The new rule tells make about the relationship between program.o and
generated.h:

$ make
echo "#define generated" >generated.h
cc -MMD -c -o program.o program.c
cc -o program program.o
$
$ make
make: 'program' is up-to-date.
$

u $ touch generated.h && make
cc -MMD -c -o program.o program.c
cc -o program program.o
$

v $ touch Makefile && make
echo "#define generated" >generated.h
cc -MMD -c -o program.o program.c
cc -o program program.o
$

Here, touching generated.h (at u) causes program to be updated.
Touching Makefile (at v) causes generated.h to be re-created first.

To implement the dependency rule shown in Listing 18-33 in an Automake
Makefile.am file, you’d use the highlighted rule shown in Listing 18-34.

bin_PROGRAMS = program
program_SOURCES = program.c program.h
nodist_program_SOURCES = generated.h
program.$(OBJEXT): generated.h
CLEANFILES = generated.h
generated.h: Makefile
 echo "#define generated 1" > $@

Listing 18-34: Replacing BUILT_SOURCES with a proper dependency rule

This is exactly the same code shown previously in Listing 18-27 on
page 530, except that we’ve replaced the BUILT_SOURCES variable with a
proper dependency rule. The advantage of this method is that it always

536 Chapter 18

works as it should; generated.h will always be built exactly when it needs to
be, regardless of the target specified by the user.24

If you had tried to generate a C source file rather than a header file,
you’d find that you didn’t even need the additional dependency rule
because .o files implicitly depend on their .c files. However, you must still
list your generated .c file in the nodist_program_SOURCES variable to keep
Automake from trying to distribute it.

N O T E When you define your own rule, you suppress any rules that Automake may generate
for that product. In the case of a specific object file, this is not likely to be a problem,
but keep this Automake idiosyncrasy in mind when defining rules.

As you can see, all you really need to properly manage generated
sources is a correctly written set of dependency rules as well as appropri-
ate nodist_*_SOURCES variables. The make utility and the Autotools provide the
required framework in the form of built-in make functionality, macros, and
variables. You just have to put them together correctly. For example, in the
GNU Automake Manual, see Section 8.1.2, which discusses program linking.25
This section refers to the EXTRA_prog_DEPENDENCIES variable as a mechanism for
extending Automake’s generated dependency graph for a specific target.

Item 11: Disabling Undesirable Targets
Sometimes the Autotools do too much for you. Here’s an example from the
Automake mailing list:

I use automake in one of my projects along with texinfo. That
project has documentation full of images. As you probably know,
`make pdf' makes a PDF document from JPGs and PNGs, whereas
`make dvi' requires EPSs. However, EPS images are insanely large
(in this case like 15 times larger than JPGs).

The problem is that running `make distcheck' results in error
since the EPS images that should be there aren't there and `make
distcheck' tries to run `make dvi' everywhere. I would like to run
`make pdf' instead, or at least to disable building DVI. Is there any
way to accomplish that?

24. This technique fails when you try to use program-specific Automake flags. For example,
if you use program_CFLAGS, Automake generates a different set of rules for building the objects
associated with the program and it munges the object name to contain the program name.
This way, these special objects won’t be confused with ones generated for other products
from the same sources, but your handcoded dependency rules won’t line up with the object
filenames generated by the compiler. For more information, see the documentation for the
AC_PROG_CC_C_O macro in the GNU Autoconf Manual.

25. See https://www.gnu.org/software/automake/manual/html_node/Linking.html in the March 11,
2018, version of the online GNU Automake manual.

https://www.gnu.org/software/automake/manual/html_node/Linking.html

A Catalog of Tips and Reusable Solutions for Creating Great Projects 537

First a little background information: The Automake TEXINFOS primary
makes several documentation targets available to the end user, including
info, dvi, ps, pdf, and html. It also provides several installation targets, includ-
ing install-info, install-dvi, install-ps, install-pdf, and install-html. Of
these targets, only info is automatically built with make or make all, and only
install-info is executed with make install.26

However, it appears that the distcheck target also builds at least the dvi
target, as well. The problem just outlined is that the poster doesn’t provide
the Encapsulated PostScript (EPS) graphics files required to build the DVI
documentation, so the distcheck target fails because it can’t build documen-
tation that the poster doesn’t want to support anyway.

To fix this issue, you would simply provide your own version of the tar-
get that does nothing, as shown in Listing 18-35.

--snip--
info_TEXINFOS = zardoz.texi

u dvi: # do nothing for make dvi

Listing 18-35: Disabling the dvi target in a Makefile.am that specifies TEXINFOS primaries

With the one-line addition at u, make distcheck is back in business. Now,
when it builds the dvi target, it succeeds because it does nothing.

Other Automake primaries provide multiple additional targets as well.
If you only want to support a subset of these targets, you can effectively dis-
able the undesired targets by providing one of your own. If you’d like to be
a bit more vocal about the disabling override, simply include an echo state-
ment as a command that tells the user that your package doesn’t provide
DVI documentation, but be careful not to execute anything that might fail
in this override, or your user will be right back in the same boat.

Item 12: Watch Those Tab Characters!
Having made the transition to Automake, you’re not using raw makefiles
anymore, so why should you still care about tab characters? Remember
that Makefile.am files are simply stylized makefiles. Ultimately, every line in
a Makefile.am file will be either consumed directly by Automake, and then
transformed into true make syntax, or copied directly into the final makefile.
This means that tab characters matter within Makefile.am files.

26. The .info files generated by the info target are automatically distributed, so your users
don’t have to have texinfo installed.

538 Chapter 18

Consider this example from the Automake mailing list:

lib_LTLIBRARIES = libfoo.la
libfoo_la_SOURCES = foo.cpp
if WANT_BAR
 u libfoo_la_SOURCES += a.cpp
else
 v libfoo_la_SOURCES += b.cpp
endif

AM_CPPFLAGS = -I${top_srcdir}/include
libfoo_la_LDFLAGS = -version-info 0:0:0

I have been reading both autoconf and automake manuals and as
far as I can see, the above should work. However the files (a.cpp
or b.cpp) [are] always added at the bottom of the generated
Makefile and are therefore not used in the compilation. No mat-
ter what I try, I cannot get even the above code to generate a cor-
rect makefile, but obviously I am doing something wrong.

The answer, provided by another poster, was simple and accurate, if not
terse to a fault:

Remove the indentation.

The trouble here is that the two lines within the Automake conditional
at u and v are indented with tab characters.

You may recall from “Automake Configuration Features” on page 380,
where I discussed the implementation of Automake conditionals, that text
within conditionals is prefixed with an Autoconf substitution variable that
is ultimately transformed into either an empty string or a hash mark. The
implication here is that these lines are essentially either left as is or com-
mented out within the final makefile. The commented lines really don’t
concern us, but you can clearly see that if the uncommented lines in the
makefile begin with the tab character, Automake will treat them as com-
mands, rather than as definitions, and sort them accordingly in the final
makefile. When make processes the generated makefile, it will attempt to
interpret these lines as orphan commands.

N O T E Had the original poster used spaces to indent the conditional statements, they’d have
had no problem.

The moral of the story: watch those tab characters!

A Catalog of Tips and Reusable Solutions for Creating Great Projects 539

Item 13: Packaging Choices
The ultimate goal of a package maintainer is to make it easy for the end
user. System-level packages never have this problem because they don’t rely
on anything that’s not part of the core operating system. But higher-level
packages often rely on multiple subpackages, some of which are more per-
vasive than others.

For example, consider the Subversion project. If you download the
latest source archive from the Subversion project website, you’ll find that
it comes in two flavors. The first contains only the Subversion source code,
but if you unpack and build this project, you’ll find that you’ll need to
download and install the Apache runtime and runtime utility (apr and
apr-utils) packages, the zlib-devel package, and the sqlite-devel package.
At this point, you can build Subversion, but to enable secure access to
repositories via HTTPS, you’ll also need neon or serf and openssl.

The Subversion project maintainers felt that community adoption of
Subversion was important enough to go the extra mile, so to speak. To help
you out in your quest to build a functional Subversion package, they’ve pro-
vided a second package called subversion-deps, which contains a source-level
distribution of some of Subversion’s more important requirements.27 Simply
unpack the subversion-deps source package in the same directory where
you unpacked your subversion source package. The root directory in the
subversion-deps package contains only subdirectories—one for each of these
source-level dependencies.

You can choose to add source packages to your projects’ build systems
in the same manner. Of course, the process is much simpler if you’re using
Automake. You need only call AC_CONFIG_SUBDIRS for subdirectories contain-
ing add-on projects in your build tree. AC_CONFIG_SUBDIRS quietly ignores
missing subproject directories. I showed you an example of this process in
Chapter 14, where I built the FLAIM toolkit as a subproject if it existed as a
subdirectory within any of the higher-level FLAIM project directories.

Which packages should you ship with your package? The key lies in
determining which packages your consumers are least likely to be able to
find on their own.

27. You’ll still have to download and install the openssl-devel package for your GNU/Linux dis-
tribution, or else download, build, and install a source-level distribution of OpenSSL in order
to build HTTPS support into your Subversion client. The reason for this is that the tricky
nature of various countries’ import and export laws surrounding OpenSSL make it rather
difficult for anyone but the project maintainers to distribute OpenSSL.

540 Chapter 18

Wrapping Up
I hope you find these solutions—indeed, this book—useful on your quest
to create a really great user experience with your open source projects. I
began this book with the statement that people often start out hating the
Autotools because they don’t understand the purpose of the Autotools. By
now, you should have a fairly well-developed sense of this purpose. If you
were disinclined to use the Autotools before, then I hope I’ve given you rea-
son to reconsider.

Recall the famously misquoted line from Albert Einstein: “Everything
should be made as simple as possible, but no simpler.”28 Not all things
can be made so simple that anyone can master them with little training.
This is especially true when it comes to processes that are designed to
make life simpler for others. The Autotools offer the ability for experts—
programmers and software engineers—to make open source software
more accessible to end users. Let’s face it—this process is less than trivial,
but the Autotools attempt to make it as simple as possible.

28. See http://en.wikiquote.org/wiki/Talk:Albert_Einstein. What Einstein actually said was
“The supreme goal of all theory is to make the irreducible basic elements as simple and as
few as possible without having to surrender the adequate representation of a single datum
of experience.”

https://en.wikiquote.org/wiki/Talk:Albert_Einstein

SYMBOLS
*_LIBADD variables, 190
@ (at sign), 53
\ (backslash), 43
` (backticks), 288
: (colon character), 40
- (dash character), 53
$ (dollar sign), 41
$? variable, 46
$% variable, 46
$* variable, 46
$@ variable, 46
$< variable, 46
! (exclamation mark) modifier, 317
; (semicolon character), 40, 42

A
ABI (application binary interface), 210
absolute addresses, 200–201, 214
ac-archive project, 411–412, 528
AC_ARG_ENABLE macro, 133–135, 386
AC_ARG_VAR macro, 396
AC_ARG_WITH macro, 133–134
AC_CANONICAL_HOST macro, 412
AC_CANONICAL_TARGET macro, 412
AC_CHECK_HEADERS macro, 127–128
AC_CHECK_LIB, 386
AC_CHECK_PROG, 119
AC_CONFIG_FILES macro, 87, 90, 102,

104, 242
AC_CONFIG_HEADERS macro, 102–103, 107–110
AC_CONFIG_LINKS macro, 102
AC_CONFIG_MACRO_DIR macro, 486
AC_CONFIG_MACRO_DIRS macro, 375, 486
AC_CONFIG_SRCDIR macro, 101–102
AC_CONFIG_SUBDIRS macro, 373
AC_CONFIG_TESTDIR macro, 241–242
AC_DEFINE macro, 115
AC_DEFINE_UNQUOTED macro, 115
AC_INCLUDES_DEFAULT, 140–141
AC_INIT macro, 100–101, 508–510
AC_LANG_CALL macro, 514–515

aclocal utility, 23–24, 150
AC_MSG_* macros, 131
AC_OUTPUT macro, 141–142
AC_PREREQ macro, 100
AC_PROG_CC macro, 116–117
AC_PROG_YACC, 118
AC_SEARCH_LIBS macro, 81, 125, 386
AC_SUBST macro, 114–115
action-if-not-given argument, 134
AC_TYPE_UINT16_T, 140
--add-missing option, 97
addresses, 324
aix-soname=aix|svr4|both option, 192
aliases, 518
alternatives scripts, 71
AM_CONDITIONAL macro, 380–381, 398
American Standard Code for

Information Interchange
(ASCII), 309–311

American Standards Association
(ASA), 309

AM_INIT_AUTOMAKE macro, 148, 150, 356,
374, 486

AM_MAINTAINER_MODE macro, 173
AM_PROG_AR macro, 376
a.out scheme, 210
Apple platforms, 15–16
application binary interface (ABI), 210
apt, 461
ar utility, 168, 206
architectures, 517
archives, 166
arguments

action-if-not-given argument, 134
bug report argument, 100
commands argument, 104
condition argument, 381–382
init-cmds argument, 106
package argument, 100
tag argument, 106
url argument, 101
value argument, 115
version argument, 101

I N D E X

542 Index

ASCII table, 309–311
AS_HELP_STRING macro, 138
async-exec, 134–137
asynchronous processing, 133
at sign (@), 53
AT_CHECK macro, 250
AT_CLEANUP macro, 251
AT_SETUP macro, 251
Autoconf

building, 4–7
configuration scripts, 80–82
downloading, 2
initialization macros, 100–111
input file, 82
installing, 9–11
missing files, 98
overview, 14, 18–19, 79–80
.pc files, 282–286
primary macros, 114–119
running, 84
testing, 7–9
unpacking, 3–4
versions of, 96

autoconfiscating, 88
autogen.sh script, 97–99
autoheader utility, 19–22, 108–111
autom4te utility, 21–22
AUTOM4TE variable, 243
autom4te.cache directory, 84
Automake

building, 147–151, 154–162
distribution of, 171–172
maintainer mode, 172–173
noise and, 173–175
nonrecursive, 175–177
overview, 14, 145–146
primaries, 158–160
purpose of, 22–24

automatic variables, 46
autopoint, 348
autoreconf utility, 19–22, 84
autoscan utility, 20, 95–99
Autotest

overview, 238–241
wiring up, 241–248

AUTOTEST variable, 243
autoupdate utility, 20, 97
awk expressions, 90–91
AX_PREFIX_CONFIG_H macro, 505
AX_PTHREAD, 384–385

B
backslash (\), 43
backticks (`), 288
base64 module, 358–362
basenames, 125
binding, 183–184
Boehne, Robert, 180
bootstrap.sh script, 97–99
Bourne shell, 19, 452
bug report argument, 100
build dependency issues, 272
build systems, installation process

of, 9–11
BUILT_SOURCES variable, 529–530
byte streams, 91

C
C, public interfaces, 501–502
C compilers, 116–117, 138–141
C locale, 308
C99 standard, 139, 301
Canadian cross, 517
C_CONFIG_COMMANDS macro, 103–105
CFLAGS variable, 72
ChangeLog files, 147
check prefix, 157
check programs, 393
check target, 7–8, 55–56
check-news option, 148
chunk markers, 254
.class files, 409–410
--clean command, 266–267
clean interfaces, 499–505
CLEANFILES variable, 404–405, 417–418
CMake, 14
Cocoa user interface, 15–16
colon (:) character, 40
commands argument, 104
committing files, 348–349
common make rules, 44
Common Object File Format (COFF)

system, 182
compilation, 517–523
compile script, 150
compilers, checking for, 116–117
condition argument, 381–382
config.cache, 28
config.log, 27–28, 85
config.site, 28

Index 543

config.status, 85–87
configuration scripts, 77–78
configure

failure, 6
output, 5–7
--prefix option, 10
purpose of, 18
remote build functionality, 28–29
running, 26–29, 85–86

configure.ac file, 82, 84, 90–91, 287–290
configure.scan file, 116
convenience libraries, 164–169, 204–206
--copy option, 97
COPYING files, 150
C++, 502–505
CPPFLAGS variable, 48, 72
C-preprocessor (CPP) macros, 82–83,

108, 115
crashes, 183–184, 200–201, 362
CreateProcess, 463
cross-compilation, 517–523
cross-to-native builds, 517
C# native language, 398, 418–422
curl libraries, 212
currency attributes, 301, 316–317
Cygwin, 354, 452, 462–477

D
dash character (-), 53
data flow diagrams

aclocal utility, 24
Autoconf, 27
autoheader utility, 27
Automake, 26
compile and link processes, 44
configure, 27
Libtool, 26
make, 29
overview, 21–22

DATA primaries, 159, 527–528
datadir, 332
debug variable, 387
debugging

Gnulib, 364
macros, 83, 449–450

_DEBUG_START_ and _DEBUG_END_ strings,
120–122

declarative language, 40
@DEFS@, 128–129
Demaille, Akim, 146
depcomp script, 150

dependency chains, 40–41, 44
dependency rules, 46–47, 151–153,

530–533
description parameter, 115
DESTDIR variable, 68–69, 351
directed acyclic graphs (DAGs), 40–41
directives, 51
dirname parameter, 328
--disable-async-exec, 137–138
disable-fast-install option, 192–193
disable-shared option, 186, 193
disable-static option, 193
display.h, 46–47
dist target, 51, 54
dist-bzip2 option, 148
distcheck target, 54–55, 99
distdir, 52, 99
dist-lzip option, 148
distribution archives

clean, 510–511
contents, 171–172
vs. GitHub tarballs, 2

dist-shar option, 148
DIST_SUBDIRS variable, 505
dist-tarZ option, 148
dist-xz option, 148
dist-zip option, 148
DLLs (dynamic link libraries), 182,

214–215
dlopen option, 192
dollar sign ($), 41
domainname parameter, 328
dot-rules, 51
doxyfile, 427, 506–507
Doxygen, 369, 396, 424–426
DOXYGEN variable, 380, 382
Draheim, Guido, 528
DRY principle, 194
dual-mode builds, 128, 520–521
Duret-Lutz, Alexandre, 146
dynamic link libraries (DLLs), 182,

214–215
dynamic loader functionality, 110–111

E
Eclipse, 181
--enable-async-exec, 137–138
--enable-debug option, 387
--enable-shared option, 193
--enable-static option, 193
end user’s systems, 17–18

544 Index

English language, 293–294
exclamation mark (!) modifier, 317
extension targets, 505–508
external reference tables, 182
external versioning, 210
EXTRA prefix, 157
EXTRA_DIST variable, 171
EXTRA_PROGRAMS variable, 157–158

F
factory function, 503–504
fallback message catalogs, 338
file extensions, source archives, 3
Filesystem Hierarchy Standard (FHS), 63
Fink, 16
FLAIM (FLexible Adaptable

Information Management)
analyzing, 370–372
logistics, 369–370
overview, 368–369
subprojects, 378–394
toolkit library and utilities, 372–376
xflaim, 394–405

FLM_DEBUG, 387
FORCE, 52–53
foreign option, 148
Free Software Foundation (FSF),

36–37, 79
freedesktop.org project, 272
Friesenhahn, Bob, 180
FTKINC, 372, 397
FTKLIB, 372, 397

G
generated source code, 529–536
gettext

library, 326–327
localization, 339–351
manual, 295
message catalogs, 334–339

git clean, 146
git repositories, 358
GitHub tarballs, vs. distribution

archives, 2
global functions, 511
gnits option, 148
gnome-config script, 272
GNU Autoconf Archive, 411, 412

GNU Autoconf Manual, 97, 118, 238,
517–518

GNU Automake Manual, 23–24
GNU C Library manual, 298, 328
GNU Coding Standards (GCS), 64, 67,

77, 85
GNU Compiler for Java (gcj), 408
GNU gettext Utilities Manual, 339
GNU Libtool Manual, 186
gnu option, 148
GNU Portability Library (Gnulib),

353–354, 528
GNU project, INSTALL files, 5
gnulib-tool utility

adding functionality, 355–364
overview, 353–355

_GNU_SOURCE, 321–322
GPLv3+, 354
grouping field, 301
gunzip program, 4

H
handles, 185
header files

public, 500
templates, 107–108

HEADERS primary, 159–160
heap manager, 183
help strings, 137–138
-hook targets, 389–390
HP-UX/AT&T SVR4 library

versioning, 215

I
i18n. See internationalization
IBM AIX library versioning, 212–213
identification information, 325
ifnames program, 21
implicit rules, 47–49
include directives, 112
include directories, 189–192
init-cmds argument, 106
INSTALL files, 5, 150
install utility, 117–118
installation, 56–62, 529
installation directory variables, 65–66
installation location prefixes, 156
install-sh script, 98, 150
integration testing, 257–260

Index 545

interfaces
designing, 499–505
plug-in, 181, 221–223
versioning, 209

internal versioning, 210
International Components for Unicode

(ICU), 315
internationalization

dynamic messages, 296–325
overview, 295–296
static messages, 325–329

intN_t definitions, 139–140
-Ipath directives, 112
iteration, 450

J
Java

Autotools support for, 17, 408–411
Eclipse and, 181

Java native interface (JNI), 398, 411,
415–417

JAVA primary, 159, 418
Java virtual machine (JVM), 17, 408
Jupiter project

adding functionality, 87–90
adding shared libraries, 188–207
directory structure, 37–38
installation, 56–62
location variables, 66–67
nonrecursive build systems,

175–177
optional features, 132–138
source distribution archive, 50–54
VPATH build functionality, 91–94

JVM (Java virtual machine), 17, 408

K
Katz, Phil, 3
Kernighan, Brian, 80
key-value tags, 276–277
--keyword option, 335

L
language packs, 294
language selection, 332–334
LANGUAGE variable, 332–333
Lattarini, Stefano, 146
lazy binding, 183–184
LC_ADDRESS, 324
LC_ALL, 297

LC_COLLATE, 297, 309–314
LC_CTYPE, 297, 314–315
LC_IDENTIFICATION, 325
LC_MEASUREMENT, 325
LC_MESSAGES, 324, 333
LC_MONETARY, 297
LC_NAME, 324
LC_NUMERIC, 297
LC_PAPER, 324
LC_TELEPHONE, 324
LC_TIME, 297
LD_PRELOAD variable, 182–183
leading control characters, 53–54
Lerdorf, Rasmus, 293
LGPLv2+ and LGPLv3+, 354
*_LIBADD variables, 190
libcrypto.pc files, 289–290
libraries

building, 169–171
checking for, 123–125
convenience libraries, 164–169

LIBRARIES primary, 158
library versioning, 216–220
library_LIBADD variable, 168
library-specific macros, 516
@LIBS@ substitution variable, 125–126
libssl.pc files, 288–290
libthreads library, 123
Libtool

macros, 374–376
overview, 14, 179–180
purpose of, 24–26

libtoolize shell script, 25
libxyz.so, 81
LINGUAS files, 349–350
linker names, 212
links, 181
Linux distros, 67–69
Linux installations, 452, 454–462
Linux versioning, 210–212
Lirzin, Mathieu, 146
LISP primary, 158
localeconv function, 296, 298
LOCALE_DIR variable, 340
locales

generating and installing, 303–307
LC_COLLATE, 309–314
LC_CTYPE, 314–315
POSIX standard, 315–324
setting and using, 298–303
time and date, 307–308
X/Open standard, 315–324

546 Index

localization, 331
location variables, 66–67
ltdl library, 25, 221–234
LT_INIT macro, 192, 374
LTLIBRARIES primary, 158, 186, 188
ltlibrary_LIBADD variable, 168–169

M
-M options, 151–152
M4 utility, 6–7, 80, 82–83, 358, 432–440
M4sh macro library, 382
Mac OS X, 15–16
MacKenzie, David, 18, 145
MacPorts, 16
macros. See also specific macros

C-preprocessor (CPP) macros,
82–83, 108, 115

debugging, 81–83, 449–450
hacking, 511–516
library-specific, 516
Libtool, 374–376
M4sh macro library, 382
troubleshooting, 449–450
writing, 441–448

maintainer mode, 172–173
make

automatic variables, 46
dependency rules, 46–47
implicit rules, 47–49
multiple targets, 49
phony targets, 49
rule definitions, 39–41
running, 7–9, 29
shell commands, 42–43
variable binding, 43–44

make distclean, 146
Makefile.am files, 153–154, 283–285,

376–378, 388–390
Makefile.in template, 99
makefiles

Automake, 22–24
functionality and, 87–90
nonrecursive build systems, 73–77
resources for, 50
variable assignments, 41–42

MANS primary, 160
Matsumoto, Yukihiro, 293
Matzigkeit, Gordon, 180
McKenzie, David, 79
measurement, 325

memchr module, 358
message catalogs, 327–329, 334–339
messages, 131–132, 324
Meyering, Jim, 146
Microsoft Windows

Autotools support for, 14–15
CreateProcess, 463
Cygwin and, 462–477
dynamic link libraries (DLLs), 182,

214–215
Git for Windows, 453–454
Linux and, 454–462
MinGW and, 477–487
MSys2 and, 452, 487–497

MinGW, 452, 477–487
mingw-w64, 455–457
-MMD GNU extension compiler, 533
modules, 358
mon_grouping field, 301
msginit, 349
MSys2, 452, 487–497
multiple modules, 232–233
multiple targets, 49
multithreading, 123–124, 129–130, 385

N
name tokens, 436–437
naming projects, 37
Native Language Support (NLS)

functionality, 339
native support, 16–17
ncurses library, 386
NetWare build, 392
nl_langinfo function, 317–321
noinst prefix, 157
nonrecursive build systems, 73–77,

175–177
nonshared objects, 182
nonstandard targets, 426–428
no-pic option, 193–194
--no-translator option, 349

O
objects, 181–182
OBS (openSUSE Build Service), 427
O’Gorman, Peter, 180
Oliva, Alexandre, 180
Othman, Ossama, 180
OUTER_LIMITS, 321–322

Index 547

P
package argument, 100
package maintainers, 539
@PACKAGE_BUGREPORT@, 100
paper sizes, 324
parallel make, 74
parallel-tests option, 149
pattern rules, 531
.pc.in templates, 282–283
per-makefile option variables, 169
.PHONY rule, 51
phony targets, 49, 54–55
PIC (position-independent code),

200–204
pic-only option, 193–194
PIMPL (Private IMPLementation)

pattern, 502–503
pkg prefix, 156
pkgconf project, 273
pkg-config

Autoconf macros, 290–292
clones, 273
configure.ac, 287–290
functional fields, 279–282
--help option, 274
informational fields, 278–279
key-value tags, 277–278
M4 utility, 274
metadata files, 276–282
--modversion option, 279
overview, 272–276
.pc files, 282–286
Requires and Requires.private

fields, 281
--variable option, 276

platforms, targeting, 36
plug-in interfaces, 181, 221–223
PLV modifiers, 161–162
po directory, 334–337
portable object template (.pot) files,

334–337
POSIX standard, 315–324, 452
POSIX threads (pthread) library,

123–131
POSIX-compliant platforms, 15
postorder_commands macro, 506
--prefix option, 10
prefix overrides, 69–71
prefix variables, 65–66, 156

preorder_commands macro, 506
preprocessor directives, 82
preprocessor-defined variables,

524–525
primaries, 158–160
print.h, 46–47
product list variables (PLVs), 155
product option variables

(POVs), 167–169
product_CFLAGS, 168
product_CPPFLAGS, 168
product_CXXFLAGS, 168
product_LDFLAGS, 168
program, 44–45
program_LDADD, 168
programming languages, choice of,

16–17
PROGRAMS primary, 158
prog-to-check-for program, 119–120, 122
project names, 37
PSV modifiers, 161–162
pthread libraries, 123–131, 384
public interfaces, 499–505
pure virtual interface, 503
PYTHON primary, 158–159

Q
quadrigraphs, 143
quiet build systems, 54, 173

R
readme-alpha option, 148
recursive build systems, 38
recursive extension targets, 505–508
Red Hat Package Manager (RPM), 67,

70, 101, 377, 428
redundancy, 47
reject parameter, 122
Remnant, Scott James, 180
remote build functionality, 28–29,

111–112
repository revision numbers, 508–510
Ritchie, Dennis, 80
root permissions, 71
Rossum, Guido van, 293
RPM (Red Hat Package Manager), 67,

70, 101, 377, 428
runtime directories, 70

548 Index

S
salutations, 324
Savannah Gnulib git repository,

354–355, 528–529
SCons, 14
SCRIPTS primary, 159
sed expressions, 90–91
semicolon (;) character, 40, 42
setlocale function, 296–297
shared libraries

benefits of, 180–181
installing, 187
interfaces, 209
pthread libraries, 126–131
tables, 182
use of, 181–187

shared object name (soname), 211
shared option, 193
shell commands, 42–43
shell condition, 381
shell variables, 114
side-by-side cache (SxS), 214–215
Simon, Peter, 528
Solaris systems, 122
Solaris Versioning, 210–212
source archives

building, 4–7
downloading, 2
installing, 9–11
testing, 7–9
unpacking, 3–4

source distribution archives, 50–54
spec files, 70
src_b64_CPPFLAGS directive, 363
$(srcdir), 93
staged installations, 67
stamp targets, 403–404
standard C library, 296–297
standard targets and variables,

64–66, 389
static option, 193
stdbool module, 358
strfmon function, 315–316
strftime function, 307–308
string module, 358
strip program, 458
Stroustrup, Bjarne, 293
strxfrm function, 311–314
subdir-objects option, 149
SUBDIRS variable, 224–225, 343, 505
substitution variables, 114
Subversion project, 509, 539

sudo, 11
suffix rules, 47–49
SVNREV variable, 509–510
SxS (side-by-side cache), 214–215

T
TAB characters, 39–40, 537–538
tag argument, 106
Tanner, Thomas, 180
tar utility, 3–4
tarballs, 50–54
target systems, 517
targets, 40, 44, 64–65, 536–537
TDs (transitive dependencies), 401–403
telephone numbers, 324
templates

header files, 107–108
Makefile.in template, 99
.pc.in templates, 282–283
portable object template (.pot) files,

334–337
test groups, 248–249
TESTS variable, 236–237
TESTSOURCES variable, 243
testsuite program, 240–241
TESTSUITE variable, 243–247
TEXINFOS primary, 160, 537
text replacement, 523–528
thesaurus library, 184–185
time and date, 307–308
tool chain options, 452–453
transitive dependencies (TDs),

401–403
translation units, 195
transparency, 14
Tromey, Tom, 145
troubleshooting, 449–450
two-pass systems, 531–533
type and structure definitions, 138–141

U
Ubuntu, 461
uintN_t definitions, 139–140
uninstallation, 60–62, 285–286
unit testing, 55–56, 162–164, 257–260
Unix compilers, 45
UNQUOTED versions of macros, 115
unzip utility, 3
--update option, 364
url argument, 101

Index 549

user expectations, 36
user variables, 71–73, 116
/usr/local directory tree, 9
utility scripts, 118, 172

V
value argument, 115
value-if-found variable, 119–120
Van der Heijden, Jan-Jaap, 477
variable binding, 43–44
variables, 65–66, 276
Vaughn, Gary V., 180
--verbose option, 84
version argument, 101
version control, 508–510
version option, 149
version-check commands, 30–33, 279
VPATH build functionality, 91–94

W
-W category option, 149
--warnings=category option, 149
Wildenhues, Ralf, 146, 180
win32-dll option, 192
Windows. See Microsoft Windows
Windows Subsystem for Linux

(WSL), 460–462
Wirth, Niklaus, 293
wrapper directories, 413–414

X
x2nrealloc, 362
xalloc functionality, 362
xflaim, 394–405, 408
xgettext utility, 334–335
X/Open standard, 315–324

Z
ZIP files, 3

Autotools, 2nd Edition is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

RESOURCES
Visit https://www.nostarch.com/autotools2e/ for resources, errata, and more
information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

LINUX BASICS FOR HACKERS
Getting Started with Networking,
Scripting, and Security in Kali
by occupytheweb

december 2018, 248 pp., $34.95
isbn 978-1-59327-855-7

YOUR LINUX TOOLBOX
by julia evans

august 2019, 7 zines, $29.95
isbn 978-1-59327-977-6

HOW LINUX WORKS,
2ND EDITION
What Every Superuser Should Know
by brian ward

november 2014, 392 pp., $39.95
isbn 978-1-59327-567-9

PRACTICAL BINARY ANALYSIS
Build Your Own Linux Tools for
Binary Instrumentation, Analysis,
and Disassembly
by dennis andriesse

december 2018, 456 pp., $49.95
isbn 978-1-59327-912-7

More no-nonsense books from NO STARCH PRESS

AUTOMATE THE BORING STUFF
WITH PYTHON, 2ND EDITION
Practical Programming for Total
Beginners
by al sweigart

fall 2019, 504 pp., $39.95
isbn 978-1-59327-992-9

THE LINUX COMMAND LINE,
2ND EDITION
A Complete Introduction
by william shotts

march 2019, 504 pp., $39.95
isbn 978-1-59327-952-3

https://www.nostarch.com/autotools2e

SHELVE IN:
COM

PUTERS/PROGRAM
M

ING

$49.95 ($65.95 CDN)

C R E A T I N G
P O R T A B L E

S O F T W A R E J U S T
G O T E A S I E R

C R E A T I N G
P O R T A B L E

S O F T W A R E J U S T
G O T E A S I E R

The GNU Autotools make it easy to create software that
is portable across many Unix-like operating systems,
even Windows.

Autotools is a tutorial-based guide to the GNU build
system. You’ll begin with an overview of high-level
concepts and a hands-on tour of the philosophy and
design of the Autotools. Next, you will tackle details like
using the M4 macro processor with Autoconf, extending
the Automake framework, and building Java and C#
sources. At the end you’ll find answers to frequently
encountered problems.

This second edition has been updated to cover the latest
versions of the Autotools. Seven new chapters cover
topics like pkg-config, unit and integration testing with
Autotest, internationalizing with GNU tools, the portabil-
ity of gnulib, and using the Autotools with Windows.
You’ll focus on two projects: a simple “Hello, world!”
program, and a complex open source effort containing
four separate but interdependent subprojects.

Along the way, you’ll learn how to:

• Master the Autotools build system to maximize your
software’s portability

• Generate Autoconf configuration scripts to simplify
the compilation process

• Produce portable makefiles with Automake

• Build cross-platform software libraries with Libtool

• Write your own Autoconf macros

Stop fighting against the system and make sense of it all
with the second edition of Autotools!

A B O U T T H E A U T H O R

John Calcote is a senior software engineer at Hammer
space.com, a software company specializing in cloud
data management. He has been writing portable
networking and storage software for over 25 years
and actively develops, debugs, and analyzes diverse
open source software packages.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

A U T O T O O L SA U T O T O O L S
A P R A C T I T I O N E R ’ S G U I D E T O

G N U A U T O C O N F , A U T O M A K E , A N D L I B T O O L

J O H N C A L C O T E

C
A

L
C

O
T

E
A

U
T

O
T

O
O

L
S

A
U

T
O

T
O

O
L

S

2 N D E D I T I O N

2 N D E D I T I O N

	Brief Contents
	Contents in Detail
	Foreword for the First Edition
	Foreword for the Second Edition
	Preface
	Why Use the Autotools?
	Acknowledgments for the First Edition
	Acknowledgments for the Second Edition
	I Wish You the Very Best

	Introduction
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Autotools Versions Used in This Book

	Chapter 1: An End User’s Perspective on the GNU Autotools
	Software Source Archives
	Unpacking a Source Archive
	Building the Software
	Testing the Build
	Installing the Built Software
	Summary

	Chapter 2: A Brief Introduction to the GNU Autotools
	Who Should Use the Autotools?
	When Should You Not Use the Autotools?
	Apple Platforms and Mac OS X
	The Choice of Language
	Generating Your Package Build System
	Configuration
	Autoconf
	autoreconf
	autoheader
	autoscan
	autoupdate
	ifnames
	autom4te
	Working Together

	Automake
	automake
	aclocal

	Libtool
	libtool
	libtoolize
	ltdl, the Libtool C API

	Building Your Package
	Running configure
	Running make

	Installing the Most Up-to-Date Autotools
	Summary

	Chapter 3: Understanding the GNU Coding Standards
	Creating a New Project Directory Structure
	Project Structure
	Makefile Basics
	Rules
	Variables
	A Separate Shell for Each Command
	Variable Binding
	Rules in Detail
	Resources for Makefile Authors

	Creating a Source Distribution Archive
	Forcing a Rule to Run
	Leading Control Characters

	Automatically Testing a Distribution
	Unit Testing, Anyone?
	Installing Products
	Installation Choices
	Uninstalling a Package
	Testing Install and Uninstall

	The Filesystem Hierarchy Standard
	Supporting Standard Targets and Variables
	Standard Targets
	Standard Variables
	Adding Location Variables to Jupiter

	Getting Your Project into a Linux Distro
	Build vs. Installation Prefix Overrides
	User Variables
	Nonrecursive Build Systems
	Configuring Your Package
	Summary

	Chapter 4: Configuring Your Project with Autoconf
	Autoconf Configuration Scripts
	The Shortest configure.ac File
	Comparing M4 to the C Preprocessor
	The Nature of M4 Macros
	Executing autoconf
	Executing configure
	Executing config.status
	Adding Some Real Functionality
	Generating Files from Templates
	Adding VPATH Build Functionality
	Let’s Take a Breather
	An Even Quicker Start with autoscan
	The Proverbial bootstrap.sh Script
	Updating Makefile.in

	Initialization and Package Information
	AC_PREREQ
	AC_INIT
	AC_CONFIG_SRCDIR

	The Instantiating Macros
	Generating Header Files from Templates
	Using autoheader to Generate an Include File Template

	Back to Remote Builds for a Moment
	Summary

	Chapter 5: More Fun with Autoconf: Configuring User Options
	Substitutions and Definitions
	AC_SUBST
	AC_DEFINE

	Checking for Compilers
	Checking for Other Programs
	A Common Problem with Autoconf
	Checks for Libraries and Header Files
	Is It Right or Just Good Enough?
	Printing Messages

	Supporting Optional Features and Packages
	Coding Up the Feature Option
	Formatting Help Strings

	Checks for Type and Structure Definitions
	The AC_OUTPUT Macro
	Summary

	Chapter 6: Automatic Makefiles with Automake
	Getting Down to Business
	Enabling Automake in configure.ac
	A Hidden Benefit: Automatic Dependency Tracking

	What’s Actually in a Makefile.am File?
	Analyzing Our New Build System
	Product List Variables
	Product Source Variables
	PLV and PSV Modifiers

	Unit Tests: Supporting make check
	Reducing Complexity with Convenience Libraries
	Product Option Variables
	Per-Makefile Option Variables

	Building the New Library
	What Goes into a Distribution?
	Maintainer Mode
	Cutting Through the Noise
	Nonrecursive Automake
	Summary

	Chapter 7: Building Libraries with Libtool
	The Benefits of Shared Libraries
	How Shared Libraries Work
	Dynamic Linking at Load Time

	Using Libtool
	Abstracting the Build Process
	Abstraction at Runtime

	Installing Libtool
	Adding Shared Libraries to Jupiter
	Using the LTLIBRARIES Primary
	Public Include Directories
	Customizing Libtool with LT_INIT Options
	Reconfigure and Build
	So What Is PIC, Anyway?
	Fixing the Jupiter PIC Problem

	Summary

	Chapter 8: Library Interface Versioning and Runtime Dynamic Linking
	System-Specific Versioning
	Linux and Solaris Library Versioning
	IBM AIX Library Versioning
	Microsoft DLL Versioning
	HP-UX/AT&T SVR4 Library Versioning

	The Libtool Library Versioning Scheme
	Library Versioning Is Interface Versioning
	When Library Versioning Just Isn’t Enough

	Using libltdl
	Necessary Infrastructure
	Adding a Plug-In Interface
	Doing It the Old-Fashioned Way

	Converting to Libtool’s ltdl Library
	Preloading Multiple Modules
	Checking It All Out

	Summary

	Chapter 9: Unit and Integration Testing with Autotest
	Autotest Overview
	Wiring Up Autotest
	Adding a Test
	Defining Tests with AT_CHECK
	Defining Test Groups with AT_SETUP and AT_CLEANUP
	So What Happened?

	Unit Testing vs. Integration Testing
	Administrative Details
	Distributing Test Files
	Checking Installed Products
	Cleaning Up

	Niceties
	A Minimal Approach
	Summary

	Chapter 10: Finding Build Dependencies with pkg-config
	A pkg-config Overview
	Diving In
	Writing pkg-config Metadata Files
	Informational Fields
	Functional Fields

	Generating .pc Files with Autoconf
	Generating pc Files from pc.in Templates
	Generating .pc Files with make

	Uninstalled .pc Files
	Using pkg-config in configure.ac
	pkg-config Autoconf Macros
	Summary

	Chapter 11: Internationalization
	Obligatory Disclaimer
	Internationalization (I18n)
	Instrumenting Source Code for Dynamic Messages
	Instrumenting Source Code for Static Messages

	Summary

	Chapter 12: Localization
	Getting Started
	Language Selection
	Building Message Catalogs

	Integrating gettext with the Autotools
	What Should Be Committed?
	Adding a Language
	Installing Language Files
	Manual make Targets

	Summary

	Chapter 13: Maximum Portability with Gnulib
	License Caveat
	Getting Started
	Adding Gnulib Modules to a Project
	Summary

	Chapter 14: FLAIM: An Autotools Example
	What Is FLAIM?
	Why FLAIM?
	Logistics
	An Initial Look
	Getting Started
	Adding the configure.ac Files
	The Top-Level Makefile.am File

	The FLAIM Subprojects
	The FLAIM Toolkit configure.ac File
	The FLAIM Toolkit Makefile.am File
	Designing the ftk/src/Makefile.am File
	Moving On to the ftk/util Directory

	Designing the XFLAIM Build System
	The XFLAIM configure.ac File
	Creating the xflaim/src/Makefile.am File
	Turning to the xflaim/util Directory

	Summary

	Chapter 15: FLAIM Part II: Pushing the Envelope
	Building Java Sources Using the Autotools
	Autotools Java Support
	Using ac-archive Macros
	Canonical System Information
	The xflaim/java Directory Structure
	The xflaim/src/Makefile.am File
	Building the JNI C++ Sources
	The Java Wrapper Classes and JNI Headers
	A Caveat About Using the JAVA Primary

	Building the C# Sources
	Manual Installation
	Cleaning Up Again

	Configuring Compiler Options
	Hooking Doxygen into the Build Process
	Adding Nonstandard Targets
	Summary

	Chapter 16: Using the M4 Macro Processor with Autoconf
	M4 Text Processing
	Defining Macros
	Macros with Arguments

	The Recursive Nature of M4
	Infinite Recursion
	Quoting Rules

	Autoconf and M4
	Writing Autoconf Macros
	Simple Text Replacement
	Documenting Your Macros
	M4 Conditionals

	Diagnosing Problems
	Summary

	Chapter 17: Using the Autotools with Windows
	Environment Options
	Tool Chain Options
	Getting Started
	Cross-Compiling for Windows on Linux
	Installing a Windows Cross Tool Chain
	Testing the Build

	Windows Subsystem for Linux
	Cygwin
	Installing Cygwin
	Opening the Cygwin Terminal
	Testing the Build
	Building True Native Windows Software
	Analyzing the Software

	MinGW: Minimalist GNU for Windows
	Installing MinGW
	Testing the Build

	Msys2
	What’s Msys?
	Installing Msys2
	Installing Tools
	Testing the Build

	Summary

	Chapter 18: A Catalog of Tips and Reusable Solutions for Creating Great Projects
	Item 1: Keeping Private Details out of Public Interfaces
	Solutions in C
	Solutions in C++

	Item 2: Implementing Recursive Extension Targets
	Item 3: Using a Repository Revision Number in a Package Version
	Item 4: Ensuring Your Distribution Packages Are Clean
	Item 5: Hacking Autoconf Macros
	Providing Library-Specific Autoconf Macros

	Item 6: Cross-Compiling
	Item 7: Emulating Autoconf Text Replacement Techniques
	Item 8: Using the Autoconf Archive Project
	Item 9: Using Incremental Installation Techniques
	Item 10: Using Generated Source Code
	Using the BUILT_SOURCES Variable
	Dependency Management
	Built Sources Done Right

	Item 11: Disabling Undesirable Targets
	Item 12: Watch Those Tab Characters!
	Item 13: Packaging Choices
	Wrapping Up

	Index

